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ABSTRACT

PROTEIN DOMAIN NETWORKS: ANALYSIS OF ATTACK TOLERANCE UNDER
VARIED CIRCUMSTANCES

Oǧuz, Şaziye Deniz

M.S., Department of Scientific Computing

Supervisor : Assist. Prof. Dr. Hakan̈Oktem

September 2010, 93 pages

Recently, there has been much interest in the resilience of complex networksto random fail-

ures and intentional attacks. The study of the network robustness is particularly important by

several occasions. In one hand a higher degree of robustness to errors and attacks may be

desired for maintaining the information flow in communication networks under attacks. On

the other hand planning a very limited attack aimed at fragmenting a network by removal of

minimum number of the most important nodes might have significant usage in drugdesign.

Many real world networks were found to display scale free topology including WWW, the

internet, social networks or regulatory gene and protein networks. In the recent studies it

was shown that while these networks have a surprising error tolerance,their scale-free topol-

ogy makes them fragile under intentional attack, leaving the scientists a challenge on how to

improve the networks robustness against attacks.

In this thesis, we studied the protein domain co-occurrence network of yeast which displays

scale free topology generated with data from Biomart which links to Pfam database. Sev-

eral networks obtained from protein domain co-occurrence network having exactly the same
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connectivity distribution were compared under attacks to investigate the assumption that the

different networks with the same connectivity distribution do not need to have thesame attack

tolerances. In addition to this, we considered that the networks with the same connectivity

distribution have higher attack tolerance as we organize the same resources in a better way.

Then, we checked for the variations of attack tolerance of the networks with the same connec-

tiviy distributions. Furthermore, we investigated whether there is an evolutionary mechanism

for having networks with higher or lower attack tolerances for the same connectivity distri-

bution. As a result of these investigations, the different networks with the same connectivity

distribution do not have the same attack tolerances under attack. In addition tothis, it was ob-

served that the networks with the same connectivity distribution have higher attack tolerances

as organizing the same resources in a better way which implies that there is an evolution-

ary mechanism for having networks with higher attack tolerance for the sameconnectivity

distribution.

Keywords: Scale-free Networks, Protein Domain Networks, Connectivity Distribution of Net-

works, Attack Tolerance, Network Resilience
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ÖZ

PROTĖIN DOMAİN AǦLARI: FARKLI KOŞULLAR ALTINDA SALDIRI
TOLERANSININ ANALİZİ

Oǧuz, Şaziye Deniz

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Hakan̈Oktem

Eylül 2010, 93 sayfa

Karmaşık ăgların hatalar ve saldırılar karşısında nasıl davrandığı birçok bilim adamının il-

gisini çekmektedir. Ăgların dayanıklılı̆gı üzerine çalışmalar birçok açıdanönemlidir.Örnĕgin,

iletişim ăglarında bilgi akışının d̈uzg̈un săglanabilmesi için hatalara ve saldırılara karşı dayanık-

lılı ğının ÿuksek olması istenmektedir. Diğer yandan, ăgları parçalamak için en az sayıda en

onemli yapı taşlarını çıkartarak kısıtlı sayıda saldırı planlamak ilaç tasarımında onemli kul-

lanım alanı bulmaktadır.

WWW, internet, sosyal ăglar ve protein ăgları gibi birçok gerçek ăgların scale free topolo-

jik yapısına sahip oldŭgu bulunmuştur. Son zamanlarda yapılan çalışmalarda bu ağların

şaşırtıcı derecede hatalara karşı dayanıklı oldukları bulunurkendiğer yandan scale free topolo-

jik yapısına sahip olmalarından̈otürü saldırılara karşı çok hassas oldukları gözlenmiştir. Bu

durum bilimadanlarını bu tür özellik gösteren ăgların saldırılara karşı dayanıklılığının nasıl

arttırılabilecĕgi sorusu ile karşı karşıya bırakmıştır.

Bu tezde mayanın (S. cerevisiae) scale free topolojik yapıya sahip protein domain ăgları

üzerine calıştık. Çalışmalarımız sırasında Pfam veri bankasına ulaşmamazı săglayan Biomart’
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taki verileri kullandık. Bu ăgdan aynı băglantı dăgılımına sahip birçok ăg elde ettik. Aynı

dăgılıma sahip farklı ăgların saldırılar altında aynı saldırı toleransını göstermemesi gerektiği

varsayımı incelemek için bu birçok ağın saldıralar altında saldırı dayanaklılığını karşılaştırdık.

Buna ek olarak, kaynakları daha iyi organize etttikçe aynı bağlantı dăgılımına sahip ăgların

daha ÿuksek saldırı toleransına sahip olabileceği üzerinde durduk. Sonra, aynı bağlantı dăgı-

lımına sahip ăgların saldırı toleransı değişimini kontrol ettik. Son olarak, ÿuksek ya da

düş̈uk saldırı toleransına sahip ağların varolması için evrimsel (gelişiminden kaynaklanan)

bir mekanizma olup olmadığını baktık. B̈utün bu araştırmaların sonucunda, aynı bağlantı

dăgılımına sahip ăgların aynı saldırı toleransını göstermedĭgi belirlendi. Ek olarak, kay-

nakları daha iyi organize etttikçe aynı bağlantı dăgılımına sahip ăgların daha ÿuksek saldırı

toleransına sahip olduğu ve bununda ÿuksek saldırı toleransına sahip ağların varolması için

evrimsel bir mekanizma olduğuna işaret ettiği sonucuna varıldı.

Anahtar Kelimeler: Scale Free Ağlar, Protein Domain Ăglar, Ağların Băglanırlık Dăgılımı,

Saldırı Toleransı, Ăg Dayananıklılı̆gı
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CHAPTER 1

INTRODUCTION

Many real world systems can be represented by networks. A network is aset of items which is

called vertices or nodes with the connections either directly or indirectly between them, called

edges. The existing emprical and theoretical results indicate that complex networks can be

divided into two main classes as random (exponential) networks and scale free networks ac-

cording to the their degree (connectivty) distributionP(k) (the probability that a node in the

network is connected tok other nodes). In the first class of networks,p(k) peaks at an av-

erage< k > and decays exponentially for large k. This class of networks was first studied

by Paul Erd̈os and Alfred Renyi. Erd̈os-Renyi (ER) random network is a classical represen-

tation of exponential networks [17]. Exponential networks are homogeneous in connectivity

which means that most of the nodes in the network have approximately the same number of

connections around< k >, k ≈< k >. But, recent studies show that most real-world systems

exhibit scale free structure. These real-world networks include the Worl Wide Web [5], the

internet [13], biological networks such as metobolic networks [22], protein domain networks

[20], [23] and the author collaboration networks [24]. It was found that structure of these

networks can not be described by ER model, so Barabasi et al. introduce a model called BA

model which explains the emergence of scale free structure in these networks [15].

Scale free network exhibits a power law degree distribution in the formP(k) ∼ k−γ where

gamma “γ” is free of characteristic scale and its value typically in the range 2≤ γ ≤ 3. As

long as gamma “γ” greater or equal to 1, its value may lie outside these bounds [25]. In

contrast to the exponential network, scale free networks are heterogenous which means that

most node has a few edges while few nodes in the networks has a huge number of edges. This

feature in scale free network is deserved to be paid attention which implies thatnetwork’s

property is determined by the most highly connected nodes.
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The study of the network robustness receives a growing interest amongscientist and is partic-

ularly important by several occasions. In one hand a higher degree ofrobustness to errors and

attacks may be desired for maintaining the information flow in communication networks un-

der attacks. On the other hand planning a very limited attack aimed at fragmentinga network

by removal of minimum number of the most important nodes might have significantusage in

drug design. The robustness of a network can be defined by its behavior under perturbations.

There are two general categories of such perturbations; errors or failures: random removal

of nodes and attacks: the targeted removal of chosen nodes. The way the nodes are chosen

during an attack is called anattack strategy. Some attack strategies are introduced in [1],

[2]. There are also several methods to measure the robustness of a network under failures and

attacks [1], [3], [5], [19]. Using these methods, authors compared twonetwork models- scale

free and random networks under failures and attacks. They found that scale-free networks

display an unexpected degree of robustness, i.e., the ability of their nodesto communicate be-

ing unaffected by even high failure rates. However, these networks are extremelyvulnerable

to intentional attacks, i.e., to the removal of a few number of highly connected nodes. On the

other hand, evolving networks with exponential connectivity distribution are not as robust to

random failures, but more resilient to intentional attacks [1], [2], [4], [7], [10].

In this work, we use protein domain co-occurence network of yeast (S.cerevesiae) generated

with data from Biomart (Pfam database) data management system. Domains arebasic evo-

lutionary units of proteins which are well-defined regions within a protein thatcan evolve,

function and fold independently from the rest of the protein and have theirown function.

These domains and nature of their interactions determine the function of the protein. In pro-

tein domain co-occurence network of yeast (S. cerevesiae), domains are represented by nodes

and two domains are considered as connected if they occur together in one protein at least

once. Most biological networks including protein domain co-occurrencenetwork were found

to exhibit scale free topology [22], [20]. This scale free structure support the expectation

from biological network under failures such that as biological networksare required to func-

tion in various conditions, it is expected that they should have evolved to ownrobust structures

against structural and enviromental perturbations [26]. In this study wewill not compare scale

free networks and random networks under attacks which has been studied widely in literature

[1], [2], [4]. Instead, we will compare several networks exhibiting scale free structure, which

have exactly the same connectivity, under attacks. We analyze the robustness of the network
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under attacks by studying how the size of the largest connected component varies as a function

of the number of removed nodes.

Even the connectivity distribution is an important indicator of a network’s qualitative features,

different networks with the same connectivity distribution do not need to have thesame attack

tolerances. Additionally, it can be considered that the networks with same connectivity distri-

bution have higher attack tolerance as we organize the same resources in abetter way. Then, it

can be checked for the variations of attack tolerance of the networks with the same connectiv-

ity distributions. Furthermore, we investigate whether there is an evolutionarymechanism for

having networks with higher or lower attack tolerances for the same connectivity distribution.

For these purposes, we wrote an algorithm such that we randomly changethe links of nodes

in protein domain co-occurence network of yeast conserving the connectivity of the network.

Later, we analyze the attack tolerance of the randomly modified networks andfrom these

networks we extract the least and the most vulnerable networks under attacks. We continue

collecting the least vulnerable network from the networks which are also obtained from the

least vulnerable network and the most vulnerable network from the networks which are also

obtained from the most vulnerable one.

In this thesis, basic definitions related to graph theory and network’s properties and models

are given briefly in Chapter 2. In Chapter 3, we introduce the methods to measure attack

tolerance of networks which will be used in this work. This chapter also includes comparison

of network models under attacks and failures. Chapter 4 contains the application part. Several

networks obtained by modifying the connections of nodes in the network arecompared under

attack which is done by using one of the methods and strategies introduced in Chapter 3.

Chapter 5 concludes the thesis and further possible studies to extend the thesis are discussed.
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CHAPTER 2

BACKGROUND

2.1 Mathematical Background

Definitions and theorems in this part are mainly taken from [27], [28].

2.1.1 Basic Definitions

Any system of interconnected elements can conveniently be described by means of a diagram

consisting of a set of points together with lines joining certain pairs of these points. For

example, the points could represent people, with lines joining pairs of friends, or the points

might be communication centers, with lines representing communication links. Noticethat in

such diagram one is mainly interesting in whether or not two given points are joined by line,

the manner in which they are joined is immaterial. A mathematical abstraction of situations

of this type gives rise to the concept of a graph.

Definition 2.1.1 A graph or a general graph is an ordered triple G= (V,E, φ) where

1. V , ∅,

2. V∩ E = ∅,

3. φ : E→ P1(V) is a map such that| φ(e) |∈ {1,2} for each e∈ E.

The elements of V are theverticesof G the elements of E are theedgesof G. The mapφ is

called anedgemapand the vertices inφ(e) are called theendverticesof the edge e.

1 If S is set, then the set of all subsets of S, denotedP(S), is called thepower setof S. For example, If
S = {1,2,3}, thenP(S) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.
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Terminology: The total number of vertices in the graph (the cardinality of the setV denoted

| V |) is denoted asN and defines the order of the graph. We will refer toN as the size of the

network.

Example 2.1.2 Graphs are in most cases represented by diagrams consisting of dots,which

represent the vertices, and curves drawn between the dots representing the endvertices, which

represent the edge between vertices.

v1

v3

v2

e2

e3

v4

e1

e4

e5

v5

e6

Figure 2.1: A graph with five vertices and six edges.

Consider the diagram shown in Figure 2.1. Here we see that G= (V,E, φ) where V =

{v1, v2, ..., v5}, E = {e1,e2, ...,e6} and the edgemapφ is given by

φ(e1) = {v1, v2},

φ(e2) = φ(e3) = {v1, v3},

φ(e4) = {v2, v3},

φ(e5) = {v3, v4},

φ(e6) = {v4}.

The next definition presents the most basic terminology on graphs.

Definition 2.1.3 Let G= (V,E, φ) be a graph

5



1. Vertices u and v in V areadjacent or neighbors, if they are the endvertices of some edge

e ∈ E. That is they are adjacent, if there is an e∈ E such thatφ(e) = {u, v}.

2. Two distinct edges e and f areadjacent to each other if they have common endvertex.

That isφ(e) ∩ φ( f ) , ∅.

3. A vertex u and an edge areincident if u ∈ φ(e), that is if u is an endvertex of e.

4. A loop is an edge whose endvertices are equal, that is| φ(e) |= 1.

5. We say that E
′

⊆ E is a set ofmultiple edges or parallel edges, if | E
′

|≥ 2 and all

e
′

∈ E
′

have the same set of endvertices. That isφ(e
′

) = φ( f
′

) ∀e
′

, f
′

∈ E
′

.

6. A vertex u is calledisolated, if it is not an endvertex of any edge. That is u< φ(e)

∀e ∈ E.

When tackling a problem that can be phrased in graph-theoretic terms, often it can be reduced

to a problem involving a graph having no multiple edges or any loop. Such graphs constitute

an important class calledsimple graph. Since there is at most one edge between a pair of

vertices in a simple graph, the edges are in one-to-one correspondencewith their distinc end

vertices. Therefore, a simple graph can be defined without the edgemapφ from Definition

2.1.1. Because of the importance of simple graphs, it is convenient to state their formal

definition separately.

Definition 2.1.4 A simple graph is an ordered pair G= (V, E), where V is a nonempty set of

vertices and E is a set of 2-element subset of V, that is a simple graph is agraph that has no

self-loops or multi-edges

E ⊆ {X : X ⊆ V, | X |= 2} = {{u, v} : u, v ∈ V,u , v}. (2.1)

Definition 2.1.5 Thecomplete graph on n vertices is the simple graph G= Kn, where

V(Kn) = {v1, v2, ..., vn},

E(Kn) = {{vi , v j} : 1 ≤ i < j ≤ n}.
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That is, every pair of distinct vertices is connected by an edge (Figure 2.2).

Note: The complete graphKn hasn(n−1)
2 edges.

v1

v2

v3

v4

v5

v6

v7

Figure 2.2: Complete graphK7.

Many properties of graphs must be stated in terms of numerical values associates with the

graph or some of its components. The first such attribute, it is defined the degree of a vertex.

Definition 2.1.6 Let G = (V,E, φ) be a graph and v∈ V a vertex of G. Thedegree of v,

denoted d(v), is defined by

d(v) =| {e ∈ E : v ∈ φ(e), | φ(e) |= 2} | +2 | {e ∈ E : v ∈ φ(e), | φ(e) |= 1} | . (2.2)

Remark: For a graphG and a vertexv ∈ V(G) we have:

• If G is a simple graph, thend(v) is the number of neighbors ofv in G.

• If G is a general graph, thend(v) is the number of edges havingv as an endvertex, where

the loops are counted twice.

Theorem 2.1.7 For a graph G we have
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∑

u∈V

d(u) = 2 | E | . (2.3)

Definition 2.1.8 Let G= (V,E) be a graph and k be the degree of a vertex. To calculate the

average degree, all degrees are summed and divided by the total number of vertices in the

network:

< k >=

∑N
i= k(vi)

N
, (2.4)

where N is the total number of nodes in the network.

When studying a specific graph, many times our attention is focused solely on aspecial part

of the graph, perhaps on a smaller graph lying inside the larger graph . This motivates the

following definition of a subgraph.

Definition 2.1.9 For graphs G
′

= (V
′

,E
′

, φ
′

) and G= (V,E, φ), we say that G
′

is a subgraph

of G, if

1. V
′

⊆ V,

2. E
′

⊆ E,

3. φ
′

(e) = φ(e) ∀e ∈ E
′

.

It is denoted the subgraph relation on graphs using the standard subsetnotation⊆. That is, if

G
′

is a subgraph of G, then it is written G
′

⊆ G. In particular, for simple graphs G
′

= (V
′

,E
′

)

and G= (V,E), G
′

is a subgraph of G if V
′

⊆ V and E
′

⊆ E.

Example 2.1.10Consider the graph G given in Figure 2.3 (a). Figure 2.1.1 (b) shows a

subgraph G
′

o fG.
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(a) (b)

v1

v4

v3
v2

v5

e5

e4

e6

e3

e1

e2
e7

v1

v4

v3
v2

v5

e6

e3

e2
e7

v6

Figure 2.3: Subgraph.

Definition 2.1.11 A directed graph or digraph is an ordered triple~G = (V,E, η) where

1. V , ∅,

2. V∩ E = ∅,

3. η : E 7→ V × V is a map.

The set V is the set of vertices, and the set E the directed edges, or arcs. If η(e) = (u, v), then

u is called the tail of e and v the head of e.

If η(e) = (v, v), then e is called adirected loop.

Two directed edges e and e
′

are said to be parallel edges ifη(e) = η(e
′

). That is, the edges are

mapped onto the same ordered pair of vertices

Example 2.1.12Consider the digraph~G = (V,E, η) with five vertices and six directed edge-

sas shown in Figure 2.4. Here,~G = (V,E, η), where V= {v1, v2, v3, v4, v5}, E = {e1,e2,e3,e4,e5,e6},

and the edgemapη is given by

η(e1) = (v1, v2),

η(e2) = (v3, v1),

η(e3) = (v1, v3),

η(e4) = (v2, v3),

η(e5) = (v3, v4),

η(e6) = (v4, v4).
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In particular, the directed edge e6 is the directed loop.

v1

v3

v2

e2

e3

v4

e1

e4

e5

e6

v5

Figure 2.4: A digraph with five vertices and six directed edges.

Definition 2.1.13 A digraph having no directed loops and no parallel directed edges is called

a simple digraph.

Any simple digraph~G can be presented as an ordered pair~G = (V,E), whereV is a set of

vertices andE ⊆ V × V. Note that there is a slight difference between a simple digraph and

having the edges represented by a subset ofV × V :

• A digraph ~G has representation~G = (V,E), whereE ⊆ V × V if, only if, ~G has no

parallel directed edges.

• A digraph is simple if, only if,~G has a representation~G = (V,E), whereE ⊆ V ×V and

~G has no directed loops.

2.1.2 The Basic Representations for Graphs

From a mathematical point of view, it is convenient to define a graph by meansof the adja-

cency matrixA = (ai j )i, j=1,2,...,N. This is aN × N matrix defined in the following definition:

Definition 2.1.14 We definethe adjancency matrix A of a graph G(V, E) as the| V | × | V |:

10



ai j =



















1, if ( i, j) ∈ E

0, if ( i, j) < E.
(2.5)

We define the adjancency matrix representation of a digraph G in the same wayas for an

undirected graph. The adjacency matrix for a graph is symmetric, while the adjanceny matrix

for a digraph is asymmetric.

Definition 2.1.15 A weighted graph is a graph that has a numeric label w(e) associated with

each edge e, called the weight of edge e. Edges weights can be integers,rational numbers, or

real numbers, which represent a concept such as distance, connection costs, or affinity.

2.1.2.1 Paths and Cyles

Definition 2.1.16 1. Awalk in a graph G= (V,E, φ) is an alternating sequence

(v0,e1, v1,e2, ...,ek, vk)

of vertices and edges that begins and ends with a vertex. For each i∈ {1, ..., k} the

endvertices of ei are vi−1 and vi . That is

φ(ei) = {vi−1, vi},

The vertex vo is the initial vertex of the walk. The vertex vk is the final vertex of the

walk. The initial or final vertex of a walk is also called an endvertex of the walk. The

natural number k is thelenghtof the walk.

2. A trail in G is a walk with all of its edges e1,e2, ...,ek distinct

3. Apath in G is a walk with all of its vertices v0, v1, ..., vk distinct.

4. For vertices u and v in G, a u, v-walk (u, v-trail or u, v-path) is walk (respectively trail

or path) with initial vertex u and final vertex v.

5. A walk or trail of length at least one isclosed if the initial vertex and the final vertex

are the same. A closed trail is also called acircuit.

6. Acycle is a closed walk with distinc vertices except for the initial and final vertex, which

are the same.
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AssumingG is a simple graph, then a walk, trail, path, or cycle can be specified by a sequence

of verticesv0, v1, ..., vk instead of (v0,e1, v1,e2, ...,ek, vk). This is because a pair of adjacent

verticesvi−1 andvi completely determine the only edgeei = {vi−1, vi} between them.

v1

v3

v2

e2

e3

v4

e1

e4

e5

e6

v5

e7

e8

Figure 2.5: Graph used to illustrate walks, trails, paths, and cycles.

Example 2.1.17We illustrate Definition 2.1.16 using the graph G= (V, E) with five vertices

and seven edges shown in Figure 2.5.

• w = (v1,e2, v3,e3, v1,e1, v2,e4, v3,e4, v2,e8, v5,e7, v4)

Here w is a walk of lenght seven. Note that w is not a trail, since the edge e4 appears

twice. A walk that is not a trail is clearly not a path. Hence, w is not a path.

• t = (v1,e2, v3,e3, v1,e1, v2,e8, v5e7, v4)

The walk t is a trail of length five. Note that t is not a path, since the vertex v1 appears

twice.

• p = (v1,e2, v3,e4, v2,e8, v5,e7, v4)

The walk p is a path of length four.

• c1 = (v3,e2, v1,e2, v3,e4, v2,e8, v5,e7, v4,e5, v3)
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The walk c1 is a closed walk of length six.

• c2 = (v3,e2, v1,e3, v3,e4, v2,e8, v5,e7, v4,e5, v3)

The walk c2 is a circuit of length six.

• c3 = (v3,e4, v2,e8, v5,e7, v4,e5, v3)

The walk c3 is a cycle of length four.

Figure 2.6 explains the relationship of the items from Definition 2.1.16 in any given graphG.

An arrow from one oval down to another means that the first (upper) oval contains the items

in the secand (lower) oval, since the items in the first are more general than the items in the

secand oval. So, for example, walks are more general than trails. Going down the diagram in

figure means that we are restricting the structure more and more. The diagram in Figure 2.6

is actually an example of a directed graph and, in fact, a poset.

walks

trails closed walks

circuits

paths

cycles

Figure 2.6: Relationships between various subgraphs and walks.
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2.1.2.2 Connectivity

Definition 2.1.18 A graph G isconnected, if for every pair of distinct vertices u, v ∈ V, the

graph G has a u,v-path. Otherwise we say that the graph is disconnected.

Figure 2.7: GraphG is connected, butG
′

is not.

As it can be seen in Figure 2.7, the graphG
′

is a made up of two connected parts. Each

segment is subgraph ofG
′

that is itself connected. Such a connected part of a graph is called

a component (or connected component)of the graph. The following definition states this

situation more formally.

Definition 2.1.19 Let G be a graph. Let H1, ...,Hk be connected subgraphs of G whose vertex

sets and edge set are pairwise disjoint and such that they cover all the vertices and edges of

G. That is,

V(G) = V(H1) ∪ ... ∪ V(Hk)

E(G) = E(H1) ∪ ... ∪ E(Hk)

where V(Hi) ∩ V(H j) = E(Hi) ∩ E(H j) = ∅ for each distinct i and j.

Then each of the subgraphs Hi is calledcomponent or connected component of G.

Theorem 2.1.20Every graph G has a unique collection of connected component H1, ...,Hk.

In particular, the number k of connected components of G is uniquely determined by G.

Definition 2.1.21 Let G be a graph. The minimum number of vertices of G, whose removal

14



disconnects G, or creates a graph with a single vertex, is called the connectivity of G and is

denoted byκ(G). If k ≤ κ(G), then we say that G is k− connected.

Definition 2.1.22 The local connectivityκ(x, y) of two non-adjacent vertices is the minimum

number of vertices seperating x from y. If x and y are adjacent vertices, their local connec-

tivity is defined asκH(x, y) + 1 where H= G − xy.

Theorem 2.1.23 (Menger): Let x, y ∈ G, x , y. There exists a set ofκ(x, y) independent

paths between x and y and this set is maximal.

2.1.2.3 Digraph Connectivity

Basically, there are two natural ways to view connectivity in digraph. One issimply to adapt

directly the definition from graphs, and say that a digraph~G is connected if, and only if, its

underlying graph is connected. In that case we say that~G is weakly connected. By acompo-

nentof ~G it is simply mean that the subdigraph induced by the vertices of the corresponding

component of the underlying graphG.

The following definition, however, is a more common way of describing connectivity in di-

graphs.

Definition 2.1.24 A directed walk ~w in a digraph~G is an alternating sequence

~w = (v0,e1, v1,e2, ...,ek, vk)

of vertices and directed edges, where for each i∈ {1,2, ..., k} the tail and head of ei are vi−1

and vi , respectively. That is,

η(ei) = (vi−1, vi).

The notion of an initial vertex, a final vertex, the lenght, a directed trail, a directed path, and

a directed u, v-walk, trail, path are the same as in Definition 2.1.16, but here itis added the

words “directed” before each of the words “walk”, “trail”, and “path”. Likewise, the notion

of closed directed trail and path are called directed circuit and directed cycle, respectively.
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Remark: Since each directed edge has a unique tail and head, there is no ambiguity in writing

a directed walk as

~w = (e1,e2, ...,ek),

where it is understood that the initial vertex of~w is the tail ofe1 and the final vertex is the

head ofek.

Likewise, if our digraph~G has no parallel directed edges, and hence the set of directed edges

is given by a subsetE ⊆ V × V, then we can write a directed walk as a sequence of vertices

~w = (v0, v1, ..., vk).

It can be now stated the more common definition for connectivity in digraphs, calledstrong

connectivity, to emphasize its difference from weak connectivity.

Definition 2.1.25 A digraph ~G is strongly connected if for every pair u, v ∈ V( ~G) of distinct

vertices there is a directed walk from u to v in~G.

Thestrong components of ~G are maximal strongly connected subdigraphs of~G

u

v

u

v

Figure 2.8: The condition for strong connectivity in a diagraph.

Note: The definition 2.1.25 implies that for very pairu, v ∈ V( ~G) of vertices there is a directed

path fromu to v and a directed path fromv to u as well (by reversing the role ofu andv.)

Also note that these two directed paths, one fromu to v and the other fromv to u, are not

necesssarily edge disjoint!

As it can be seen in Figure 2.8, the condition of digraph~G being strongly connected implies

that for every pairu, v ∈ ~G of vertices there is a directed walk fromu to v in ~G, as well as a

directed walk fromv back tou in ~G.
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2.1.3 Giant Connected Component

The characteristic of networks discussed so for do not allow us to imagine their global topol-

ogy. To get real image of a network, we have to know its percolation property. As Figure 2.9

demonstrates, a network may consist of a number of disjoint parts-connected component. The

standart notion of percolating cluster and percolation threshold for networks are introduced

in the following way.

DC

GCC

Figure 2.9: The general structure of an undirected network with the giantconnected compo-
nent (GCC). The GCC plays the role of a percolating cluster. The rest ofthe network includes
separate finite-size clusters: finite connected components. Usually, this part is referred to as
disconnected components (DC).

To begin with, suppose that the network is undirected. A distinct connectedcomponent of a

network is a set of mutually reachable vertices. The size of a connected component is the total

number of vertices in it. When the relative sizes of all connected componentsof a network

tend to zero as the number of vertices in the network approaches infinity, thenetwork is below

the percolation threshold. If the relative size of the largest connected approaches a finite (non-

zero) value in the limit of a large network, the network is above the percolationthreshold. In

such an event, the huge connected component plays the role of a percolating cluster. In graph

theory, this is called thegiant connected component (GCC). The general structure of an

undirected graph, when the giant connected componet is present, shown in Figure 2.9. The

rest of the network consists of separate finite connected components. Traditionally, these parts

are together referred to asdisconnected component (DC).

Definition 2.1.26 The Giant Connected Component (GCC) of an undirected graph G=
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(V,E), where V is the set of all vertices and E is the set of all edges, is the maximal set of

vertices U⊂ V such that every pair of vertices u and v in U are reachable from each other.

The notion of the giant connected components are truly important. They characterize a net-

work as a unit “organisim” and indicate its “health”. For example, an undirected graph is only

a set of separate clusters if the GCC is absent.

2.2 Properties of Networks

2.2.1 Clustering Coefficient

Nodes in many real systems exhibit a tendency to cluster, which can be qualified using the

clustering coefficient [12], a measure of the degree to which the neighbors of a particular

nodes are connected to each other. For example in a friendship network,C reflects the degree

to which friend of a particular person are friends with each other as well. Formally the clus-

tering coefficent of node i is defined as

Ci =
2ni

ki(ki − 1)
, (2.6)

where ni denotes the number of links connecting the ki neighbors of node i to each other.

Accordingly, it can be definedthe average clustering coefficient as

< C >=
1
N

N
∑

i=1

Ci . (2.7)

Note: The average degree< k > and average clustering coefficient< C > depends on the

number of nodes and links in the network. By contrastP(k) (see Subsection 2.2.2) are inde-

pendent of the network’s size and therefore capture a network’s generic features which allows

them to be used to classify various networks.
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2.2.2 Degree (Connectivity) Distribution

Generally the degree of vertices in random networks are statistically distributed. We define

pk to be the fraction of vertices in the network that have degreek. Equivalentlypk is the

probability that a vertex chosen uniformly at random has degreek. A plot of pk for any given

network can be formed by making a histogram of the degree of vertices. This histogram is the

degree distribution for the network.

Knowing the degree distribution of each vertices in a network, it easy to findthe total degree

distribution

P(k,N) =
1
N

N
∑

s=1

p(k, s,N), (2.8)

wherep(k, s,N) is the probability that the vertexs in the network of sizeN hask connections.

The following examples demonstrate typical degree distribution for networks.

The poission distribution:

P(k) =
e−<k>(< k >)k

k!
. (2.9)

Here,< k > is the average degree. A “classical random graph ” asymptotically has just this

degree distribution, if its number of vertices approaches infinity under the constraint that the

mean degree is fixed.

Classical random graph: This graph is defined by the following simple rules:

• The total number of vertices is fixed.

• Randomly chosen pairs of vertices are connected via undirected edges.

Exponential Distribution

P(k) ∼ e−
k
<k> . (2.10)
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For instance, this is the degree distribution of “the growing random graph ”.

Growing random graph:

• At each time step, a new vertex is added to the graph.

• Simultaneously, a pair of randomly chosen vertices is connected by an edges.

The Power-law distribution:

P(k) ∼ k−γ, k , 0. (2.11)

Here,γ ≥ 1 is the exponent (or parameter) of the distribution whose value is typically in the

range 2≤ γ ≤ 3, although occasionally it may lie outside these bounds.

The power-law distribution contrast with the Poisson and Exponential distributions. It has no

natural scale and, hence, may be called scale-free. Networks with suchdistribution are called

scale-free.

2.2.3 Network Models

Recent technological advances such as availability of computers and others increased the

gathering of topological data on large network. This availability of topological data and re-

cent theoretical advances led to great advances in the understanding of the general feature of

network structure and development [1], [5], [11], [12]. The existingempirical and theoret-

ical results indicate that complex networks can be divided into two major classes based on

their connectivity distributionP(k) (representing the probability that a node in the network is

connected tok other nodes): exponential networks and scale-free networks. The main role of

the network models is to explain the emergence and behavior of some of the mostimportant

network characteristics. As they play a crucial role in shaping the understanding of complex

networks, it is needed to pay attention to some of the more important models.
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2.2.3.1 Exponential Networks (Random Networks)

This class of networks is characterized by aP(k) that peaks at an average< k > and decays

exponentially for largek. Because of this exponential behavior, random networks can be

called Exponential network. The most investigated examples of such exponential networks

are the random graph model of Erdös and Renyi [11] and the small-world model of Watts

and Strogatz [12], both leading to a fairly homogeneous network, in which each node has

approximately the same number of links,k ≃< k >. This property is illustrated in Figure

2.13.

The Erdös - Renyi (ER) model of random graph: The simplest complex network model

was proposed by Paul Erdös and Alfred Renyi in 1959. The Erdös-Renyi (ER) model of a

random network (see Figure 2.11) starts with N nodes and connects eachpair of nodes with

probability p, creating a graph with approximatelypN(N−1)
2 randomly distributed links. The

distribution of connection of networks generated by this model follows a Poission distribution

for largeN (see Figure 2.10) which indicates that most nodes have roughly the same number

of links, approximately equal to the network’s average degree,< k >. The tail of the degree

distributionP(k) decreases exponentially, which indicates that nodes that significantly deviate

from the average are extremely rare.

Despite its elegance, recent findings indicate that ER model can not explainthe topological

properties of real networks [7], [33]. In contrast to the Poisson distribution, for many social

and technological networks the number of nodes with a given degree follows a power-law.

Figure 2.10: Degree distribution for random network. Random network present a peak distri-
bution [33].
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Figure 2.11: Model of a random network [33].

2.2.3.2 Scale-free Networks

Results on the World-Wide Web (WWW) [5], the Internet [13] and other large networks, [14],

[15] indicate that many systems belong to a class of inhomogeneous networks(this property is

illustrated in Figure 2.13), called scale-free networks, for whichP(k) decays as a power-law,

that isP(k) ∼ k−γ, free of a characteristic scale. Whereas the probability that a node has a

very large number of connectionsk≫< k > is practically prohibited in exponential networks,

highly connected nodes are statistically significant in scale-free networks.

The Barabasi-Albert (BA) model of scale-free network:The inhomogeneous connectivity

distribution of many real netwoks is reproduced by the scale-free model [14], [15] which

is based on two basic rules:growth andpreferential attachment. The model start withm0

nodes. At every time stept a new node withM links is added to the network, which connects

to already existing nodeI with probability
∏

I =
kI
∑

J kJ
, wherekI is the degree of nodeI

and J is the index denoting the sum over network nodes. The network that is generated by

this growth process has a power-law degree distribution that is characterized by the degree

exponentγ = 3. Such distribution are seen as a straight line on a log-log plot (see Figure

2.12).
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Figure 2.12: Degree distribution for scale-free networks. Scale free networks present a
straight line in the log-log plot [33].

Growth and preferential attachment are jointly responsible for the emergence of the scale free

property in complex network and these two fundamental process have a key role in the de-

velopment of real networks. For example, the World Wide Web has grown from 1 to more

than 3-billion web pages over a 10-year period (growth process) and on the World Wide Web

we are more familiar with highly connected web pages, and therefore are morelikely to link

them (preferential attachment) [33].

Figure 2.13: Visual illustration of the difference between an exponential and a scale-free
network. This figure is taken from [1].
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2.2.4 Scale-free Networks

An important information to characterize a graphG is the degree of a vertexi. That is, the

numberki of edges incident with vertexi. Networks with power law degree distribution have

been focus of great deal of attention in the literature [16], [17]. They are referred as scale-

free networks [14], although it is only their degree distributions that are scale-free (The term

scale-free refers to an functional formf (x) that remains unchanged to within a multiplicative

factor under a rescaling of the independent variablex. In fact this means power law forms

since these are the only solutions tof (ax) = b f(x) and hence power-law and scale-free are

for the purposes, synonyms). It indicates the absence of a typical node in the network (one

that could be used to characterize the rest of the nodes). This is in strongcontrast to random

networks, for which the degree of all nodes is in the vicinity of the averagedegree, which

could be considered typical. However, scale-free networks could easily be called scale-rich

as well, as their main feature is the coexistence of nodes of widely different degrees (scales),

from nodes with one or two links to major hubs.

Barabasi et al. focused their attention onP(k), the degree distribution of a network, and

showed that many real large network as the World Wide Web, the internet, metabolic and

protein networks are scale free that is their degree distribution follows a power law for large

k [7], [5], [18]. That is a scale-free network is one in which the probability of a node having

k connection is proportional tok−γ, whereγ is the degree exponent (2≤ γ ≤ 3). In this

sense scale-free network are heterogenous. Heterogenous means that while most vertices are

lowly connected, a huge number of edges is concentrated in a small number of nodes. Thus

network’s properties are determined by hubs (the most highly connected nodes) (see Figure

2.14).
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Figure 2.14: The network’s properties are determined by hubs (white nodes) [33] .

2.3 Protein Domain Networks

Since proteins are the most essential structural components for living things to maintain their

cell functions properly, proteins are widely studied in biology. Although proteins are unique,

they share certain common properties. For example, well-defined regions within a protein

can evolve, function and fold independently from the rest of the protein and have their own

function. They are called protein domains, and served as protein building blocks. These

domains and nature of their interactions determine the function of the protein. Thus, it can be

said that domains are basic evolutionary units of proteins.

Many biological systems can be represented by networks [20], [22], [26]. One of these net-

works is protein domain networks which include two networks type; protein domain interac-

tion networks and protein domain co-occurence networks. The domain architecture of pro-

teins was studied by considering protein domains as nodes and their co-occurrence in proteins

as links, documenting again the emergence of a scale-free architecture [20]. Although meth-

ods and sources of domain information in [20] were different, the scale-free features of the

networks were found to be robust [18].

In this work, we focus on Protein domain co-occurrence network of yeast (S.cerevisiae) which

is formally defined by a set of nodes consisting of all domains which occur inthe protein

sequence of the yeast proteome. Two domains are regarded as being indirectly linked if they

occur in one of these protein sequences [21]. Protein domain co-occurrence network of yeast
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(S.cerevisiae) which is obtained from Biomart (Pfam domain database) datamanagement

system is weighted and undirected.
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CHAPTER 3

NETWORK RESILIENCE

The property of resilience of networks to the removal of their vertices which is related to de-

gree (connectivity) distribution is of great interest in the literature. Most of the networks is

considered for their function on their connectivity, that is, the existence of paths between pairs

of vertices. If we remove vertices from a network, the length of these paths will increase, and

eventually vertex pairs will become disconnected and some of the vertices willbecome un-

reachable. As a result the network communication between them will be destroyed. Response

of resilience of networks to such vertex removal can vary according to network model which

can be classified by their degree distributions.

The presence of a giant connected component in a network indicates the unity of a network.

In other words, if a network does not have a giant connected component, we can say that

that network consists of disconnected clusters (components). If we wonder answer of the

question ”When networks are tried to be destroyed what is the response of networks to such

an attack?”, the variation of the giant component must also be studied. if such an attack does

not crucially diminish the giant component, the damage is not serious , but the damage is fatal

if it eliminates the giant component.

There are also a variety of different ways in which we remove vertices and different networks

show varying levels of resilience to such a vertex removal. For example, one could remove

vertices at random from a network,

Failure - Nodes are removed randomly which might be represent random perturbations, en-

vironmental factors etc.

or one could target some specific set of vertices, such as those with the highest degrees.
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Attack - Selected nodes are removed from the network which might represent more organized

and selective effects to the network like virus attacks.

The way the nodes are chosen during an attack is called anattack strategy. There are dif-

ferent attack strategies which is introduced in [1], [2]. But, the most widelystudied attack

strategy has been introduced in [1]. At each step the nodes with maximal degree is removed

by decreasing order of their degree. This attack can be called as theclassical attack strategy

[2].

There are several measures (methods) to analyze the resilience of the network to failures or

attacks. Some of these are introduced in the following section.

3.1 Methods to Measure Error and Attack Tolerance of Complex Networks

3.1.1 Average Shortest Path

Average shortest path is a typical network statistic to measure the network distance of a net-

work. To define the average of the shortest path lengths between two vertices,L, it is needed

first to construct the shortest path lengthdi j between two vertices measured as the miminum

number of edges in the network for all nodes fromi to j. By definition,di j ≥ 1 with di j = 1

if there exists a direct edge betweeni and j. The characteristic path lengthL of graphG is

defined as the average of the shortest path lengths between two generic vertices:

L(G) =
1

N(N − 1)

∑

i, j∈G

di j , (3.1)

whereN is the number of nodes in the network.

As it can be seen from Equation (3.1), this definition is valid only ifG is totally connected,

which means that there must exist at least a path connecting any couple of vertices with a

finite number of steps. Otherwise, when fromi∗ it can not be reached toj∗ thendi∗ j∗ = +∞

and consequentelyL as given in (3.1), being divergent. When studying how the resilience of a

network are affected by the removal of nodes, one often encounters non-connected networks.
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In such cases the alternative formalism can be used such that the efficiency of network [3].

If the network is connected, the average shortest path is greater when the network undergoes

disruptions. As some of the nodes are deleted, the shortest path may be longer due to the

deletion of these nodes, because some of these nodes may form part of the shortest path in

the network before disruptions. However, if the disruptions of the network are so severe that

the network is fragmented, the shortest paths between the fragmented nodes and other nodes

are infinity. Then the average shortest path becomes infinity. In this situation, the average

shortest path can only show that the network is fragmented [19].

3.1.2 Efficiency of the Network

To define the efficiency ofG, suppose that every node sends information along the network,

through its edges and assume that the efficiencyǫi j in the communication between nodei and

j is inversely proportional to the shortest distance:ǫi j = 1
di j
∀ i, j. With this definition, when

there is no path in the graph between i and j,di j = +∞ and consistentlyǫi j= 0. The global

efficiency of the graphG can be defined as:

Eglob =

∑

i, j∈G ǫi j

N(N − 1)
=

1
N(N − 1)

∑

i, j∈G

1
di j
, (3.2)

the global efficiency is normalized, that is: 0≤ Eglob(G) ≤ 1. The maximum value of the

efficiencyEglob(G) = 1 are obtained in the ideal case of a completely connected graph, i.e. in

the case in which the graph G has all theN((N−1)
2 possible edges anddi j = 1 ∀ i, j [3].

As it is mentioned, if large number of nodes are removed, the network becomes unconnected

(consequentelyL as given in 3.1,being divergent, is an illdefined quantity). To overcome this

problem, the efficiency of the network can be used to measure the response of the networks

to external factors because network efficiency can be extended to non-connected networks.

That is, using of the efficiency measure to characterize scale-free networks allows to avoid

problems due to the divergence of the average distance [3].

The global efficiency of the graphG decreases when the network undergoes disruptions [3].
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3.1.3 Diameter of the Network

Diameter is defined as the longest shortest path between any pair of nodesof a network. It

characterizes the ability of two nodes to communicate with each other.

Dia = max{di j | i, j = 1,2, ...,N}, (3.3)

whereN is the number of nodes in the network.

Networks with a very large number of nodes can have quite a small diameter: the smallerd

is, the shorter is the expected path between them; for example, the diameter of the WWW,

with over 800 million nodes, is around 19 [5] whereas social networks with over six billion

individuals are believed to have a diameter of around six [6].

3.1.4 Size of the Giant Connected Component

The resilience of the network to failures or attacks can be analyzed by studying how the size

of the largest connected component varies as a function of the number ofremoved nodes. That

is, during the network fragmentation process it can be analyzed the disruption of the network

topology by measuring properties of the giant cluster that remains connected, including size

S as fraction of the size of initially-connected network.

This method is introduced by Barabasi et al. [1] in the following way: “Whennodes are

removed from a network, clusters of nodes whose links to the system disappear may be cut off

(fragmented) from the main cluster. This fragmentation process is investigated by measuring

the size of the largest cluster,S, shown as a fraction of the total system size, when a fraction

f of the nodes are removed either randomly or in an attack mode. It is found that for the

exponential network, asf increases,S displays a threshold-like behaviour such that forf ≥

fc, S ≃ 0, wherefc is the threshold value. However, the response of a scale-free networkto

attacks and failures is rather different. For random failures no threshold for fragmentation is

observed; On the other hand, the response to attack of the scale-free network is similar (but

swifter) to the response to attack and failure of the exponential network.”
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3.2 Literature Review on the Comparison of the Behavior of Scale Free and

Random Network under Failures and Attacks

As we mentioned, complex networks can be divided into two major classes according to the

connectivity distributionp(k): exponential networks and scale-free networks. Exponential

networks are homogeneous in connectivity, which means most nodes in network have ap-

proximately the same number of connections around< k >, k ≈< k >. In contrast, many real

networks belong to a class of inhomogeneous, scale-free networks. Different from exponen-

tial networks, in scale-free network, a few highly connected nodes (k ≫ < k >) exist and

thus play a significantly important role in the network’s connectivity.

Previous study [1], [8], [9], [10] has shown that scale-free networks display an unexpected

degree of robustness, i.e., the ability of their nodes to communicate being unaffected by even

unrealistically high failure rates. However, these networks are extremely vulnerable to inten-

tional attacks, i.e., to the removal of a few of highly connected nodes. This property is rooted

in their heterogenity. On the other hand, evolving networks with exponentialconnectivity

distribution (exponential network) are not as robust to random failures, but more resilient to

intentional attacks. This property is due to their homogeneity, exhibit a similar tolerance with

respect to errors and attacks.

Figure 3.1: The simulations of the effects of failures and attacks on scale-free and exponential
random networks. This figure is taken from [7].
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By Barabasi et al. [7], the effects of failures and attacks on scale-free and exponential random

networks are simulated. In this simulation shown in Figure 3.1, the diagrams are constructed

using U.S. highway system which resembles to random networks and U.S. airline system for

scale-free networks. When the nodes are removed randomly, scale-free networks seem to be

much more robust than exponential random networks in terms of network connectivity, but

they seem more vulnerable to intentional attacks. In failure, since nodes are removed ran-

domly, the probability that the removed nodes with low-degree is higher than theremoved

nodes with high-degree (hubs), as a result effects of failure on network connectivity is ex-

pected to be small. On the other hand, in a intential attack the nodes with high degree are

removed, thus effect of attack on network connectivity is expected to be big, that is the net-

work connectivity can be heavily damaged. These results can be observed from the simulation

shown in Figure 3.1. The first two diagrams show the effects of random failure of nodes on

a random network (U.S. highway system) connectivity. The second two diagrams show the

effect of random node removal on a scale free network (U.S. airline system)connectivity. The

last two diagrams show the effect of a hub attack on the scale-free network. Comparing the

second and the last two diagrams, it is seen that the network connectivity is heavily damaged

under attacks. All these results observed in this analysis can be explainedby presence of hubs

in scale-free networks [7].

Barabasi et al. [1] again investigate the effect of failures and attacks on scale free and ex-

ponential random networks. But in this case changes in the diameter of the two types of

networks are examined as a function of the fraction of nodes being removed. They com-

pare the exponential (E) and scale-free (SF) network models, each containingN = 10,000

nodes and 20, 000 links under failures and attacks in Figure 3.2(a). The triangle and square

symbols in Figure 3.2(a) correspond to the diameter of the exponential and scale-free net-

works respectively when a fraction f of the nodes are removed randomly(error tolerance).

The diamond and circle symbols in Figure 3.2(a) show the response of the exponential and

the scale-free networks to attacks respectively, when the most highly connected nodes are re-

moved. In Figure 3.2(b), changes in the diameter of the Internet (scale-free network) under

random failures (squares) and attacks (circles) are shown. In Figure 3.2(c), changes in the

diameter of the World-Wide Web (scale-free network) under random failures (squares) and

attacks (circles) are shown. The results in Figure 3.2 agree with the previous observation

that scale-free networks are more robust than exponential networks under failures, but more
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vulnerable to attacks. It can be also observed that failures or attacks onexponential random

networks causes almost the same amount of damage to the network.

Figure 3.2: Changes in the diameter of the network as a function of the fraction of the removed
nodes. This figure is taken from [1].

Barabasi et al. [1] continue to investigate the effect of failures and attacks on the two types

of networks by studying another method. They measured the size of the giant connected

componet and the average size of the disconnected component (or isolated components) as a

function of the fraction of nodes are removed either in a targeted way or randomly. In Figure

3.3, changes in the relative size of the largest clusterS (open symbols) and the average size of

the isolated clusters< s > (filled symbols) are shown as function of the fraction of removed

nodes f for the same systems. The sizeS is defined as the fraction of nodes contained in

the largest cluster. In Figure 3.3(a), fragmentation of the exponential network under random

failures (squares) and attacks (circles) are shown. In Figure 3.3(b), fragmentation of the

scale-free network under random failures ( squares) and attacks (circles) are shown. The inset

shows the error tolerance curves for the whole range off , indicating that the main cluster falls

apart only after it has been completely deflated. In Figure 3.3, (c) and (d) show the effect of
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failure and attack on the Internet and www, respectively. Again, It is observed that scale-free

networks are more robust than exponential networks and vulnarable to attacks, in contrast to

exponential network behave the same under failures and attacks.

Figure 3.3: Changes in the relative size of the largest clusterS (open symbols) and the average
size of the isolated clusters< s> (filled symbols) as function of the fraction of removed nodes
f for the same systems. This figure is taken from [1].
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CHAPTER 4

APPLICATIONS

In the previous section, the methods to measure the attack tolerance of complexnetworks are

presented. In order to use these methods and analyze the network, some changes must be

made on the network. Protein domain co-occurence network of yeast (S.cerevisiae) which is

formatted into readable format by Pajek program is used to analyse the attacktolerance of

several networks. In the first part of this chapter, we first briefly introduce the structure of

Pfam protein domain co-occurrence network of yeast. Then, we mention about those changes

made on the network by using Pajek program1. In the second part of this chapter we give some

statistics of protein domain co-occurrence network of yeast. In this thesis,we compare the

attack tolerance of the several networks which is obtained from protein domain co-occurence

network of yeast. In the last part of this chapter, how we get those several network from

protein domain co-occurence network of yeast and the analysis of the attack tolerance of

those networks are introduced. In order to get these several networks which have exactly

the same connectivity distribution with Protein domain co-occurrence networkof yeast, a

program written in MATLAB is used.

4.1 Descriptions and Preparations of the Network Used in theApplications

Many biological systems can be represented by networks [20], [22], [26]. One of these net-

works is protein domain networks which include two network types; protein domain interac-

tion networks and protein domain co-occurence networks. As we mentionedin Section 2.3,

a protein domain is a part of protein sequence and structure that can evolve, function, and

exist independently of the rest of the protein chain. Each domain forms a compact three-

1 Pajek is a program for large -network analysis and visualization (Batageljand Mrvar 1998).
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dimensional structure and often can be independently stable and folded. Many proteins con-

sist of several structural domains. One domain may appear in a variety of evolutionarily

related proteins.

Table 4.1: Some examples of Pfam domains

Domain label (accession)Description of domain
PF00069 Protein kinase domain
PF00730 HhH-GPD superfamily base excision DNA repair protein
PF02844 Phosphoribosylgycinamide synthetase, N domain

Protein domain co-occurrence network of yeast2 which is used in this application is con-

structed from Biomart data management system which links to Pfam domain database. In

Pfam domain database3, each domain is labeled. Table 4.1 demonstrates some examples of

such domains.

Table 4.2: Pfam protein domain co-occurrence network of yeast obtained from Biomart which
links to Pfam database.

domain1 domain2 occurrence in proteins
PF06747 PF08583 1
PF01288 PF00809 1
PF00293 PF05026 1
PF00293 PF09297 1
PF01118 PF02774 2
PF01119 PF08676 2
PF09261 PF07748 1
PF01053 PF01212 1
PF05436 PF04648 2
PF08022 PF08030 8
PF00033 PF00032 1
PF01734 PF00027 1
PF01237 PF00023 2
PF00730 PF00633 1
PF00730 PF07934 1
PF01233 PF02799 1
PF01232 PF08125 1

. . .

. . .

. . .

2 The construction of Pfam domain co-occurrence network of yeast was made by Stefan Wuchty.
3 The Pfam database is a large collection of protein families, each represented by multiple sequence alignments

and hidden Markov models (HMMs).
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In Pfam domain co-occurrence network of yeast, domains are connected if they co-appear in

the same proteins in yeast. Also, each link comes with a weight, reflecting the number of

proteins the domains co-appeared in. Table 4.2 shows Pfam domain co-occurrence network

of yeast before we make some changes on this data. In this table the domain in the first

column (domain1) are connected with the domains in the second column (domain2)and the

third colum reflects the number of proteins the domains co-appeared in. In Appendix A, the

whole Pfam domain co-occurrence network of yeast can be found. Inorder to analyse this

network, we made some changes on the network by using Pajek program. The structure of

a Pajek network file is a simple text file that can be typed out in any word processor that

exports plain text (see [29] for detailed description of Pajek program). In this simple text

file, we attribute serial numbers to the vertices ranging from 1 to the number ofvertices and

Pajek automatically labeled the vertices. Table 4.3 shows the structure of the pajek domain

co-occurrence network file4. In this tabel, first, the data file specifies the number of vertices

(“vertices 1007”). Then, each vertex is identified on a separate line by aserial number, a

textual label (enclosed in quotation marks (“ ”)) and three real numbers between 0 and 1,

which indicate the position of the vertex in three-dimensional space if the network is drawn.

This information is unnecessary for us so we ignore these numbers. However, it is important

to note that the text label is crucial for the identification of vertices, because serial numbers of

vertices may change during the analysis. We ignore the weight of the network to simplfy the

analysis. As a result our network is undirected and unweighted network.In addition to this,

our network is a simple network that has no self-loops or multi-edges. After the network are

formatted in pajek network file format, the network are ready for analysis.

4 This is a huge network file. It is avaliable, if you contact me via e-mail: doguz@metu.edu.tr
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Table 4.3: Partial listing of protein domain co-occurence network of yeastdata file for Pajek.

*Vertices 1007
1 “v1” 0.1000 0.5000 0.5000
2 “v2” 0.1000 0.4975 0.5000
3 “v3” 0.1000 0.4950 0.5000
4 “v4” 0.1001 0.4925 0.5000
5 “v5” 0.1001 0.4900 0.5000
6 “v6” 0.1002 0.4875 0.5000
7 “v7” 0.1003 0.4850 0.5000
8 “v8” 0.1004 0.4825 0.5000
9 “v9” 0.1005 0.4800 0.5000
10 “v10” 0.1006 0.4775 0.5000
. . . . .
. . . . .
. . . . .

*Edges
790 945 1
339 260 1
103 736 1
103 1002 1
308 499 2
309 966 2
998 840 1
296 327 1
760 698 2
854 856 8

. . .

. . .

. . .

Our network is unconnected network; it has 231 disconnected components and a giant con-

nected component. Since we use the method; “size of the giant connected component” to

analyze the attack tolerance of the networks, we extract the giant connected component of

protein domain co-occurence network of yeast by using Pajek program.After all we are

ready to produce several randomly modified networks, which have the same connectivity dis-

tribution with protein domain co-occurrence network, from the giant connected component of

yeast network by using MATLAB (Part of the MATLAB code used in this process is written

by me and can be found in Appendix B).
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4.2 Statistics of Protein Domain Co-occurrence Network of Yeast

To capture the network’s generic features and to get an idea about the structure of the network,

we calculate some statistics of protein domain co-occurrence network of yeast.

Table 4.4: Statistics of protein domain co-occurrence networks of yeast (S.cerevisiae).

organism Nnodes Nedges Ncc Ngc
nodes Ngc

edges < k > C < k >gc γ

S. cerevisiae 1007 1280 231 334 556 2.54 0.39 3.33 1.5

Table 4.4 summarizes the basic statistics of the domain co-occurrence networkof S.cerevisia,

which are calculated with the help of Pajek and Matlab, that contain a giant connected com-

ponent ‘gc’ incorporates the majority of the domainNgc
nodes, co-existing with many small,

connected componentNcc andNgc
edgesis the number of edges in the largest component. Our

network is not a huge network, 1007 vertices and 1280 edges, comparing to the other networks

in [1], [5], [13], [24] and has a giant connected component with 334 vertices. Average degree

< k > and clustering coefficientC of organisims are compared in [25] and it was found that

as level of organisims development increase both the average degree< k > and the clustering

coefficientC gradually increases. We do not use the information of average degree< k > and

clustering coefficientC anywhere in this anaysis. We just gave these values as an information

about the network.
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Figure 4.1: Protein domain co-occurrence network of S.cerevisiae displays scales free be-
haviour. A network feature is characterized by the power law in the degree distribution
P(k) ∼ k−γ ( see Table 4.4 for detailed values ).

As it was mentioned, the nodes are domains and two domains are connected byan undirected

edge if they occur together in one protein at least once. These connections define the edge set

of the network. Therefore the degree of a domain is the number of other domains to which

it is connected. In our network, frequency distribution of degree reveals the presence of

scale free topology. Thus frequency distribution follows a power lawP(k) ∼ k−γ. The degree

distributionP(k) of the protein domain co-occurrence network of S. cerevisiae follows apower

law degree distribution with exponentγ = 1.5 (Figure 4.1). The result of this analysis is that

the scale free network topologically is dominated by few highly connected hubs (most highly

connected nodes). In addition to this, empirically, domain co-occurrence network displays

power law degree distribution, power-law distributed, resulting in few vertices having many

edges and many vertices having few edges. In Table 4.5, the number of nodes which have

one link (edge) is 485, and two links is 232, i.e., the number of nodes decreases as the links

they have increase. As it can be seen from the Table 4.5, at the end of thetable the number

of nodes having 25 links is one. Thus, Table 4.5 shows emprically that the network displays

power law degree distribution.

40



Table 4.5: Frequency distribution of degree in protein domain co-occurance network of yeast
(S.cerevisiae).

Degree Freq Freq% CumFreq CumFreq% Representative(Vertex Label)
1 485 48.1629 485 48.1629 v5
2 232 23.0387 717 71.2016 v8
3 91 9.0367 808 80.2383 v11
4 73 7.2493 881 87.4876 v3
5 31 23.0387 912 90.5660 v24
6 20 1.9861 932 92.5521 v20
7 28 2.7805 960 95.3327 v4
8 12 1.1917 972 96.5243 v7
9 8 0.7944 980 97.3188 v2
10 5 0.4965 985 97.8153 v13
11 3 0.2979 988 98.1132 v63
13 4 0.3972 992 98.5104 v69
14 1 0.0993 993 98.6097 v35
15 3 0.2979 996 98.9076 v45
16 1 0.0993 997 99.0070 v558
17 1 0.0993 998 99.1063 v921
18 3 0.2979 1001 99.4042 v6
19 3 0.2979 1004 99.7021 v1
21 1 0.0993 1005 99.8014 v21
23 1 0.0993 1006 99.9007 v93
25 1 0.0993 1007 100.0000 v133

Sum 1007 100.0000

4.3 Analysis of Attack Tolerances of the Networks

In this thesis, we compare several networks exhibiting scale free structure, which have exactly

the same connectivity with the original network, under attacks. We analyze the robustness of

the network to attacks by studying how the size of the largest connected component varies as

a function of the number of removed nodes.

Even the connectivity distribution is an important indicator of a network’s qualitative fea-

tures, different networks with the same connectivity distribution do not need to have thesame

attack tolerances. In addition to this, it can be considered that the networkswith same connec-

tivty distribution have higher attack tolerance as we organize the same resources in a better

way. Then, it can be checked for the variations of attack tolerance of thenetworks with the

same connectivity distributions. Furthermore, we investigate whether there isan evolutionary

mechanism for having networks with higher or lower attack tolerances for the same connec-
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tivity distribution. For these purposes, we wrote an algorithm to produce several randomly

modified networks having the same connectivity distribution with the original network , then

as we attack those networks we collect one of those network with a strategy which will be

mentioned in this chapter. Before we check these assumptions and investigations, we want

to mention about our attack strategy and the method to measure the attack tolerance of the

network.

Attack Strategy: The way the nodes are chosen during an attack is called anattack strategy.

Some attack strategies introduced in [1], [2]. We use clasical attack strategies which intro-

duced in [1]. In this attack strategy, we first begin to remove the most highly connected nodes

and continue to remove nodes by decreasing order of their degree.

The Method: Size of the Giant Connected Component:This method introduced by Barabasi

et al. in [1] is; “When nodes are removed from a network, clusters of nodes whose links to the

system disappear may be cut off (fragmented) from the main cluster. This fragmentation pro-

cess is investigated by measuring the size of the largest cluster,S, shown as a fraction of the

total system size, when a fractionf of the nodes are removed either randomly or in an attack

mode. It is found that for the exponential network under attacks and failures and the scale

free networks under attack (see Subsection 3.1.4), asf increases,S displays a threshold-like

behaviour such that forf ≥ fc, S ≃ 0, wherefc is the threshold value.” We slightly modified

this method in the following way: We removed a fractionf of the nodes in an attack mode

(the most highly connected nodes removed first and continue remove nodes by decreasing

order of their degree) like the method introduced in [1]. But, all nodes which were removed

in our analysis are belong to the giant connected component. Since other most connected

nodes not belong to the giant connected component do not effect the size of giant connected

component, we ignored these nodes. In doing so, we accelerated the analysis. Also, Concern-

ing the thresholds values, we considered that the threshold was reachedwhenever the size of

the giant connected component of the network becomes smaller than 2% of thewhole system

size and 5% of the begining size of the giant connected component of the network.

The Strategy of Analysis: First produce four modified networks from the original network

having the same connectivity distribution with the original network by applying the algorithm

mentioned below (also see Table 4.6 and in Appendix B, it can be found wholematlab code

for this algorithm). After finding attack tolerances of those networks, we collect the least
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vulnerable network (displaying higher attack tolerance with respect to the others) and the

most vulnerable network (displaying lower attack tolerance with respect to the others) among

those networks under attack. At this point we divide the analysis into two part:

In the first part, we produce four modified networks from the most vulnerable network by

applying the algorithm. After finding attack tolerances of those networks, wecollect the

most vulnerable network among those networks. We continue appliying the same procedure

n times (in this analysis, we applied it 10 times).In the second part, we produce four mod-

ified networks from the least vulnerable networks by applying the algorithm.After attack

those networks, we collect the least vulnerable network among those networks. We continue

appliying the same proceduren times (in this analysis, we applied it 10 times).

It is important to note that all networks in this analysis have the same connectivity distribution

with the orginal networks. The strategy of the analysis mentioned above is illustrated in Figure

4.2

NW 0

NW 2 NW 3NW 1 NW 4

Least Vulnarable Network

Most Vulnarable Network

The Original

Network

Randomly modified 

Networks by applying  

the algoritm on the 

original network

Randomly modified 
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by applying  the 

algoritm on NW1 

and NW4

Figure 4.2: Illustration of the strategy of analysis.

To check our assumptions mentioned above, we wrote an algoritm (Table 4.6). In this algo-
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rithm, we randomly change the links of the nodes in protein domain co-occurrence network of

yeast conserving the connectivity of the network. We can explain this process in the following

way: we randomly find a node sayn1 has 4 links (deg(n1) = 4) and a node sayn2 has 2 links

(deg(n2) = 2) which they are connected. After we found these two nodes we randomlysearch

for two nodes sayn3 andn4, which must be unconnected, must have degreedeg(n1) − 1 = 3

anddeg(n2) − 1 = 1, respectively. After found those nodes, we break the link ofn1 ann2 and

we connectn3 andn4. Now n1 andn2 have degreedeg(n1) = 3 anddeg(n2) = 1 respectively

while degree ofn3 andn4 becomedeg(n3) = 4 anddeg(n4) = 2. As a result the connectivity

of the network does not changed. This process is illustrated in Figure 4.3.We applied this

process 3% of the size of the giant connected component.

Example 4.3.1 We illustratethe algorithm using the graph G= (V, E) with seven vertices

and seven edges shown in Figure 4.3. Here we see that G= (V,E) with V = {v1, ..., v7},

E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v2, v5), (v3, v6, (v3, v7)}. After applying the algorithm,

it is obtanied the modified graph G
′

= (V
′

,E
′

) with seven vertices and seven edges, where

V
′

= {v1, ..., v7}, E
′

= {(v1, v3), (v1, v4), (v1, v5), (v2, v5), (v3, v4), (v3, v6, (v3, v7)}.

v7

v4

v3
v2

v5

v6

v1

v7

v4

v3
v2

v5

v6

v1

Figure 4.3: Graph used to illustrate the algorithm.
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Table 4.6: The algorithm of the analysis.

Algorithm: An algorithm for Randomly modifying the connections of vertices in a
GraphG = (V,E), whereV = {v1, v2, ...., vn}, E = {(vi , v j)}, i, j = 1,2, ....,n.
Input: A simple, connected, undirected graphG = (V,E)
Output: A simple, connected, undirected randomly modified graphG

′

= (V
′

,E
′

)

1 Find adjancency matrixA(G)n×n of G.
2 Compute degrees ofG using A.

for p = 1 : 10
3 Randomly find two verticesva, vb such that (va, vb) ∈ E, i.e.,A(va, vb) = 1.
4 Find deg(va) and deg(vb).
5 Search randomly for two verticesvc, vd and deg(vc) = deg(va) − 1,

deg(vd) = deg(vb) − 1.
if A(vc, vd) = 1
repeat the step 5

else
setA(vc, vd) = 1, A(va, vb) = 0

end

By applying the algorithm (just mentioned above) to the giant connected component of pro-

tein domain co-occurrence network, we get four randomly modified networks having the same

connectivity distribution with the original network. Later, we analyze the attack tolerance of

these four randomly modified networks and among these networks we extract the most vul-

nerable network and the least vulnerable network under attack. The mostvulnerable network

means that it is fragmented faster than the other networks and the least vulnerable network

means that it is fragmented slower than the other networks as we remove nodes. We de-

termine the most vulnerable and the least vulnerable networks by comparing the thresholds

values of the networks. After extracting the most vulnerable and the least vulnerable net-

works, we again get four randomly modified networks from the most vulnerable and four

randomly modified networks from the least vulnerable network by applying the algorithm. At

this point we divide the analysis into two ways. In the first way, we attack the four networks

obtained from the most vulnerable network and we collect the most vulnerable network from

these networks. We repeat this process and continue collecting the most vulnerable network

from the networks which are obtanied from the most vulnerable network. In the second way,

we attack the four networks obtained from the least vulnerable network and we collect the

least vulnerable network from these networks. We repeat this processand continue collecting

the least vulnerable network from the networks which are obtanied from the least vulnerable
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network (see “the strategy of analysis” mentioned above). In Figures 4.4-8, changes in the

relative size of the giant connected componentS as function of the fraction of removed nodes

f in the original network and first four networks in Tables 4.7 and 4.8 are simulated.

Results of this analysis are shown in Table 4.7 and 4.8. In these tables threshold values at

which the network is fragmented are given. In Tables 4.7 and 4.8, the check sign “X” which is

nearby the networks means that the network is the most vulnerable network among other four

networks in Table 4.7 and the least vulnerable network among other four networks in Table

4.8, and the star sign “⋆” which is nearby the networks in Table 4.7 means that the network is

fragmented later than the original network. In Table 4.7, the first analysis (Analysis1) in which

four networks collected from the original network, network12 having the lowest threshold

value is the most vulnerable network. We choose this network to make the Analysis 2 and

continue like this. If we compare all threshold values in Table 4.7, all networks have different

thresholds values or same threshold values. Also, only the smallest part ofthe (5% of the

whole) networks has threshold values greater than the original network.In Table 4.8, the first

analysis (Analysis1) in which four networks collected from the original network, Network11

having the highest threshold value is the least vulnerable network. We choose this network to

make the Analysis 2 and continue like this. If we compare all threshold values inTable 4.8,

all networks have different threshold values or same threshold values and all threshold values

of the network after Analysis 2 are larger than the threshold value of the original network.

But, in contrast to the results in Table 4.7, as we continue our analysis the threshold values

of the networks increase. But, in Table 4.7, threshold values of the networks do not decrease

but just become smaller than the threshold value of the original network as wecontinue the

analysis.

Results of this analysis indicate that the networks having the exactly the same connectivity

distribution have different attack tolerances. From the most vulnerable network analysis, it

can be observed that there is a selection which means that as we choose theworst network (the

worst network means that threshold value of this network is less than the original network) ,

the probability that the network obtained from the worst network to become theworst one is

high. This observation is derived from the result in the most vulnerable network analysis: only

smallest part of the (5% of the whole) networks have threshold values greater than the original

network. But from the least vulnerable network analysis, we can observe a pattern such that

as we select the least vulnerable network from the least vulnerable network, threshold value
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of the networks (i.e., attack tolerance of the network) increases. This result and comparing

two analyses (the least vulnerable and the most vulnerable network analyses) indicate that

as we organize the same resources in a better way we can get a network witha higher atack

tolerance. Additionally, all these results show that there is an evolutionary mechanism for

having networks with higher attack tolerance for the same connectivity distribution.
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Table 4.7: The results of the most vulnerable network analysis.

Networks Threshold values (fc)
The Original Network 0,046

Analysis1 Network11 0,046
X Network12 0,036

Network13 0,038
Network14 0,036

Analysis2 X Network21 0,036
Network22 0,040
Network23 0,046
Network24 0,042

Analysis3 Network31 0,044
Network32 0,046

X Network33 0,036
Network34 0,038

Analysis4 Network41 0,046
X Network42 0,046

Network43 0,046
Network44 0,046

Analysis5 Network51 0,040
Network52 0,046
Network53 0,040

X Network54 0,038
Analysis6 X Network61 0,036

Network62 0,044
Network63 0,038
Network64 0,046

Analysis7 X Network71 0,038
Network72 0,046
Network73 0,040
network74 0,046

Analysis8 X Network81 0,038
Network82 0,038
Network83 0,046
Network84 0,046

Analysis9 ⋆ Network91 0,058
Network92 0,046

X Network93 0,046
⋆ Network94 0,060

Analysis10⋆ Network101 0,058
⋆ Network102 0,060

Network103 0,046
⋆ Network104 0,052
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Table 4.8: The results of the least vulnerable network analysis.

Networks Threshold values (fc)
The Original Network 0,046

Analysis1 X Network11 0,046
Network12 0,036
Network13 0,038
Network14 0,036

Analysis2 Network21 0,036
X Network22 0,046

Network23 0,046
Network24 0,030

Analysis3 X Network31 0,058
Network32 0,046
Network33 0,048
Network34 0,046

Analysis4 Network41 0,058
Network42 0,058

X Network43 0,066
Network44 0,058

Analysis5 Network51 0,064
Network52 0,046

X Network53 0,064
Network54 0,048

Analysis6 Network61 0,058
Network62 0,058
Network63 0,062

X Network64 0,064
Analysis7 X Network71 0,066

Network72 0,058
Network73 0,066
network74 0,066

Analysis8 Network81 0,046
Network82 0,066

X Network83 0,066
Network84 0,066

Analysis9 Network91 0,070
Network92 0,060

X Network93 0,070
Network94 0,068

Analysis10 Network101 0,066
Network102 0,068
Network103 0,080
Network104 0,068
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Figure 4.4: Changes in the relative size of the giant connected componentS as function of
the fraction of removed nodesf in the original network.
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Figure 4.5: Changes in the relative size of the giant connected componentS as function of
the fraction of removed nodesf in Network11.
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Figure 4.6: Changes in the relative size of the giant connected componentS as function of
the fraction of removed nodesf in Network12.
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Figure 4.7: Changes in the relative size of the giant connected componentS as function of
the fraction of removed nodesf in Network13.
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Figure 4.8: Changes in the relative size of the giant connected componentS as function of
the fraction of removed nodesf in Network14.
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CHAPTER 5

CONCLUSION

The stability or survivability of some complex networks under different circumstances has

received a growing interest among scientists. The study of the network robustness is particu-

larly important by several occasions. In one hand a higher degree of robustness to errors and

attacks may be desired for maintaining the information flow in communication networks un-

der attacks. On the other hand, planning a very limited attack aimed at fragmenting a network

by removal of minimum number of the most important nodes might have significantusage

in drug design. In this thesis, we studied protein domain co-occurrence network of yeast

generated with data from Biomart which links to Pfam database. Several networks obtained

from protein domain co-occurrence network having exactly the same connectivity distribu-

tion were compared under attacks. In this work, we investigated the assumption that the

different networks with the same connectivity distribution do not need to have thesame attack

tolerances. In addition to this, we considered that the networks with same connectivity distri-

bution have higher attack tolerance as we organize the same resources in abetter way. Then,

we checked for the variations of attack tolerance of the networks with the same connectiviy

distributions. Furthermore, we investigated whether there is an evolutionarymechanism for

having networks with higher or lower attack tolerances for the same connectivity distribution.

Firstly, we checked whether protein domain co-occurrence network of yeast displays scale

free topology or not. We found that our network are scale free network(displaying power law

degree distribution). Investigation of the scale free topology is particularlyimportant, since

many real world networks are scale free networks. Scale free networks display unexpected

degree of robustness, i.e., the ability of their nodes to communicate being unaffected by even

high failure rates. However these networks are extremely vulnerable to intentional attacks.
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Then, since we want to compare the attack tolerance of the networks, we determined the

attack strategy: remove nodes by decreasing order of their degrees and the method: size

of the giant connected component. To analyze the robustness of the network to attacks by

studying how the size of the largest connected component varies as a function of the number

of removed nodes, first we had to determine the size of the giant connectedcomponent and

extract the giant connected component from the network. Extraction of the giant connected

component of the network is particularly important for us, since we made all analysis on this

component.

To check our assumption and investigations we wrote an algorithm. We randomlychanged

the links of nodes in the giant connected component of protein domain co-occurrence network

of yeast while conserving the connectivity of the network. In doing so, weobtained several

randomly modified networks which have the same connectivity distribution with theoriginal

network. Then we attacked to those networks and collected the most vulnerable network (the

most vulnerable network means that it is fragmented faster than the other networks) and the

least vulnerable network (the least vulnerable network means that it is fragmented slower than

the other networks) as we remove nodes. We determined the most vulnerablenetwork and the

least vulnerable network by comparing the threshold values of the networks. We applied the

algorithm on the most vulnerable network and the least vulnerable network toobtain several

randomly modified networks. We again attacked to those networks. Then, wecontinued to

collect the most vulnerable network from the networks which also obtained from the most

vulnerable network and the least vulnerable network from the networks which also obtained

from the least vulnerable network.

As a result, the networks having the exactly the same connectivity distribution have different

attack tolerance under attacks. In addition to this, from the most vulnerable network analysis,

we observed that there is a selection which means that as we choose the worst network (the

worst network means that thresholds value of this network is less than the original network),

the probability that the network obtaining from the worst network to become theworst one is

high. This observation is derived from the result in the analysis: only the smallest part of the

(5% of the whole) networks has threshold values greater than the originalnetwork. But, from

the least vulnerable network analysis, we observed a pattern such that as we select the least

vulnerable network from the networks which also obtained from the least vulnerable network,

threshold values of the networks (i.e., attack tolerance of the network) incerease. This result
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and comparing two analyses (the least vulnerable and the most vulnerable network analysis)

indicate that as we organize the same resources in a better way we can get anetwork with an

higher attack tolerance. Also, all these results show that there is an evolutionary mechanism

for having networks with higher attack tolerance for the same connectivity distribution.

The most important observations from this work is that there is a pattern suchthat as the

network with higher attack tolerance is selected from the network which shows higher at-

tack tolerance, attack tolerances of the networks increase. This observation indicates that an

evolutinary mechanisim for having networks with higher attack tolerance forthe same con-

nectivity distribution can be constructed. From these observations, a guestion comes into

mind; given the connectivity of the network, how the network is organized inthe best way to

show high attack tolerance under attacks. For this purpose, a method to organize the network

in a better way can be developed. In addition to this, another question can beasked; without

making an attack tolerance analysis and just only looking at the structure (structure may mean

that how the links of the nodes in the network is organized) of the networks with the same

connectivity distribution, can it be observed how the network behaves under attacks? Is it

possible to develop an algorithm for this purpose. All these questions will be investigated as

a future work.
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APPENDIX A

PFAM PROTEIN DOMAIN CO-OCCURRENCE NETWORK

OF YEAST (S. CEREVISIAE)
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Table A.1: Pfam protein domain co-occurrence network of yeast obtanied from Biomart
which links to Pfam database.

domain1 domain2 occurrence in proteins
PF06747 PF08583 1
PF01288 PF00809 1
PF00293 PF05026 1
PF00293 PF09297 1
PF01118 PF02774 2
PF01119 PF08676 2
PF09261 PF07748 1
PF01053 PF01212 1
PF05436 PF04648 2
PF08022 PF08030 8
PF00033 PF00032 1
PF01734 PF00027 1
PF01237 PF00023 2
PF00730 PF00633 1
PF00730 PF07934 1
PF01233 PF02799 1
PF01232 PF08125 1
PF03127 PF02883 2
PF00636 PF00035 2
PF00637 PF01394 1
PF08501 PF01488 1
PF04898 PF01493 1
PF04898 PF01645 1
PF08509 PF00211 1
PF00456 PF02780 2
PF00456 PF02779 2
PF05222 PF01262 1
PF04893 PF03878 1
PF01602 PF07718 1
PF01602 PF02883 1
PF01602 PF08752 1
PF05221 PF00670 1
PF01425 PF02626 1
PF01425 PF08443 1
PF01426 PF00249 1
PF01426 PF00439 2
PF01426 PF00628 1
PF04068 PF04034 1
PF04068 PF00037 1
PF01422 PF01424 1
PF04063 PF04064 1
PF01546 PF07687 3
PF00493 PF01078 2
PF00498 PF07714 1
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PF04096 PF02415 1
PF00125 PF00808 3
PF00122 PF00702 12
PF00122 PF00689 5
PF00122 PF00403 1
PF02637 PF01162 1
PF02637 PF02934 1
PF02201 PF01253 1
PF01975 PF03133 1
PF00081 PF02777 1
PF00128 PF02922 1
PF00128 PF02806 1
PF00082 PF05922 3
PF00082 PF01483 1
PF01300 PF03481 1
PF00646 PF02809 1
PF00646 PF00560 2
PF00642 PF01207 1
PF03234 PF08564 1
PF03234 PF08565 1
PF00063 PF00612 2
PF00063 PF06017 2
PF00063 PF01843 2
PF00307 PF00612 1
PF00307 PF03836 1
PF00307 PF00616 1
PF00307 PF03271 1
PF02845 PF02204 1
PF02844 PF02843 1
PF00069 PF00536 1
PF00069 PF00168 2
PF00069 PF00169 2
PF00069 PF08171 1
PF00069 PF00072 1
PF00069 PF02985 1
PF00069 PF02149 2
PF00069 PF00433 8
PF00069 PF08311 1
PF00069 PF06479 1
PF00069 PF00400 1
PF00069 PF07647 1
PF00069 PF07714 20
PF00069 PF00659 1
PF00069 PF00130 1
PF00069 PF05773 1
PF00069 PF00786 3
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PF00069 PF01163 1
PF00069 PF08587 1
PF00069 PF00498 3
PF00069 PF02185 1
PF08158 PF05285 1
PF00999 PF08619 1
PF08659 PF01575 1
PF04153 PF04065 2
PF04997 PF04983 3
PF04997 PF05000 3
PF04997 PF05001 1
PF04997 PF00623 3
PF04997 PF04998 3
PF04997 PF04992 1
PF04997 PF04990 1
PF00013 PF00098 1
PF03446 PF00393 2
PF02934 PF01162 1
PF00390 PF03949 1
PF00018 PF00611 2
PF00018 PF00063 2
PF00018 PF07653 20
PF00018 PF03983 1
PF00018 PF07647 2
PF00018 PF03114 1
PF00018 PF06017 2
PF00018 PF00790 1
PF00018 PF00564 1
PF00018 PF02809 1
PF00018 PF04366 2
PF00018 PF00241 1
PF00018 PF08226 1
PF03447 PF00742 1
PF02292 PF00023 2
PF00549 PF08442 1
PF00397 PF01846 2
PF00397 PF00639 1
PF00501 PF01370 1
PF00501 PF07993 1
PF00501 PF01073 1
PF00501 PF06464 1
PF00501 PF00550 1
PF04841 PF04840 1
PF04969 PF05002 1
PF04969 PF04925 1
PF00904 PF04855 1
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PF05000 PF04992 1
PF05000 PF04998 3
PF05000 PF04990 1
PF05000 PF05001 1
PF01012 PF00766 1
PF02749 PF01729 1
PF00266 PF01212 1
PF00266 PF00282 1
PF01599 PF01020 1
PF00916 PF01740 4
PF00916 PF00027 1
PF05188 PF00488 5
PF05188 PF05190 4
PF05188 PF05192 5
PF03161 PF00033 1
PF07731 PF07732 3
PF07731 PF00394 3
PF01645 PF01493 1
PF01645 PF01070 1
PF04998 PF04992 1
PF04998 PF04990 1
PF04998 PF05001 1
PF01087 PF02744 1
PF04992 PF04990 1
PF04992 PF05001 1
PF01163 PF09202 1
PF04990 PF05001 1
PF09091 PF03184 1
PF01740 PF00027 1
PF00690 PF00702 7
PF00690 PF00689 5
PF00690 PF00122 7
PF02353 PF08498 1
PF02353 PF01170 1
PF08271 PF00382 2
PF08271 PF07741 1
PF00696 PF04768 1
PF00696 PF01472 2
PF00696 PF01842 1
PF00696 PF02774 1
PF00696 PF01118 1
PF02366 PF02815 6
PF00155 PF01053 1
PF00595 PF00089 1
PF09070 PF08324 1
PF01938 PF05958 1
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PF08071 PF01479 1
PF08071 PF00900 1
PF00168 PF00387 1
PF00168 PF00616 1
PF00168 PF00036 1
PF00168 PF00388 1
PF00168 PF00433 2
PF00168 PF00130 1
PF00168 PF02185 1
PF00168 PF00397 1
PF00168 PF02666 1
PF00169 PF08174 1
PF00169 PF01237 3
PF00169 PF00023 2
PF00169 PF00201 1
PF00169 PF00617 1
PF00169 PF00618 1
PF00169 PF07653 2
PF00169 PF03778 1
PF00169 PF00620 2
PF00169 PF07647 2
PF00169 PF00780 1
PF00169 PF07714 2
PF00169 PF00787 1
PF00169 PF00786 2
PF00169 PF00018 2
PF00169 PF02893 1
PF00169 PF03033 1
PF03765 PF00650 6
PF08477 PF00071 32
PF08477 PF08355 1
PF08477 PF08356 1
PF08477 PF00025 6
PF08477 PF04950 1
PF08477 PF01926 1
PF08477 PF00036 1
PF08477 PF08142 1
PF01266 PF05187 1
PF01266 PF01946 2
PF01266 PF00890 3
PF01266 PF02910 2
PF04563 PF06883 1
PF04563 PF04566 2
PF04563 PF04560 3
PF04563 PF04561 3
PF04563 PF00562 3
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PF04563 PF04567 3
PF04563 PF04565 3
PF04560 PF06883 1
PF04561 PF06883 1
PF04561 PF04566 2
PF04561 PF04560 3
PF04561 PF00562 3
PF04561 PF04567 3
PF04561 PF04565 3
PF04566 PF04560 2
PF04566 PF00562 2
PF04566 PF04567 2
PF04567 PF06883 1
PF04567 PF04560 3
PF04567 PF00562 3
PF04564 PF08783 1
PF00763 PF02882 3
PF00763 PF01268 2
PF04037 PF04046 1
PF02969 PF07571 1
PF00023 PF01529 2
PF00023 PF03009 1
PF00023 PF01833 2
PF00023 PF00651 1
PF00027 PF02197 1
PF04428 PF01633 2
PF04425 PF04426 2
PF03462 PF00472 1
PF03463 PF03464 1
PF03463 PF03465 1
PF03460 PF01077 1
PF03464 PF03465 2
PF07646 PF01344 6
PF07647 PF00536 1
PF07728 PF02359 1
PF07728 PF02861 1
PF07728 PF09336 1
PF07728 PF05362 1
PF07728 PF04212 1
PF07728 PF02190 1
PF07728 PF03028 1
PF07728 PF00493 3
PF07728 PF01078 1
PF07728 PF07724 3
PF07728 PF07726 1
PF07728 PF00439 1
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PF00118 PF01504 1
PF00117 PF00185 1
PF00117 PF00958 1
PF00117 PF02787 1
PF00117 PF00218 1
PF00117 PF00425 1
PF00117 PF04715 1
PF00117 PF02729 1
PF00117 PF06418 2
PF00117 PF00988 2
PF07724 PF02861 1
PF07724 PF07726 1
PF00115 PF03161 1
PF00115 PF00961 1
PF00115 PF00078 2
PF00115 PF01348 2
PF00333 PF03719 2
PF00330 PF00694 4
PF00339 PF02752 3
PF04928 PF01909 1
PF04928 PF04926 1
PF02893 PF00566 1
PF02893 PF00201 1
PF02893 PF03033 1
PF04677 PF04676 1
PF05739 PF00787 1
PF02784 PF00278 1
PF02785 PF02436 2
PF02785 PF01425 1
PF02785 PF02655 2
PF02785 PF02626 1
PF02785 PF00682 2
PF02785 PF01039 2
PF02785 PF00364 5
PF02785 PF02222 2
PF02785 PF08443 2
PF02785 PF08326 2
PF02785 PF01071 2
PF02786 PF02436 2
PF02786 PF01425 1
PF02786 PF02655 2
PF02786 PF02626 1
PF02786 PF00185 1
PF02786 PF02785 5
PF02786 PF01039 2
PF02786 PF02787 2
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PF02786 PF00364 5
PF02786 PF02222 3
PF02786 PF00988 1
PF02786 PF01071 2
PF02786 PF00682 2
PF02786 PF00117 1
PF02786 PF08326 2
PF02786 PF02142 1
PF02786 PF02729 1
PF02786 PF08443 3
PF02787 PF00185 1
PF02787 PF02729 1
PF02801 PF01648 1
PF03946 PF00298 2
PF02148 PF07576 1
PF00433 PF00130 1
PF00433 PF02185 1
PF02146 PF04574 2
PF02809 PF00904 1
PF02809 PF00790 2
PF00349 PF03727 4
PF02142 PF00185 1
PF02142 PF02787 1
PF02142 PF00988 1
PF02142 PF02729 1
PF02142 PF00117 1
PF02142 PF01808 2
PF00439 PF08880 1
PF00439 PF02178 1
PF04815 PF00626 4
PF04810 PF00626 4
PF04810 PF04815 4
PF04810 PF08033 4
PF04810 PF04811 4
PF04811 PF00626 4
PF04811 PF04815 4
PF04811 PF08033 4
PF00804 PF05739 5
PF03129 PF02824 1
PF03129 PF09180 1
PF03129 PF07973 1
PF05131 PF00637 1
PF00632 PF00168 1
PF00632 PF00397 1
PF02733 PF02734 2
PF02735 PF03730 2
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PF02736 PF00612 2
PF02736 PF00063 2
PF02736 PF01843 2
PF04565 PF00562 3
PF04565 PF04560 3
PF04565 PF04566 2
PF04565 PF04567 3
PF04565 PF06883 1
PF08032 PF00588 1
PF08033 PF00626 4
PF08033 PF04815 4
PF08407 PF01644 2
PF08407 PF03142 2
PF00888 PF08672 1
PF00181 PF03947 2
PF00890 PF02910 2
PF00899 PF05237 1
PF00899 PF02134 3
PF04321 PF01263 1
PF04321 PF02719 2
PF08534 PF00578 5
PF01634 PF08029 1
PF01411 PF02272 1
PF01411 PF07973 1
PF08242 PF08498 1
PF08242 PF01209 1
PF08242 PF03291 1
PF08242 PF02353 1
PF08242 PF01170 1
PF08241 PF08242 12
PF08241 PF01170 1
PF08241 PF05148 1
PF08241 PF02353 1
PF08241 PF01209 1
PF08241 PF08498 1
PF08241 PF03291 1
PF08240 PF00107 16
PF08711 PF07500 1
PF08506 PF03378 1
PF01417 PF00904 1
PF01417 PF02809 2
PF01417 PF01608 1
PF08712 PF01106 1
PF04072 PF07646 1
PF04072 PF01344 1
PF08083 PF08084 1
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PF08082 PF08084 1
PF08082 PF08083 1
PF02194 PF08628 1
PF08326 PF01039 2
PF02190 PF05362 1
PF00153 PF00036 1
PF01909 PF03828 2
PF01909 PF04926 1
PF00156 PF00310 1
PF02359 PF02933 1
PF03731 PF02735 2
PF03731 PF03730 2
PF01902 PF01042 1
PF00091 PF03953 4
PF00096 PF01363 1
PF00096 PF02373 2
PF00096 PF00226 1
PF00096 PF02375 2
PF00096 PF02178 1
PF00097 PF04757 1
PF00097 PF01485 1
PF00097 PF02037 1
PF00097 PF00176 3
PF00097 PF07576 1
PF00097 PF08647 1
PF00097 PF00271 3
PF00097 PF02148 1
PF00097 PF01363 1
PF00097 PF08797 1
PF00097 PF00642 1
PF00097 PF00498 1
PF00097 PF00628 1
PF00795 PF02540 1
PF04557 PF03950 1
PF04557 PF00749 1
PF00790 PF03127 2
PF00790 PF02883 2
PF00792 PF00613 1
PF00792 PF00454 1
PF03636 PF03633 1
PF03636 PF03632 1
PF04558 PF03950 1
PF04558 PF04557 1
PF04558 PF00749 1
PF03632 PF03633 1
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PF07973 PF02824 1
PF07973 PF02272 1
PF00076 PF00806 2
PF00076 PF08662 1
PF00076 PF00658 1
PF00076 PF00641 1
PF00076 PF05391 1
PF00070 PF00310 1
PF00070 PF01645 1
PF00070 PF03486 1
PF00070 PF01134 1
PF00070 PF02852 3
PF00070 PF04898 1
PF00070 PF01493 1
PF00071 PF08355 1
PF00071 PF01926 1
PF00071 PF08356 1
PF00071 PF00036 1
PF00071 PF00025 6
PF00072 PF00512 1
PF00072 PF01163 1
PF00072 PF00447 1
PF00072 PF02518 1
PF04675 PF04679 1
PF02854 PF02847 2
PF02854 PF09088 1
PF02854 PF09090 1
PF03917 PF03199 1
PF00370 PF02782 3
PF00078 PF00098 2
PF00078 PF09337 2
PF00078 PF01348 2
PF02852 PF01134 1
PF02581 PF02110 1
PF05773 PF01205 1
PF05773 PF04408 1
PF05773 PF07717 1
PF00988 PF00185 1
PF00988 PF02787 1
PF00988 PF02729 1
PF01794 PF08030 8
PF01794 PF08022 8
PF08669 PF01571 1
PF08142 PF04950 2
PF02518 PF00204 1
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PF02518 PF00183 2
PF02518 PF01119 3
PF02518 PF00521 1
PF02518 PF08676 1
PF02518 PF00512 1
PF00982 PF02358 3
PF08390 PF03798 2
PF08393 PF03028 1
PF08393 PF07728 1
PF00382 PF00134 1
PF00382 PF07741 1
PF00383 PF00849 1
PF00479 PF02781 1
PF00388 PF00387 1
PF00389 PF02826 5
PF00571 PF00654 1
PF00571 PF01595 1
PF00570 PF08066 1
PF00570 PF01612 1
PF02922 PF02806 1
PF00575 PF07541 1
PF00575 PF04408 1
PF00575 PF07717 1
PF03983 PF08226 1
PF00085 PF00462 2
PF03986 PF03987 1
PF00205 PF02775 7
PF00204 PF00521 1
PF07529 PF00176 1
PF00208 PF02812 2
PF04851 PF00176 5
PF04851 PF02889 2
PF04851 PF07529 1
PF04851 PF00270 5
PF04851 PF00271 10
PF04851 PF09110 2
PF04851 PF09111 2
PF00930 PF00326 2
PF02776 PF02775 7
PF02776 PF00205 7
PF02770 PF01756 1
PF02772 PF02773 2
PF00939 PF03600 3
PF02779 PF00676 1
PF02779 PF02780 3
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PF00270 PF00627 1
PF00270 PF04408 3
PF00270 PF08148 2
PF00270 PF00570 1
PF00270 PF02889 3
PF00270 PF00271 51
PF00270 PF07717 3
PF00270 PF05773 1
PF00270 PF08147 1
PF00271 PF00385 1
PF00271 PF00627 1
PF00271 PF00176 17
PF00271 PF04408 7
PF00271 PF07529 1
PF00271 PF08880 1
PF00271 PF08148 2
PF00271 PF00570 1
PF00271 PF02889 3
PF00271 PF05773 1
PF00271 PF00575 1
PF00271 PF07717 7
PF00271 PF09110 2
PF00271 PF09111 2
PF00271 PF08797 1
PF00271 PF02178 1
PF00271 PF08658 1
PF00271 PF00439 2
PF00271 PF08147 1
PF00276 PF03939 1
PF00275 PF01487 1
PF00275 PF01202 1
PF00275 PF01488 1
PF00275 PF08501 1
PF07558 PF07557 1
PF02178 PF04084 1
PF02178 PF08880 1
PF05195 PF00557 2
PF05190 PF00488 4
PF05192 PF00488 6
PF05192 PF05190 4
PF05193 PF08367 1
PF08304 PF08302 1
PF08304 PF08303 1
PF00856 PF08236 1
PF03079 PF07883 1
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PF01174 PF00117 1
PF01174 PF00977 1
PF01174 PF07685 3
PF03486 PF02852 1
PF01170 PF08498 1
PF04825 PF04824 1
PF07651 PF01608 1
PF07651 PF01417 3
PF09088 PF09090 1
PF06733 PF06777 1
PF00682 PF02436 2
PF00682 PF08502 2
PF04983 PF04992 1
PF04983 PF04998 3
PF04983 PF05001 1
PF04983 PF05000 3
PF04983 PF04990 1
PF01073 PF07993 7
PF01073 PF04321 2
PF01073 PF01263 1
PF01073 PF02719 2
PF01073 PF00550 1
PF07653 PF00611 1
PF07653 PF00063 2
PF07653 PF00241 1
PF07653 PF03983 1
PF07653 PF07647 2
PF07653 PF03114 1
PF07653 PF06017 2
PF07653 PF00790 1
PF07653 PF00564 1
PF07653 PF02809 1
PF07653 PF04366 2
PF07653 PF08226 1
PF01071 PF02436 2
PF01071 PF02769 1
PF01071 PF00682 2
PF01071 PF02844 1
PF01071 PF02843 1
PF01071 PF02222 2
PF01071 PF00586 1
PF01031 PF02212 2
PF01699 PF03733 1
PF01751 PF01131 1
PF08953 PF08954 1
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PF00581 PF00899 1
PF00581 PF05237 1
PF00581 PF00102 1
PF00581 PF00443 3
PF02259 PF02260 3
PF02259 PF08771 2
PF00586 PF02769 2
PF00586 PF02843 1
PF00586 PF02844 1
PF00587 PF00152 1
PF00587 PF03129 6
PF00587 PF01336 1
PF00587 PF09180 1
PF00587 PF02824 1
PF00587 PF02403 1
PF00587 PF07973 1
PF01873 PF02020 1
PF08590 PF01713 1
PF00610 PF00611 1
PF00610 PF00780 2
PF00610 PF00621 2
PF00610 PF00620 1
PF00611 PF00620 2
PF00612 PF03836 1
PF00612 PF01843 2
PF00613 PF00454 2
PF00616 PF00612 1
PF00616 PF03836 1
PF00617 PF07653 1
PF00617 PF00018 1
PF00617 PF00620 1
PF00618 PF07653 1
PF00618 PF00620 1
PF00618 PF00018 1
PF00618 PF00617 3
PF01979 PF07969 2
PF05204 PF00306 1
PF05204 PF02874 1
PF05204 PF00006 1
PF05204 PF05203 2
PF08567 PF03909 1
PF04212 PF09336 1
PF08565 PF08564 1
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PF08449 PF03151 4
PF05203 PF00306 1
PF05203 PF02874 1
PF05203 PF00006 1
PF01213 PF08603 1
PF00750 PF05746 2
PF00753 PF07521 1
PF00752 PF00867 4
PF08443 PF02436 1
PF08443 PF00185 1
PF08443 PF02655 1
PF08443 PF02626 1
PF08443 PF00682 1
PF08443 PF02787 1
PF08443 PF02222 1
PF08443 PF00988 1
PF08443 PF02729 1
PF08443 PF00117 1
PF08443 PF02142 1
PF08443 PF01071 1
PF08621 PF08620 1
PF02205 PF00568 1
PF03810 PF08389 1
PF03810 PF08767 1
PF03810 PF03378 1
PF03810 PF08506 1
PF03810 PF02985 2
PF00036 PF08355 1
PF00036 PF00387 1
PF00036 PF08356 1
PF00036 PF00388 1
PF02207 PF02617 1
PF04433 PF00249 3
PF04433 PF00569 2
PF00534 PF08288 1
PF02655 PF02436 2
PF02655 PF00682 2
PF02655 PF02222 2
PF02655 PF01071 2
PF02558 PF08546 2
PF00533 PF00041 1
PF00533 PF00249 1
PF00533 PF06732 1
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PF00533 PF01068 1
PF00533 PF09197 1
PF00533 PF08519 1
PF00533 PF00817 1
PF02225 PF01546 1
PF02225 PF04253 2
PF02222 PF02436 2
PF02222 PF00682 2
PF02222 PF00731 1
PF02222 PF02787 1
PF00108 PF02803 2
PF00109 PF01648 1
PF00109 PF02801 2
PF07732 PF00394 3
PF00106 PF07993 1
PF00106 PF01263 1
PF00106 PF04321 1
PF00106 PF01575 1
PF00106 PF01370 1
PF00106 PF01073 1
PF00106 PF08659 6
PF00106 PF02719 1
PF02383 PF03372 3
PF01591 PF00300 3
PF00249 PF09197 1
PF00249 PF03990 1
PF00249 PF00569 2
PF00327 PF08079 2
PF00240 PF09280 1
PF00240 PF01020 2
PF00240 PF01599 2
PF00977 PF00117 1
PF00970 PF00175 5
PF00970 PF00042 1
PF02037 PF02891 2
PF03952 PF00113 4
PF00400 PF08625 1
PF00400 PF04003 1
PF00400 PF07687 1
PF00400 PF01546 1
PF00400 PF00097 1
PF00400 PF08149 1
PF00400 PF09070 1

77



PF00400 PF08581 1
PF00400 PF08145 1
PF00400 PF04192 1
PF00400 PF06957 1
PF00400 PF08513 2
PF00400 PF04053 2
PF00400 PF00646 2
PF00400 PF07569 1
PF00400 PF02985 1
PF00400 PF04158 1
PF00400 PF08953 1
PF00400 PF08954 1
PF00400 PF08324 1
PF00400 PF08154 1
PF00400 PF00637 1
PF00400 PF04047 1
PF00400 PF04494 1
PF03951 PF00120 1
PF00406 PF05191 2
PF09334 PF08264 4
PF09334 PF00133 4
PF09334 PF06827 1
PF02375 PF02373 3
PF09337 PF00098 2
PF04869 PF04871 1
PF00172 PF04082 26
PF00172 PF00989 1
PF00172 PF03902 1
PF03031 PF00533 1
PF03033 PF00201 1
PF01138 PF03725 5
PF01137 PF05189 1
PF02729 PF00185 2
PF05378 PF01968 1
PF05378 PF02538 1
PF05020 PF05021 1
PF05388 PF00450 1
PF04263 PF04265 1
PF04389 PF02225 2
PF04389 PF01546 1
PF01472 PF08068 1
PF01398 PF08084 1
PF01398 PF08083 1
PF01398 PF08082 1
PF02020 PF00483 1

78



PF01624 PF00488 4
PF01624 PF05190 3
PF01624 PF05192 4
PF01624 PF05188 4
PF03105 PF00023 2
PF03105 PF00939 3
PF03105 PF03124 1
PF03105 PF03600 3
PF03105 PF03009 1
PF03104 PF08996 1
PF03104 PF08490 1
PF03104 PF00136 4
PF06858 PF08155 1
PF08523 PF01381 1
PF01408 PF02894 1
PF01409 PF03147 1
PF02260 PF08064 1
PF02260 PF08771 2
PF06012 PF00632 1
PF06012 PF06025 1
PF08311 PF08171 2
PF02268 PF02751 1
PF02185 PF00130 1
PF00149 PF05011 1
PF00149 PF04152 1
PF00149 PF08321 1
PF01369 PF09324 1
PF01368 PF02833 1
PF00786 PF07714 3
PF00787 PF09325 2
PF00787 PF00620 1
PF00787 PF08628 1
PF00787 PF02194 1
PF00787 PF00018 1
PF00787 PF07653 1
PF00787 PF00564 1
PF03198 PF07983 2
PF01363 PF02809 1
PF01363 PF01504 1
PF01363 PF00790 1
PF01363 PF00118 1
PF00660 PF00399 2
PF00788 PF08509 1
PF00788 PF00211 1
PF01399 PF08375 1
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PF01399 PF05470 1
PF00665 PF07727 46
PF00665 PF09337 2
PF00665 PF00078 2
PF00665 PF00098 2
PF01494 PF08491 1
PF00043 PF00647 2
PF00044 PF02800 3
PF02985 PF01851 1
PF02985 PF00454 3
PF02985 PF01749 1
PF02985 PF00176 1
PF02985 PF07539 1
PF02985 PF08752 1
PF02985 PF00005 2
PF02985 PF02260 3
PF02985 PF01602 3
PF02985 PF08771 2
PF02985 PF00271 1
PF02985 PF02259 3
PF02985 PF00514 2
PF00364 PF02436 2
PF00364 PF01425 1
PF00364 PF02655 2
PF00364 PF02626 1
PF00364 PF00682 2
PF00364 PF01039 2
PF00364 PF02222 2
PF00364 PF00198 2
PF00364 PF08443 2
PF00364 PF02817 2
PF00364 PF08326 2
PF00364 PF01071 2
PF04768 PF01118 1
PF04768 PF02774 1
PF05743 PF00179 1
PF05742 PF07723 1
PF07492 PF01204 2
PF00443 PF00917 1
PF00443 PF00627 1
PF00443 PF02148 2
PF08389 PF08767 1
PF00438 PF02773 2
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PF00438 PF02772 2
PF08385 PF03028 1
PF08385 PF08393 1
PF08385 PF07728 1
PF00448 PF09201 1
PF00448 PF02978 1
PF02463 PF04423 1
PF02463 PF06470 4
PF01565 PF04030 1
PF01565 PF02913 3
PF02919 PF01028 1
PF04042 PF08418 1
PF00562 PF04560 3
PF00562 PF06883 1
PF00560 PF08509 1
PF00560 PF00788 1
PF00560 PF01302 1
PF00560 PF00211 1
PF00561 PF04083 1
PF00561 PF07819 2
PF07691 PF00624 4
PF00928 PF01217 1
PF02769 PF02844 1
PF02769 PF02843 1
PF00289 PF02436 2
PF00289 PF01425 1
PF00289 PF02655 2
PF00289 PF02626 1
PF00289 PF00185 1
PF00289 PF02785 5
PF00289 PF02786 7
PF00289 PF02787 2
PF00289 PF00364 5
PF00289 PF02222 3
PF00289 PF00988 1
PF00289 PF01071 2
PF00289 PF00682 2
PF00289 PF00117 1
PF00289 PF08326 2
PF00289 PF02729 1
PF00289 PF02142 1
PF00289 PF01039 2
PF00289 PF08443 3
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PF00288 PF08544 6
PF00282 PF00464 1
PF00281 PF00673 3
PF01193 PF01000 2
PF03144 PF03764 4
PF03144 PF00679 6
PF03144 PF04760 1
PF03144 PF06421 1
PF03144 PF09173 1
PF03144 PF03143 4
PF03142 PF01644 2
PF03142 PF00173 1
PF00467 PF03439 1
PF00467 PF01479 1
PF00467 PF00900 1
PF00467 PF08071 1
PF00467 PF01287 1
PF01068 PF04679 1
PF01068 PF04675 1
PF01068 PF01331 1
PF01068 PF03919 1
PF01061 PF07974 1
PF01061 PF06422 8
PF02719 PF01263 1
PF01728 PF07780 1
PF08354 PF00698 1
PF08354 PF01575 1
PF08356 PF08355 1
PF08351 PF05127 1
PF08059 PF00789 1
PF09110 PF09111 2
PF00628 PF07500 1
PF00628 PF00249 1
PF00628 PF01388 1
PF00628 PF02373 2
PF00628 PF07744 1
PF00628 PF02375 1
PF00628 PF00856 2
PF00627 PF00077 1
PF00627 PF01412 1
PF00627 PF00240 2
PF00627 PF04408 1
PF00627 PF00036 1
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PF00627 PF05773 1
PF00627 PF02148 1
PF00627 PF07717 1
PF00627 PF09280 1
PF00621 PF00780 2
PF00620 PF00412 3
PF00623 PF04983 3
PF00623 PF05000 3
PF00623 PF05001 1
PF00623 PF04998 3
PF00623 PF04992 1
PF00623 PF04990 1
PF00749 PF03950 2
PF08513 PF04494 1
PF08512 PF03531 1
PF03099 PF02237 1
PF04056 PF07975 1
PF01202 PF01487 1
PF01202 PF01488 1
PF01202 PF08501 1
PF08630 PF07535 1
PF01433 PF09127 1
PF07690 PF00854 1
PF07690 PF00083 36
PF01575 PF00698 1
PF04408 PF07717 7
PF08221 PF05645 1
PF08226 PF00036 1
PF01074 PF07748 1
PF01074 PF09261 1
PF00481 PF08509 1
PF00481 PF00788 1
PF00481 PF00211 1
PF00481 PF00560 1
PF03485 PF00750 2
PF03485 PF05746 2
PF02629 PF00549 1
PF00487 PF00173 1
PF03483 PF03484 1
PF07992 PF00310 1
PF07992 PF00890 2
PF07992 PF00070 10
PF07992 PF01645 1
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PF07992 PF03486 1
PF07992 PF02852 3
PF07992 PF01134 1
PF07992 PF04898 1
PF07992 PF01266 2
PF07992 PF01493 1
PF07992 PF02910 1
PF04088 PF00018 1
PF04088 PF07653 1
PF01336 PF00152 6
PF01336 PF08784 1
PF01336 PF08646 1
PF07991 PF01450 1
PF01331 PF03919 1
PF07994 PF01658 1
PF01968 PF02538 1
PF00133 PF08264 3
PF00133 PF06827 1
PF00132 PF00483 2
PF00132 PF02020 1
PF00134 PF08613 3
PF00134 PF02984 6
PF00136 PF08996 1
PF00136 PF08490 1
PF00258 PF01077 1
PF00258 PF03460 1
PF00258 PF08608 1
PF00258 PF00667 2
PF00258 PF04055 1
PF00310 PF00733 2
PF00310 PF01380 1
PF00310 PF01493 1
PF00310 PF01645 1
PF00310 PF04898 1
PF03930 PF05202 1
PF03931 PF01466 1
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PF00317 PF02867 2
PF00250 PF00498 3
PF00251 PF08244 5
PF07574 PF08746 1
PF00256 PF01305 1
PF08644 PF08512 1
PF04715 PF00425 2
PF02181 PF06367 1
PF07993 PF04321 2
PF07993 PF01263 1
PF07993 PF02719 2
PF07993 PF00550 1
PF06978 PF08170 1
PF00005 PF04068 1
PF00005 PF01061 10
PF00005 PF00385 1
PF00005 PF07974 1
PF00005 PF00037 1
PF00005 PF00664 10
PF00005 PF06422 8
PF00004 PF01426 1
PF00004 PF01434 3
PF00004 PF00533 1
PF00004 PF02359 2
PF00004 PF02861 1
PF00004 PF09336 4
PF00004 PF05362 1
PF00004 PF06068 1
PF00004 PF08542 3
PF00004 PF02190 1
PF00004 PF02933 1
PF00004 PF04212 1
PF00004 PF09262 1
PF00004 PF07728 10
PF00004 PF07724 2
PF00004 PF08519 1
PF00004 PF06480 2
PF00004 PF00439 1
PF00004 PF08740 1
PF00006 PF00306 4
PF00009 PF03764 4
PF00009 PF00679 6
PF00009 PF04760 1
PF00009 PF03144 13
PF00009 PF06421 1
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PF00009 PF09173 1
PF00009 PF03143 4
PF00478 PF00571 4
PF08264 PF06827 1
PF06480 PF01434 2
PF01021 PF07727 44
PF01021 PF00665 44
PF04082 PF03902 1
PF00583 PF09337 1
PF00583 PF00439 1
PF00583 PF04055 1
PF06472 PF00005 2
PF09235 PF00788 1
PF06371 PF02181 2
PF06371 PF06367 1
PF04376 PF04377 1
PF08543 PF00294 1
PF08543 PF03070 3
PF06395 PF00621 1
PF01798 PF08156 2
PF00702 PF00403 1
PF00702 PF00689 5
PF00702 PF08282 1
PF00702 PF06888 1
PF00875 PF03441 1
PF00704 PF03427 1
PF00705 PF02747 1
PF01096 PF07500 1
PF01096 PF08711 1
PF01154 PF08540 1
PF01479 PF00163 3
PF01479 PF00900 1
PF08303 PF08302 1
PF08265 PF05764 1
PF07650 PF00189 1
PF08267 PF01717 1
PF00684 PF01556 4
PF01926 PF06071 2
PF01926 PF08438 1
PF01926 PF01018 1
PF01926 PF06858 1
PF01926 PF08701 1
PF01926 PF08153 1
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PF01926 PF02824 2
PF01926 PF08155 1
PF06025 PF00632 1
PF08069 PF00312 1
PF08066 PF01612 1
PF08060 PF01798 3
PF08060 PF08156 2
PF01487 PF08501 1
PF01487 PF01488 1
PF01761 PF01487 1
PF01761 PF01202 1
PF01761 PF08501 1
PF01761 PF01488 1
PF01761 PF00275 1
PF00675 PF05193 6
PF00179 PF09288 1
PF01849 PF00627 1
PF00175 PF00258 2
PF00175 PF00042 1
PF00175 PF00667 3
PF02373 PF01388 1
PF00176 PF00385 1
PF00176 PF08880 1
PF00176 PF09110 2
PF00176 PF09111 2
PF00176 PF08797 1
PF00176 PF08658 1
PF00176 PF00439 2
PF00176 PF02178 1
PF01842 PF02826 2
PF01842 PF00389 2
PF00170 PF07716 4
PF00173 PF04116 1
PF00173 PF01645 1
PF00173 PF01070 1
PF00679 PF03764 4
PF00679 PF06421 1
PF01379 PF03900 1
PF00961 PF00033 2
PF00961 PF07453 1
PF01370 PF04321 2
PF01370 PF07993 7
PF01370 PF00550 1
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PF01370 PF01073 8
PF01370 PF01263 1
PF01370 PF02719 2
PF04571 PF08235 1
PF03871 PF01191 1
PF01503 PF00815 1
PF01502 PF01503 1
PF01502 PF00815 1
PF03876 PF00575 1
PF03876 PF08292 1
PF00056 PF02866 3
PF01509 PF01472 1
PF01509 PF08068 1
PF00198 PF02817 1
PF08766 PF02201 2
PF02921 PF00355 1
PF08605 PF00533 1
PF03477 PF02867 2
PF03477 PF00317 2
PF08801 PF04044 1
PF00454 PF02260 5
PF00454 PF08064 1
PF00454 PF02259 3
PF00454 PF08771 2
PF04053 PF06957 1
PF07714 PF07647 1
PF07714 PF02149 1
PF07714 PF00536 1
PF07714 PF00659 1
PF07714 PF08587 1
PF04055 PF06968 1
PF04055 PF08608 1
PF07719 PF00149 1
PF07719 PF00160 2
PF07719 PF04049 1
PF07719 PF08321 1
PF03372 PF00560 1
PF03372 PF06839 1
PF02671 PF08295 1
PF00515 PF00149 1
PF00515 PF00160 2
PF00515 PF09145 1
PF00515 PF06424 1
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PF00515 PF07719 18
PF00515 PF04049 1
PF00515 PF08321 1
PF00514 PF01749 1
PF07500 PF07744 1
PF00224 PF02887 2
PF02492 PF07683 1
PF00226 PF02889 1
PF00226 PF05207 1
PF00226 PF07743 1
PF00226 PF01556 5
PF00226 PF00684 5
PF01212 PF00282 1
PF02882 PF01268 2
PF02881 PF09201 1
PF02881 PF00448 2
PF02881 PF02978 1
PF02880 PF00408 2
PF02885 PF00591 1
PF01210 PF07479 2
PF08282 PF03332 1
PF08282 PF06888 1
PF02798 PF00647 2
PF02798 PF00043 5
PF02790 PF00116 1
PF02150 PF01096 3
PF02874 PF00306 4
PF02874 PF00006 4
PF02152 PF01288 1
PF02152 PF00809 1
PF00350 PF01031 2
PF00350 PF02212 2
PF02870 PF01035 1
PF02879 PF00408 3
PF02879 PF02880 2
PF00291 PF00571 1
PF00291 PF00290 1
PF00291 PF00585 1
PF02878 PF00408 3
PF02878 PF02880 2
PF02878 PF02879 3
PF00428 PF00466 1
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APPENDIX B

MATLAB CODE FOR THE ALGORITHM

The following code is designed to randomly change links of nodes in the network by conserv-

ing the connectivity distribution of the network. It can be run directly by transferring the code

into a MATLABr editor.

% The following part of the code is taken from the internet.

% It reads a text file and outputs the adjacency matrix of the network.

load the_network.txt;

g=size (the_network);

N=2*g(1,1);

i=1;

for m=1:N/2

for n=1:2

G(1,i)= the_network(m,n);

i=i+1;

end

end

L=sort (G);

for i=1:(N-1)

while L(1,i)==L(1,i+1)

L(1,(i+1))=0;

L=sort (L);

end

L;
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end

for j=1:N

if L(1,j)<=0

j=j+1;

end

if L(1,j)>0

j;

break

end

end

p=N-j+1;

m=1;

for t=j:N

C(1,m)=L(1,t);

m=m+1;

C;

end

v=1;

for b=1:N/2

z= the_network(b,v);

q=v+1;

e= the_network(b,q);

for r=1:p

if z˜= C(1,r);

r=r+1;

end

if z==C(1,r);

r;

break

end

end
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for y=1:p

if e˜= C(1,y);

y=y+1;

end

if e==C(1,y);

y;

break

end

end

adj(r,y)=1;

adj(y,r)=1;

end

g=adj;

% (C) Şaziye Deniz Oğuz

% This algorithm randomly changes links of nodes in the network by

% conserving the connectivity distribution of the network.

% It outputs the randomly modified network.

g1=g;

deg1=degree(g1);

for pp = 1:10

deg=degree(g);

m = 2;

while m > 1

row_index=randperm((size(the_network)*[1;0]));

row_index=row_index(1);

e=the_network(row_index, :);

v1=e(1,1)

v2=e(1,2)

degv1=deg(1,v1)

degv2=deg(1,v2)

if degv1 == 1 || degv2 == 1 || degv1 == 13 || degv2==13 ||degv1 == 18 ||
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degv2==18 || degv1 == 21 || degv2 == 21 || degv1==23 || degv2==23 ||

degv1==25 || degv2==25

m = m+1;

else

m=1;

end

end

x1=find(deg==degv1-1);

x2=find(deg==degv2-1);

n = 2;

while n > 1

col_index1=randperm((size(x1)*[0;1]));

col_index1=col_index1(1);

col_index2=randperm((size(x2)*[0;1]));

col_index2=col_index2(1);

v11=x1(1,col_index1)

v22=x2(1,col_index2)

x=g(v11, v22);

if x > 0

n = n+1;

else

n = 1;

end

end

g(v11, v22)= 1; g(v1, v2)= 0;

g(v22, v11)=1; g(v2, v1)=0;

end

deg=degree(g);

gg = tril(g);

[ii, jj] = find(gg);
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