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ABSTRACT

RESULTS ON LCZ SEQUENCES AND QUADRATIC FORMS

Saygı, Elif

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

November 2009, 71 pages

In this thesis we study low correlation zone (LCZ) sequence sets and a class of quadratic

forms. In the first part we obtain two new classes of optimal LCZ sequence sets. In our first

construction using a suitable orthogonal transformation we extend some results of [21]. We

give new classes of LCZ sequence sets defined over Z4 in our second construction. We show

that our LCZ sequence sets are optimal with respect to the Tang, Fan and Matsufiji bound

[37]. In the second part we consider some special linearized polynomials and corresponding

quadratic forms. We compute the number of solutions of certain equations related to these

quadratic forms and we apply these result to obtain curves with many rational points.

Keywords: Sequences, LCZ sequences, Quadratic forms, Linearized polynomials

iv



ÖZ

LCZ DİZİLERİ VE QUADRATİK FORMLAR ÜZERİNE SONUÇLAR

Saygı, Elif

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Kasım 2009, 71 sayfa

Bu tezde düşük korelasyon bölgesi (LCZ) dizi kümeleri ve quadratik formların bir sınıfını

çalıştık. Birinci bölümde iki yeni en iyi LCZ dizi kümeleri sınıfları elde ettik. Birinci üretim

metodumuzda uygun dik dönüşüm kullanarak, [21] de verilen bazı sonuçları genişlettik. İkinci

üretim metodumuzda Z4 üzerinde tanımlı yeni LCZ dizi kümeleri sınıfları verdik. LCZ dizi

kümelerimizin Tang, Fan and Matsufiji sınırına [37] göre en iyi olduklarını gösterdik. İkinci

bölümde bazı özel doğrusallaştırılmış polinomlar ve karşı gelen quadratik formları göz önüne

aldık. Bu quadratik formlarla ilişkili olan bazı denklemlerin çözüm sayılarını hesapladık ve

bu sonuçları çok rasyonel noktası olan eğrileri elde etmek için kullandık.

Anahtar Kelimeler: Diziler, LCZ dizileri, Quadratik formlar, Doğrusallaştırılmış polinomlar
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PREFACE

In this thesis we study low correlation zone (LCZ) sequence sets and a class of quadratic

forms. In the first part we present two construction of LCZ sequence sets. The first construc-

tion extends the results of [21]. In this construction we use an orthogonal transformation and

we note that this technique is used in [38] to obtain new quaternary sequences with optimal

maximal correlation values. The second construction gives new classes of quaternary LCZ

sequence sets. We explicitly compute the full auto-correlations and cross-correlations of the

sequences in these sets. We show that our LCZ sequence sets in two constructions are optimal

with respect to the Tang, Fan and Matsufiji bound [37] under some conditions.

In the second part we consider some special linearized polynomials and corresponding quadratic

forms. We compute the number of solutions of certain equations related to these quadratic

forms and we apply these result to obtain curves with many rational points. These results

extend the results of [6].

This thesis is organized as follows: Chapter 1 gives a general background on sequences and

quadratic forms. Our constructions of optimal LCZ sequence sets mentioned above are pre-

sented in Chapter 2. Chapter 3 deals with highly degenerate quadratic forms and gives the

number of solutions of certain equations.
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CHAPTER 1

INTRODUCTION

This chapter presents a general background on sequences and quadratic forms. Our main

concerns in this thesis are a special class of sequences called low correlation zone (LCZ)

sequences and the number of solutions of certain equations. In Section 1.1 some basic def-

initions on sequences are given. Chapter 2 presents two distinct classes of optimal LCZ

sequences. In Section 1.2 some basic definitions and notations on quadratic forms are given.

Chapter 3 deals with a special type of quadratic forms. In this chapter we compute the number

of solutions of certain equations related to these quadratic forms. Also we apply these result

to obtain curves with many rational points.

1.1 An Introduction to Sequences

Let F = {α1, α2, . . .} be a set of distinct objects. A sequence is an ordered list of objects from

the set F. The number of elements in a sequence is called the length of the sequence. Note

that in many applications the cardinality of the set F is finite and in general F is chosen to a

finite field or a Galois ring.

In cryptographic and coding theoretic applications, one wants to obtain sequences which have

some specific properties, such as, large period, large linear complexity or linear span, low

correlation etc. [11, 27].

Let s = s0, s1, . . . be a sequence of elements of F. If there exists integers N > 0 and n0 ≥ 0

such that si+N = si for all i ≥ n0, and N is the smallest number having this property, then

the sequence is called ultimately periodic with period N. Furthermore, if n0 = 0 then an

ultimately periodic sequence with period N is called periodic sequence with period N. A
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significant property of periodic sequences is the correlation values of sequences. Formal

definition of correlation of two sequences is given in Section 2.1.

In code-division multiple access (CDMA) communication systems sequences play an impor-

tant role. They are assigned to distinct users in a common channel at the same time [33]. In

order to distinguish each user and to minimize the interference we must use the sequences

with the lowest possible non-trivial correlations. Furthermore, the capacity of the system can

be increased by the number of sequences which support a larger number of distinct users.

Since all users share the same bandwith, sequences can be eavesdropping. But if, sequences

have large linear span then generating mechanisms can not be easily inferred by observing

the sequences where linear span of a periodic sequence is the length of the shortest linear

feedback shift register that can generate the sequence [18]. Consequently, a set of sequences

with low correlation, large family size and large linear span plays an important role in CDMA

communication systems.

Well known bounds for low correlation are derived by Welch, Sidelnikov and Levenshtein in

[46, 32, 25]. Among the known optimal binary sequence families the most famous one is Gold

Family, having 2n + 1 sequences with period 2n − 1 and having tree valued cross-correlation

values achieving Sidelnikov bound for odd n in [10]. Kasami proposed in [17] sequences with

optimal correlation achieving Welch’s bound for even n. The other well known approaches

are given in [2, 16, 22, 39, 44].

In 1990’s optimal quaternary sequences were derived from Z4 [1]. Family A is proposed in

[1, 34] has family size 2n + 1, period 2n − 1 and maximum non-trivial correlation values are

bounded by 2n/2 + 1. Family B in [1] and Family C in [45] has family size 2n−1 and has

period 2(2n − 1). Tang and Udaya generalized the Family B and Family C to a new optimal

quaternary Family D in [42]. Family D has the same period and the same maximal correlation

values, but has 2n sequences.

In 2009 Tang, Helleseth and Fan [38] proposed a general orthogonal transformation on the

Family B and C which generates Family D and also yields a new optimal sequence Family E.

Family E has the same period, same family size and same maximum correlation values with

Family D. However, Family E has different correlation values from Family D. In Section 2.2

we use the same orthogonal transformation to extend the results given in [21].
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In 1992, Gaudenzi, Elia and Viola [8] proposed the quasi-synchronous code-division multiple

access (QS-CDMA) systems. In QS-CDMA systems relative time delay between the signa-

ture sequences of different users is random. But this time delay is restricted to certain time

range L where L is much smaller than the period of the sequences used in system. Here we

note that, in a general CDMA system L is equal to the period of the signature sequences.

As we stated above in CDMA systems it is important to use sequences having low correla-

tion values. However, sequences used in QS-CDMA system must have low correlation values

for some specific delays around the origin which are called low correlation zone (LCZ) se-

quences.

Let S be a set of M sequences with period N. If the magnitude of the non-trivial correlation

value of two sequences in S takes values less than or equal to ε for the offset τ in the range

|τ| < L, then S is called a (N,M, L, ε) LCZ sequence set. A more formal definition is given in

Definition 2.1.2.

In Chapter 2 we propose two constructions of LCZ sequence sets. In Section 2.2 we extend

the results of [21] by using a suitable orthogonal transformation and note that this technique

is used in [38] to obtain new quaternary sequences with optimal maximal correlation values.

Furthermore, in Section 2.3 we present new classes of quaternary LCZ sequence sets. We

explicitly compute the full auto-correlations and cross-correlations of the sequences in these

sets. We show that our LCZ sequence sets are optimal with respect to the Tang, Fan and

Matsufiji (2.1) bound under some conditions.

1.2 An Introduction to Quadratic Forms

In this section we introduce a class of quadratic forms that we study. Moreover we recall

some basic definitions and we fix some notation. For details we refer to [26].

A quadratic form Q (in k indeterminates) over Fq is a homogeneous polynomial in the ring

Fq[x1, . . . , xk] of degree 2. Note that any element x ∈ Fqk can be written as

x = x1α1 + x2α2 + · · · + xkαk,

3



where the set {α1, . . . , αk} is a basis for Fqk . Therefore, Q can be written as

Q : Fqk → Fq

x =
k∑

i=1

xiαi 7→

k∑
i=1

k∑
j=1

bi, jxix j,

where bi, j ∈ Fq.

In the rest of this section we present some notations and some results considered in Chapter

3. Let

R(x) = s0x + s1xq + · · · + shxqh
∈ Fqk [x]

be an Fq-linearized polynomial with h ≥ 0 and sh , 0.

Let TrFqk /Fq denotes the trace map from Fqk to Fq given by

TrFqk /Fq : Fqk → Fq

x 7→ x + xq + · · · + xqk−1
.

When it is clear from the context, we denote TrFqk /Fq as only Tr in short.

Let BR be the symmetric bilinear form on the Fq-linear vector space Fqk defined as

BR : Fqk × Fqk → Fq

(x, y) 7→ Tr (xR(y) + yR(x)) .

Let QR be the quadratic form defined as

QR : Fqk → Fq

x 7→ Tr (xR(x)) .

Let WR be the radical of BR, which is defined as

WR = {x ∈ Fqk : BR(x, y) = 0 for each y ∈ Fqk }. (1.1)

For x ∈ Fqk , we observe that x ∈ WS if and only if

Tr(xR(y) + yR(x)) = Tr
(
x
(
s0y + s1yq + · · · + shyqh)

+ y
(
s0x + s1xq + · · · + shxqh))

= 0

4



for all y ∈ Fqk . Note that

Tr
(
xsiyqi)

= Tr
(
(xsi)q−i

y
)

for all i = 1, 2, . . . , h. Therefore, using this observation we can obtain that for x ∈ Fqk , x ∈ WR

if and only if x is a root of the Fq-linearized polynomial

h−1∑
i=0

sqi

h−iT
qi
+ 2sqh

0 T qh
+

h∑
i=1

sqh

i T qh+i
∈ Fqk [T ]. (1.2)

Let w be the Fq-dimension

w := dimFq WR

of WR.

We can choose an Fq-linear subspace WR of Fqk such that

WR ⊕WR = Fqk .

In particular dimFq WR = k − w and it is called the codimension of WR.

It is known (cf. [26]) that any quadratic form has one of the following equivalent representa-

tion.

QR(x) =



x2
n+1 +

n∑
i=1

xiyi

n∑
i=1

xiyi

x2
1 + sy2

1 +

n∑
i=1

xiyi,

where s ∈ Fq is an element with TrFq/F2(s) = s+ s2 + · · ·+ sq/2 = 1, w is the dimension of the

radical WR and n =
k − w

2
.
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CHAPTER 2

LCZ SEQUENCE SETS

In this chapter we present two constructions of LCZ sequence sets. In Section 2.2 we extend

the results of [21] by using an orthogonal transformation and note that this technique is used

in [38] to obtain new quaternary sequences with optimal maximal correlation values. Given

a LCZ sequence set V with parameters (N,M, L, ε) we construct a LCZ sequence set S with

parameters (2N, 2M, L, ε) or (2N, 2M, L−1, ε) depending on L is odd or L is even respectively.

Note that this construction method includes the construction in [21]. Furthermore, in Section

2.3 we give new classes of quaternary LCZ sequence sets. We explicitly compute the full

auto-correlations and cross-correlations of the sequences in these sets. We show that our LCZ

sequence sets are optimal with respect to the Tang, Fan and Matsufiji bound (2.1) under some

conditions.

Quasi-synchous code-division multiple access (QS-CDMA) communication systems are pro-

posed by Gaudenzi, Elia and Viola [8]. In a QS-CDMA system, performance is determined

by the correlation value around the origin, rather than the overall correlation value. Therefore,

LCZ sequences are good candidates for such systems.

Recently there have been many developments on the design of LCZ sequence sets. Tang and

Fan [36] proposed a LCZ sequence set over GF(p), based on Gordon-Mills-Welch (GMW)

[13] sequences. Kim, Jang, No and Chung [20] proposed a new quaternary LCZ sequence set

from binary sequences with ideal auto-correlation. These sequences are optimal with respect

to Tang, Fan and Matsufuji bound (2.1). Jang, No and Chung [14] proposed an optimal p2-

ary LCZ sequence set, which can be viewed as the generalization of the work in [20]. Tang

and Udaya [40] proposed a new binary LCZ sequence set derived from interleaved technique

and Hadamard matrices. Later they design a recursive construction method for optimal LCZ
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sequence set in [41]. Kim, Jang, No and Chung [21] proposed a new design scheme for

binary LCZ sequence sets and proposed an extension method with even alphabet size. Jang,

No, Chung and Tang [15] constructed optimal p-ary LCZ sequences. Gong, Golomb and

Song [12] presented a general approach to the design of LCZ sequences. Constructions in

[14, 15, 20, 36, 41] can be obtained by this general setting. Zhou, Tang and Gong [47]

proposed a new method of construction LCZ sequence set. For binary LCZ sequence sets

this result is better than those in [21]. Recently Chung and Yang [4] proposed a construction

method for quaternary LCZ sequence sets from binary sequences with good auto-correlation.

This chapter is organized as follows: In Section 2.1 we introduce some basic definitions and

some notations. In Section 2.2, we present our first construction which extends the construc-

tion given in [21]. Furthermore, we present our second construction in Section 2.3.

2.1 Preliminaries

In this section we introduce some basic definitions and we fix some notations.

Let q = 2t for some positive integer t. For positive integer n let Fq and Fqn denote the finite

fields with q and qn elements. Recall that TrFqn/Fq denotes the trace map from Fqn to Fq given

by

TrFqn/Fq : Fqn → Fq

x 7→ x + xq + · · · + xqn−1
.

Throughout the chapter for a finite field Fq, we denote its multiplicative group Fq \ {0} as F∗q,

and when it is clear from context, we also denote TrFqn/Fq as only Tr in short.

Here we note that the sequences defined over Zq are called q-ary sequences. A special class

of q-ary sequences are the ones defined over Z4 and such sequences are called quaternary

sequences. A (periodic) correlation of q-ary sequences is defined as follows:

Definition 2.1.1 Let si(t) and s j(t) be two q-ary sequences of period N. The correlation

between si(t) and s j(t) at shift τ, is defined as

Ri, j(τ) =
N−1∑
t=0

ωsi(t)−s j(t+τ)

7



where ω = e
2π
√
−1

q is a complex qth root of unity and t + τ is computed modulo N.

Note that if si(t) and s j(t) are cyclically equivalent, i.e., si(t) = s j(t + t′) for all 1 ≤ t, t′ ≤ N,

then Ri, j is called the auto-correlation of si(t). Otherwise, if si(t) and s j(t) are cyclically

distinct, then Ri, j is called the cross-correlation of si(t) and s j(t).

Here we remark that the correlation can also be defined if the sequences are defined over Fq

[12]. As it is noted in [12] using a one to one correspondence between Zq and Fq if one

derives the cross-correlation between the sequences defined over Zq, then at the same time

one obtains the cross-correlation between the sequences defined over Fq.

Now we present a formal definition of a LCZ sequence set.

Definition 2.1.2 Let S be a set of M q-ary sequences of period N. Then S is called a low

correlation zone (or LCZ in short) sequence set having parameters (N,M, L, ε), if for any two

sequences si(t), s j(t) ∈ S we have

|Ri, j(τ)| ≤ ε for (i , j and |τ| < L) or (i = j and 0 , |τ| < L) .

The following lower bound for the parameters of a LCZ sequence set is given in [37]. We will

use this result to show the optimality of our LCZ sequence sets.

Theorem 2.1.3 [37] Let S be an LCZ sequence set with parameters (N,M, L, ε). Then we

have

ML − 1 ≤
N(N − 1)

N − ε2
. (2.1)

Now we describe a general orthogonal transformation given in [38]. Assume that we have a

q-ary sequence set V given as

V = {vi(t)|0 ≤ i ≤ M − 1, 0 ≤ t ≤ N − 1}.

In order to obtain a sequence set S having 2M sequences of period 2N, the following general

transformation on V can be used. Let
(
c0,0, c0,1, c1,0, c1,1

)
∈ Z4

q, define

S = {si, j(t)|0 ≤ i ≤ M − 1, 0 ≤ j ≤ 1 0 ≤ t ≤ 2N − 1} (2.2)

8



where si, j(t) is

si, j(t) =


vi(t1) + c j,0 if t = 2t1,

vi

(
t1 +

⌈L
2

⌉)
+ c j,1 if t = 2t1 + 1.

(2.3)

Note that dxe denotes the smallest integer greater than or equal to x and the construction in

[21] is a special case of (2.3) with
(
c0,0, c0,1, c1,0, c1,1

)
=

(
0, 0,

q
2
, 0

)
. Furthermore, any two

sequences are called equivalent if the one is obtained by adding a constant to each term of

the other sequence. In our case, if si, j and s′i, j are two equivalent sequences in S we have

si, j = s′i, j + c, that is, c j,0 = c j,1 = c. Therefore, the pair (c j,0, c j,1) can always be normalized

by setting c j,1 = 0, that is,

 c0,0 c0,1

c1,0 c1,1

 =
 c0 0

c1 0

 .

In the following section, we obtain LCZ sequence sets by using this orthogonal transformation

under the condition that c0 − c1 ≡
q
2 mod q. This condition is a necessary and sufficient

condition to obtain LCZ sequence sets.

2.2 Extensions of LCZ Sequence Sets

Let q be an even integer. Assume that we have a LCZ sequence set V with parameters

(N,M, L, ε) given as

V = {vi(t)|0 ≤ i ≤ M − 1, 0 ≤ t ≤ N − 1}. (2.4)

Now in the following construction we use the orthogonal transformation described in the

previous section to extend the above LCZ sequence set V in (2.4). The parameters of the new

LCZ sequence set becomes (2N, 2M, L, 2ε) or (2N, 2M, L − 1, 2ε) depending L is odd or L is

even respectively.

Construction 2.2.1 Let S be the set of q-ary sequences defined as

S = {si(t)|0 ≤ i ≤ 2M − 1, 0 ≤ t ≤ 2N − 1} (2.5)

9



where si(t) is

si(2t1) =

 vi(t1) + c0 for 0 ≤ i ≤ M − 1,

vi−M(t1) + c1 for M ≤ i ≤ 2M − 1,

si(2t1 + 1) =


vi

(
t1 +

⌈L
2

⌉)
for 0 ≤ i ≤ M − 1,

vi−M

(
t1 +

⌈L
2

⌉)
for M ≤ i ≤ 2M − 1.

(2.6)

provided that c0 − c1 ≡
q
2 mod q.

Now we are ready to give our main result of this section.

Theorem 2.2.2 The set S in Construction 2.2.1 is a LCZ sequence set with parameters (2N, 2M, L, 2ε)

if L is odd and with parameters (2N, 2M, L − 1, 2ε) if L is even.

In the following two subsections we will give the proof of Theorem 2.2.2, considering the

cases L is odd and L is even separately.

2.2.1 Case: L is odd

In this section we will prove Theorem 2.2.2 for the case L is odd. Assume that L = 2L1 − 1

for some integer L1. Then we have that⌈L
2

⌉
=

L + 1
2
= L1.

Recall that Ri, j(τ) is the correlation between two sequences si(t) and s j(t) at shift τ given as

Ri, j(τ) =
2N−1∑
t=0

ωsi(t)−s j(t+τ)

where ω is a complex qth root of unity. Now considering the definition of sequences in

Construction 2.2.1 we can rewrite the correlation between two sequences si(t) and s j(t) as

Ri, j(τ) =
2N−1∑
t=0

ωsi(t)−s j(t+τ)

=

N−1∑
t=0

ωsi(2t)−s j(2t+τ) +

N−1∑
t=0

ωsi(2t+1)−s j(2t+1+τ) (2.7)
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which is more useful for our computations.

Now for the simplicity of the proof we must consider the following eight cases separately.

Case 1. 0 ≤ i, j < M and τ is even.

Assume that τ = 2τ1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j(t+τ1)−c0 +

N−1∑
t=0

ωvi(t+L1)−v j(t+L1+τ1)

=

N−1∑
t=0

ωvi(t)−v j(t+τ1) +

N−1+L1∑
t=L1

ωvi(t)−v j(t+τ1)

=

N−1∑
t=0

ωvi(t)−v j(t+τ1) +

N−1∑
t=0

ωvi(t)−v j(t+τ1),

as vi(t) has period N. Now using the property that V is an (N,M, L, ε) LCZ sequence

set and Definition 2.1.2,∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1)

∣∣∣∣∣∣∣ ≤ ε for (i , j and |τ1| < L) or (i = j and 0 , |τ1| < L) .

Therefore, ∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j(t+τ1) +

N−1∑
t=0

ωvi(t)−v j(t+τ1)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1)

∣∣∣∣∣∣∣
≤ ε + ε = 2ε,

for (i , j and |τ1| < L) or (i = j and 0 , |τ1| < L).

Hence, ∣∣∣Ri, j(τ)
∣∣∣ ≤ 2ε for (i , j and |τ| < 2L) or (i = j and 0 , |τ| < 2L) .

Case 2. 0 ≤ i, j < M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j(t+τ1+L1) +

N−1∑
t=0

ωvi(t+L1)−v j(t+τ1+1)−c0

= ωc0

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1) + ω−c0

N−1+L1∑
t=L1

ωvi(t)−v j(t−L1+τ1+1)

= ωc0

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1), (2.8)
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as vi(t) has period N. Now using the property that V is an (N,M, L, ε) LCZ sequence

set and Definition 2.1.2, for the first summation in (2.8) we have∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ ≤ ε for (i , j and |τ1 + L1| < L) or (i = j and 0 , |τ1 + L1| < L) .

Now replacing L = 2L1 − 1 and τ = 2τ1 + 1, the condition

|τ1 + L1| < L

becomes ∣∣∣∣∣τ − 1
2
+

L + 1
2

∣∣∣∣∣ < L,

which implies that

−3L < τ < L.

Similarly, the condition

0 , |τ1 + L1| < L

becomes

τ1 , −L1 and − 3L < τ < L,

which implies that

τ , −L and − 3L < τ < L.

Therefore the first summation in (2.8) becomes∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ ≤ ε for (|τ| < L) . (2.9)

For the second summation in (2.8) we have∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣ ≤ ε for (i , j and | − L1 + τ1 + 1| < L) or

(i = j and 0 , | − L1 + τ1 + 1| < L) .

Now replacing L = 2L1 − 1 and τ = 2τ1 + 1, the condition

| − L1 + τ1 + 1| < L
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becomes ∣∣∣∣∣−L + 1
2
+
τ − 1

2
+ 1

∣∣∣∣∣ < L,

which implies that

−L < τ < 3L.

Similarly, the condition

0 , | − L1 + τ1 + 1| < L

becomes

τ1 , L1 − 1 and − L < τ < 3L,

which implies that

τ , L and − L < τ < 3L.

Therefore the second summation in (2.8) becomes∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣ ≤ ε for (|τ| < L) . (2.10)

Now combining (2.8), (2.9) and (2.10) we have

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc0

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L) .

Case 3. 0 ≤ i < M,M ≤ j < 2M and τ is even.

Assume that τ = 2τ1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j−M(t+τ1)−c1 +

N−1∑
t=0

ωvi(t+L1)−v j−M(t+L1+τ1)

= ωc0−c1

N−1∑
t=0

ωvi(t)−v j−M(t+τ1) +

N−1∑
t=0

ωvi(t)−v j−M(t+τ1)

= −

N−1∑
t=0

ωvi(t)−v j−M(t+τ1) +

N−1∑
t=0

ωvi(t)−v j−M(t+τ1) = 0,
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as vi(t) has period N and ωc0−c1 = −1 by the assumption c0 − c1 ≡
q
2

mod q in the

Construction 2.2.1.

Hence,

∣∣∣Ri, j(τ)
∣∣∣ = 0 ≤ 2ε for (|τ| < 2L) .

Case 4. 0 ≤ i < M,M ≤ j < 2M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j−M(t+τ1+L1) +

N−1∑
t=0

ωvi(t+L1)−v j−M(t+τ1+1)−c1

= ωc0

N−1∑
t=0

ωvi(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi(t)−v j−M(t−L1+τ1+1) (2.11)

as vi(t) has period N.

Now we observe that (2.9) and (2.10) are again valid for |τ| < L. Therefore, using (2.9),

(2.10) and (2.11) we obtain that

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc0

N−1∑
t=0

ωvi(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j−M(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L) .

Case 5. M ≤ i < 2M, 0 ≤ j < M and τ is even.

Assume that τ = 2τ1. In this case, similar to the proof of Case 3, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j(t+τ1)−c0 +

N−1∑
t=0

ωvi−M(t+L1)−v j(t+L1+τ1)

= ωc1−c0

N−1∑
t=0

ωvi−M(t)−v j(t+τ1) +

N−1∑
t=0

ωvi−M(t)−v j(t+τ1) = 0,

as vi(t) has period N and ωc0−c1 = −1. Hence, we obtain that

∣∣∣Ri, j(τ)
∣∣∣ = 0 ≤ 2ε for (|τ| < 2L) .

14



Case 6. M ≤ i < 2M, 0 ≤ j < M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, similar to the proof of Case 4, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j(t+τ1+L1) +

N−1∑
t=0

ωvi−M(t+L1)−v j(t+τ1+1)−c0

= ωc1

N−1∑
t=0

ωvi−M(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi−M(t)−v j(t−L1+τ1+1)

as vi(t) has period N. By the same reasoning as in Case 4, we have

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc1

N−1∑
t=0

ωvi−M(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi−M(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L) .

Case 7. M ≤ i, j < 2M and τ is even.

Assume that τ = 2τ1. In this case, similar to the proof of Case 1, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j−M(t+τ1)−c1 +

N−1∑
t=0

ωvi−M(t+L1)−v j−M(t+L1+τ1)

=

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1) +

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1),

as vi(t) has period N. By the same reasoning as in Case 1, we have

∣∣∣Ri, j(τ)
∣∣∣ ≤ 2ε for (i , j and |τ| < 2L) or (i = j and 0 , |τ| < 2L) .

Case 8. M ≤ i, j < 2M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, similar to the proof of Case 2, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j−M(t+τ1+L1) +

N−1∑
t=0

ωvi−M(t+L1)−v j−M(t+τ1+1)−c1

= ωc1

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi−M(t)−v j−M(t−L1+τ1+1)
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as vi(t) has period N. By the same reasoning as in Case 2, and using (2.9) and (2.10)

we have

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc1

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi−M(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L) .

As a result of the above eight cases, we obtain that for any two sequences si(t), s j(t) ∈ S we

have

|Ri, j(τ)| ≤ ε for (i , j and |τ| < L) or (i = j and 0 , |τ| < L) .

Therefore, S is a LCZ sequence set having parameters (2N, 2M, L, 2ε), which completes the

proof of Theorem 2.2.2 for the case L is odd.

2.2.2 Case: L is even

In this section we will prove Theorem 2.2.2 for the case L is even. The proof is similar to the

previous case where L is odd. Now assume that L = 2L1 for some integer L1. Then we have

that ⌈L
2

⌉
=

L
2
= L1.

Again for the simplicity of the proof we must consider the following eight cases separately.

Case 1. 0 ≤ i, j < M and τ is even.

Assume that τ = 2τ1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j(t+τ1)−c0 +

N−1∑
t=0

ωvi(t+L1)−v j(t+L1+τ1)

=

N−1∑
t=0

ωvi(t)−v j(t+τ1) +

N−1∑
t=0

ωvi(t)−v j(t+τ1),

as vi(t) has period N. By the same reasoning as in Case 1 of the Case L is odd, we have∣∣∣Ri, j(τ)
∣∣∣ ≤ 2ε for (i , j and |τ| < 2L) or (i = j and 0 , |τ| < 2L) .
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Case 2. 0 ≤ i, j < M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j(t+τ1+L1) +

N−1∑
t=0

ωvi(t+L1)−v j(t+τ1+1)−c0

= ωc0

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1) (2.12)

as vi(t) has period N. Now using the property that V is an (N,M, L, ε) LCZ sequence

set and Definition 2.1.2, for the first summation in (2.12) we have∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ ≤ ε for (i , j and |τ1 + L1| < L) or (i = j and 0 , |τ1 + L1| < L) .

Now replacing L = 2L1 and τ = 2τ1 + 1, the condition

|τ1 + L1| < L

becomes ∣∣∣∣∣τ − 1
2
+

L
2

∣∣∣∣∣ < L,

which implies that

−3L + 1 < τ < L + 1.

Similarly, the condition

0 , |τ1 + L1| < L

becomes

τ1 , −L1 and − 3L + 1 < τ < L + 1,

which implies that

τ , −L + 1 and − 3L + 1 < τ < L + 1.

Therefore the first summation in (2.12) becomes∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ ≤ ε for (|τ| < L − 1) . (2.13)
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For the second summation in (2.12) we have∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣ ≤ ε for (i , j and | − L1 + τ1 + 1| < L) or

(i = j and 0 , | − L1 + τ1 + 1| < L) .

Now replacing L = 2L1 and τ = 2τ1 + 1, the condition

| − L1 + τ1 + 1| < L

becomes ∣∣∣∣∣−L
2
+
τ − 1

2
+ 1

∣∣∣∣∣ < L,

which implies that

−L − 1 < τ < 3L − 1.

Similarly, the condition

0 , | − L1 + τ1 + 1| < L

becomes

τ1 , L1 − 1 and − L − 1 < τ < 3L − 1,

which implies that

τ , L − 1 and − L − 1 < τ < 3L − 1.

Therefore the second summation in (2.12) becomes∣∣∣∣∣∣∣
N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣ ≤ ε for (|τ| < L − 1) . (2.14)

Now combining (2.12), (2.13) and (2.14) we have

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc0

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L − 1) .
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Case 3. 0 ≤ i < M,M ≤ j < 2M and τ is even.

Assume that τ = 2τ1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j−M(t+τ1)−c1 +

N−1∑
t=0

ωvi(t+L1)−v j−M(t+L1+τ1)

= ωc0−c1

N−1∑
t=0

ωvi(t)−v j−M(t+τ1) +

N−1∑
t=0

ωvi(t)−v j−M(t+τ1) = 0,

as vi(t) has period N and ωc0−c1 = −1. Hence, we have∣∣∣Ri, j(τ)
∣∣∣ = 0 ≤ 2ε for (|τ| < 2L) .

Case 4. 0 ≤ i < M,M ≤ j < 2M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, Ri, j(τ) in (2.7) becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi(t)+c0−v j−M(t+τ1+L1) +

N−1∑
t=0

ωvi(t+L1)−v j−M(t+τ1+1)−c1

= ωc0

N−1∑
t=0

ωvi(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi(t)−v j−M(t−L1+τ1+1) (2.15)

as vi(t) has period N.

Now we observe that (2.13) and (2.14) are again valid for |τ| < L − 1. Therefore, using

(2.13), (2.14) and (2.15) we obtain that

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc0

N−1∑
t=0

ωvi(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j−M(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L − 1) .

Case 5. M ≤ i < 2M, 0 ≤ j < M and τ is even.

Assume that τ = 2τ1. In this case, similar to the proof of Case 3, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j(t+τ1)−c0 +

N−1∑
t=0

ωvi−M(t+L1)−v j(t+L1+τ1)

= ωc1−c0

N−1∑
t=0

ωvi−M(t)−v j(t+τ1) +

N−1∑
t=0

ωvi−M(t)−v j(t+τ1) = 0,
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as vi(t) has period N and ωc0−c1 = −1. Hence, we obtain that∣∣∣Ri, j(τ)
∣∣∣ = 0 ≤ 2ε for (|τ| < 2L) .

Case 6. M ≤ i < 2M, 0 ≤ j < M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, similar to the proof of Case 4, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j(t+τ1+L1) +

N−1∑
t=0

ωvi−M(t+L1)−v j(t+τ1+1)−c0

= ωc1

N−1∑
t=0

ωvi−M(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi−M(t)−v j(t−L1+τ1+1)

as vi(t) has period N. By the same reasoning as in Case 4, we have

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc1

N−1∑
t=0

ωvi−M(t)−v j(t+τ1+L1) + ω−c0

N−1∑
t=0

ωvi−M(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c0
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L − 1) .

Case 7. M ≤ i, j < 2M and τ is even.

Assume that τ = 2τ1. In this case, similar to the proof of Case 1, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j−M(t+τ1)−c1 +

N−1∑
t=0

ωvi−M(t+L1)−v j−M(t+L1+τ1)

=

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1) +

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1),

as vi(t) has period N. By the same reasoning as in Case 1, we have∣∣∣Ri, j(τ)
∣∣∣ ≤ 2ε for (i , j and |τ| < 2L) or (i = j and 0 , |τ| < 2L) .

Case 8. M ≤ i, j < 2M and τ is odd.

Assume that τ = 2τ1 + 1. In this case, similar to the proof of Case 2, Ri, j(τ) in (2.7)

becomes,

Ri, j(τ) =
N−1∑
t=0

ωvi−M(t)+c1−v j−M(t+τ1+L1) +

N−1∑
t=0

ωvi−M(t+L1)−v j−M(t+τ1+1)−c1

= ωc1

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi−M(t)−v j−M(t−L1+τ1+1)
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as vi(t) has period N. By the same reasoning as in Case 2, and using (2.13) and (2.14)

we have

∣∣∣Ri, j(τ)
∣∣∣ = ∣∣∣∣∣∣∣ωc1

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1+L1) + ω−c1

N−1∑
t=0

ωvi−M(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤

∣∣∣ωc1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j−M(t+τ1+L1)

∣∣∣∣∣∣∣ + ∣∣∣ω−c1
∣∣∣ ∣∣∣∣∣∣∣

N−1∑
t=0

ωvi−M(t)−v j−M(t−L1+τ1+1)

∣∣∣∣∣∣∣
≤ 1 · ε + 1 · ε = 2ε for (|τ| < L − 1) .

As a result of the above eight cases, we obtain that for any two sequences si(t), s j(t) ∈ S we

have

|Ri, j(τ)| ≤ ε for (i , j and |τ| < L) or (i = j and 0 , |τ| < L − 1) .

Therefore, S is a LCZ sequence set having parameters (2N, 2M, L − 1, 2ε), which completes

the proof of Theorem 2.2.2 for the case L is even.

Therefore we complete the proof of Theorem 2.2.2 for all cases.

For the optimality of our LCZ sequence set the following corollary gives the condition on the

parameters N,M and L.

Corollary 2.2.3 [21, Corollary 13] Assume that the sequence set V in (2.4) is an optimal

(N,M, L, 1) LCZ sequence set with an odd integer L. If the following relation holds among

N,M and L as

N − (L − 2) < ML ≤ N + 1

then the new q-ary LCZ sequence set constructed by Construction 2.2.1 is also optimal in the

sense that larger set cannot exist for given N, L and ε = 2.

2.2.3 Examples

In this section we present two different LCZ sequence sets. The first example is taken from

[21] which corresponds to the LCZ sequence set defined in Construction 2.2.1 with (c0, c1) =

(0, 2). The second example is produced similarly and it corresponds to the LCZ sequence set

defined in Construction 2.2.1 with (c0, c1) = (1, 3).
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In the following examples we will use a LCZ sequence set V with parameters (15, 3, 5, 1)

given in [20]. Let q = 4, n = 4, e = m = 2 and α be a root of the primitive polynomial

x4 + x + 1 ∈ F2[x]. Define

V = {vi(t)|0 ≤ i ≤ 2, 0 ≤ t ≤ 14}

where vi(t) is defined as

vi(t) =

 2Tr(αt) for i = 0,

Tr(αt) ⊕ 2Tr(αt+5i) otherwise.
(2.16)

Note that ⊕ denotes the addition modulo 4 and Tr is the usual trace map from F24 to F2.

Then we see that V contains only the following sequences

v1(t) = [000200220202222],

v2(t) = [022120332301131],

v3(t) = [022320112103313].

Example 2.2.4 [21, Example 12] Using Construction 2.2.1 with V as in (2.16) and (c0, c1) =

(0, 2), we obtain the following LCZ sequence set

S 1 = {si(t)|0 ≤ i ≤ 5, 0 ≤ t ≤ 29}

where si(t) is given as

s0(t) = [020000220200222002220222202020],

s1(t) = [012220132302333021310311103212],

s2(t) = [032220312102111023130133301232],

s3(t) = [222020022220020022022202000000],

s4(t) = [210200330322131001112331301232],

s5(t) = [230200110122313003332113103212].

Note that according to the Tang, Fan, and Matsufuji bound (2.1) the above (30,6,5,2) LCZ

sequence set is optimal, that is, larger set satisfying (2.1) does not exist with given (N, L, ε) =

(30, 5, 2). Clearly,

ML − 1 = 6 ∗ 5 − 1 = 29,
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N(N − 1)
N − ε2

=
30(30 − 1)

30 − 22 ≈ 33,

and

(M + 1)L − 1 = (6 + 1) ∗ 5 − 1 = 34.

Example 2.2.5 Similarly, using Construction 2.2.1 with V as in (2.16) and (c0, c1) = (1, 3),

we obtain the following LCZ sequence set

S 2 = {si(t)|0 ≤ i ≤ 5, 0 ≤ t ≤ 29}

where si(t) is given as

s0(t) = [121010321210323012321232303030],

s1(t) = [113230233312030031011321200222],

s2(t) = [133230013112212033231103002202],

s3(t) = [323030123230121032123212101010],

s4(t) = [311210031332232011213301002202],

s5(t) = [331210211132010013033123200222].

As in the case of previous example, this (30,6,5,2) LCZ sequence set is optimal with respect

to the Tang, Fan, and Matsufuji bound (2.1).

Now we present the correlation distributions of the LCZ sequence sets given in Example 2.2.4

and Example 2.2.5 as follows:

Remark 2.2.6 The LCZ sequence sets in Example 2.2.4 takes the correlation values in the

set

{0,±2,±6,±8,±14,±16, 30,±16ω,−2 ± 16ω,±6 ± 8ω,

±8 ± 8ω,±14 ± 8ω, 14 ± 16ω,±16 ± 8ω} .

On the other hand the LCZ sequence sets in Example 2.2.5 takes the correlation values in the

set

{0,±2, 14,±16, 30,±2ω,±6ω,±8ω,±14ω,±16ω,−2 ± 16ω,

±8 ± 6ω,±8 ± 8ω,±8 ± 14ω, 8 ± 16ω, 14 ± 16ω} .
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The above correlation values show that the obtained (30,6,5,2) LCZ sequence sets in Example

2.2.4 and Example 2.2.5 are different, since they have some different correlation values.

2.3 New class of quaternary LCZ sequence sets

In this section, we present a new class of quaternary LCZ sequence sets. We explicitly com-

pute the full auto-correlations and cross-correlations of the sequences in these sets. We show

that these new sequences are optimal with respect to the Tang, Fan and Matsufiji (2.1) bound.

This section is organized as follows. In Section 2.3.1 we fix some notations and give some

useful technical results. In Section 2.3.2 we present two quaternary LCZ sequence set S1 and

S2 and we compute the correlation distributions of the sequences in these sets. Finally in

Section 2.3.3 we present the constructions of optimal quaternary LCZ sequence sets.

2.3.1 Preliminaries and Some Technical Results

In this part we give some notations and a useful lemma which will be used for computing the

correlation distributions of the sequences presented in this section.

Let n be a positive integer. Recall that Tr is the trace map from F2n to F2. Let ϕ be the

embedding of F2 into Z4 defined as

ϕ : F2 ↪→ Z4

x 7→ x,

that is, ϕ(0) = 0 and ϕ(1) = 1. Now using this embedding let us define tr as

tr : F2n ↪→ Z4

x 7→ ϕ(Tr(x)).
(2.17)

Throughout the rest of this section we assume that ω =
√
−1.

We start with a crucial lemma. It will be used in the proof of Theorem 2.3.3, Theorem 2.3.5

and Theorem 2.3.7.
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Lemma 2.3.1 Let a, b ∈ F∗2n and assume that a , b, a , 1 and b , 1. Then we have the

following identities.

1.
∑

x∈F∗2n

ωtr(x) = 2n−1 − 1 + 2n−1ω, (2.18)

2.
∑

x∈F∗2n

ω3tr(x) = 2n−1 − 1 − 2n−1ω, (2.19)

3.
∑

x∈F∗2n

ωtr(x)+2tr(ax) = −1 (2.20)

4.
∑

x∈F∗2n

ωtr(x)+3tr(ax) = 2n−1 − 1, (2.21)

5.
∑

x∈F∗2n

ωtr(x)+tr(ax) = −1 + 2n−1ω, (2.22)

6.
∑

x∈F∗2n

ω2tr(x)+2tr(ax) = −1, (2.23)

7.
∑

x∈F∗2n

ω3tr(x)+3tr(ax) = −1 − 2n−1ω, (2.24)

8.
∑

x∈F∗2n

ωtr(x)+tr(ax)+2tr(bx) =

 −1 − 2n−1ω, if b = a + 1

−1, otherwise,
(2.25)

9.
∑

x∈F∗2n

ω3tr(x)+3tr(ax)+2tr(bx) =

 −1 + 2n−1ω, if b = a + 1

−1, otherwise.
(2.26)

Proof. First we observe that for any

f (x) : F∗2n → Z4,

if we denote

Ni = |{x ∈ F∗2n : f (x) = i}|, for i ∈ Z4,

then it follows immediately that,

∑
x∈F∗2n

ω f (x) = (N0 − N2) + (N1 − N3)ω. (2.27)

Moreover we know that, for any α ∈ F∗2n , Tr(αx) is a balanced linear Boolean function on F2n ,

that is,

|{x ∈ F2n : Tr(αx) = 0}| = |{x ∈ F2n : Tr(αx) = 1}| = 2n−1, (2.28)
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and note that Tr(0) = 0.

Now (2.18) and (2.19) follows immediately using (2.17), (2.27) and (2.28).

Furthermore, we know that for any α1, α2 ∈ F∗2n , Tr(α1x) and Tr(α2x) are orthogonal linear

Boolean function on F2n , that is,

|{x ∈ F2n : Tr(α1x) = Tr(α2x) = 0}| = 2n−2,

|{x ∈ F2n : Tr(α1x) = Tr(α2x) = 1}| = 2n−2,

|{x ∈ F2n : Tr(α1x) = 0, Tr(α2x) = 1}| = 2n−2,

|{x ∈ F2n : Tr(α1x) = 1, Tr(α2x) = 0}| = 2n−2.

(2.29)

Now using (2.17), (2.27) and (2.29) we obtain (2.20), (2.21), (2.22), (2.23) and (2.24).

Lastly we obtain the last two equations using the orthogonality of linear Boolean functions,

(2.17) and the following observations

tr(x) + tr(ax) + 2tr(bx) =

 tr((1 + a)x) + 2tr(bx), if tr(x)tr(ax) , 1,

2 + 2tr(bx) if tr(x)tr(ax) = 1,

3tr(x) + 3tr(ax) + 2tr(bx) =

 3tr((1 + a)x) + 2tr(bx), if tr(x)tr(ax) , 1,

2 + 2tr(bx) if tr(x)tr(ax) = 1.

�

2.3.2 Quaternary LCZ sequence sets S1 and S2

In this section, we construct quaternary LCZ sequence sets S1 and S2. Also we compute the

correlation distribution of the sequences in the sets S1 and S2. The definition of the set S1 is

as follows:

Definition 2.3.2 Let e, n be positive integers such that e|n and let α and θ be primitive ele-

ments of F2n and F2e , respectively.

Let S1 be the sequence set

S1 = {si(t)|0 ≤ t ≤ 2(2n − 1) − 1, 0 ≤ i ≤ 2e − 2},
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where

s0(t) =

 2tr
(
αt1) , if t = 2t1

2tr
(
αt1+2n−1)

, if t = 2t1 + 1,

and for 1 ≤ i ≤ 2e − 2

si(t) =

 tr
(
αt1) + 2tr

(
αt1θi

)
, if t = 2t1

3tr
(
αt1+2n−1)

+ 2tr
(
αt1+2n−1

θi
)
, if t = 2t1 + 1.

In the following theorem we compute the correlation distribution of the sequences in the set

S1.

Theorem 2.3.3 Let si(t), s j(t) ∈ S1 be two arbitrary sequences and 0 ≤ τ ≤ 2n+1 − 3 be an

integer. Let α and θ be primitive elements of F2n and F2e , respectively. Set a = θi, b = θ j,

β = αb
τ
2c and δ = α2n−1

, where
⌊
τ
2

⌋
is the greatest integer less than τ2 . Then the correlation

distribution of the sequences in the set S1 is as follows:

If τ = 2τ1, then

Ri, j(τ) =



2(2n − 1), if i = j and β = 1

2n − 2, if i , 0, j = 0 and (β = a or β = a + 1)

2n − 2, if i = 0, j , 0 and
(
β =

1
b

or β =
1

b + 1

)

2n − 2, if i , j, i · j , 0 and
(
β =

a
b

or β =
a + 1
b + 1

)
−2, otherwise.
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If τ = 2τ1 + 1, then

Ri, j(τ) =



2(2n − 1), if i = j = 0 and β =
1
δ

2n − 2, if i = j , 0 and
(
β =

a
δ(a + 1)

or β =
a + 1
δa

)

2n − 2, if i , 0, j = 0 and
(
β =

a
δ

or β =
a + 1
δ

)

2n − 2, if i = 0, j , 0 and
(
β =

1
δb

or β =
1

δ(b + 1)

)

2n − 2, if i , j, i · j , 0 and
(
β =

a
δ(b + 1)

or β =
a + 1
δb

)
−2, otherwise.

Proof. In the first part of the proof we compute the correlation function Ri, j(τ) of sequences

si(t), s j(t) ∈ S1 when τ is an even integer with τ = 2τ1.

Similar to the (2.7), Ri, j(τ) can be written as

Ri, j(τ) =
2n+1−3∑

t=0

ωsi(t)−s j(t+τ)

=

2n−2∑
t=0

ωsi(2t)−s j(2t+τ) +

2n−2∑
t=0

ωsi(2t+1)−s j(2t+1+τ)

=

2n−2∑
t=0

ωsi(2t)−s j(2(t+τ1)) +

2n−2∑
t=0

ωsi(2t+1)−s j(2(t+τ1)+1). (2.30)

Now we must consider the following five cases separately.

Case 1. i = j = 0.

In this case, Ri, j(τ) in (2.30) becomes,

R0,0(τ) =
2n−2∑
t=0

ω2tr(αt)−2tr(αt+τ1) +
2n−2∑
t=0

ω
2tr

(
αt+2n−1

)
−2tr

(
αt+τ1+2n−1

)

=
∑

x∈F∗2n

ω2tr(x)−2tr(βx) +
∑

x∈F∗2n

ω2tr(xδ)−2tr(βxδ)

=
∑

x∈F∗2n

ω2tr(x)+2tr(βx) +
∑

x∈F∗2n

ω2tr(x)+2tr(βx). (2.31)
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Here we note that if x runs through F∗2n then δx runs through F∗2n , since δ = α2n−1
is also

a primitive element in F∗2n as gcd(2n−1, 2n − 1) = 1. We will use this property in all of

the below cases. Also we use the addition property in Z4, that is, we use the equality

2tr(x) − 2tr(βx) = 2tr(x) + 2tr(βx) in Z4.

Now if β = 1, then 2tr(βx) + 2tr(x) = 0 for all x ∈ F∗2n . Hence using (2.31), we obtain

R0,0(τ) = (2n − 1) + (2n − 1) = 2(2n − 1).

If β , 1, then using (2.23) and (2.31), we have

R0,0(τ) = (−1) + (−1) = −2.

Case 2. i = j , 0.

In this case, Ri, j(τ) in (2.30) becomes,

Ri,i(τ) =
2n−2∑
t=0

ωtr(αt)+2tr(αtθi)−tr(αt+τ1)−2tr(αt+τ1θi)

+

2n−2∑
t=0

ω
3tr

(
αt+2n−1

)
+2tr

(
αt+2n−1

θi
)
−3tr

(
αt+τ1+2n−1

)
−2tr

(
αt+τ1+2n−1

θi
)

=
∑

x∈F∗2n

ωtr(x)+3tr(βx)+2tr(x(θi+βθi)) +
∑

x∈F∗2n

ω3tr(x)+tr(βx)+2tr(x(θi+βθi)). (2.32)

Now if β = 1, then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθi

))
= 3tr(x) + tr(βx) + 2tr

(
x
(
θi + βθi

))
= 0

for all x ∈ F∗2n . Hence using (2.32), we obtain

Ri,i(τ) = (2n − 1) + (2n − 1) = 2(2n − 1).

If β =
θi

θi + 1
, then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθi

))
= tr(x) + tr(βx),

and

3tr(x) + tr(βx) + 2tr
(
x
(
θi + βθi

))
= 3tr(x) + 3tr(βx).

Similarly, if β =
θi + 1
θi

, then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθi

))
= 3tr(x) + 3tr(βx),
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and

3tr(x) + tr(βx) + 2tr
(
x
(
θi + βθi

))
= tr(x) + tr(βx).

Now using (2.22), (2.24) and (2.32), we obtain that

Ri,i(τ) =
(
−1 − 2n−1ω

)
+

(
−1 + 2n−1ω

)
= −2,

when β ∈
{
θi

θi + 1
,
θi + 1
θi

}
.

Lastly, if β <
{

1,
θi

θi + 1
,
θi + 1
θi

}
, then observing

tr(βx) + 3tr(x) + 2tr
(
x
(
θi + βθi

))
= 3tr(βx) + 3tr(x) + 2tr

(
x
(
β + θi + βθi

))
,

3tr(βx) + tr(x) + 2tr
(
x
(
θi + βθi

))
, = tr(βx) + tr(x) + 2tr

(
x
(
β + θi + βθi

))
and using (2.25), (2.26) and (2.32), we obtain

Ri,i(τ) = (−1) + (−1) = −2.

Case 3. i , 0 and j = 0.

In this case, Ri, j(τ) in (2.30) becomes,

Ri,0(τ) =
2n−2∑
t=0

ωtr(αt)+2tr(αtθi)−2tr(αt+τ1)

+

2n−2∑
t=0

ω
3tr

(
αt+2n−1

)
+2tr

(
αt+2n−1

θi
)
−2tr

(
αt+τ1+2n−1

)

=
∑

x∈F∗2n

ωtr(x)+2tr(x(θi+β)) +
∑

x∈F∗2n

ω3tr(x)+2tr(x(θi+β)). (2.33)

Now if β ∈
{
θi, θi + 1

}
, then using (2.18), (2.19) and (2.33), we obtain

Ri,0(τ) =
(
2n−1 − 1 + 2n−1ω

)
+

(
2n−1 − 1 − 2n−1ω

)
= 2n − 2.

Moreover if β <
{
θi, θi + 1

}
, then observing

3tr(x) + 2tr
(
x
(
θi + β

))
= tr(x) + 2tr

(
x
(
1 + θi + β

))
,

and using (2.20) and (2.33), we obtain

Ri,0(τ) = (−1) + (−1) = −2.
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Case 4. i = 0 and j , 0.

In this case, Ri, j(τ) in (2.30) becomes,

R0, j(τ) =
2n−2∑
t=0

ω2tr(αt)−tr(αt+τ1)−2tr(αt+τ1θ j)

+

2n−2∑
t=0

ω
2tr

(
αt+2n−1

)
−3tr

(
αt+τ1+2n−1

)
−2tr

(
αt+τ1+2n−1

θ j
)

=
∑

x∈F∗2n

ω3tr(βx)+2tr(x(1+βθ j)) +
∑

x∈F∗2n

ωtr(βx)+2tr(x(1+βθ j)). (2.34)

Similar to the Case 3, using (2.18), (2.19), (2.20) and (2.34), we obtain

R0, j(τ) =

 2n − 2, if β ∈
{

1
θ j ,

1
θ j+1

}
−2, otherwise,

Case 5. i , j, i , 0 and j , 0.

In this case, Ri, j(τ) in (2.30) becomes,

Ri, j(τ) =
2n−2∑
t=0

ωtr(αt)+2tr(αtθi)−tr(αt+τ1)−2tr(αt+τ1θ j)

+

2n−2∑
t=0

ω
3tr

(
αt+2n−1

)
+2tr

(
αt+2n−1

θi
)
−3tr

(
αt+τ1+2n−1

)
−2tr

(
αt+τ1+2n−1

θ j
)

=
∑

x∈F∗2n

ωtr(x)+3tr(βx)+2tr(x(θi+βθ j)) +
∑

x∈F∗2n

ω3tr(x)+tr(βx)+2tr(x(θi+βθ j)). (2.35)

Now if β = 1, then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθ j

))
= 3tr(x) + tr(βx) + 2tr

(
x
(
θi + βθ j

))
= 2tr

(
x
(
θi + θ j

))
for all x ∈ F∗2n . Hence using (2.35), we obtain

Ri, j(τ) = (−1) + (−1) = −2.

If β =
θi

θ j , then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθ j

))
= tr(x) + 3tr(βx),

and

3tr(x) + tr(βx) + 2tr
(
x
(
θi + βθ j

))
= 3tr(x) + tr(βx).
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Similarly, if β =
1 + θi

1 + θ j , then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθ j

))
= 3tr(x) + tr(βx),

and

3tr(x) + tr(βx) + 2tr
(
x
(
θi + βθ j

))
= tr(x) + 3tr(βx).

Now using (2.21) and (2.35), we obtain that

Ri, j(τ) =
(
2n−1 − 1

)
+

(
2n−1 − 1

)
= 2n − 2,

when β ∈
{
θi

θ j ,
1 + θi

1 + θ j

}
.

If β =
θi

θ j + 1
, then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθ j

))
= tr(x) + tr(βx),

and

3tr(x) + tr(βx) + 2tr
(
x
(
θi + βθ j

))
= 3tr(x) + 3tr(βx).

Similarly, if β =
θi + 1
θ j , then

tr(x) + 3tr(βx) + 2tr
(
x
(
θi + βθ j

))
= 3tr(x) + 3tr(βx),

and

3tr(x) + tr(βx) + 2tr
(
x
(
θi + βθ j

))
= tr(x) + tr(βx).

Now using (2.22), (2.24) and (2.35), we obtain that

Ri, j(τ) =
(
−1 − 2n−1ω

)
+

(
−1 + 2n−1ω

)
= −2,

when β ∈
{
θi

θ j + 1
,
θi + 1
θ j

}
.

Lastly, if β <
{

1,
θi

θ j ,
1 + θi

1 + θ j ,
θi

θ j + 1
,
θi + 1
θ j

}
, then observing

tr(βx) + 3tr(x) + 2tr
(
x
(
θi + βθ j

))
= 3tr(βx) + 3tr(x) + 2tr

(
x
(
β + θi + βθ j

))
,

3tr(βx) + tr(x) + 2tr
(
x
(
θi + βθ j

))
= tr(βx) + tr(x) + 2tr

(
x
(
β + θi + βθ j

))
,

and using (2.25), (2.26) and (2.35), we obtain

Ri, j(τ) = (−1) + (−1) = −2.
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This completes the proof of theorem for τ is even.

In the second part of the proof we assume that τ is odd, that is, τ = 2τ1 + 1 for some integer

τ1. Similar to the first part of the proof, by considering the same 5 cases we obtain the desired

results.

�

Now we will give the definition of the set S2 as follows.

Definition 2.3.4 Let e, n be positive integers such that e|n, and let α and θ be primitive ele-

ments of F2n and F2e , respectively.

Let S2 be the sequence set

S2 = {si(t)|0 ≤ t ≤ 2(2n − 1) − 1, 2e − 1 ≤ i ≤ 2e+1 − 3},

where

s2e−1(t) =

 2tr
(
αt1) + 2, t = 2t1

2tr
(
αt1+2n−1)

, t = 2t1 + 1,

and for 2e ≤ i ≤ 2e+1 − 3

si(t) =

 tr
(
αt1) + 2tr

(
αt1θi

)
+ 2, t = 2t1

3tr
(
αt1+2n−1)

+ 2tr
(
αt1+2n−1

θi
)
, t = 2t1 + 1.

The following theorem gives the correlation distribution of the sequences in the set S2.

Theorem 2.3.5 Let si(t), s j(t) ∈ S2 be two arbitrary sequences and 0 ≤ τ ≤ 2n+1 − 3 be an

integer. Let α and θ be primitive elements of F2n and F2e , respectively. Set a = θi, b = θ j,

β = αb
τ
2c and δ = α2n−1

. Then the correlation distribution of the sequences in the set S2 is as

follows:
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If τ = 2τ1, then

Ri, j(τ) =



2(2n − 1), if i = j and β = 1

2n − 2, if i , 0, j = 0 and (β = a or β = a + 1)

2n − 2, if i = 0, j , 0 and
(
β =

1
b

or β =
1

b + 1

)

2n − 2, if i , j, i · j , 0 and
(
β =

a
b

or β =
a + 1
b + 1

)
−2, otherwise.

If τ = 2τ1 + 1, then

Ri, j(τ) =



−2(2n − 1), if i = j = 0 and β =
1
δ

−2n + 2, if i = j , 0 and
(
β =

a
δ(a + 1)

or β =
a + 1
δa

)

−2n + 2, if i , 0, j = 0 and
(
β =

a
δ

or β =
a + 1
δ

)

−2n + 2, if i = 0, j , 0 and
(
β =

1
δb

or β =
1

δ(b + 1)

)

−2n + 2, if i , j, i · j , 0 and
(
β =

a
δ(b + 1)

or β =
a + 1
δb

)
2, otherwise.
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Proof. Similar to the (2.7), Ri, j(τ) can be written as

Ri, j(τ) =
2n+1−3∑

t=0

ωsi(t)−s j(t+τ)

=

2n−2∑
t=0

ωsi(2t)−s j(2t+τ) +

2n−2∑
t=0

ωsi(2t+1)−s j(2t+1+τ)

=



2n−2∑
t=0

ωsi(2t)−s j(2(t+τ1)) +

2n−2∑
t=0

ωsi(2t+1)−s j(2(t+τ1)+1) if τ = 2τ1

2n−2∑
t=0

ωsi(2t)−s j(2(t+τ1)+1) +

2n−2∑
t=0

ωsi(2t+1)−s j(2(t+τ1)+2) if τ = 2τ1 + 1

=



2n−2∑
t=0

ωsi−(2e−1)(2t)+2−s j−(2e−1)(2(t+τ1))−2

+

2n−2∑
t=0

ωsi−(2e−1)(2t+1)−s j−(2e−1)(2(t+τ1)+1) if τ = 2τ1

2n−2∑
t=0

ωsi−(2e−1)(2t)+2−s j−(2e−1)(2(t+τ1)+1)

+

2n−2∑
t=0

ωsi−(2e−1)(2t+1)−s j−(2e−1)(2(t+τ1)+2)−2 if τ = 2τ1 + 1

=

 Ri−(2e−1), j−(2e−1)(τ) if τ = 2τ1

−Ri−(2e−1), j−(2e−1)(τ) if τ = 2τ1 + 1.

We complete the proof by using Theorem 2.3.3. �

Now immediately we have the following result.

Theorem 2.3.6 The sets S1 and S2 are quaternary LCZ sequence sets with parameters(
2(2n − 1), (2e − 1),

2n − 1
2e − 1

, 2
)
.

Proof. Let α be a primitive element of F2n and β = αb
τ
2c and δ = α2n−1

= α
1
2 . Then we have

α
τ
2 =

 β if τ is even

δβ if τ is odd.
(2.36)

Now α
τ
2 ∈ F2e if and only if 2n − 1

∣∣∣∣∣τ2 (
2e − 1

)
, which means

2n − 1
2e − 1

∣∣∣∣∣ τ,
as gcd

(
2, 2n − 1

)
= 1 and 2e − 1|2n − 1. Therefore,

α
τ
2 ∈ F2n \ F2e if |τ| <

2n − 1
2e − 1

and α
τ
2 ∈ F2e if |τ| =

2n − 1
2e − 1

.
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We complete the proof using the correlation distributions in Theorem 2.3.3, Theorem 2.3.5,

the Definition 2.1.2 of LCZ sequence set and (2.36). �

Similar to the Theorem 2.3.3 and Theorem 2.3.5 we compute the correlation distribution of

the sequences taken from different sets S1 and S2 in the following theorem.

Theorem 2.3.7 Let si(t) ∈ S1 and s j(t) ∈ S2 be two arbitrary sequences and 0 ≤ τ ≤ 2n+1−3

be an integer. Let α and θ be primitive elements of F2n and F2e , respectively. Set a = θi, b = θ j,

β = αb
τ
2c and δ = α2n−1

. Then the correlation distribution of the sequences si(t) and s j(t) is as

follows:

If τ = 2τ1, then

Ri, j(τ) = R j,i(τ) =



2nω, if i = j , 0 and β =
a + 1

a

−2nω, if i = j , 0 and β =
a

a + 1
2nω, if i , 0, j = 0 and β = a + 1

−2nω, if i , 0, j = 0 and β = a

2nω, if i = 0, j , 0 and β =
1
b

−2nω, if i = 0, j , 0 and β =
1

b + 1

2nω, if i , j, i · j , 0 and β =
a + 1

b

−2nω, if i , j, i · j , 0 and β =
a

b + 1
0, otherwise.
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If τ = 2τ1 + 1, then

Ri, j(τ) = −R j,i(τ) =



−2nω, if i , 0, j = 0 and β =
a + 1
δ

2nω, if i , 0, j = 0 and β =
a
δ

−2nω, if i = 0, j , 0 and β =
1

δ(b + 1)

2nω, if i = 0, j , 0 and β =
1
δb

−2nω, if i , j, i · j , 0 and β =
a + 1
δ(b + 1)

2nω, if i , j, i · j , 0 and β =
a
δb

0, otherwise.

Proof. Similar to the proof of Theorem 2.3.5, Ri, j(τ) can be written as

Ri, j(τ) =
2n+1−3∑

t=0

ωsi(t)−s j(t+τ)

=

2n−2∑
t=0

ωsi(2t)−s j(2t+τ) +

2n−2∑
t=0

ωsi(2t+1)−s j(2t+1+τ)

=



2n−2∑
t=0

ωsi(2t)−s j(2(t+τ1)) +

2n−2∑
t=0

ωsi(2t+1)−s j(2(t+τ1)+1) if τ = 2τ1

2n−2∑
t=0

ωsi(2t)−s j(2(t+τ1)+1) +

2n−2∑
t=0

ωsi(2t+1)−s j(2(t+τ1)+2) if τ = 2τ1 + 1

=



2n−2∑
t=0

ωsi(2t)−s j−(2e−1)(2(t+τ1))−2

+

2n−2∑
t=0

ωsi(2t+1)−s j−(2e−1)(2(t+τ1)+1) if τ = 2τ1

2n−2∑
t=0

ωsi(2t)−s j−(2e−1)(2(t+τ1)+1)

+

2n−2∑
t=0

ωsi(2t+1)−s j−(2e−1)(2(t+τ1)+2)−2 if τ = 2τ1 + 1

=

 R j,i(τ) if τ = 2τ1

−R j,i(τ) if τ = 2τ1 + 1.

We complete the proof using the results obtained in the proof of Theorem 2.3.3. �
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2.3.3 Constructions of Optimal Quaternary LCZ sequence sets

In this section we define a larger set S as a union of the sets S1 and S2 and prove that the set

S is an optimal LCZ sequence set.

Definition 2.3.8 Let S be the sequence set of 2(2e − 1) sequences of period 2(2n − 1) defined

as

S = S1 ∪ S2. (2.37)

We immediately have the following theorem.

Theorem 2.3.9 The set S is a quaternary LCZ sequence set with parameters(
2(2n − 1), 2(2e − 1),

2n − 1
2e − 1

, 2
)
.

Proof. We complete the proof using Theorem 2.3.6, Theorem 2.3.7 and the Definition 2.1.2

of LCZ sequence set. �

Similar to the orthogonal transformation (2.3) described in Section 2.1, we can transform the

LCZ set S (2.37) to the set S′ defined as

S′ = {si(t)|0 ≤ t ≤ 2(2n − 1) − 1, 1 ≤ i ≤ 2e+1 − 3},

where

s0(t) =

 2tr
(
αt1) + 1, t = 2t1

2tr
(
αt1+2n−1)

, t = 2t1 + 1,

s2e−1(t) =

 2tr
(
αt1) + 3, t = 2t1

2tr
(
αt1+2n−1)

, t = 2t1 + 1,

and for 1 ≤ i ≤ 2e+1 − 3 with i , 2e − 1

si(t) =

 tr
(
αt1) + 2tr

(
αt1θi

)
+ ci, t = 2t1

3tr
(
αt1+2n−1)

+ 2tr
(
αt1+2n−1

θi
)
, t = 2t1 + 1.
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provided that ci = 1 for 1 ≤ i ≤ 2e − 2 and ci = 3 for 2e ≤ i ≤ 2e+1 − 3.

We immediately have the following result. We give the result without the proof since the

proof directly follows from the same steps as in the proof of Theorem 2.3.9.

Proposition 2.3.10 The set S′ is a quaternary LCZ sequence set with parameters(
2(2n − 1), 2(2e − 1),

2n − 1
2e − 1

, 2
)
.

These new families are optimal with respect to Tang, Fan and Matsufuji bound (2.1). The

optimality is shown in the following corollary.

Corollary 2.3.11 Let n, e be positive integers such that n ≥ 3, e|n and e , n. Let S be a

quaternary LCZ sequence set with parameters
(
2(2n − 1), 2(2e − 1),

2n − 1
2e − 1

, 2
)
. Then the set

S is optimal with respect to Tang, Fan and Matsufuji bound (2.1).

Proof. Here we show that if e, n satisfies the above conditions, larger set satisfying (2.1)

cannot exist for a given (N, L, ε) =
(
2(2n − 1),

2n − 1
2e − 1

, 2
)
.

Let S be a queternary LCZ sequence set with parameters (N,M, L, ε). Then, clearly we have

ML − 1 = 2(2e − 1)
2n − 1
2e − 1

− 1 = 2n+1 − 3,

N(N − 1)
N − ε2

=
2(2n − 1)(2(2n − 1) − 1)

2(2n − 1) − 22 = 2n+1 − 3 +
2n+3 − 12
2n+1 − 6

,

and

(M + 1)L − 1 =
(
2(2e − 1) + 1

) 2n − 1
2e − 1

− 1 = 2n+1 − 3 +
2n − 1
2e − 1

.

Clearly,
2n+3 − 12
2n+1 − 6

<
2n − 1
2e − 1

for n ≥ 3, e|n and e , n, which completes the proof. �

We give an example of family S and an example of family S′ for some specific parameters.

Example 2.3.12 Let n = 4, e = 2 and α be a primitive element in F24 , that is, the root of

x4 + x + 1 ∈ F2[x] and θ be a primitive element in F22 . Then S is an optimal quaternary LCZ

sequence set with parameters (30, 6, 5, 2) defined as

S = {si(t)|0 ≤ i ≤ 5, 0 ≤ t ≤ 29}
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where

s0(t) = [000200220202222000200220202222],

s1(t) = [022120132301333022320312103111],

s2(t) = [022320312103111022120132301333],

s3(t) = [202220022222020020002200000202],

s4(t) = [220100330321131002122332301131],

s5(t) = [220300110123313002322112103313].

Remark 2.3.13 The LCZ sequence set in Example 2.3.12 has correlation values in the set

{0,±2,±14,±30,±16ω}.

The above correlation values show that the obtained (30,6,5,2) LCZ sequence set in Example

2.3.12 is different from the LCZ sequence sets in Example 2.2.4 and Example 2.2.5, since they

have some different correlation values.

Example 2.3.14 By transforming the LCZ set S in Example 2.3.14 to the set S′, we obtain

the following optimal quaternary LCZ sequence set with parameters (30, 6, 5, 2)

S′ = {si(t)|0 ≤ i ≤ 5, 0 ≤ t ≤ 29}

where

s0(t) = [101210321212323010301230303232],

s1(t) = [123130233311030032021322200121],

s2(t) = [123330013113212032221102002303],

s3(t) = [303230123232121030103210101212],

s4(t) = [321110031331232012223302002101],

s5(t) = [321310211133010012023122200323].

Remark 2.3.15 The LCZ sequence set in Example 2.3.14 has correlation values in the set

{0,−2, 14,±16, 30, 2ω,−14ω,±16ω,−30ω}.

The above correlation values show that the obtained (30,6,5,2) LCZ sequence set in Example

2.3.14 is different from the LCZ sequence sets in Example 2.2.4, Example 2.2.5 and Example

2.3.12, since they have some different correlation values.
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CHAPTER 3

HIGHLY DEGENERATE QUADRATIC FORMS OVER F2k

Let q = 2t for some positive integer t. For positive integer k let Fq and Fqk denote the finite

fields with q and qk elements. Let TrFqk /Fq denote the trace map from Fqk to Fq. We denote

TrFqk /Fq by Tr throughout this chapter.

Let R(x) = ε0x+ε1xq+ · · ·+εhxqh
∈ Fqk [x] be an Fq-linearized polynomial, with h is a positive

integer and εh , 0. We consider the quadratic forms of the form

QR(x) = Tr (xR(x)) .

These quadratic forms have many applications in coding theory, cryptography and related

areas [28, 35, 43]. For example, they are used to construct authentication codes [5, 29, 30],

to construct certain sequences [19, 23, 24], to construct curves with many rational points

[3, 6, 7, 9]. In these applications one has to find the number of solutions of the equation

QR(x) = 0 in Fqk .

Let N(k) denote the cardinality

N(k) =
∣∣∣∣{x ∈ Fqk | QR(x) = 0

}∣∣∣∣ .
In this chapter we determine N(k) exactly if the coefficients of R(x) are in F4 and correspond-

ing quadratic form QR(x) has codimension 2 radical. We apply these results to obtain maximal

and minimal Artin-Schreier curves.

Here we note that N(k) is known up to certain parameters. From [26, Theorem 6.30, Theorem

6.32] it is known that

N(k) = qk−1 + Λ(QR)(q − 1)q
k+w

2 −1,
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where w is dimension of the associated radical and Λ(QR) is the invariant (or discriminant) of

the associated quadratic form QR with Λ(QR) ∈ {0, 1,−1}.

There are some attempts to determine Λ(QR) and w explicitly for some special choices of

R(x). For the case k is even, in [3] the authors considered smooth, geometrically irreducible

projective curves over Fqk which are given by the plane equations of the form

yq − y = xR(x). (3.1)

Using suitable bilinear forms the number of Fqk -rational points of the curves in the form

(3.1) up to certain invariants including the radical and the discriminant of the corresponding

bilinear form is determined in [3, Theorem 3.1]. However it seems difficult to determine these

invariants and hence the number of Fqk -rational points of the curves in the form (3.1) exactly

and explicitly in general. A general result for the case R(x) = εxqh
, only a single term, is

given in [23, 31]. Furthermore, in [6] the author determines Λ(QR) and w explicitly for all

R(x) having coefficients in F2. We extend the results in [6] by using similar techniques.

3.1 Preliminaries

In this section we recall some preliminaries and give some useful results which will be used

in this chapter.

Let R(x) = ε0x + ε1xq + · · · + εhxqh
∈ Fqk [x] be an Fq-linearized polynomial with h ≥ 0 and

εh , 0.

Let BR be the symmetric bilinear form on the Fq-linear vector space Fqk defined as

BR : Fqk × Fqk → Fq

(x, y) 7→ Tr (xR(y) + yR(x)) .

Let QR be the quadratic form defined as

QR : Fqk → Fq

x 7→ Tr (xR(x)) .

Let WR be the radical of BR,

WR = {x ∈ Fqk : BR(x, y) = 0 for each y ∈ Fqk }.
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Let w be the Fq-dimension

w = dimFq WR

of WR. It is known that the codimension of the radical, k − w is always even [6].

Now we have the following useful results from [6].

Proposition 3.1.1 ([6]) Let QR be a quadratic form from Fqk to Fq. Let w = dimFq WR and

h = k−w
2 . Then there exist c, a1, b1, . . . , ah, bh ∈ Fqk , independent over Fq, such that

QR(x) =



Tr(cx)2 +

h∑
i=1

Tr(aix)Tr(bix) if Λ(QR) = 0,

h∑
i=1

Tr(aix)Tr(bix) if Λ(QR) = 1,

Tr(a1x) + Tr(b2x) +
h∑

i=1

Tr(aix)Tr(bix) if Λ(QR) = −1.

Theorem 3.1.2 ([6]) Let Q be a quadratic form from Fqk to Fq and let m = bk/2c. Then there

exist unique εi ∈ Fqk , 0 ≤ i ≤ m, such that

Q(x) = Tr

x
m∑

i=0

εixqi

 ,
except when k is even in which case εm is only unique modulo Fqm .

Throughout the remainder of this chapter we assume that k = 2m for some positive integer m,

q = 2t for some even integer t and

R(x) = ε0x + ε1xq + · · · + εm−1xqm−1
∈ Fqk [x]

be an Fq-linearized polynomial, with εi ∈ F4, 0 ≤ i ≤ m − 1. We consider the quadratic forms

of the form

QR(x) = Tr (xR(x)) .

Using Proposition 3.1.1 and Theorem 3.1.2 we have the following important result. Note that

the following result is an extension of the result in [6, Corollary 1.3], the coefficients εi’s are

taken from F4 instead of F2 which is the case in [6, Corollary 1.3].
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Corollary 3.1.3 Let R(x) =
m−1∑
i=0

εixqi
, where each εi ∈ F4 and k = 2m for some positive

integer m. Then QR has radical of dimension k − 2 (codimension 2) if and only if there exist

independent a, b, c ∈ Fqk such that

εi = aqi
b + abqi

for 1 ≤ i ≤ m − 1, (3.2)

ε0 =


c2 + ab if Λ(QR) = 0

ab if Λ(QR) = 1

a2 + ab + sb2 if Λ(QR) = −1

(3.3)

and

aqm
b ∈ Fqm . (3.4)

Here s ∈ Fq is an element with TrFq/F2(s) = s + s2 + · · · + sq/2 = 1.

Proof. The same proof of [6, Corollary 1.3] works if we take the coefficients εi’s from F4

instead of F2. �

3.1.1 Some Useful Results

In this section we present some technical lemmas which are useful in the proof of Theorem

3.2.1.

Lemma 3.1.4 [6] Let u = x + y and v = xy. Then

x2n+1 + y2n+1 = u2n+1 +

n−1∑
i=0

u2n+1−2i+1
v2i
.

Lemma 3.1.5 Let q = 2t for some even integer t. Then there exist a, b ∈ Fq2 linearly inde-

pendent over Fq such that

a2 + ab + sb2 = 0

aqb + abq = e,

where s ∈ Fq is an element with TrFq/F2(s) = 1 and e ∈ F4\{0} .
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Proof. Fix s ∈ Fq with TrFq/F2(s) = 1 and let d ∈ F4\{0}. Let α ∈ Fq2 be a root of x2 + x + s

and β ∈ Fq2 be a primitive element. Now we have

α2 + α + s = 0. (3.5)

Taking continuous squares of (3.5) gives

α4 + α2 + s2 = 0,

α8 + α4 + s4 = 0,
...

αq + αq/2 + sq/2 = 0.

(3.6)

Adding each equations in (3.5) and (3.6) we have

αq + α + s + s2 + · · · + sq/2 = 0,

which implies

αq + α + TrFq/F2(s) = 0,

that is,

αq + α = 1. (3.7)

Therefore α < Fq and x2 + x + s is irreducible over Fq.

Set b = dβq−1 and a = αb. As
a
b
= α < Fq, a and b are linearly independent over Fq. Now,

a2 + ab + sb2 = b2
(
a2

b2 +
a
b
+ s

)
= b2(α2 + α + s)

= 0,

and using (3.7)

aqb + abq = bq+1((a/b)q + a/b)

= (dβq−1)q+1 (
αq + α

)
= dq+1βq2−1 (

αq + α
)

= d2,

as d ∈ F4. Hence, we obtain the desired result. �
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Lemma 3.1.6 Let q = 2t for some even integer t. Then there exist a, b ∈ Fq2 linearly inde-

pendent over Fq such that

a2 + ab + sb2 = d

aqb + abq = d,

where s ∈ Fq is an element with TrFq/F2(s) = 1 and d ∈ F4\{0} .

Proof. Fix s ∈ Fq with TrFq/F2(s) = 1. Then TrFq/F2(s + 1) = TrFq/F2(s) = 1 as q = 2t for

some even integer t. Thus x2 + x+ s+ 1 is irreducible over Fq by the same reasoning as in the

proof of Lemma 3.1.5. Let β ∈ Fq2 be a root of x2 + x + s + 1, that is,

β2 + β + s + 1 = 0, (3.8)

and therefore

βq + β = TrFq/F2(s + 1) = 1. (3.9)

Set ai = diβ and bi = di, where i ∈ {1, 2, 3} and d ∈ F4\{0}. As
ai

bi
= β < Fq, ai and bi are

linearly independent over Fq. Now using (3.8)

ai
2 + aibi + sbi

2 = d2i(β2 + β + s)

= d2i

and using (3.9)

ai
qbi + aibi

q =
(
di

)q+1
(βq + β)

= d2i,

as d ∈ F4. Hence, we obtain the desired results. �

Lemma 3.1.7 Let q = 4r for some odd integer r. Then there exist a, b ∈ Fq2 linearly indepen-

dent over Fq such that

ab = d

aqb + abq = de,

where d ∈ F4\{0} and e ∈ F4\{0, 1}.
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Proof. Let β ∈ Fq2 be primitive. Set ai = β
i q2−1

5 and bi = dβ(5−i) q2−1
5 = da−1

i , where i ∈ {1, 2}.

As
bi

ai
= da−2

i < Fq, ai and bi are linearly independent over Fq. Now,

aibi = aida−1
i = d

aqb + abq = aibi(a
q−1
i + bq−1

i ) = de′,

where

(e′)4 =
(
aq−1

i + bq−1
i

)4

=

(
β4i q2−1

5

)q−1

+
(
d4(q−1)

) (
β4(5−i) q2−1

5

)q−1

=

(
β(5−i) q2−1

5

)q−1

+

(
βi q2−1

5

)q−1

=

(
dβ(5−i) q2−1

5

)q−1

+

(
βi q2−1

5

)q−1

= e′.

since q = 4r we have 3|q − 1, that is, dq−1 = 1. Also, we have e′ , 1. If e′ = 1, then we

have 1 = x + x−1 where x = aq−1
i . So x2 + x + 1 = 0, which is not possible since ai and bi are

linearly independent over Fq. So by choosing i = 1 and i = 2, we obtain the desired results.

�

Lemma 3.1.8 Let q = 4r for some even integer r. Then there exist a, b ∈ Fq2 linearly inde-

pendent over Fq such that

a2 + ab + sb2 = de

aqb + abq = d,

where s ∈ Fq is an element with TrFq/F2(s) = 1 and d ∈ F4\{0} and e ∈ F4\{0, 1}.

Proof. Fix s ∈ Fq with TrFq/F2(s) = 1 and let e ∈ F4\{0, 1}. Then TrFq/F2(s+e) = TrFq/F2(s) =

1 as r is even. Thus x2 + x+ s+ e is irreducible over Fq by the same reasoning as in the proof

of Lemma 3.1.5. Let β ∈ Fq2 be a root x2 + x + s + e,

β2 + β + s + e = 0, (3.10)

and therefore

βq + β = TrFq/F2(s + e) = 1. (3.11)
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Set ai = diβ and bi = di, where i ∈ {1, 2} and d ∈ F4\{0}. As
ai

bi
= β < Fq, ai and bi are

linearly independent over Fq. Now using (3.10) and (3.11) we have

ai
2 + aibi + sbi

2 = d2i(β2 + β + s) = ed2i

ai
qbi + aibi

q = d2i(βq + β) = d2i.

Therefore by choosing i = 1 and i = 2, we obtain the desired results. �

Lemma 3.1.9 [6] Let v = 23r
and let

gv(x) = xv+1
(
1 + x−2 + x−4 + · · · + x−v

)
+ 1. (3.12)

Let y be a root of gv(x) in some extension of Fq. Then

1. y ∈ Fv3\Fv,

2. y2v + yv+1 + y2 = 1,

3. yv2+1 + y2v = 1,

4. yv2+v + y2 = 1.

Lemma 3.1.10 Let q = 2t for some even integer t and 3|k. Then there exist a, b, c ∈ Fq3

linearly independent over Fq such that

c2 + ab = d

aqb + abq = e

aq2
b + abq2

= e

aq3
b + abq3

= 0,

where d ∈ F4, e ∈ F4\{0} and d , e.

Proof. This proof is similar to a part of the proof of [6, Theorem 2.4]. The differences are the

appropriate choices of a, b and c.

Let t = 3rt0 for some positive integers r and t0 with gcd(3, t0) = 1. Set v = 23r
so that

q = 2t = vt0 . Let y be a root of the polynomial gv defined in (3.12). Then by Lemma 3.1.9

(part 1.) y ∈ Fv3 ⊆ Fq3 ⊆ Fqk .
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Set a = α1yv, b = α1y and c = α1(yv + y) + α2 for some α1, α2 ∈ F4\{0}.

Now, we first show that a, b, c are linearly independent over Fq. If not then α2 is in the Fq-

span of a and b, that is, 1 is in the Fq-span of a and b. Hence a = gb + h for some g, h ∈ Fq,

that is, α1yv = g(α1y) + h. Then using Lemma 3.1.9 (part 2.) we obtain

1 = y2v + yv+1 + y2

= α−2
1 (α1gy + h)2 + (α1gy + h)y + y2

= (g2 + α1g + 1)y2 + hy + (α−2
1 h2). (3.13)

Now, y < Fv by Lemma 3.1.9 (part 1.), and so has degree 3 over Fv. As gcd(3, t0) = 1, y

has degree 3 over Fq = Fvt0 as well. Thus 1, y, y2 are independent over Fq. Then (3.13) gives

h = 0, and α−2
1 h2 = 1, that is, h = α1 ∈ F4\{0}, a contradiction. Thus a, b, c are independent

over Fq.

Now, we compute

c2 + ab =
(
α1(yv + y) + α2

)2
+ α2

1yv+1

= α2
1 + α2 by Lemma 3.1.9 (part 2.).

Similarly, for the other equations we use again Lemma 3.1.9 and the following observation

yq = yvt0
=

 yv if t0 ≡ 1 mod 3,

yv2
if t0 ≡ 2 mod 3,

since y ∈ Fv3\Fv by Lemma 3.1.9 (part 1.). Therefore,

aqb + abq = α2
1

aq2
b + abq2

= α2
1

aq3
b + abq3

= 0.

Hence, we obtain the desired results. �

Lemma 3.1.11 Let q = 2t for some even integer t and 3|k. Then there exist a, b, c ∈ Fq3

linearly independent over Fq such that

ab = d

aqb + abq = d

aq2
b + abq2

= d

aq3
b + abq3

= 0,
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where d ∈ F4\{0}.

Proof. This proof is similar to a part of the proof of [6, Theorem 2.4]. The differences are the

appropriate choices of a, b and c.

Let γ be a primitive element of Fq3 . As t is even, q = 2t ≡ 1 mod 3, and so 3|q2 + q + 1.

Now, set ϕ = γ(q2+q+1)/3. Then ϕ has order 3(q − 1) so that

ϕ2(q−1) + ϕq−1 + 1 = 0. (3.14)

Set a = αϕ−2 and b = αϕ2 for some α ∈ F4\{0}. Then a, b are linearly independent over Fq as
b
a = ϕ

4 and ϕ4(q−1) , 1, so that b
a < Fq. Then, using (3.14) and ϕ−2(q−1) = ϕ(q−1) we get

ab = α2

aqb + abq = αq+1ϕ−2(q−1) + αq+1ϕ2(q−1) = α2

aq2
b + abq2

= αq2+1ϕ−2(q2−1) + αq2+1ϕ2(q2−1) = α2

aq3
b + abq3

= 0.

Hence, we obtain the desired results. �

Lemma 3.1.12 Let q = 4r for some even integer r and 5|k. Then there exist a, b ∈ Fq5 linearly

independent over Fq such that

ab = α0,

aqb + abq = α1,

aq2
b + abq2

= α2,

where α0, α1, α2 ∈ F4\{0} and all are different.

Proof. As 5|k, we have Fq5 ⊆ K and since r is even we have 5|q4 + q3 + q2 + q + 1. Now, let

F∗q5 =< γ > and define β = γ
q4+q3+q2+q+1

5 . Then order(β) = 5(q − 1).

Now, set β1 = β
3(q−1) + β2(q−1) and β2 = β

q−1 + β4(q−1). As (βq−1)5 = 1, we obtain that

β1 + β2 = 1. Also, we have β4
1 = β

12(q−1) + β8(q−1) = β1 and similarly β4
2 = β2. Moreover, we

know that β1 , β2, β1 , 1 and β2 , 1.

Set a = eβ and b = eβ−1 with e ∈ F4\{0}. They are independent over Fq5 as (a/b)q−1 =

β2(q−1) , 1.
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Now, we compute

ab = e2,

aqb + abq = e2(βq−1 + β1−q) = e2β2,

aq2
b + abq2

= e2((βq−1)q+1 + (β1−q)1+q) = e2(β2(q−1) + β3(q−1)) = e2β1,

which completes the proof. �

Lemma 3.1.13 Let v = 45r
and let

fv(x) = xv+1
(
1 + ex−2 + e2x−4 + ex−8 + e2x−16 + · · · + e2x−v

)
+ d, (3.15)

where e, d ∈ F4\{0} and e , d. Let y be a root of fv(x) in some extension of Fq. Then

1. y ∈ Fv5\Fv,

2. y2v + de2yv+1 + y2 = d2e2,

3. yv2+1 + y2v = d2e2,

4. yv3+1 + yv2+v = e.

Proof. We have fv(y) = 0, that is,

1 + ey−2 + e2y−4 + ey−8 + · · · + e2y−v = dy−(v+1). (3.16)

Squaring (3.16) we get

1 + e2y−4 + ey−8 + e2y−16 + · · · + ey−2v = d2y−2(v+1). (3.17)

Now, adding (3.16) and (3.17), we obtain

ey−2 + ey−2v = dy−(v+1) + d2y−2(v+1). (3.18)

Then multiplying (3.18) by e2y2v+2 we get (2).

Now take the square of (2) and multiply the result by y−4 to get

y4(v−1) + d2ey2(v−1) + 1 = dey−4. (3.19)

Now, using (2) and (3.19) we get

y4(v−1) = yv−1 + dy−2 + d2e + dey−4 + 1. (3.20)
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Now, we can take the squares of (3.20) until to obtain yv(v−1) on the left hand side of the

equation. At the end of this process we get

yv(v−1) = yv−1 + de2(ey−2 + e2y−4 + · · · + e2y−v) + d2e + 1. (3.21)

Now, using (3.16) and (3.21) we obtain

yv2−v + yv−1 = d2e2y−(v+1). (3.22)

Note that, on the right hand side of the last equation we have the term de2 + d2e + 1 which is

0 in F4. Then multiplying (3.22) by yv+1 we get (3).

Now using (2) and (3) we have

yv2+1 = de2yv+1 + y2, (3.23)

and multiplying (3.23) by y−(v+1) we get

yv2−v = y−v+1 + de2. (3.24)

On the other hand, taking the v-th power of (3.22) and substituting yv2−v as in (3.22) we get

yv3−v2
+ yv−1 = d2e2y−(v+1) + d2e2y−(v2+v). (3.25)

Now multiplying (3.25 ) by yv2+1 and using (3.24) we get (4).

Now using the above results we will show (1).

Taking the v-th power of (3.24) and multiplying the results by yv2+v we get

yv3+v + de2yv2+v = y2v. (3.26)

Now multiplying (3.26) by y−v+1 and taking the v-th power of the result we get

yv4+v + de2yv3+v = yv2+v. (3.27)

Now combining (3.26) and (3.27) we get

yv4+v + (d2e + 1)yv2+v = de2y2v. (3.28)

Then multiplying (3.28) by y−v+1 and taking the v-th power of the result we get

yv5+v + (d2e + 1)yv3+v = de2yv2+1. (3.29)
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Again using (3.26) and multiplying the result by y−v we get

yv5
= (d2e + 1)yv + yv2

. (3.30)

Then using (3.23) and (3.30) we obtain that yv5
= y, that is, y ∈ Fv5 .

Lastly, if y ∈ Fv, then we have yv2+1 + y2v = (yv)v · y + (yv)2 = y2 + y2 = 0, which contradicts

with (3). Thus y < Fv. Therefore we obtain the desired results.

�

3.2 Main Results

In this section we first give our main result in Theorem 3.2.1. We determine Λ(QR) and w

explicitly for all R(x) having coefficients in F4, which extend the results in [6]. In the proof

of Theorem 3.2.1 we use the results obtained in Section 3.1.1 and we use similar arguments

with the the proof of Theorem 2.4 in [6].

Define

A j(ε1, ε2, . . . , ε j−1; x) =
m−1∑

i=1, j-i
ε(i mod j)xqi

.

Now we are ready to state our main result.

Theorem 3.2.1 Let R =
m−1∑
i=0

εixqi
, where each εi ∈ F4 and k = 2m. Then QR has radical of

dimension k − 2 (codimension 2) if and only if

1. 4|k and R = dx + A2(ε; x), where d ∈ F4 and ε ∈ F4\{0} or

2. 3|k and R = dx + A3(ε, ε; x), where d ∈ F4 and ε ∈ F4\{0} or

3. 5|k and R = dx + A5(ε1, ε2, ε2, ε1; x), where d ∈ F4 and ε1, ε2 ∈ F4\{0} with ε1 , ε2.

The classification in these cases is given in Table 3.1.

Proof. In the first part of the proof we need to find all extensions Fqk , all independent a, b, c ∈

Fqk , and all εi, that satisfy (3.3) for i = 0, (3.2) for 1 ≤ i ≤ m − 1 and (3.4).

53



Table 3.1: Invariants of quadratic form QR(x), where R(x) has coefficients in F4.

k q R Λ(QR)
4|k 4r, r odd dx + A2(ε; x), d , 0 and d , ε 1
4|k 4r, r odd dx + A2(ε; x), d = 0 or d = ε -1
4|k 4r, r even dx + A2(ε; x) -1
3|k 4r dx + A3(ε, ε; x), d = ε 1
3|k 4r dx + A3(ε, ε; x), d , ε 0
5|k 4r, r even dx + A3(ε1, ε2, ε2, ε1; x), d , 0, d , ε1, d , ε2 1
5|k 4r, r odd dx + A3(ε1, ε2, ε2, ε1; x), d , 0, d , ε1, d , ε2 -1
5|k 4r dx + A3(ε1, ε2, ε2, ε1; x), d = 0 or d = ε1 or d = ε2 0

For 1 ≤ i ≤ m − 1 we need the solutions of εi = aqi
b + abqi

. Set

u = aq−1 + bq−1 and v = ab.

Then from (3.2) we have uv = ε1. Now, if ε1 = 0, then

0 = uv =
(
aq−1 + bq−1

)
ab

which means either a = 0, b = 0 or aq−1 = bq−1 (and so
(a
b

)q−1
= 1, that is, a = λb for some

λ ∈ Fq). This contradicts with the assumption that a and b are linearly independent over Fq.

Therefore ε1 , 0. So we have u =
ε1
v

.

Now using (3.2) we have

ε2 = aq2
b + abq2

= ab
((

aq−1
)q+1
+

(
bq−1

)q+1
)

= v

uq+1 +

t−1∑
i=0

uq+1−2i+1
(vq−1)2i

 , (3.31)

by using Lemma 3.1.4. Then multiplying (3.31) by vq, we obtain

vqε2 = ε
q+1
1 +

t−1∑
i=0

ε
q+1−2i+1

1

(
vq+1

)2i

. (3.32)

Then we must consider the following 3 cases.

Case 1. Assume that ε1 ∈ F4\{0} and ε2 = 0.
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Using (3.32) we have

0 = ε
q+1
1 +

t−1∑
i=0

ε
q+1−2i+1

1

(
vq+1

)2i

= ε1
2 + vq+1 + ε1

(
vq+1

)2
+

(
vq+1

)4
+ ε1

(
vq+1

)8
+ · · · + ε1

(
vq+1

)q/2
. (3.33)

Here we note that as ε1 ∈ F4\{0} we have

ε
q+1
1 = ε

q
1ε1 = ε

2
1 .

Now, squaring (3.33) gives

0 = ε1 +
(
vq+1

)2
+ ε21

(
vq+1

)4
+

(
vq+1

)8
+ ε21

(
vq+1

)16
+ · · · + ε21

(
vq+1

)q
. (3.34)

Adding ε1 times (3.34) to (3.33) we have

vq+1 +
(
vq+1

)q
= 0,

which implies that

vq2−1 = 1.

So, we have v = ab ∈ Fq2 . As 0 = ε2 = aq2
b + abq2

, we have
(a
b

)q2−1
= 1, that

is,
a
b
∈ Fq2 . Now using ab,

a
b
∈ Fq2 we obtain that a, b ∈ Fq2 . Now, since a and

b are linearly independent over Fq, we must have at least one of a, b ∈ Fq2\Fq. Say

a ∈ Fq2\Fq. So if a ∈ Fqk then 2|k.

Now, using (3.2) and a, b ∈ Fq2 , we obtain that

εi+2 =

 aqi
b + abqi

= ab + ba = 0 if i is even

aqi
b + abqi

= aqb + abq = ε1 if i is odd

for i ≥ 1. Therefore, R = dx + A2(ε1; x), where d ∈ F4 and ε1 ∈ F4\{0}.

Lastly, recall that k = 2m. So we have to check (3.4). If m is even then

aqm
b = ab ∈ Fq2 ⊆ Fqm .

On the other hand if m is odd then

aqm
b = aqb = aq−1v =

ε1aq−1

u
∈ Fq2\Fq,

so that aqm
b < Fqm . Hence, to have a solution in Fqk we must have that m is even, that

is, 4|k.
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Case 2. Assume that ε1, ε2 ∈ F4\{0} and ε2 = ε1.

Using (3.32) we have

ε1vq = ε1
2 + vq+1 + ε1

(
vq+1

)2
+

(
vq+1

)4
+ ε1

(
vq+1

)8
+ · · · + ε1

(
vq+1

)q/2
. (3.35)

Squaring (3.35) gives

(
ε1vq)2

= ε1 +
(
vq+1

)2
+ ε21

(
vq+1

)4
+

(
vq+1

)8
+ · · · + ε21

(
vq+1

)q
. (3.36)

Now adding ε1 times (3.36) to (3.35) we have

ε1vq + v2q = vq+1 + vq2+q (3.37)

Now dividing each side of (3.37) by vq we obtain

ε1 + vq = v + vq2
(3.38)

Taking q-th power of (3.38) gives

ε1 + vq2
= vq + vq3

(3.39)

Adding (3.38) and (3.39) we have

vq3
= v.

Moreover, (3.38) gives TrFq3/Fq(v) = ε1.

Now, set y0 = ε
2
1vaq−1 and y1 = ε

2
1vbq−1. Since

y0 + y1 = ε
2
1v

(
aq−1 + bq−1

)
= ε21vu = 1,

and y0y1 = ε1vq+1, y0 and y1 are roots of

y2 + y + ε1vq+1 ∈ Fq3[y].

As

TrFq3/F2

(
ε1vq+1

)
=

t−1∑
i=0

(
ε1vq+1

)2i

+

t−1∑
i=0

(
ε1vq+1

)q2i

+

t−1∑
i=0

(
ε1vq+1

)q22i

=
(
1 + ε21vq

)
+

(
1 + ε21vq

)q
+

(
1 + ε21vq

)q2

= 1 + ε21TrFq3/Fq(v)

= 0.
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Using [26, Corollary 3.79], we obtain that y2+y+ ε1vq+1 has its roots in Fq3 . Therefore,

aq−1 and bq−1 are in Fq3 .

Now, using y2 = y + ε1vq+1, we get

yq = y + ε1vq+1 +
(
ε1vq+1

)2
+ · · · +

(
ε1vq+1

)q/2
,

which immediately gives

yq = y + ε21vq + 1 (3.40)

and

yq2
= y + ε21v + 1. (3.41)

Using, (3.40) and (3.41) we obtain that yq2+q+1 = vq2+q+1, that is, aq3−1 = 1 = bq3−1.

Hence, a, b ∈ Fq3 . Therefore, using (3.2) and a, b ∈ Fq3 , we obtain that

ε3 = aq3
b + abq3

= ab + ab = 0,

and

εi+3 =


aqi

b + abqi
= ab + ba = 0 if i ≡ 0 mod 3

aqi
b + abqi

= aqb + abq = ε1 if i ≡ 1 mod 3

aqi
b + abqi

= aq2
b + abq2

= ε2 = ε1 if i ≡ 2 mod 3

for i ≥ 1. Therefore, R = dx + A3(ε1, ε1; x), where d ∈ F4 and ε1 ∈ F4\{0}. Again,

similar to the previous case, we must have at least one of a, b ∈ Fq3\Fq, since they are

linearly independent over Fq. Say a ∈ Fq3\Fq. So if a ∈ Fqk then 3|k. Moreover, as

k = 2m and 3|k we have 3|m. Then (3.4) is satisfied since

aqm
b ∈ Fq3 ⊆ Fqm .

Case 3. Assume that ε1, ε2 ∈ F4\{0} and ε2 , ε1.

Using (3.32) we have

ε2vq = ε1
2 + vq+1 + ε1

(
vq+1

)2
+

(
vq+1

)4
+ ε1

(
vq+1

)8
+ · · · + ε1

(
vq+1

)q/2
. (3.42)

Squaring (3.42) gives

(
ε2vq)2

= ε1 +
(
vq+1

)2
+ ε21

(
vq+1

)4
+

(
vq+1

)8
+ · · · + ε21

(
vq+1

)q
. (3.43)
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Now adding ε1 times (3.43) to (3.42) we have

ε2vq + ε1ε
2
2v2q = vq+1 + vq2+q (3.44)

Now dividing each side of (3.44) by vq we obtain

ε2 + ε1ε
2
2vq = v + vq2

(3.45)

Taking q-th powers of (3.45) gives

vq3
= ε2 + ε1ε

2
2vq2
+ vq (3.46)

vq4
= ε2 + ε1ε

2
2vq3
+ vq2

(3.47)

vq5
= ε2 + ε1ε

2
2vq4
+ vq3

(3.48)

Now (3.45), (3.46), (3.47) and (3.48) gives

vq5
= v.

Moreover, we have TrFq5/Fq(v) = ε1 + ε2.

Similar to the previous case, set y0 = ε
2
1vaq−1 and y1 = ε

2
1vbq−1. Since y0 + y1 = 1 and

y0y1 = ε1vq+1, y0 and y1 are roots of

y2 + y + ε1vq+1 ∈ Fq5[y].

As

TrFq5/F2

(
ε1vq+1

)
=

t−1∑
i=0

(
ε1vq+1

)2i

+

t−1∑
i=0

(
ε1vq+1

)q2i

+ · · · +

t−1∑
i=0

(
ε1vq+1

)q42i

=
(
1 + ε1ε2vq) + (

1 + ε1ε2vq)q
+ · · · +

(
1 + ε1ε2vq)q4

= 1 + ε1ε2TrFq5/Fq(v)

= 0.

Using [26, Corollary 3.79], we obtain that y2+y+ ε1vq+1 has its roots in Fq5 . Therefore,

aq−1 and bq−1 are in Fq5 .

Let NormFq5/Fq be the norm map from Fq5 onto Fq defined by

NormFq5/Fq : Fq5 → Fq

x 7→ x1+q+q2+q3+q4
.
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Now, taking q-th power of the equation y2 + y = e1vq+1, we obtain that

yqi
(y + 1)qi

= ε1vqi+1+qi
, for i = 0, 1, . . . 4.

Then multiplying all of them, we get

4∏
i=0

yqi
(y + 1)qi

=

4∏
i=0

ε1vqi+1+qi

which implies that

Norm(y)Norm(y + 1) =
(
ε1vq4+q3+q2+q+1

)2
.

On the other hand, y and y + 1 are roots of y2 + y + e1vq+1 = 0. Therefore, Norm(y) =

Norm(y + 1) by [26, Equation 2.3]. Hence, we obtain that(
yq4+q3+q2+q+1

)2
=

(
ε1vq4+q3+q2+q+1

)2
,

which gives

yq4+q3+q2+q+1 = ε1vq4+q3+q2+q+1

and dividing by ε1vq4+q3+q2+q+1, we get aq5−1 = 1 = bq5−1.

Hence, a, b ∈ Fq5 . So, as ε1, ε2 ∈ F4 we have

ε1 = ε
q4

1 =
(
aqb + abq)q4

= ε4,

ε2 = ε
q3

2 =
(
aq2

b + abq2)q3

= ε3,

ε5 = aq5
b + abq5

= ab + ab = 0,

and

εi+5 =



aqi
b + abqi

= ab + ba = 0 if i ≡ 0 mod 5

aqi
b + abqi

= aqb + abq = ε1 if i ≡ 1 mod 5

aqi
b + abqi

= aq2
b + abq2

= ε2 if i ≡ 2 mod 5

aqi
b + abqi

= aq3
b + abq3

= ε3 = ε2 if i ≡ 3 mod 5

aqi
b + abqi

= aq4
b + abq4

= ε4 = ε1 if i ≡ 4 mod 5

for i ≥ 1. Therefore, R = dx+A5(ε1, ε2, ε2, ε1; x), where d ∈ F4 and ε1, ε2 ∈ F4\{0} with

ε2 , ε1. Again, similar to the previous case, we must have at least one of a, b ∈ Fq5\Fq,

since they are linearly independent over Fq. Say a ∈ Fq5\Fq. So if a ∈ Fqk then 5|k.

Moreover, as k = 2m and 5|k we have 5|m. Then (3.4) is satisfied since

aqm
b ∈ Fq5 ⊆ Fqm .
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The above three cases complete the first part of the proof.

For the second part of the proof again we must consider the following three cases.

Case 1. Assume that 4|k and R = dx + A2(ε; x), where d ∈ F4 and ε ∈ F4\{0}.

In this case we have the following four subcases depending on the invariant of R.

– Assume that d = 0.

Using Lemma 3.1.5 we can find a, b ∈ Fq2 linearly independent over Fq and s ∈ Fq

with TrFq/F2(s) = 1 such that

a2 + ab + sb2 = 0

aqb + abq = ε.

As a, b ∈ Fq2 , we have

εi+2 =

 aqi
b + abqi

= ab + ba = 0 if i is even

aqi
b + abqi

= aqb + abq = ε if i is odd

for i ≥ 1. Moreover, as 4|k = 2m, (3.4) is satisfied since aqm
b ∈ Fq2 ⊆ Fqm .

Hence, Tr(ax)2 + Tr(ax)Tr(bx) + sTr(bx)2 = Tr(xR(x)) is a form of codimension

2 radical and invariant -1.

– Assume that ε = d.

Using Lemma 3.1.6 we can find a, b ∈ Fq2 linearly independent over Fq and s ∈ Fq

with TrFq/F2(s) = 1 such that

a2 + ab + sb2 = d

aqb + abq = d.

As a, b ∈ Fq2 , similar to the above case (3.2) and (3.4) is satisfied.

Hence, Tr(ax)2 + Tr(ax)Tr(bx) + sTr(bx)2 = Tr(xR(x)) is a form of codimension

2 radical and invariant -1.

– Assume that d , 0, ε , d and let q = 4r for some even r.

Using Lemma 3.1.8 we can find a, b ∈ Fq2 linearly independent over Fq and s ∈ Fq

with TrFq/F2(s) = 1 such that

a2 + ab + sb2 = d

aqb + abq = ε.
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As a, b ∈ Fq2 , similar to the above cases (3.2) and (3.4) is satisfied.

Hence, Tr(ax)2 + Tr(ax)Tr(bx) + sTr(bx)2 = Tr(xR(x)) is a form of codimension

2 radical and invariant -1.

– Assume that d , 0, ε , d and let q = 4r for some odd r.

Using Lemma 3.1.7 we can find a, b ∈ Fq2 linearly independent over Fq such that

ab = d

aqb + abq = ε.

As a, b ∈ Fq2 , similar to the above cases (3.2) and (3.4) is satisfied.

Hence, Tr(ax)Tr(bx) = Tr(xR(x)) is a form of codimension 2 radical and invariant

1.

Case 2. Assume that 3|k and R = dx + A3(ε, ε; x), where d ∈ F4 and ε ∈ F4\{0}.

In this case we have the following three subcases depending on the invariant of R.

– Assume that ε , d.

Using Lemma 3.1.10 we can find a, b, c ∈ Fq3 linearly independent over Fq such

that

c2 + ab = d

aqb + abq = ε

aq2
b + abq2

= ε

aq3
b + abq3

= 0,

where d ∈ F4, ε ∈ F4\{0} and d , ε.

As a, b ∈ Fq3 , we have

εi+3 =


aqi

b + abqi
= ab + ba = 0 if i ≡ 0 mod 3

aqi
b + abqi

= aqb + abq = ε if i ≡ 1 mod 3

aqi
b + abqi

= aq2
b + abq2

= ε if i ≡ 2 mod 3

for i ≥ 1, that is, (3.2) is satisfied. Moreover (3.4) is satisfied since 3|k = 2m.

Hence, Tr(cx)2+Tr(ax)Tr(bx) = Tr(xR(x)) is a form of codimension 2 radical and

invariant 0.
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– Assume that ε = d.

Using Lemma 3.1.11 we can find a, b ∈ Fq3 linearly independent over Fq such

that

ab = d

aqb + abq = d

aq2
b + abq2

= d

aq3
b + abq3

= 0,

where d ∈ F4\{0}. As a, b ∈ Fq3 , similar to the above case (3.2) and (3.4) is

satisfied.

Hence, Tr(ax)Tr(bx) = Tr(xR(x)) is a form of codimension 2 radical and invariant

1.

Case 3. Assume that 5|k and R = ε0x + A5(ε1, ε2, ε2, ε1; x), where ε0 ∈ F4 and ε1, ε2 ∈ F4\{0}

with ε1 , ε2.

In this case we have the following three subcases depending on the invariant of R.

– Assume that one of the following holds: ε0 = 0 or ε0 = ε1 or ε0 = ε2.

Let t = 2 · 5nt0 for some positive integers n and t0 with gcd(5, t0) = 1. Set

v = 45n
so that q = vt0 . Let y be a root of the polynomial fv defined in (3.15).

Then by Lemma 3.1.13 (part 1.) y ∈ Fv5 ⊆ Fq5 ⊆ Fqk . Set a = yv, b = y and

c = c1 + c2(a + b) with c1 ∈ F4\{0} and c2 ∈ F4\{0, 1}.

Now, we first show that a, b, c are independent over Fq. If not then c1 is in the

Fq-span of a and b, that is, 1 is in the Fq-span of a and b. Hence a = gb + h for

some g, h ∈ Fq. That is, yv = gy+h. Then using Lemma 3.1.13 (part 2.) we obtain

0 = y2v + de2yv+1 + y2 + d2e2

= (gy + h)2 + de2(gy + h)y + y2 + d2e2

= y2(g2 + de2g + 1) + yde2h + (d2e2 + h2), (3.49)

where e, d ∈ F4\{0} and e , d. Now, y < Fv by Lemma 3.1.13 (part 1.), and so

has degree 5 over Fv. As gcd(5, t0) = 1, y has degree 5 over Fq = Fvt0 as well.

Thus 1, y, y2 are independent over Fq. Then (3.49) gives de2h = 0, which means
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h = 0, and d2e2 + h2 = 0, that is, h = de ∈ F4\{0}, a contradiction. Thus a, b, c are

independent over Fq.

Now, we compute

c2 + ab = c2
1 + c2

2y2v + c2
2y2 + yv+1

= c2
1 + c2

2d2e2 + (de2c2
2 + 1)yv+1 by Lemma 3.1.13 (part 2.)

= c2
1 + c2

2d2e2 by Table 3.2.

Table 3.2: Some equalities in F4 = {0, 1, α, α2} where α is a root of the primitive polynomial
x2 + x + 1 ∈ F2[x].

d e c2 c1 c2
1 + c2

2d2e2 d2e2 de2c2
2 + 1

1 0 α2 0
α α2 α α α2 0

1 α2 α2 α2 0
1 0 α 0

α2 α α α α 0
α2 α2 α 0
1 α2 α2 0

1 α α 1 α2 0
α α2 0 α2 0

1 α2 1 0
α2 α2 α 1 1 0

α2 0 1 0
1 α α 0

1 α2 α 1 α 0
α2 α2 0 α 0

1 α 1 0
α α α 1 1 0

α2 0 1 0

If t0 ≡ 1 mod 5 then we have yq = yv and

aqb + abq = yv2+1 + y2v = d2e2 by Lemma 3.1.13 (part 3.)

aq2
b + abq2

= yv3+1 + yv2+v = e by Lemma 3.1.13 (part 4.)

Similarly using Lemma 3.1.13 we get the following results:

If t0 ≡ 2 mod 5 then we have yq = yv2
and

aqb + abq = e

aq2
b + abq2

= d2e2.
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If t0 ≡ 3 mod 5 then we have yq = yv3
and

aqb + abq = e

aq2
b + abq2

= d2e2.

If t0 ≡ 4 mod 5 then we have yq = yv4
and

aqb + abq = d2e2

aq2
b + abq2

= e.

As a, b ∈ Fq5 , and using ε1 = ε
q4

1 = ε4 and ε2 = ε
q3

2 = ε3 we have

εi+5 =



aqi
b + abqi

= ab + ba = 0 if i ≡ 0 mod 5

aqi
b + abqi

= aqb + abq = ε1 if i ≡ 1 mod 5

aqi
b + abqi

= aq2
b + abq2

= ε2 if i ≡ 2 mod 5

aqi
b + abqi

= aq3
b + abq3

= ε3 = ε2 if i ≡ 3 mod 5

aqi
b + abqi

= aq4
b + abq4

= ε4 = ε1 if i ≡ 4 mod 5

for i ≥ 1, that is, (3.2) is satisfied. Moreover (3.4) is satisfied since 5|k = 2m.

Hence, Tr(cx)2+Tr(ax)Tr(bx) = Tr(xR(x)) is a form of codimension 2 radical and

invariant 0.

– Assume that ε0 , 0, ε0 , ε1, ε0 , ε2.

Let q = 4r with r is odd. Let v and y be as in the previous case. Now take

a = de2yv and b = d2ey which are independent over Fq, and we can pick s = de2

as our element of Fq with absolute trace 1. Note that s ∈ F4\{0, 1} from the

definition of fv in (3.15).

Now, using Lemma 3.1.13 as in the previous case, we get

a2 + ab + sb2 = d

aqb + abq =

 d2e2, if t0 ≡ 1 or 4 mod 5

e, if t0 ≡ 2 or 3 mod 5.

aq2
b + abq2

=

 e, if t0 ≡ 1 or 4 mod 5

d2e2, if t0 ≡ 2 or 3 mod 5.

As a, b ∈ Fq5 , similar to the above case (3.2) and (3.4) is satisfied.

Hence, Tr(ax)2 + Tr(ax)Tr(bx) + Tr(bx)2 = Tr(xR(x)) is a form of codimension 2

radical and invariant -1.
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– Assume that e0 , 0, e0 , e1, e0 , e2.

Let q = 4r with r is an even integer. Using Lemma 3.1.12 we can find a, b ∈ Fq5

linearly independent over Fq such that

ab = α0,

aqb + abq = α1,

aq2
b + abq2

= α2,

where α0, α1, α2 ∈ F4\{0} and all are different. As a, b ∈ Fq5 , similar to the above

case (3.2) and (3.4) is satisfied.

Hence, Tr(ax)Tr(bx) = Tr(xR(x)) is a form of codimension 2 radical and invariant

1.

The above three cases complete the second part of the proof, which completes the proof.

�

3.3 Applications

In this section we use the results of Theorem 3.2.1 to obtain Artin-Schreier curves with many

rational points. We use the notations and definitions related to Artin-Schreier curves as in [35]

and for details we refer to [35].

Recall that k = 2m. Let R(x) = ε0x + ε1xq + · · · + εm−1xqm−1
∈ Fqk [x] be an Fq-linearized

polynomial, with εi ∈ F4, 0 ≤ i ≤ m − 1. The corresponding quadratic form is given by

QR(x) = Tr (xR(x)) .

Let N(k) denote the cardinality

N(k) =
∣∣∣∣{x ∈ Fqk | QR(x) = 0

}∣∣∣∣
=

∣∣∣∣{x ∈ Fqk | Tr (xR(x)) = 0
}∣∣∣∣ .

Let χ be the smooth, geometrically irreducible projective curve defined over Fqk which is

given by the plane affine equation

yq − y = xR(x). (3.50)
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It is well known that the genus g of χ is (see [35, Proposition III.7.10])

g(χ) =
(q − 1) qm−1

2
,

where qm−1 is the degree of the Fq-linearized polynomial R(x).

Let N(χ) denote the number of Fqk -rational points of χ in (3.50). It is well known that using

Hilbert’s Theorem 90 (cf. [26, Theorem 2.25]) we have that

N(χ) = 1 + qN(k). (3.51)

Furthermore, the Hasse-Weil inequality states that

|N(χ) − 1 − qk| ≤ 2g(χ)q
k
2 .

The curves attaining this bound are called maximal or minimal curves. If the number of Fqk -

rational points of the curve is 1+qk +2g(χ)q
k
2 or 1+qk −2g(χ)q

k
2 then it is called maximal or

minimal respectively. Clearly, to have a maximal or minimal curve q
k
2 should be an integer.

Now using the results obtained in the previous section we have the following theorems.

Theorem 3.3.1 Let k = 2m for some positive integer m. Then the curve (3.50) is maximal if

and only if one of the following holds

1. q = 4r for some positive odd integer r, 4|k and R(x) = dx + A2(ε; x) with d, ε ∈ F4 \ {0}

and d , ε,

2. 3|k and R(x) = εx + A3(ε, ε; x) with ε ∈ F4 \ {0},

3. q = 4r for some positive even integer r, 5|k and R(x) = dx + A5(ε1, ε2, ε2, ε1; x) with

d, ε1, ε2 ∈ F4 \ {0} and d, ε1, ε2 are all different.

Proof. Note that k = 2m and R(x) = ε0x+ ε1xq + · · ·+ εm−1xqm−1
∈ Fqk [x] and therefore degree

of R(x) is qm−1.

Then the curve (3.50) is maximal if and only if

N(χ) = 1 + qN(k) = 1 + qk + 2g(χ)q
k
2 , (3.52)
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which implies that

N(k) = qk−1 + 2g(χ)q
k
2−1

= qk−1 + 2g(χ)qm−1

= qk−1 + 2
(
(q − 1) qm−1

2

)
qm−1

= qk−1 + (q − 1)qk−2.

So by using

N(k) = qk−1 + Λ(QR)(q − 1)q
k+w

2 −1,

we see that (3.52) holds if and only if Λ(QR) = 1 and q
k+w

2 −1 = qk−2, that is w = k − 2. Then

by using Theorem 3.2.1 and Table 3.1 we get the desired results. �

Theorem 3.3.2 Let k = 2m for some positive integer m. Then the curve (3.50) is minimal if

and only if one of the following holds

1. q = 4r for some positive odd integer r, 4|k and R(x) = dx + A2(ε; x) with ε ∈ F4 \ {0}

and d = 0 or d = ε,

2. q = 4r for some positive even integer r, 4|k and R(x) = dx + A2(ε; x) with ε ∈ F4 \ {0},

3. q = 4r for some positive odd integer r, 5|k and R(x) = dx + A5(ε1, ε2, ε2, ε1; x) with

d, ε1, ε2 ∈ F4 \ {0} and d, ε1, ε2 are all different.

Proof. Similar to the proof of Theorem 3.3.1 we observe that the curve (3.50) is minimal if

and only if Λ(QR) = −1 and w = k − 2. Then by using Theorem 3.2.1 and Table 3.1 we get

the desired results. �
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[29] F. Özbudak and Z. Saygı, Systematic Authentication Codes Using Additive Polynomi-
als, Des. Codes Cryptogr., vol 49, No. 1-3, pp. 61-77 (2008).
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