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ABSTRACT

DERIVATIVE FREE MULTILEVEL OPTIMIZATION METHODS

Pekmen, Bengisen

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Assist. Prof. Dr. Ömür Uğur

August 2009, 85 pages

Derivative free optimization algorithms are implementations of trust region based derivative-

free methods using multivariate polynomial interpolation. These are designed to minimize

smooth functions whose derivative are not available or costly to compute. The trust region

based multilevel optimization algorithms for solving large scale unconstrained optimization

problems resulting by discretization of partial differential equations (PDEs), make use of

different discretization levels to reduce the computational cost. In this thesis, a derivative free

multilevel optimization algorithm is derived and its convergence behavior is analyzed. The

effectiveness of the algorithms is demonstrated on a shape optimization problem.

Keywords: Trust region method, multivariate interpolation, derivative free optimization, mul-

tilevel optimization
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ÖZ

TÜREVSİZ ÇOK KATMANLI ENİYİLEME YÖNTEMLERİ

Pekmen, Bengisen

Yüksek Lisans, Bilimsel Hesaplama Programı

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Ömür Uğur

Ağustos 2009, 85 sayfa

Çok değişkenli interpolasyona dayalı, güvenilir bölge tabanlı türevsiz eniyileme yöntemleri,

türevi olmayan ya da yaklaşık olarak türevi hesaplanamayan, düzgün fonksiyonların eniy-

ilemesi için tasarlanmıştır. Kısmi türevli diferansiyel denklemlerin ayrıklaştırılmaları sonucu

elde edilen büyük boyuttaki kısıtlamasız eniyileme problemleri için çok katmanlı eniyileme

yöntemleri kullanılmaktadır. Bu çalışmada geliştirilen türevsiz çok katmanlı eniyileme yönte-

minin yakınsama analizi yapılmış, bir geometrik eniyileme problemine uygulanarak elde

edilen sayısal sonuçlar verilmiştir.

Anahtar Kelimeler: güvenilir bölge yöntemi, çok değişkenli interpolasyon, türevsiz eniy-

ileme, çok katmanlı eniyileme
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CHAPTER 1

INTRODUCTION

For continuously differentiable functions, the standard mathematical characterization of a lo-

cal minimum, given by first-order necessary conditions, requires that the first-order deriva-

tives are zero. However, for a variety of reasons there have always been many cases when

derivatives are unavailable or unreliable. Therefore, nonlinear optimization techniques called

derivative-free optimization methods has been needed. Optimization without derivatives is

one of the most important, open and challenging areas in computational science and engineer-

ing due to increasing complexity in mathematical modelling [13], [24]. The another reason

for derivative free methods is inappropriateness of some derivative approximations. For in-

stance, automatic differentiation techniques can not be applied in all cases. In particular, if

the objective function is computed using black-box simulation package, automatic differenti-

ation is impossible like in computational fluid dynamics problems. Moreover, applying finite

difference derivative approximation may not be accurate when the function evaluations are

costly and when there are noisy.

Derivative free optimization (DFO) methods build models of functions based on sample func-

tion value or they directly exploit a sample set of function values without building an explicit

model. When the model construction is considered, models is typically built by polynomial

interpolation or regression. Most algorithms proposed in search on DFO methods are based

on trust-region techniques. Trust-region methods minimize trust region subproblems defined

by the constructed models. For every minimization, a step size is found. By this step size,

a possible reduction is investigated. Meanwhile, control of the geometry of the sample sets,

where the function is evaluated, is guaranteed by any condition for geometry (poisedness).

Large-scale finite dimensional optimization problems often arise from the discretization of
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infinite-dimensional problems, a primary example being optimal control problems in terms of

either ordinary or partial differential equations. While the direct solution of such problems for

a discretization level is often possible using the existing packages for large-scale numerical

optimization, this technique typically makes very little use of the fact that the underlying

infinite-dimensional problem may be described at several discretization levels; the approach

thus rapidly becomes inconvenient. To make explicit use of this fact, a class of trust-region

methods is used. The algorithms in this class make use of the discretization level as a means

of speeding up the computation of the step. This use is recursive, leading to true multilevel

optimization methods [21], [22], [57]. A simple first approach of using the different levels of

discretization for an infinite-dimensional problem is to use coarser grids in order to compute

approximate solutions which can then be used as starting points for the optimization problem

on a finer grid.

In our study, our aim is to combine multilevel structure with the derivative free optimization.

Therefore, we developed an algorithm called multilevel derivative free optimization (MDFO).

Global convergence to first-order critical points is proved under assumptions. Numerical

results of different probable versions of MDFO on a shape optimization problem are also

presented. When we compare these results with each other, we obtained accurate results

considering function evaluations.

The thesis is organized as follows:

• Chapter 2 introduces derivative-free optimization methods.

• Chapter 3 describes multilevel optimization methods.

• Chapter 4 is devoted to MDFO.

• Chapter 5 consists of numerical results for the shape optimization problem.

• Chapter 6 reaches a conclusion and gives the future perspectives.

2



CHAPTER 2

DERIVATIVE FREE OPTIMIZATION METHODS

2.1 Introduction

A class of nonlinear optimization methods called derivative free methods has been extensively

developed in the past decade [13], [24]. There is a high demand especially in the industrial

applications because of the expensiveness and difficulty or the unavailability of derivatives

of the objective function f (x). Unavailability of derivatives occurs when the computation of

f (x) at a given point x results from some physical, chemical or econometrical experiment or

measurement, or is a result of large and expensive computer simulation for which the source

code is either unavailable or unmodifiable which can be considered as a black box.

The idea of derivative free methods for minimization was firstly remarked by Wright such that

direct search methods first appear to have been suggested in the 1950’s [65]. The first simplex

based search was that of Spendley et al. [50], which like the work of Torczon [59], preserved

the essential geometry. This was improved on the grounds of efficiency by no longer insisting

on maintaining the regularity of the simplex, first by Campey and Nickols [7], and then by

Nelder and Mead [32]. In 1964, Powell [37] described a method for solving the nonlinear

minimization problem based on the use of conjugate gradients. The properties of the method

were analyzed by Brent [5].

Independently, Winfield used the available objective function values f (xi) for building a

quadratic model by interpolation [63], [64]. This model is assumed to be valid in a neigh-

bourhood of the current iterate, which is described as a trust region (a hypersphere centered at

xi), whose radius is iteratively adjusted. The model is then minimized within the trust region.

A strong impact on derivative free optimization has been Powell’s views. The first major con-
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tribution of Powell was a method for solving the nonlinear unconstrained minimum problem

based on the use of conjugate gradients [37]. But, recognizing the difficulty of the conjugate-

directions method which suffers from determining near conjugate directions when the Hessian

of the function is ill-conditioned, Powell suggested using the orthogonal transformations of

sets of conjugate directions [40]. Following this idea, he proposed to approximate the matrix

of second derivatives by modifying an initial estimate [41].

The most remarkable contribution of Powell was the proposal of linear multivariate interpo-

lation for the approximation of the objective function and constraints in a constrained opti-

mization problem [42]. Improving on this idea, Powell then used a multivariate quadratic

interpolation model of the objective function in a trust-region framework in an unconstrained

case [43], similar to Winfield’s proposals.

There are four mainly classes of derivative-free optimization (DFO) methods [24]. The first

class DFO algorithms are direct search or pattern search methods which are based on the

exploration of the variable space by using sample points from a predefined class geomet-

ric pattern and use either the Nelder-Mead simplex algorithm or parallel direct search algo-

rithm [43], [65]. The inherit of smoothness of the objective function is not used in these

methods. Therefore, a very large number of function evaluations are required. They can be

useful for non-smooth problems. The second class of DFO’s are line search methods which

consists of a sequence of n+1 one-dimensional searches introduced by Powell [37]. The third

class of the algorithms is constituted by the combination of finite difference techniques (in-

troduced by [16]) coupled with quasi-Newton method [38]. The last class of the methods are

based on modeling the objective function by multivariate interpolation in combination with

the trust-region techniques. And we will be interested in this class step by step [2], [46], [48].

2.2 Description of the DFO Algorithms

As a motivation to DFO methods, there is an objective function f : Rn → R which is (smooth)

nonlinear, bounded below and derivatives of it are not available. The problem is an uncon-

strained minimization of the form

min
x∈Rn

f (x)

where ∇ f (x) and ∇2 f (x) can not be computed for any x.
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DFO algorithms belong to the class of trust region methods which are iterative and built

around the current iterate as a cheaper model of the objective function which is easier to

minimize than the objective function [24]. Therefore, the first main ingradient of a DFO

algorithm is to choose an objective function model.

At the kth step the quadratic model within the trust-region Bk,

Bk
de f
=

{
xk + s : s ∈ Rn and ‖s‖ ≤ ∆k

}
,

with the trust-region radius ∆k and ‖.‖ is Euclidean norm, may be given as

mk(xk + s) = f (xk) + 〈g(xk), s〉 +
1
2
〈s,H(xk)s〉 (2.1)

for some g ∈ Rn and some symmetric n × n matrix H, where 〈., .〉 denotes the inner product.

The vector g and H do not necessarily correspond to the first and second derivatives of the

objective function f . They are determined by requiring that the model (2.1) interpolates the

function f at a set Y = {yi}
|Y |
i=1 of points containing the current iterate xk

f (yi) = mk(yi) for all yi ∈ Y (2.2)

where Y denotes the set of interpolation points, which is a subset of the set of points at which

the values of f is known, including the current iterate. To build the full quadratic model (2.1),

the determination of f (xk), the components of the vector gk and the entries of the matrix Hk

are required. Besides, the cardinality of Y must be equal to

p =
1
2

(n + 1)(n + 2).

However, if n > 1, the condition (2.2) is not sufficient for the existence and uniqueness of

the interpolant and to guarantee the good quality of the model. To ensure that the existence

and uniqueness of the interpolant (namely, that the points of Y do not collapse into a lower

dimensional subset or lie on a quadratic curve), geometric conditions known as poisedness on

the set Y are added to the conditions (2.2).

The general form of the DFO algorithm can be given as follows with the given constants [24],

0 < η0 ≤ η1 < 1 and 0 < γ0 ≤ γ1 < 1 ≤ γ2,

Step 1: Initializations.

Let xs and f (xs) be given. Choose an interpolation set Y containing xs.

5



Determine x0 ∈ Y such that f (x0) = min
yi∈Y

f (yi).

Choose an initial trust region radius ∆0 > 0. Set k = 0.

Step 2: Build the model.

Using the poised interpolation set Y , build the model mk(xk + s).

Step 3: Minimize the model within the trust region.

Compute the point x+
k such that

mk(x+
k ) = min

x∈Bk
mk(x).

Compute f (x+
k ) and the ratio

ρk
de f
=

f (xk) − f (x+
k )

mk(xk) − mk(x+
k )
.

Step 4: Update the interpolation set.

• Successful step :

If ρk ≥ η1, include x+
k in Y by dropping one of the existing interpolation points.

• Unsuccessful step :

If ρk < η1 and Y is inadequate in x ∈ Bk, improve the geometry.

Step 5: Update the trust-region radius.

• Successful step: If ρk ≥ η1, then set

∆k+1 ∈
[
∆k, γ2∆k

]
.

• Unsuccessful step: If ρk < η1 and Y is adequate in Bk, then set

∆k+1 ∈
[
γ0∆k, γ1∆k

]
.

• Otherwise, set ∆k+1 = ∆k.

Step 6: Update the current iterate.

Determine x̂k such that

f (x̂k) = min
yi∈Y,yi,xk

f (yi).

Then, if

ρ̂k
de f
=

f (xk) − f (x̂k)
mk(xk) − mk(x+

k )
≥ η0,

set xk+1 = x̂k. Otherwise, xk+1 = xk. Increment k by one (k := k + 1) and go to Step 2.

6



2.3 Interpolating Models

To achieve better local convergence rates in general and to capture the curvature information

of the function, it is essential to consider the nonlinear models instead of linear models. As

the simplest nonlinear model which is often used, the quadratic polynomial model can be

considered. Non-polynomial models such as radial basis functions can also be used in DFO

[13].

If a model is a truncated Taylor series expansion of first or second order, then the quality

of the model is derived from Taylor expansion error bounds. If the model is an polynomial

interpolation based, there exist similar bounds, but, unlike Taylor expansion bounds, they do

depend not only on the center of the expansion and on the function that is being approxi-

mated, but also on the set of interpolation points. Thus, in order to maintain the quality of the

interpolation model, it is essential to maintain the quality of the interpolation set [13].

2.3.1 Polynomial Interpolation

Consider Pd
n the space of polynomials of degree less than or equal to d in Rn [13].

Given a set Y =
{
y0, . . . , yp

}
⊂ Rn of interpolation points and a basis φ =

{
φ0(x), . . . , φp(x)

}
of Pd

n which is a set of p1 = p + 1 polynomials of degree less than or equal to d that span Pd
n.

Then any polynomial m(x) of degree at most d in Rn that interpolates a given function f (x) at

the points in Y can be written as

m(x) =

p∑
j=0

α jφ j(x).

The coefficients α0, . . . , αp can be determined from the interpolation conditions

m(yi) =

p∑
j=0

α jφ j(yi) = f (yi), i = 0, . . . , p.

In matrix form, the following linear system can be written by these conditions

M(φ,Y)αφ = f (Y),

7



where

M(φ,Y) =



φ0(y0) φ1(y0) · · · φp(y0)

φ0(y1) φ1(y1) · · · φp(y1)
...

...
...

...

φ0(yp) φ1(yp) · · · φp(yp)


, αφ =



α0

α1
...

αp


, f (Y) =



f (y0)

f (y1)
...

f (yp)


.

If the matrix M(φ,Y) is nonsingular, then the system will have a unique solution.

Definition 2.3.1 The set Y is poised for polynomial interpolation in Rn if the corresponding

matrix M(φ,Y) is nonsingular for some basis φ in Pd
n, in other words, if det(M(φ,Y)) , 0.

Example 2.3.2 Suppose n = 2 and Y is a set of six points on a unit circle. Then Y cannot be

interpolated by a polynomial of the form

a0 + a1x1 + a2x2 + a1,1x2
1 + a1,2x1x2 + a2,2x2

2,

hence, Y is not poised with respect to the space of quadratic polynomials.

On the other hand, Y can be interpolated by a polynomial of the form

a0 + a1x1 + a2x2 + a1,1x2
1 + a1,2x1x2 + a1,1,1x3

1,

thus, Y is poised in an appropriate subspace of the space of cubic polynomials [49].

Definition 2.3.3 A set of points Y is called well-poised, if it remains poised under small per-

tubations, i.e., if det(M(φ,Y)) is sufficiently large and the matrix M(φ,Y) is well-conditioned.

Theoretically, if the set Y is poised, then we can solve the linear system and find the interpo-

lation polynomial. Nevertheless, numerically the matrix M(φ,Y) is often ill-conditioned even

when it is nonsingular. Obviously, conditioning of M(φ,Y) depends on the choice of the basis

{φi(x)} [48]. Because of this, the condition number of M(φ,Y) generally is not an indicator of

well-poisedness.
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2.3.2 Lagrange Polynomials

Definition 2.3.4 In a set of interpolation points Y =
{
y0, y1, . . . , yp

}
, a basis of p1 = p + 1

polynomials l j(x), j = 0, . . . , p, in Pd
n is called a basis of Lagrange polynomials if

l j(yi) = δi, j =


0, i , j

1, i = j.

If Y is poised, then the basis of Lagrange polynomials exist and is uniquely defined [13].

For any function f : Rn → R and any poised set Y =
{
y0, y1, . . . , yp

}
⊂ Rn, the unique

polynomial m(x) that interpolates f (x) on Y can be expressed as

m(x) =

p∑
i=0

f (yi)li(x),

where {li(x), i = 0, . . . , p} is the basis of Lagrange polynomials for Y [13].

Example 2.3.5 Consider interpolating the cubic function

f (x1, x2) = x1 + x2 + 2x2
1 + 3x3

2

at the six interpolating points y0 = (0, 0), y1 = (1, 0), y2 = (0, 1), y3 = (2, 0), y4 = (1, 1), y5 =

(0, 2). So, f (y0) = 0, f (y1) = 3, f (y2) = 4, f (y3) = 10, f (y4) = 7, f (y5) = 26. The correspond-

ing Lagrange polynomials can be found by thinking l j(x1, x2) = a0 + a1x1 + a2x2 + a3x2
1 +

a4x1x2 + a5x2
2 where a0, . . . , a5 are coefficients which can be found by using the definition

2.3.4. After calculations,

l0(x1, x2) = 1 − 3
2 x1 −

3
2 x2 + 1

2 x2
1 + 1

2 x2
2 + x1x2

l1(x1, x2) = 2x1 − x2
1 − x1x2

l2(x1, x2) = 2x2 − x2
2 − x1x2

l3(x1, x2) = − 1
2 x1 + 1

2 x2
1

l4(x1, x2) = x1x2

l5(x1, x2) = − 1
2 x2 + 1

2 x2
2.

Thus, the model function can be written as

m(x1, x2) = 0l0(x1, x2) + 3l1(x1, x2) + 4l2(x1, x2) + 10l3(x1, x2)

+ 7l4(x1, x2) + 26l5(x1, x2).
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One of the most useful features of Lagrange polynomials is an upper bound which is a measure

of poisedness of interpolation set Y in a region B. It’s shown for any x in the convex hull 1

∥∥∥Dr f (x) −Drm(x)
∥∥∥ ≤ 1

(d + 1)!
νd

p∑
i=0

∥∥∥yi − x
∥∥∥d+1 ∥∥∥Drli(x)

∥∥∥
where Dr denotes r-th derivative of a function, νd is an upper bound on Dd+1 f (x) and ‖.‖

is Euclidean norm. Note that f (x) is required to have a bounded (d + 1)st derivative by this

bound. When r = 0, the bound will be

| f (x) − m(x)| ≤
1

(d + 1)!
p1νdΛl∆

d+1,

where

Λl = max
0≤i≤p

max
x∈B(Y)

|li(x)| ,

and ∆ is the diameter of the smallest ball B(Y) containing Y . Here, Λl is related to the

Lebesgue constant of Y [13].

Alternative ways to define Lagrange polynomials can be found and defined as in [13].

Λ - poisedness

A measure of poisedness should reflect how well interpolation set spans the region where

interpolation is of interest [13].

Well poisedness and poisedness of Y also has to depend on the polynomial space from which

an interpolant is chosen (Example 2.3.2).

Λ-poisedness can be defined as in [13] :

Definition 2.3.6 Let Λ > 0 and a set B ∈ Rn be given. Let φ =
{
φ0(x), φ1(x), . . . , φp(x)

}
be

a basis in Pd
n. A poised set Y =

{
y0, . . . , yp

}
is said to be Λ-poised in B (in the interpolation

sense) if and only if

1. for the basis of Lagrange polynomials associated with Y

Λ ≥ max
0≤i≤p

max
x∈B
|li(x)| ,

or, equivalently,
1 The convex hull of a given set S ⊂ Rn is the smallest convex set containing S (meaning that it is the

intersection of all convex sets containing S). The convex hull of a set is always uniquely defined and consists
of all convex combinations of elements of S, i.e., of all linear combinations of elements of S whose scalars are
nonnegative and sum up to one [47].
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2. for any x ∈ B there exists λ(x) ∈ Rp1 such that
p∑

i=0

λi(x)φ(yi) = φ(x) with ‖λ(x)‖∞ ≤ Λ,

or, equivalently,

3. replacing any point in Y by any x ∈ B can increase the volume of the set
{
φ(y0), .., φ(yp

}
at most by a factor Λ.

2.3.3 Newton Fundamental Polynomials

The basis of quadratic functions and the point set Y is given such a way that M(φ,Y) has the

following structure [48] :

Figure 2.1: Newton Fundamental Polynomial

Nonzero coefficients of basis φi(x j) , 0 occur iff i, j belong to the same subset :

{1} , {x1, . . . , xn} ,
{
x2

1, . . . , x
2
n, x1x2, . . . , xn−1xn

}
The set of interpolation points is partitioned into three blocks Y0,Y1,Y2 which correspond to

constant terms, linear terms and quadratic terms. Hence, Y0 has a single element, Y1 has n

elements and Y2 has n(n + 1)/2 elements [48].
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The basis NFP {Ni(.)} is also parititoned into three blocks
{
N0

i (.)
}
,
{
N1

i (.)
}
,
{
N2

i (.)
}

with the

appropriate number of elements in each block like Ys. So, the basis elements and the interpo-

lation points are set in one-to-one correspondence.

A Newton polynomial Ni(.) and a point yi correspond⇐⇒ Ni(yi) = 1 and Ni(y j) = 0 for all

index j within first l blocks.

Gram-Schmidt orthogonalization procedure to obtain NFP basis with, for example, the basis

of monomials [48] :

? Initialize
{
N̄i(.)

}p

i=1

? For i=1,. . . , p :

– Normalize : N̄i(x)← N̄i(x)
N̄i(yi)

– Orthogonalize : N̄ j(x)← N̄ j(x) − N̄ j(y j)N̄i(x)

for j in the same or “later” block as i

? Set Ni(.) = N̄i(.), i = 1, . . . , p.

Here, for every step i the value N̄i(yi) is called the pivot value. ‘bar’ is used to show inter-

mediate polynomials and to distinguish them from NFP’s Ni(.), obtained at the end of the

procedure.

Example 2.3.7 Consider Y0 = {(0, 0)} , Y1 = {(1, 0), (0, 1)} , Y2 = {(2, 0), (1, 1), (0, 2)}

corresponding to the initial basis functions 1, x1, x2, x2
1, x1x2, x2

2 respectively.

Applying the above procedure, we obtain

N1 = 1, N2 = x1, N3 = x2

N4 =
1
2

(x2
1 − x1), N5 = x1x2, N6 =

1
2

(x2
2 − x2)

The set Y is poised if and only if the pivot value is nonzero. However, for numerical purposes

it is important that
∣∣∣Ni(yi)

∣∣∣ is sufficiently large (not very close to zero). Small pivot values

result in large coefficients of NFPs (due to the normalization step) and lead to numerical

instability.
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When a neighbourhood B and a constant K (independent of B) is given, an interpolation set Y

is well-poised if there exists a corresponding basis of Newton fundamental polynomials such

that |Ni(x)| ≤ K for all i = 1, . . . , p and all x in B [48].

In any other way as in [8], in practice , ∣∣∣N̄i(yi)
∣∣∣ ≥ θ,

θ is called a pivoting threshold. Also, if this condition is satisfied, then the NFPs are said to

be well poised. Moreover, this bound shows that interpolation is ‘locally good’ and provides

a first order approximation of f (x).

One of the advantages of the threshold pivoting is that it prevents points that are very close

to each other to be included in the interpolation set, but rather it has a ‘spreading’ effect on

the interpolation points. This helps to maintain the noise and it is one of the major factors

responsible for the robustness of DFO on noisy problems [48].

In case ‘bad’ pivot is encountered during getting NFP procedure, typically all possible re-

maining pivots should be considered and a pivot that passes the threshold is chosen. If no

such pivot exists, the procedure is terminated and the interpolation set Y is restricted only to

the points which correspond to completed pivots.

Thus, one may exit with an incomplete interpolation set and with a set of Newton polynomi-

als which span only some subspace of the space of quadratic polynomials. In this case, an

interpolation can still be constructed in the subspace.

Above procedure can also be applied when the initial cardinality of the interpolation set p <

(n + 1)(n + 2)/2. The procedure terminates once p NFPs have been constructed. Again, the

outcome of this is an incomplete basis of Newton polynomials.

The subspace spanned by an incomplete basis depends on the choice of the initial basis.

For example [48], if n = 2 and p = 5 < (n + 1)(n + 2)/2 = 6, and the initial basis is

{1, x1, x2, x2
1, x1x2, x2

2}, then the final incomplete Newton polynomials will span the subset of

quadratic function of the form a0 + a1x1 + a2x2 + a3x2
1 + a4x1x2.

As an alternative way to complete an interpolation set to a full well-poised set, one can con-

tinue procedure by picking an arbitrary interpolation point from the appropriate neighbour-

hood, so that the value of the pivot can pass the threshold. For example, a point y− = yi , xk
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is replaced by another point y+ such that

y+ = argmax
y∈Bk

|N (y)| ,

provided that |Ni (y+)| + 1 ≥ θ [9].

2.3.4 Regression Nonlinear Models

When there is noisy data, the interpolation of objective function is generally replaced by least-

squares regression. In this case, the interpolation conditions M(φ,Y)α = f (Y) are solved in

the least-squares sense, meaning that a solution is found such that ‖M(φ,Y)α − f (Y)‖22 is

minimized [13].

2.3.5 Underdetermined Interpolating Models

When the case that the number of interpolation points in Y is smaller than the number of

elements in the polynomial basis φ is considered, the matrix M(φ,Y) defining the interpolation

conditions has more columns than rows and the interpolation polynomials defined by

m(yi) =

q∑
k=0

αkφk(yi) = f (yi), i = 0, . . . , p,

are no longer unique [13].
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2.4 Trust-Region Methods for Derivative Free Models

Trust region methods are a most common area of research for the solutions of nonlinear

programming problems. Attractive features of trust-region methods are :

• They are based on quadratic models. This provides to deal with curvature information.

• The convergence properties of trust-region methods is both comprehensive and elegant

to use in many problems.

This section is based on [2], [13]. The main idea is to use a model for the objective function

which is in a neighborhood of the current point. The neighborhood is called trust-region

which can be defined as

B (xk; ∆k)
de f
=

{
x ∈ Rn : ‖x − xk‖ ≤ ∆k

}
for every kth iteration ∆ is the trust-region radius and ‖.‖ can be taken as iteration dependent

norm (here, Euclidean norm). Typically, the model is written in the form

mk (xk + s) = mk (xk) + sT gk +
1
2

sT Hks, (2.3)

where gk = ∇Qk and Hk = ∇2Qk. If Qk is the first-order Taylor model, then Qk(xk) = f (xk)

and gk = ∇ f (xk). For second order derivatives, we write Hk = ∇2 f (xk). In the derivative-

free case, models are used where Hk , ∇
2 f (xk) , gk , ∇ f (xk). If interpolation is absent,

Qk(xk) , f (xk).

In the unconstrained case, the local model problem which is called the trust region subproblem

will be

min
s∈B(0;∆k)

mk(xk + s),

where mk(xk + s) is the model in (2.3) and B(0; ∆k) is the trust region of radius ∆k centered at

0 and s = x − xk.

The basic trust region algorithm [2]:

1. Initialization

An initial point x0 and an initial trust region ∆0 are given.

The constants η1, η2, γ1, γ2 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1,
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Compute f (x0) and set k = 0.

2. Model definition

Choose the norm ‖.‖k and define a model mk in Bk.

3. Step Computation

Compute a step sk that “sufficiently reduces the model” mk and such that xk + sk ∈ Bk.

4. Acceptance of the trial point

Compute f (xk + sk) and define

ρk
de f
=

f (xk) − f (xk + sk)
mk(xk) − mk(xk + sk)

.

If ρk ≥ η1 then define xk+1 = xk + sk; otherwise define xk+1 = xk.

5. Trust region radius update

Set

∆+
i+1 ∈


[∆k,∞) if ρk ≥ η2[
γ2∆k,∆k) if ρk ∈

[
η1, η2)[

γ1∆k, γ2∆k) if ρk < η1.

Increment k by one (k := k + 1) and go to step 2.

In the following discussions during this section, all norms will be taken as Euclidean norm.

The Cauchy Step

This is the step, sC
k , to the minimum of the model along the steepest descent direction within

the trust region. If, for t ≥ 0,

tCk = argmin
xk−tgk∈B(xk;∆k)

mk(xk − tgk),

is defined, then the Cauchy step is given by

sC
k = −tCk gk. (2.4)

Theorem 2.4.1 If the model (2.3) and the Cauchy step (2.4) is considered, then

mk(xk) − mk(xk + sC
k ) ≥

1
2
‖gk‖min

[
‖gk‖

‖Hk‖
,∆k

]
,

where ‖gk‖ / ‖Hk‖ = +∞ is assumed when Hk = 0.
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If the function mk(xk + s) is not a linear or a quadratic function, Theorem 2.4.1 is not directly

applicable.

In fact, it is not necessary to actually find the Cauchy step to achieve global convergence to

first-order stationarity. It is sufficient to relate the step computed to the Cauchy step. Thus, it

is assumed that for all iterations k,

mk(xk) − mk(xk + sk) ≥ κ f cd
[
mk(xk) − mk(xk + sC

k )
]

for some constant κ f cd ∈ (0, 1]. By theorem (2.4.1), equivalently,

mk(xk) − mk(xk + sk) ≥
κ f cd

2
‖gk‖min

[
‖gk‖

‖Hk‖
,∆k

]
.

This assumption is the minimum requirement for how well one has to do at solving the trust-

region subproblem to achieve global convergence to first-order critical points.

The eigenstep

When a quadratic model and global convergence to second-order critical points are consid-

ered, the model reduction that is required can be achieved along a direction related to the

greatest negative curvature. Assuming Hk has at least one negative eigenvalue and the most

negative eigenvalue of Hk is defined as τk
de f
= λmin(Hk). In this case, a step of negative curva-

ture sE
k referred to as the eigenstep can be determined by

(sE
k )T (gk) ≤ 0,

∥∥∥sE
k

∥∥∥ = ∆k, and (sE
k )T Hk(sE

k ) = τk∆
2
k .

The eigenstep sE
k is the eigenvector Hk corresponding to the most negative eigenvalue τk.

Note that due to negative curvature, sE
k is the minimizer of the quadratic function along that

direction inside the trust region. The model decreases by the eigenstep in the following way.

Lemma 2.4.2 Suppose that the model Hessian Hk has negative eigenvalues. Then

mk(xk) − mk(xk + sE
k ) ≥ −

1
2
τk∆

2
k .

If mk(xk + s) is not a quadratic function, then Lemma 2.4.2 and Theorem 2.4.1 are not directly

applicable.

As in Cauchy step,

mk(xk) − mk(xk + sk) ≥ κ f ed
[
mk(xk) − mk(xk + sE

k )
]
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for some constant κ f ed ∈ (0, 1]. To yield a fraction of Cauchy step decrease in here, it is

assumed for all iterations k,

mk(xk) − mk(xk + sk) ≥ κ f od
[
mk(xk) −min

{
mk(xk + sC

k ),mk(xk + sE
k )

}]
for some constant κ f od ∈ (0, 1].

By using the previous assumption, Lemma 2.4.2 and the Cauchy decrease Theorem 2.4.1,

mk(xk) − mk(xk + sk) ≥
κ f od

2
max

[
‖gk‖min

{
‖gk‖

‖Hk‖
,∆k

}
,−τk∆

2
k

]
.

Trust-region subproblem

Now, it will be given a detailed analysis how the trust-region subproblem min
s∈B(0;∆k)

mk(xk + s)

can be solved. For the analysis, the following theorem is necessary [13].

Theorem 2.4.3 Any global minimizer s∗ of m(x+s) = m(x)+sT g+ 1
2 sT Hs, subject to ‖s‖ ≤ ∆,

satisfies the equation

[H + λ∗I] s∗ = −g, (∗)

where H + λ∗I is positive semidefinite, λ∗ ≥ 0, and

λ∗ (‖s∗‖ − ∆) = 0. (∗∗)

If H + λ∗I is positive definite, then s∗ is unique.

If ∆ is large enough and H is positive definite, the complementarity conditions (∗∗) are satis-

fied with λ∗ = 0 and the unconstrained minimum lies within the trust region. A solution lies

on the boundary of the trust region in all other circumstances and ‖s∗‖ = ∆.

Assume that H has an eigendecomposition

H = QEQT ,

where E is a diagonal matrix of eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, and Q is an orthogonal

matrix of associated eigenvectors. Then,

H + λI = Q(E + λI)QT .
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Theorem 2.4.3 indicates that the value of investigated λ must satisfy λ ≥ −λ1 (as only then is

H + λI positive semidefinite), and, if λ > −λ1, the model minimizer is unique (as this ensures

that H + λI is positive definite).

Suppose that λ > −λ1. Then H + λI is positive definite, and thus (∗) has a unique solution,

s(λ) = − [H + λI]−1 g = −Q (E + λI)−1 QT g.

However, the solution which is looked for depends upon the nonlinear inequality

‖s(λ)‖ ≤ ∆.

So,

‖s(λ)‖2 =
∥∥∥Q (E + λI)−1 QT g

∥∥∥2
=

∥∥∥(E + λI)−1 QT g
∥∥∥2

=

n∑
i=1

γ2
i

(λi + λ)2 ,

where γi is the ith component of QT g. By this last equality, if λ > −λ1, then ‖s(λ)‖ is a

continuous, nonincreasing function of λ on (−λ1,+∞) that tends to zero as λ tends to +∞.

Moreover, provided γ j , 0, then lim
λ→−λ j

‖s(λ)‖ = +∞. Thus, provided γ1 , 0, ‖s(λ)‖ = ∆ for a

unique value of λ ∈ (−λ1,+∞).

When H is positive definite and
∥∥∥H−1g

∥∥∥ ≤ ∆ the solution corresponds to λ = 0. Otherwise,

when H is positive definite and
∥∥∥H−1g

∥∥∥ > ∆ there is a unique solution to (∗) in (0,+∞).

When H is not positive definite and γ1 , 0 it is needed to find a solution to (∗) with λ > −λ1.

Because of high nonlinearities in the neighborhood of −λ1, solving the following secular

equation becomes preferable;
1

‖s(λ)‖
=

1
∆
.

This equation is close to linear in the neighborhood of the optimal λ. Because of the near

linearity in the region of interest, the fast convergence of Newton’s method is expected. But,

since an unsafeguarded Newton method may fail to converge, the method should be safe-

guarded carefully.

When H is not positive definite and γ1 = 0, this is called the hard case, since there is no

solution to (∗) in (−λ1,+∞), when ∆ > ‖s(−λ1)‖. However, there is a solution at λ = −λ1,

but it includes an eigenvector of H corresponding to the eigenvalue λ1, which thus has to be

estimated. Details can be found in [54].
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Fully Linear and Fully Quadratic Models:

Let a function f that is differentiable on an open domain (denote this open set, Ĺ(x0) =

∪
x∈L(x0)

B(x; ∆max) for any fiven x0 and ∆max and where L(x0) = {x ∈ Rn : f (x) ≤ f (x0)} is

level set) and ∇ f is Lipschitz continuous be given. Let κ f and κg be fixed positive constants.

For any given ∆ ∈ (0,∆max) and for any given x ∈ L(x0) , consider a class of model functions

M = C1 (Rn,R). The classM is called fully linear class on B(x; ∆) if for any model function

m ∈ M

‖∇ f (x + s) − ∇m(x + s)‖ ≤ κg∆, ∀s ∈ B(0; ∆)

| f (x + s) − m(x + s)| ≤ κ f ∆
2, ∀s ∈ B(0; ∆).

A model that belongs to a fully linear classM and satisfy these two conditions is called fully

linear on B(x; ∆).

Let a function f which is twice continuously differentiable and ∇2 f is Lipschitz continuous

on an open domain be given. Let κ f , κg, κh be positive, fixed constants. For any given ∆ ∈

(0,∆max) and for any fiven x ∈ L(x0), consider a class of model functions M = C2 (Rn,R).

The classM is called a fully quadratic class on B(x; ∆) if for any model function m ∈ M

∥∥∥∇2 f (x + s) − ∇2m(x + s)
∥∥∥ ≤ κh∆, ∀s ∈ B(0; ∆)

‖∇ f (x + s) − ∇m(x + s)‖ ≤ κg∆2, ∀s ∈ B(0; ∆)

| f (x + s) − m(x + s)| ≤ κ f ∆
3, ∀s ∈ B(0; ∆).

Any model m belongs to a fully quadratic class M and satisfying these three conditions is

called fully quadratic on B(x; ∆).

Note that the model (2.3) must be fully linear in order to ensure global convergence to a

first-order critical point.
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2.5 Interpolation Based Derivative Free Optimization Methods

2.5.1 DFO Algorithm based on NFP

The DFO method which is used here [48] is described as in [9]. The main distinction between

this method and the earlier methods is in the approach to handling the geometry of the inter-

polation set. NFPs (Newton Fundamental Polynomials) is used to construct the interpolation

model.

Step 0 : Initialization

Let a starting point xm and the value f (xm) be given.

Choose an initial trust region radius ∆0 > 0.

Choose at least one additional point2 not further than ∆0 away from xm to create an initial

well-poised interpolation set Y and initial basis of NFPs.

Determine x0 ∈ Y which has the best objective function value; i.e.,

f (x0) = min
yi∈Y

f (yi).

Set k = 0. Set parameters η0, η1 to measure progress : 0 < η0 < η1 < 1.

Step 1 : Build the model

Using the interpolation set Y and the basis of NFP, build an interpolation model Qk(x).

Step 2 : Minimize the model within the trust region

Set Bk =
{
x :

∥∥∥x − xk
∥∥∥ ≤ ∆k

}
. Compute the point x̂k such that

Qk(x̂k) = min
x∈Bk

Qk(x).

Compute f (x̂k) and the ratio

ρk ≡
f (xk) − f (x̂k)

Qk(xk) − Qk(x̂k)
.

Step 3 : Update the interpolation set

? If ρk ≥ η0, include x̂k in Y , dropping one the existing interpolation points if necessary.

? If ρk < η0, include x̂k in Y , if it improves the quality of the model.
2 With respect to this algorithm the model is built up from a few points but in Tamas Terlaky’s algorithm [52],

n additional points are used
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? If ρk < η0 and there are less than n + 1 points in the intersection of Y and Bk,

generate a new interpolation point in Bk, while preserving/improving well-poisedness.

? Update the basis of the Newton Fundamental Polynomials.

Step 4 : Update the trust region radius

? If ρk ≥ η1, increase the trust region radius

∆k+1 ∈
[
∆k, γ2∆k

]
.

? If ρk < η0 and the cardinality of Y ∩ Bk was less than n + 1 when x̂k was computed,

reduce the trust region

∆k+1 ∈
[
γ0∆k, γ1∆k

]
.

? Otherwise, set

∆k+1 = ∆k.

Step 5 : Update the current iterate

Determine x̄k with the best objective function value

f (x̄k) = min
yi∈Y
yi,xk

f (yi).

If improvement is sufficient (w.r.t. predicted improvement)

ρ̄k ≡
f (xk) − f (x̄k)

Qk(xk) − Qk(x̂k)
≥ η0,

set xk+1 = x̄k.

Otherwise, set xk+1 = xk.

Increment k by one (k := k + 1) and go to Step 1.

In Step 3 and Step 5, the improvement procedure works in the following way. Let δ(Y) =

det(M(φ,Y)) [17]. And let m1,m2,m3 be the factors of the improvement in δ(Y).

For i = 1, . . . , the number of points in a set,

1. Find the furthest point x f from the current point xc.
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2. Replace x f by a candidate point x.

3. Calculate

ratio =
determinant after replacement

determinant before replacement
.

If
∥∥∥x f − xc

∥∥∥ ≤ ∆ and ratio ≥ m2, then accept x, return.

Else, if
∥∥∥x f − xc

∥∥∥ ≤ m3∆ and ratio > m1, then accept x, return.

Else, if
∥∥∥x f − xc

∥∥∥ ≥ m3∆ and δ(Y) > ε, then accept x, return.

Else, find the new furhest point x f̂ and go to Step 2.

where the norms are Euclidean norm (‖.‖2).

In this implementation, the factor m1 = 1,m2 = 3,m3 = 4 are set. These can be modified as

needed.

The other implementation parts of the algorithm such as dropping a point, termination criteria

will be mentioned in Chapter 4.

It has been proved that DFO is globally convergent to a local minimum, provided that the

approximation model is at least fully linear to ensure a reasonable approximate result of the

objective function [10].
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2.5.2 UOBYQA and CONDOR

UOBYQA is Unconstrained Optimization BY Quadratical Approximation and CONDOR

is COnstrained, Nonlinear, Direct, parallel Optimization using the trust Region method for

high-computing load function [2], [3].

The algorithms of UOBYQA and CONDOR are similar. Both of them are based on the same

ideas and have nearly the same behavior. CONDOR is an extension of UOBYQA. Small

differences is due to the algorithms used inside the main algorithms. In other words, these

two

• sample the search space, making evaluations in a way that reduces the influence of the

noise, and they

• construct a fully quadratic model based on Lagrange Interpolation technique. The

curvature information is obtained from the quadratic model. This technique is less

sensitive to the noise and leads to high quality local quadratic models which directly

guide the search to the nearest local optimum. Using a full quadratic model enables to

compute Newton’s steps. Newton’s steps have a proven quadratic convergence speed.

Since some evaluations of the objective function are lost to build the quadratical model,

‘nearly’ quadratic convergence speed is obtained which can be called Q-superlinear

convergence by Powell [44]. These quadratical models are built using the least number

of evaluations.

Inside UOBYQA and CONDOR algorithms, the Moré and Sorenson Algorithm [2] is used

for the computation of the trust region step.

Moré and Sorensen trust region model is to seek a solution s∗ of the minimization problem :

min
s∈Rn

Q(xk + s) ≡ f (xk) + 〈gk, s〉 +
1
2
〈s,Hks〉 subject to ‖s‖2 < ∆.

where gk is the approximation of the gradient of f (x) evaluated at xk and Hk is the approxima-

tion of the Hessian matrix of f (x) evaluated at xk. This minimization problem can be written

by a translation of the polynomial Qk.

min
s∈Rn

Q(s) ≡ 〈g, s〉 +
1
2
〈s,Hs〉 subject to ‖s‖2 < ∆.
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When CPU time is concerned to reach the local optimum, computer paralellization of the

function evaluations is a way of CONDOR. CONDOR takes a similar road as in PDS (Parallel

direct search) by proposing an extension of the original UOBYQA that several CPUs used in

parallel. Numerical results show that this addition makes CONDOR the fastest available

algorithm for noisy, high computing load objective functions (fastest, in terms of function

evaluations).

UOBYQA and CONDOR are globally convergent to a local (or global) optimum. The detailed

information about CONDOR algorithm can be found in [2] and UOBYQA algorithm is in [2]

or [3].

2.5.3 Similarities and Differences between CONDOR and DFO

At the same way as [2], [24], [36] :

• DFO uses Newton polynomials while CONDOR uses Lagrange polynomials as the

basis for the space of quadratic polynomials.

• When DFO algorithm starts, it builds a fully linear model (using only n + 1 evaluations

of the objective function) and then directly uses this simple model to guide the research

into the space.

• In DFO, when a point is ‘too far’ from the current position , the model could be in-

valid and could not represent correctly the local shape of the objective function. This

‘far point’ is rejected and replaced by a closer point. But this operation requires an

evaluation of the objective function. Thus, in some situation, it is preferable to lower

degree of the polynomial which is used as local model (and drop ‘far point’), to avoid

this evaluation. Therefore, DFO is using a polynomial of degree oscillating between 1

and a “full” 2. CONDOR uses full quadratic polynomials.

• In CONDOR and UOBYQA the Moré and Sorensen algorithm is used for the computa-

tion of the trust region step. Numerically, it is very stable and give very high precision

results. In DFO, a general purpose tool NPSOL 3 is used giving high precision results

3 NPSOL is a set of subroutines for minimizing a smooth function subject to constraints, which may include
simple bounds on the variables, linear constraints, and smooth nonlinear constraints. It uses a sequential quadratic
programming (SQP) algorithm, in which each search direction is the solution of a QP subproblem [36].
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but that can not be compared to the Moré and Sorenson algorithm when the precision

is critical.

• In CONDOR (also in UOBYQA) the validity of the model is checked using the two

following equations :

– All the interpolation points must be close to the current point xk:

∥∥∥x j − xk
∥∥∥ ≤ 2ρ, j = 1, . . . ,N

where ρ is a measure of initial and final value of global trust region radius. This

condition prevents the algorithm from sampling the model at (n + 1)(n + 1)/2 new

points.

– Powell’s Heuristic:

M
6

∥∥∥x j − xk
∥∥∥3 max

d

{∣∣∣l j(xk + d)
∣∣∣ : ‖d‖ ≤ ρ

}
≤ ε, j = 1, . . . ,N

where l j(x) is a basis of Lagrange polynomials and
∣∣∣∣ d3

dα3 f (x + αν)
∣∣∣∣ ≤ M such that

‖ν‖ = 1, α ∈ R.

This last equation provides to “keep far points” inside the model, still being assured that

it is valid. It allows to have a ‘full’ polynomial of second degree for a ‘cheap price’.

The checking of the validity of the model in DFO is mainly based on this second equa-

tion, which is not very often satisfied by the trust-region radius. Therefore, more func-

tion evaluations are needed in order to rebuild the interpolation polynomial in some

cases.
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2.5.4 NEWUOA (NEW Unconstrained Optimization Approximation)

This approach is to seek the minimum of a function F(x), x ∈ Rn, which is specified by a

subroutine (provided by user) that calculates the value of F(x) for any given vector x ∈ Rn.

There are no constraints and no derivatives are required. NEWUOA is generally suitable for

noisy objective functions [46].

Let Y =
{
y1, . . . , ym

}
be the interpolation set. Powell focused in particular on models based on

m = 2n + 1 points. These models are obtained from one iteration to the next by minimizing

the Frobenius norm of the change in the Hessian, subject to the interpolation conditions. The

complexity of an iteration is very attractive and is of order O(n3).

Another interesting property is that for any kth iteration, one of the two types of iteration

‘trust region’ or ‘alternative’ is chosen. Trust-region iteration works in the same way like

basic trust-region. An alternative iteration usually tries to improve the quadratic model by

moving the interpolation point that is furthest from xk, where k is still the iteration number.

2.5.5 BOOSTERS (Bierlaire and Oeuvray Optimization STrategy Exploiting Radial

Surrogates)

The necessity to develope this algorithm can be described as [33] :

• Non-polynomial models. These polynomials have a big potential and a lot of applica-

tions could benefit from their use.

• The multivariate scattered data interpolation problem. RBFs is a tool to solve this

problem. Under some assumptions the existence and uniqueness is guaranteed.

• Flexibility. While a full quadratic model is based on exactly m1 = n(n + 1)/2 + n + 1

points, in BOOSTERS’ models are based on m2 ≥ n + 1. Flexibility comes from the

choice the number of the interpolation points by the user.

• Smoothness and robustness to noise. Models based on RBFs are insensitive to noise.

The value of the objective function can be changed without affecting very much the

entire model. Furthermore, RFBs are often known to be smoothing functions and the

solutions to variational problems.
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In multivariate interpolation based on RBFs, in order to interpolate a function f whose values

on a set Y =
{
y1, . . . , yp

}
⊂ Rn are known, a function is considered of the form

s(x) =

p∑
i=1

λiφ (‖x − yi‖) + q(x),

where q is a low degree polynomial, λi, i = 1, . . . , p, are the interpolant parameters to be

determined, φ is an application from R+ to R and ‖.‖ is the standard 2-norm.

For the choice of the trust-region model mk which is twice continuously differentiable, it is

required that a function φ (‖x − yi‖) as smooth as possible and the degree of the polynomial

added to the radial terms does not exceed one. So, q(x) = c0 + ct x is taken in the model.

The radial function of type rβ is the only without parameters, except exponent, which belongs

to twice continuously differantiable functions space in Rn. Note that cubic splines, corre-

sponding to the choice of β = 3 in dimension 1, are the smoothest interpolation functions.

Consequently, in [33], the following trust region models is chosen

mk(x) =

p∑
i=1

λi ‖x − xi‖
3 + c0 + ct x.

More detailed parts and application on BOOSTERS can be found [33], [35].

2.5.6 ORBIT (Optimization by Radial Basis function Interpolation in Trust regions)

This method is a trust-region framework based on Radial Basis Functions (RBFs) [62]. The

problem is an unconstrained local minimization min
x∈Rn

f (x).

ORBIT algorithms is based on forming a model which is computationally simple to evaluate

and possesses well-behaved derivatives. The model is optimized over compact regions to

generate new points which can be evaluated by the computationally expensive function. Using

this new function value to update the model, an iterative process works.

As a different definition of trust-region B, the trust-region norm (at iteration k), ‖.‖k, is dis-

tinguished from the standard 2-norm ‖.‖ and other norms in the sequel (e.g. ∞-norm). It is

assumed that for some constant ck such that ‖.‖2 ≤ ck ‖.‖k.

A nonlinear interpolation model is formed using fewer than a quadratic (in the dimension)

number of points. A so-called ‘fully linear tail’ is employed to guarantee that the model
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approximates both the function and its gradient reasonably well. The interpolation model is

taken in the form

mk(xk + s) =

|Y|∑
j=1

λ jφ(
∥∥∥s − y j

∥∥∥) + p(s),

where φ : R+ → R is a univariate function, p ∈ Pn
d−1, |Y| is the cardinality of the interpolation

set Y and ‖.‖ is Euclidean norm.

The algorithm of ORBIT, which can be found in [62] detailed, works with a set of displace-

ments, Dk, from the current center xk. About this set, di ∈ Dk ↔ f (xk + di) is known. Since

evaluation of f is computationally expensive, the importance of having complete memory of

all points previously evaluated by the algorithm is emphasized. This is an important difference

between ORBIT and previous algorithms BOOSTERS, UOBYQA and NEWUOA, where, in

order to reduce linear algebraic costs, the interpolation set is changed by at most one point

and hence very limited memory is required.

2.5.7 Minimal Norm Hessians (MNH)

This method has two new features [61]:

• Unlike previous algorithms, which were driven by a desire to keep linear algebraic

overhead to O(n3) operations per iteration, MNH views overhead as negligible relative

to the expense of function evaluation. This allows greater flexibility in using points

from the bank. It is viewed tha data gained from each function evaluation contributes

to a bank of insight into the function.

• MNH models are formed from interpolation sets in a computationally stable manner

which guarantees that the models are well-behaved. In other words, the model is con-

vergent to first order critical point without any difficulty.

Quadratic model is taken as

mk(xk + s) = f (xk) + gT
k +

1
2

sT Hks ,

where gk = ∇ f (xk) and Hk = ∇2 f (xk).
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Given an initial point x0 and a maximum radius ∆max, f is sampled within the relaxed set

which is defined as

L =
{
y ∈ Rn : ‖x − y‖2 ≤ ∆max for some x with f (x) ≤ f (x0)

}
With the interpolation set Y =

{
y1 = 0, y2, . . . , y|Y|

}
⊂ Rn interpolation condition

mk(xk + y j) = f (xk + y j) for all y j ∈ Y .

Now, it is defined

µ(x)
de f
=

[
1, χ1, . . . , χn

]
,

ν(x)
de f
=

χ2
1

2
, . . . ,

χ2
n

2
,
χ1χ2
√

2
, . . . ,

χn−1χn
√

2

 ,
where χi denotes the ith component of x ∈ Rn.

Then
[
µ(x), ν(x)

]
is taken as form of basis for the linear space of quadratics in n variables, Qn.

So, any quadratic mk ∈ Q
n can be written as

mk(x − xk) = αTµ(x − xk) + βTν(x − xk)

for coefficients α ∈ Rn+1 and β ∈ R
n(n+1)

2 . By the way, f is denoted asMY

NY


T αβ

 = f , (2.5)

where MY ∈ Rn+1×|Y| and NY ∈ Rn(n+1)/2×|Y| are defined by Mi, j = µi(y j) and Ni, j = νi(y j),

respectively. Note that these matrices depend on the interpolation set Y.

In MNH, it is focused on solutions to the interpolation problem (2.5) that are of minimum

norm with respect to the vector β. Hence the required solution (α, β) satisfies

min
{

1
2
‖β‖2 : MT

Y
α + NT

Y
β = f

}
. (2.6)

The solution to this system is interested in because it represents the quadratic whose Hessian

matrix is of minimum Frobenius norm [13] since ‖β‖ =
∥∥∥∇2

xxm(x)
∥∥∥

F . If other minimal norm

quadratics is found, they may be drawn to those with Hessian of minimal norm because the

resulting solution procedure will be relative to fully linear models.

The solution way of (2.6) and the detailed parts is in [61].
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2.5.8 Retrospective Trust-Region Method

A new trust-region method for unconstrained optimization where the radius update is com-

puted using the model information at the current iterate rather than at the preceding one is

introduced. The update is then performed according to how well the current model retrospec-

tively predicts the value of the objective function at last iterate [55].

The mail goal is to propose a trust-region algorithm for unconstrained optimization problem

that determines ∆k+1 according to how well mk+1 predicts the value of the objective function

at xk and in that connection the radius is updated with the change in models [55].

The difference this new algorithm from the basic trust-region algorithm comes in the ratio of

reductions step. Namely, the trust-region radius is updated after each sucsessful iteration k

(i.e, at the beginning of iteration k + 1) on the retrospective ratio

ρ̃k+1
de f
=

f (xk+1) − f (xk+1 − sk)
mk+1(xk+1) − mk+1(xk+1 − sk)

=
f (xk) − f (xk + sk)

mk+1(xk) − mk+1(xk + sk)

ρk is continued to be used to decide whether the trial iterate may be accepted. In other words,

deciding acceptance of the trial iterate and determining the radius update are two remarkable

parts of the new algorithm.

Algorithm : Retrospective trust-region algorithm (RTR) [55]

Step 0: Initialization. An initial point x0 and initial trust-region radius ∆0 > 0 are given.

The constants η1, η̃1, η̃2, γ1 and γ2 are given and satisfy 0 < η1 < 1, 0 < η̃1 ≤ η̃2 < 1, and

0 < γ1 ≤ γ2 < 1. Compute f (x0) and set k = 0.

Step 1: Model definition. Select a twice-continuously differentiable mk defined in Bk.

Step 2: Retrospective trust-region radius update. If k = 0, go to Step 3.

If xk = xk−1, choose ∆k in
[
γ1∆k−1, γ2∆k−1). Else, define

ρ̃k =
f (xk−1) − f (xk)

mk(xk−1) − mk(xk)

and choose

∆k ∈


[∆k−1,∞) if ρ̃k ≥ η̃2[
γ2∆k−1,∆k−1) if ρ̃k ∈

[
η̃1, η̃2)[

γ1∆k−1, γ2∆k−1) if ρ̃k < η̃1 .
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Step 3: Step Calculation. Compute a step sk that “sufficiently reduces the model” mk and

such that xk + sk ∈ Bk.

Step 4: Acceptance of the trial point. Compute f (xk + sk) and define

ρk =
f (xk) − f (xk + sk)

mk(xk) − mk(xk + sk)
.

If ρk ≥ η1, define xk+1 = xk + sk otherwise, define xk+1 = xk.

Increment k by one (k := k + 1) and go to Step 1.

2.5.9 Wedge Methods

Owing to Wedge methods, it is possible to find a point which improves the value of the model

while maintaining an acceptable level of poisedness. This algorithm follows the approach of

attempting to generate points which simultaneously provide sufficient decrease for the model

and satisfy the Λ-poisedness condition. At every iteration, the trust-region subproblem mini-

mization is augmented by an additional constraint which does not allow to lie near a certain

manifold which has the shape of ‘wedge’ [13].

At the current iterate xc, the model is defined as

mc (xc + s) = f (xc) + gT
c s +

1
2

sTGcs

where the vector gc ∈ Rn and the n × n symmetric matrix Gc must be determined so that the

model interpolates f at a set of sample points ( Gc = 0 for linear models ) [26].

To define the model mc uniquely, in addition to xc, a set of m points
∑

c =
{
y1, . . . , ym

}
, which

are called satellites of xc, are maintained. For a linear model m = n, for a quadratic model

m = (n + 1)(n + 2)/2 − 1 should be chosen. Then the interpolation conditions

mc(xc) = f (xc), m(yl) = f (yl), l = 1, . . . ,m,

are imposed. When the model mc is uniquely determined by these conditions, the interpolation

set {xc} ∪
∑

c is called the non-degenerate.

Suppose that the current iteration starts with a non-degenerate set of sample points {xc} ∪∑
c. Identify the farthest satellite from the current iterate xc, say ylout , as the point that will

be removed from
∑

c. This choice promotes the conservation of points that provide local
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information of f around xc. Then define a ‘region’ in Rn that contains all the points xc + s

that, if included in the interpolation set in place of ylout , would result in a degenerate set of

sample points. A setWc that contains Tc is also defined. Wc is designed to avoid points that

are very near Tc [26].

After the “wedge”Wc is determined, a trial step sc is computed by solving the subproblem

min
s

mc(xc + s) = f (xc) + gT
c s + 1

2 sTGcs

subject to ‖s‖ ≤ ∆c ,

s < Wc ,

and define x+ := xc + sc. If x+ does not reduce f , the current iterate is not updated, and x+ may

or may not be discarded, depending on how far it is from the current iterate xc compared with

ylout . The second constraint is called a ‘wedge constraint’. For a linear model mk(xk + s) =

f (xk) + gT
k s the wedge constraint can be illustrated as

∥∥∥bT
k s

∥∥∥ ≥ γ ‖bk‖ ‖s‖ where γ is the

parameter determining the ‘width’ of the wedge and bk ∈ Rn is a vector [26].

2.6 Benchmarking of Derivative Free Optimization Methods

The benchmarking procedures for derivative-free optimization algorithms are explored when

there is a limited computational budget [30]. These on selected applications with trajectory

plots provide useful information to users. Particularly, users can find the solver that delivers

the largest reduction within a given computational budget.

To evaluate the performance of derivative-free solvers, performance profiles with the con-

vergence test is used. Help of these performance profiles to users is to choose a solver that

provides a given reduction in function value within a limit of µ f function evaluations.

Performance Profiles are defined in terms of performance measure tp,s > 0 obtained for

each p ∈ P (a set of benchmark problems) and s ∈ S (a set of optimization solvers). The

performance ratio is defined by

rp,s
de f
=

tp,s

min
{
tp,s : 1 ≤ s ≤ |S|

} ,
where |S| denotes the cardinality of S.

The best solver for a particular problem reaches the lower bound rp,s = 1. If rp,s = ∞, solver

s fails to converge on problem p.
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The performance profile of a solver s ∈ S can be defined as the fraction of problems where

the performance ratio is at most α, namely,

ρs(α) =
1
|P|

size
{
p ∈ P : rp,s ≤ α

}
; (2.7)

(2.7) is a probability distribution for the ratio rp,s.

Note that ρs(1) is the fraction of problems for which solver s ∈ S is the fastest and that for α

sufficiently large, ρs(α) is the fraction of problems solved by s ∈ S. Solvers with high values

for ρs(α) are preferable.

Convergence test for benchmarking derivative-free solvers that does not depend on the gradi-

ent can be written

f (x0) − f (x) ≥ (1 − τ)( f (x0) − fL), (2.8)

where τ > 0 : tolerance,

x0 : the starting point for the problem,

f : Rn → R : the unconstrained problem’s objective function which may be noisy or non-

differentiable and evaluation of f is computationally expensive.

fL : computed for each problem p ∈ P as the smallest value of f obtained by any solver

within a given number µ f of function evaluations.

Users with expensive optimization problems are interested in the percentage of problems that

can be solved (for a given tolerance τ) with α function evaluations. This information can be

obtained by data profile in which tp,s is the number of function evaluations required to satisfy

(2.8) for a given tolerance τ and np is the number of variables in p ∈ P such that it is defined

as

ds(α) =
1
|P|

size
{

p ∈ P :
tp,s

np + 1
≤ α

}
.

There is a limit µ f on the total number of function evaluations, and if the convergence test

(2.8) is failed after µ f evaluations, tp,s = ∞. The unit of cost which is np + 1 function

evaluations can be easily translated into function evaluations. This unit of cost has another

advantage that ds(α) can then be interpreted as the percentage of problems that can be solved

with the equivalent of α (simplex) gradient estimates.

Performance profiles and data profiles are probability density functions, and so monotone

increasing, step functions with a range in [0, 1]. However, performance profiles compare

different solvers, while data profiles display the raw data. Particularly, performance profiles
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do not provide the number of function evaluations required to solve any of the problems. Also

note that the data profile for a given solver s ∈ S is independent of other solvers; this is not

the case for performance profiles.

As another connection between performance and data profiles, the limiting value of ρs(τ) as

τ → ∞ is the percentage of problems that can be solved with µ f function evaluations. Thus

[30],

ds(µ f ) = lim
τ→∞

ρs(τ) .

This shows that the data profile ds measures the reliability of the solver (for a given tolerance

τ) as a function of the budget µ f since the limiting value of ρs can be interpreted as the

reliability of the solver.

Application to the chosen derivative-free solvers and obtained results can be found in [30].

2.7 Self-Correcting Geometry in the Model-Based Algorithms

In [58], it is shown that to ignore geometry considerations altogether if one wishes to main-

tain global convergence is impossible. Besides, an algorithm that resorts to the geometry-

improving steps as little as possible (while still maintaining a mechanism for taking geometry

into account) can be provided . As it was shown in the study [58], the design and convergence

proof of this new algorithm crucially depends on a self-correction mechanism resulting from

the combination of the trust-region mechanism with the polynomial interpolation setting. This

mechanism also throws some light on the good numerical results reported by the study [27]

for a method where no care is ever taken to guarantee poisedness of the interpolation set.

The main idea of the new method is to rely on new points generated by the algorithm to

maintain poisedness of the interpolation set. Some special care is taken for the final criticality

test and also the geometry is observed using Lagrange polynomials.

A remarkable point of the algorithm in [58] is that the trust-region radius is not reduced when

an interpolation point is exchanged with unsuccessful trial point.
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CHAPTER 3

MULTILEVEL OPTIMIZATION

3.1 Multigrid Optimization

In 2005, Lewis and Nash studied some model problems for the multigrid optimization of

systems governed by differential equations [31]. The goal is to demonstrate not a particular

optimization-based multigrid algorithm but an optimization-based multigrid algorithm which

is distinct from and superior to an equation-based multigrid approach. Moreover, how multi-

grid can be used to accelerate nonlinear programming algorithms is shown.

Consider the nonlinear optimization problem

minimize
a

F(a) = f (a, u(a)) , (3.1)

where a is a set of design variables, and u = u(a) is a set of state variables. Given a, the state

variables are defined implicitly by a system of state equations

S (a, u(a)) = 0 (3.2)

in a and u. The equation S (a, u) = 0 is a system of PDEs.

An optimization-based multigrid algorithm is investigated to solve these two equations.

To use computations on a coarse discretization of (3.1)-(3.2) to improve an approximate

solution of a finer-resolution problem, a multigrid algorithm, called MG/Opt, is proposed.

MG/Opt. recursively uses coarse resolution problems to generate search directions for finer-

resolution problems. Then a line search is used to refine the solution of each finer-resolution

problem. A line search globalization technique makes it possible to prove convergence results

(i.e. convergence to stationary points from arbitrary strating points) for the overall multigrid
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optimization algorithm. MG/Opt. is viewed as a nonlinear adaptation of the multigrid idea.

In particular, the multigrid subproblems are nonlinear optimization problems, not systems of

linear or nonlinear equations.

MG/Opt. is inspired by multigrid methods for elliptic PDEs. These algorithms for elliptics

are highly efficient.

Grids are taken as uniform grids which are a set of dicretizations. In the analysis of the model

problems, the design variable a correspond to the discretization of a function.

Transfer operators between grids :

Ih
H : prolongation operator ( coarse 7→ fine ),

IH
h : restriction operator ( fine 7→ coarse ).

The standard assumption as in multigrid contexts [6] is

Ih
H = [constant] ×

(
IH
h

)
T.

MG/Opt. Algorithm [31]

a0 : a step that the algorithm begins,

a1 : an initial estimate of the solution on the finest grid, via :

• If on the coarsest grid,

minimize Fh(ah) = fh(ah, uh(ah))

with the initial estimate a0
h, to obtain a1

h.

• Otherwise,

– Partially minimize (i.e., at least one iteration of a globally convergent nonlinear

optimization algorithm is applied to the optimization model) Fh(ah), with initial

estimate a0
h, to get ah,1.

Downdate the result to obtain aH,1 = IH
h ah,1.

– Compute vH = ∇FH(aH,1) − IH
h ∇Fh(ah,1).

– Recursively apply MG/Opt. (with initial estimate aH,1) to solve

minimize
aH

FH(aH) − vT
HaH
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subject to bound contraints

aH,low ≤ aH ≤ aH,up

to obtain aH,2. (Bounds are added to improve performance.)

– Compute the search direction eh = Ih
H

(
aH,2 − aH,1

)
. (eh will be a descent direc-

tion, ensuring that the estimate of the solution improves at every iteration of the

multigrid algorithm.)

– Use a line search to get ah,2 = ah,1 + αeh.

– Partially minimize Fh(a), with initial estimate ah,2, to obtain a1
h.

Alternatives to MG/Opt

(3.1)-(3.2) can be reduced to the Karush-Kuhn Tucker (KKT) conditions as the equivalent

system

minimize
a,u

f (a, u)

subject to S (a, u) = 0

and then applies the multigrid to the resulting system of equations. It is not difficult to extend

an approach based on KKT conditions to problems that include inequality constraints. Thus,

it lacks the guarantee of convergence, and the range of applicability of MG/Opt.

Consider design variables a are fixed and only u changes with the level of discretization. Re-

duced Hessians based on coarser grid calculations are used as preconditioners in a sequential

quadratic programming (SQP) approach. This approach is effective in accelerating an SQP

algorithm for (3.1)-(3.2). Nevertheless, the algorithm makes one pass from the coarsest level

to finest, using the solution of optimization problem from the previous level of discretiza-

tion as a starting point for the current one which is one of the successive refinement. The

approach lacks the multigrid feature of passing back and forth between the various levels of

discretization.

Detailed observations and numerical results of model problems can be found in [31].
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3.2 Recursive Multilevel Trust Region Method

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly

nonconvex discretized optimization problems, like those arising in systems by partial differ-

ential equations. The algorithms in the recursive class use the discretization of level to speed

up the computation of the step. This leads to true multilevel optimization methods reminiscent

of multigrid methods. The first study on this subject is what we will now consider [22].

General idea is to use the different levels of discretization for an infinite dimensional problem.

The main idea is to use coarser grids to compute approximate solutions and then use these

starting point for the optimization problem on a finer grid.

Consider the solution of the unconstrained problem

min
x∈Rn

f (x), (3.3)

where f is a twice continuously differentiable objective function and maps from Rn to R.

Here, [22], trust region methods are iterative and produce a sequence xk of iterates converging

to a local stationary point (i.e. to a point where g(x) = ∇x f (x) = 0) for the problem with an

initial point x0. After this, the logic of basic trust region algorithm works.

To obtain sufficient decrease, the following trust-region subproblem with the quadratic model

mk is solved :

min
‖s‖≤∆k

mk(xk + s) = min
‖s‖≤∆k

f (xk) + 〈gk, s〉 +
1
2
〈s,Hks〉 ,

where gk
de f
= ∇ f (xk) and Hk is a symmetric n × n approximation of ∇2 f (xk),

〈., .〉 is Euclidean inner product, ‖.‖ is Euclidean norm.

Such methods converge to first-order critical points whenever {‖Hk‖} is uniformly bounded.

Moreover, computational cost per iteration of evaluation of f (xk + sk) is caused by the numer-

ical solution of the subproblem, depending on the size n of the problem. In order to reduce

the cost per iteration, different levels of dicretization is used.

Now, assume that there is a collection of functions { fi}ri=0 such that each fi is a twice contin-

uously differentiable function and maps from Rni to R (with ni ≤ ni−1). And assume that for

each i = 1, . . . , r, fi is ‘more costly’ to minimize than fi−1 where fr(x) = f (x).

The relation between fi and fi−1 is as in multigrid algorithms by operators full-rank linear
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operator Ri : Rni → Rni−1 (the restriction) and Pi : Rni−1 → Rni (the prolongation) such that

Pi = σiRT
i .

The idea is to use fr−1 to construct an alternative model hr−1 for fr = f in the neighbourhood

of the current iterate that is cheaper than the quadratic model at level r and to use this alter-

native model, whenever suitable, to define the step in the trust-region algorithm. If r > 1,

this can be done recursively. The approximation process stops at level 0, where the quadratic

model is always used (Taylor step).

To restrict xi,k to create the starting iterate xi−1,0 at level i − 1, that is

xi−1,0 = Rixi,k .

Then the lower level model is defined as :

hi−1(xi−1,0 + si−1)
de f
= fi−1(xi−1,0 + si−1) + 〈vi−1, si−1〉 ,

where vi−1 = Rigi,k − ∇xi−1 fi−1(xi−1,0) with gi,k
de f
= ∇xihi(xi,k). By convention, setting vr = 0

such that, for all sr,

hr(xr,0 + sr) = f (xr,0 + sr) = f (x0 + s) and gr,k = ∇xr hr(xr,k) = ∇x f (xk) = gk .

The function hi corresponds to a first order modification of fi by a linear term and enforces

the relation

gi−1,0 = ∇xi−1hi−1(xi−1,0) = Rigi,k .

First-order behaviors of hi and hi−1 are in harmony in a neighbourhood of xi,k and xi−1,0. If

si = Pisi−1 :

〈
gi,k, si

〉
=

〈
gi,k, Pisi−1

〉
=

1
σi

〈
Rigi,k, si−1

〉
=

1
σi

〈
gi−1,0, si−1

〉
.

When entering level i = 0, . . . , r, hi is locally minimized starting from xi,0. At iteration k of

this minimization, at iterate xi,k, either the model hi−1(xi−1,0 + si−1) or Taylor approximation

model

mi,k(xi,k + si) = hi(xi,k) +
〈
gi,k, si

〉
+

1
2

〈
si,Hi,ksi

〉
. (3.4)

is chosen. Here, Hi,k is a symmetric ni × ni approximation to the second derivatives of hi at

xi,k.
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After the model is chosen, a step si,k is computed which generates a decrease within a trust-

region
{
si : ‖si‖i ≤ ∆i,k

}
. The norm ‖.‖i is level-dependent and for some symmetric positive-

definite matrix Mi, it is defined by

‖si‖i
de f
=

√
〈si,Misi〉

de f
= ‖si‖Mi .

If the model (3.4) is chosen, the step si,k must satisfy the sufficient decrease or Cauchy point

condition with κred ∈ (0, 1):

mi,k(xi,k) − mi,k(xi,k + si,k) ≥ κred
∥∥∥gi,k

∥∥∥ min


∥∥∥gi,k

∥∥∥
1 +

∥∥∥Hi,k
∥∥∥ ,∆i,k

 . (3.5)

If the model hi−1 is chosen, it should produce a new minimum point xi−1,∗ such that

hi−1(xi−1,∗) < hi−1(xi−1,0) ,

and a corresponding step xi−1,∗ − xi−1,0 which must then be brought back to level i by the

prolongation Pi.

Since

‖si‖i = ‖si‖Mi = ‖Pisi−1‖Mi = ‖si−1‖PT
i MiPi

de f
= ‖si−1‖Mi−1 = ‖si−1‖i−1 (3.6)

(which is well-defined since Pi is full-rank), the trust-region constraint at level i − 1 then

becomes ∥∥∥xi−1,∗ − xi−1,0
∥∥∥

i−1 ≤ ∆i,k.

The lower level subproblem consists in (possibly approximately) solving

min
‖si−1‖i−1≤∆i,k

hi−1(xi−1,0 + si−1). (3.7)

The model hi−1 is not always useful, for example if Rigi,k is zero while gi,k is not. Therefore∥∥∥gi−1,0
∥∥∥ =

∥∥∥Rigi,k
∥∥∥ should be large enough compared to

∥∥∥gi,k
∥∥∥. The model hi−1 is restricted to

iterations with ∥∥∥Rigi,k
∥∥∥ ≥ κg

∥∥∥gi,k
∥∥∥ and

∥∥∥Rigi,k
∥∥∥ > εg

i−1 (3.8)

where κg ∈ (0,min [1,mini ‖Ri‖]) and εg
i−1 ∈ (0, 1) which is a measure of the first-order criti-

cality for hi−1 that is judged sufficient at level i − 1.
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Description of parameters used in the following algorithm

∆s
i > 0 : initial trust-region radius at level i

∆i+1 : trust-region radius at level i + 1

ε
g
i ∈ (0, 1) : level-dependent gradient norm tolerances

ε∆
i ∈ (0, 1) : trust-region tolerances for each level i

η1, η2 : parameters to accept the trial point

γ1 : trust-region radius decreasing factor

γ2 : trust-region radius increasing factor

κg ∈ (0, 1) : constant for the model choice.

Algorithm: RMTR(i, xi,0, gi,0,∆i+1, ε
g
i , ε

∆
i ,∆i,0) [22]

Step 0: Initialization.

Compute vi = gi,0 − ∇ fi(xi,0) and hi(xi,0). Set ∆i,0 = min
[
∆s

i ,∆i+1
]

and k = 0.

Step 1: Model Choice.

If i = 0 or if (3.8) fails, go to step 3. Otherwise, choose to go to Step 2 (recursive step) or to

Step 3 (Taylor step).

Step 2: Recursive step computation.

Call algorithm RMTR(i−1,Rixi,k,Rigi,k,∆i,k, ε
g
i−1, ε

∆
i−1,∆

s
i−1), yielding an approximate solution

xi−1,∗ of (3.7). Then define si,k = Pi(xi−1,∗ − Rixi,k), set δi,k = hi−1(Rixi,k) − hi−1(xi−1,∗) and go

to Step 4.

Step 3: Taylor step computation.

Choose Hi,k and compute a step si,k ∈ Rni that sufficiently reduces the model mi,k (3.4) in the

sense of (3.5) and such that
∥∥∥si,k

∥∥∥
i ≤ ∆i,k. Set δi,k = mi,k(xi,k) − mi,k(xi,k + si,k).

Step 4: Acceptance of the trial point.

Compute hi(xi,k + si,k) and define

ρi,k
de f
=

hi(xi,k) − hi(xi,k + si,k)
δi,k

.

If ρi,k ≥ η1, then define xi,k+1 = xi,k + si,k; otherwise define xi,k+1 = xi,k.

Step 5: Termination.

Compute gi,k+1. If
∥∥∥gi,k+1

∥∥∥
∞
≤ ε

g
i or

∥∥∥xi,k+1 − xi,0
∥∥∥

i > (1 − ε∆
i )∆i+1, then return with the

approximate solution xi,∗ = xi,k+1.
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Step 6: Trust-region radius update.

Set

∆+
i,k ∈



[
∆i,k,+∞

)
, if ρi,k ≥ η2[

γ2∆i,k,∆i,k
]
, if ρi,k ∈

[
η1, η2

]
[
γ1∆i,k, γ2∆i,k

]
, if ρi,k < η1

and

∆i,k+1 = min
[
∆+

i,k, ∆i+1 −
∥∥∥xi,k+1 − xi,0

∥∥∥
i

]
.

Increment k by one and go to Step 1.

Practical Issues of the algorithm

The efficient algorithms can be found in the theoretical shell of RMTR. For example, multigrid

smoothers are very efficient in reducing the high frequency components.

At the coarsest level, where further recursion is impossible, the cost of exactly minimizing

(3.4) within the trust region remains small, because of the low dimensionality of the subprob-

lem. So, RMTR’s strategy is to solve it using the method by Moré and Sorensen [28] whose

very acceptable cost is then dominated by that of a small number of small-scale Cholesky

factorizations.

At finer levels, the choice of using the truncated conjugate-gradient TCG [51] or general-

ized Lanczos trust-region GLTR algorithms [23] or an adaptation of the multigrid smoothing

techniques guarantees sufficient descent inside trust region and also handles the possible non-

convexity of the model.

One of the flexible feature of RMTR is that the minimization at lower levels (i = 1, . . . , r − 1)

can be stopped after the first successful iteration without affecting convergence properties.

Therefore this opens the possibility of considering fixed form and free form recursion pat-

terns. The fixed form recursion patterns are obtained by specifying a maximum number of

successful iterations at each level, a technique directly inspired from the definitions of V and

W cycles in multigrid algorithms.
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3.2.1 The Multilevel Moré Sorensen Algorithm

This is an alternative application of the trust-region paradigm to the recursive class of prob-

lems. A multilevel numerical algorithm is presented for the exact solution of the Euclidean

trust-region subproblem. Typically this subproblem is constructed when optimizating a non-

linear (possibly non-convex) objective function whose variables are discretized continuous

functions. In this case, the different levels of discretization provide a natural multilevel con-

text [56].

When multilevel techniques are considered for the exact solution of the trust-region subprob-

lem at the highest level, that is for the finest discretization, if the objective function is convex

(locally), then a suitable optimizing step is derived from the solution of (a variant of) New-

ton’s equations. This often results in solving a positive-definite linear system. For instance,

if the local Hessian is given by a discretized Laplacian or another elliptic operator (case of

positive-definite system), then applying a classical multigrid solver to this system yields a

very efficient method to compute the step.

In the following discussions, all norms are Euclidean norm if there is no subscript anywhere

of the norm.

As before, the problem is an unconstrained optimization problem min
x∈Rn

f (x), where f is a

twice continuously differentiable function mapping from Rn to R and is bounded below. The

standard trust-region subproblem in the region B
de f
= {x ∈ Rn : ‖x − xk‖ ≤ ∆k}

min
‖s‖≤∆

mk(xk + s)
de f
= 〈gk, s〉 +

1
2
〈s,Hks〉 , (3.9)

where gk = ∇x f (xk) and Hk is a bounded symmetric approximation of ∇xx f (xk). The goal is

to find the exact solution of this equation.

Any global minimizer sM of (3.9) satisfies the system of linear equations [54]

H(λM)sM = −g , (3.10)

where H(λM)
de f
= H + λM I is a positive semidefinite, λM ≥ 0 and λM(

∥∥∥sM
∥∥∥ − ∆) = 0, with sM

which is unique if H(λM) is positive definite.

The Hessian curvature is induced by the additional term λM I. Thus, it must make sM lie

within the trust-region {s ∈ Rn : ‖s‖ ≤ ∆}.
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If λ > −λmin(H), the smallest eigenvalue of H, then H(λ) is positive definite and the system

(3.10) has a unique solution

s(λ) = −H(λ)−1g , (3.11)

satisfying the nonlinear inequality (whenever λ = 0)

‖s(λ)‖ ≤ ∆ , (3.12)

or the nonlinear inequality (if λ > 0)

‖s(λ)‖ = ∆ . (3.13)

The Moré-Sorensen method consists in finding the minimizer s(λM) by solving either (3.10)

if (3.12) holds for λ = 0, or (3.10) and (3.13) together otherwise. To perform the latter system,

secular equation is used

φ(λ)
de f
=

1
‖s(λ)‖

−
1
∆

= 0 . (3.14)

The solution of this secular equation is found by root finding method such as Newton’s

method. If H(λ) is positive definite, then the Newton step from λ [54]

λnew = λ +

(
‖s‖ − ∆

∆

) (
‖s‖2

‖w‖2

)
, (3.15)

where w solves Lw = s with L the Lower Cholesky factor of H(λ).

If H(λ) is not positive definite, then λ is increased until this is the case.

In order to guarantee convergence from arbitrary starting values, the λ iterates are kept in an

interval [λL, λU].

The following algorithm is given for fixed values ∆ > 0 and ε∆ > 0.

Algorithm: Outline of Moré-Sorensen Algorithm [56] & [57]

[s∗, λ∗] = MS(H, g,∆, ε∆)

Step 1. If H(0) is positive definite and ‖s(0)‖ ≤ ∆(1 + ε∆), terminate with s = s(0).

Step 2. Determine an interval
[
λL, λU

]
and an initial λ in this interval.

Step 3. Factorize H(λ) = LLT with Cholesky factorization.

If this succeeds, solve LLT s = −g.

If ∆(1 − ε∆) ≤ ‖s‖ ≤ ∆(1 + ε∆), i.e, if s is near the boundary of the trust-region, terminate. If

not s is not near the boundary, compute λnew by (3.15).
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Step 4. Update the interval
[
λL, λU

]
:

• if ‖s‖ > ∆(1 + ε∆), or if the factorization has failed, redefine λL = λ;

• if ‖s‖ < ∆(1 − ε∆), redefine λU = λ.

Step 5. Choose λ sufficiently inside
[
λL, λU

]
and as close as possible to λnew, if it has been

computed. Go to Step 3.

Despite the fact that any method can be used to solve linear system of equations (3.10), multi-

grid methods which have the support of a solid convergence theory are used to solve (3.11) in

this study [56].

The main goal of the multilevel Moré-Sorensen method is to construct an algorithm for the

solution of unconstrained problem min
x∈Rn

f (x), f : Rn → R that follows the general pattern

of the Moré-Sorensen method but which, meanwhile, exploits the ideas and techniques of

multigrid.
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CHAPTER 4

MULTILEVEL DERIVATIVE FREE OPTIMIZATION

In many practical trust-region algorithms, the model Qk is quadratic and obtaining sufficient

decrease then amounts to (approximately) solving

min
||s||<∆

Qk(xk + s) = min
||s||<∆

f (xk)+ < gk, s > +
1
2
< s,Hks > (4.1)

for s, where gk and Hk denote approximations of ∇ f (xk) and ∇2 f (xk) respectively; < ·, · > is

the Euclidean inner product and || · || is the Euclidean norm.

The work per iteration depends on computing the function value f (xk + sk) and dominated

by the numerical solution of the subproblem (4.1) which crucially depends on the dimen-

sion n of the problem. For optimization problems arising from the discretization of some

infinite-dimensional problems like PDEs on a relatively fine grid, the solution cost is there-

fore often significant. Multilevel optimization algorithms are designed to reduce this cost by

exploiting the knowledge of alternative simplified expressions of the objective function, when

available. We consider a collection of functions twice-continuously differentiable functions

from { fi}ri=0, ni > ni−1. with fr(x) = f (x). We assume that, for each i = 1, · · · , r, fi is more

costly to minimize than fi−1. This situation arises often by discretization infinite dimensional

objective functions, where fi has more variables than fi−1 because fi represent increasingly

finer discretizations of the same infinite-dimensional objective function.

The main idea is then to use fr−1 to construct an alternative model hr−1 for fr = f in the

neighbourhood of the current iterate, that is cheaper than the quadratic model at level r, and to

use this alternative model to define the step in the trust region algorithm. For the convergence

theory some coherence properties between fr and its model hr−1 is necessary. If the function

fr−1 is already satisfies these properties, the choice hr−1 = fr is possible. If not, one can

choose hr−1 as a linear or quadratic modification of fr−1. If more than two levels are available
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(r > 1); this can be done recursively, the approximation process stopping at level 0, where the

quadratic model is always used.

In what follows, we use (i, k) notations in which i (0 ≤ i ≤ r), is the level index and k, the

index of the current iteration within level i, and is reset to 0 each time level i is entered.

There should be some relation between fi−1 and fi to be useful at all in minimizing fi. In the

context of multigrid algorithms, this relation is established by the restriction and prolongation

between operators between a fine and a coarse grids. We do not need any operators between

fi’s in contrast to multigrid problems. Because, we use only the information of minimum

point of (i − 1)th level. In other words, while we are in any kth iteration of the level i, we do

not take any point from the previous level.

At ith level and kth iteration the quadratic model has the form

Qi,k(xi,k + si,k) = Qi,k(xi,k) +
〈
si,k,∇Qi,k(xi,k)

〉
+

1
2

〈
si,k,∇

2Qi,k(xi,k)si,k
〉
.

Then the finer level linear model is defined as:

hi+1,k(xi+1,k) = Qi(xi+1,k) +
(
∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)

)
(xi+1,k − xmin,i) , (4.2)

where xmin,i is the minimum of the ith level and Qi is the last model function computed at ith

level when xmin,i was found and is a fixed function for every iteration k at (i + 1)th level. Note

that xi+1,k − xmin,i = si+1,k = s.

The finer level model can be also defined as :

hi+1,k(xi+1,k) = fi(xi+1,k) +
(
∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)

)
(xi+1,k − xmin,i) , (4.3)

where fi is computed the ith level. In this situation, this model will be nonlinear since fi’s are

nonlinear.

We choose between the quadratic Taylor model and the cheaper linear model at a finer grid

i + 1 using the following criteria

‖∇Qi+1‖ ≥ κQ ‖∇Qi‖ (4.4)

and

‖∇Qi+1‖ > εQ , (4.5)
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where κQ, εQ ∈ (0, 1).

If these are satisfied, then the new model will be chosen and the subproblem becomes :

min
‖si+1,k‖≤∆i+1,k

hi+1,k(xmin,i + si+1,k) ,

where si+1,k = xi+1,k − xmin,i.

Otherwise, the quadratic model is used and Taylor step computation is done. In this case, trust

region subproblem will be:

min
‖s‖≤∆i+1,k

Qi+1,k(xk + s) = min
‖s‖≤∆i+1,k

Qi+1,k(xk) +
〈
s,∇Qi+1,k(xk)

〉
+

1
2

〈
s,∇2Qi+1,k(xk)s

〉
,

where s = si+1,k, xk = xi+1,k.

In the programming, we used the following ways:

• The MATLAB version of DFO based on NFPs [52] is used, which is similar to the

original DFO package [49] for minimization of the quadratic model.

• For minimization of the linear model (4.2) or the model (4.3), the Moré and Sorensen

subroutine of the package CONDOR is used. From now on, notationally, we will show

CONDOR+ for this subroutine.

• When h model ((4.2) or (4.3)) is chosen at any iteration k at level i + 1, a very important

part is the construction of the interpolation set of Qi+1. Two approaches to construct

initial interpolation set for Qi+1 will be taken into account in the implementation:

– A poised set is firstly constructed with cardinality (n + 1)(n + 2)/2.

Then, the set is multiplied with initial trust region radius. The minimum value at

level i is added to every elements of set.

In other words, in this case, the minimum point of level i is taken as a starting

point at i + 1 and used to construct the interpolation set in this way.

– Or, the final interpolation set at the level i is used for (i + 1)th level.
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MDFO: Multilevel Derivative Free Optimization Algorithm

Step 0: Initialization Given

x0 ∈ Rn : initial guess

∆0 : initial trust-region

ε∆ : Minimum value of the trust-region radius

η0, η1 : parameters to improve quality of interpolation set

γ0, γ1 : trust-region radius decreasing factors

γ2 : trust-region radius increasing factor

κQ ∈ (0, 1) : constant for the model choice

εQ ∈ (0, 1) : gradient norm tolerance

ε f un : function reduction tolerance.

Construct a well-poised interpolation set Y around x0 ∈ Y ⊂ Rn within the initial trust region.

Build the quadratic model Qi+1 using the interpolation set Y and the basis of NFP (Newton

Fundamental Polynomial).

Step 1: Model Choice

If i = 1 or if the conditions (4.4) and (4.5) fail, go to Step 3 (Taylor step).

Otherwise go to Step 2.

Step 2: Recursive Step Computation

Solve min
‖s‖<∆

hi+1(xmin,i + s) ,

where hi+1(xmin,i + s) is in the form (4.2) or (4.3) and xmin,i is the minimum of level i.

Step 3: Taylor step computation

To solve the constrained inner trust region sub-problem

min
‖s‖≤∆k

∇QT
i+1,k(x)s +

1
2

sT∇2Qi+1,k(x)s ,

• either trust() (MATLAB subroutine) using full eigenvalue decomposition, based on the

secular equation
1
∆
−

1
‖s‖

= 0,

• or, lmlib() (MATLAB subroutine) which uses the method of the Levenberg-Marquardt

algorithm with the Moré and Sorensen technique [19], [20] can be used.
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Step 4: Acceptance of the trial point

Compute the ratio

ρi+1,k = ρk =
fi+1(xk) − fi+1(x̂k)

δi+1,k
,

where x̂k = x̂i+1,k = xi+1,k + si+1,k, δi+1,k = Qi+1(xk) − Qi+1(x̂k) (if Taylor step is used at this

kth iteration) or δi+1,k = hi+1(xk) − hi+1(x̂k) (if recursive step works). Update the interpolation

set :

• if ρk ≥ η0, include x̂k in Y , dropping the one of the existing interpolation points.

The procedure of dropping a point from interpolation set:

Let xc be the current trust region center point, x f be the furthest point from xc and xw be

the point with the worst function value in the interpolation point set. Then we choose a

point to drop by applying the following criteria:

if ||x f − xc|| > 4∆ or (||x f − xc|| > ∆ and f (x f ) > 1
N

∑N
i=1 f (xi))

– then drop = x f ,

– else drop = xw,

where N is the number of points in the interpolation set Y .

• if ρk < η0, include x̂k in Y, if it improves the quality of model.

• if ρk < η0 and there are less than n + 1 points in the intersection of Y and Bk, generate

a new interpolation point in Bk, while preserving or improving well poisedness.

• Update the basis of NFP (Newton Fundemental Polynomials) by using updated inter-

polation set Y .

Step 5: Update the current iterate

Determine x̄k with the best objective function value

f (x̄k) = min
x j∈Y,x j,xk

f (x j) .

If improvement (as in DFO based on NFPs) is sufficient

ρ̄i+1,k ≡
fi+1(xk) − fi+1(x̄k)

δi+1,k
≥ η0 ,
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(where xk = xi+1,k) set xk+1 = x̄k.

Otherwise, set xk+1 = xk.

Step 6: Trust-region radius update

• if ρk ≥ η1, increase the trust region radius

∆i+1,k+1 ∈ [∆i+1,k, γ2∆i+1,k] .

• if ρk < η0 and the cardinality of Y ∩ Bk was less than n + 1 when x̂k was computed,

reduce the trust region radius

∆i+1,k+1 ∈ [γ0∆i+1,k, γ1∆i+1,k] .

• Otherwise set ∆i+1,k+1 = ∆i+1,k.

Step 7: Termination

The algorithm is terminated when one of the following three criteria are satisfied:

• The radius of trust region is small enough, such that ∆ ≤ ε∆.

• Final interpolation point set has the ’good geometry’ property, if

– at least n+1 points are in the trust region. checkMod is a routine in DFO algorithm

to check the quadratic model to guarantee that there are at least n + 1 points inside

the current trust region. If there are less than n + 1 points, we replace the point x f

that is furthest away from the current trust region center by x̃ such that

x̃ = argmax
{
det(M(φ, Ȳ)) : Ȳ = Y \

{
x f

}
∪ {x} , ||x − xc|| ≤ ∆

}
,

which is a point on the boundary of the current trust region.

– for each point xi,

dist(xi − xc) < 2∆ ,

where xc is the current center point, ∆ is the current trust region radius and the

interpolation set is well poised.

• Maximum function evaluations or number of maximum iterations are reached.

Increment k by one (i.e. k := k + 1) and go to Step 0.
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4.1 Convergence of the Recursive Multilevel Derivative Free Method

We will consider the case that the interpolation set is constructed from the last iteration of

previous level i.

If the conditions (4.4) and (4.5) are satisfied the following trust region subproblem will be

solved:

min
‖s‖<∆

hi+1,k(xmin,i + s) = Qi(xi+1,k) + (∇Qi+1,k(xmin,i) − ∇Qi(xmin,i))(xi+1,k − xmin,i) ,

where Qi+1,k and xi+1,k changes for every iteration k but Qi as a function and xmin,i come from

the previous level are fixed and xi+1,k − xmin,i = si+1,k.

Our aim is to show that MDFO converge to first-order critical points when the model (4.2)

is chosen. Generally, xi+1,k − xmin,i = si+1,k = s will be denoted throughout convergence for

simplicity and all norms are Euclidean norm.

The convergence analysis is based on minimization of derivative free trust region subproblem

as given in [10], [13] and [53].

Assumptions :

A.1 : The objective function f is twice continuously differentiable and its Hessian is uniformly

bounded over Rn, which means that there exists a positive constant κ1 such that,for all xi,k ∈

Rn, ∥∥∥∇2 f (xi,k)
∥∥∥ ≤ κ1 ,

where κ1 ≥ 1 is assumed as in [53].

A.2 : The objective function f is bounded below on Rn.

A.3 : The Hessians of all models generated are uniformly bounded, that is there exists a

constant κ2 > 0 such that

1 +
∥∥∥Hi,k

∥∥∥ ≤ κ2 ,

where Hi,k = ∇2hi,k. The constant κh = max[κ1, κ2] will be used later.

Note that A.1 is like in [53] and A.2 and A.3 is given in [13].

Some definitions, lemmas and theorems for the convergence analysis are needed.
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To define adequate geometry of the interpolation set as in [10], we will use our criterias in

our usage. Therefore, we can define like in [17] :

Definition 4.1.1 An interpolation set Y is adequate in Bi,k(∆i,k) whenever

• the cardinality of Y is at least n + 1 (meaning the model is at least fully linear) in the

trust region where

x j ∈ Bi,k(∆i,k) for all x j ∈ Y

• xc is the current center point, for each point x j it holds

dist(x j − xc) < 2∆i,k ,

where ∆i,k is the trust region radius of any level i for every iteration k and the interpo-

lation set is well-poised.

We now look at the relation between the objective function and the model function h.

Theorem 4.1.2 Assume (A.1) - (A.3) hold and if the h model is chosen, then∣∣∣ fi+1(xi+1,k) − hi+1(xi+1,k)
∣∣∣ ≤ 3κay max[∆2

i+1,k,∆
3
i+1,k]

for all xi+1,k ∈ Bi+1,k(∆i+1,k) and some constant κay > 0. Here, hi+1 = hi+1,k.

Proof.

Note that we can liken from DFO convergence analysis as in Theorem 4 of [10],

∣∣∣ fi(xi+1,k) − Qi(xi+1,k)
∣∣∣ ≤ κmd max[∆2

i+1,k,∆
3
i+1,k] (4.6)∥∥∥∇ fi(xi+1,k) − ∇Qi(xi+1,k)

∥∥∥ ≤ κgd max[∆i+1,k,∆
2
i+1,k] (4.7)

and
∥∥∥si+1,k

∥∥∥ ≤ ∆i+1,k.

Like (4.6) we can write∣∣∣ fi+1(xi+1,k) − Qi+1(xi+1,k)
∣∣∣ ≤ κmd max

[
∆2

i+1,k,∆
3
i+1,k

]
(4.8)

for all xi+1,k ∈ Bi+1,k(∆i+1,k) and some constant κmd > 0.

In the following steps of the proof, without loss of generality, we assume that
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• if the kth iteration of i + 1th level is Taylor model, then we can guess
∥∥∥∇Qi+1,k

∥∥∥ will go

to zero since DFO convergence will work. But, if not, we will assume∥∥∥∇Qi+1,k(xmin,i)
∥∥∥ ≤ ∆i+1,k. Actually, we will show later ∆i+1,k will go to zero.

•
∣∣∣Qi+1,k − Qi,k

∣∣∣ ≤ ∆2
i+1,k.

At level i + 1, kth iteration∣∣∣ fi+1(xi+1,k) − hi+1(xi+1,k)
∣∣∣ =

∣∣∣ fi+1(xi+1,k) − Qi(xi+1,k) −
(
∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)

)
si+1,k

∣∣∣ .
(4.9)

Now, we can find a bound for :∥∥∥∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)
∥∥∥ ≤

∥∥∥∇Qi+1,k(xmin,i)
∥∥∥ +

∥∥∥∇Qi(xmin,i)
∥∥∥

≤
∥∥∥∇Qi+1,k(xmin,i)

∥∥∥ + 1
κQ

∥∥∥∇Qi+1,k(xmin,i)
∥∥∥

≤ (1 + 1
κQ

)
∥∥∥∇Qi+1,k(xmin,i)

∥∥∥
≤ κm

∥∥∥∇Qi+1,k(xmin,i)
∥∥∥ ,

(4.10)

where the condition
∥∥∥∇Qi+1,k

∥∥∥ ≥ κQ ‖∇Qi‖ is used and κm = 1 + 1/κQ ≥ 2.

Adding and substracting Qi+1(xi+1,k) to (4.9) and considering triangle inequality and Cauchy-

Schwarz inequality and using (4.8) and the assumptions that we assumed at first∣∣∣ fi+1(xi+1,k) − hi+1(xi+1,k)
∣∣∣ ≤ ∣∣∣ fi+1(xi+1,k) + Qi+1(xi+1,k) − Qi+1(xi+1,k) − Qi(xi+1,k)

∣∣∣
+

∥∥∥(∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)
)

si+1,k
∥∥∥

≤
∣∣∣ fi+1(xi+1,k) − Qi+1(xi+1,k)

∣∣∣ +
∣∣∣Qi+1(xi+1,k) − Qi(xi+1,k)

∣∣∣
+

∥∥∥(∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)
)∥∥∥ ∥∥∥si+1,k

∥∥∥
≤ κmd max[∆2

i+1,k,∆
3
i+1,k] + κm

∥∥∥∇Qi+1,k(xmin,i)
∥∥∥ ∆i+1,k +

∣∣∣Qi+1,k − Qi,k
∣∣∣

≤ κmd max[∆2
i+1,k,∆

3
i+1,k] + κm∆2

i+1,k + ∆2
i+1,k

≤ 3κay max[∆2
i+1,k,∆

3
i+1,k] ,

where κay
de f
= max[κmd, κm, 1]

�

Theorem 4.1.3 Assume (A.1) - (A.3) hold and if the model (4.2) is chosen, then∥∥∥∇ fi+1(xi+1,k) − ∇hi+1(xi+1,k)
∥∥∥ ≤ κmat max[∆i+1,k,∆

2
i+1,k]

for some constant κmat and for all xi+1,k ∈ Bi+1,k(∆i+1,k).
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Proof.

Similar to (4.7) we can get∥∥∥∇ fi+1(xi+1,k) − ∇Qi+1,k(xi+1,k)
∥∥∥ ≤ κgd max

[
∆i+1,k,∆

2
i+1,k

]
(4.11)

where xi+1,k ∈ Bi+1,k(∆i+1,k) and κgd > 0 is a constant.

∇hi+1,k = ∇Qi(xi+1,k) + ∇Qi+1,k(xmin,i) − ∇Qi(xmin,i) ,

where hi+1,k = hi+1(xi+1,k). Therefore,

∇ fi+1,k − ∇hi+1,k = ∇ fi+1(xi+1,k) − ∇Qi(xi+1,k) − ∇Qi+1,k(xmin,i) + ∇Qi(xmin,i) . (4.12)

Adding and substracting ∇Qi+1(xi+1,k) to (4.12),

∇ fi+1(xi+1,k − ∇hi+1,k(xi+1,k)) = ∇ fi+1(xi+1,k) − ∇Qi(xi+1,k) − ∇Qi+1,k(xmin,i) + ∇Qi(xmin,i)

+ ∇Qi+1,k(xi+1,k) − ∇Qi+1,k(xi+1,k);

taking norm of (4.12) and using triangle inequality, we get∥∥∥∇ fi+1(xi+1,k − ∇hi+1,k(xi+1,k))
∥∥∥ ≤

∥∥∥∇ fi+1(xi+1,k) − ∇Qi+1,k(xi+1,k)
∥∥∥ +

∥∥∥∇Qi+1,k(xi+1,k) − ∇Qi+1,k(xmin,i)
∥∥∥

+
∥∥∥∇Qi(xi+1,k) − ∇Qi(xmin,i)

∥∥∥ .
Without loss of generality, as in Assumption 10.3 in [13], we assume that ∇Q is Lipschitz

continuous for all levels. Therefore,∥∥∥∇Qi(xi+1,k) − ∇Qi(xmin,i)
∥∥∥ ≤ κ ∥∥∥xi+1,k − xmin,i

∥∥∥ = κ ‖s‖ ≤ κ∆i+1,k∥∥∥∇Qi+1,k(xi+1,k) − ∇Qi+1,k(xmin,i)
∥∥∥ ≤ κ́ ‖s‖ ≤ κ́∆i+1,k ,

where κ and κ́ are constants independent of ∆i+1,k.

Thus, using last two inequality and (4.11)∥∥∥∇ fi+1(xi+1,k − ∇hi+1,k(xi+1,k))
∥∥∥ ≤ κgd max[∆i+1,k,∆

2
i+1,k] + κ∆i+1,k + κ́∆i+1,k

≤ κmat max[∆i+1,k,∆
2
i+1,k] ,

where κmat
de f
= κgd + κ + κ́.

�

• S =
{
k | ρ̄i+1,k ≥ η0

}
(index set of all successful iterations).

56



• R =
{
k | ∆i+1,k+1 < ∆i+1,k

}
(index set of all iterations where the trust region radius is

reduced).

Lemma 4.1.4 Similar to Lemma 5 in DFO convergence part of [10],

i For all k, if ρi+1,k ≥ η0, then ρ̄i+1,k ≥ η0 and thus iteration k is successful.

ii If k ∈ R, then Y is adequate in Bi+1,k(∆i+1,k).

iii There are finite number of improvements of the geometry in the implementation of

MDFO (like in DFO based on NFP), unless ∇ fi+1(xi+1,k) = 0.

iv There can only be a finite number of iterations such that ρi+1,k < η1 before the trust

region radius is reduced in second item of Step 6 in MDFO.

Proof.

i If ρi+1,k ≥ η0, xi+1,k + si+1,k is added to the interpolation set Y by Step 4. And it can be

written by Step 5,

f (x̄i,k) ≤ f (xi,k + si,k)

Thus
ρ̄i+1,k =

f (xi+1,k)− f (x̄i+1,k)
hi+1,k(xi+1,k)−hi+1,k(xi+1,k+si+1,k) ≥

f (xi+1,k)− f (xi+1,k+si+1,k)
hi+1,k(xi+1,k)−hi+1,k(xi+1,k+si+1,k)

= ρi+1,k ≥ η0.

So, k ∈ S and k is successful.

Proofs of (ii), (iii), (iv) is in the same way as in DFO convergence [10]. �

When the model Qk is linear or quadratic, ‘Cauchy point decrease’ condition is assumed in

(AA.1) of [53] after relating with ‘Cauchy point’ condition. Therefore, we will also assume

that for all iterations k in any level i,

Qi,k(xk) − Qi,k(xk + sk) ≥ κb
∥∥∥gi,k

∥∥∥ min


∥∥∥gi,k

∥∥∥
1 +

∥∥∥Hi,k
∥∥∥ ,∆i,k

 , (4.13)

where gi,k = ∇sQi,k(xk),Hi,k = ∇2
ssQi,k(xk), κb ∈ (0, 1).

In the following lemma, main requirement is to show how the ‘Cauchy point condition’ for

the h model will be valid.
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Lemma 4.1.5 At every iteration k at level i + 1, one has

hi+1(xi+1,k) − hi+1(xi+1,k + si+1,k) ≥
κQκb

2 + κQ

∥∥∥∇hi+1,k
∥∥∥ min

 κQ
∥∥∥∇hi+1,k

∥∥∥
(2 + κQ)(1 + ‖Hi+1‖)

,∆i+1,k


for some constant κb ∈ (0, 1) independent of k and Hi+1 = ∇2Qi+1 and hi+1,k = hi+1,k(xi+1,k).

Proof. For simplicity, sometimes xk = xi+1,k, s = si+1,k = xi+1,k − xmin,i will be written.

hi+1(xi+1,k) − hi+1(xi+1,k + s) = Qi(xi+1,k) + (∇Qi+1,k(xmin,i) − ∇Qi(xmin,i))s − Qi(xi+1,k + s)

−
(
∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)

)
(xi+1,k + s − xmin,i)

= Qi(xi+1,k) − Qi(xi+1,k + s) − (∇Qi+1,k(xmin,i) − ∇Qi(xmin,i))s.

Note that by Taylor expansion for general forms (not vectoral)

Qi+1,k(xmin,i + s) = Qi+1,k(xmin,i) + s∇Qi+1,k(xmin,i) + 1/2s2∇2Qi+1,k(ξk) ,

where ξk ∈
(
xmin,i, xmin,i + s

)
. This equation can be expressed equivalently as

Qi+1,k(xmin,i) − Qi+1,k(xmin,i + s) = −s∇Qi+1,k(xmin,i) − 1/2s2∇2Qi+1,k(ξk) . (4.14)

Assume that

• −(∇Qi+1,k(xmin,i) − ∇Qi(xmin,i))s ≥ −κm∇Qi+1,k(xmin,i)s

• 1/2s2∇2Qi+1,k(ξk) = 1/2sT∇2Qi+1,k(ξk)s ≥ 0 and

•
∥∥∥∇Qi+1,k(xi+1,k)

∥∥∥ ≤ ∥∥∥∇Qi+1,k(xmin,i)
∥∥∥.

By Theorem 6.3.4 in [53],

Qi(xi+1,k) − Qi(xi+1,k + s) ≥ 0.

Therefore, using the assumptions above, we obtain

hi+1(xi+1,k) − hi+1(xi+1,k + s) ≥ (∇Qi(xmin,i) − ∇Qi+1,k(xmin,i))s

≥ −κm∇Qi+1,k(xmin,i)s

= κm
(
Qi+1,k(xmin,i) − Qi+1,k(xmin,i + s) + 1/2s2∇2Qi+1,k(ξk)

)
≥ Qi+1,k(xmin,i) − Qi+1,k(xmin,i + s),
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where κm ≥ 2 and (4.14) is used. Using (4.13), we can write

hi+1(xi+1,k) − hi+1(xi+1,k + s) ≥ Qi+1(xmin,i) − Qi+1(xmin,i + s)

≥ κb
∥∥∥∇Qi+1,k(xmin,i)

∥∥∥ min
[
‖∇Qi+1,k(xmin,i)‖

1+‖Hi+1‖
,∆i+1,k

]
,

where Hi+1 = ∇2Qi+1,k(xmin,i).

Taking into account
∥∥∥∇hi+1,k

∥∥∥,∥∥∥∇hi+1,k
∥∥∥ =

∥∥∥∇Qi(xi+1,k) + ∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)
∥∥∥

≤
∥∥∥∇Qi(xi+1,k)

∥∥∥ +
∥∥∥∇Qi+1,k(xmin,i) − ∇Qi(xmin,i)

∥∥∥
≤ 1

κQ

∥∥∥∇Qi(xi+1,k)
∥∥∥ + κm

∥∥∥∇Qi+1,k(xmin,i)
∥∥∥

≤ ( 1
κQ

+ κm)
∥∥∥∇Qi+1,k(xmin,i)

∥∥∥ ,
(4.15)

where (4.4), (4.10) and the third assumption above is used. Putting the definition of κm =

1 + 1/κQ into (4.15) gives

∥∥∥∇hi+1,k
∥∥∥ ≤ (

1
κQ

+ 1 +
1
κQ

) ∥∥∥∇Qi+1,k(xmin,i)
∥∥∥

κQ

κQ + 2

∥∥∥∇hi+1,k
∥∥∥ ≤ ∥∥∥∇Qi+1,k(xmin,i)

∥∥∥ . (4.16)

In the main discussion, taking the previous result,

hi+1(xi+1,k) − hi+1(xi+1,k + s) ≥ κb
∥∥∥∇Qi+1,k(xmin,i)

∥∥∥ min
[
‖∇Qi+1,k(xmin,i)‖

(1+‖Hi+1‖)
,∆i+1,k

]
≥ κb

κQ
2+κQ

∥∥∥∇hi+1,k
∥∥∥ min

[
κQ‖∇hi+1,k‖

(2+κQ)(1+‖Hi+1‖)
,∆i+1,k

]
,

where κb, κQ/(2 + κQ) ∈ (0, 1) since κQ ∈ (0, 1). Observe also that
∥∥∥∇2hi+1

∥∥∥ =
∥∥∥∇2Qi+1

∥∥∥ =∥∥∥Hi+1,k
∥∥∥ since

∥∥∥∇2hi+1,k
∥∥∥ =

∥∥∥∇2Qi(xk) + ∇2Qi+1,k(xmin,i) − ∇2Qi(xmin,i)
∥∥∥ ,

where ∇2Qi(xk) = ∇2Qi(xmin,i) due to constant value result of second derivative of at most

second degree function Qi. �

Lemma 4.1.6 Assume that (A.1)− (A.3) hold. Furthermore assume that ∇hi+1,k , 0 and that

∆i+1,k ≤ min

1, κQκb
∥∥∥∇hi+1,k

∥∥∥ (1 − η1)

(2 + κQ)6 max[κh, κay]

 . (∗)

Then iteration k is very successful and

∆i+1,k+1 ≥ ∆i+1,k .
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Proof. Note that η1, κb ∈ (0, 1). Thus,

κb(1 − η1) < 1

and by definitions of κay, κh and putting these in (*),∥∥∥∇hi+1,k
∥∥∥

6 max[κh, κay]
≤

∥∥∥∇hi+1,k
∥∥∥

6κh
≤

∥∥∥∇hi+1,k
∥∥∥

6κ2
≤

∥∥∥∇hi+1,k
∥∥∥

κ2
≤

∥∥∥∇hi+1,k
∥∥∥

(1 + ‖Hi+1‖)
,

where κ2 > 1 + ‖Hi+1‖ and κh = max[κ1, κ2].

Using these two inequality, we get

∆i+1,k ≤
κQκb

∥∥∥∇hi+1,k
∥∥∥ (1 − η1)

(2 + κQ)6 max
[
κh, κay]

] ≤ κQ
∥∥∥∇hi+1,k

∥∥∥
(2 + κQ)(1 + ‖Hi+1‖)

.

Combining this inequality with Lemma(4.1.5), at iteration k,

hi+1(xi+1,k) − hi+1(xi+1,k + si+1,k) ≥ κQκb
2+κQ

∥∥∥∇hi+1,k
∥∥∥ min

[
κQ‖∇hi+1,k‖

(2+κQ)(1+‖Hi+1‖)
,∆i+1,k

]
=

κQκb‖∇hi+1,k‖∆i+1,k
2+κQ

.

Now, we can write

|ρi+1 − 1| =
∣∣∣∣ fi+1(xi+1,k)− fi+1(xi+1,k+s)
hi+1(xi+1,k)−hi+1(xi+1,k+s) − 1

∣∣∣∣
≤

∣∣∣∣ fi+1(xi+1,k+s)−hi+1(xi+1,k+s)
hi+1(xi+1,k)−hi+1(xi+1,k+s)

∣∣∣∣ +
∣∣∣∣ fi+1(xi+1,k)−hi+1(xi+1,k)
hi+1(xi+1,k)−hi+1(xi+1,k+s)

∣∣∣∣
≤ 2

3(2+κQ)κaymax[∆2
i+1,k ,∆

3
i+1,k]

κQκb‖∇hi+1,k‖∆i+1,k
=

6(2+κQ)κaymax[∆i+1,k ,∆
2
i+1,k]

κQκb‖∇hi+1,k‖

≤
6(2+κQ)κay∆i+1,k

κQκb‖∇hi+1,k‖

≤ 1 − η1 ,

where last inequality comes from assumption on ∆i+1,k at first. That is,

∆i+1,k ≤
κQκb

∥∥∥∇hi+1,k
∥∥∥ (1 − η1)

6(2 + κQ) max[κh, κay]
≤
κQκb

∥∥∥∇hi+1,k
∥∥∥ (1 − η1)

6(2 + κQ)κay
.

To show how the penultimate inequality max[∆i+1,k,∆
2
i+1,k] ≤ ∆i+1,k is, note that in level i + 1

(for simplicity, i + 1 will not be written for now), it holds κbκQ(1−η1)
(2+κQ) < 1 since κQ, κb ∈ (0, 1),

and in (*), ‖∇h‖
6 max[κh,κay] ≤

‖∇h‖
κh

. By the way,

∆k ≤ min
[
1,
‖∇h‖
κh

]
and ∆2

k ≤ min
[
∆k,
‖∇h‖
κh

∆k

]
.
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Thus, we can write

max
[
∆k,∆

2
k

]
≤ max

[
∆k,min

[
∆k,

‖∇h‖
κh

∆k
]]

= ∆k max
[
1,min

[
1, ‖∇h‖

κh

]]
= ∆k.

Therefore, ρi+1 ≥ η1 and the iteration is very successful. Furthermore, by the first item of step

6 in MDFO, ∆i+1,k+1 ≥ ∆i+1,k. �

Theorem 4.1.7 Assume that (A.1) - (A.3) hold and
∥∥∥∇hi+1,k

∥∥∥ ≥ κc. Then there exists a con-

stant κn such that

∆i+1,k > κn .

Proof. Assume that iteration k is the first k (ρk < η0) such that

∆i+1,k+1 ≤ min
[
1,

γ0κQκbκc(1 − η1)
6(2 + κQ) max[κh, κay]

]
. (∗∗)

Then from the second item of Step 6, we have γ0∆i+1,k ≤ ∆i+1,k+1 and, hence,

∆i+1,k ≤ min
[
1,

κQκbκc(1 − η1)
6(2 + κQ) max[κh, κay]

]
.

Assumption on
∥∥∥∇hi+1,k

∥∥∥ implies that (*) holds and, thus, that k should be very successful and

∆i+1,k+1 ≥ ∆i+1,k satisfied. But this contradicts the fact that iteration is the first such that (**)

holds, and initial assumption is therefore impossible. So,

κn = γ0 min
[
1,

κQκbκc(1 − η1)
6(2 + κQ) max[κh, κay]

]
.

�

Theorem 4.1.8 Assume (A.1) - (A.3) hold. Furthermore assume that there are only finitely

many successful iterations. Then xi+1,k = xi+1,∗ for k sufficiently large and ∇ fi+1(xi+1,∗) = 0.

Proof. In an infinite loop within Step 0, the result follows from Lemma 4.1.4(iii). Otherwise,

the mechanism of the algorithm ensure that

xi+1,∗ = xi+1,k0+1 = xi+1,k0+ j for all j > 0
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where k0 is the index of the last successful iteration.

Moreover, since all iterations are unsuccessful for sufficiently large k, from Lemma 4.1.4 (i)

that ρi+1,k < η0 < η1 and second item of Step 6 along with Lemma 4.1.4 (iv) implies the

sequence
{
∆i+1,k

}
→ 0. Hence R contains at least one infinite subsequence k j.

Further, Lemma 4.1.4 (ii) implies that Y is adequate in Bi,k j for all j.

Now, assume that ∇ fi+1(xi+1,∗) , 0. Using Theorem 4.1.3, for k > k0, we get∥∥∥∇ fi+1(xi+1,∗) − ∇hi+1(xi+1,k j)
∥∥∥ ≤ κmat max[∆i+1,k,∆

2
i+1,k] .

Since
{
∆i+1,k

}
→ 0, then∥∥∥∇hi+1(xi+1,k j)

∥∥∥ ≥ κc =
1
2

∥∥∥∇ fi+1(xi+1,∗)
∥∥∥ > 0

for k ≥ k0 sufficiently large. But if
∥∥∥∇hi+1(xi+1,k j)

∥∥∥ > 0, Lemma 4.1.6 then implies that

there must be a successful iteration of index larger than k0, which is impossible. Hence

∇ fi+1(xi+1,∗) = 0 and xi+1,∗ is first-order critical. �

In the following Lemma as in Lemma 10.9 in [13], it will be shown that the trust region radius

converges to zero.

Lemma 4.1.9 Assume that (A.1) - (A.3) hold. Then

lim
k→+∞

∆k = 0.

Proof. Assume S is finite. Consider iterations that come after the last successful iteration.

By Lemma 4.1.4 (iii), we can have only a finite (uniformly bounded, say by N) number

of model-improving iterations before the model becomes fully linear and hence there is an

infinite number of iterations that are acceptable or unsuccessful and in either case the trust

region radius is reduced.

Since there are no more successful iterations, ∆k is never increased for sufficiently large k.

Moreover, ∆k is decreased at least once every N iterations by a factor γ. Thus, ∆k converges

to zero.

Consider the case when S is infinite. For any k ∈ S we have

fi+1(xk) − fi+1(xk+1) ≥ η0
[
hi+1,k(xk) − hi+1,k(xk + sk)

]
.
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Using the Cauchy decrease condition, we get

fi+1(xk) − fi+1(xk+1) ≥ η0
κQκb

2 + κQ

∥∥∥∇hi+1,k
∥∥∥ min

 κQ
∥∥∥∇hi+1,k

∥∥∥
(2 + κQ) (1 + ‖Hi+1‖)

,∆i+1,k

 .
Considering (4.16) and the condition (4.5), we assume that∥∥∥∇hi+1,k

∥∥∥ ≥ εQ

2
.

fi+1(xk) − fi+1(xk+1) ≥ η0
κQκb
2+κQ

εQ
2 min

[
κQεQ

2(1+κQ)(1+‖Hi+1‖)
,∆i+1,k

]
≥ η0

κQκb
2+κQ

εQ
2 min

[
κQεQ

2(1+κQ)κ2
,∆i+1,k

]
,

where 1 + ‖Hi+1‖ ≤ κ2.

Since S is infinite and f is bounded from below, the right hand side of the expression above

has to converge to zero. Hence, lim
k∈S

∆k = 0, and the proof is completed if all iterations are

successful.

Recall that the trust-region radius can be increased only during a successful iteration, and it

can be increased only by a ratio of at most γn which is a constant. Let k < S be the index of

an iteration after the first successful one. Then ∆k ≤ γn∆sk , where sk is the index of the last

successful iteration before k. Since ∆sk → 0, then ∆k → 0 for k < S. �

When there are infinitely many successful iterations :

Theorem 4.1.10 Assume (A.1) - (A.3) hold. Then

lim
k→∞

in f
∥∥∥∇hi+1,k

∥∥∥ = 0 ,

where hi+1,k = hi+1,k(xi+1,k).

Proof. For contradiction, assume that ∥∥∥∇hi+1,k
∥∥∥ ≥ κc

for all k and for some κc > 0.

Consider a successful iteration k. So, k ∈ S and this implies

fi+1(xi+1,k) − fi+1(xi+1,k + si+1,k) ≥ η0
[
hi+1,k(xi+1,k) − hi+1,k(xi+1,k + si+1,k)

]
≥ η0

κQκb
2+κQ

κc min
[

κQκc
(2+κQ)(1+‖Hi+1‖)

,∆i+1,k

]
≥ η0

κQκb
2+κQ

κc min
[

κQκc
(2+κQ)κh

, κn

]
,
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since 1 + ‖Hi+1‖ ≤ κ2 ≤ κh and ∆i+1,k > κn.

Now, summing over all successful iterations from 0 to k, we obtain that

fi+1(xi+1,0) − fi+1(xi+1,k+1) ≥
k∑

j=0
j∈S

[
fi+1(xi+1, j) − fi+1(xi+1, j+1)

]
≥ σk

κQκb
2+κQ

κcη0 min
[

κQκc
(2+κQ)κh

, κn

]
,

where σk is the number of successful iterations up to iteration k.

But since there are infinitely many such iterations, we have

lim
k→∞

σk = +∞,

and the difference fi+1(xi+1,0) − fi+1(xi+1,k+1) is unbounded. This contradicts the fact that the

objective function is bounded below. Hence, assumption is false and the desired result is

obtained. �

Lemma 4.1.11 Assume (A.1) - (A.3) hold and that {ki} is a subsequence such that

lim
i→∞

∥∥∥∇hi+1,ki(xi+1,ki)
∥∥∥ = 0 , (4.17)

Then,

lim
i→∞

∥∥∥∇ fi+1(xi+1,ki)
∥∥∥ = 0 . (4.18)

Proof. By (4.17),
∥∥∥∇hi+1,ki(xi+1,ki)

∥∥∥ ≤ εc ∈ (0, 1) for sufficiently large i. In the proof of Lemma

4.1.6, we showed that ∆k ≤
‖∇h‖
κh

. So, now, assume that for the {ki} subsequence,

∆i+1,ki ≤ β
∥∥∥∇hi+1,ki

∥∥∥
for all i and β ∈ (0, 1) (thinking β := 1

κh
).

Then, by Theorem 4.1.3, it can be deduced that∥∥∥∇ fi+1(xi+1,ki) − ∇hi+1,ki(xi+1,ki)
∥∥∥ ≤ κmat max

[
∆i+1,ki ,∆

2
i+1,ki

]
≤ κmat max

[
β
∥∥∥∇hi+1,ki

∥∥∥ , β2
∥∥∥∇hi+1,ki

∥∥∥2
]

≤ κmat β
∥∥∥∇hi+1,ki

∥∥∥ .
Hence, for sufficiently large i,

∥∥∥∇ fi+1,ki

∥∥∥ ≤ ∥∥∥∇hi+1,ki

∥∥∥ +
∥∥∥∇ fi+1,ki − ∇hi+1,ki

∥∥∥ ≤ (1 + κmatβ)
∥∥∥∇hi+1,ki

∥∥∥ .
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The limit (4.17) and this last bound then give (4.18).

�

The following two theorems are the same way as in DFO convergence.

Theorem 4.1.12 Assume that (A.1) - (A.3) hold. Then there is at least one subsequence of

successful iteration
{
xi+1,k

}
whose limit is a critical point, that is,

lim
k→∞

in f
∥∥∥∇ fi+1(xi+1,k)

∥∥∥ = 0 .

Theorem 4.1.13 Assume (A.1) - (A.3) hold. Then every limit point xi+1,∗ of the sequence{
xi+1,k

}
is critical, that is,

∇ fi+1(xi+1,∗) = 0.

Observation 4.1.14 In this section, we only observed that the chosen h model in i + 1 level at

any iteration k. But if after kth iteration algorithm choses (at k + 1th iteration) Taylor model

or the last iteration of ith level was chosen Taylor model, then convergence of DFO part will

be valid in this situation. Moreover, if the model (4.3) is chosen, then the following logic will

work.

4.1.1 Handling Nonlinear Models in Trust-Region Methods

Consider our model is not a linear model and,

Qk(xk + s) = Qk(xk) + sT gk +
1
2

sT Hks , (#)

Qk(xk) − Qk(xk + sk) ≥
κ f cd

2
‖gk‖min

{
‖gk‖

‖Hk‖
,∆k

}
, (##)

where (##) is Cauchy decrease condition (4.13) in which κ f cd/2 = κb.

An approximated solution of a trust-region subproblem min
s∈B(0;∆k)

Qk(xk + s) is defined by a

nonlinear model which does not satisfy (##).

Since unapplicability of Cauchy decrease condition to nonlinear models, an equivalent condi-

tion is necessary for more general models. One way is to use a backtracking algorithm along
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the model steepest descent direction, where the backtracking is suggested from the boundary

of the trust-region [53].

Assume Qk(xk + s) is not a quadratic function in s. Choose the smallest j ≥ 0 such that

xk+1 = xk + µ js, where s = −
∆k

‖gk‖
gk and µ ∈ (0, 1) . (4.19)

By the way, a sufficient decrease is of the form

Qk(xk+1) ≤ Qk(xk) + κdµ
jsT gk, κd ∈ (0, 1) , (4.20)

From (4.19), (4.20) it can be written equivalently

Qk(xk+1) − Qk(xk) ≤ −κdµ
j∆k ‖gk‖ . (4.21)

Using the mean value theorem on the left hand side,

−µ j∆k ‖gk‖ +
1
2

µ2 j∆2
kgT

k ∇
2Qk

(
yk, j

)
gk

‖gk‖
2 ≤ −κdµ

j∆k ‖gk‖

for some yk, j ∈
[
xk, xk + µ js

]
.

Assume that
∥∥∥∇2Qk(yk, j)

∥∥∥ ≤ κbhm. So, (4.21) is satisfied, provided

µ j∆k

‖gk‖
≤

2 (1 − κd)
κbhm

.

Thus, a jk satisfying (4.21) can be found such that µ jk >
2(1−κd)µ‖gk‖

(κbhm∆k) .

Define sAC
k = µ jk s as the approximate Cauchy step. Then,

Qk(xk) − Qk(xk + sAC
k ) ≥ κdµ

jk∆k ‖gk‖ .

On the other hand, if the approximate Cauchy step takes us to the boundary, it can be derived

from (4.20) that the decrease in the model exceeds or is equal to κd∆k ‖gk‖, and so

Qk(xk) − Qk(xk + sAC
k ) ≥ κ̄d ‖gk‖min

{
‖gk‖

κbhm
,∆k

}
for a suitably defined κ̄d > 0.

Another way of dealing with trust-region models which are not quadratic was suggested by

[1].
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CHAPTER 5

NUMERICAL RESULTS

Consider a shape optimization problem over a rectangular region with a rectangular hole Ω(u)

parametrized with the coordinates u = (P9, P12), as in Figure 5.1,

min 1
2

∫
Ω(u) (y(x1, x2) − yd)2 dx

subject to
∂2y
∂x2

1
+

∂2y
∂x2

2
= 1 in Ω(u)

y = 0 on the outer boundary ∂Ω(u)

Here, y(x1, x2) is state variable, yd is the desired state and u is the control variable.

Data yd for objective function is in such a way that for yd = y(ud) with ud takes the global

minimum.

Figure 5.1: Shape Optimization Problem
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Since this is a nonlinear control problem, it can be solved using nonlinear programming pack-

ages.

Before the results with MDFO is observed, CONDOR [2] and DFO [52] results for this prob-

lem can be given as follows. All results are up to 5th level because of the computational

complexity at the higher levels.

When CONDOR is applied with parameters determined by user

u0 = [−0.5, 0.5, 0.5,−0.5]T : the initial guess

ρstart = 0.1 : initial distance between sample points

ρend = 1e − 4 : stopping criteria for the distance of the points,

obtained results:

Table 5.1: CONDOR results of shape optimization problem.

Level func. eval. func. value u = [P9;P12]

1 131 3.0482e-014 [−0.71, 0.22,−0.08,−0.22]T

2 82 3.2440e-014 [−0.75, 0.25,−0.25,−0.25]T

3 60 1.0045e-012 [−0.75, 0.25,−0.25,−0.25]T

4 52 1.6304e-011 [−0.75, 0.25,−0.25,−0.25]T

5 61 2.8944e-012 [−0.75, 0.25,−0.25,−0.25]T
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If DFO based on NFPs is used with initial parameters which can be modified by any user,

εtrust = 0.01 : minimum value of the trust region radius.

εdet = 1e − 12 : determinant tolerance.

∆0 = 0.2 : initial trust region radius.

η0 = 0.45 : parameter to accept the trial point

η1 = 0.75 : parameter to accept the trial point

γ1 = 0.3 : trust region decreasing factor.

γ2 = 1.5 : trust region increasing factor.

εdist = 0.001 : minimum distance allowed between two points.

ε f un = εtrust × 1e − 6 : minimum value of the function difference.

then the following results are obtained from coarsest level to finest level:

Table 5.2: DFO results of shape optimization problem.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 35 92 1.6467e-009 [−0.74, 0.25,−0.25,−0.25]T

3 36 80 2.4006e-009 [−0.75, 0.25,−0.25,−0.25]T

4 32 87 1.4516e-008 [−0.75, 0.24,−0.24,−0.24]T

5 34 75 2.0589e-010 [−0.74, 0.25,−0.24,−0.25]T

Note that initial parameters in DFO are the same for every iteration and for every level.
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MDFO without model choice

When MDFO is applied for the shape optimization problem without any model choice condi-

tion, it is explained in the following :

for i = 1 : r do

if i = 1 then

run DFO with the initial guess x0 = [−0.5, 0.5, 0.5,−0.5]T

else

run DFO with the minimum point of the previous level

OR run DFO with the interpolation set of previous level

end if

end for

The trust region subproblem is constructed at different levels in the following ways :

• At level i = 1 :

The standard DFO trust region sub-problem is given by

min
||s||≤∆

∇Qi(x)T s +
1
2

sT∇2Qi(x)s .

• At level i + 1, i = 1, . . . , r − 1 :

– Qi+1 is constructed by using interpolation set.

– The linear model is also constructed such that

hi+1(xk) = Qi(xk) + (∇Qi+1(xmin,i) − ∇Qi(xmin,i))(xk − xmin,i) ,

where xk = xi+1,k = xmin,i + s, xmin,i is the minimum point computed at level i and

Qi is the last model function when the minimum point of i was found.

– The constrained trust region sub-problem

min
||s||<∆

hi+1(xmin,i + s)

is solved with CONDOR+ which is Moré and Sorensen subroutine of CONDOR.
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Version 1

The initial interpolation set for Qi+1 is constructed around the minimum point of level i. This

interpolation set construction at level i + 1 works in the way :

• An interpolation set is constructed at the beginning of the DFO.

• The set is multiplied by initial trust region radius.

• The computed minimum point of ith level (starting point of (i + 1)th level) is added to

the interpolation set.

From now on, all initial parameters will be taken as in DFO based on NFPs. We will empha-

size only the parameters ∆0 and ε f un.

For this version, ∆0 = 0.2 and ε f un = 1e − 08 are taken.

Table 5.3: Results of Version 1 with lmlib.

Level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 16 50 1.7676e-005 [−0.73, 0.23,−0.13,−0.23]T

3 16 66 2.3789e-006 [−0.74, 0.24,−0.22,−0.24]T

4 15 52 2.0259e-006 [−0.75, 0.24,−0.23,−0.24]T

5 12 49 1.9427e-006 [−0.76, 0.24,−0.23,−0.24]T

Table 5.4: Results of Version 1 with trust.

Level iterations func. eval. func. value u = [P9;P12]

1 46 132 2.5013e-009 [−0.71, 0.22,−0.04,−0.22]T

2 27 90 3.2511e-005 [−0.76, 0.22,−0.09,−0.22]T

3 18 73 1.5347e-005 [−0.73, 0.23,−0.17,−0.23]T

4 15 52 1.1001e-005 [−0.75, 0.23,−0.19,−0.23]T

5 17 61 5.5734e-006 [−0.76, 0.24,−0.21,−0.24]T
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Version 2

The interpolation set at Qi+1 is constructed using the final interpolation set at level i. The final

interpolation set is the set when xmin,i was found at level i.

∆0 = 0.2 and ε f un = 1e − 08 are taken.

Table 5.5: Results of Version 2 with lmlib.

Level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 13 34 2.0762e-005 [−0.71, 0.23,−0.14,−0.24]T

3 15 44 3.5664e-005 [−0.72, 0.24,−0.15,−0.24]T

4 6 23 3.9836e-005 [−0.72, 0.23,−0.15,−0.24]T

5 20 70 1.4314e-005 [−0.74, 0.24,−0.18,−0.24]T

Table 5.6: Results of Version 2 with trust.

Level iterations func. eval. func. value u = [P9;P12]

1 46 132 2.5013e-009 [−0.71, 0.22,−0.04,−0.22]T

2 9 26 6.2624e-005 [−0.71, 0.22,−0.04,−0.22]T

3 10 31 1.2785e-004 [−0.71, 0.22,−0.04,−0.22]T

4 10 33 1.4535e-004 [−0.72, 0.22,−0.05,−0.23]T

5 20 62 1.0692e-004 [−0.73, 0.22,−0.08,−0.22]T
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Version 3 : Model Choice

In this version, selection between the standard Taylor approximation model

min
||s||≤∆

∇Qi(x)T s +
1
2

sT∇2Qi(x)s

and the model

min
||s||<∆

hi+1(xmin,i + s) = Qi(xk) + (∇Qi+1(xmin,i) − ∇Qi(xmin,i))(xk − xmin,i)

is done.

• At level i = 1 :

Taylor approximation model is used. Namely, DFO trust region subproblem

min
||s||≤∆

∇Qi(x)T s +
1
2

sT∇2Qi(x)s

is solved.

• At level i + 1, i = 1, . . . , r − 1 :

– Interpolation set is constructed for Qi+1.

– If ||∇Qi+1|| ≥ κQ ||∇Qi|| and ||∇Qi+1|| > εQ are satisfied, then new model is used

and the subproblem

min
||s||<∆

hi+1(xmin,i + s)

will be solved with CONDOR+. Here,

hi+1(xk) = Qi(xk) + (∇Qi+1(xmin,i) − ∇Qi(xmin,i))(xk − xmin,i) ,

where xk = xi+1,k = xmin,i + s and xmin,i is the minimum of level i.

– Otherwise, Taylor approximation model is used again.

In addition to the initial parameters as in DFO based on NFPs, MDFO with model choice uses

the initial constants κQ and εQ which are chosen between 0 and 1.

This version can also be observed in two ways as in Version 1 and Version 2.
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Version 3a

The minimum point of the previous level is used to construct the interpolation set for Qi+1.

∆0 = 0.2, ε f un = 1e − 08, κQ = 0.01 and εQ = 0.001 are taken.

Table 5.7: Results of Version 3a with lmlib.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 13 48 5.4985e-010 [−0.75, 0.24,−0.24,−0.24]T

3 14 51 8.1957e-010 [−0.75, 0.24,−0.24,−0.24]T

4 15 51 9.2230e-010 [−0.75, 0.24,−0.24,−0.24]T

5 14 50 9.5445e-010 [−0.75, 0.24,−0.24,−0.24]T

Table 5.8: Results of Version 3a with trust.

level iterations func. eval. func. value u = [P9;P12]

1 46 132 2.5013e-009 [−0.71, 0.22,−0.04,−0.22]T

2 24 83 2.0302e-009 [−0.74, 0.24,−0.24,−0.24]T

3 16 51 1.1741e-010 [−0.74, 0.25,−0.25,−0.25]T

4 14 50 1.2672e-010 [−0.74, 0.25,−0.25,−0.25]T

5 14 50 1.2954e-010 [−0.74, 0.25,−0.25,−0.25]T
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Version 3b

The last interpolation set of ith level is used for constructing the initial interpolation set Qi+1.

∆0 = 0.2 and ε f un = 1e − 08 are taken.

Table 5.9: Results of Version 3b with κQ = 0.01, εQ = 0.001 and lmlib.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 21 49 4.9240e-009 [−0.74, 0.25,−0.24,−0.24]T

3 5 21 8.1538e-009 [−0.74, 0.25,−0.24,−0.24]T

4 4 19 9.3654e-009 [−0.74, 0.25,−0.24,−0.24]T

5 4 19 9.7371e-009 [−0.74, 0.25,−0.24,−0.24]T

Table 5.10: Results of Version 3b with κQ = 0.1, εQ = 0.0001 and lmlib.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 13 34 2.0762e-005 [−0.71, 0.23,−0.14,−0.24]T

3 20 53 9.1769e-009 [−0.75, 0.25,−0.25,−0.25]T

4 4 19 9.5299e-009 [−0.75, 0.25,−0.25,−0.25]T

5 4 19 9.6493e-009 [−0.75, 0.25,−0.25,−0.25]T

Table 5.11: Results of Version 3b with κQ = 0.01, εQ = 0.001 and trust.

level iterations func. eval. func. value u = [P9;P12]

1 46 132 2.5013e-009 [−0.71, 0.22,−0.04,−0.22]T

2 23 51 1.2296e-009 [−0.74, 0.24,−0.24,−0.25]T

3 4 19 1.7976e-009 [−0.74, 0.24,−0.24,−0.25]T

4 4 19 2.0130e-009 [−0.74, 0.24,−0.24,−0.25]T

5 4 19 2.0818e-009 [−0.74, 0.24,−0.24,−0.25]T
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Version 4

Now, we will use f (x) instead of Q(x) in h model. In other words, the numerical results of the

nonlinear model (4.3) will be investigated on the shape optimization problem.

• At level i = 1 :

Standard DFO trust-region subproblem

min
‖s‖≤∆

∇Qi(x)T s +
1
2

sT∇2Qi(x)s

is used.

• At level i + 1, i = 1, . . . , r − 1 :

– Interpolation set is constructed for Qi+1.

– The model is set

hi+1(xk) = fi(xk) + (∇Qi+1(xmin,i) − ∇Qi(xmin,i))(xk − xmin,i) ,

where xk = xi+1,k, xmin,i is the minimum point which is got from the ith level and

Qi is the last model function when the minimum point of i was found.

– The subproblem

min
||s||<∆

hi+1(xmin,i + s)

is solved with CONDOR+.

Moreover, the criteria to choose Taylor model or (4.3) is the same as in Version 3.
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Version 4a

To construct interpolation set for Qi+1, the minimum point of level i is only used.

∆0 = 0.2, ε f un = 1e − 08, κQ = 0.01, εQ = 0.001 are taken.

Table 5.12: Results of Version 4a with lmlib.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 13 48 5.4985e-010 [−0.75, 0.24,−0.24,−0.24]T

3 14 51 8.1957e-010 [−0.75, 0.24,−0.24,−0.24]T

4 14 51 9.2230e-010 [−0.75, 0.24,−0.24,−0.24]T

5 14 51 9.5445e-010 [−0.75, 0.24,−0.24,−0.24]T

Table 5.13: Results of Version 4a with trust.

level iterations func. eval. func. value u = [P9;P12]

1 46 132 2.5013e-009 [−0.71, 0.22,−0.04,−0.22]T

2 14 58 6.6147e-010 [−0.74, 0.24,−0.24,−0.24]T

3 15 50 6.5556e-010 [−0.75, 0.25,−0.25,−0.25]T

4 14 51 7.9843e-010 [−0.75, 0.25,−0.25,−0.25]T

5 14 49 8.4429e-010 [−0.75, 0.25,−0.25,−0.25]T
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Version 4b

Using final interpolation set of level i, interpolation set for Qi+1 is constructed.

∆0 = 0.2 and ε f un = 1e − 08 are taken.

Table 5.14: Results of Version 4b with κQ = 0.01, εQ = 0.001 and lmlib.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 21 49 4.9240e-009 [−0.74, 0.25,−0.24,−0.24]T

3 5 21 8.1538e-009 [−0.74, 0.25,−0.24,−0.24]T

4 4 19 9.3654e-009 [−0.74, 0.25,−0.24,−0.24]T

5 4 19 9.7371e-009 [−0.74, 0.25,−0.24,−0.24]T

Table 5.15: Results of Version 4b with κQ = 0.1, εQ = 0.0001 and lmlib.

level iterations func. eval. func. value u = [P9;P12]

1 32 103 5.0677e-008 [−0.71, 0.23,−0.13,−0.23]T

2 9 28 2.1563e-005 [−0.71, 0.23,−0.14,−0.23]T

3 27 80 5.0530e-010 [−0.74, 0.25,−0.24,−0.25]T

4 4 19 6.1443e-010 [−0.74, 0.25,−0.24,−0.25]T

5 4 19 6.4886e-010 [−0.74, 0.25,−0.24,−0.25]T

Table 5.16: Results of Version 4b with κQ = 0.01, εQ = 0.001 and trust.

level iterations func. eval. func. value u = [P9;P12]

1 46 132 2.5013e-009 [−0.71, 0.22,−0.04,−0.22]T

2 25 51 2.9001e-009 [−0.75, 0.24,−0.24,−0.25]T

3 4 20 3.8769e-009 [−0.75, 0.24,−0.24,−0.25]T

4 4 19 4.2775e-009 [−0.75, 0.24,−0.24,−0.25]T

5 4 19 4.4013e-009 [−0.75, 0.24,−0.24,−0.25]T
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5.1 Analysis of Numerical Results

Not only to solve Taylor model but also at all sub-implementation parts of DFO, trust; eigen-

value decomposition based on the secular equation or lmlib; the Levenberg-Marquardt algo-

rithm with the More & Sorensen technique is used. It is observed that at coarse grids, trust

requires more iterations and function evaluations than lmlib. But later, on finer grids both

produce the same number of iterations and function evaluations.

At all results, initial trust region radius can take any other value (recommended less than 1).

This value alters the results. Similar to this, the choice between the lower level model and

Taylor model critically depends on parameters like κQ and εQ. For instance, Table 5.9 and

Table 5.14 seems to give the same results. These results can be interpreted as no new model

and no choice condition. When the parameters κQ = 0.1 and εQ = 0.0001 was taken, the

results are as in Table 5.10 and Table 5.15. Therefore, our termination criteria and the initial

parameters gain the importance to determine which approach will be nice.

Since the point u = [P9; P12] (the control variable) that we found after any optimization

procedure is not a minimization value of the problem, it is not used to compare the results.

Therefore, we interpret the results with respect to function evaluations without looking mini-

mum point u.

The construction of interpolation set at level i + 1 around the minimum point of the level i

causes the more function evaluations than the construction of interpolation set using the last

interpolation set of previous level.

When the model is chosen at any level i > 1 in a current iteration k and the interpolation set

for the model Qi+1 is constructed using the last interpolation set at level i, we get the best

results in terms of computational cost and time (i.e. Version 3b with trust).

The results of Version 4b are not so bad but the computation time is long when the model

(4.3) works in the programming.
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CHAPTER 6

CONCLUSIONS

In this thesis, we developed a new derivative free algorithm on a shape optimization problem

which is a control problem. In Chapter 4 we described how our new method called Multilevel

Derivative Free Optimization (MDFO) works.

Our shape optimization problem was discretized at most six discretization levels. Due to

computational complexity and much time at higher levels, we analyzed the results up to fifth

level. For every level, we had a different nonlinear function. Therefore, for this multilevel

structure, we used the DFO to minimize functions.

We used two implementations of DFOs. One is CONDOR, and the other one is DFO based

on NFPs. Both of them was a MATLAB programming package. Our main task was to modify

DFO based on NFPs to form MDFO. Besides, in view of computational easiness, Moré and

Sorensen subroutine of CONDOR was very useful to solve the subproblem of our new model.

The construction of interpolation sets affects the results very much in MDFO. In fact, the

construction of the interpolation set using the last interpolation set of previous level gave less

function evaluations than the other results. Moreover, another remarkable point is to define

cheap lower level model. In summary, chosing criteria between Taylor model and cheap

lower level model and the construction of interpolation sets from the previous level result in

the effective function evaluations.

In the future, it can be observed how MDFO works with the other problems like fluid dynam-

ics or the problems with much variables. Furthermore, The criteria inside the algorithm can

be improved. Instead of CONDOR, the other DFO programming packages can be examined.
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mizing Stirrer Configurations. Computers & Chemical Engineering, 30:183–190, 2005.

[37] M. J. D. Powell. An Efficient Method for Finding the Minimum of A Function of Several
Variables Without Calculating Derivatives . Computer Journal, 17:155 - 162, 1964.

[38] M. J. D. Powell. A method for minimizing a sum of squares of nonlinear functions with-
out calculating derivatives. Computer Journal, 7:303 - 307, 1965.

[39] M. J. D. Powell. A new algorithm for unconstrained optimization. In Nonlinear Pro-
gramming, editors:J. B. Rosen, O. L. Mangasarian, K. Ritter, pp.31 - 65. Academic
Press, London, 1970.

[40] M. J. D. Powell. Unconstrained Minimization Algorithms Without Computation of
Derivatives. Bollettino della Unione Matematica Italiana, 9:60 - 69, 1974.

[41] M. J. D. Powell. A view of unconstrained minimization algorithms that do not require
derivatives . ACM Transactions on Mathematical Software, 1(2):97 - 107, 1975.

[42] M. J. D. Powell. A direct search optimization method that models the objective and
constraint functions by linar interpolation. In Advances in Optimization and Numerical
Analysis, Proceedings of the sixth Workshop on Optimization and Numerical Analysis,
Oaxaca, Mexico, pp.51-67. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1994.

[43] M. J. D. Powell. A direct search optimization method that models the objective by
quadratic interpolation. Presentation at the 5th Stockholm Optimization Days, 1994.

[44] M. J. D. Powell. UOBYQA : Unconstrained Optimization By Quadratic Approximation.
Technical Report No.DAMTP2000/14. Department of Applied Mathematics and Theo-
retical Physics, University of Cambridge, England, 2000.

[45] M. J. D. Powell. On the Lagrange functions of quadratic models that are defined by
interpolation. Optimization Methods Software, 16:555 - 582, 2001.

[46] M. J. D. Powell. Developments of NEWUOA for minimization without derivatives. IMA
Journal of Numerical Analysis, 28(4):649–664, February 2008.

83



[47] R. T. Rockefeller. Convex analysis. Princeton Univ. Press, Princeton, New Jersey, 1970.

[48] K. Scheinberg. Derivative free optimization method. Technical Report CS 4/6-TE3,
SFW ENG 4/6-TE3, IBM Watson Research Center, 2000.

[49] K. Scheinberg. Derivative free optimization method. Department Computing and Soft-
ware, McMaster University, 2000.

[50] W. Spendley, G. R. Hext, F. R. Himsworth. Sequential application of simplex designs in
optimization and evolutionary operation. Technometrics, 4:441 - 461, 1962.

[51] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.
SIAM J. Numer. Anal., 20:626-637, 1983.

[52] T. Terlaky. Algorithms for Continuous Optimization DFO-Trust Region Interpolation
Algorithm. Computer and Software, McMaster University, Hamilton, Canada, January
2004. 4TE3/6TE3.

[53] Ph. L. Toint, A. R. Conn, N. I. M. Gould. Trust-Region Methods. SIAM Society for
Industrial and Applied Mathematics, Englewood Cliffs, New Jersey, mps-siam series
on optimization edition, 2000. Chapter 6: Global Convergence of the Basic Algorithm,
pp.115 - 168.

[54] Ph. L. Toint, A. R. Conn, N. I. M. Gould. Trust-Region Methods. Number 01 in MPS-
SIAM Series on Optimization, SIAM, Philadelphia, USA, 2000.

[55] Ph. L. Toint, F. Bastin, V. Malmedy, M. Mouffe, D. Tomanos. A Retrospective Trust-
Region Method for Unconstrained Optimization. Technical Report 07/08, Department
of Mathematics, University of Namur, Namur, Belgium, October 2007.

[56] Ph. L. Toint, D. Tomanos, M. Weber Mendonça. A multilevel algorithm for solving the
trust-region subproblem, 2008. To appear in Optimization Methods and Software.

[57] Ph. L. Toint, D. Tomanos, M. Weber Mendonça. A multilevel algorithm for solving the
trust-region subproblem. Optimization Methods and Software, 24(2):299 - 311, April
2009.

[58] Ph. L. Toint, K. Scheinberg. Self-Correcting Geometry In Model-Based Algorithms For
Derivative-Free Unconstrained Optimization. Technical Report 09/06, Department of
Mathematics, University of Namur, Namur, Belgium, February, 2009.

[59] V. Torczon. On the convergence of multidirectional search algorithm . SIAM Journal on
Optimization, 1(1):123 - 145, 1991.

[60] A. R. Conn, K. Scheinberg, L. N. Vicente. Global Convergence of General Derivative-
Free Trust-Region Algorithms To First and Second Order Critical Points. SIAM Journal
on Optimization, 2006.

[61] S. M. Wild. MNH: A Derivative-Free Optimization Algorithm Using Minimal Norm Hes-
sians. In Tenth Copper Mountain Conference on Iterative Methods, Cornell University,
School of Operations Research and Information Engineering, April 2008. Available at
http://grandmaster.colorado.edu/ copper/2008/SCWinners/Wild.pdf

84



[62] S. M. Wild, R. G. Regis, C. A. Shoemaker. ORBIT: Optimization By Radial Basis Func-
tion Interpolation In Trust-Regions. SIAM Journal on Scientific Computing, 30:3197-
3219, 2008.

[63] D. Winfield. Function and functional optimization by interpolation in data tables. Har-
vard University, Cambridge, USA, 1969. PhD Thesis.

[64] D. Winfield. Function minimization by interpolation in a data table. Journal of the In-
stitute of Mathematics and its Applications, 12:339-347, 1973.

[65] M. H. Wright. Direct search methods: once scorned, now respectable. In proceedings
of the 1995 Dundee Biennal Conference in Numerical Analysis, editors:D. F. Griffiths,
G. A. Watson. Addison Wesley Longman, UK, 1996.

85




