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Department of Mathematics, TOBB ETU

Date:



1



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: KÖKSAL MUŞ
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ABSTRACT

AN ALTERNATIVE NORMAL FORM FOR ELLIPTIC CURVE CRYPTOGRAPHY:
EDWARDS CURVES

MUŞ, KÖKSAL

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. SEFA FEZA ARSLAN

September 2009, 28 pages

A new normal form x2 + y2 = c2(1 + x2y2) of elliptic curves was introduced by M. Harold

Edwards in 2007 over the field k having characteristic different than 2. This new form has

very special and important properties such that addition operation is strongly unified and

complete for properly chosen parameter c . In other words, doubling can be done by using

the addition formula and any two points on the curve can be added by the addition formula

without exception. D. Bernstein and T. Lange added one more parameter d to the normal

form to cover a large class of elliptic curves, x2 + y2 = c2(1 + dx2y2) over the same field.

In this thesis, an expository overview of the literature on Edwards curves is given. First, the

types of Edwards curves over the nonbinary field k are introduced, addition and doubling over

the curves are derived and efficient algorithms for addition and doubling are stated with their

costs. Finally, known elliptic curves and Edwards curves are compared according to their

cryptographic applications. The way to choose the Edwards curve which is most appropriate

for cryptographic applications is also explained.
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ÖZ

ELİPTİK EĞRİ KRİPTOLOJİSİ İÇİN ALTERNATİF ELİPTİK EĞRİ FORMU:
EDWARDS EĞRİLERİ

MUŞ, KÖKSAL

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. SEFA FEZA ARSLAN

Eylül 2009, 28 sayfa

Harold Edwards tarafından 2007 yılında karakteristiği 2’den farklı olan cisimler üzerinde

x2 + y2 = c2(1 + x2y2) formunda yeni bir eliptik eğri formu tanımlandı. Uygun seçilen

parametreler için yeni form üzerinde tanımlanan toplama işlemi, kriptoloji için önemli olan

tam toplama ve bütünleştirilmiş toplama özelliklerine sahiptir. Bir başka deyişle, bu eğri

üzerinde bir noktayı kendisiyle toplamak için yeni bir formüle gerek kalmamaktadır. Ayrıca,

bu eğri üzerindeki herhangi iki nokta, hiçbir koşul gözetmeksizin, tanımlı toplama işlemi

ile toplanabilmektedir. D. Bernstein ve T. Lange, daha çok eliptik eğriyi kapsayabilmek

için bu formu ax2 + y2 = c2(1 + dx2y2) biçiminde genişletmişlerdir. Bu çalışmada Ed-

wars eğrileri literatürünün genel bir derlemesi yapılmıştır. Öncelikle, karakteristiği ikiden

farklı olan cisimler üzerinde Edwards eğrileri tanımlanmış, bu eğriler üzerindeki toplama

ve iki katını alma işlemleri ve maaliyetlerinin nasıl hesaplandığı gösterilmiştir. Daha sonra,

bilinen eliptik eğrileri ve Edwards eğrileri kriptolojik uygulamalara uygunluk bakımından

karşılaştırılmıştır. Ayrıca, Edwards eğrilerinden hangisinin kriptolojik uygulamalar için daha

uygun olduğu belirlenmiştir.
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Anahtar Kelimeler: Edwards Eğrisi, bükülmüş Edwards Eğrisi, tam toplama, bütünleştirilmiş

toplama, işlem maaliyeti
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CHAPTER 1

Introduction

In this thesis, our main object of interest is a new form of elliptic curves called Edwards

Curves. These curves were first introduced by M. Harold Edwards in 2007 [1] and is defined

as the zero set of x2 + y2 = c2(1 + x2y2). The main advantage of this form is that the group

law can be stated explicitly on it and it is given by Edwards as :

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,

y1y2 − x1x2

1 − dx1x2y1y2

)
.

Edwards has also proved that every elliptic curve is birationally equivalent to an Edwards

curve [1]. Given the importance of elliptic curves in cryptography, it is obvious to estimate

that Edwards curves should also be useful in elliptic curve cryptography. Moreover, Edwards

curves has many extra features such as cheaper cost operation, strongly unified and complete

addition formula which supplies a resistance against the side channel attack.

To understand the importance of Edwards curves in ECC, we first give a short summary of the

use of elliptic curves in cryptography. In 1976, Whitfield Diffie and Martin Hellman published

a paper [5] in which they introduced an asymmetric-key cryptosystem called Diffie-Hellman

key exchange which uses exponentiation in a finite field and its security is based on discrete

logarithm problem for finite groups. After a short time, independent of the Diffie-Hellman

key exchange, in 1978, Rivest, Shamir and Adleman published a paper [6] about another

asymmetric-key cryptosystem called RSA which uses exponentiation modulo a product of

two large primes to encrypt and decrypt and its security is based on the difficulty of factoring

the product of two large primes. As the computer technology developed, it became necessary

to have larger key sizes in order to obtain the required security. In 1986, Neal Koblitz [7] and
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in 1987, Victor Miller [8] proposed to use elliptic curves in cryptography, independently. In

this system, security is based on the discrete logarithm problem and it requires much more

smaller key sizes. In the following table given by NSA, it is possible to observe the required

key sizes for the same security levels [9].

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1.1: Key Sizes

Elliptic curve cryptosystems are preferred not only because of their smaller key sizes, but also

because of their computational efficiency. This computational efficiency can be observed in

the following table for the relevant key sizes [9].

Security Level (bits) Ratio of DH cost:EC Cost
80 3:1
112 6:1
128 10:1
192 32:1
256 64:1

Table 1.2: Computational Efficiency

Elliptic curves are defined as the zero set of the polynomial y2 = x3 + ax + b over nonbinary

field k, a, b ∈ k, 4a3 + 27b2 , 0 and point at infinity. Addition operation on it is defined by the

chord and tangent rule and adding a point to itself is called doubling (see figure 1.1.). Identity

point of the operation is the point at infinity. Multiplication by an integer constant c is defined

as adding the point c − 1 times to itself.

In 2007, M. Harold Edwards introduced in [1] a new normal form of elliptic curves (zero set

of x2 + y2 = c2(1 + x2y2) over a nonbinary field) which are birationally equivalent to elliptic

curves. Just after few months, Bernstein and Lange modified the normal form by adding one

more parameter (zero set of x2 + y2 = c2(1 + dx2y2) over a nonbinary field) which increased

the set of birationally equivalent elliptic curves [2].

2



Figure 1.1: Addition and Doubling over Elliptic Curves

Figure 1.2: Edwards Curve

In its new form, Edwards curve is more suitable for ECC with its extra features. Namely,

its complete addition formula gives the advantage that implementations do not require any

checking for the points. Its unified addition formula brings the advantage of resistance against

side channel attack since addition and doubling can be computed by the same formula.

In Chapter 2, we give the main properties of the Edwards curve by using the more general

form of Bernstein and Lange. We explain the addition formula given explicitly by Edwards

and modified by Bernstein and Lange. Then, we explain how Bernstein and Lange use ho-

mogenous coordinates to obtain efficient addition and doubling operations. At the end of the

second chapter, the costs of algorithms are given.

3



In Chapter 3, first we explain how the inverted Edwards coordinates are introduced in order

to get rid of the computation of the inverses. We state the explicit equation and formulas for

addition and doubling with these new coordinates. Since, completeness is lost with these new

coordinates, the special points are examined separately. We explain how operation costs are

reduced by using inverted Edwards coordinates.

In Chapter 4, to cover a larger class of elliptic curves, twisted Edwards curves are defined.

The relation between the Edwards curves and twisted Edwards curves are stated. The explicit

addition and doubling formulas for twisted Edwards curves are computed by using the related

transformations. At the end of the chapter, addition and doubling costs are computed.

In Chapter 5, to make the computation on the twisted Edwards defined in the previous chap-

ter more efficient, the inverted twisted Edwards coordinates are introduced. With this new

coordinates, addition and doubling formulas are stated. Again their costs are computed.

In Chapter 6, After stating the birationally equivalence between Montgomery curves and

twisted Edwards curves, the results explained in this thesis will compared to previous results

in the literature. Then, it is concluded that which elliptic curve should be used for ECC.

Elliptic curve cryptography makes feasible to use public key cryptography on smartcards

without mathematical coprocessors, contactless smartcards and wireless communications.

Elliptic curve cryptography provides the same security level with the previous systems such

as RSA and Diffie-Hellman with a much more smaller key sizes.

In this thesis, a new form of elliptic curve introduced and its various forms are examined to

clarify that what are the advantages and disadvantages of the new normal form.
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CHAPTER 2

Edwards Curves

Edwards curves were first defined in [1] by the zero set of the polynomial x2+y2 = c2
(
1 + x2y2

)
for c ∈ k, where k is a field having characteristic different than 2. What makes Edwards

curves very important is that all elliptic curves with a point of order 4 having character-

istic different than 2 can be transformed to Edwards form over the same field or an ex-

tension of the original field. The addition law on an Edwards curve is defined in [1] as

(x1, y1) + (x2, y2) =
(

x1y2+x2y1
c(1+x1 x2y1y2) ,

y1y2−x1 x2
c(1−x1 x2y1y2)

)
and the neutral element is (0, c) with respect

to this operation. This addition law on an Edwards curve corresponds to the standard addition

law on an elliptic curve. Moreover, if an Edwards curve has a nonsquare parameter d in the

field, then addition formula is valid for all pairs of points on the curve without exception,

namely it is complete.

Figure 2.1: Shape of Edwards Curve
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To cover a larger class of elliptic curves without extension, the transformation x = cx and

y = cy is applied to the curve equation x2 + y2 = c2
(
1 + dx2y2

)
. The new curve equation is

x2 + y2 = 1 + dx2y2 where d = dc4 , 1 [2]. Therefore, x2 + y2 = c2
(
1 + dx2y2

)
is isomorphic

to x2 +y2 = 1+dx2y2 for all cd
(
1 − dc4

)
, 0 over the field k which has characteristic different

than 2.

2.1 Transformation to Edwards form:

The following theorem states and proves the relation between elliptic curves and Edwards

curves.

Theorem 2.1.1 [2, Theorem 2.1] Let k be a field in which 2 , 0. Let E be an elliptic curve

over k such that the group E(k) has an element of order 4. Then

i) There exists d ∈ k − {0, 1} such that the curve x2 + y2 = 1 + dx2y2 is birationally

equivalent over k to a quadratic twist of E.

ii) If E(k) has a unique element of order 2 then there is a nonsquare d ∈ k such that the

curve x2 + y2 = 1 + dx2y2 is birationally equivalent over k to a quadratic twist of E.

iii) If k is finite and E(k) has a unique element of order 2 then there is a non-square d ∈ k

such that the curve x2 + y2 = 1 + dx2y2 is birationally equivalent over k to E.

Later in [3] (Theorem 3.3) Bernstein and Lange et al. proved a stronger version of part (i)

saying that an elliptic curve is birationally equivalent to an Edwards curve if and only if it has

an element of order 4 and a stronger version of part (iii) cancelling the condition of having a

unique element of order 2.

2.2 Edwards Addition Law:

Consider an Edwards curve specified with the given parameters c, d ∈ k such that cd(dc4−1) ,

0 over the field k of characteristic different from 2. Addition for the points (x1, y1) and (x2, y2)

which are on the Edwards curve x2 + y2 = c2(1 + dx2y2) over k is

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

c (1 + dx1x2y1y2)
,

y1y2 − x1x2

c (1 − dx1x2y1y2)

)
.

6



To show that this is a well-defined operation which gives a group structure on the Edwards

curve, first it is proved that the addition of two points which are on the Edwards curve is

also on the curve. Then, it is shown that Edwards addition and standard addition law on

a birationally equivalent elliptic curve gives the same results under certain transformations.

Finally, it is proved that when d is a nonsquare over the field k, the Edwards addition law is

complete:

Theorem 2.2.1 [2, Theorem 3.1] Let k be a field in which 2 , 0. Let c, d be nonzero elements

of k with dc4 , 1. Let x1, y1, x2, y2 be elements of k such that x2
1 + y2

1 = c2(1 + dx2
1y2

1) and

x2
2 + y2

2 = c2(1 + dx2
2y2

2). Assume that dx1x2y1y2 < {−1, 1}. Define x3 =
x1y2+y1 x2

c(1+dx1 x2y1y2) and

y3 =
y1y2−x1 x2

c(1−dx1 x2y1y2) . Then x2
3 + y2

3 = c2(1 + dx2
3y2

3).

Proof. The proof is direct. It is enough to show that the addition point (x3, y3) of two points

(x1, y1) and (x2, y2) on the curve satisfies the curve equation, namely,

x2
3 + y2

3 = c2(1 + dx2
3y2

3)[
y1y2 − x1x2

c(1 − dx1x2y1y2)

]2 [
y1y2 − x1x2

c(1 − dx1x2y1y2)

]2

= c2
[
1 + d[

x1y2 + y1x2

c(1 + dx1x2y1y2)
]2[

y1y2 − x1x2

c(1 − dx1x2y1y2)
]2
]

�

Theorem 2.2.2 [2, Theorem 3.2] In the situation of previous theorem, let e = 1 − dc4 and let

E be the elliptic curve 1
e v2 = u3 + ( 4

e − 2)u2 + u. For each i ∈ {1, 2, 3} define Pi as follows:

Pi = ∞ if (xi, yi) = (0, c); Pi = (0, 0) if (xi, yi) = (0,−c); and Pi = (ui, vi) if xi = 0, where

ui =
(c+yi)
(c−yi)

and vi =
2c(c+yi)
(c−yi)xi

. Then Pi ∈ E(k) and P1 + P2 = P3.

Proof. Similar proof will be given in Chapter 6. For the detailed proof of this theorem, you

can see [2]. �

Theorem 2.2.3 [2, Theorem 3.3] Let k be a field in which 2 , 0. Let c, d, e be nonzero

elements of k with e = 1−dc4. Assume that d is not a square in k. Let x1, y1, x2, y2 be elements

of k such that x2
1 + y2

1 = c2(1 + dx2
1y2

1) and x2
2 + y2

2 = c2(1 + dx2
2y2

2). Then dx1x2y1y2 , 1 and

dx1x2y1y2 , 1.

Homogenous Coordinates Leading to Efficient Group Operations:

7



2.2.1 Addition:

Since finding the inverse of an element is too expensive in a finite field, Edwards addition

formula is adapted to homogenous coordinates. Homogenous Edwards curve equation is

(X2 + Y2)Z2 = c2(Z4 + dX2Y2) and every point (X : Y : Z) with Z , 0 on the homogenous

Edwards curve corresponds to the point ( X
Z ,

Y
Z ) on the Edwards curve. The neutral element is

(0 : c : 1) and the inverse of (X : Y : Z) is (−X : Y : Z).

Addition formula on homogenous coordinates: Since every point (X : Y : Z) corresponds

to the point ( X
Z ,

Y
Z ) when Z , 0, we can replace x by X

Z and y by Y
Z in the addition formula :

x3 =
x1y2+y1 x2

c(1+dx1 x2y1y2) and y3 =
y1y2−x1 x2

c(1−dx1 x2y1y2) .

( X1
Z1
, Y1

Z1
) + ( X2

Z2
, Y2

Z2
) = ( X3

Z3
, Y3

Z3
) where ( X3

Z3
, Y3

Z3
) corresponds to the point (X3 : Y3 : Z3).

Substitute the point to the additon formula:

X3

Z3
=

X1
Z1

Y2
Z2

+
Y1
Z1

X2
Z2

c(1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

)
=

X1Y2+Y1X2
Z1Z2

c(1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

)

Write X1Y2 + Y1X2 as (X1 + Y1)(X2 + Y2) − X1X2 − Y1Y2 then

X3

Z3
=

(X1+Y1)(X2+Y2)−X1X2−Y1Y2
Z1Z2

c(1 + d X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

)
= Z1Z2

(X1 + Y1)(X2 + Y2) − X1X2 − Y1Y2

c(Z2
1Z2

2 + dX1X2Y1Y2)
.

Similarly,
Y3

Z3
= Z1Z2

Y1Y2 − X1X2

c(Z2
1Z2

2 − dX1X2Y1Y2)
.

So, X3 = Z1Z2(Z2
1Z2

2 − dX1X2Y1Y2)((X1 + Y1)(X2 + Y2) − X1X2 − Y1Y2),

Y3 = Z1Z2(Z2
1Z2

2 + dX1X2Y1Y2)(Y1Y2 − X1X2),

Z3 = c(Z2
1Z2

2 − dX1X2Y1Y2)(Z2
1Z2

2 + dX1X2Y1Y2). (2.1)

The following algorithm allows us to compute (X3 : Y3 : Z3) which is the addition of two

given points (X1 : Y1 : Z1) and (X2 : Y2 : Z2), in homogenous coordinates with the cost of

10M+1S+1C+1D+7a operations. (The cost of operations are represented by some symbols,

specifically, M for multiplication, S for squaring, C for multiplication by c, D for multiplica-

tion by d and a for addition/subtraction.)

A = Z1 · Z2; B = A2; C = X1 · X2; D = Y1 · Y2; E = dC · D; F = B − E; G = B + E;

X3 = A · F · [(X1 + Y1) · (X2 + Y2) −C − D]; Y3 = A ·G · (D −C); Z3 = cF ·G.

8



2.2.2 Doubling:

Since addition formula is complete, doubling can be computed directly from the addition

formula. But, since the added points are the same, doubling operation can be more efficient

than addition.

x3 =
2x1y1

c(1 + dx2
1y2

1)
=

2x1y1

(x2
1 + y2

1)/c
=

2cx1y1

x2
1 + y2

1

,

y3 =
y2

1 − x2
1

c(1 − dx2
1y2

1)
=

c(y2
1 − x2

1)

2c2 − (x2
1 + y2

1)
. (2.2)

By similar transformations,

( X1
Z1
, Y1

Z1
) + ( X1

Z1
, Y1

Z1
) = ( X3

Z3
, Y3

Z3
) where ( X3

Z3
, Y3

Z3
) corresponds to the point (X3 : Y3 : Z3):

X3 = c[(X1 + Y1)2 − X2
1 − Y2

1 ][(X2
1 + Y2

1 ) − 2c2Z2
1],

Y3 = c(X2
1 + Y2

1 )(X2
1 − Y2

1 ),

Z3 = (X2
1 + Y2

1 )[(X2
1 + Y2

1 ) − 2c2Z2
1]. (2.3)

By using the following operations, a point can be doubled with a cost of 3M+4S+3C+6a.

B = (X1 + Y1)2; C = X2
1 ; D = Y2

1 ; E = C + D; H = (cZ1)2; J = E − 2H;

X3 = c(B − E) · J; Y3 = cE · (C − D); Z3 = E · J

9



CHAPTER 3

Inverted Edwards Curves

It can be seen that homogenous coordinates can be used to make the addition more efficient

on an Edwards curve. Inverting these coordinates make addition even more efficient, because

this makes the computations 1M efficient than Edwards coordinates for each addition without

slowing down doubling and tripling. But changing the coordinates result with the loss of

completeness. Thus, some points should be considered separately. In spite of the loss of

completeness, it is still strongly unified, in other words, doubling can be computed via the

same formula.

As a notation, (X,Y,Z) will be used for inverted Edwards coordinates for not confusing it with

homogenous Edwards coordinates (X : Y : Z).

In inverted Edwards coordinates (X,Y,Z) represent the point (x, y) = ( Z
X ,

Z
Y ). Hence, in the

Edwards curve x2 + y2 = 1 + dx2y2, x is replaced by Z
X and y is replaced by Z

Y to find the

inverted Edwards curve equation.

(
Z
X

)2 + (
Z
Y

)2 = 1 + d(
Z
X

)2(
Z
Y

)2 = 1 + d(
Z4

X2Y2 )

Z2(X2 + Y2) = X2Y2 + dZ4 (3.1)

where XYZ , 0. (Recall that, in homogenous coordinates, (X : Y : Z) = (λX : λY : λZ) for

any λ , 0).

Just by using three multiplication, homogenous Edwards coordinates can be converted to

inverted Edwards coordinates. If (X : Y : Z) is a point on projective Edwards coordinates, the

point (YZ : XZ : XY) is a point on the inverted Edwards coordinates. The same transformation

applied to the inverted Edwards coordinates gives the original homogenous coordinates. (In

other words, (X2YZ : XY2Z : XYZ2) = XYZ(X : Y : Z) = (X : Y : Z) if λ = XYZ , 0.)
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3.1 Addition:

To obtain addition formula for inverted Edwards coordinates, Edwards coordinates can be

converted to inverted Edwards coordinates by placing ( Zi
Xi

) and ( Zi
Yi

) for i = 1, 2 in the addition

formula. Since addition formula for inverted Edwards coordinates does not preserve com-

pleteness, special points namely XiYiZi = 0 for i = 1, 2 should be considered separately.

The addition formula for inverted Edwards coordinates is obtained as follows:

( x1y2+x2y1
c(1+dx1 x2y1y2) ,

y1y2−x1 x2
c(1−dx1 x2y1y2) ) where (x1, y1) = ( Z1

X1
, Z1

Y1
) and (x2, y2) = ( Z2

X2
, Z2

Y2
)

(
Z3

X3
,

Z3

Y3
) = (

Z1

X1
,

Z1

Y1
) + (

Z2

X2
,

Z2

Y2
) = (

Z1
X1
.Z2
Y2

+
Z2
X2
.Z1
Y1

1 + d Z1
X1

Z2
X2

Z1
Y1

Z2
Y2

,

Z1
Y1
.Z2
Y2
−

Z1
X1
. Z2

X2

1 − d Z1
X1

Z2
X2

Z1
Y1

Z2
Y2

)

= (
(X2Y1 + X1Y2)Z1Z2

X1X2Y1Y2 + dZ2
1Z2

2

,
(X1X2 − Y1Y2)Z1Z2

X1X2Y1Y2 − dZ2
1Z2

2

)

Therefore, X3 = (X1X2 − Y1Y2)(X1X2Y1Y2 + dZ2
1Z2

2),

Y3 = (X2Y1 + X1Y2)(X1X2Y1Y2 − dZ2
1Z2

2),

Z3 = (X1X2 − Y1Y2)(X2Y1 + X1Y2)Z1Z2. (3.2)

The following algorithm allows to compute addition efficiently at 9M+1S+1D+7a cost:

A = Z1 · Z2; B = dA2; C = X1 · X2; D = Y1 · Y2; E = C · D; H = C − D;

I = (X1 + Y1) · (X2 + Y2) −C − D; X3 = (E + B) · H; Y3 = (E − B) · I; Z3 = A · H · I.

Special points: The addition formula for inverted Edwards coordinates is not valid only

for the points which are on the curve but not satisfy XYZ , 0. The only points which do

not satisfy the condition are (0, 1), (0,−1), (1, 0) and (−1, 0) on the Edwards curve. These

points represent the special points of inverted Edwards coordinates (1, 0, 0), (−1, 0, 0), (0, 1, 0)

and (0,−1, 0), respectively. For algorithmic reasons, the point (0,∓1, 0) in inverted Edwards

coordinates corresponds to the point (±1, 0). So, the special cases of addition are Z = 0 and

XY = 0.

Addition of special points Z1 = 0 or Z2 = 0 then (X1,Y1,Z1) + (X2,Y2,Z2) = (X1X2 −

Y1Y2, X2Y1 + X1Y2,Z1 + Z2).

There are four special cases that addition gives a special point as a result:
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(A) (X1,Y1,Z1) + (X2,Y2,Z2) = (±1, 0, 0):

Suppose addition of two points (X1,Y1,Z1) and (X2,Y2,Z2) is equal to the point (±1, 0, 0)

in inverted Edwards coordinates. The corresponding points in Edwards coordinates are

(x1, y1) = ( Z1
X1
, Z1

Y1
), (x2, y2) = ( Z2

X2
, Z2

Y2
) and (0,±1), respectively. By using the addition

formula for Edwards coordinates, it can be said that x2y1 + x1y2 = 0, in other words

(x2, y2) = (−x1, y1) or (x2, y2) = (x1,−y1).

(A-i) If (x2, y2) = (−x1, y1) is true, then the equality ( Z2
X2
, Z2

Y2
) = (− Z1

X1
, Z1

Y1
) is valid and it leads

to the conditions that Z2X1 = −Z1X2 and Z2Y1 = Z1Y2. Note also that, these conditions

are equivalent to the conditions X1Y2 + X2Y1 = 0 and Y2Z1 = Y1Z2 in [4](Chapter 4,

page 6). If the conditions Z2X1 = −Z1X2 and Z2Y1 = Z1Y2 are placed to the Edwards

addition formula after replacing (x1, y1) = ( Z1
X1
, Z1

Y1
), (x2, y2) = ( Z2

X2
, Z2

Y2
), one can deduce

that result of the addition is (0, 1). This means that it is equal to the point (1, 0, 0) in

inverted Edwards coordinates.

(A-ii) Similarly, if (x2, y2) = (x1,−y1) is true, then the equality ( Z2
X2
, Z2

Y2
) = ( Z1

X1
,−Z1

Y1
) is valid

and it leads to the conditions that Z2X1 = Z1X2 and Z2Y1 = −Z1Y2. Note also that,

these conditions are equivalent to the conditions X1Y2 + X2Y1 = 0 and Y2Z1 = −Y1Z2 in

[4](Chapter 4, page 6). If the conditions Z2X1 = Z1X2 and Z2Y1 = −Z1Y2 are placed to

the Edwards addition formula after replacing (x1, y1) = ( Z1
X1
, Z1

Y1
), (x2, y2) = ( Z2

X2
, Z2

Y2
), one

can deduce that result of the addition is (0,−1). It means that, it is equal to the point

(−1, 0, 0) in inverted Edwards coordinates.

(B) (X1,Y1,Z1) + (X2,Y2,Z2) = (0,±1, 0):

Suppose addition of two points (X1,Y1,Z1) and (X2,Y2,Z2) on the inverted Edwards

coordinates is equal to the point (0,±1, 0) in inverted Edwards coordinates. The cor-

responding points in Edwards coordinates are (x1, y1) = ( Z1
X1
, Z1

Y1
), (x2, y2) = ( Z2

X2
, Z2

Y2
)

and (∓1, 0). By using the addition formula for Edwards coordinates, it can be said that

y1y2 − x1x2 = 0, in other words (x2, y2) = (y1, x1) or (x2, y2) = (−y1,−x1).

(B-i) If (x2, y2) = (y1, x1) is true, then the equality ( Z2
X2
, Z2

Y2
) = ( Z1

Y1
, Z1

X1
) is valid and it leads

to the conditions that Z2Y1 = Z1X2 and Z2X1 = Z1Y2. Note also that, these conditions

are equivalent to the conditions X1X2 − Y1Y2 = 0 and Y2Z1 = −Y1Z2 in [4](Chapter 4,

page 6). If the conditions Z2Y1 = Z1X2 and Z2X1 = Z1Y2 are placed to the Edwards

addition formula after replacing (x1, y1) = ( Z1
X1
, Z1

Y1
), (x2, y2) = ( Z2

X2
, Z2

Y2
), one can deduce
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that result of the addition is (1, 0). This means that it is equal to the point (0,−1, 0) in

inverted Edwards coordinates.

(B-ii) If (x2, y2) = (−y1,−x1) is true, then the equality ( Z2
X2
, Z2

Y2
) = (−Z1

Y1
,− Z1

X1
) is valid and it

leads to the conditions that −Z2Y1 = Z1X2 and Z2X1 = −Z1Y2. Note also that, these

conditions are equivalent to the conditions X1X2 − Y1Y2 = 0 and Y2Z1 = X1Z2 in

[4](Chapter 4, page 6). If the conditions −Z2Y1 = Z1X2 and Z2X1 = −Z1Y2 are placed

to the Edwards addition formula after replacing (x1, y1) = ( Z1
X1
, Z1

Y1
), (x2, y2) = ( Z2

X2
, Z2

Y2
),

one can deduce that result of the addition is (−1, 0). This means that it is equal to the

point (0, 1, 0) in inverted Edwards coordinates.

3.2 Doubling:

Since the addition formula for inverted Edwards curves is unified, it is valid for doubling.

But, adding two points has an advantage to make the operation more efficient. So, doubling

formula is much more efficient than the addition formula. For example, since X1 and X2 are

the same and X2
1 is already computed, computation of X1 · X2 is unnecessary. The efficient

doubling formula for inverted Edwards coordinates is as follows:

(X3,Y3,Z3) = (X1,Y1,Z1) + (X1,Y1,Z1) = (
2X1Y1Z2

1

X2
1Y2

1 + dZ4
1

,
(X2

1 − Y2
1 )Z2

1

X2
1Y2

1 − dZ4
1

)

Then, X3 = (X2
1Y2

1 + dZ4
1)(X2

1 − Y2
1 ),

Y3 = 2X1Y1(X2
1Y2

1 − dZ4
1),

Z3 = 2X1Y1Z2
1(X2

1 − Y2
1 ). (3.3)

A = X2
1 ; B = Y2

1 ; C = Z2
1 ; D = X1 · Y1; E = D + D; F = A − B; G = C2; H = dG;

X3 = (D2 + H) · F; Y3 = (D2 − H) · E; Z3 = E · F ·G.

Then, the cost is 5M+5S+1D+4a. But, replacing the term X2
1Y2

1 by (X2
1 + Y2

1 )Z2
1 − dZ4

1 makes

the computation 1S+2M-2a more efficient. New formula and algorithm are as follow:

X3 = (X2
1 + Y2

1 )(X2
1 − Y2

1 );

Y3 = 2X1Y1(X2
1 + Y2

1 − 2dZ2
1);

Z3 = 2X1Y1(X2
1 − Y2

1 ). (3.4)
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A = X2
1 ; B = Y2

1 ; C = A+ B; D = A−B; E = (X1 +Y1)2−C; X3 = C ·D; Y3 = E · (C ·−2d ·Z2
1);

Z3 = D · E. Hence, the new cost is 3M+4S+1D+6a.

3.3 Tripling:

The direct computation of tripling can be done first doubling the point then adding it to the

point itself. But, its cost is the cost of addition and doubling, namely 13M+5S+1D+13a. By

using equailities from the curve equation, tripling cost can be reduced to 9M+4S+1D+10a:

A = X2
1 ; B = Y2

1 ; C = Z2
1 ; D = A + B; E = 4(D − d · C); H = 2D · (B − A); P = D2 − A · E;

Q = D2 − B · E; X3 = (H + Q) · Q · X1; Y3 = (H − P) · P · Y1; Z3 = P · Q · Z1.

If S/M is small then there is an alternative for tripling with the cost 7M+7S+1D+17a by the

following algorithm:

A = X2
1 ; B = Y2

1 ; C = Z2
1 ; D = A + B; E = 4(D − d · C); H = 2D · (B − A); P = D2 − A · E;

Q = D2 − B · E; X3 = (H + Q) · Q · [(Q + X1)2 − Q2 − A]; Y3 = 2(H − P) · P · Y1;

Z3 = P · [(Q + Z1)2 − Q2 −C].

Special points: It is true for all special points that 3(X1,Y1, 0) = (X1,−Y1, 0).
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CHAPTER 4

Twisted Edwards Curves

Twisted Edwards curves are defined in [Twst] by the equation ax2 + y2 = 1 + dx2y2 over a

field k which has characteristic different than 2 and with distinct nonzero parameters a and

d ∈ k. Twisted Edwards curve with the fixed parameters a, d are represented by EE,a,d where

sub E indicates that it is a twisted Edwards curve.

For the parameter a = 1, every twisted Edwards curve is an Edwards curve.

Addition of two points (x1, y1) and (x2, y2) on EE,a,d : ax2 + y2 = 1 + dx2y2 is given by

(x1, y1) + (x2, y2) = ( x1y2+y1 x2
1+dx1 x2y1y2

,
y1y2−ax1 x2

1−dx1 x2y1y2
). The element (0, 1) is the neutral element and the

inverse of (x1, y1) is (−x1, y1) for the addition operation.

Every twisted Edwards curve EE,a,d is a quadratic twist of the Edwards curve EE,1, d
a
. There is

an isomorphism from EE,a,d : ax̄2 + ȳ2 = 1 + dx̄2ȳ2 to EE,1, d
a

: x2 + y2 = 1 + d
a x2y2 defined by

(x̄, ȳ) 7→(x,y)=(
√

ax̄, ȳ) over the field k(
√

a) . If a is a square then twisted Edwards curve and

Edwards curve are isomorphic over the field k. In other words, for a square a, the quadratic

twist EE,ā,d̄ where d̄
ā = d

a of an Edwards curve EE,1, d
a

is isomorphic to the Edwards curve

EE,1, d
a

itself.

Addition of two points (x̄1, ȳ1) and (x̄2, ȳ2) on the twisted Edwards curve EE,a,d for square

a corresponds to the addition of (x1, y1) and (x2, y2) on the Edwards curve EE,1, d
a

which are

the transformed points of (x̄1, ȳ1) and (x̄2, ȳ2). Therefore, group structure on twisted Edwards

curve can be checked in a way that points are transformed to EE,1, d
a
. Then, corresponding

points are added on EE,1, d
a
. The resulting point transformed back to a point on EE,a,d. If

addition of the points and transformed point are the same for arbitrary points on EE,a,d then

addition operation on twisted Edwards curve defines the same group structure with the Ed-
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wards curve. (Note that, in Chapter 2(Edwards), it is proved that addition operation defines a

group structure on Edwards curve).

To obtain the addition formula on the twisted Edwards curve, we first take two points (x1, y1)

and (x2, y2) on the twisted Edwards curve EE,a,d. By using the map (x, y) 7−→ (x̄, ȳ) =

(x
√

a, y). The points (x1, y1) and (x2, y2) are transformed to the points (x̄1, ȳ1) = (x1
√

a, y1)

(x̄2, ȳ2) = (x1
√

a, y1) on the Edwards curve EE,1, d
a

, respectively. Addition of (x̄1, ȳ1) and

(x̄2, ȳ2) is (x̄3, ȳ3) = (
√

a x1y2+x2y1
1+dx1 x2y1y2

,
y1y2−ax1 x2

1−dx1 x2y1y2
). Transforming (x̄3, ȳ3) by the inverse trans-

formation (x̄, ȳ) 7−→ (x, y) = ( x̄√
a
, ȳ) results with (x3, y3) = ( x1y2+x2y1

1+dx1 x2y1y2
,

y1y2−ax1 x2
1−dx1 x2y1y2

) on the

EE,a,d.

Moreover, there is a birational isomorphism between EE,a,d and EE,d,a given by the rational

map (x̄, ȳ) 7→ (x, y) = (x̄, 1
ȳ ). More generally, EE,a,d is a quadratic twist of EE,d̄,ā if a

d = ā
d̄ is

satisfied.

Homogenous Coordinates Leading to Efficient Group Operations: We have seen that ad-

dition formula for twisted Edwards curve is given by (x1, y1)+(x2, y2) = ( x1y2+y1 x2
1+dx1 x2y1y2

,
y1y2−ax1 x2

1−dx1 x2y1y2
)

for the points (x1, y1) and (x2, y2) on the twisted Edwards curve for a square a ∈ k and non-

square d ∈ k. As stated above, twisted Edwards curve addition formula coincides with the

Edwards addition formula. In other words, it is valid for all pairs and also for doubling.

Similar to Edwards curve, transforming to homogenous coordinates reduces the cost of the

addition operation on the curve, since addition in homogenous coordinates does not require

the inverse elements of the denominators.

A point (x1, y1) in twisted Edwards coordinates represented by the point (X1 : Y1 : Z1) for

x1 =
X1
Z1

and y1 =
Y1
Z1

where Z1 , 0.

To find the homogenous twisted Edwards coordinates, replace x by X
Z and y by Y

Z in twisted
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Edwards curve:

a(
X
Z

)2 + (
Y
Z

)2 = 1 + d(
X
Z

)2(
Y
Z

)2

Hence, the homogenous twisted Edwards curve equation is (aX2 + Y2)Z2 = Z4 + dX2Y2.

4.0.1 Addition:

Similarly, addition formula in the homogenous twisted Edwards coordinates for the given

points (x1, y1) and (x2, y2 on the twisted Edwards coordinates is the following:

(x1, y1) + (x2, y2) = (
x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2
)

(
X1

Z1
,

Y1

Z1
) + (

X2

Z2
,

Y2

Z2
) = (

X1
Z1

Y2
Z2

+
Y1
Z1

X2
Z2

1 + d X1
Z1

X2
Z2

Y2
Z2

Y1
Z1

,

Y1
Z1

Y2
Z2
− a X1

Z1

X2
Z2

1 − d X1
Z1

X2
Z2

Y2
Z2

Y1
Z1

)

= (
Z1Z2(X1Y2 + X2Y1)
Z2

1Z2
2 + dX1X2Y1Y2

,
Z1Z2(Y1Y2 − aX1X2)
Z2

1Z2
2 − dX1X2Y1Y2

). (4.1)

Thus, X3 = Z1Z2(Z2
1Z2

2 − dX1X2Y1Y2)(X1Y2 + X2Y1),

= Z1Z2(Z2
1Z2

2 − dX1X2Y1Y2)[(X1 + Y1)(X2 + Y2) − X1X2 − Y1Y2],

Y3 = Z1Z2(Z2
1Z2

2 + dX1X2Y1Y2)(Y1Y2 − aX1X2),

Z3 = (Z2
1Z2

2 + dX1X2Y1Y2)(Z2
1Z2

2 − dX1X2Y1Y2). (4.2)

The following algorithm gives the addition in homogenous Edwards coordinates in 10M+1S+2D+7a:

A = Z1 · Z2; B = A2; C = X1 · X2; D = Y1 · Y2; E = dC − D; F = B − E; G = B + E;

X3 = A · F · [(X1 + Y1) · (X2 + Y2) −C − D]; Y3 = A ·G · (D − aC); Z3 = F ·G.

4.0.2 Doubling:

Doubling means adding a point with itself, so that (X3 : Y3 : Z3) = 2(X1 : Y1 : Z1). Hence,

in the addition formula, if (X2 : Y2 : Z2) is replaced by (X1 : Y1 : Z1), then the formula is the

following:

X3 = Z2
1(Z4

1 − dX2
1Y2

1 )[(X1 + Y1)2 − X2
1 − Y2

1 ],

Y3 = Z2
1(Z4

1 + dX2
1Y2

1 )(Y2
1 − aX2

1),

Z3 = (Z4
1 + dX2

1Y2
1 )(Z4

1 − dX2
1Y2

1 ). (4.3)
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To convert the formulas much more efficient form, replace Z4
1−dX2

1Y2
1 by −Z2

1(aX2
1 +Y2

1 −2Z2
1)

and (Z4
1 + dX2

1Y2
1 ) by Z2

1(aX2
1 + Y2

1 ) in X3, Y3 and Z3.

Note that: Z4
1 − dX2

1Y2
1 = 2Z4

1 − (Z4
1 + dX2

1Y2
1 ) = 2Z4

1 − (aX2
1 + Y2

1 )Z2
1 = −Z2

1(aX2
1 + Y2

1 − 2Z2
1).

Thus, X3 = −Z4
1(aX2

1 + Y2
1 − 2Z2

1)[(X1 + Y1)2 − X2
1 − Y2

1 ],

Y3 = −Z4
1(aX2

1 + Y2
1 )(aX2

1 − Y2
1 ),

Z3 = −Z4
1(aX2

1 + Y2
1 )(aX2

1 + Y2
1 − 2Z2

1). (4.4)

Choose λ as λ = −Z4
1 , 0, then the following formulas give the doubling formula in homoge-

nous Edwards coordinates:

X3 = (aX2
1 + Y2

1 − 2Z2
1)[(X1 + Y1)2 − X2

1 − Y2
1 ],

Y3 = (aX2
1 + Y2

1 )(aX2
1 − Y2

1 ),

Z3 = (aX2
1 + Y2

1 )(aX2
1 + Y2

1 − 2Z2
1). (4.5)

The following algorithm gives the doubling operation at a cost 3M+4S+1D+7a:

B = (X1 + Y1)2; C = X2
1 ; D = Y2

1 ; E = aC; F = E + D; H = Z2
1 ; J = F − 2H;

X3 = (B −C − D) · J; Y3 = F · (E − D); Z3 = F · J.

4.1 Alternative Addition and Doubling formulas:

Some applications have more doubling than addition. For such cases, using the curve EE,1, d
a

instead of the twisted Edwards curve EE,a,d is more appropriate, since doubling is 1 addition

and 1 doubling cheaper on EE,1, d
a

while addition is 1 doubling expensive.

4.1.1 Alternative Addition:

Addition formula for EE,1, d
a

can be obtained by homogenization of the curve equation and

homogenization of the formulas:

EE,1, d
a

: x2 + y2 = 1 + d
a x2y2 and the points (x1, y1) and (x2, y2) are on the curve. And, addition

formula is (x1, y1) + (x2, y2) = ( x1y2+x2y1

1+ d
a x1 x2y1y2

,
y1y2−x1 x2

1− d
a x1 x2y1y2

).
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So, addition formula for homogenized coordinates can be found by replacing (xi, yi) by ( Xi
Zi
, Yi

Zi
)

for i = 1, 2 as the following:

Curve equation in the homogenous coordinates is aZ2(X2 + Y2) = aZ4 + dX2Y2. The points

(X1 : Y1 : Z1) and (X2 : Y2 : Z2) represent the points (x1, y1) = ( X1
Z1
, Y1

Z1
) and (x2, y2) = ( X2

Z2
, Y2

Z2
),

respectively.

(x1, y1) + (x2, y2) = (
x1y2 + x2y1

1 + d
a x1x2y1y2

,
y1y2 − x1x2

1 − d
a x1x2y1y2

)

(
X1

Z1
,

Y1

Z1
) + (

X2

Z2
,

Y2

Z2
) =

 X1
Z1

Y2
Z2

+
X2
Z2

Y1
Z1

1 + d
a

X1
Z1

X2
Z2

Y1
Z1

Y2
Z2

,

Y1
Z1

Y2
Z2
−

X1
Z1

X2
Z2

1 − d
a

X1
Z1

X2
Z2

Y1
Z1

Y2
Z2


=

aZ1Z2(X1Y2 + X2Y1)
aZ2

1Z2
2 + dX1X2Y1Y2

,
aZ1Z2(Y1Y2 − X1X2)
aZ2

1Z2
2 − dX1X2Y1Y2

 . (4.6)

Then, addition of the points is (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) where

X3 = aZ1Z2(aZ2
1Z2

2 − dX1X2Y1Y2)[(X1 + Y1)(X2 + Y2) − X1X2 − Y1Y2],

Y3 = aZ1Z2(aZ2
1Z2

2 + dX1X2Y1Y2)(Y1Y2 − X1X2),

Z3 = (aZ2
1Z2

2 − dX1X2Y1Y2)(aZ2
1Z2

2 + dX1X2Y1Y2). (4.7)

And the following algorithm is the addition of two points on the curve EE,1, d
a

with 10M + 1S + 3D + 7a:

A = Z1 · Z2; B = aA2; H = aA; C = X1 · X2; D = Y1 · Y2; E = dC · D;

F = B − E; G = B + E; X3 = H · F · [(X1 + Y1) · (X2 + Y2) −C − D];

Y3 = H ·G · (D −C); Z3 = F ·G.

4.1.2 Alternative Doubling:

(X3 : Y3 : Z3) ,doubling of (X1 : Y1 : Z1), can be found from alternative addition formula of

twisted Edwards coordinates by replacing (X2 : Y2 : Z2) by (X1 : Y1 : Z1) as the following:

X3 = aZ2
1(aZ4

1 − dX2
1Y2

1 )[(X1 + Y1)2 − X2
1 − Y2

1 ],

Y3 = aZ2
1(aZ4

1 + dX2
1Y2

1 )(Y2
1 − X2

1),

Z3 = (aZ4
1 − dX2

1Y2
1 )(aZ4

1 + dX2
1Y2

1 ). (4.8)

In the formulas, aZ4
1 − dX2

1Y2
1 can be replaced by aZ2

1(2Z2
1 − X2

1 − Y2
1 ) and aZ2

1 + dX2
1Y2

1 can

be replaced by aZ2
1(X2

1 + Y2
1 ) in X3, Y3 and Z3. Note that, first can be found as the following
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and latter is from the homogenized form of EE,1, d
a
:

aZ4
1 − dX2

1Y2
1 = 2aZ2

1 − Z2
1 − dX2

1Y2
1 = 2aZ2

1 − (Z2
1 + dX2

1Y2
1 )

= aZ2
1(2Z2

1 − X2
1 − Y2

1 )

The new formula is the following:

X3 = a2Z4
1(2Z2

1 − X2
1 − Y2

1 )[(X1 + Y1)2 − X2
1 − Y2

1 ],

Y3 = a2Z4
1(X2

1 + Y2
1 )(Y2

1 − X2
1),

Z3 = a2Z4
1(2Z2

1 − X2
1 − Y2

1 )(X2
1 + Y2

1 ). (4.9)

The more efficient form of alternative doubling formula can be obtained by cancelling a2Z4
1

from X3, Y3 and Z3 since it is on homogenized coordinates and a2Z4
1 , 0.

X3 = (2Z2
1 − X2

1 − Y2
1 )[(X1 + Y1)2 − X2

1 − Y2
1 ],

Y3 = (X2
1 + Y2

1 )(Y2
1 − X2

1),

Z3 = (2Z2
1 − X2

1 − Y2
1 )(X2

1 + Y2
1 ). (4.10)

The following algorithm computes the doubling on homogenized twisted Edwards coordi-

nates with the cost of 3M+4S+1D+6a:

A = X2
1 ; B = Y2

1 ; C = Z2
1 ; D = 2C; E = A + B; F = B − A; G = D − E;

X3 = G · [(X1 + Y1)2 − E]; Y3 = E · F; Z3 = G · E.
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CHAPTER 5

Inverted Twisted Edwards Curves

A point (x1, y1) in the inverted twisted Edwards coordinates is represented by the point (X1,Y1,Z1)

for x1 =
Z1
X1

and y1 =
Z1
Y1

where X1Y1Z1 , 0.

To find the homogenous inverted twisted Edwards coordinates, replace x by Z
X and y by Z

Y in

the twisted Edwards curve equation ax2 + y2 = 1 + dx2y2 such that XYZ , 0:

a(
Z
X

)2 + (
Z
Y

)2 = 1 + d(
Z
X

)2(
Z
Y

)2

Thus, the inverted twisted Edwards curve equation is (X2 + aY2)Z2 = X2Y2 + dZ4.

5.1 Addition:

Addition formula in the inverted twisted Edwards curve is similar to the one in the inverted

Edwards coordinates:

(x1, y1) + (x2, y2) = (
Z1

X1
,

Z1

Y1
) + (

Z2

X2
,

Z2

Y2
) =

 Z1
X1

Z2
Y2

+
Z1
Y1

Z2
X2

1 + d Z1
X1

Z2
X2

Z2
Y2

Z1
Y1

,

Z1
Y1

Z2
Y2
− a Z1

X1

Z2
X2

1 − d Z1
X1

Z2
X2

Z2
Y2

Z1
Y1


=

Z1Z2(X1Y2 + X2Y1)
X1X2Y1Y2 + dZ2

1Z2
2

,
Z1Z2(X1X2 − aY1Y2)
X1X2Y1Y2 − dZ2

1Z2
2

 .
Thus, X3 = (X1X2Y1Y2 + dZ2

1Z2
2)(X1X2 − aY1Y2),

Y3 = (X1X2Y1Y2 − dZ2
1Z2

2)(X1Y2 + X2Y1),

Z3 = Z1Z2(X1Y2 + X2Y1)(X1X2 − aY1Y2). (5.1)

In Y3, if (X1Y2 + X2Y1) is replaced by (X1 + Y1)(X2 + Y2) − X1X2 − Y1Y2 then the follow-

ing algorithm gives the additon in the inverted twisted Edwards coordinates with the cost of
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9M+1S+2D+7a:

A = Z1 · Z2; B = dA2; C = X1 · X2; D = Y1 · Y2; E = C · D; H = C − aD;

I = (X1 + Y1) · (X2 + Y2) −C − D; X3 = (E + B) · H; Y3 = (E − B) · I; Z3 = A · H · I.

5.2 Doubling:

By using the addition formula, doubling formula can be found by replacing X2 by X1, Y2 by

Y1 and Z2 by Z1:

X3 = (X2
1Y2

1 + dZ4
1)(X2

1 − aY2
1 ),

Y3 = (X2
1Y2

1 − dZ4
1)(2X1Y1),

Z3 = Z2
1(2X1Y1)(X2

1 − aY2
1 ). (5.2)

Doubling formula can be computed in a much more efficient form if (X2
1Y2

1 + dZ4
1) is replaced

by (X2
1 +aY2

1 )Z2
1 in X3, 2X1Y1 is replaced by (X1+Y1)2−X2

1−Y2
1 in both Y3 and Z3, (X2

1Y2
1−dZ4

1)

is replaced by (X2
1Y2

1 + dZ4
1 − 2dZ4

1) and X2
1Y2

1 + dZ4
1 is replaced by (X2

1 + aY2
1 − 2dZ2

1)Z2
1 in

Y3. Finally, Z2
1 can be cancelled from X3,Y3 and Z3, since Z2

1 , 0. Thus, efficient formula for

doubling formula is the following:

X3 = (X2
1 + aY2

1 )(X2
1 − aY2

1 ),

Y3 = [(X1 + Y1)2 − X2
1 − Y2

1 ](X2
1 + aY2

1 − 2dZ2
1),

Z3 = (X2
1 − aY2

1 )[(X1 + Y1)2 − X2
1 − Y2

1 ]. (5.3)

The following algorithm gives the doubling algorithm in the inverted twisted Edwards coor-

dinates with the cost of 3M+4S+2D+6a:

A = X2
1 ; B = Y2

1 ; U = aB; C = A + U; D = A − U; E = (X1 + Y1)2 − A − B;

X3 = C · D; Y3 = E · (C − 2dZ2
1); Z3 = D · E.
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CHAPTER 6

Montgomery Curves and Twisted Edwards Curves

Montgomery curves are defined by the equation Bv2 = u3 + Au2 + u over a nonbinary field k

where A ∈ k − {−2, 2} and B ∈ k − {0}. As a notation, it is represented by EM,A,B.

Theorem 6.0.1 [3, Theorem 3.2] Fix a field k with char(k) , 2.

• Every twisted Edwards curve over k is birationally equivalent over k to a Montgomery

curve.

• Conversely, every Montgomery curve over k is birationally equivalent over k to a

twisted Edwards curve.

Proof.

• Fix distinct nonzero elements a, d ∈ k. The twisted Edwards curve EE,a,d is bira-

tionally equivalent to the Montgomery curve EM,A,B, where A =
2(a+d)
(a−d) and B = 4

a−d .

The birational equivalence from EE,a,d to EM,A,B defined by the map (x, y) 7→ (u, v) =

( 1+y
1−y ,

1+y
(1−y)x ) with inverse map (u, v) 7→ (x, y) = ( u

v ,
u−1
u+1 ).

For the given transformation, A and B are defined for all a, d except for a = d.

If A = 2 then a + d = a − d so d = 0; if A , −2 then a + d = d − a so a = 0. So, A = 2

and A = −2 are contradictions. Thus, EM,A,B is a Montgomery curve.

There are some exceptional cases such as y = 1 and x = 0 on EE,a,d and for inverse

transformation, v = 0 and u = −1 on EM,A,B. Since these points are finitely many, they

don’t disturb the birational equivalence.
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• Fix A ∈ k − {−2, 2} and B ∈ k − {0}. The Montgomery curve EM,A,B is birationally

equivalent to the twisted Edwards curve EE,a,d, where a = A+2
B and d = A−2

B .

Note that, since B , 0, a and d are defined; since A , −2, a , 0; since A , 2, d , 0;

and a , d. Thus, EE,a,d is a twisted Edwards curve.

By i and ii, A = 2 a+d
a−d = 2

A+2
B + A−2

B
A+2

B −
A−2

B
= A and B = 4

a−d = 4
A+2

B −
A−2

B
= B.

Hence EE,a,d is birationally equivalent to EM,A,B by i and ii.

Exceptional Points for the Birational Equivalence: Birational equivalence between EM,A,B

and EE,a,d defined by the map (u, v) 7→ (x, y) = ( u
v ,

u−1
u+1 ) is undefined at finitely many points

namely at the points u + 1 = 0 or v = 0.

• The point (0, 0) on EM,A,B corresponds to the one of the points of order 2 on EE,a,d

specifically (0,−1). Other order 2 point corresponds to the point at infinity.

• If (A + 2)(A − 2) is a square in other words ad is a square then there are two points

with v = 0, namely (−A±
√

(A+2)(A−2)
2 , 0). These points are order 2 and corresponds to

two points of order 2 at infinity on the desingularization of EE,a,d.

• If A−2
B is a square in other words d is a square then there are two points with u = −1,

namely (−1,±
√

A−2
B . These order 4 points correspond to two points of order 4 at infinity

on the desingularization of EE,a,d.

�

6.1 Edwards Curves versus Montgomery Curves:

Montgomery form of elliptic curves were first introduced for speeding up the Pollard and

Elliptic curve methods of integer factorization [10]. Moreover, Montgomery form of elliptic

curve implementations are faster than Weierstrass form of elliptic curves [11],[12],[13] and

[14]. Later, Bernstein and Lange showed in [2] (Chapter 5,page 13) that Edwards form of

elliptic curves are faster than not only the Montgomery form of elliptic curves but also Hes-

sian, Jacobi intersection type of elliptic curves. More specifically, Edwards form addition is
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as faster as the Hessian form of elliptic curves which is the speed leader of addition operation

and Edwards form doubling is as faster as the Jacobi intersection doubling operation which

is the speed leader of doubling. The tables 6.1 and 6.2 [2] (Chapter 5,page 13) compare the

cost of addition and doubling operations with the form of well known elliptic curves in the

literature. Note that, in the table, the column (a,b) shows the costs for the platform that the

cost of 1S is equal to aM and the cost of 1D is equal to the cost bM.

Coordinate System Addition (1,1) (0.8,0.5) (0.8,0)
Doche/Icart/Kohel 2 12M+5S+1D 18M 16.5M 16M
Doche/Icart/Kohel 3 11M+6S+1D 18M 16.3M 15.8M
Jacobian 11M+5S 16M 15M 15M
Jacobi Intersection 13M+2S+1D 16M 15.1M 14.6M
Projective 12M+2S 14M 13.6M 13.8M
Jacobi quartic 10M+3S+1D 14M 12.9M 12.4M
Hessian 12M 12M 12M 12M
Edwards 10M+1S+1D 12M 11.3M 10.8M

Table 6.1: Addition Operation Comparison Table

Coordinate System Addition (1,1) (0.8,0.5) (0.8,0)
Projective 5M+6S+1D 12M 10.3M 9.8M
Projective if a = −3 7M+3S 10M 9.4M 9.4M
Hessian 7M+1S 8M 7.8M 7.8M
Doche/Icart/Kohel 3 2M+7S+2D 11M 8.6M 7.6M
Jacobian 1M+8S+1D 10M 7.9M 7.4M
Jacobian if a = −3 3M+5S 8M 7M 7M
Jacobi quartic 2M+6S+2D 10M 7.8M 6.8M
Jacobi Intersection 3M+4S 7M 6.2M 6.2M
Edwards 3M+4S 7M 6.2M 6.2M
Doche/Ikart/Kohel 2 2M+5S+2D 9M 7M 6M

Table 6.2: Doubling Operation Comparison Table

Edwards curves also have unified addition property which is the property that addition and

doubling can be computed by the same formula. Moreover, for non-square parameter d,

Edwards curve addition operation has the completeness property which is the property that

addition can be applied to any point pair on the Edwards curve without any check. Thus,

for implementation issues, Edwards curves are more reasonable than other form of elliptic

curves.
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Coordinate System Addition Doubling
Edwards 10M+1S+7a+1C+1D 3M+4S+6a+3C

Inverted Edwards 9M+1S+7a+1D 3M+4S+6a+1D
Twisted Edwards 10M+1S+7a+2D 3M+4S+7a+1D

Twisted E. (Alternative) 10M+1S+7a+3D 3M+4S+6a+1D
Inverted Twisted E. 9M+1S+7a+2D 3M+4S+6a+2D

Table 6.3: Edwards Curves Comparison Table

6.2 Edwards Curves versus Twisted Edwards Curves:

From the table, it can be observed that inverted coordinates are more efficient. When it is

needed to make a choice between the inverted Edwards coordinates and twisted Edwards co-

ordinates for elliptic curve cryptography implementation in the efficiency point of view, it can

be said that Edwards curve should be chosen. But, by more detailed analyse, one can realise

that, 1D in Edwards coordinates is multiplication by curve parameter d and 2D in Twisted

Edwards coordinate is multiplication by twisted Edwards curve parameters a and d. Most of

the time, curve parameter d can be written as d̄
ā in the finite field k. As mentioned in Chapter

2, the Edwards curve EE,1,d where d = d̄
ā is birationally equivalent to the twisted Edwards

curve EE,d̄,ā. Over the finite field, in general, big number can be written as a division of two

small number. In our situation, multiplying with two small integer instead of one big integer is

cheaper over the finite field k. The following example shows the advantage of the twisted Ed-

wards curve instead of edwards curve. The Edwards curve EE,1, 121665
121666

: x2 +y2 = 1+ 121665
121666 x2y2

over the field p = 2255−19 which is birationally equivalent to the Curve25519 the speed leader

of Diffie-Hellman before the occurrence of the Edwards curve in the literature is isomorphic to

the twisted Edwards curve EE,121666,121665 : 121666x2 + y2 = 1 + 121665x2y2. For an addition

over the curves, the former curve consist an multiplication by the curve parameter 121665
121666 ≡

20800338683988658368647408995589388737092878452977063003340006470870624536

394 mod(2255 − 19) and the latter has two multiplication by the curve parameters 121666 and

121665 mod(2255 − 19). Therefore, the addition and doubling operations can be regarded as

cheaper over the inverted twisted Edwards coordinates. Moreover, inverted twisted Edwards

coordinates are birationally equivalent to more elliptic curves than inverted Edwards curves.

Thus, inverted twisted Edwards coordinates can be regarded as the more appropriate form of

elliptic curve for elliptic curve cryptography.
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CHAPTER 7

Conclusion

In recent years, there has been an increase in the number of applications which use ECC. The

applications are mostly used in low capacity platforms such as contactless smart cards. Thus,

it is important to define ECC computations with high efficiencies and with low costs as much

as possible without losing the security level. This makes Edwards curves an important area

of research.

In this work, we have given an expository overview of the literature on Edwards curves. The

Edwards curves were defined in 2007 by M. Harold Edwards, and modified and applied to

ECC by D. Bernstein and T. Lange. In chapter 1, a brief information on the importance of

ECC has been given. In chapter 2,3,4 and 5, types of Edwards curves have been introduced,

explicit formulas for addition and doubling have been explained and cost of the operations

have been stated. In the last chapter, it is explained why the Edwards curves are more suitable

for ECC then any other known elliptic curve forms. It has been also stated how to understand

which Edwards curve is the best for the implementation issues.
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