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Department of Mathematics, Atılım University

Prof.Dr. Nevzat Güneri Gençer
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ABSTRACT

THE DUAL RECIPROCITY BOUNDARY ELEMENT METHOD SOLUTION OF FLUID
FLOW PROBLEMS

Gümgüm, Sevin

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Münevver Tezer

February 2010, 185 pages

In this thesis, the two-dimensional, transient, laminar flow of viscous and incompressible

fluids is solved by using the dual reciprocity boundary element method (DRBEM). Natural

convection and mixed convection flows are also solved with the addition of energy equation.

Solutions of natural convection flow of nanofluids and micropolar fluids in enclosures are

obtained for highly large values of Rayleigh number. The fundamental solution of Laplace

equation is used for obtaining boundary element method (BEM) matrices whereas all the

other terms in the differential equations governing the flows are considered as nonhomo-

geneity. This is the main advantage of DRBEM to tackle the nonlinearities in the equations

with considerably small computational cost. All the convective terms are evaluated by us-

ing the DRBEM coordinate matrix which is already computed in the formulation of nonlinear

terms. The resulting systems of initial value problems with respect to time are solved with for-

ward and central differences using relaxation parameters, and the fourth-order Runge-Kutta

method. The numerical stability analysis is developed for the flow problems considered with

respect to the choice of the time step, relaxation parameters and problem constants. The sta-

bility analysis is made through an eigenvalue decomposition of the final coefficient matrix in
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the DRBEM discretized system. It is found that the implicit central difference time integra-

tion scheme with relaxation parameter value close to one, and quite large time steps gives

numerically stable solutions for all flow problems solved in the thesis. One-and-two-sided

lid-driven cavity flow, natural and mixed convection flows in cavities, natural convection flow

of nanofluids and micropolar fluids in enclosures are solved with several geometric configu-

rations. The solutions are visualized in terms of streamlines, vorticity, microrotation, pressure

contours, isotherms and flow vectors to simulate the flow behaviour.

Keywords: DRBEM, Navier-Stokes equations, Natural convection, Nanofluids, Micropolar

fluids
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ÖZ

KARŞILIKLI SINIR ELEMANLARI YÖNTEMİ İLE AKIŞKANLAR MEKANİĞİ
PROBLEMLERİNİN ÇÖZÜMÜ

Gümgüm, Sevin

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Münevver Tezer

Şubat 2010, 185 sayfa

Bu tezde, viskoz ve sıkıştırılamayan akışkanların iki boyutlu, zamana bağlı, katmanlı akımları

karşılıklı sınır elemanları yöntemi ile çözülmüştür. Enerji denkleminin eklenmesiyle doğal

ve karışık konveksiyon akımları da çözülmüştür. Nano ve mikropolar akışkanların kapalı

bölgelerdeki doğal konveksiyon akımlarının çözümü oldukça yüksek Rayleigh sayıları için

elde edilmiştir. Sınır elemanları yöntemindeki matrisler Laplace denkleminin temel çözümü

kullanılarak elde edilirken, akımı temsil eden diferensiyel denklemlerdeki diğer bütün ter-

imler sağ taraf fonksiyonu olarak değerlendirilmiştir. Karşılıklı sınır elemanları yönteminin

en temel avantajı doğrusal olmayan terimler içeren diferensiyel denklemleri oldukça küçük

hesaplama maliyetiyle çözmesidir. Konveksiyon terimleri, karşılıklı sınır elemanları yönteminin

içerdiği ve daha önce doğrusal olmayan terimlerin formülasyonunda kullanılmış olan koordi-

nat matrisi ile hesaplanmıştır. Oluşan zamana bağlı başlangıç değer problemleri, yumuşatma

katsayıları ile birlikte ileri ve merkezi farklar yöntemleri, ve dördüncü derece Runge-Kutta

yöntemi ile çözülmüştür. Akışkanlar mekaniği problemleri için zaman aralığı, yumuşatma

katsayıları ve problem sabitlerinin seçimine göre sayısal kararlılık analizi geliştirilmiştir. Sayısal

kararlılık analizi, karşılıklı sınır elemanları yöntemi ile ayrıklaştırılan sistemin en son elde
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edilen katsayı matrisinin özdeğer ayrışımı doğrultusunda yapılmıştır. Kapalı merkezi fark-

lar yönteminin, yumuşatma katsayılarının bire yakın değerleri ve oldukça yüksek zaman

aralıkları ile birlikte tezde çözülen akışkanlar mekaniği problemleri için sayısal olarak kararlı

çözümler verdiği tespit edilmiştir. Tek ve çift taraflı kapak hareketli kanal akımları, kanallar-

daki doğal ve karışık konveksiyon akımları, nano ve mikropolar akışkanların kapalı bölgelerdeki

doğal konveksiyon akımları değişik geometriler için çözülmüştür. Akım davranışlarını görebilmek

için çözümler, akış çizgileri, vorticity ve basınç eğrileri, eşısı eğrileri ve akış vektörleri ile

gösterilmiştir.

Anahtar Kelimeler: Karşılıklı sınır elemanları yöntemi, doğal konveksiyon, nano akışkanlar,

mikropolar akışkanlar
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CHAPTER 1

INTRODUCTION

Computational fluid dynamics is an important area for numerical analysis because the be-

haviour of fluids can be observed in almost all areas of life. Generally, interactions between

different fluid particles, forces between moving fluids and solids at rest, and a moving solid

in a fluid at rest are investigated. In this thesis, we will consider the laminar flow of incom-

pressible, viscous fluid. Laminar flow is a smooth, constant fluid motion which occurs when

viscous forces are dominant. It is the opposite of turbulent flow. Turbulent flow occurs when

inertial forces are dominant and produces vortices and random eddies. Incompressible fluid

is a fluid with a constant density. Actually, it is an idealization used to simplify calcula-

tions. By making this assumption, the governing equations of the fluid flow can be simplified

significantly.

In this chapter, we first give the basic equations of the mass and momentum conservations

(Navier-Stokes equations) in terms of primitive variables for an incompressible, viscous fluid.

This formulation contains the velocity and the pressure of the fluid which are the original

unknowns. The difficulties arise due to the satisfaction of the continuity equation and missing

pressure equation. Thus, in most of the numerical procedures these equations are transformed

to stream function-vorticity and velocity-vorticity formulations. In the next section, Poisson

equations for the velocity components as well as the pressure are derived and then the stream

function-vorticity formulation is explained. Natural and mixed convection flows are discussed

by the adding energy equation to the Navier-Stokes equations. The physical details of the

nanofluids are given in Section 1.3. Finally, the microrotation equation is added to the Navier-

Stokes and energy equations. We end up this chapter with the literature survey for the flows

considered in the thesis, and the plan of the thesis.
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1.1 The Navier-Stokes Equations

The Navier-Stokes equations are nonlinear partial differential equations which describe the

motion of fluids, i.e. liquids and gases. These equations state that changes in momentum in

infinitesimal volumes of fluid are the sum of dissipative forces, changes in pressure, gravity

and other forces acting inside the fluid [17]. They are applications of the Newton’s second

law. The nonlinearity in these equations is due to convective acceleration and makes the most

problems difficult or impossible to solve. The equations can be simplified to linear equations

only in some cases, like one-dimensional flow and Stokes flow. The solution of the Navier-

Stokes equations describes the velocity of the fluid at a given point in space and time, and is

called a velocity field. The pressure is also the original unknown appearing in the numerical

equations. Other quantities of interest can be found easily after obtaining the velocity field,

[36].

The Navier-Stokes equations are one of the most useful sets of equations because they can be

used to describe many different engineering problems. They may be used to model weather,

ocean currents, water flow in a pipe, flow around an airfoil, and motion of stars inside a

galaxy, the design of aircraft and cars, the study of blood flow, the design of power stations,

the analysis of the effects of pollution, etc. Coupled with Maxwell’s equations they can be

used to model and study magnetohydrodynamics, [17].

1.1.1 Primitive Variable Formulation

The two-dimensional, transient, laminar flow of incompressible Navier-Stokes equations in

primitive variables form is governed by the following equations [36];

Momentum equations

ρ
(∂ u′

∂ t′
+ u′

∂ u′

∂ x′
+ v′

∂ u′

∂ y′
)

= −∂ p′

∂ x′
+ µ

(∂2 u′

∂ x′2
+
∂2 u′

∂ y′2
)

ρ
(∂ v′

∂ t′
+ u′

∂ v′

∂ x′
+ v′

∂ v′

∂ y′
)

= −∂ p′

∂ y′
+ µ

(∂2 v′

∂ x′2
+
∂2 v′

∂ y′2
)
,

(1.1)

continuity equation
∂ u′

∂ x′
+
∂ v′

∂ y′
= 0 (1.2)
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where u′ and v′ are the velocity components, p′ is the pressure of the fluid, µ is the dynamic

viscosity and ρ is the density.

In order to obtain the non-dimensional forms of equations (1.1) and (1.2), we introduce a

characteristic length L′, a characteristic velocity U′ and define the dimensionless quantities

as

u =
u′

U′
, v =

v′

U′
, x =

x′

L′
, y =

y′

L′
, t =

t′

L′
, p =

p′

ρ U′2
.

Thus, the Navier-Stokes equations can be written in non-dimensional form as

Momentum equations

∂ u
∂ t

+ u
∂ u
∂ x

+ v
∂ u
∂ y

= −∂ p
∂ x

+
1

Re
∇2u

∂ v
∂ t

+ u
∂ v
∂ x

+ v
∂ v
∂ y

= −∂ p
∂ y

+
1

Re
∇2v,

(1.3)

continuity equation
∂ u
∂x

+
∂ v
∂y

= 0. (1.4)

where ∇2 =
∂2

∂ x2 +
∂2

∂ y2 is the Laplace operator.

Here, Re is the dimensionless Reynolds number which is the ratio of inertial forces to viscous

forces. It quantifies the relative importance of these two types of forces. Thus, it identifies

whether the flow regime is laminar or turbulent. When Reynolds number is below the critical

value (≈ 2100) for that fluid the flow is laminar, when it exceeds the critical number the flow

is turbulent.

Reynolds number is defined as follows

Re =
ρU′L′

µ
.

The Navier-Stokes equations are usually supplied with essential boundary conditions for the

velocity components as

u(xs, ys) = fus , v(xs, ys) = fvs

where the subscript ‘s’ restricts (x, y) to the boundary of the region under consideration, and

fus , fvs are given functions. If fus = fvs = 0, then no fluid penetrates the boundary and the
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fluid is at rest there. This condition is known as the no-slip condition. There is no bound-

ary condition for the pressure physically. It may be derived during the computations if the

primitive variables form is used.

1.1.2 Derivation of the Poisson Equations for Velocities and Pressure

In this section, we will derive the Poisson equations for velocities u and v, and pressure p.

The equations for the velocity components can be derived by using the continuity equation

∂ u
∂ x

+
∂ v
∂ y

= 0 (1.5)

and the definition of vorticity

ω =
∂ v
∂ x
− ∂ u
∂ y

. (1.6)

Vorticity is a vector quantity whose direction is along the axis of fluid’s rotation. It is the

curl of the velocity that gives the amount of circulation in a fluid flow. Vorticity is a powerful

concept especially for the flows when the Reynolds number is high, which means that the

viscosity is low.

Thus, equation (1.6) is the z-component (axis of the flow) of the vorticity vector for a two-

dimensional flow.

Differentiating equation (1.5) with respect to x and (1.6) with respect to y gives

∂2 u
∂ x2 +

∂2 v
∂ x∂ y

= 0 (1.7)

and
∂2 v
∂ y∂ x

− ∂
2 u
∂ y2 =

∂ ω

∂ y
. (1.8)

The second term of equation (1.7) and the first term of equation (1.8) are equal (interchange-

ability of the order of derivatives). Thus, substitution of
∂2 v
∂ x∂ y

from equation (1.7) in the

equation (1.8) gives the Poisson equation for u

−∂
2 u
∂ x2 −

∂2 u
∂ y2 =

∂ ω

∂ y
(1.9)

which can be expressed using the Laplace operator as

∇2u = −∂ ω
∂ y

. (1.10)
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Cross differentiating equations (1.5) and (1.6) with respect to y and x gives

∂2 u
∂ y∂ x

+
∂2 v
∂ y2 = 0 (1.11)

and
∂2 v
∂ x2 −

∂2 u
∂ x∂ y

=
∂ ω

∂ x
. (1.12)

Combining equations (1.11) and (1.12) in a similar way gives the Poisson equation for v

∇2v =
∂ ω

∂ x
. (1.13)

In order to derive the Poisson equation for pressure we will use the momentum equations

∂ u
∂ t

+ u
∂ u
∂ x

+ v
∂ u
∂ y

= −∂ p
∂ x

+ ∇2u (1.14)

∂ v
∂ t

+ u
∂ v
∂ x

+ v
∂ v
∂ y

= −∂ p
∂ y

+ ∇2v. (1.15)

Differentiating equation (1.14) with respect to x and (1.15) with respect to y, and adding them

together, we get

∂

∂ t

( ∂ u
∂ x

+
∂ v
∂ y︸     ︷︷     ︸

= 0

)
+

(∂ u
∂ x

)2
+

(∂ v
∂ y

)2
+ u

∂

∂ x

( ∂ u
∂ x

+
∂ v
∂ y︸     ︷︷     ︸

= 0

)
− 2

∂ v
∂ x

∂ u
∂ y

+ v
∂

∂ y

( ∂ u
∂ x

+
∂ v
∂ y︸     ︷︷     ︸

= 0

)

= −
(∂2 p
∂ x2 +

∂2 p
∂ y2

)
+

∂2

∂ x2

( ∂ u
∂ x

+
∂ v
∂ y︸     ︷︷     ︸

= 0

)
+

∂2

∂ y2

( ∂ u
∂ x

+
∂ v
∂ y︸     ︷︷     ︸

= 0

)
.

(1.16)

Thus, the Poisson equation for pressure is

∇2 p = −
(∂ u
∂ x

)2 −
(∂ v
∂ y

)2 − 2
∂ v
∂ x

∂ u
∂ y

. (1.17)

So, the Navier-Stokes equations can be expressed for the variables u, v and p in terms of
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vorticity and velocity as

∇2u = −∂ ω
∂ y

∇2v =
∂ ω

∂ x

∇2 p = −
(∂ u
∂ x

)2 −
(∂ v
∂ y

)2 − 2
∂ v
∂ x

∂ u
∂ y

.

(1.18)

These Poisson equations for velocity components and pressure can be solved iteratively when

an initial estimate for vorticity is provided.

The boundary conditions of pressure can be computed from the momentum equations [36, 78]

∂ p
∂ x

=
1

Re
∂2 u
∂ x2 along the vertical boundaries

∂ p
∂ y

=
1

Re
∂2 v
∂ y2 along the horizontal boundaries

and again essential boundary conditions are usually given for velocity components u and v.

1.1.3 Stream Function-Vorticity Formulation

In this section, we express the Navier-Stokes equations in terms of stream function and vor-

ticity.

The stream function is defined for two-dimensional flows. It can be used to plot streamlines,

which are the contour lines of constant values of stream function.

The partial derivatives of stream function are linked with the velocity components through the

relation [36, 81]
∂ ψ(x, y)
∂ x

= −v ,
∂ ψ(x, y)
∂ y

= u (1.19)

for satisfying the continuity equation automatically.

In order to show that the continuity equation is satisfied, we substitute the defining equations

of stream function (1.19) in the continuity equation (1.4), and from the integrability condition

we get
∂

∂ x

(∂ ψ
∂ y

)
+
∂

∂ y

(−∂ ψ
∂ x

)
=

∂2 ψ

∂ x∂ y
− ∂2 ψ

∂ y∂ x
= 0.
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In two-dimensions, the Navier-Stokes equations are generally expressed in terms of stream

function ψ and vorticity ω instead of the primitive variables u, v, and p. Because, in this

formulation the pressure is eliminated and equations include only two variables.

First, we derive the vorticity transport equation using the momentum equations given in equa-

tion (1.3)
∂ u
∂ t

+ u
∂ u
∂ x

+ v
∂ u
∂ y

= −∂ p
∂ x

+
1

Re
∇2u

∂ v
∂ t

+ u
∂ v
∂ x

+ v
∂ v
∂ y

= −∂ p
∂ y

+
1

Re
∇2v.

(1.20)

The first equation is differentiated with respect to y and the second equation is differentiated

with respect to x. Then, the first equation is subtracted from the second one, so that the

pressure is eliminated. Substituting the definition of vorticity ω =
∂ v
∂ x
− ∂ u
∂ y

yields

∂

∂t

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)
+
∂u
∂x

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)
+
∂v
∂y

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)
+ u

∂

∂x

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)
+ v

∂

∂y

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)

=
(
− ∂2 p
∂ x∂ y

+
∂2 p
∂ y∂ x︸                ︷︷                ︸

= 0

)
+

1
Re

[ ∂2

∂x2

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)
+
∂2

∂y2

( ∂v
∂x
− ∂u
∂y︸    ︷︷    ︸

= ω

)]
.

(1.21)

The second and the third terms in the left-hand side of the equation (1.21) are eliminated since

they satisfy the continuity equation.

Thus, the vorticity transport equation can be expressed as [36]

1
Re
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
. (1.22)

To obtain the Poisson equation for stream function, we substitute the defining equations of

stream function into that of vorticity

ω =
∂ v
∂ x
− ∂ u
∂ y

=
∂

∂ x

(
− ∂ ψ
∂ x

)
− ∂

∂ y

(∂ ψ
∂ y

)
= −∂

2 ψ

∂ x2 −
∂2 ψ

∂ y2 .

Hence, we have

∇2ψ = −ω. (1.23)
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This formulation has many advantages. It reduces the number of equations through the elim-

ination of pressure. Partial derivatives of stream function are related to the velocity com-

ponents and it satisfies the continuity equation through this relation. These reasons make

this formulation attractive for the solution of high Reynolds number Navier-Stokes equations.

Especially, vorticity plays an important role when studying vortex dominated flows.

The boundary conditions for stream function are usually of Dirichlet type since a boundary

is normally considered as a streamline which has constant value of stream function. Vorticity

boundary conditions may be derived through the relation ∇2ψ = −ω. Thus,

ψ(xs, ys) = fψs , ω(xs, ys) = fωs

where fψs , fωs are given functions. Stream function is usually specified on the boundary

and the vorticity boundary condition is derived from the stream function equation or from its

definition, which becomes again of Dirichlet type.

1.2 Natural Convection Flow

Analyzing heat transfer within the fluid flow is important since it has many applications in

industries such as energy conservation process, energy storage, meteorology and climatology.

Numerical simulation plays an important role in these areas because experiments are often

costly.

In the previous sections, we give the Navier-Stokes equations of two-dimensional, transient,

laminar flow of viscous incompressible fluid. Now, we extend the model by adding the energy

equation. This equation results from the conservation of energy which states that the total

energy of a system and its surroundings remains constant [16].

The main effect of temperature on the fluid is the change of fluids density due to the changes

in temperature. These changes cause buoyancy forces. Because of these effects the mod-

eling equations are difficult to treat. Thus, Boussinesq approximation is used for necessary

simplifications, [36].

• Density is constant except in the buoyancy terms.

• All other fluid properties are assumed constant.
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• Viscous dissipation is negligibly small.

With the first assumption, we consider the incompressible form of the continuity equation in

which density varies only in the body force term. Other assumptions enable us to investigate

the effect of buoyancy forces by simplifying the equations.

Convection is an important phenomena in heat transfer. It occurs due to the random movement

of molecules within the fluids and advection. In general, convection can be explained as

the sum of advective and diffusive transfer [43]. It combines the energy equation with the

continuity and momentum equations.

Convective heat transfer can be analyzed in two categories, namely the natural and forced

convection. Combination of the natural and forced convection is called as the mixed convec-

tion.

In this section, we will focus on the natural convection in which the fluid motion depends only

on the local buoyancy differences. Natural convection is an important heat transfer mecha-

nism and has many application areas such as boilers, fire control, nuclear reactor systems and

energy storage.

The two-dimensional, unsteady, laminar flow of an incompressible, viscous fluid are given in

terms of non-dimensional stream function, vorticity and temperature as [51]

∇2ψ = −ω

Pr∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

∂ T
∂ x

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(1.24)

where T is the temperature, Ra is the Rayleigh number and Pr is the Prandtl number.

The above non-dimensional equations are obtained by using the following non-dimensional

variables [70]

u =
u′L′

α
, v =

v′L′

α
, x =

x′

L′
, y =

y′

L′
, t =

t′

L′
, p =

p′L′2

ρ α2 , T =
θ′ − θ′c
θ′h − θ′c

.

In natural convection, Rayleigh number expresses important properties of the fluid. This
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dimensionless number is given by

Ra =
gβ(Ts − T∞)L′3

α ν

where g is the local gravitational acceleration, L′ is the characteristic length, α is the thermal

diffusivity, β is the coefficient of thermal expansion, Ts is the temperature of the wall, T∞ is

the fluid temperature far from the surface of the object, and ν = µ/ρ is the kinematic viscosity.

Rayleigh number controls the form of heat transfer, whether its laminar or turbulent. When

it is below the critical value of the fluid then conduction occurs, when it is greater then the

critical value then convection occurs (103 ≤ Ra ≤ 106).

Prandtl number, Pr, is used to control the relative thickness of the momentum and thermal

boundary layers. It is defined as [85]

Pr =
ν

α
=

viscous diffusion rate
thermal diffusion rate

=
U′L′

α Re
.

Prandtl number is taken as 0.7 for air and many other gases, around 7 for water, around

7×1021 for Earth’s mantle, between 100 and 40000 for engine oil, between 4 and 5 for R−12

refrigerant and around 0.015 for mercury.

Another important parameter for natural convection is the Nusselt number which is the ratio

of convective and conductive heat transfer across the boundary. The dimensionless number is

defined by [36]

Nu =
Qconvection

Qheat diffusion
.

Thus, the Nusselt number is given as

Nu =

∫ Ly

0

(
− ∂ T

∂ x

)
x=0

dy

Ly (Tl − Tr)/Lx

where Ly is the height and Lx is the length of the fluid container under consideration, and Tl

and Tr are the temperatures at the left and right walls.

Selection of the characteristic lengths, Lx and Ly, should be in the direction of growth (or

thickness) of the boundary layer. Some examples of characteristic lengths are: the outer

diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length

of a vertical plate undergoing natural convection, or the diameter of a sphere. When Nusselt
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number is close to unity then natural convection and conduction are of similar magnitude.

This is also a characteristic of laminar flow. A larger Nusselt number corresponds to more

active convection. If the flow is turbulent, then the Nusselt number is between 100 − 1000,

[96].

Temperature boundary conditions can be defined either Dirichlet or Neumann type as

T
∣∣∣∣
∂Ω

= T1 ,
∂ T
∂n

∣∣∣∣
∂Ω

= −q
k

where ‘q’ is the heat flux across the wall.

Boundary conditions can be generally expressed as Dirichlet type for stream function (no-slip

condition for velocities), and Dirichlet type for vorticity since it is obtained from vorticity

definition, or through relationship of vorticity with stream function. Thus, we can express the

boundary conditions generally as

ψ(xs, ys) = fψs , ω(xs, ys) = fws

T (xs, ys) = fts ,
∂ T
∂ n

(xs, ys) = ftn .

If T = Th then the corresponding boundary is heated, if T = Tc then the boundary

is cooled. If T =
∂ T
∂ n

= 0 then the boundary is adiabatic, which means that no heat is

transferred through the boundary.

1.2.1 Mixed Convection Flow

Mixed convection is an important heat transfer mechanism and has many applications such

as electronic cooling, drying, heat exchangers and insulation of buildings. It is the combina-

tion of forced and natural convection. When the effects of natural and forced convection are

comparable neither of the process can be neglected. Thus, understanding the physics of this

process is very important.

Two-dimensional mixed convection flows can be characterized by the buoyancy parameter

Gr/Re2, where Re is the Reynolds number and Gr is the Grashof number. This param-

eter measures the effect of the natural and forced convection on the fluid flow. Generally,

mixed convection occurs on the range of (Gr/Re2)min ≤ Gr/Re2 ≤ (Gr/Re2)max, where
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(Gr/Re2)min and (Gr/Re2)max are the lower and the upper bounds of the regime. Outside

this region, either the forced convection or the natural convection plays the role as a domi-

nating mechanism. For a mixed convection flow, analyzing the effect of buoyancy forces is

important since they may aid or oppose the flow and cause a decrease or increase in the heat

transfer rates [8].

The two-dimensional equations of momentum (in stream function-vorticity formulation) and

energy for a transient, laminar and incompressible mixed convection flow can be expressed as

[62]

∇2ψ = −ω

1
Re
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− Gr

Re2

∂ T
∂ x

1
RePr

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(1.25)

where the following dimensionless variables are defined

u =
u′

U′
, v =

v′

U′
, x =

x′

L′
, y =

y′

L′
, t =

t′

L′
, p =

p′

ρ U′2
, T =

θ′ − θ′c
θ′h − θ′c

in non-dimensionalizing.

Here, Gr is the Grashof number which approximates the ratio of the buoyancy and viscous

forces, and defined by, [36]

Gr =
gβ(Ts − T∞)L′3

ν2 =
Ra
Pr

where g is the acceleration due to Earth’s gravity, β is the volumetric thermal expansion coef-

ficient, Ts is the source temperature, T∞ is the quiescent temperature, L′ is the characteristic

length, ν is the kinematic viscosity.

General expression of the boundary conditions can be given as

ψ(xs, ys) = fψs , ω(xs, ys) = fws

T (xs, ys) = fts ,
∂ T
∂ n

(xs, ys) = ftn .
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Generally mixed convection occurs when
Gr
Re2 ≈ 1. Forced and natural convection are

dominant when
Gr
Re2 � 1 and

Gr
Re2 � 1, respectively [43].

1.3 Nanofluids and Basic Equations

Nanofluids are made of nanoparticles suspended in a base fluid. They are studied because

of their enhanced heat transfer capabilities. Typical nanoparticles are metal or metal oxide

nanoparticles such as Al2O3, CuO, Cu, TiO. Generally water and ethylene glycol is used as

the base fluid, [47].

Fluid heating and cooling are important in many industries such as power, manufacturing,

transportation, and electronics. Especially, effective cooling techniques are greatly needed for

cooling any sort of high-energy device. But, common heat transfer fluids, e.g. water, ethylene

glycol, engine oil, have low heat transfer properties. Thus, their heat transfer capabilities

are limited. On the other hand, thermal conductivities of metals are up to three times higher

than these fluids. So, these substances are combined and a new heat transfer medium, which

behaves like a fluid but has the thermal conductivity of the metal, is produced.

In general, nanofluids contain up to a %5 volume fraction of nanoparticles. Even at low

concentrations, they significantly increase heat transfer rates. Thermal conductivity enhance-

ments are in the range of %15 − 40 over the base fluid. Increase in heat transfer rate can not

just be explained from the thermal conductivity of the added nanoparticles [47]. The main

reasons may be listed as follows [91].

• The suspended nanoparticles increase the surface area and the heat capacity of the fluid.

• The suspended nanoparticles increase the effective thermal conductivity of the fluid.

• The interaction and collision among particles, fluid and the flow passage surface are inten-

sified.

• The mixing fluctuation and turbulence of the fluid are intensified.

• The dispersion of nanoparticles flattens the transverse temperature gradient of the fluid.

The non-dimensional, unsteady equations of motion and energy for nanofluids can be written
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in terms of stream function (ψ), vorticity (ω) and temperature (T ) as follows [3]

∇2ψ = −ω

µn f

ρn fα f
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

(ρβ)n f

ρn fβ f

∂ T
∂ x

αn f

α f
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(1.26)

where (x, y) ∈ Ω ⊂ R2, t > 0. Ra and Pr are the Rayleigh number and Prandtl number. The

subscripts ‘nf’, and ‘f’ refer to nanofluid and pure fluid, respectively.

Non-dimensional forms of the equations are obtained by introducing the following dimen-

sionless parameters [3]

u =
u′L′

α f
, v =

v′L′

α f
, x =

x′

L′
, y =

y′

L′
, t =

t′

L′
, p =

p′L′2

ρn fα f
2 , T =

θ′ − θ′c
∆T

Ra =
gβ f ∆T L′3

α f ν f
, Pr =

ν f

α f
, ∆t =

q′′ L′

k f

where q′′ is the heat generation per area, and k f is the thermal conductivity of the fluid.

The effective dynamic viscosity [24] and the effective density [61] of the nanofluid are given

by

µn f =
µ f

(1 − ϕ)2.5 , ρn f = (1 − ϕ)ρ f + ϕρs

where ϕ is the volume fraction of nanoparticles, µ f is the dynamic viscosity of the fluid, ρ f

and ρs are the density of the fluid and nanoparticle, respectively.

Thermal diffusivity of the nanofluid is defined by, [63]

αn f =
kn f

(ρCp)n f
.

Here kn f is the thermal conductivity of the nanofluid given by, [54]

kn f = k f
ks + 2k f − 2ϕ(k f − ks)
ks + 2k f + ϕ(k f − ks)

where the subscript ‘s’ refer to nanoparticle.
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It is important to note that the effective thermal conductivity of nanofluids depends on the ther-

mal conductivity of solid particles and base fluid, particle volume fraction, shape of particles

and the thickness of the thermal conductivity of nanolayer [47].

The heat capacitance of the nanofluid and part of the Boussinesq term are defined as [61]

(ρCp)n f = (1 − ϕ)(ρCp) f + ϕ(ρCp)s

(ρβ)n f = (1 − ϕ)ρ f β f + ϕρsβs.

The local and average Nusselt numbers for the wall with constant heat flux are given as in

[40]

Nu = −kn f

k f

∂ T
∂ x

∣∣∣∣
heated vertical wall

, Nuav =

∫ 1

0
Nu dy .

The equations in (1.26) are supplied with the initial conditions

ω(x, y, 0) = ω0(x, y) , T (x, y, 0) = T0(x, y)

where ω0(x, y) and T0(x, y) are given functions of space and time.

Corresponding boundary conditions are given by

ψ(xs, ys) = fψs , ω(xs, ys) = fωs

T (xs, ys) = fts or
∂ T
∂ n

(xs, ys) = ftn .

The velocity components are given in terms of stream function as u =
∂ ψ

∂ y
, v = −∂ ψ

∂ x
, and

the vorticity is defined by ω =
∂ v
∂ x
− ∂ u
∂ y

.

1.4 Micropolar Fluids and Basic Equations

In the previous sections, we use the Navier-Stokes equations to model two-dimensional, lam-

inar, transient flow of an incompressible fluid. But this model is inadequate for fluids with

microstructure such as polymeric suspensions, blood and liquid crystals. In order to describe

the behaviour of such fluids, we need a model that takes into account geometry and movement

of these microstructures [52].
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Eringen [31] generalized the Navier-Stokes equations and introduced a model for micropolar

fluids. In this model, only one equation is added to the Navier-Stokes equations. This equation

represents the conservation of angular momentum and describes the rotation of microparticles.

When the viscosity of the microrotation is zero, then the fluid becomes independent from the

presence of the microstructure. Thus, the microrotation viscosity measures the deviation of

the micropolar fluid model from the Navier-Stokes model, [52].

The non-dimensional, unsteady equations of motion, energy and microrotation can be written

in terms of stream function, vorticity, temperature and microrotation as follows [9, 10]

∇2ψ = −ω

(1 + K)∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
+ K ∇2N̄ − Ra

Pr
∂ T
∂ x

1
Pr
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(
1 +

K
2

)
∇2N̄ =

∂ N̄
∂ t

+ u
∂ N̄
∂ x

+ v
∂ N̄
∂ y

+ 2K N̄ − K ω

(1.27)

where K is the material parameter and N̄ is the component of the microrotation vector normal

to the xy-plane. It is noticed that the microrotation equation is also convection diffusion type

in nature for the microrotation N̄. Microrotation N̄ represents the angular velocity of rotation

of particles of the fluid.

Non-dimensional forms of the equations are obtained by introducing the following dimen-

sionless parameters [9]

u =
u′L′

ν
, v =

v′L′

ν
, x =

x′

L′
, y =

y′

L′
, t =

t′ ν
L′2

, T =
θ′ − θ′0
θ′h − θ′c

N̄ =
N′ L′2

ν
, ω =

ω′ L′2

ν
, γ =

(
µ +

k′

2

)
j = µ

(
1 +

K
2

)

where γ is the spin gradient viscosity, j is the microinertia density, and θ′0 =
θ′h + θ′c

2
is the

characteristic temperature.

Equations (1.27) are supplied with the initial conditions

ω(x, y, 0) = ω0(x, y) , T (x, y, 0) = T0(x, y) or N̄(x, y, 0) = N̄0(x, y)
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and Dirichlet or Neumann type boundary conditions

ψ(xs, ys) = fψs , ω(xs, ys) = fws

T (xs, ys) = fts ,
∂ T
∂ n

(xs, ys) = ftn

N̄(xs, ys) = n̄
∂ v
∂ x

or N̄(xs, ys) = −n̄
∂ u
∂ y

.

where n̄ is a constant (0 ≤ n̄ ≤ 1). The case n̄ = 0 indicates N̄ = 0 on the boundary,

which means that the microelements close to wall surface are unable to rotate. The case

n̄ = 1/2 indicates the vanishing of anti-symmetric part of the stress tensor and denotes weak

concentration. The case n̄ = 1 is used for modeling of turbulent boundary layer flows [9].

Here, ω0(x, y), N̄0(x, y) are known functions and Th(Tc) is known value of the temperature (hot

or cold). The vorticity boundary conditions are either derived from the definition of vorticity,

ω =
∂ v
∂ x
− ∂ u
∂ y

or from the Taylor series expansion of stream function through the relation

∇2ψ = −ω.

For K = 0, stream function, vorticity transport and energy equations are reduced to the clas-

sical problem of natural convection of a Newtonian fluid in a differentially heated rectangular

enclosures [9, 29].

1.5 Literature Survey

The lid-driven cavity flow of a Newtonian fluid has attracted much interest for a long time

and several methods have been developed. Majority of the papers dealing with the numeri-

cal solution to the lid-driven cavity problem have been concerned with the two-dimensional

problem.

In the early study of Bercovier and Engelman [18], a finite element of the penalization type

for the solution of incompressible viscous Navier-Stokes equations using an isoparametric

parabolic element is presented. The cavity problem is solved for Re = 1000 with a step

size of h = 1/12 and a total of 625 nodal points. A novel implicit cell-vertex finite volume

method is described for the solution of the Navier-Stokes equations at high Reynolds num-

bers by Şahin and Owens [71]. The method is applied to both steady and unsteady flows at
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Reynolds numbers up to 10000. They used (257 × 257) mesh in order to simulate the flow

for high Reynolds numbers. Two-dimensional near-incompressible steady lid-driven cavity

flows (Re = 100 − 7500) are simulated using multi-relaxation-time (MRT) model in the par-

allel lattice Boltzmann Bhatnager-Gross-Krook (LBGK) method by Wu and Shao [89]. A

consistent splitting scheme is used to solve unsteady Navier-Stokes problem by Wong and

Chen [88]. Time derivative is discretized by a fully implicit second-order backward differ-

entiation formula. To verify the convergence rate they select the grid range from (65 × 65)

to (513 × 513). They observed that when the grid size is not fine enough, a reduction of the

time step parameter does not enhance the accuracy. For high Reynolds number time step is

selected as 0.0005. A new meshless numerical method for the incompressible flows using the

radial basis functions is studied in [94]. They introduced several radial basis functions de-

pending on the parameters α and β which should be chosen carefully. The collocation matrix

might tend to be singular if α is too large and would be limited if α is too small. At the same

time, the parameter β had better not be an integer. Chen et.al. [27] studied numerical solution

of vorticity-stream function formulation of the Navier-Stokes equations using a lattice Boltz-

mann model. They solved the one-sided lid-driven cavity problem for (50 ≤ Re ≤ 2000) with

the grid resolution (100 × 100). For higher Re, they used a finer grid. Time step is taken as

0.001 and iteration numbers are 2200, 4500 and 6100, respectively for Re = 50, 400 and 1000.

In another study [32] the widely studied benchmark problem, two-dimensional-driven cavity

flow problem is discussed in detail in terms of physical and mathematical and also numerical

aspects. A very brief literature survey on studies on the driven cavity flow is given.

Onishi et.al. [60] studied the boundary element method (BEM) solution of two-dimensional

Navier-Stokes equations using stream function-vorticity formulation. They showed that larger

time increment can be used in BEM. In another study Sarler and Kuhn [72] used the dual reci-

procity BEM to solve transient incompressible two-dimensional Navier-Stokes equations in

primitive variables. They solved the driven cavity problem for Re = 100 only, using constant

elements. The time derivative is discretized by forward difference method and ∆t is taken as

0.001. In a recent study, Choi and Balaras [28] applied DRBEM to solve the unsteady Navier-

Stokes equations, where a fractional step algorithm is utilized for the time advancement. A

fully implicit second order Adams-Bashforth scheme is used for the nonlinear convective

terms. They could able to solve the lid-driven cavity flow up to Re = 400. For Re = 100,

time step is set to 0.001 for 40 and 80 boundary elements, and ∆t = 0.0005 for 160 boundary
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elements. For Re = 400, time step is set to 0.0001 for 40 and 80 boundary elements and

∆t = 0.00005 for 160 boundary elements.

The vorticity-stream function formulation of the two-dimensional, incompressible Navier-

Stokes equations is used to study the effectiveness of the coupled strongly implicit multigrid

(CSI-MG) method in the determination of high-Re, fine-mesh flow solutions by Ghia et.al.

[35]. The driven flow in a square cavity is used as the model problem. Solutions are obtained

for configurations with Reynolds number as high as 10000 and meshes consisting of as many

as (257 × 257) points. For Re = 1000, the (129 × 129) grid solution required. An automatic

adaptive refinement technique has been coupled to the multigrid approach to produce an ef-

ficient and stable solution strategy for solving the steady-state incompressible Navier-Stokes

equations by Thompson and Ferziger [82]. Solutions have been obtained for the driven cavity

and flow over a backward-facing step, for Reynolds numbers up to 5000 and 800, respectively.

The refinement criterion is based on the local truncation error. Mansour and Hamed [53]

presents an implicit procedure for the solution of the incompressible Navier-Stokes equations

in primitive variables. The time dependent momentum equations are solved implicitly for the

velocity field using the approximate factorization technique. A consistent finite-difference

scheme which satisfies the compatibility condition using a non-staggered grid is used in the

finite difference approximation of the static pressure Poisson equation. Numerical results ob-

tained for the steady state static pressure in the driven cavity are presented at Re = 1000 using

a non-staggered grid.

Natural convection heat transfer in enclosures has been of considerable research interest in

recent years due to the coupling of fluid flow and energy transport. Most of the previous stud-

ies on natural convection in enclosures have been related to Newtonian fluids. An excellent

review article is given by De Vahl Davis and Jones [30]. Their study summarizes and dis-

cusses the main features of the contributions and provides a quantitative comparison between

them. They used central difference for the spatial derivatives and forward difference for the

time derivative. Natural convection of air in a square cavity is studied by De Vahl Davis [29].

Again the combination of the central and forward difference methods is used for the solution

of the problem. In order to obtain a better accuracy an extrapolation scheme is used by fixing

the mesh size and taking different time increments. ∆t = 0.025, 0.016 and 0.0125 are used

for (21 × 21) matrices. Smaller time increments are used for finer meshes.
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Shu and Xue [79] studied the natural convection in a square cavity using the vorticity-stream

function formulation of the Navier-Stokes and energy transport equations as the governing

equations. They introduce two approaches to implement the boundary conditions of stream

function in generalized DQ (GDQ) simulation. In their study, the optimum time step size was

found through a trial-and-error process. They observed that the optimum time step size for

the two-layer approach is almost twice as large as that for the one-layer approach. They used

time increment between 1.0× 10−3 − 2.8× 10−4 for Ra = 103 − 106. As the Rayleigh number

increases they used finer meshes and small time increments. In another work Shu and Wee

[80] studied the Navier-Stokes equations in primitive variable form by using the GDQ method

with SIMPLE strategy. They propose a new approach to enforce the continuity condition

on the boundary and implement boundary condition for pressure correction equation. They

compared the method with the FD method in terms of run times and mesh sizes and observed

that SIMPLE-GDQ method needs smaller mesh sizes and shortens run times. The study of Lo

et.al. [51] represented a numerical algorithm which has been implemented to analyze natural

convection in a differentially heated cavity. In their study, differential quadrature method has

been used to obtain accurate numerical results while solving the velocity-vorticity form of

the Navier-Stokes equations. The time derivative is discretized using a second order finite

difference scheme. They obtained the results for the range of Rayleigh number 103 − 107.

They used (21 × 21), (25 × 25) and (31 × 31) mesh sizes for Ra = 103 − 106, and the time

increment varies between 0.01 and 0.00002.

A penalty finite element analysis with bi-quadratic rectangular elements is performed to in-

vestigate the influence of uniform and non-uniform heating of wall(s) on natural convection

flows in a square cavity by Roy and Basak [70]. They considered steady case of primitive

variable formulation. Numerical solutions are obtained for Ra = 103 − 105. Sathiyamoorthy

et.al. [75] studied the natural convection flow in a closed square cavity when the bottom wall

is uniformly heated and vertical wall(s) are linearly heated whereas the top is well insulated.

The non-linear coupled PDEs governing the flow have been solved by penalty finite element

method with bi-quadratic rectangular elements. Basak et.al. [13] studied natural convec-

tion flow in a triangular enclosure using finite element method. The problem is solved for

Rayleigh number 103−105 with a mesh size (41×41). They investigate the effects of increas-

ing Rayleigh and Prandtl number on the heat transfer rates and observe that Rayleigh number

has stronger effect on heat transfer rate. Natural convection in a two-dimensional, rectangu-
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lar enclosure with sinusoidal temperature profile on the upper wall and adiabatic conditions

on the bottom and sidewalls is numerically investigated by Sarris et.al. [73]. The governing

equations are solved using the finite volume method. The mesh size is taken as (61 × 61).

They observed that the values of the maximum and minimum local Nusselt number at the

upper wall are increased with increasing Rayleigh number. Barletta et.al. [12] presented a

numerical study of natural convection in a 2-D enclosure. The governing equations are solved

by means of two different software packages based on Galerkin finite element methods. The

steady problem is solved for the Rayleigh number between 103 − 105. The results show that

elliptic boundaries enhance the mean Nusselt number and the dimensionless mean kinetic

energy of the fluid.

Natural convection from two-dimensional discrete heat sources in a rectangular enclosure

is investigated by Chadwich et.al. [26]. The governing equations are solved using a control

volume based finite difference technique. The results show that for the single heat source con-

figuration heater locations closer to the bottom of the enclosure yield the highest heat transfer.

A finite difference approximation of the Navier-Stokes equations under the Boussinesq-fluid

assumption is used to simulate the flow and heat transfer in a two-layer system of an immis-

cible incompressible fluid by Moshkin [55]. For the parameters used in the numerical and

physical experiments a strict correlation between downward and upward flows is observed for

the upper and lower layers. The results indicate only qualitative agreement with the experi-

mental data. There are differences in the obtained numerical and physical simulations. Volgin

et.al. [84] simulate ion transfer under conditions of natural convection by the finite difference

method. In order to estimate the efficiency of the method, experiments are performed. They

observed that an increase in the region’s width leads to an increase in the critical Rayleigh

number.

Steady natural convection of air in a two-dimensional enclosure isothermally heated from one

side and cooled from the ceiling is analyzed numerically using a stream function-vorticity

formulation by Aydın et.al. [6]. The vorticity transport and energy equations are solved

using the alternating direction implicit method, and the stream function equation is solved

by successive over relaxation method. They used a uniform grid of (41 × 41) points in the

computations. For each aspect ratio it is found that a clockwise rotating single cell exists for

Ra ≤ 106. They also studied buoyancy-driven laminar flow in an inclined square enclosure

heated from one side and cooled from the adjacent side using the same methods, [7]. They
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determined the critical values of the inclination angle at which the rate of heat transfer within

the enclosure is either maximum or minimum. The time step used in the calculations is varied

between 0.004 and 0.00001, depending on Rayleigh number with a nonuniform mesh size

(31 × 31). The Allen discretization scheme is employed to solve steady natural convection in

an enclosure heated from below and symmetrically cooled from the sides by Ganzarolli and

Milanez [33]. (61×61) and (91×91) grid points are used in the calculations. For the range of

parameters studied, a single cell is observed to represent the flow pattern, except for a small

secondary cell due to viscous drag observed in some cases for uniform temperature at the

cavity floor. A double-population lattice Boltzmann method with non-uniform mesh is used

for the simulation of natural convection in a square cavity is studied by Kuznik et.al. [50].

The problem is solved for the range of Ra = 103−108 with mesh sizes (64×64)− (256×256).

The transition from the motionless conduction dominated regime to the convection dominated

regime takes place after Ra = 103.

Aiding and opposing mechanisms of mixed convection in a shear-and buoyancy-driven cavity

is studied by Aydın [8]. The focus was on the interaction of the forced convection induced

by the moving wall with the natural convection induced by the buoyancy. The ADI is used to

solve the vorticity and energy equations, and SOR is used to solve stream function equation. A

non-uniform grid system of (31×31) points is adopted. Three different heat transport regimes

were defined with the increasing value of Gr/Re2, namely; the forced convection, the mixed

convection and the natural convection. Öztop and Dağtekin [62] studied mixed convection

in two-sided lid-driven differentially heated square cavity. The discretization procedure is

based on finite control volume using the non-staggered grid arrangement with the SIMPLEM

algorithm. (61 × 61) grid points are used. An under-relaxation parameter of 0.5 is used in

order to obtain a stable convergence for the solution of momentum and energy equations.

About 2000 iterations were required to obtain the convergence.

Heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids is investigated

for various pertinent parameters by Khanafer et.al. [48] using finite-volume approach along

with the alternating direction implicit method. They analyze the effect of suspended ultrafine

metallic nanoparticles on the fluid flow and heat transfer processes within the enclosure. They

used an equally spaced mesh of (61 × 61).

Stream function-vorticity formulation of the transport equations are solved using finite differ-
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ence method in [46]. A uniform grid of (61×61) points is used for the calculations. Numerical

predictions show the enhancement is critical for nanofluids than pure fluids. They observe that

increasing the buoyancy parameter and volume fraction of nanofluids causes an increase in

the average heat transfer coefficient. Moreover, for large Rayleigh number values, the effect

of free convection is dominated by the buoyancy parameter due to accelerating the flow within

the boundary-layer near the wall from the buoyancy force generated in rectangular enclosures.

Tiwari and Das [83] investigated the behaviour of nanofluids inside a two-sided lid-driven

differentially heated square cavity using finite volume method. A grid number of (61 × 61)

is chosen for computations. They conclude that the nanoparticles immersed in a fluid are ca-

pable of increasing the heat transfer capacity of the base fluid. As volume fraction increases,

the effect is more pronounced. The variation of average Nusselt number is nonlinear with

solid volume fraction. Effect of copper-water nanofluid as a cooling medium has been studied

to simulate the behavior of heat transfer due to laminar natural convection in a differentially

heated square cavity in [74] using finite volume approach. The computational domain has

been divided into (81× 81) non-uniform grids. Finer grids have been taken at the boundaries.

They observed that the heat transfer decreases with increase in volume fraction for a partic-

ular Rayleigh number. Numerical simulation of natural convection of nanofluids in a square

enclosure is studied by Ho et.al. [40] using finite volume method. To ensure the grid conver-

gence of the numerical solutions, different meshes varying from (61× 61) to (161× 161) have

been employed. Results demonstrate that the uncertainties associated with different formulas

adopted for the effective thermal conductivity, and dynamic viscosity of the nanofluid have a

strong bearing on the natural convection heat transfer characteristics in the enclosure. Öztop

and Abu-Nada [63] studied heat transfer and fluid flow due to buoyancy forces in a partially

heated enclosure using different types of nanoparticles. Finite volume method is used to solve

the transport equations. It was found that the heater location effects the flow and temperature

fields when using nanofluids. The resulted algebraic equations are solved using successive un-

der/over relaxation method. The problem is solved for the range of Rayleigh number 103−105

with a grid size of (51× 51). They also studied effects of inclination angle on natural convec-

tion in enclosures filled with copper water nanofluid [1]. In another study, Aminossadati and

Ghasemi [3] studied natural convection cooling of a localized heat source at the bottom of a

nanofluid-filled enclosure using finite volume method. They used (60 × 60) grid points. The

results indicate that adding nanoparticles into pure water improves its cooling performance
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especially at low Rayleigh numbers. The type of nanoparticles and the length and location of

the heat source proved to significantly affect the heat source maximum temperature.

In a recent study, natural convection heat transfer of water-based nanofluids in an inclined

enclosure with a heat source is investigated by Öğüt [61]. The governing equations are solved

using polynomial differential quadrature method. (31 × 31) and (51 × 51) grid points are

used for increasing values of the heater length. The computational results were obtained by

the successive over-relaxation iteration method. It is observed that the average heat transfer

decreases with an increase in the length of the heater.

Hsu and Chen [41] numerically investigated the natural convection of a micropolar fluid in

an enclosure heated from below using the cubic spline collocation method. They studied the

effects of microstructure on the convective heat transfer and found that heat transfer rate of

micropolar fluids was smaller than that of the Newtonian fluid. The grid fineness (21 × 21)

was selected to provide accurate results for the problems which are solved for Ra = 104 and

105. In another work, Hsu et.al. [42] studied natural convection of micropolar fluids in an

enclosure with isolated heat sources. The coupled equations are solved by the cubic spline

alternating direction implicit procedure. An arrangement of (21×21) nonuniform mesh size is

used. However, a finer mesh size is needed for large Raleigh number. They observed that the

heat transfer rate is sensitive to the microrotation boundary conditions and the average Nusselt

number is lower for a micropolar fluid, as compared to a Newtonian fluid. Aydın and Pop [9],

numerically investigated the steady natural convective heat transfer of micropolar fluids in a

square cavity with differentially heated vertical walls and adiabatic horizontal walls using the

finite difference method. The vorticity, energy and microrotation equations are solved using

the alternating direction implicit method, and the stream function equation is solved by the

successive over relaxation method. The time step varied between 0.00001 and 0.004 with a

(31× 31) non-uniform and non-staggered grid structure. They also studied the steady laminar

natural convective flow and heat transfer of micropolar fluids in enclosures with a centrally

located discrete heater in one of its sidewalls by applying the same methods [10]. They found

that the average Nusselt number increases with increasing Rayleigh number, and an increase

in the material parameter reduces the heat transfer.

The effect of microstructure on the thermal convection in a rectangular box of fluid heated

from below has been investigated by Jena and Bhattacharyya [45]. The problem is solved
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using Galerkin method. They observed that as the distance between the lateral walls increases

the effect of one of the material parameters, characterizing the spin-gradient viscosity, at the

onset of stability diminishes. The steady flow of a micropolar fluid between two infinite

discs, when one is held at rest and the other rotating with constant angular velocity is studied

by Anwar and Guram [4]. The equations of motion are reduced to a system of ordinary

differential equations, which in turn is solved numerically using the Gauss-Seidel iterative

procedure and Simpson’s rule. Time step is taken as 0.025 and 0.0125 in the computations.

Kumari and Nath [49] solved unsteady incompressible boundary layer flow of a micropolar

fluid at a stagnation point using a quasilinear finite-difference scheme. They observed that

the skin friction, microrotation gradient and heat transfer parameters are strongly dependent

on the coupling parameter, mass transfer and time, whereas the effect of the microrotation

parameter on the skin friction and heat transfer is rather weak, but microrotation gradient is

strongly affected by it. Stagnation flow of micropolar fluids with strong and weak interactions

is studied by Guram and Smith [37]. The equations of motion are reduced to dimensionless

forms which include three dimensionless parameters, and integrated numerically by a Runge-

Kutta method.

In a recent study, Zadravec et.al. [95] studied numerical simulation of natural convection in

micropolar fluids, describing flow of suspensions with rigid and underformable particles with

own rotation. They have used boundary element method on the velocity-vorticity form of the

Navier-Stokes equations. They found that microrotation of particles in suspension in general

decreases overall heat transfer from the heated wall and should not therefore be neglected

when computing heat and fluid flow of micropolar fluids.

Ramesh and Lean [69] studied stability of the multiple reciprocity method for transient heat

conduction. They consider the numerical stability of the approach through an eigenvalue

decomposition of the system matrix. They demonstrate that the multiple reciprocity method

for transient heat conduction is stable only for appropriately chosen time steps. Stability

analysis for boundary element methods for the diffusion equation is studied by Sharp [77].

It is observed that decreasing progressively the time step in boundary element solutions of

the diffusion equation deteriorates the quality of the approximation and indicates a state of

instability. In another study, Peratta and Popov [68] studied numerical stability of the BEM for

advection-diffusion problems. They present two different one-dimensional BEM formulations

for solution of the advection-diffusion problems. Then, they extended their analysis to three-
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dimensional problems.

1.6 Plan of The Thesis

In this thesis, we have solved first the two-dimensional, unsteady, laminar flow of viscous

and incompressible fluid governed by the Navier-Stokes equations in terms of stream func-

tion and vorticity. The DRBEM has been used for transforming the differential equations

to boundary integrals by using the fundamental solution of Laplace equation which is rather

simple compared to the whole equations. The nonlinearities are considered as inhomogeneity

in the equations. Only the boundary of the region is discretized by using constant and lin-

ear elements, and some selected interior points are taken in DRBEM for obtaining solution

behaviour. Thus, the computational cost is much smaller than the domain discretization meth-

ods. Then, the energy equation which is of the same type of vorticity equation has been added

for solving natural and mixed convection flows in cavities.

Natural convection flows of nanofluids and micropolar fluids have been also solved easily

by using DRBEM since all the other terms in the equations can be taken as inhomogeneous

terms. The derivatives in the convective terms are calculated with the help of the coordinate

matrix.

Three different time integration methods are used for discretization of the time derivatives in

DRBEM discretized vorticity, energy and microrotation equations. The forward and central

finite difference schemes are used with relaxation parameters to accelerate the convergence to

steady-state. The fourth-order Runge-Kutta method is modified for bringing ‘m+1’ and ‘m’

iteration levels to both the unknown and its normal derivative in the final discretized equations.

This is required in the DRBEM resulted equations which contain both the problem variable

and its normal derivative as unknowns.

In the computations we have used 80−120 boundary elements and quite large time increments

as 0.1 − 0.8 for solving Navier-Stokes equations for considerably large values of Reynolds

number. The one-sided and two-sided lid-driven cavity flow problems are solved with very

good accuracy and small computational cost compared to the results in the literature.

The natural and mixed convection flows in cavities for different configurations of heated and
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cooled walls have been solved by using 60 − 100 boundary elements and the smallest time

increment used was 0.0005. As Re or Ra increases we need to take large number of boundary

elements and smaller time increments. The central difference time integration scheme has

been used with relaxation parameter around 0.9. Numerical solutions of natural convection

flows of nanofluids and micropolar fluids in enclosures have been obtained for Ra values

between 103 and 106, and for several values of problem constants, again by using at most 100

linear boundary elements and at least ∆t = 0.001 for increasing values of Ra.

Most of the numerical solution procedures for natural convection flows of nanofluids and mi-

cropolar fluids are based on finite difference and finite volume methods. These are domain

discretization techniques and result with huge number of system of equations to be solved.

The boundary element solution given by Zadravec et.al. [95] also is a direct BEM which

includes domain integrals due to the source terms in the equations. The DRBEM enables one

to obtain boundary integrals for the differential equations used and discretizes the boundary

of the domain only. Thus, the size of the resulting system of equations is considerably small

compared to all the domain discretization methods. The DRBEM solutions of natural convec-

tion flows of nanofluids and micropolar fluids are given in this thesis which are not available

in the literature.

We also investigate the numerical stability of the DRBEM solution of flow problems in the

thesis following the references [44, 69]. Since the BEM solutions contain both the problem

variable and its normal derivative, stability analysis is modified to take into care of this case.

The stability analysis developed depends on the choice of the relaxation parameters and the

time increment. Once they are chosen properly, the DRBEM is capable of solving all the flow

problems considered in this thesis and the solutions are stable.

Chapter 1 gives the governing equations for unsteady, laminar flow of incompressible, viscous

fluid together with the energy transport phenomena. The related boundary conditions for lid-

driven cavity flow, and natural and mixed convection flows in enclosures are also described.

Heat transfer enhancement in enclosures utilizing nanofluids is described and related equa-

tions are given with the physical explanations of coefficient parameters. Finally, equations for

natural convection flow of micropolar fluids are provided for several configurations of heated

walls in enclosures.

In Chapter 2, we explain the dual reciprocity boundary element method on the general Poisson
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equation. Boundary discretization is made using both constant and linear elements. Appli-

cation of DRBEM gives rise to a system of first order differential equations in time. The

time derivative is discretized using three different time integration methods, namely, the for-

ward and central difference methods with relaxation parameters, and fourth order Runge-

Kutta method.

Chapter 3 presents the DRBEM solutions of fluid flow problems. The governing equations

of laminar, transient and viscous flow of incompressible fluid (Navier-Stokes equations) are

formulated in non-dimensional form. Then, the application of the method is given on three

test problems considering different geometries and physical configurations. The solutions are

given in terms of streamlines, vorticity contours as well as the velocity profiles. In the next

sections, application of the DRBEM is extended to solve the natural and mixed convection

flows and natural convection flow of nanofluids by adding the energy equation to the Navier-

Stokes equations. Several test problems are solved on each type of fluid flow. Finally, the

method is applied to the solution of the natural convection flow of micropolar fluids in which

an additional equation, namely the microrotation equation is used together with the Navier-

Stokes and energy equations. Two test problems considering different configurations in each

enclosure are considered.

In Chapter 4, we introduce the numerical stability analysis of each type of fluid flow consid-

ered in the previous chapter. For all the problems, we showed that the DRBEM solution with

FDM time discretization of these flows are stable with the chosen values of time step and

relaxation parameters, and the constants of the problems. These are shown with the tables

consisting of maximum eigenvalues for vorticity, energy and microrotation equations.

Chapter 5 gives the overall conclusion for the methods and numerical results obtained in the

thesis.
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CHAPTER 2

THE BOUNDARY ELEMENT METHOD AND THE DUAL

RECIPROCITY BOUNDARY ELEMENT METHOD

The boundary element method (BEM) is a numerical technique, which becomes popular over

the last two decades, and is an alternative method for the solution of partial differential equa-

tions. The main advantage of the BEM is providing a complete solution in terms of boundary

values only and savings in the computing effort. Especially for homogeneous PDEs only

boundary discretization is necessary. In this method, a boundary integral equation equiva-

lent to the original partial differential equation is derived, and the integral equation is solved

discretizing the boundary. This approach reduces the dimension of the problem and permits

accurate solutions which are obtained efficiently. This can be thought as the other advantage

of the method [21].

When BEM is applied to an inhomogeneous PDE the integral equation involves a domain

integral, and the dimension of the problem is not reduced. Therefore, the advantage of the

method is lost. There are several methods to deal with this problem but the most successful

is the Dual Reciprocity Method (DRM) [65, 66]. In this method, the solution is divided

into two parts. The first part is a known particular solution of the inhomogeneous partial

differential equation (usually elliptic type) and the second part is a complementary solution

of its homogeneous counterpart. Approximate particular solutions can be easily determined

when the inhomogeneity is expressed by a series expansion in terms of simpler approximating

or interpolating functions which are in turn related to the Laplace equation. Thus, DRBEM

applies to the Laplace operator on both sides of the equation. DRBEM can also be applied

to time-dependent diffusion problems [86, 87], non-linear problems, and convection-diffusion

problems by treating all these terms as inhomogeneity.
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The BEM, like the Finite Element Method (FEM) and many other numerical methods, can be

obtained as a special case of the general weighted residual statement. There are several books

on the BEM which are introductory books concentrating on potential and elasticity problems

[14, 38, 64]. Recent books have also concentrated on the computational aspects of the BEM

[15, 34]. The textbooks of [2, 11, 22], represent the comprehensive work on the BEM and its

applications in the various fields of engineering science.

The BEM can be applied to many engineering problems such as creep and fracture prob-

lems on solid mechanics, fluid mechanics, inelastic problems, the potential theory, potential

fluid flow, acoustics, torsion of shafts, electric and magnetic field theory, elastostatics, elas-

todynamics, plates and shells, transient heat conduction, visco-elasticity, fracture, plasticity,

water waves, viscous fluid flow, ground water flow, Navier-Stokes flow, wave propagation,

thermo-elasticity and other time dependent problems [20].

In this chapter, the basic theory of BEM and DRBEM are given. BEM and DRBEM for

Poisson equation are explained in Sections 2.1 and 2.2 following the references [21, 65], re-

spectively. Then, in Sections 2.3, 2.4 and 2.5 the method is extended to a more general form

where right-hand side includes a function of position, time, the time and space derivatives of

the unknown function and a function containing unknown itself. Thus, the right-hand side

function may include a non-linear term. In the solution procedure, the spatial derivatives are

discretized by using DRBEM in which the fundamental solution of Laplace equation is used.

The resulting DRBEM matrices are in terms of integrals of logarithmic function and its nor-

mal derivative, which can be computed easily and accurately, either theoretically (constant

element case) or numerically (higher order elements). The right-hand side function is approx-

imated by using linear radial basis functions. Application of DRBEM to transient problems

gives rise to a first order time-dependent system of ordinary differential equations (ODE).

These system of ODEs are then solved with two different time integration methods, namely

finite difference method (FDM) and Runge-Kutta method (RKM), which are explained in

Section 2.6. These methods are used to discretize the time derivative in order to see the

advantages and disadvantages of the methods and make a comparison among them.

We will apply DRBEM in Chapter 3 to solve unsteady laminar viscous flow of incompress-

ible fluids (Navier-Stokes equations), natural convection flow, mixed convection flow, natural

convection flow of nano and micropolar fluids. The governing equations of these problems in-
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clude inhomogeneous terms. It is difficult and not practical to handle the inhomogeneity with

the other numerical methods since the domain discretization is required. But, in DRBEM

these terms are approximated using radial basis functions and kept on the right hand side.

Convective terms can also be handled easily with this approach by approximating them using

radial basis functions.

2.1 BEM solution of Poisson’s Equation ∇2u = b(x, y)

In this section, boundary integral equation required by the method is going to be derived

for the Poisson equation as in [21, 65] using weighted residuals. The Poisson equation in a

two-dimensional domain is

∇2u(x, y) = b(x, y) , (x, y) ∈ Ω (2.1)

supplied with the Dirichlet and Neumann boundary conditions (Fig. (2.1))

u(x, y) = ū(x, y) , (x, y) ∈ Γ1

q(x, y) = q̄(x, y) , (x, y) ∈ Γ2

(2.2)

where ū(x, y) and q̄(x, y) are given functions. The domain Ω ∈ R2 is bounded by a piecewise

smooth boundary Γ = Γ1 + Γ2. q =
∂u
∂n

, n is the unit outward normal and ∇2 =
∂2

∂x2 +
∂2

∂y2 is

the Laplace operator.

When equation (2.1) is multiplied by the weight function u? and integrated over the domain

Ω, one gets ∫

Ω

(∇2u − b)u? dΩ = 0. (2.3)

In the above equation, u? is the fundamental solution of Laplace equation and satisfies the

Poisson equation ∇2u? + ∆i = 0, [65]. Here, ∆i represents a Dirac delta function which goes

to infinity at the point i = (xi, yi) and is equal to zero elsewhere. The integral of ∆i over the

domain is equal to one. Integral property of Dirac delta function gives

∫

Ω

u∇2u?dΩ =

∫

Ω

u(−4i)dΩ = −ciui
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where ui = u(xi, yi) and ci =


1
2 (xi, yi) ∈ Γ

1 (xi, yi) ∈ Ω
for a smooth boundary Γ.

Integrating by parts (applying Green’s theorem) twice and inserting boundary conditions to

equation (2.3) yields

ci ui +

∫

Γ2

u q? dΓ +

∫

Γ1

ū q? dΓ +

∫

Ω

b u? dΩ =

∫

Γ2

q̄ u? dΓ +

∫

Γ1

q u? dΓ. (2.4)

Since the equation (2.4) applies to a concentrated source at the point i = (xi, yi), the values of

u? and q? =
∂u?

∂n
are those corresponding to that particular point. For each different point a

new integral equation is obtained.

For an isotropic two-dimensional medium the fundamental solution of Laplace equation is

u? =
1

2π
ln

(1
r

)
=

1
2π

ln |~r − ~ri| (2.5)

and the normal derivative of the fundamental solution is

q? =
∂u?

∂n
=

1
2π

(~r − ~ri).~n
|~r − ~ri|2

(2.6)

where ~r = (x, y) and ~ri = (xi, yi) are the free and fixed (source) points.

In order to make some simplification on the equation (2.4) we introduce the following nota-

tions,

ũ =


u on Γ2

ū on Γ1

and

q̃ =


q on Γ1

q̄ on Γ2

where ū is the known value of u and q̄ is the known value of q.

32



Figure 2.1: Domain and the boundary conditions of the problem
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Therefore final form of the equation (2.4) becomes

ci ũi +

∫

Γ

ũ q? dΓ +

∫

Ω

b u? dΩ =

∫

Γ

q̃ u? dΓ. (2.7)

Here the function b is known. Thus, the integral in Ω do not introduce any new unknowns but

one still needs to carry out a domain integral as well as the boundary integrals. The domain

integral is going to be transformed to a boundary integral with the help of DRBEM.

2.2 DRBEM solution of Poisson’s Equation ∇2u = b(x, y)

The dual reciprocity boundary element method transforms the domain integral resulting in

BEM to a boundary integral, and it can be used to solve non-linear and time-dependent prob-

lems.

The DRBEM is explained in this section with reference to the equation (2.1) [65]

∇2u(x, y) = b(x, y) , (x, y) ∈ Ω (2.8)

with the boundary conditions

u(x, y) = ū(x, y) , (x, y) ∈ Γ1

q(x, y) = q̄(x, y) , (x, y) ∈ Γ2 .

(2.9)

The solution to equation (2.8) can be expressed as the sum of the solution of the Laplace

equation and a particular solution û such that

∇2û = b. (2.10)

Finding a solution û that satisfies the equation (2.10) is generally difficult, especially for

non-linear or time-dependent problems. The dual reciprocity method proposes a series of

particular solutions û j instead of a single function û. Therefore the expression for b is

b ≈
N+L∑

j=1

f jα j (2.11)
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where f j are related to particular solution û j as

∇2û j = f j (2.12)

and ‘N’ and ‘L’ are the number of boundary and internal nodes, respectively. The α j are

unknown coefficients and the f j are approximating functions.

Substituting equation (2.12) into (2.11) we express the right hand side function b with Lapla-

cian of particular solutions

b =

N+L∑

j=1

α j(∇2û j). (2.13)

When equation (2.13) is substituted into the original equation (2.8) we have

∇2u =

N+L∑

j=1

α j(∇2û j). (2.14)

In equation (2.14), the Laplace operator applies on both sides to the unknown function u and

the particular solutions û j. So, the procedure for developing the BEM for the Laplace operator

will be applied to both sides which is called DRBEM.

Multiplying equation (2.14) by the fundamental solution u? of Laplace equation and integrat-

ing over the domain, yields

∫

Ω

(∇2u)u?dΩ =

N+L∑

j=1

α j

∫

Ω

(∇2û j)u?dΩ. (2.15)

When we apply Green’s theorem to the above equation, we get the integral equation for each

source node i,

ciũi +

∫

Γ

(ũq? − q̃u?)dΓ =

N+L∑

j=1

α j(ciûi j +

∫

Γ

(û jq? − q̂ ju?)dΓ) (2.16)

where ûi j = û j(xi, yi) and the term q̂ j is defined as

q̂ j =
∂û j

∂n
=
∂û j

∂x
∂x
∂n

+
∂û j

∂y
∂y
∂n
. (2.17)

In the rest of the formulation we drop ‘ ∼ ’ in u and q for the simplicity of the notation.
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2.2.1 Discretization with Constant Elements

In this section, we will consider the constant element discretization of the boundary in which

nodes are taken at the mid-points of elements (Fig. (2.2)). Thus, for E constant elements we

have exactly E = N nodes on the boundary.

The approximations for u and q for a constant element are taken as u = Nmum, q = Nmqm, and

we can write discretized form of equation (2.16)

ciui +

N∑

e=1

∫

Γe

umNmq?dΓe −
N∑

e=1

∫

Γe

qmNmu?dΓe

=

N+L∑

j=1

α j[ciûi j +

N∑

e=1

∫

Γe

û jmNmq?dΓe −
N∑

e=1

∫

Γe

q̂ jmNmu?dΓe]

(2.18)

where um and qm are the values of the function and its normal derivative at node m respectively,

Nm is the constant trial (shape) function for element e which takes the value 1 at the node m

and zero everywhere else.

For constant elements the boundary is always smooth at the nodes. Thus, ci = 1/2. So, the

equation (2.18) becomes for N nodes on the boundary

1
2

ui +

N∑

k=1

H̄ikuk−
N∑

k=1

Gikqk =

N+L∑

j=1

α j
(1
2

ûi j +

N∑

k=1

H̄ikûk j −
N∑

k=1

Gikq̂k j
)

; i = 1, ...,N (2.19)

where the index k is used for the boundary nodes and

H̄i j =

∫

Γ j

q? dΓ j =
1

2π

∫

Γ j

(~r − ~ri).~n
|~r − ~ri|2

dΓ j ; i, j = 1, ...,N (2.20)

Gi j =

∫

Γ j

u? dΓ j =
1

2π

∫

Γ j

ln |~r − ~ri|dΓ j ; i, j = 1, ...,N (2.21)

and ~ri = (xi, yi), ~r = (x, y) are both varying on the boundary nodes, ~r(x, y) being on the j-th

element.
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Figure 2.2: Discretization with constant elements
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Gauss quadrature formula can be used to calculate the entries of the matrices Gi j and H̄i j for

i , j. For i = j, a more accurate integration scheme is needed because of the singularity of the

fundamental solution. For these integrals higher-order integration rules or a special formula

such as logarithmic integration is generally used. For constant element case Gi j and H̄i j can

be calculated analytically. H̄ii = 0 since ~n.~r = 0. The Gii integrals are [21]

Gii =
l

2π

{
ln

(2
l

)
+ 1

}
(2.22)

where l is the length of the element.

When i = j we define Hi j as

Hi j = H̄i j +
1
2
δi j (2.23)

where δ is the Kronecker delta.

Then, the equation (2.19) can be written as

N∑

k=1

Hikuk −
N∑

k=1

Gikqk =

N+L∑

j=1

α j
( N∑

k=1

Hikûk j −
N∑

k=1

Gikq̂k j
)
. (2.24)

The matrix-vector form of the above equation is

Hu −Gq =

N+L∑

j=1

αj(Hûj −Gq̂j) (2.25)

where H and G are two N × N matrices, and u and q are vectors of length N containing all

the nodal values on the boundary.

In equation (2.24) each vector, ûj and q̂j, is considered to be one column of the matrices Û

and Q̂, respectively. Thus, equation (2.25) takes the matrix-vector form

Hu −Gq = (HÛ −GQ̂)α (2.26)

where α is the (N + L) × 1 vector containing the unknown coefficients α j and the matrices Û

and Q̂ have the sizes N × (N + L). The α vector is computed from the system (2.11).
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2.2.2 Discretization with Linear Elements

Now, we consider linear variation of u and q over an element for which the nodes are located

at the ends of the element (Fig. (2.3)).

After discretizing the boundary into series of E linear elements, equation (2.16) can be written

as [21, 65]

ciui +

E∑

e=1

∫

Γ j

(
2∑

j=1

u jN j)q?dΓ j −
E∑

e=1

∫

Γ j

(
2∑

j=1

q jN j)u?dΓ j

=

N+L∑

m=1

αm[ciûim +

E∑

e=1

∫

Γ j

(
2∑

j=1

ûm jN j)q?dΓ j −
E∑

e=1

∫

Γ j

(
2∑

j=1

q̂m jN j)u?dΓ j]

(2.27)

where E = N (number of nodes on the boundary) also for linear element case.

Since u and q vary linearly over each element it is not possible to take them out of integrals

and the integrals in the above equation are evaluated using numerical integration.

The values of u and q at any point on the element can be defined in terms of their nodal

values and two linear interpolation functions N1 and N2, which are given in terms of the

homogeneous coordinate ξ ∈ [−1, 1], as

u(ξ) = N1u1 + N2u2 =

[
N1 N2

] 
u1

u2



q(ξ) = N1q1 + N2q2 =

[
N1 N2

] 
q1

q2

 .

(2.28)

The two interpolating functions are defined as

N1(ξ) = 1
2 (1 − ξ)

N2(ξ) = 1
2 (1 + ξ).

(2.29)
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Figure 2.3: Discretization with linear elements
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The first integral on the left-hand side of (2.27) can be written as,

∫

Γ j

uq?dΓ =

∫

Γ j

[
N1 N2

]
q?dΓ


u1

u2

 =

[
h1

i j h2
i j

] 
u1

u2

 (2.30)

where, for each element j, we have the two terms

h1
i j =

∫

Γ j

N1q?dΓ (2.31)

and

h2
i j =

∫

Γ j

N2q?dΓ. (2.32)

Similarly , the second integral on the left-hand side of (2.27) gives

∫

Γ j

qu?dΓ =

∫

Γ j

[
N1 N2

]
u?dΓ


q1

q2

 =

[
g1

i j g2
i j

] 
q1

q2

 (2.33)

where

g1
i j =

∫

Γ j

N1u?dΓ (2.34)

and

g2
i j =

∫

Γ j

N2u?dΓ. (2.35)

Integrals h1
i j, h2

i j, g1
i j and g2

i j are evaluated numerically by using Gaussian quadrature. In the

discretization with linear elements, node 2 of element j is the same point as node 1 of element

j + 1. So, the entries H̄i j are equal to the h1
i j term of element j plus the h2

i, j−1 term of element

j − 1.

1
2

ui +

N∑

j=1

H̄i ju j −
N∑

j=1

Gi jq j =

N+L∑

k=1

αk
(1
2

ûik +

N∑

j=1

H̄i jû jk −
N∑

j=1

Gi jq̂ jk
)

(2.36)

which becomes
N∑

j=1

Hi ju j −
N∑

j=1

Gi jq j =

N+L∑

k=1

αk
( N∑

j=1

Hi jû jk −
N∑

j=1

Gi jq̂ jk
)

(2.37)
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when the terms ci have been incorporated onto the principal part of Hi j.

Then, the whole set in matrix-vector form becomes

Hu −Gq = (HÛ −GQ̂)α (2.38)

where the matrices H, G, Û, Q̂ have sizes N×N, N×N, N× (N + L), N× (N + L) respectively,

and the vectors u, q, α have lengths N, N and N + L respectively. Each coefficient of the

matrices Û and Q̂ is a function of the distance between two nodes.

Equation (2.38) (using linear elements) or equation (2.26) (using constant elements) involves

discretization of the boundary only. One may define the internal nodes at the locations where

it is desirable to know the interior solution. Only the coordinates are needed as input data.

Hence, these nodes may be defined in any order.

Since the sizes of the matrices in the equations (2.38) and (2.26) are different, we enlarge the

matrices as, [65]


Hb 0

Hi I




ũb

ũi

 −


Gb 0

Gi 0




q̃b

0



=
(


Hb 0

Hi I




Ûb

Ûi

 −


Gb 0

Gi 0




Q̂b

0


) {

α

}
(2.39)

where b refers to the boundary nodes and i to the internal nodes. 0 and I are the zero and

identity matrices respectively.

Now, all the matrices are of size (N + L) × (N + L) and the vectors have length (N + L) since

there are N boundary and L interior nodes.

The coefficient vector α in (2.38) or (2.26) is computed from equation (2.11)

b ≈
N+L∑

j=1

f jα j (2.40)
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by taking the value of b at (N + L) different points, and expressing in matrix form as

b = Fα (2.41)

where F is the (N + L) × (N + L) position matrix consisting of vectors f j as columns which

contain the values of the function f j at the N + L points.

Therefore, α vector may be obtained as inverting the equation (2.41)

α = F−1b. (2.42)

When equation (2.42) is substituted back into equation (2.38) or (2.26) we get the system

Hu −Gq = (HÛ −GQ̂)F−1b (2.43)

where right-hand side of equation (2.43) is a known vector now.

In order to define the functions f j, û j and q̂ j it is customary to propose an expansion for

f j and then compute û j and q̂ j. Usually, f j functions are taken as polynomials in terms of

radial distance r. Thus, f ’s are taken as f = 1 + r + r2 + r3 + ... + rm in which r is the

distance between fixed and source points. The resulting F matrix should be non-singular and

the degree m should be properly taken [57].

If f j = r, then the corresponding û j function can be obtained, in the two dimensional case,

from the integration of the equation

∇2û j = r (2.44)

which is equal to in polar coordinates

1
r
∂

∂r

(
r
∂û
∂r

)
= r. (2.45)

Thus, integration gives

û j =
r3

9
(2.46)

in which r2 = r2
x + r2

y . rx and ry are the components of r in the direction of the x and y axes.

The function q̂ j will be obtained from (since
∂r
∂x

=
rx

r
,
∂r
∂y

=
ry

r
)

q̂ j =
∂û j

∂r
∂r
∂n
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and substituting the value of û j (2.46) to get

q̂ j =
r
3

[rxcos(n, x) + rycos(n, y)] (2.47)

where direction cosines refer to the outward normal at the boundary with respect to the x and

y axes.

In this case the matrix F will contain zeros on the leading diagonal, but the matrix is non-

singular if no double nodes are used.

We may chose f j as

f j = 1 + r + r2 + r3 + .... + rm (2.48)

and since

∇2û j = f j , q̂ j =
∂û j

∂n

we can compute û j and q̂ j as

û j =
r2

4
+

r3

9
+ ..... +

rm+2

(m + 2)2 (2.49)

q̂ j = (rx
∂x
∂n

+ ry
∂y
∂n

)(
1
2

+
r
3

+ .... +
rm

m + 2
). (2.50)

Linear radial basis functions f = 1 + r :

The presence of the constant guarantees the “completeness” of the expansion, and also implies

that the leading diagonal of F is no longer zero. Each of its entries Fl j is a function of the

distance between points l and j both of which take all the values from 1 to N + L. F is thus

a symmetric matrix and non-singular. So, in equation (2.42) the inverse of F is well defined

[65].

Note that in this case

û =
r2

4
+

r3

9
(2.51)

and

q̂ =
(1
2

+
r
3

)(
rx
∂x
∂n

+ ry
∂y
∂n

)
. (2.52)
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Quadratic radial basis functions f = 1 + r + r2 :

In this case

û =
r2

4
+

r3

9
+

r4

16
(2.53)

and

q̂ =
(1
2

+
r
3

+
r2

4

)(
rx
∂x
∂n

+ ry
∂y
∂n

)
. (2.54)

Similar to the linear case the matrix F is non-singular and therefore invertible.

2.3 DRBEM Solution of Time-Dependent Problems ∇2u = b(x, y, t, u̇)

Now, we will consider the time dependent Poisson’s type equation

∇2u = b(x, y, t, u̇) (2.55)

where

b(x, y, t, u̇) =
∂ u
∂ t

(2.56)

for the time-dependent diffusion equation.

Application of DRBEM to equation (2.55) gives the discretized equations in the matrix vector

form

Hu −Gq = (HÛ −GQ̂)F−1b (2.57)

and when equation (2.56) is substituted back into equation (2.57) we get the system

Hu −Gq = (HÛ −GQ̂)F−1u̇ (2.58)

where u̇ is of the length N + L which contains the time derivative values of the vector u.

Writing equation (2.58) as

Hu −Gq = Su̇ (2.59)

where S = (HÛ −GQ̂)F−1 we can obtain finally
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−Su̇ + Hu −Gq = 0 (2.60)

in which 0 denotes the zero vector.

Time integration schemes, which are necessary for solving this system to obtain the solution

u at N + L points, will be explained in Section 2.6.

2.4 DRBEM Solution of Convection-Diffusion Problems ∇2u = b(x, y, t, u̇, ux, uy)

In this section, the range of application of the DRBEM will be extended to problems governed

by the equations of the type

∇2u = b(x, y, t, u̇, ux, uy) (2.61)

where the non-homogeneous term may also be a combination of time and space derivatives

of u

b(x, y, t, u̇, ux, uy) =
∂u
∂t

+
∂u
∂x

+
∂u
∂y

(2.62)

which leads to the system

b = Fα. (2.63)

Same expression can also be used for the problem variable when dealing with derivatives

u = Fβ (2.64)

where β , α.

Differentiating (2.64) with respect to x and y, gives, respectively

∂u
∂x

=
∂F
∂x
β (2.65)

and
∂u
∂y

=
∂F
∂y
β . (2.66)

The vector β can be obtained by inverting the equation (2.64)

β = F−1u . (2.67)
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Substituting equations (2.65) and (2.66) back into (2.67), we get

∂u
∂x

=
∂F
∂x

F−1u

∂u
∂y

=
∂F
∂y

F−1u.

(2.68)

Thus, the non-homogeneous term in equation (2.61) can be expressed as

b =
∂u
∂t

+
(∂F
∂x

F−1 +
∂F
∂y

F−1
)
u. (2.69)

Substituting equation (2.69) into equation (2.43) or (2.57) yields

Hu −Gq = (HÛ −GQ̂)F−1
(
u̇ +

(∂F
∂x

F−1 +
∂F
∂y

F−1
)
u
)
. (2.70)

Equation (2.70) can be simply written as

Hu −Gq = Su̇ + D (2.71)

where
S = (HÛ −GQ̂)F−1

D = S
(∂F
∂x

F−1 +
∂F
∂y

F−1
)
u .

(2.72)

Finally, one can obtain

−Su̇ + (H − D)u −Gq = 0 (2.73)

which is similar to equation (2.60).

Now, the system (2.73) will be solved by using some time integration schemes.

2.5 DRBEM Solution of Non-linear Problems ∇2u = b(x, y, t, u̇, u, ux, uy)

Finally, we give the application of DRBEM to non-linear problems

∇2u = b(x, y, t, u̇, u, ux, uy) (2.74)
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where the non-linear term b is

b =
∂u
∂t

+ u
(∂u
∂x

+
∂u
∂y

)
(2.75)

In Section 2.4, we discuss how to treat the convective terms (equation (2.68)). The non-linear

right-hand side term can be expressed as in equation (2.69)

b =
∂u
∂t

+ U
(∂F
∂x

F−1 +
∂F
∂y

F−1
)
u. (2.76)

where U is diagonal and contains the values of u at each node, i.e.

U =



u1 0 0 . . . 0

0 u2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . uN+L



. (2.77)

Substituting equation (2.76) into equation (2.43) or (2.57) yields

Hu −Gq = (HÛ −GQ̂)F−1
(
u̇ + U

(∂F
∂x

F−1 +
∂F
∂y

F−1
)
u
)
. (2.78)

Equation (2.78) can be simply written as

Hu −Gq = Su̇ + D1 (2.79)

where
S = (HÛ −GQ̂)F-1

D1 = S U
(∂F
∂x

F−1 +
∂F
∂y

F−1
)
u.

(2.80)

Finally one can obtain the system

−Su̇ + (H − D1)u −Gq = 0. (2.81)

Now, the system of ordinary differential equations in time, namely equations (2.60), (2.73)

and (2.81) are going to be solved for transient time levels.

48



2.6 Time Integration Methods

In this section, two basic numerical methods are employed in solving ODEs that result from

the application of DRBEM to time dependent problems. We will consider the application of

the Finite Difference and Runge-Kutta methods to the discretized system of ordinary differen-

tial equations in time (equation (2.60)). Similar application can be given for equations (2.73)

and (2.81).

2.6.1 Finite Difference Method

In most applications of the DRBEM to engineering problems, which are governed by time-

dependent partial differential equations, time derivatives are discretized by low order finite

difference schemes. For the time-dependent diffusion problems, DRBEM procedures equa-

tion (2.60)

−Su̇ + Hu −Gq = 0 (2.82)

which is the system of ordinary differential equations with respect to time. Number of equa-

tions in the system is equal to the number of nodes on the boundary and inside the region.

Finite difference method is a simple and powerful method for solving various heat transfer and

flow problems. In this section, the time derivative in the equation (2.82) will be discretized

using low order finite difference schemes. We will employ a two-level time integration scheme

(Euler scheme), and a three-level integration scheme (Central Difference scheme) .

2.6.1.1 Forward Difference Scheme (Euler Method)

From the Taylor series expansion of u(x, y, t) about t = tm and evaluated at t = tm+1 we have

u(x, y, tm+1) = u(x, y, tm) + ∆t u̇(x, y, tm) +
∆t2

2
ü(x, y, tm) + ..... . (2.83)

Equation (2.83) can be truncated after a finite number of terms. For example, if terms of
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magnitude (∆t)2 and higher are neglected, equation (2.83) reduces to

u(x, y, tm+1) = u(x, y, tm) + ∆t u̇(x, y, tm) (2.84)

which is first order accurate.

If the equation (2.84) is solved for u̇(x, y, tm), we obtain [44]

u̇(x, y, tm) =
u(x, y, tm+1) − u(x, y, tm)

∆t
+ O(∆t) (2.85)

which is called forward difference scheme of first order in ∆t, and ∆t is the time step, tm =

m∆t. ‘m’ indicates the time level.

When the equation (2.85) is substituted in equation (2.60), we get

−S
um+1 − um

∆t
+ Hum −Gqm=0 (2.86)

where um and qm are vectors at the m-th iteration level.

This is the simplest finite difference discretization of the time derivative equation. Since it

is an explicit scheme stability problems are usually encountered. A suitable value of ∆t is

required by trial and error in the computations. With appropriate values of ∆t the stability of

numerical results is maintained and confirmed with the stability analysis given in Chapter 4.

A relaxation procedure is used to accelerate the convergence to steady-state and to overcome

stability problems for both variables u and q in the following form

u = (1 − βu)um + βuum+1

q = (1 − βq)qm + βqqm+1

(2.87)

where βu and βq are parameters which position the values of u and q , respectively, between

time levels ‘m’ and ‘m+1’. Substituting these approximations into (2.86) yields,

(
− 1

∆t
S + βuH

)
um+1 − βqGqm+1 =

[
− 1

∆t
S − (1 − βu)H

]
um + (1 − βq)Gqm. (2.88)

Thus, the normal derivative q is brought to the ‘m+1’ level as unknown which is the case for

the type of boundary conditions in BEM applications.
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The right hand side of equation (2.88) is known at time m∆t, since it involves values which

have been specified as initial condition or calculated previously.

Since the elements of matrices H, G and S depend only on geometrical data they can be

computed once and stored. The system matrix can be reduced only once as well when ∆t is

kept constant.

2.6.1.2 Central Difference Scheme

We also employ central difference scheme for the time derivative. From the Taylor series

expansion of u(x, y, t) about t = tm and evaluated at t = tm+1 and t = tm−1 we have

u(x, y, tm+1) = u(x, y, tm) + ∆t u̇(x, y, tm) +
∆t2

2
ü(x, y, tm) +

∆t3

6
...
u (x, y, tm)..... (2.89)

u(x, y, tm−1) = u(x, y, tm) − ∆t u̇(x, y, tm) +
∆t2

2
ü(x, y, tm) − ∆t3

6
...
u (x, y, tm)..... (2.90)

Subtracting equation (2.90) from (2.89) one can get the approximation for the first derivative

u̇(x, y, tm) =
u(x, y, tm+1) − u(x, y, tm−1)

2∆t
+ O(∆t)2 . (2.91)

which is of second order in the time step ∆t, [44].

When the time derivative is discretized by using the central difference scheme with the relax-

ation parameters, one can write the equation (2.60) as

−S
um+1 − um−1

2∆t
+ H((1 − βu)um−1 + βuum+1) −G((1 − βq)qm−1 + βqqm+1) = 0 . (2.92)

Here, also the solution u and its normal derivative q are written as linear combinations of the

values from ‘m-1’ and ‘m+1’ levels for obtaining them in ‘m+1’ level as unknowns.
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Equation (2.92) can be arranged such that the right hand side is at time (m − 1)∆t and known,

since they involve values which have been specified as initial condition or calculated previ-

ously. And left hand side is at time (m + 1)∆t

(
− 1

2∆t
S + βuH

)
um+1 − βqGqm+1 =

[
− 1

2∆t
S − (1 − βu)H

]
um−1 + (1 − βq)Gqm−1 . (2.93)

All the matrices in equation (2.93) are computed once and the system is solved recursively for

transient time levels for equation (2.60) resulting from the DRBEM application of diffusion

equation (2.55). When the convection terms are included as in equations (2.73) and (2.81),

the coefficient matrices on the right hand side of equation (2.93) are going to be evaluated at

the m-th time level. Although the time step ∆t and relaxation parameters βu and βq are found

by trial and error, with the appropriate values the stability of DRBEM solution is maintained

(Chapter 4).

Before we solve systems (2.88) and (2.93), we apply the given boundary conditions to the

equations (2.88) and (2.93). The boundary Γ is of two parts in which u is known on one

part and q is known on the other part. Therefore, in the equations (2.88) and (2.93) there are

only N + L unknowns. Once all unknowns are passed to the left-hand side one can write the

equations (2.88) and (2.93) as

Ax = y (2.94)

where x is the vector of unknown boundary values of u and q. The vector y now contains all

the known information from the boundary or from the previous iteration.

2.6.2 Runge-Kutta Method

In this section, we will explain the Runge-Kutta method (RKM) for an ordinary differential

equation of the form

u̇ = f (t, u)

u(t0) = u0

(2.95)

and then modify for our system of equation. Here f (t, u) denotes the given function, and u0 is

the initial condition.
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Like FDM, derivation of the RKM is also based on the Taylor series expansion of f (t, u) but

without using the partial derivatives of the function.

RKM can be generally expressed as, [25]

u(x, y, tm+1) = u(x, y, tm) + ∆t (γ1 f + γ2 f (t + α∆t, u + α∆t f )) (2.96)

where γ1, γ2 and α are constant to be determined. f refers to f (t, u), and ∆t is the time

increment, tm = m∆t.

The second term in the right hand side of the equation (2.96) can be expanded using the Taylor

series expansion of a function in two variables as, [44]

f (t+α∆t, u+α∆t f ) = f +∆t(α ft+α f fu)+(∆t)2
(1
2
α2 ftt+α2 f ftu+

1
2
α2 f 2 fuu

)
+O((∆t)3). (2.97)

When we substitute equation (2.97) into equation (2.96), we get

u(x, y, tm+1) = u(x, y, tm) + ∆t γ1 f + ∆t γ2 f + (∆t)2(γ2 α ft + γ2 α f fu)

+(∆t)3
(1
2
γ2 α

2 ftt + γ2 α
2 f ftu +

1
2
γ2 α

2 f 2 fuu
)

+ O((∆t)4) .

(2.98)

The truncation error for equation (2.98) is

T (x, y, tm+1) = u(x, y, tm+1) − u(x, y, tm) − ∆t γ1 f − ∆t γ2 f − (∆t)2(γ2 α ft + γ2 α f fu)

−(∆t)3
(1
2
γ2 α

2 ftt + γ2 α
2 f ftu +

1
2
γ2 α

2 f 2 fuu
)
− O((∆t)4) .

(2.99)

From the Taylor series expansion of u(x, y, t) about t = tm and evaluated at t = tm+1 we have

u(x, y, tm+1) = u(x, y, tm) + ∆t u̇(x, y, tm) +
(∆t)2

2
ü(x, y, tm) +

(∆t)3

6
u(3)(x, y, tm) + O((∆t)4)

(2.100)

where
u̇ = f (t, u(x, y, t))

ü = ft + fu f

u(3) = ftt + 2 ftu f + fuu f 2 + fu ft + f 2
u f .

(2.101)
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Substituting equation (2.101) into equation (2.100) yields

u(x, y, tm+1) − u(x, y, tm) = ∆t f +
(∆t)2

2
( ft + fu f )

+
(∆t)3

6
( ftt + 2 ftu f + fuu f 2 + fu ft + f 2

u f ) + O((∆t)4) .
(2.102)

Thus, we can express the truncation error in equation (2.99) by using equation (2.102) as

T (x, y, tm+1) = ∆t f +
(∆t)2

2
( ft + fu f ) +

(∆t)3

6
( ftt + 2 ftu f + fuu f 2 + fu ft + f 2

u f ) + O((∆t)4)

−∆t(γ1 + γ2) f − (∆t)2(γ2 α ft + γ2 α f fu)

−(∆t)3
(

1
2γ2 α

2 ftt + γ2 α
2 f ftu + 1

2γ2 α
2 f 2 fuu

)
− O((∆t)4)

(2.103)

which can be expressed as

T (x, y, tm+1) = ∆t(1 − γ1 − γ2) f + (∆t)2
[(1

2
− γ2α

)
ft +

(1
2
− γ2α

)
fu f

]

+(∆t)3
[(1

6
− 1

2
γ2α

2
)

ftt +
(1
3
− γ2α

2
)

ftu f +
(1
6
− 1

2
γ2α

2
)

f 2 fuu

+
1
6

fu ft +
1
6

f 2
u f

]
+ O(∆t)4

(2.104)

where all partial derivatives are evaluated at the m-th time level.

In order for the truncation error (equation (2.104)) converge to zero the coefficients of ∆t and

(∆t)2 must be zero. This is because the function f varies arbitrarily so the coefficient of (∆t)3

can not be zero. This leads to
1 − γ1 − γ2 = 0

1
2
− γ2α = 0

(2.105)

from which we obtain γ2 =
1

2α
and γ1 = 1− 1

2α
. There are infinitely many solutions for these

parameters.

If we choose α = 1/2 we get the modified Euler’s method, [44]

um+1 = um + ∆t f
(
tm +

∆t
2
, um +

∆t
2

f (tm, um)
)

, m ≥ 0 . (2.106)
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Here um+1 stands for u(x, y, tm+1). Second order Runge-Kutta Method is obtained for the

choice of α = 2/3, [56, 44]

um+1 = um +
∆t
4

[
f (tm, um) + 3 f

(
tm +

2
3

∆t, um +
2
3

∆t f (tm, um)
)]

, m ≥ 0 . (2.107)

We can obtain higher order formulas by expressing the general formulation of RKM as, [25]

um+1 = um + ∆t
n∑

j=1

γiK j (2.108)

where

K1 = f (tm, um)

K j = f (tm + α j∆t, um + ∆t
j−1∑

i=1

β jiKi)

with α j =
∑ j−1

i=1 β ji and 0 ≤ α j ≤ 1.

We can choose these coefficients to make the leading terms in the truncation error equal to

zero and obtain higher order formulas.

For n = 4, four stage, fourth order RKM is obtained, [56, 44]

um+1 = um +
∆t
6

[K1 + 2K2 + 2K3 + K4] (2.109)

where

K1 = f (tm, um)

K2 = f (tm +
1
2

∆t, um +
1
2

∆tK1)

K3 = f (tm +
1
2

∆t, um +
1
2

∆tK2)

K4 = f (tm + ∆t, um + ∆tK3) .

(2.110)

Now, we will modify this method to solve our problem. For the time-dependent problem

considered in Section 2.3, the DRBEM results in equation (2.60)

−Su̇ + Hu −Gq=0. (2.111)

55



In order to use the method we express the equation (2.111) in the form

u̇ = S−1Hu − S−1Gq. (2.112)

For the simplicity of notations let H̃ = S−1H and G̃ = S−1G. Hence,

u̇ = H̃u − G̃q. (2.113)

Now, equation (2.113) can be solved by taking H̃u−G̃q as the vector function f (t, u) (equation

2.95) in the sample problem u̇ = f (t, u). Notice that the right hand side of the equation (2.113)

includes both u and q as unknowns. In equation (2.110), we evaluate K1 at time tm, K2 and

K3 at the average of tm+1 and tm and K4 at tm+1.

When the time derivative in equation (2.113) is discretized by fourth order RKM, we have

um+1 = um +
∆t
6

[K1 + 2K2 + 2K3 + K4] (2.114)

where
K1 = H̃um − G̃qm

K2 = H̃
(um+1 + um

2
+

∆t
2

K1
)
− G̃

(qm+1 + qm

2
+

∆t
2

K1
)

K3 = H̃
(um+1 + um

2
+

∆t
2

K2
)
− G̃

(qm+1 + qm

2
+

∆t
2

K2
)

K4 = H̃
(
um+1 + ∆tK3

)
− G̃

(
qm+1 + ∆tK3

)

(2.115)

where in K2 and K3 average of um, um+1 and qm, qm+1 are taken as approximations to the

values at the point tm +
∆t
2

. This is needed to bring both um+1 and qm+1 as unknowns to the

left hand side of the equation (2.114). These values are going to be required for the next

iteration.

After substituting equation (2.115) into equation (2.114), we can arrange equation (2.114)

such that the right hand side is at time m∆t and known and left hand side is at time (m + 1)∆t.

After inserting boundary conditions to the equation (2.114) we get

Ax = y (2.116)
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where x is the vector of unknown boundary values of both u and q. The vector y contains the

known information.

Equations (2.88), (2.93) or (2.114) resulting from the applications of Euler, central difference

and Runge-Kutta methods will be solved iteratively until some convergence criteria is met. A

possible convergence criteria to terminate the procedure is to determine the difference between

the values of u at two successive iterates until these are close to one another in some norm.

The measure of closeness most frequently used for the successive approximations is the L∞

norm max|um+1 − um| ≤ ε where maxima is taken over all the nodes and ε is a pre-assigned

tolerance.

In the next chapter, DRBEM with FDM and RKM time integration methods are going to be

applied to solve unsteady Navier-Stokes equations defined in terms of stream function and

vorticity. Velocity Poisson’s equations are also obtained relating the velocity components to

vorticity. Thus, flow vector information is also easily obtained from the DRBEM solutions

of these Poisson’s equations. Then, the energy equation will be added to the Navier-Stokes

equations, and natural and mixed convection flows will be discussed. The application will be

extended to natural convection flow of nanofluids in which nanoparticles are included in the

base fluid, and then to micropolar fluids. In micropolar fluid flow one more equation, namely

the microrotation equation which represents the rotation of microstructures will be added

to Navier-Stokes and energy equation. The solutions will be given in terms of streamlines,

isotherms, vorticity and microrotation contours, velocity profiles as well as tables discussing

heat transfer rate of those flows.
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CHAPTER 3

APPLICATION OF DRBEM TO FLUID FLOW PROBLEMS

In Chapter 2, DRBEM is applied to Poisson equation with different types of right hand side

functions. The application of the method gives rise to a system of first order ODEs which are

solved using three time integration methods.

In this chapter, we will apply the method to simulate the transient, laminar flow of incom-

pressible, viscous fluids described by the Navier-Stokes equations. Stream function-vorticity

formulation of the equations are considered. The time derivative in the vorticity transport

equation will be discretized using forward and central difference methods, and Runge-Kutta

method for comparison purposes. Then, the application will be simulated on three test prob-

lems. The efficiency of time integration methods will be discussed on the second problem

which is the one-sided lid-driven cavity flow.

We will also solve natural and mixed convection flows, and natural convection flow of nanoflu-

ids by adding energy equation to Navier-Stokes equations. Test problems will be solved

for each type of flow. Natural convection flow in a square cavity with uniformly and non-

uniformly heated walls, and in a triangular enclosure are solved.

Finally, the system of equations resulting from natural convection flow will be extended by

adding the DRBEM application to the microrotation equation. Two test problems are provided

for different physical configurations.

The results for these problems are given in terms of streamlines, vorticity, isotherm and mi-

crorotation contours and velocity profiles at the mid-plane of the cavity.

58



3.1 Navier-Stokes Equations

Two-dimensional, transient and laminar flow of incompressible, viscous fluid is governed by

the well known Navier-Stokes equations [36]. They are transformed into the stream function-

vorticity form in Chapter 1 (equations (1.22) and (1.23)).

Stream function is related to vorticity with the Poisson equation

∇2ψ = −ω . (3.1)

Vorticity is defined in terms of velocity components as ω =
∂ v
∂ x
− ∂ u
∂ y

, and the vorticity

transport equation is given as

1
Re
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
(3.2)

where u =
∂ ψ

∂ y
, v = −∂ ψ

∂ x
. Re is the Reynolds number of the flow.

We will now propose to solve equations (3.1) and (3.2) with the general boundary conditions

ψ(xs, ys) = fψs , ω(xs, ys) = fωs (3.3)

where the subscript ‘s’ restricts (x, y) to the boundary of the region under consideration and

fψs , fωs are given functions. Stream function is usually specified on the boundary and the

vorticity boundary condition is derived from the stream function equation (3.1) or from its

definition, which becomes again Dirichlet type.

Also, the initial conditions for ψ and ω as given with known functions ψ0 and ω0

ψ(x, y, 0) = ψ0(x, y) , ω(x, y, 0) = ω0(x, y) . (3.4)

Equation (3.2) contains the convective terms u =
∂ ψ

∂ y
and v = −∂ ψ

∂ x
, and the viscous

diffusion term
1

Re
∇2ω. Observe that the equations (3.1) and (3.2) are coupled. The vorticity

ω appears in equation (3.1) and the derivatives of ψ appear in equation (3.2) as coefficients.

In addition to this, the equation (3.2) is nonlinear.

DRBEM application to the general Poisson equation of the type ∇2u = b results in the matrix

equations of the form (equation (2.57))

Hu −Gq = (HÛ −GQ̂)F−1b (3.5)
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where the right hand side for the stream function equation (3.1) and vorticity transport equa-

tion (3.2) are

b = −ω (3.6)

and

b =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
(3.7)

respectively.

Thus, the DRBEM application of stream function and vorticity transport equations will result

in the systems

Hψ −Gψq = (HÛ −GQ̂)F−1(−ω) (3.8)

and
1

Re
(Hω −Gωq) = (HÛ −GQ̂)F−1

(∂ ω
∂ t

+ u
∂ ω

∂ x
+ v

∂ ω

∂ y

)
(3.9)

where ψ, ψq, ω, ωq, u and v are the vectors. The matrices H, G, Û, Q̂ and F are derived in

Chapter 2.

The convective terms in the right hand side of the vorticity equation (3.9) are approximated

using DRBEM idea (equations in (2.68))

1
Re

(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ ω
∂ t

+ u
∂ F
∂ x

F−1 ω + v
∂ F
∂ y

F−1 ω
]

(3.10)

where diagonal matrices are formed with the vectors u and v for the purpose of matrix multi-

plications.

For the simplicity of notations we rewrite the equations (3.8) and (3.10) as

Hψ −Gψq = b̃ (3.11)

and
1

Re
(Hω −Gωq) = S

∂ ω

∂ t
+ D ω (3.12)

where the vector b̃ and the matrices S, D are defined as

b̃ = (HÛ −GQ̂)F−1 (−ω) , S = (HÛ −GQ̂)F−1 , D = S
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)
.
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Further simplifications can be made to the equation (3.12)

−S
∂ ω

∂ t
+ H1 ω −G1 ωq = 0 (3.13)

where H1 =
1

Re
H − D and G1 =

1
Re

G.

The right hand side of equation (3.11) is a known vector since vorticity vector ω is given

initially. Thus, the equation can be solved iteratively. Equation (3.13) involves the derivative

of ω with respect to time, so we need a time integration scheme. We use three different inte-

gration methods, namely forward and central difference methods, and Runge-Kutta method.

For forward and central difference methods relaxation parameters are used for ω and ωq as

in equation (2.87) to avoid stability problems, and to accelerate the rate of convergence in the

iteration.

When the time derivative is discretized with forward difference, and ω and ωq are positioned

using the relaxation parameters, we obtain

−S
ωm+1 − ωm

∆t
+ H1((1 − βω)ωm + βωω

m+1) −G1((1 − βωq)ωq
m + βωqωq

m+1) = 0 . (3.14)

Equation (3.14) can be arranged such that the left and right hand sides are at time (m + 1)∆t

and m∆t, respectively. Thus,

(−S
∆t

+ βωH1
)
ωm+1 − βωqG1ωq

m+1 =
[−S

∆t
− (1 − βω)H1

]
ωm + (1 − βωq)G1ωq

m . (3.15)

If central difference method with relaxation parameters is applied to equation (3.13) then we

have

−S
ωm+1 − ωm−1

2∆t
+H1((1−βω)ωm−1+βωω

m+1)−G1((1−βωq)ωq
m−1+βωqωq

m+1) = 0. (3.16)

Similarly equation (3.16) can be rewritten as

( −S
2∆t

+ βωH1
)
ωm+1 − βωqG1ωq

m+1 =
[ −S
2∆t
− (1− βω)H1

]
ωm−1 + (1− βωq)G1ωq

m−1 (3.17)

where m = 1, 2, 3, ....

In the central difference method we use two previous iterations. The iteration process starts

with two initial conditions both of which are selected as zero or the first starting values
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(ω1,ωq
1) can be taken from the results of equation (3.15). In this iterative procedure the

system is solved by using ‘m-1’ level known values to obtain ‘m+1’ level unknowns. But,

in each iteration the stream function equation (3.11) is solved with the vorticity values from

the m-th level, and therefore the matrices D and H1 are recalculated with this new value.

Thus, the iterative procedure makes use of all the previous known values from the m-th and

(m − 1)-th time levels.

Finally, we employed fourth-order Runge-Kutta method to discretize the time derivative in

equation (3.13). In order to use the method we express the equation (3.13) in the form

∂ ω

∂ t
= S−1H1 ω − S−1G1 ωq . (3.18)

For the simplicity of the notations let H̃ = S−1H1 and G̃ = S−1G1. Thus,

∂ ω

∂ t
= H̃ω − G̃ωq . (3.19)

Now, the method can be applied by taking H̃ω − G̃ωq as the vector function f (t, u) in the

sample problem u̇ = f (t, u) explained in Section 2.6.2. Since the resulting equation (3.19)

include both ω and ωq as unknowns we evaluate K1 at time tm, K2 and K3 at the average of

tm+1 and tm, and K4 at tm+1. This enables us to compute ωq also at the ‘m+1’ level.

Thus, we have

ωm+1 = ωm +
∆t
6

[K1 + 2K2 + 2K3 + K4] (3.20)

where

K1 = H̃ωm − G̃ωq
m

K2 = H̃
(ωm+1 + ωm

2
+

∆t
2

K1
)
− G̃

(ωq
m+1 + ωq

m

2
+

∆t
2

K1
)

K3 = H̃
(ωm+1 + ωm

2
+

∆t
2

K2
)
− G̃

(ωq
m+1 + ωq

m

2
+

∆t
2

K2
)

K4 = H̃(ωm+1 + ∆tK3) − G̃(ωq
m+1 + ∆tK3

)
.

(3.21)

Equation (3.20) can also be arranged by substituting the equations in (3.21) back into equation

(3.20) so that the right hand side is at time m∆t and the left hand side is at time (m + 1)∆t.
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On the system of equations (3.15), (3.17) or (3.20) there are only N + L unknowns. The right

hand sides of these equations are known since they involve values which have been specified

as initial condition or calculated previously. In addition to that the elements of matrices H ,

G, G1, G̃ and S depend only on geometrical data. Thus, they can all be computed once and

stored. But, the matrix H̃ is recalculated in each iteration due to the new values coming from

H1 and D. If the value of ∆t is kept constant, the system matrix can be reduced only once

as well, and the time advance procedure will consist of a simple recursive scheme with only

algebraic operations involved.

Once the boundary conditions are inserted to the equations (3.15), (3.17) or (3.20) the known

and unknown values of ω and ωq are passed from one side to another. Thus, we get

Ax = y (3.22)

where x is the vector of unknown boundary values of ω and ωq. The vector y contains known

information.

We start the iteration by solving the stream function equation (3.11) using the initial condition

of vorticity. Then the velocity components, u and v are calculated using the idea given in

equations (2.68). Finally, the vorticity equation (3.13) is solved by using one of the time

integration schemes given as forward, central and fourth order Runge-Kutta methods. We set

up these new values as initial conditions for the next time step.
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3.1.1 Test Problem 1

In this problem, the Navier-Stokes equations are solved when an external force is present

to see the accuracy and efficiency of present numerical method since the exact solution is

available,

∇2ψ = −ω

1
Re
∇2ω =

∂ ω

∂ t
+ v

∂ ω

∂ x
+ u

∂ ω

∂ y
− g

(3.23)

where the problem is defined in the region 0 ≤ x, y ≤ 1.

The Dirichlet boundary conditions are given by, [94]

ψ = 0 , ω = −π2 sin t(cos 2πx + cos 2πy − 2 cos 2πx cos 2πy)

with the initial condition ω0 = 0. The analytical solution in terms of ψ, u, v and ω is, [94]

ψ = − sin t sin2 πx sin2 πy

u = π sin t sin2 πx sin 2πy

v = −π sin t sin2 πy sin 2πx

ω = −π2 sin t(cos 2πx + cos 2πy − 2 cos 2πx cos 2πy) .

The source function g is

g = −π2 cos t(cos 2πx + cos 2πy − 2 cos 2πx cos 2πy) + π4 sin2 t sin 2πx sin 2πy(cos 2πx − cos 2πy)

− 4
Re
π4 sin t(cos 2πx + cos 2πy − 4 cos 2πx cos 2πy) .

The problem is solved by discretizing the time derivative using forward (Euler) difference

scheme. Numerical stability problems are overcomed by using relaxation parameters for vor-

ticity and its normal derivative values. The best results are obtained for the relaxation parame-

ters βω = βωq = 0.9 by taking ∆t = 0.001 in forward difference scheme. In this problem, radial

basis functions are taken as f = 1 + r. Linear boundary elements are used for the boundary

discretization. In figures (3.1), (3.2) and (3.3) we compare the effect of number of boundary
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nodes on the solution for Re = 100. Even N = 40 is suitable for small and moderate Re. But

for increasing values of Re, N = 72 is needed to obtain better accuracy in comparison with

the exact solution. Figures (3.4), (3.5) and (3.6) show the streamlines and vorticity contours

of the exact and numerical solution for Re = 500, 1000 and 3000, respectively. Solutions are

presented at the time level t = 0.03.

A good agreement is obtained when compared to exact solution [94]. This viscous flow

problem has the particularity of having a flow pattern which is independent of the Reynolds

number.
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Figure 3.1: Streamlines and vorticity contours for Re = 100 at t = 0.03 with N = 40
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Figure 3.2: Streamlines and vorticity contours for Re = 100 at t = 0.03 with N = 60
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Figure 3.3: Streamlines and vorticity contours for Re = 100 at t = 0.03 with N = 72
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Figure 3.4: Streamlines and vorticity contours for Re = 500 at t = 0.03 with N = 72
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Figure 3.5: Streamlines and vorticity contours for Re = 1000 at t = 0.03 with N = 72
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Figure 3.6: Streamlines and vorticity contours for Re = 3000 at t = 0.03 with N = 72
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3.1.2 Lid-Driven Cavity Flow

We simulate lid-driven cavity flow in a square cavity Ω = [0, 1]×[0, 1] as the second problem,

[71]. The lid of the cavity moves at a given, constant velocity, thereby setting the fluid in

motion (Figure (3.7)).

The non-dimensional equations in stream function-vorticity formulation are given as

∇2ψ = −ω

1
Re
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
.

(3.24)

The no-slip conditions are imposed on all segments of the boundary with the exception of

the upper boundary, along which the velocity in x-direction is set to 1 to simulate the moving

lid. Thus, stream function boundary conditions are zero. The vorticity boundary conditions

are derived from ω =
∂ v
∂ x
− ∂ u
∂y

, which is approximated by using the coordinate matrix F

(equation (2.68)).

For this problem the time derivative is discretized using forward and central difference meth-

ods, and Runge-Kutta method for comparison purposes. Stability analysis is performed for the

three methods and explained in Chapter 4. From the numerical stability analysis we observe

that the maximum eigenvalues of the coefficient matrix for increasing values of Re when cen-

tral difference scheme is used are smaller than the eigenvalues of the coefficient matrix when

the forward difference scheme is used. When we compare the central difference and Runge-

Kutta methods we see that using fourth-order Runge-Kutta method does not effect much the

solution in terms of the size of time increment and the number of iterations. This is because

of the usage of relaxation parameters in the central difference method. So, we continue to

the rest of the computations with the central difference scheme with relaxation parameters

βω = βωq = 0.9.

Figures (3.8)-(3.13) represent the forward and central difference methods solution of stream

function and vorticity at Re = 100, 500 and 1000, respectively. Figure (3.14) shows the

horizontal and vertical velocity profiles at the mid-plane of the cavity. One can observe that

increasing Reynolds number results an increase in the magnitude of the velocity components,

and turning points get closer to the wall [71]. The Runge-Kutta method solution of stream

function-vorticity and the velocity components at the mid-plane of the cavity are presented
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for Re = 500 in Figures (3.15) and (3.16). From the comparison of Figures (3.10), (3.11)

with (3.15) and (3.14) with (3.16) we conclude that Runge-Kutta method does not improve

the results much. Also, smaller time increments and large number of iterations are required.

The solutions are given at steady state in which the stopping criteria is taken as ε = 10−6.

The problem is solved using linear boundary elements and the radial basis function is taken

as f = 1 + r + r2. For this problem, 80, 96 and 120 boundary nodes with ∆t = 0.8, 0.5 and

0.1 are used for Reynolds numbers 100, 500 and 1000, respectively when forward and central

differences are used for the time derivative. 96 boundary elements with ∆t = 0.05 are used for

Re = 500 in the Runge-Kutta method. As Reynolds number increases it becomes essential to

use large number of boundary nodes, [32] and smaller time increment in all time integration

methods mentioned here. This is because at high Reynolds numbers thin boundary layers are

developed near the walls.

Figures (3.8) and (3.9) present streamlines and vorticity contours at Re = 100. From the

streamlines, we observe that the primary vortex moves towards the right upper corner and a

secondary eddy occurs at the right bottom corner. With the increase in the Reynolds number

from 100 to 500, the primary vortex starts to move towards the center of the cavity and it

keeps moving to the center at Re = 1000. This behaviour can be seen from Figures (3.10)-

(3.13). For Re = 500, the eddy in the right bottom corner grows and another secondary eddy

occurs at the left bottom corner. For Re = 1000, another secondary eddy occurs at the left

upper corner as expected. The solutions are in good agreement with the ones in [71].

For small Reynolds number the vorticity contours are at the center of the cavity. With an

increase in the Reynolds number they move away from the center towards the walls. This

behaviour indicates that the vorticity gradients are very strong at the walls. For increasing

Reynolds number the center of the cavity is almost stagnant.

We continue to the rest of the computations in the thesis with the central difference scheme

together with relaxation parameters. Central difference scheme is practical, easy to use and

takes less computational time than the fourth-order Runge-Kutta method.
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Figure 3.7: Boundary conditions for the lid-driven cavity flow
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Figure 3.8: Forward difference scheme solution for Re = 100, N = 80, ∆t = 0.8
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Figure 3.9: Central difference scheme solution for Re = 100, N = 80, ∆t = 0.8
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Figure 3.10: Forward difference scheme solution for Re = 500, N = 96, ∆t = 0.5
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Figure 3.11: Central difference scheme solution for Re = 500, N = 96, ∆t = 0.5
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Figure 3.12: Forward difference scheme solution for Re = 1000, N = 120, ∆t = 0.1
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Figure 3.13: Central difference scheme solution for Re = 1000, N = 120, ∆t = 0.1
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Figure 3.14: Horizontal and vertical velocity profiles along the centerline for Re = 100, 500
and 1000
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Figure 3.15: Runge-Kutta method solution for Re = 500, N = 96, ∆t = 0.05
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Figure 3.16: Horizontal and vertical velocity profiles with Runge-Kutta method along the
centerline for Re = 500
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3.1.3 Two-Sided Lid-Driven Cavity Flow

In the previous problem we investigate one-sided lid-driven cavity flow in which the upper

wall is moving to the right with a constant velocity while the other walls are stationary. In this

problem, we investigate two-sided lid-driven cavity flow in which the top wall is moving to

the right, the bottom wall is either moving to the right or left with a constant velocity while the

horizontal walls are stationary (Figure (3.17) and (3.18)). Two-sided lid-driven cavity flow

has been employed to study drying process, polymer processing and thin film coating, [27].

The non-dimensional equations in stream function-vorticity formulation are given as

∇2ψ = −ω

1
Re
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
.

(3.25)

where 0 ≤ x ≤ L and 0 ≤ y ≤ H. The vorticity boundary conditions are obtained from its

definition. Linear boundary elements are used with quadratic radial basis functions. The time

derivative is discretized by central difference scheme with relaxation parameters (βω = βωq =

0.9). The problem is solved for Re = 400 with ∆t = 0.5 for different values of aspect ratio,

H/L. The solutions are given at steady state and the convergence criteria is taken as ε = 10−5.

Figure (3.19) shows streamlines and vorticity contours for Re = 400 in the case of top and

bottom walls are moving in the same and opposite directions when aspect ratio H/L = 1

(square cavity). In Figure (3.20), we see the vertical velocity profile at the mid-plane of

the cavity for the same cases. One can notice that the movement of the walls in the same

direction causes seperation of streamlines and vorticity contours at the center of the cavity

whereas the opposite direction movement leaves stagnant regions at the center for both stream

function and vorticity. Figures (3.21), (3.23) and (3.22), (3.24) show streamlines, vorticity

contours and mid-plane vertical velocity profiles for different aspect ratios as H/L = 2 and

H/L = 1/2, respectively. When aspect ratio is large, the seperation at the center is more

dominant in the parallel motion. These three test problems, especially the one sided lid-driven

cavity flow problem results show that the Navier-Stokes equations in terms of stream function

and vorticity can be easly solved by using DRBEM. The simplicity lies in the treatment of

diffusion terms by the fundamental solution of Laplace equation, and all the other terms as

nonhomogeneity. The results are obtained for fairly high Reynolds number giving the well

known behaviour of lid-driven square cavity flow.

77



Figure 3.17: Boundary conditions for the two-sided (antiparallel motion) lid-driven cavity
flow

Figure 3.18: Boundary conditions for the two-sided (parallel motion) lid-driven cavity flow
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Figure 3.19: Streamlines and vorticity contours for Re = 400, H/L = 1

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

Y

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

Y

Parallel motion Antiparallel motion

Figure 3.20: Vertical velocity profile at the mid-plane of the cavity Re = 400, H/L = 1
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Figure 3.23: Streamlines and vorticity contours for parallel motion, H/L = 1/2
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1/2

81



3.2 Natural Convection Flow

In this section, we will extend the application of the method to natural convection flow by

adding energy equation to the Navier-Stokes equations. This corresponds to the physical

situation that heat flux occurs (temperature not constant).

Governing momentum and energy equations in terms of stream function and vorticity are

∇2ψ = −ω

Pr∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

∂ T
∂ x

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(3.26)

where Ra, Pr and T are the Rayleigh number, Prandtl number and temperature, respectively.

Again u =
∂ ψ

∂ y
, v = −∂ ψ

∂ x
and vorticity is defined as ω =

∂ v
∂ x
− ∂ u
∂ y

. The vorticity

transport equation is coupled to the energy equation through the buoyancy force RaPr
∂ T
∂ x

,

and the energy equation is in the same form (velocity components multiply convection terms)

of the vorticity transport equation for the Navier-Stokes equations. The velocity and pressure

information can also be obtained by using the equations (1.18).

Boundary conditions can be generally expressed as Dirichlet type for stream function (no-

slip condition for velocities), and again Dirichlet type for vorticity since it is obtained from

vorticity definition. The temperature boundary conditions may be Dirichlet and/or Neumann

type according to the heat configuration of the walls. Thus,

ψ(xs, ys) = fψs , ω(xs, ys) = fws

T (xs, ys) = fts ,
∂ T
∂ n

(xs, ys) = ftn

(3.27)

are specified on the boundary where subscript ‘s’ denotes the boundary of the region.

The equations (3.26) are subjected to initial conditions

ψ(x, y, 0) = ψ0(x, y) , ω(x, y, 0) = ω0(x, y) , T (x, y, 0) = T0(x, y)

where ψ0, ω0 and T0 are known functions of space.
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Application of DRBEM to stream function and vorticity equations are explained in details

in Section 3.1. In this section, we will only add the term RaPr
∂ T
∂ x

to vorticity transport

equation and give the solution procedure for the energy equation. DRBEM application to the

vorticity equation (3.10) of the Navier-Stokes equations results in the final matrix form

1
Re

(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ ω
∂ t

+
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)
ω
]
. (3.28)

Thus, we can express the application of the method to the vorticity equation in (3.26) as in

equation (3.28)

Pr(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ ω
∂ t

+
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)
ω − RaPr

∂T
∂x

]
(3.29)

where ω and ωq are vectors containing vorticity and its normal derivative values at the nodes.

The derivative of temperature with respect to x in the equation (3.29) can be approximated as
∂ T
∂ x

=
∂ F
∂ x

F−1T. So, the simplified form of equation (3.29) is

Pr(Hω −Gωq) = S
∂ ω

∂ t
+ D ω + c̃ (3.30)

where S and D are the matrices and c̃ is the vector given by

S = (HÛ −GQ̂)F−1 , D = S
(
u
∂ F
∂ x

F−1 + v
∂ F
∂ y

F−1
)

, c̃ = −SRaPr
∂ F
∂ x

F−1 T .

A similar matrix formulation can be written for the energy equation in (3.26)

HT −GTq = (HÛ −GQ̂)F−1
(∂ T
∂ t

+ u
∂ F
∂ x

F−1T + v
∂ F
∂ y

F−1T
)

(3.31)

where T and Tq are the temperature and its normal derivative values at the nodes. Equation

(3.31) can be expressed as

HT −GTq = S
∂ T
∂ t

+ DT . (3.32)

Finally, stream function, vorticity and energy equations are obtained as

Hψ −Gψq = b̃

−S
∂ ω

∂ t
+ Hω ω − Gω ωq = c̃

−S
∂ T
∂ t

+ Ht T − Gt Tq = 0

(3.33)
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where Hω = PrH − D, Gω = PrG, Ht = H − D, Gt = G.

For velocity and pressure Poisson’s equations (1.18), the corresponding DRBEM matrix equa-

tions are given as

Hu −Guq = (HÛ −GQ̂)F−1
(
− ∂ω
∂y

)

Hv −Gvq = (HÛ −GQ̂)F−1
(∂ω
∂x

)

Hp −Gpq = (HÛ −GQ̂)F−1
[Ra

Pr
∂T
∂y
−

(∂u
∂x

)2 −
(∂v
∂y

)2 − 2
∂v
∂x
∂u
∂y

]

(3.34)

which as a result become
Hu −Guq = m̃

Hv −Gvq = ñ

Hp −Gpq = a

(3.35)

the vectors a, m̃ and ñ are given as

m̃ = −S
∂ω

∂y
, ñ = S

∂ω

∂x
, a = S

[Ra
Pr

∂T
∂y
−

(∂u
∂x

)2 −
(∂v
∂y

)2 − 2
∂v
∂x
∂u
∂y

]
.

For evaluating vectors a, m̃ and ñ the derivatives are computed with the help of coordinate

matrix F and multiplications of vectors are handled by forming diagonal matrices from the

vector entries.

The time derivative in the vorticity and energy equations in (3.33) are discretized using central

difference scheme with relaxation parameters

−S
ωm+1 − ωm−1

2∆t
+ Hω((1 − βω)ωm−1 + βωω

m+1) − Gω((1 − βωq)ωq
m−1 + βωqωq

m+1) = 0

−S
Tm+1 − Tm−1

2∆t
+ Ht((1 − βt)Tm−1 + βtTm+1) − Gt((1 − βtq)Tq

m−1 + βtqTq
m+1) = 0 .

(3.36)

Equation (3.36) can be written as
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( −S
2∆t

+ βωHω

)
ωm+1 − βωqGωωq

m+1 =
[ −S
2∆t
− (1 − βω)Hω

]
ωm−1 + (1 − βωq)Gωωq

m−1

( −S
2∆t

+ βt Ht
)
Tm+1 − βtqGtTq

m+1 =
[ −S
2∆t
− (1 − βt)Ht

]
Tm−1 + (1 − βtq)GtTq

m−1 .

(3.37)

In order to start the iteration process we need the initial conditions for ω, ωq and T, Tq at

time levels ‘m-1’ and ‘m’. All initial conditions are taken as zero in the computations.

Once all unknowns are passed to the left-hand side one can write the equation (3.37) as

Ax1 = y1

Ax2 = y2

(3.38)

where x1 and x2 are the unknown vectors including ω, ωq and T, Tq, respectively.

We shall now describe the iterative procedure:

1) Start with the initial approximations for ωm−1, ωm and Tm−1, Tm with m = 1. ω0, T0

can be set to zero, and ω1, T1 can be taken as zero or computed from the forward difference

discretized form of the equations as in (3.15).

2) Solve the stream function equation to obtain ψm+1 using ωm.

3) Solve the energy equation to obtain Tm+1 using Tm−1.

4) Approximate the derivatives of stream function, ψm+1, temperature, Tm+1, and ωm with

respect to x and y by using DRBEM idea.

5) Solve the equations for velocity components to obtain um+1 and vm+1 using the derivatives

of ωm. Then solve the pressure equation to obtain pm+1 using Tm+1, um+1 and vm+1.

6) Obtain the vorticity boundary conditions from the Taylor series expansion of stream func-

tion or from its definition using ψm+1.

7) Solve the vorticity equation to obtain ωm+1 using ωm−1, and using the derivatives of stream

function ψm+1 and the temperature gradient Tm+1
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8) Relax ωm+1 with ωm to obtain new ωm+1.

9) Relax Tm+1 with Tm to obtain new Tm+1.

10) Check the convergence criteria to terminate the procedure using the L∞ norm of ψ, ω and

T as
max

i
|ψm+1 − ψm| ≤ ε

max
i
|ωm+1 − ωm| ≤ ε i = 1, ...N + L

max
i
|Tm+1 − Tm| ≤ ε

where maxima is taken over all the nodes inside the fluid flow region and ε is a pre-assigned

tolerance.

11) Repeat the steps 2 − 10 for m = 2, 3, ... until the convergence criteria in step 10 is met.

In the iterative procedure, m-th level values are used to compute the matrices Hω and Ht

which contain convection term matrix D. Thus, the iteration makes use of both m-th and

(m − 1)-th level values for computing ‘m+1’ iteration.
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3.2.1 Natural Convection Flow in a Square Cavity

The equations are given as, [51]

∇2ψ = −ω

Pr∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

∂ T
∂ x

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(3.39)

in a square cavity [0, 1]×[0, 1]. The no-slip boundary conditions for the velocity are assumed.

Temperature has Dirichlet type conditions as 1 and 0 at the left and right walls of the cavity,

whereas adiabatic conditions
∂ T
∂ y

= 0 are imposed on the top and bottom walls (Figure

(3.25)). Boundary conditions of stream function are taken as zero at the walls and the vorticity

boundary conditions are derived from Taylor series expansion of stream function.

The proposed coupled numerical algorithm (iterative procedure) is applied to determine the

stream function, vorticity and temperature variations with the given initial values ω = T = 0

iteratively. The pre-assigned accuracy for reaching steady-state is taken as ε = 10−5 for

Ra = 103, ε = 10−4 for Ra = 104 and 105, and ε = 10−3 for Ra = 106. The time derivative

is discretized using central difference scheme with relaxation parameters (βω = βωq = βt =

βtq = 0.9).

In Figure (3.26) we present streamlines, vorticity and temperature contours at steady state for

Ra = 103, 104, 105 and 106 by using ∆t = 0.5, N = 68; ∆t = 0.01, N = 80; ∆t = 0.005,

N = 84; and ∆t = 0.003, N = 100, respectively. Pr is taken as 0.7 and quadratic radial basis

functions f = 1 + r + r2 are used in obtaining the coordinate matrix F.

One can see from the Figures (3.26) that for Ra = 103 viscous forces are dominant and there

is not enough convection within the cavity. The vortex of streamlines is in circular pattern,

the isotherm lines are almost vertical and the vorticity contours take place mostly at the center

of the cavity. As the Rayleigh number increases natural convection becomes the dominating

mechanism. Buoyancy forces get stronger and cause an effective fluid convection. We see

from the figures that the circular pattern of the streamlines become elliptical and the isotherm

lines undergo an inversion at the central region of the cavity. Their vertical behaviour become
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horizontal. The vorticity contours get closer to the vertical walls of the cavity and the central

region of the cavity is almost stagnant. For Ra = 106, thin boundary layers occur for all the

variables. The vortex of streamlines tend to separate and form two vortices through the corners

(1, 0) and (0, 1). The vorticity values near the vertical walls increase. These behaviours are

in good agreement with the study of Lo et.al. [51]. From Figure (3.27) we observe that the

relative amplitude of the velocity components increases as the Rayleigh number increases.
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Figure 3.25: Boundary conditions for the natural convection flow in a square cavity
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Figure 3.26: Streamlines, vorticity contours and isotherms for Ra = 103, 104, 105 and 106
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Figure 3.27: Vertical and horizontal velocity profiles at the mid-plane of the cavity for several
Ra
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3.2.2 Natural Convection Flow with Uniformly and Non-Uniformly Heated Walls

In this problem we discuss again the natural convection flow in a square cavity with different

boundary conditions, [70]. The problem is investigated in two cases. In the first case the left

vertical and the bottom horizontal walls are heated uniformly and in the other case they are

heated non-uniformly. The right vertical wall is cooled and the top horizontal wall is insulated

(Figure (3.28)).

The equations are given in terms of u, v, ψ, p, ω and T as

∇2u = −∂ ω
∂ y

∇2v =
∂ ω

∂ x

∇2 p =
Ra
Pr

∂ T
∂ y
−

(∂ u
∂ x

)2 −
(∂ v
∂ y

)2 − 2
∂ v
∂ x

∂ u
∂ y

∇2ψ = −ω

Pr∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

∂ T
∂ x

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

.

(3.40)

Homogeneous initial conditions for vorticity and temperature are imposed. Stream function

and velocity components have no-slip boundary conditions. The vorticity boundary condi-

tions are obtained from its definition ω =
∂ v
∂ x
− ∂ u
∂ y

. In both cases linear boundary elements

are used and the radial basis functions are taken as f = 1 + r + r2, the Prandtl number is

Pr = 0.2. The solution is given at steady-state. The problem is solved by using the central

difference scheme and the relaxation parameters are taken as 0.9 for all variables and their

normal derivatives. The local Nusselt number at the heated bottom wall is evaluated by the

formula Nu = −∂ T
∂ y

∣∣∣∣
y=0

.
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Figure 3.28: Boundary conditions for natural convection flow with uniformly and non-
uniformly heated walls
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3.2.2.1 Uniformly Heated Walls

In this case, the bottom and the left vertical walls are heated to maintain constant temperature,

and the right vertical wall is cooled while the top wall is insulated.

The problem is solved for Rayleigh numbers Ra = 103, 104, 105 and 106 with ∆t = 0.1, 0.01,

0.001 and 0.0005 and N = 64, 80, 88 and 96, respectively. As the Rayleigh number increases

thin boundary layers occur near the walls. Thus, the number of boundary elements needs to

be increased whereas the time step must be taken smaller compared to the previous value of

Ra. The stopping criteria in the iterations is taken as ε = 10−5 for Rayleigh numbers 103−105

and ε = 10−3 for Ra = 106.

Figures in (3.29) show the behaviour of streamlines, vorticity and temperature contours for

Ra = 103, 104, 105 and 106, respectively. Since the left vertical wall is heated, fluid rise up

along this wall and flow down along the cooled right vertical wall. Thus, a clockwise rotation

is formed inside the cavity. As Ra increases from 103 to 106, the values of the stream function

increase. For Ra = 103, the isotherm lines change their value from left(hot) vertical wall

to right(cold) vertical wall. With an increase in the Rayleigh number buoyancy forces get

stronger and natural convection becomes dominant. Thus, the convection from the hot wall to

cold wall enhances and the isotherm lines with values greater than 0.5 cover almost the entire

cavity (Figure (3.29)). We also observe the boundary layers near the walls. These behaviours

are in good agreement with the ones in [70].

Figures (3.30) and (3.31) implement flow vectors and pressure contours for Ra = 104 and

105, respectively, and horizontal and vertical mid-plane velocity profiles are given in Figure

(3.32) for Ra = 103 and 104.

Figure (3.33) shows the variation of the local Nusselt number with distance at the bottom

wall. We see that the heat transfer rate is very high at the right edge of the bottom wall and

the heat transfer is almost uniform at the hot vertical wall.
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Figure 3.29: Streamlines, vorticity contours and isotherms for Ra = 103, 104, 105 and 106
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Figure 3.30: Flow vectors for Ra = 104 and 105

7.83e+004

7.84e+004

7.85e+004
7.85e+004

7.87e+004

7.87e+004

7.88e+004

7.88e+004
7.89e+004

7.9e+0047.91e+004

7.92e+004
7.93e+004

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4.22e+004

4.41e+004

4.59e+004
4.59e+004

4.78e+0044.97e+004

5.15e+004
5.34e+004

5.53e+004

5.72e+0045.9e+004

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ra = 104 Ra = 105

Figure 3.31: Pressure contours for Ra = 104 and 105
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Figure 3.32: Horizontal and vertical velocity profiles at the mid-plane of the cavity for several
Ra
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Figure 3.33: Variation of local Nusselt number with distance at the bottom wall for Ra =
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3.2.2.2 Non-Uniformly Heated Walls

This case also considers the square cavity with heated bottom and left vertical walls, the

cooled right vertical wall and the insulated top wall. In the first case the walls are heated

uniformly, which means they are kept at the same temperature. But in this case they are

heated non-uniformly with trigonometric function behaviour (Figure (3.28)).

We solve the problem for Rayleigh numbers between 103 − 106. ∆t = 0.5 with N = 64;

∆t = 0.01 with N = 80; ∆t = 0.001 with N = 88; and ∆t = 0.0005 with N = 96 are used

for Ra = 103, 104, 105 and 106, respectively. The results are given at steady-state with a

pre-assigned accuracy ε = 10−4 for stopping the iterative procedure.

Figures in (3.34) present the streamlines, vorticity contours and isotherms for Ra = 103, 104,

105 and 106, respectively. One can see that the behaviour of stream function is similar to

the behaviour of the one obtained in the first case, in the sense that the formations of small

stagnant fluid region attached to the corners of the heated vertical wall [70]. Boundary layers

near the walls for streamlines and isotherms are also observed. Due to the non-uniform heat-

ing the temperature lines with values greater than 0.5 cover the cavity less than the uniform

heating case. In this case, we again need to decrease time increment and increase number of

boundary nodes in order to capture the behaviour of solutions correctly. The behaviours are

in good agreement with the study of [70].

The flow vectors and pressure contours are also given for Ra = 104 and 105 in Figures (3.35)

and (3.36), respectively. Mid-plane horizontal and vertical velocities show similar behaviours

to the ones in uniformly heated walls but variations are in smaller intervals.

In Figure (3.38), we present the variation of the local Nusselt number at the bottom wall with

distance for Ra = 103 and 104. We observe that the heat transfer rate increases from edges

towards the center with its maximum value at the center. In non-uniform case increasing

values of Rayleigh number causes a sinusoidal type of local heat transfer rate. This is because

the values of streamlines are higher at the center of the cavity for increasing value of Rayleigh

number.

The point in investigating these cases is to see the effect of uniform and non-uniform heating

of the bottom wall and one vertical wall on the fluid flow, and heat transfer rates due to natural
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convection within the cavity. We observe that in uniform heating case, the heat transfer rate

is high at the right edge of the bottom wall and almost uniform at the rest part of the bottom

wall. On the other hand, in the non-uniform heating case the heat transfer rate is minimum at

the edges of the bottom wall and maximum at the center of the bottom wall.
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Figure 3.34: Streamlines, vorticity contours and isotherms for Ra = 103, 104, 105 and 106
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Figure 3.35: Flow vectors for Ra = 104 and 105
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Figure 3.36: Pressure contours for Ra = 104 and 105
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Figure 3.37: Horizontal and vertical velocity profiles at the mid-plane of the cavity for several
Ra
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Figure 3.38: Variation of local Nusselt number with distance at the bottom wall for Ra =

103, 104
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3.2.3 Natural Convection in a Triangular Enclosure

In this last problem, we consider the natural convection flow in a triangular enclosure with

vertices (0, 0), (0, 1) and (1, 0), [13]. The governing equations are as follows

∇2ψ = −ω

Pr∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

∂ T
∂ x

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

.

(3.41)

Again homogeneous initial conditions are assigned for both the vorticity and the temperature.

The problem is considered for the configuration in which the left vertical wall of the right

triangle is heated linearly, the horizontal bottom wall is adiabatic and the inclined wall is

cooled (Figure (3.39)). Homogeneous boundary conditions are taken for stream function, and

vorticity boundary conditions are derived from its definition ω =
∂ v
∂ x
− ∂ y
∂ y

with DRBEM

idea. We solve the problem for several Rayleigh numbers. Linear boundary elements are used

and the radial basis functions are taken as f = 1 + r + r2. Prandtl number is 0.7. ∆t = 0.5

with N = 72, ∆t = 0.05 with N = 80, ∆t = 0.01 with N = 92 and ∆t = 0.005 with N = 100

are used for Ra = 103, 104, 105 and 106, respectively. The solutions are given at steady state

with pre-assigned tolerance ε = 10−4.

Figure (3.40) show the streamlines, temperature and vorticity contours for Ra = 103 − 106.

One can see from the figures that for small Rayleigh number the isotherms are almost parallel

to the inclined wall, the streamline values at the center of the cavity are low. As the Rayleigh

number increases the isotherms are deformed and start getting pushed toward the linearly

heated left wall and the streamline values increase. The vortex of the streamlines which was

in circular pattern, now becomes elliptical. The behaviours are in good agreement with the

study of Basak et.al. [13].

Figure (3.41) present the variation of the local Nusselt number which is evaluated using the

formula Nu = −∂ T
∂ x

∣∣∣∣
x=0

at the linearly heated left wall with distance for Ra = 103 − 106.

We see that the maximum eigenvalue occurs at the bottom wall. It is also observed that the

local Nusselt number increases with the increase in the Rayleigh number.
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From these three test problems, the obtained results indicate that the present method is ca-

pable of solving natural convection flow for high Rayleigh number without difficulties with

a considerable small number of mesh points on the boundary. However, as Ra increases one

needs to take more boundary elements and small time increments to reach the steady-state

solutions.
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Figure 3.39: Boundary conditions for the natural convection flow in a triangular enclosure
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Figure 3.40: Streamlines, isotherms and vorticity contours for Ra = 103 − 106
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Figure 3.41: Variation of local nusselt number with distance for different Rayleigh numbers

107



3.3 Mixed Convection Flow

Mixed convection is the combination of forced and natural convection. When the effects of

natural and forced convection are comparable neither of the process can be neglected. Thus,

understanding the physics of this process is very important. Governing equations of transient

and laminar mixed convection flow of a viscous fluid in terms of stream function-vorticity

formulation are given as, [62]

∇2ψ = −ω

1
Re
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− Gr

Re2

∂ T
∂ x

1
RePr

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(3.42)

where Re, Pr and Gr are the Reynolds, Prandtl and the Grashof numbers, respectively. Gen-

erally mixed convection occurs when
Gr
Re2 ≈ 1. When

Gr
Re2 � 1 forced convection is

dominant, when
Gr
Re2 � 1, natural convection is dominant, [43].

Initial conditions are taken as ω = T = 0. General expression of the boundary conditions can

be given as

ψ(xs, ys) = fψs , ω(xs, ys) = fws

T (xs, ys) = fts ,
∂ T
∂ n

(xs, ys) = ftn .

(3.43)

In general, we are given Dirichlet type boundary conditions for stream function, which can

be taken as zero for simplicity. Since the boundary conditions of vorticity are derived from

Taylor series expansion of stream function or from its definition, they are also Dirichlet type.

The boundary conditions of temperature can be either Dirichlet or Neumann type because we

consider the configuration that the walls of the cavity are heated/cooled and insulated (the

normal derivative is zero).

Again we start from the application of DRBEM matrix form of vorticity equation given in

Section 3.1 (equation (3.10))

1
Re

(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ ω
∂ t

+
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)
ω
]
. (3.44)
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Thus, for the mixed convection flow, vorticity equation in (3.42), we can write the matrix-

vector form as in (3.44) by adding the term containing temperature derivative

1
Re

(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ ω
∂ t

+
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)
ω − Gr

Re2

∂T
∂x

]
. (3.45)

The temperature gradient
∂ T
∂ x

in the above equation can also be approximated using the

DRBEM idea given in equations (2.68) as
∂ T
∂ x

=
∂ F
∂ x

F−1T.

Similarly, for the energy equation in (3.42), we have

1
RePr

(HT −GTq) = (HÛ −GQ̂)F−1
[∂ T
∂ t

+
(
u
∂ F
∂ x

F−1 + v
∂ F
∂ y

F−1
)
T
]
. (3.46)

Finally, we can express the DRBEM system of matrix equations for mixed convection flow

equations (3.42) as

Hψ −Gψq = b̃

−S
∂ ω

∂ t
+ H1ω ω − G1ω ωq = c1

−S
∂ T
∂ t

+ H1t T − G1t Tq = 0

(3.47)

where b̃ and c1 are the vectors, and S, D, H1ω, G1ω, H1t and G1t are the matrices given as

b̃ = (HÛ −GQ̂)F−1(−ω) , c1 = −S
Gr
Re2

∂ F
∂ x

F−1T , S = (HÛ −GQ̂)F−1

D = S
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)

, H1ω =
1

Re
H − D , G1ω =

1
Re

G

H1t =
1

RePr
H − D , G1t =

1
RePr

G.

After discretizing the vorticity and energy equations using implicit central difference scheme

with relaxation parameters as in (3.37), we obtain

( −S
2∆t

+ βωH1ω
)
ωm+1 − βωqG1ωωq

m+1 =
[ −S
2∆t
− (1 − βω)H1ω

]
ωm−1 + (1 − βωq)G1ωωq

m−1

( −S
2∆t

+ βt H1t
)
Tm+1 − βtqG1tTq

m+1 =
[ −S
2∆t
− (1 − βt)H1t

]
Tm−1 + (1 − βtq)G1tTq

m−1 .

(3.48)
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When the boundary conditions are applied to the above equations the known and unknown

values of ω, ωq and T, Tq are passed from one side to another. Equations are arranged such

that the right hand sides are at time tm−1 and known, and the left hand sides are at time tm+1

and unknown.

To start the iteration process, we set up the initial conditions for vorticity ωm−1 and ωm where

m = 1. Then solve the stream function equation ψm+1 using these initial conditions. The

velocity components u and v are aproximated using DRBEM idea with the obtained stream

function values. Then, we set up the initial conditions of temperature Tm−1 and Tm for m = 1.

The vorticity transport equation is solved for ωm+1. Finally, the enery eguation is solved for

Tm+1. The iteration process is stopped until some convergence criteria (which is the L∞ norm)

is met with a preassigned tolerance ε. m-th iteration values are used in the matrices H1ω and

H1t which contain the convection matrix D and thus, these matrices are recalculated at each

iteration due to the new values of convection terms.
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3.3.1 Mixed Convection Flow in a One-Sided Differentially Heated Square Cavity

Mixed convection flow is the combination of forced and natural convection flows. The crucial

point in analysing mixed convection flow is to determine the effect of buoyancy on the forced

convection transport rates. The buoyancy forces may aid or oppose the forced convection

flow. Thus heat transfer rates either increase or decrease, [8].

We consider one-sided lid-driven square cavity problem in two cases (Figures (3.42), (3.45)).

In both cases the left vertical wall is moving up and the other three walls are motionless. In

the first case, the left wall is heated and the right wall is cooled. Thus, buoyancy forces aid

the forced convection flow. The horizontal walls are insulated. In the second case, the left

wall is cooled and the right wall is heated which means buoyancy forces oppose the forced

convection flow. The horizontal walls are adiabatic [8].

The non-dimensional equations can be written as

∇2ψ = −ω

1
Re
∇2ω =

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− Gr

Re2

∂T
∂x

1
RePr

∇2T =
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

.

(3.49)

The initial conditions for vorticity and temperature are ω = T = 0. The numerical code

developed in the present investigation is used to carry out a number of simulations for a wide

range of mixed convection parameter, Gr/Re2, which characterizes the relative importance of

buoyancy to forced convection.

In this problem, Reynolds number is fixed at 100. Thus, a change in Gr/Re2 means a change

in the value of Grashof number, Gr. Different values of Gr/Re2 covering 0.01, 0.5, 2, 10 and

100 are considered. Pr = 0.71 and f = 1 + r + r2. Linear boundary elements are used.
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3.3.1.1 Case I

The left wall of the square cavity 0 ≤ x, y ≤ 1 is kept at temperature T = 1, while the right

wall being kept at temperature T = 0. The horizontal walls are kept as adiabatic. The left wall

is moving from bottom to top with the specified velocity. Other three wall are motionless.

The problem is solved for
Gr
Re2 = 0.01 − 100. ∆t = 0.5 and 64 boundary nodes are used for

Gr
Re2 = 0.01 and 0.5. ∆t = 0.5 and N = 72 is used for

Gr
Re2 = 2. With the increase in

Gr
Re2

we need to increase the number of boundary nodes and decrease the time increment. 88 and

104 boundary nodes with ∆t = 0.1 are used for
Gr
Re2 = 10 and 100, respectively.

Movement of the left wall causes a clockwise rotating cell. In this case, the buoyancy forces

aid the forced convection flow. When
Gr
Re2 = 0.01 the buoyancy is weak and forced convection

is dominating the mechanism. As the mixed convection parameter increases from 0.01 to 0.5

the strength of the cell enhances and the isotherms tend to stratified. When
Gr
Re2 = 0.5 and 2

buoyancy and shear forces effects are in comparable level. We can see from the Figure (3.43)

that the isotherms are different from either the forced or the natural convection flow. With the

increase in
Gr
Re2 natural convection becomes the dominating mechanism. At

Gr
Re2 = 100 the

flow fileds are nearly the same as those of the natural convection flow.

The center cell of streamlines change its shape from circular to elliptical as
Gr
Re2 increases,

and boundary layers are formed for both streamlines and isotherms near the vertical walls.

The behaviours are in good agreement with the behaivours given in [8]. The solutions are

presented for the steady state case in which the convergence criteria is taken as 10−5 for
Gr
Re2 = 0.01, 10−4 for

Gr
Re2 = 0.5 and 2, and 10−3 for

Gr
Re2 = 10 and 100.

Flow classification can be made through the increasing Gr/Re2. The forced convection takes

place for Gr/Re2 << 1, the mixed convection takes place for 1 << Gr/Re2 << 10 and natural

convection for Gr/Re2 >> 1.

Figure (3.44) shows the passage from forced convection to natural convection for several

values of Gr/Re2 in terms of mid-plane velocity profiles.
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Figure 3.42: Boundary conditions for mixed convection flow, Case I
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Figure 3.43: Streamlines, vorticity and temperature contours, Case I
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3.3.1.2 Case II

The left wall of the cavity is isothermally cooled and the right wall is isothermally heated. The

square is bounded by three motionless walls and the left vertical wall moving from bottom to

top with a constant velocity. The problem is solved for Gr/Re2 = 0.01−100. Quadratic radial

basis functions are used and Prandtl number is taken as 0.71. Linear boundary elements are

used. For Gr/Re2 = 0.01, 72 boundary elements are used with ∆t = 0.5, and the convergence

criteria is taken as 10−5. For Gr/Re2 = 0.5 and 2, time increment is again 0.5 but the number

of boundary nodes is 80 and the convergence criteria is 10−4. We increase the number of

boundary nodes to 88 when Gr/Re2 = 10 and use ∆t = 0.1 with convergence criteria 10−4.

Finally, for Gr/Re2 = 100, 104 boundary nodes are used with ∆t = 0.1 and the convergence

criteria is taken as 10−3. All computations are carried out taking relaxation parameters as 0.9.

At Gr/Re2 = 0.01, a clockwise rotating cell occurs due to the moving left wall. Forced

convection is dominant. Since the left wall is cooled and the right wall is heated, the buoyancy

forces cause a counter-clockwise rotation inside the cavity with an increase in the mixed

convection parameter. This rotation opposes the lid-driven re-circulation. Thus, a secondary

cell occurs when Gr/Re2 = 0.5. This secondary cell is counter rotating the primary cell

because of the moving left wall. As Gr/Re2 increases buoyancy forces get stronger and

the secondary cell becomes larger. When Gr/Re2 = 10 the primary cell gets smaller and the

secondary cell covers almost the entire cavity. We also observe that at the beginning isotherms

tend to move from right to left but as Gr/Re2 increases the isotherm lines move from left to

right. Boundary layers are formed. These behaviours which can be seen from Figures (3.46)

are in good agreement with the ones in [8].

In Figure (3.47), one can see the effect of heated wall on the mid-plane velocity profiles

when the opposite wall is moving upwards. When the velocity profiles are compared with

the profiles for Case I, we see that the flows tend to move through cooled wall as natural

convection takes place. Mixed convection flow equations differ from natural convection flow

equations only in the coefficients in front of the diffusion terms and temperature gradient.

Thus, DRBEM solution procedure is exactly the same. The solutions are obtained for various

values of the ratio Gr/Re2 to capture the physical changes in the flow due to the effects of

natural and forced convections.
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Figure 3.45: Boundary conditions for mixed convection flow, Case II
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Figure 3.46: Streamlines, vorticity and temperature contours, Case II
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3.4 Natural Convection Flow of Nanofluids

Fluid heating and cooling are important in many industries such as power, manufacturing,

transportation, and electronics. Effective cooling techniques are greatly needed for cooling

any sort of high-energy device. Common heat transfer fluids such as water, ethylene glycol,

and engine oil have limited heat transfer capabilities due to their low heat transfer properties.

In contrast, metals have thermal conductivities up to three times higher than these fluids, so

it is natural that it would be desired to combine the two substances to produce a heat transfer

medium that behaves like a fluid, but has the thermal conductivity of a metal. Nanofluids are

made of nanoparticles suspended in a base fluid. Typical nanoparticles are metal or metal

oxide nanoparticles such as Al2O3, CuO, Cu, TiO. Generally water and ethylene glycol is

used as the base fluid, [47].

The non-dimensional, unsteady equations of motion and energy for nanofluids can be written

in terms of stream function (ψ), vorticity (ω) and temperature (T ) as follows, [3]

∇2ψ = −ω

µn f

ρn fα f
∇2ω =

∂ ω

∂t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

(ρβ)n f

ρn fβ f

∂ T
∂ x

αn f

α f
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(3.50)

where (x, y) ∈ Ω ⊂ R2, t > 0. Ra and Pr are the Rayleigh number and Prandtl number. The

subscripts ‘nf’, and ‘f’ refer to nanofluid and pure fluid, respectively.

The effective dynamic viscosity [24] and the effective density [61] of the nanofluid are given

by

µn f =
µ f

(1 − ϕ)2.5 , ρn f = (1 − ϕ)ρ f + ϕρs

where ϕ is the volume fraction of nanoparticles, µ f is the dynamic viscosity of the fluid, ρ f

and ρs are the density of the fluid and nanoparticle, respectively.

Thermal diffusivity of the nanofluid is defined by, [63]

αn f =
kn f

(ρCp)n f
.
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Here kn f is the thermal conductivity of the nanofluid given by, [54]

kn f = k f
ks + 2k f − 2ϕ(k f − ks)
ks + 2k f + ϕ(k f − ks)

.

where the subscript ‘s’ refer to nanoparticle.

It is important to note that the effective thermal conductivity of nanofluids depends on the ther-

mal conductivity of solid particles and base fluid, particle volume fraction, shape of particles

and the thickness of the thermal conductivity of nanolayer [47].

The heat capacitance of the nanofluid and part of the Boussinesq term are defined as [61]

(ρCp)n f = (1 − ϕ)(ρCp) f + ϕ(ρCp)s

(ρβ)n f = (1 − ϕ)ρ f β f + ϕρsβs.

The equations in (3.50) are supplied with the initial conditions

ω(x, y, 0) = ω0(x, y) , T (x, y, 0) = T0(x, y)

where ω0(x, y) and T0(x, y) are given functions of space and time.

Corresponding boundary conditions are given by

ψ(xs, ys) = fψs , ω(xs, ys) = fωs

T (xs, ys) = fts ,
∂ T
∂ n

(xs, ys) = ftn .

(3.51)

Application of DRBEM to stream function, vorticity and energy equations are given in Section

3.2. There is no need for an extra equation for nanofluid. But the differences lies in the

coefficients ofω and T equations. Stream function equation is the same. The difference comes

from the fact that since nanoparticles are suspended in the base fluid, their thermophysical

properties must also be considered. The percentage of the nanoparticles that are suspended in

the base fluid is controled with the parameter ϕ. The nanoparticles are added to the base fluid

so that they do not sediment and flow with the fluid.

The DRBEM discretized system of equations for vorticity and energy equations in natural
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convection flow were given in equations (3.29) and (3.31), respectively as

Pr(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ ω
∂ t

+
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)
ω − RaPr

∂ T
∂ x

]

HT −GTq = (HÛ −GQ̂)F−1
[∂ T
∂ t

+
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)
T
]
.

(3.52)

So, for the natural convection of nanofluids we have similar equations with different coeffi-

cients as

µn f

ρn fα f
(Hω −Gωq) = (HÛ −GQ̂)F−1

[∂ ω
∂ t

+
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)
ω − RaPr

(ρβ)n f

ρn f β f

∂T
∂x

]

αn f

α f
(HT −GTq) = (HÛ −GQ̂)F−1

[∂ T
∂ t

+
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)
T
]
.

(3.53)

Final matrix form of stream function, vorticity and energy equations are

Hψ −Gψq = b̃

−S
∂ ω

∂ t
+ H̆ωω − Ğωωq = c2

−S
∂ T
∂ t

+ H̆tT − ĞtTq = 0

(3.54)

where b̃, c2 are the vectors and S, D, H̆ω, Ğω, H̆t and Ğt are the matrices given by

b̃ = (HÛ −GQ̂)F−1(−ω) , c2 = −SRaPr
(ρβ)n f

ρn f β f

∂F
∂x

F−1T , S = (HÛ −GQ̂)F−1

D = S
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)

, H̆ω =
µn f

ρn f α f
H − D , Ğω =

µn f

ρn f α f
G

H̆t =
αn f

α f
H − D , Ğt =

αn f

α f
G .

Here, ψ, ψq, ω, ωq, T and Tq are vectors containing nodal values of stream function and its

normal derivative, vorticity and its normal derivative, and temperature and its normal deriva-

tive.

Central difference discretization of the time derivatives that appear in vorticity and energy

equations in (3.54) gives
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( −S
2∆t

+ βωH̆ω

)
ωm+1 − βωqĞωωq

m+1 =
[ −S
2∆t
− (1 − βω)H̆ω

]
ωm−1 + (1 − βωq)Ğωωq

m−1

( −S
2∆t

+ βt H̆t
)
Tm+1 − βtqĞtTq

m+1 =
[ −S
2∆t
− (1 − βt)H̆t

]
Tm−1 + (1 − βtq)ĞtTq

m−1

(3.55)

which is similar to the system of equations (3.37) in natural convection flow.

The iteration procedure starts by assigning the initial conditions for vorticity, ωm−1, ωm and

temperature, Tm−1, Tm where m = 1. The initial conditions for vorticity, temperature and their

normal derivatives are taken as zero at both levels. Then the stream function equation is solved

using the initial conditions of vorticity. The velocity components u and v are approximated

using DRBEM idea with the new values of stream function. Vorticity equation is solved at

time (m + 1) using the velocity components and the initial values of temperature. Finally,

the temperature equation is solved. The initial conditions are set up for the next time step.

The iteration is stopped when the convergence criteria is met. As is explained in the previous

flow cases, the m-th iteration is used in computing the matrices H̃ω and H̃t which contain

convection terms.
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3.4.1 Natural Convection Flow of Nanofluids in a Square Cavity with a Discrete Heater

The non-dimensional, unsteady equations of motion and energy for nanofluids can be written

in terms of stream function (ψ), vorticity (ω) and temperature (T ), as follows [3]

∇2ψ = −ω

µn f

ρn fα f
∇2ω =

∂ ω

∂t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

(ρβ)n f

ρn fβ f

∂ T
∂ x

αn f

α f
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(3.56)

where (x, y) ∈ Ω ⊂ R2, t > 0. Ra and Pr are the Rayleigh number and Prandtl number,

respectively. ρ is the density and β is the thermal expansion coefficient. The subscripts ‘nf’,

‘f’ and ‘s’ refer to nanofluid, fluid and nanoparticle, respectively.

Equations are supplied with the initial conditions

ω(x, y, 0) = 0 , T (x, y, 0) = 0

where ω0(x, y) and T0(x, y) are given functions of space and time.

Corresponding boundary conditions are shown in Figure (3.48). The velocity components are

zero on the solid walls. The wall at x = 1 is cooled and the horizontal walls are adiabatic. The

left wall is heated with constant heat flux for a varying length with a parameter ε, [61]. The

fluid in the cavity is a water-based nanofluid containing copper (Cu) and aluminum oxide

(Al2O3) nanoparticles. It is assumed that the base fluid and nanoparticles are in thermal

equilibrium and no slip occurs between them. The thermo-physical properties of the nanofluid

are assumed to be constant except for the density variation, which is approximated by the

Boussinesq model. The thermo-physical properties of the nanofluid are given in Table 3.1,

[61, 83].

The local and average Nusselt numbers for the wall with constant heat flux are given as in

[61]

Nu =
κn f

κ f

1
Ts(y)

, Nuav =
1
ε

∫ ε

0
Nu dy

where Ts(y) is the temperature of the wall under consideration.
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Figure 3.48: Boundary conditions for the natural convection flow of nanofluids

125



Table 3.1: Thermophysical properties of the base fluid and nanoparticles [1, 61]

Physical properties Fluid phase(Water) Cu Al2O3

Cp(J/kgK) 4179 385 765
ρ(kg/m3) 997.1 8933 3970
k(W/mK) 0.613 400 40
β × 10−5(1/K) 21 1.67 2.4
α × 107(m2/s) 1.47 1163.1 131.7
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The numerical results are reported for several values of heater length (ε), Rayleigh number

(Ra) and nanoparticle volume fraction (ϕ) for Cu and Al2O3 based nanofluids. The Prandtl

number is 6.2 which means the base fluid is water.

The discretization is performed by using linear boundary elements. The radial basis function

f is taken as 1 + r + r2. The time derivative is discretized using central difference scheme

with relaxation parameters 0.9 for all variables. The computations are carried out until steady

state conditions are reached. The convergence criteria used in the time loop to achieve steady

state conditions for vorticity is maxi |ωm+1
i − ωm

i | ≤ 10−5, i = 1, ..,N + L. The same condition

is also used for temperature. Solutions are obtained by using 56, 72, 80 and 100 boundary

elements for Ra = 103, 104, 105 and 106 with the time increments ∆t = 0.1, 0.01, 0.0013 and

0.001, respectively.

Figure (3.49) shows the streamlines, isotherms and vorticity contours of a copper-based nanofluid

with ϕ = 0.2, ε = 0.25, and Ra = 103 − 106. At Ra = 103, the circulation inside the cavity is

so weak that viscous forces are dominant. Isotherms are parallel to the surface of the isoflux

heater. The center cell is in circular pattern. With an increase in the Rayleigh number, the

intensity of the recirculation inside the cavity increases, and boundary layers occur near the

walls. At Ra = 106, the center cell becomes egg-shaped and isotherms become parallel to the

horizontal walls. The flow is stagnant at the center of the cavity. Convection is the dominating

mechanism for heat transfer.

Figures (3.50) and (3.51) show the effect of volume fraction for different Rayleigh numbers

on Cu and Al2O3 based nanofluids, respectively. When volume fraction increases from 0.0 to

0.2 or from 0.1 to 0.2 flow strength increases. More fluid is heated. This behaviour can be

seen from the isotherms.

Velocity profiles of a copper-based nanofluid at the mid-plane of the cavity for various values

of volume fraction is given in Figure (3.52). One can see that the magnitude of the velocity

components increases with an increase in the volume fraction when Rayleigh number and

heater length are fixed at Ra = 106 and ε = 0.5, respectively.
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Table 3.2: Variation of average Nusselt number with respect to volume fraction (ϕ), Rayleigh
number (Ra) and heater length (ε)

Material: Cu Al2O3

ε ϕ Ra = 104 Ra = 105 Ra = 106 Ra = 104 Ra = 105 Ra = 106

0.25 0.0 3.966 6.631 10.884 3.966 6.631 10.884
0.1 5.152 8.626 15.129 5.077 8.504 14.961
0.2 6.301 10.370 17.960 6.126 10.079 16.938

0.50 0.0 2.933 5.582 9.006 2.933 5.582 9.006
0.1 3.540 6.681 11.561 3.485 6.587 10.428
0.2 4.237 7.916 13.337 4.109 7.696 13.059

Figures (3.53) represent the vertical and horizontal velocity profiles at the mid-plane of the

cavity using different types of nanofluids where Ra = 106, ϕ = 0.1 and ε = 0.25. The vertical

velocity profile shows a parabolic variation near the vertical walls due to buoyant flow inside

the cavity. The velocity profiles of these nanofluids are similar. This is because the viscosity

of the nanofluid is only sensitive to the volume fraction of particles and not influenced by

the type of nanoparticles. Behaviours of streamlines and istoherms shown in Figures (3.49)-

(3.51) are in good agreement with the ones given in [61]. Thus, DRBEM is made use of to

obtain solutions of natural convection flow of nanofluids for various values of volume fraction

which controls the nanoparticles that are suspended in the base fluid.

Table 3.2 shows the variation of average Nusselt number with respect to volume fraction,

Rayleigh number and heater length for copper-water and aluminum oxide-water based nanoflu-

ids. It is disclosed that when the volume fraction and Rayleigh number are fixed, an increase

in the length of the heat source reduces the heat transfer. There is a remarkable increase in the

average Nusselt number with an increase in the volume fraction. An increase in the Rayleigh

number results an increase in the average Nusselt number for a certain nanoparticle. It is also

observed that copper-water based nanofluid as greater heat transfer rate than that of aluminum

oxide-water based nanofluid. These values are in good agreement with the values given in the

study of [61].
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Figure 3.49: Streamlines, isotherms and vorticity contours of a copper-based nanofluid with
ϕ = 0.2 and ε = 0.25.
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Figure 3.50: Streamlines, isotherms and vorticity contours of a copper-based nanofluid with
ε = 0.5.
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Figure 3.51: Streamlines, isotherms and vorticity contours of a Al2O3-based nanofluid with
ε = 0.25.

131



−30 −20 −10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

Y

 

 

Volume fraction=0.0
Volume fraction=0.1
Volume fraction=0.2

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

40

60

80

X

V

 

 

Volume fraction=0.0
Volume fraction=0.1
Volume fraction=0.2

Figure 3.52: Velocity profiles of a Copper-based nanofluid at the mid-plane of the cavity,
ε = 0.5, Ra = 106.
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Figure 3.53: Velocity profiles of copper and aluminum oxide based nanofluids at the midplane
of the cavity for ϕ = 0.1, Ra = 106 and ε = 0.25.
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3.5 Natural Convection Flow of Micropolar Fluids

In the previous sections, we use the Navier-Stokes equations to model the fluid flow. But this

model is inadequate for fluids with microstructure such as polymeric suspensions, blood and

liquid crystals. In order to describe the behaviour of such fluids, we need a model that takes

into account geometry and movement of these microstructures [52].

In this section, we express the governing equations in terms of velocities u, v, stream function

ψ, pressure p, vorticity ω, temperature T and microrotation N̄.

The non-dimensional, unsteady equations of motion, energy and microrotation can be written

as follows [9, 10]

∇2u = −∂ ω
∂ y

∇2v =
∂ ω

∂ x

∇2ψ = −ω

∇2 p =
Ra
Pr

∂ T
∂ y
−

(∂ u
∂ x

)2 −
(∂ v
∂ y

)2 − 2
∂ v
∂ x

∂ u
∂ y

(1 + K)∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
+ K ∇2N̄ − Ra

Pr
∂ T
∂ x

1
Pr
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(
1 +

K
2

)
∇2N̄ =

∂ N̄
∂ t

+ u
∂ N̄
∂ x

+ v
∂ N̄
∂ y

+ 2K N̄ − K ω

(3.57)

where (x, y) ∈ Ω ⊂ R2, t > 0. K is the material parameter, p is the pressure of the fluid and N̄

is the component of the microrotation vector normal to the xy-plane.

The equations in (3.57) are supplied with the initial conditions

ω(x, y, 0) = ω0(x, y) , T (x, y, 0) = T0(x, y) , N̄(x, y, 0) = N̄0(x, y)
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where ω0(x, y), T0(x, y), N̄0(x, y) are known functions, and Dirichlet or Neumann type bound-

ary conditions

ψ(xs, ys) = fψs , ω(xs, ys) = fws

T (xs, ys) = fts or
∂ T
∂ n

(xs, ys) = ftn

N̄(xs, ys) = n̄
∂ v
∂ x

or N̄(xs, ys) = −n̄
∂ u
∂ y

where n̄ is a constant (0 ≤ n̄ ≤ 1). The case n̄ = 0 indicates N̄ = 0 on the boundary,

which means that the microelements close to wall surface are unable to rotate. The case

n̄ = 1/2 indicates the vanishing of anti-symmetric part of the stress tensor and denotes weak

concentration. The case n̄ = 1 is used for modeling of turbulent boundary layer flows [9].

Application of the DRBEM to the equations in (3.57) gives

Hu −Guq = (HÛ −GQ̂)F−1
(
− ∂ω
∂y

)

Hv −Gvq = (HÛ −GQ̂)F−1
(∂ω
∂x

)

Hψ −Gψq = (HÛ −GQ̂)F−1(−ω)

Hp −Gpq = (HÛ −GQ̂)F−1
[Ra

Pr
∂T
∂y
−

(∂u
∂x

)2 −
(∂v
∂y

)2 − 2
∂v
∂x
∂u
∂y

]

(1 + K)(Hω −Gωq) = (HÛ −GQ̂)F−1
[∂ω
∂t

+
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)
ω + K ∇2N̄ − Ra

Pr
∂T
∂x

]

1
Pr

(HT −GTq) = (HÛ −GQ̂)F−1
[∂T
∂t

+
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)
T
]

(
1 +

K
2

)
(HN̄ −GN̄q) = (HÛ −GQ̂)F−1

[∂N̄
∂t

+
(
u
∂F
∂x

F−1 + v
∂F
∂y

F−1
)
N̄ + 2K N̄ − K ω

]
.

(3.58)

In these equations the product of the vectors are handled by forming diagonal matrices with

the first vectors of the products.

134



Derivatives of the vectors u, v, ω, T and N̄ are approximated by the DRBEM idea [65]

∂u
∂x

=
∂F
∂x

F−1 u ,
∂u
∂y

=
∂F
∂y

F−1 u ,
∂v
∂x

=
∂F
∂x

F−1 v ,
∂v
∂y

=
∂F
∂y

F−1 v

∂ω

∂x
=
∂F
∂x

F−1 ω ,
∂ω

∂y
=
∂F
∂y

F−1 ω ,
∂T
∂x

=
∂F
∂x

F−1 T ,
∂T
∂y

=
∂F
∂y

F−1 T

∂N̄
∂x

=
∂F
∂x

F−1 N̄ ,
∂N̄
∂y

=
∂F
∂y

F−1 N̄ ,
∂2N̄
∂x2 =

∂2F
∂x2 F−1 N̄ ,

∂2N̄
∂y2 =

∂2F
∂y2 F−1 N̄ .

(3.59)

Substituting convection terms back into equation (3.58), and finally rearranging, we end up

with the following linear system of equations for u, v, ψ and p, and systems of ordinary

differential equations for ω, T and N̄

Hu −Guq = m̃

Hv −Gvq = ñ

Hψ −Gψq = b̃

Hp −Gpq = a

−S
∂ ω

∂ t
+ H̃ωω − G̃ωωq = d

−S
∂ T
∂ t

+ H̃tT − G̃tTq = 0

−S
∂ N̄
∂ t

+ H̃nN̄ − G̃nN̄q = d̃

(3.60)

where the matrices S, H̃ω, G̃ω, H̃t , G̃t , H̃n, G̃n, D, and the vectors d, d̃, a, m̃, ñ, b̃ are given
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as

S = (HÛ −GQ̂)F−1 , H̃ω = (1 + K) H − D , G̃ω = (1 + K) G

H̃t =
1
Pr

H − D , G̃t =
1

Pr
G , H̃n =

(
1 +

K
2

)
H − D − S 2K I , G̃n =

(
1 +

K
2

)
G

D = S
(
u
∂F
∂x

F−1 + v
∂ F
∂ y

F−1
)

, d = S
[
K
(∂2F
∂x2 F−1 +

∂2F
∂y2 F−1

)
N̄ − Ra

Pr
∂T
∂x

]

d̃ = −S(K ω) , a = S
[Ra

Pr
∂T
∂y
−

(∂u
∂x

)2 −
(∂v
∂y

)2 − 2
∂v
∂x
∂u
∂y

]

m̃ = −S
∂ω

∂y
, ñ = S

∂ω

∂x
, b̃ = −Sω

and I is the identity matrix.

For the vorticity transport, energy and microrotation equations, the time derivative is dis-

cretized by central difference scheme with relaxation parameters as follows

−S
ωm+1 − ωm−1

2∆t
+ H̃ω((1 − βω)ωm−1 + βωω

m+1) − G̃ω((1 − βωq)ωq
m−1 + βωqωq

m+1) = dm+1

−S
Tm+1 − Tm−1

2∆t
+ H̃t((1 − βt)Tm−1 + βtTm+1) − G̃t((1 − βtq)Tq

m−1 + βtqTq
m+1) = 0

−S
N̄m+1 − N̄m−1

2∆t
+ H̃n((1 − βn)N̄m−1

+ βnN̄m+1) − G̃n((1 − βnq)N̄q
m−1

+ βnq N̄q
m+1) = d̃m+1

.

(3.61)

Equation (3.61) can be arranged such that the right-hand sides are at time (m − 1)∆t and

known, since they involve values which have been specified as initial condition or calculated

previously. And left-hand sides are at time (m + 1)

( −S
2∆t

+ βωH̃ω

)
ωm+1 − βωqG̃ωωq

m+1 =
( −S
2∆t
− (1 − βω)H̃ω

)
ωm−1 + (1 − βωq)G̃ωωq

m−1 + dm+1

( −S
2∆t

+ βt H̃t
)
Tm+1 − βtqG̃tTq

m+1 =
( −S
2∆t
− (1 − βt)H̃t

)
Tm−1 + (1 − βtq)G̃tTq

m−1

( −S
2∆t

+ βnH̃n
)
N̄m+1 − βnqG̃nN̄q

m+1
=

( −S
2∆t
− (1 − βn)H̃n

)
N̄m−1

+ (1 − βnq)G̃nN̄q
m−1

+ d̃m+1
.

(3.62)
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Boundary conditions are inserted to the systems in equation (3.62) by interchanging the neg-

ative of corresponding columns and reordering the solution vector in terms of unknowns u,

v, ψ, p, ω, T, N̄ and their normal derivatives, respectively. Since the boundary conditions

for vorticity are not given explicitly, at this point we first use vorticity definition containing

velocity derivatives. The derivatives of velocity components are computed with the help of

coordinate matrix F which enables us to use all the interior velocity vectors. Therefore, on

each system of equations in (3.62) there are only N + L unknowns. Once all unknowns are

passed to the left-hand side one can write the equation (3.62) as

A1x1 = y1

A2x2 = y2

A3x3 = y3

(3.63)

where x1, x2 and x3 are the vectors of unknown boundary values of ω, ωq, T, Tq and N̄, N̄q,

respectively. The vectors y1, y2 and y3 are the right-hand sides in each equation (3.63) which

contain known values of ω, T and N̄. We also have systems of linear equations for u, v, ψ

and p obtained from equation (3.60). All these linear systems are going to be solved for the

unknown vectors u, v, ψ, p, ω, T and N̄ which are of sizes (N + L) × 1.

The iteration process is as follows

1) Start with the initial approximations for ωm−1, ωm, Tm−1, Tm and N̄m−1, N̄m with m = 1.

2) Solve the stream function and velocity equations to obtainψm+1, um+1 and vm+1 usingωm−1.

3) Solve the pressure equation to obtain pm+1 using the derivative of Tm−1 with respect to x,

and the derivatives of um+1 and vm+1 with respect to x and y.

4) Solve the energy equation to obtain Tm+1 using Tm−1.

5) Approximate the derivatives of stream function ψm+1, temperature Tm+1, and N̄m−1 with

respect to x and y by using DRBEM idea.

6) Obtain the vorticity boundary conditions from the Taylor series expansion of stream func-

tion or from its definition using ψm+1.
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7) Solve the vorticity equation to obtain ωm+1 using ωm−1, and using the derivatives of stream

function ψm+1, the temperature gradient Tm+1 and the microrotation N̄m−1.

8) Solve the microrotation equation to obtain N̄m+1 using N̄m−1, and using vorticity ωm+1.

9) Relax ωm+1 with ωm to obtain new ωm+1.

10) Relax Tm+1 with Tm to obtain new Tm+1.

11) Relax N̄m+1 with N̄m to obtain new N̄m+1.

12) Check the convergence criteria to terminate the procedure using the L∞ norm of ψ, ω, T

and N̄ as
max

i
|ψm+1 − ψm| ≤ ε

max
i
|ωm+1 − ωm| ≤ ε

max
i
|Tm+1 − Tm| ≤ ε

max
i
|N̄m+1 − N̄m| ≤ ε

where i = 1, ...,N + L and maxima is taken over all the nodes inside the fluid flow region, and

ε is a pre-assigned tolerance.

13) Repeat the steps 2 − 12 for m = 2, 3, ... until the convergence criteria in step 12 is met.

In this iterative scheme also the m-th level values are used to compute the matrices H̃ω, H̃t

and H̃n which contain convection term matrix D. Thus, the iteration makes use of both m-th

and (m − 1)-th level values for computing ‘m+1’ iteration.
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3.5.1 Natural Convection Flow of Micropolar Fluids in a Square Enclosure

The natural convection flow in a square cavity filled with a micropolar fluid [9, 10] is con-

sidered as a first example. The horizontal walls are adiabatic, while the vertical walls are

isothermally heated.

The initial and boundary conditions are

ω(x, y, 0) = 0, T (x, y, 0) = 0, N̄(x, y, 0) = 0

x = 0 : u = v = 0 , T = 0.5 , N̄ = 0

x = 1 : u = v = 0 , T = −0.5 , N̄ = 0

y = 0, 1 : u = v = 0 ,
∂ T
∂y

= 0 , N̄ = 0.

The heat transfer coefficient in terms of the local Nusselt number, Nu, and the average Nusselt

number, Nuav at the vertical walls are defined by

Nu = −
(∂T
∂x

)
x=0,1

, Nuav = −
∫ 1

0
Nu dy .

The discretization is performed by using linear boundary elements and the radial basis func-

tion f is taken as f = 1+r +r2. The computations are carried out until steady-state conditions

are reached. The convergence criteria used in the time loop to achieve steady-state conditions

for ω is maxi=1,N+L |ωm+1 − ωm| ≤ 10−7. The same condition is also used for T and N̄. Solu-

tions are obtained by using 68, 88 and 96 boundary elements for Ra = 103, 104 and 105 with

the time increments ∆t = 0.1, 0.01 and 0.003, respectively. The material parameter K is taken

as 0, 0.5, 1 and 2 and Prandtl number is Pr = 0.71.

Figures (3.54), (3.55) and (3.56) represent the increasing effect of the material parameter and

the Rayleigh number on the streamlines, isotherms and vorticity contours for Ra = 103, 104

and 105, respectively. It is observed that an increase in Rayleigh number results in intensified

circulation inside the cavity, and thinner thermal boundary layers for all the variables, stream-

lines, isotherms and vorticity contours near the heated and cooled walls. For Ra = 103 the

vortex at the center for the streamlines was in circular pattern. With the increase in Rayleigh
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Table 3.3: The average Nusselt number Nuav for different values of Ra

K Ra = 103 Ra = 104 Ra = 105

0 1.119 2.223 4.414
0.5 1.051 1.962 3.935
1 1.039 1.782 3.691
2 1.011 1.553 3.336

number the vortex changes its shape to elliptical form. Since the viscous forces are dominat-

ing when Ra = 103, diffusion is more effective than the convection within the cavity. The

isotherms are almost vertical in this case. As the Rayleigh number increases, the isotherms

undergo an inversion at the central region of the cavity. These behaviours are also observed

in [9]. Figures (3.57) and (3.58) show flow vectors and pressure contours for Ra = 103 and

Ra = 105.

Figure (3.59) represent the effect of the material parameter on the velocity components at the

mid-plane of the cavity for Ra = 103 and 104. One can see that an increase in the material

parameter decreases the relative amplitude of the velocity.

The comparison of the effect of varying Ra on the average Nusselt number at the heated wall

for several values of K is given in Table 3.3. The results are in good agreement with the re-

sults given in [9]. One can see that for a fixed value of Ra, increasing material parameter (K)

decreases the heat transfer (average Nusselt number). The total viscosity of the fluid increases

due to the increase in the material parameter, and decreases the heat transfer. Further, the av-

erage Nusselt number of Newtonian fluids are found to be greater than that of non-Newtonian

fluids.

The dual reciprocity boundary element method is used to give the solution of natural convec-

tion flow for fluids with microstructure. In this case an additional microrotation equation is

solved which is of the same type of vorticity equation. It contains vorticity and microrotation

also on the right hand side. But, DRBEM is capable of handling all these terms as nonhomo-

geneties. Solutions are obtained for various values of material parameter which plays the role

of diffusion constant in the microrotation equation.
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Figure 3.54: Streamlines, isotherms and vorticity contours for Ra = 103.
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Figure 3.55: Streamlines, isotherms and vorticity contours for Ra = 104.
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Figure 3.56: Streamlines, isotherms and vorticity contours for Ra = 105.
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Figure 3.57: Flow vectors for Ra = 103 and 105, K = 2
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Figure 3.58: Pressure contours for Ra = 103 and 105, K = 2
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3.5.2 Natural Convection Flow of Micropolar Fluids in a Rectangular Enclosure

The second example considers the natural convective flow of micropolar fluids in a rectangular

enclosure [41] heated from below and cooled from above. The vertical walls are adiabatic.

The initial and boundary conditions are

ω(x, y, 0) = 0 , T (x, y, 0) = 0 , N̄(x, y, 0) = 0

x = 0, A : u = v = 0 ,
∂ T
∂x

= 0 , N̄ =
1
2
∂ v
∂x

y = 0 : u = v = 0 , T = 1 , N̄ = −1
2
∂ u
∂y

y = 1 : u = v = 0 , T = 0 , N̄ = −1
2
∂ u
∂y
.

The local Nusselt number, Nu, and the average Nusselt number, Nuav are defined as

Nu = −
(∂T
∂y

)
y=0,1

, Nuav = − 1
A

∫ A

0
Nu dx .

The problem is solved for Ra = 104 with 96 linear boundary elements. Smaller time increment

is needed with the increase in the aspect ratio A. ∆t = 0.1, 0.01 and 0.001 are used for A = 1, 2

and 4, respectively. The main consideration of solving this problem is to see the effect of

increasing the aspect ratio A on streamlines, isotherms, vorticity and microrotation contours.

Figures (3.60), (3.61) and (3.62) show the contours of streamlines, isotherms, vorticity and

micropolar, respectively, for Ra = 104 at A = 1, 2 and 4, with Pr = 7.0 and K = 0.5. It can be

seen that an increase in the aspect ratio, A, introduces an increase in the number of convective

cells. The isotherms are almost straight near the heated and cooled boundaries and they form

boundary layers more pronounced near the heated wall.

The velocity components at the mid-plane of the cavity are shown in Figure (3.63). It is

observed that an increase in the material parameter, K, results in a decrease of the relative

amplitude of the velocity.
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Figure 3.60: a. Streamlines, b. Isotherms, c. Vorticity contours, d. Microrotation contours for
Ra = 104, A = 1, K = 0.5, Pr = 7.0, ∆t = 0.1
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Figure 3.61: a. Streamlines, b. Isotherms, c. Vorticity contours, d. Microrotation contours for
Ra = 104, A = 2, K = 0.5, Pr = 7.0, ∆t = 0.01
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Figure 3.62: a. Streamlines, b. Isotherms, c. Vorticity contours, d. Microrotation contours for
Ra = 104, A = 4, K = 0.5, Pr = 7.0, ∆t = 0.01

149



Figure 3.63: Vertical and horizontal velocity profiles along the centerline for Ra = 104
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CHAPTER 4

STABILITY ANALYSIS

In Chapter 3, the DRBEM is employed to solve different types of flows. First, we considered

2-D, transient, laminar, viscous flow described by Navier-Stokes equations and solved three

test problems. The physical configurations of the problems are explained and the solutions

are shown in terms of streamlines and vorticity contours. While solving these problems the

time derivative is discretized using forward and central difference methods, and Runge-Kutta

method. Then, the natural and mixed convection flow, and natural convection flow of nanoflu-

ids are considered. The application of the method is explained and several test problems are

solved for each type of flow. Finally, natural convection flow of micropolar fluids is consid-

ered and two test problems are solved. In these computations central difference method with

relaxation parameters is used to discretize the time derivative.

In this Chapter, we investigate first the stability analysis of the general initial value problem
du
dt

= f (t, u), and then extend the investigation for each type of flow considered in Chapter

3. The stability characteristics of this general first order differential equation in time and the

transient fluid flow problems considered in this thesis are going to be similar. The reason for

this is the situation that DRBEM reduces these flow problems to the systems of first order dif-

ferential equations in time. The difference lies in the unknown vector which contains both the

problem solution and its normal derivative. The stability analysis is modified for the system

of initial value problems resulted from the DRBEM application to the fluid flow problems

considered in the thesis. This is one of the original contribution obtained in the thesis to the

solutions of the flow problems considered. The results will be given in terms of tables dis-

cussing the maximum eigenvalues of the coefficient matrices with respect to the variables of

the problems such as time increment and relaxation parameters.
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4.1 Stability Analysis of System of Initial Value Problems

In this section, we will explain the stability analysis for a system of ordinary differential

equations of the form
d u
d t

= f(t, u)

u(t0) = u0

(4.1)

where

u =



u1

u2
...

uN+L



, f(t,u) =



f1(t, u1, .., uN+L)

f2(t, u1, .., uN+L)
...

fN+L(t, u1, .., uN+L)



, u0 =



u1,0

u2,0
...

uN+L,0



.

For the stability analysis of a single step method (e.g Euler Method) applied to system (4.1),

we consider the equation
d u
d t

= A u (4.2)

where A is the Jacobian matrix defined by A =
∂ fi(t, u)
∂ u j

, since the stability characteristics

are the same for equations (4.1) and (4.2).

The matrix A is generally a variable depending on u and t. In order to guess the behaviour of

the solution of equation (4.2) we consider the simple case of the matrix A. If we assume that

A is a constant matrix with distinct eigenvalues, then the analytic solution u(t) of equation

(4.2) satisfying the initial conditions is given by [44]

u(t) = e(A t) u0. (4.3)

Here e(A t) is defined as a matrix function

e(A t) = I + A t +
(A t)2

2!
+ +

(A t)3

3!
+ ...

where I is the identity matrix.

We assume that A is diagonalizable, so that there exsist a matrix P such that

P−1AP = B
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where B is diagonal matrix. This transformation also diagonalizes e(A t) as

P−1e(A t)P = e(B t)

in which B consists of the eigenvalues of the matrix A

B =



λ1

λ2

λN+L



.

The eigenvalues, λ j, are assumed to be distinct or possibly complex with negative real parts.

Thus, the matrix e(B t) is also diagonal with diagonal elements e(λ j t), [44].

Since P−1AP = B, we have A = PBP−1. Thus, equation (4.2) can be written as

d u
d t

= A u = PBP−1 u. (4.4)

Multiplying both sides by P−1 gives

P−1 d u
d t

= P−1A u = P−1P︸︷︷︸
I

BP−1 u. (4.5)

If we let v = P−1 u, then we can express equation (4.5) as

d v
d t

= B v. (4.6)

In a similar way, the analytical solution of equation (4.6) can be written as

v = e(B t) v0

v0 = P−1u0.

(4.7)

When the single step method is applied to the equations (4.2) and (4.6), the results are related

by

uk = Pvk ; k = 0, 1, 2, ...,N + L. (4.8)
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We obtain the numerical values of the function v(t) at the step points tm from the function

(4.3) with the relation

um+1 = E(A∆t)um. (4.9)

The use of the single step method leads to a relation of the form

vm+1 = E(B∆t)vm (4.10)

where the diagonal matrix E(B∆t) and its diagonal elements E j(λ j∆t), j = 1, 2, ...,N + L

approximate the matrix e(B∆t) and its diagonal elements e(λ j∆t), j = 1, 2, ...,N + L, respectively

[44]. These are the growing factor matrices obtained from the Taylor series expansions of

e(B∆t) and e(λ j∆t) by taking p terms for a p-th order single step method. The system (4.10) now

differs from (4.9) as being system of uncoupled discretized equations with growing factors

E j(λ j∆t). Thus, the stability analysis of the single step method applied to the equation (4.1)

can be discussed by applying the method to the scalar equation

du
dt

= λ j u (4.11)

where λ j, j = 1, 2, ...,N + L are the eigenvalues of the matrix A, therefore of the matrix B

from similarity. Thus, the single step method is absolutely stable [44] if

|E j(λ j∆t)| < 1 , j = 1, 2, ...,N + L (4.12)

where the real part of each eigenvalue is negative. This conditions comes from the fact that

equation (4.10) can be written as vm+1 = E(B∆t)mv0 and the eigenvalues of E(B∆t)m are

E j(λ j∆t). Thus, we need to check the condition (4.12) for the eigenvalues of coefficient

matrix A in um+1 = E j(λ j∆t)um.

In the next sections, we will show that the absolute stability condition (the magnitude of the

spectral radius is less than one) holds for our system of equations obtained for each type of

flow. Since this condition is related to the choice of time steps and relaxation parameters, the

stability is maintained with the properly chosen time steps.
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4.2 Stability Analysis of the Navier-Stokes equations

In this section, we consider the numerical stability of DRBEM applied to Navier-Stokes equa-

tions using an eigenvalue decomposition of the system of ordinary differential matrix equa-

tions in time following the reference [69].

Stream function-vorticity formulation of the two-dimensional, laminar, unsteady flow of vis-

cous, incompressible fluid is

∇2ψ = −ω

1
Re
∇2ω =

∂ ω

∂t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
.

(4.13)

Application of DRBEM to the above equations yields the final matrix formulations (equations

(3.11), (3.13))

Hψ −Gψq = b̃

−S
∂ ω

∂ t
+ H1 ω −G1 ωq = 0 .

(4.14)

The vorticity transport equation is rewritten as

∂ ω

∂ t
= H2 ω −G2 ωq (4.15)

where H2 = S−1H1 and G2 = S−1G1.

Now, the system of first order differential equations (4.15) resulting from DRBEM discretiza-

tion is rearranged keeping only the unknown values in one vector. These are normal derivative

values on the boundary and all interior values. The known information is collected in one

vector which does not contribute to the stability analysis. Thus, the stability characteristics of

equation (4.15) and (4.2) are going to be similar.

Discretizing the time derivative of the vorticity in equation (4.14) using forward difference

scheme with relaxation parameters gives

(−S
∆t

+ βω H1
)
ωm+1 − βωq G1 ωq

m+1 +
( S
∆t

+ (1 − βω)H1
)
ωm − (1 − βωq)G1 ωq

m = 0 .

(4.16)
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Similarly, discretizing by central difference scheme gives

( −S
2∆t

+ βω H1
)
ωm+1 − βωq G1 ωq

m+1 +
( S
2∆t

+ (1 − βω)H1
)
ωm−1 − (1 − βωq)G1 ωq

m−1 = 0

(4.17)

in which the matrix H1 is evaluated at the m-th time level as explained in Chapter 2.

When the boundary conditions are imposed to the equations (4.16) or (4.17) the known values

of ω and ωq are transferred from one side to another at both levels [69].

The forward difference discretization (4.16) can be written as

K1 x1
m+1 + L1 x1

m = b1 (4.18)

and the central difference discretization (4.17) gives

K2 x2
m+1 + L2 x2

m−1 = b2 (4.19)

where K1, K2 are the matrices obtained from the shuffling of the rows and columns of the

coefficient matrices in (4.16) and (4.17) corresponding to the unknown values and normal

derivatives at the (m + 1)-th time level. Similarly, L1, L2 are the coefficient matrices in (4.16)

and (4.17) corresponding to the known values and normal derivatives at the m-th and (m− 1)-

th time levels. In this case x1
m+1 and x2

m+1 vectors correspond to the unknown vector, which

can be expressed as

xm+1 =



ωq1

ωq2

...

ωqN

ω1

ω2
...

ωN+L



m+1

.
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In central difference method the matrix L2 also contains x2
m values. The right-hand side

vectors b1 and b2 contain the known values ofω and ωq at time levels ‘m+1’, ‘m’ and ‘m+1’,

‘m-1’, respectively.

We can rewrite equations (4.18) and (4.19) as

K1 x1
m+1 = b1 − L1 x1

m

K2 x2
m+1 = b2 − L2 x2

m−1.

(4.20)

Although the matrices K1, K2, L1 and L2 contain the previous time level values, after some

time levels the entries do not differ much from iteration to iteration. This is computationally

validated. Thus, K1
−1L1 and K2

−1L2 matrices can be assumed as constant matrices, and the

stability characteristics will be similar to the one in the system (4.9) or (4.10).

Thus, the stability analysis of DRBEM yields the conditions [69]

ρ
(
K1
−1 L1

)
< 1

ρ
(
K2
−1 L2

)
< 1

(4.21)

where ρ
(
K1
−1 L1

)
and ρ

(
K2
−1 L2

)
are the largest eigenvalues of the matrices K1

−1 L1 and

K2
−1 L2. The matrices K1

−1 L1 and K2
−1 L2 play the role of growing factors in forward

difference and central difference methods, respectively. The above condition depends on the

choice of ∆t and the relaxation parameters.

In order to show that DRBEM gives stable solution, we investigate the numerical stability of

the lid-driven cavity flow.

4.2.1 Stability Analysis of Lid-Driven Cavity Flow

We investigate the numerical stability of forward and central difference methods applied to

the DRBEM discretized equations for the Navier-Stokes equations with respect to the prob-

lem variables. Table 4.1, 4.2, 4.3 and 4.4 show the maximum eigenvalues of the coefficient

matrices for the lid-driven cavity flow at steady-state.

In Tables 4.1 and 4.2, maximum eigenvalues obtained from forward and central difference
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schemes are presented for several relaxation parameters at Re = 100 by fixing ∆t = 0.8.

One can observe that there is no significant difference between the time integration methods

for small Reynolds number when the same relaxation parameters are used. Both methods

become unstable for the choice of βω = βωq ≤ 0.5. In Table 4.2, maximum eigenvalues are

given for several relaxation parameters again but for Re = 500 with ∆t = 0.5, ε = 10−4

and N = 96 together with the iteration numbers. We observe that, number of iterations to

reach the steady state for forward and central difference methods are nearly the same. The

maximum eigenvalues are increasing for decreasing values of relaxation parameters. Since

we get smaller eigenvalues for the choice of βω = βωq = 0.9, we continue to the rest of the

computations with that value of the relaxation parameters.

Table 4.3 shows the maximum eigenvalues obtained from both methods for different time

increments when Re = 500, N = 96 and convergence criteria is 10−4. We observe that the

optimum time increment for Re = 500 is ∆t = 0.5. When the time increment decreases it

takes large number of iterations to converge to steady-state and the eigenvalues increase. We

see that for forward difference method we can use the range ∆t = 0.08 − 0.5 to solve the

problem but for central difference method the problem can be solved using the range of time

increment 0.05−0.5. It is also disclosed that the eigenvalues for the central difference method

are less than that of the forward difference method for all values of ∆t.

Table 4.4 presents the maximum eigenvalues of the coefficient matrices obtained from the

forward and central difference schemes for Re = 100 with ∆t = 0.8, Re = 400 and 500

with ∆t = 0.5 and Re = 1000 with ∆t = 0.1 when βω = βωq = 0.9. We observed that

maximum eigenvalues of the coefficient matrices obtained from both methods are less than

one for this range of Reynolds number. So both methods are stable. But, we also observe that

the maximum eigenvalues obtained from the central difference scheme are smaller than that

of the forward difference scheme for increasing Re. Although the iteration numbers to reach

the steady-state are nearly the same, obtaining smaller eigenvalues may help us in the solution

of the other problems while increasing Rayleigh number. Thus, we continue with the central

difference scheme in the rest of the computations.

The stability analysis developed in the thesis is based on the assumption that the coefficient

matrices K1
−1L1, K2

−1L2 do not alter much with respect to time. This is checked for the case

Re = 500, ∆t = 0.5, βω = βωq = 0.9 at several time levels. We have found that maximum
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eigenvalues of these matrices at different time levels match with an accuracy of 10−4. Also,

entries of the matrices are the same with an accuracy of 10−2 at time levels t25, t50 and t90.

Hence, for lid-driven cavity problem when the relaxation parameters βω, βωq and the time

increment ∆t are properly taken, we can obtain the stable DRBEM numerical solution of

Navier-Stokes equations.
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Table 4.1: Maximum eigenvalues, ρ, for forward and central difference schemes, Re = 100,
∆t = 0.8, N = 80, ε = 10−6

βω, βωq ρ(forward difference scheme) ρ(central difference scheme)

0.9 0.11111131 0.11111137
0.8 0.25000038 0.25000038
0.7 0.42857256 0.42857223
0.6 0.66666823 0.66666841
0.5 1.00000250 1.00000083

Table 4.2: Maximum eigenvalues, ρ, for forward and central difference schemes, Re = 500,
∆t = 0.5, N = 96, ε = 10−4

Forward Difference Scheme Central Difference Scheme

βω, βωq Iteration Number ρ Iteration Number ρ

0.9 103 0.19442912 107 0.15126532
0.8 104 0.35644817 108 0.30104988
0.7 104 0.56932038 108 0.49563941
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Table 4.3: Maximum eigenvalues, ρ, for forward and central difference schemes, Re = 500,
βω = βωq = 0.9, N = 96, ε = 10−4

Forward Difference Scheme Central Difference Scheme

∆t Iteration Number ρ Iteration Number ρ

0.5 103 0.19442912 107 0.15126532
0.1 333 0.70622009 336 0.34581330

0.08 394 0.97000718 397 0.42084696
0.05 − − 564 0.70623707

Table 4.4: Maximum eigenvalues, ρ, for forward and central difference schemes, βω = βωq =

0.9 and ε = 10−6

Reynolds number ρ(forward difference scheme) ρ(central difference scheme)

100 0.11111131 0.11111137
400 0.11111135 0.11111138
500 0.19443932 0.15125057

1000 0.84439289 0.38676896
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4.3 Stability Analysis of Natural Convection Flow

In this section, the stability analysis is extended to the natural convection flow in which an

additional equation, namely the energy equation is added to the Navier-Stokes equations.

Governing equations for the natural convection flow in terms of stream function, vorticity and

temperature are given as

∇2ψ = −ω

Pr∇2ω =
∂ ω

∂t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

∂ T
∂ x

∇2T =
∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

.

(4.22)

The DRBEM application to vorticity and energy equations results in the following matrix

equations (equation (3.33))

Hψ −Gψq = b̃

−S
∂ ω

∂ t
+ Hω ω − Gω ωq = c̃

−S
∂ T
∂ t

+ Ht T − Gt Tq = 0.

(4.23)

Discretizing the time derivatives in equation (4.23) using central difference scheme yields

equation (3.37)

( −S
2∆t

+ βωHω

)
ωm+1 − βωqGωωq

m+1 +
[ S
2∆t

+ (1 − βω)Hω

]
ωm−1 − (1 − βωq)Gωωq

m−1 = 0

( −S
2∆t

+ βt Ht
)
Tm+1 − βtqGtTq

m+1 +
[ S
2∆t

+ (1 − βt)Ht
]
Tm−1 − (1 − βtq)GtTq

m−1 = 0 .
(4.24)

Now, we insert boundary conditions for vorticity and temperature at both levels. Once the

known values obtained from ‘m-1’ and ‘m+1’ levels are passed to the right-hand side we
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have
Kω xωm+1 + Lω xωm−1 = bω

Kt xt
m+1 + Lt xt

m−1 = bt .

(4.25)

Here, Kω and Kt are the matrices obtained from shuffling of the rows and columns of the

coefficient matrices for vorticity and temperature equations in (4.24) corresponding to the

unknown values and normal derivatives at the (m + 1)-th time level. xωm+1 and xt
m+1 contain

the unknown values of ω, ωq and T, Tq at time level ‘m+1’. The right-hand side vectors bω

and bt contain the known values of ω, ωq and T, Tq at both levels. Lω, Lt matrices contain

xωm and xt
m values, respectively.

We can rewrite equation (4.25) as

Kω xωm+1 = bω − Lω xωm−1

Kt xt
m+1 = bt − Lt xt

m−1 .

(4.26)

For the stability analysis of DRBEM we must have [69]

ρ
(
Kω
−1 Lω

)
< 1

ρ
(
Kt
−1 Lt

)
< 1

(4.27)

where ρ
(
Kω
−1 Lω

)
and ρ

(
Kt
−1 Lt

)
are the largest eigenvalues of the matrices Kω

−1 Lω and

Kt
−1 Lt , respectively.

In order to show that DRBEM results are stable, we analyze the natural convection flow with

uniformly and non-uniformly heated walls.
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4.3.1 Stability Analysis of Natural Convection Flow with Uniformly and Non-Uniformly

Heated Walls

In this section, we investigate the numerical stability of the dual reciprocity boundary el-

ement method applied to natural convection flow in a square cavity with uniformly and

non-uniformly heated walls. The maximum eigenvalues obtained from discretizing the time

derivative using central difference method with relaxation parameters βω = βωq = 0.9 are

given in terms of tables. The problem is solved for Rayleigh numbers Ra = 103, 104, 105 and

106 with ∆t = 0.1, 0.01, 0.001 and 0.0005, and N = 64, 80, 88 and 96, respectively.

Table 4.5 presents the maximum eigenvalues for vorticity and temperature equations for

Rayleigh numbers 103 − 106 in uniformly heated case. We observe that maximum eigen-

values of vorticity and temperature increase with an increase in the Rayleigh number. This

is because the convection terms become dominant as the Rayleigh number increases and the

problem becomes difficult to solve.

Table 4.6 shows the maximum eigenvalues for vorticity and temperature for Rayleigh numbers

103−106 again but for the non-uniformly heated case. One can observe that for non-uniformly

heated case the eigenvalues of the coefficient matrix are greater than that of the uniformly

heated case for Ra = 106. But for the other values of Rayleigh number they are close to each

other.

We observed that although the maximum eigenvalues for vorticity and temperature equations

get closer to 1, they did not exceed one, so the method is stable for both cases. This shows

that the choice of the relaxation parameters and the time step ∆t is proper for obtaining stable

numerical solution of natural convection flow.
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Table 4.5: Maximum eigenvalues for vorticity and temperature equations for several Rayleigh
numbers in uniformly heated case

Rayleigh number Maximum eigenvalue for vorticity Maximum eigenvalue for temperature

103 0.09424227 0.11100831
104 0.11022001 0.11610490
105 0.17091344 0.20551953
106 0.34973970 0.24242658

Table 4.6: Maximum eigenvalues for vorticity and temperature equations for several Rayleigh
numbers in non-uniformly heated case

Rayleigh number Maximum eigenvalue for vorticity Maximum eigenvalue for temperature

103 0.09423192 0.11100852
104 0.11022017 0.11610207
105 0.14091837 0.20528689
106 0.71725893 0.40740191
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4.4 Stability Analysis of Natural Convection Flow of Nanofluids

Governing equations for the natural convection flow of nanofluids are

∇2ψ = −ω

µn f

ρn fα f
∇2ω =

∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
− RaPr

(ρβ)n f

ρn fβ f

∂ T
∂ x

αn f

α f
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(4.28)

DRBEM application to vorticity and energy equations results in the following matrix forms

(equation (3.54))

Hψ −Gψq = b̃

−S
∂ ω

∂ t
+ H̆ω ω − Ğω ωq = c̆

−S
∂ T
∂ t

+ H̆t T − Ğt Tq = 0.

(4.29)

Discretizing time derivatives in equations (4.29) using central difference scheme yields equa-

tion (3.48)

( −S
2∆t

+ βωH̆ω

)
ωm+1 − βωqĞωωq

m+1 +
[ S
2∆t

+ (1 − βω)H̆ω

]
ωm−1 − (1 − βωq)Ğωωq

m−1 = 0

( −S
2∆t

+ βt H̆t
)
Tm+1 − βtqĞtTq

m+1 +
[ S
2∆t

+ (1 − βt)H̆t
]
Tm−1 − (1 − βtq)ĞtTq

m−1 = 0 .
(4.30)

Now, we insert boundary conditions of vorticity and temperature at both levels. Once the

known values obtained from ‘m-1’ and ‘m+1’ levels are passed to the right-hand side we

have
K̆ω x̆ωm+1 + L̆ω x̆ωm−1 = b̆ω

K̆t x̆t
m+1 + L̆t x̆t

m−1 = b̆t .

(4.31)
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Here, x̆ω and x̆t contain the unknown and known values of ω, ωq and T, Tq at time levels

‘m+1’ and ‘m-1’, respectively. The right-hand side vectors bω and bt contain the known

values of ω, ωq and T, Tq at both levels. Lω, Lt contain values from the m-th time levels also.

We can rewrite equation (4.31) as

K̆ω x̆ωm+1 = b̆ω − L̆ω x̆ωm−1

K̆t x̆t
m+1 = b̆t − L̆t x̆t

m−1 .

(4.32)

For the stability of DRBEM applied to natural convection flow of nanofluids, we must have

[69]

ρ
(
K̆ω
−1 L̆ω

)
< 1

ρ
(
K̆t
−1 L̆t

)
< 1

(4.33)

where ρ
(
K̆ω
−1 L̆ω

)
and ρ

(
K̆t
−1 L̆t

)
are the largest eigenvalues of the matrices K̆ω

−1 L̆ω and

K̆t
−1 L̆t , respectively.

We will investigate the numerical stability on the test problem for different values of the

problem variables and present the results in terms of tables.

4.4.1 Stability Analysis of Natural Convection Flow of Nanofluids in a Square Cavity

with a Discrete Heater

Stability analysis is also applied to the DRBEM resulting system of initial value problems

when nanofluid equations (3.50) are used with several volume fraction and heater length. The

choice of the time step and relaxation parameters is also effective in the stability analysis.

Table 4.7 and 4.8 show the maximum eigenvalues for vorticity and temperature equations for

volume fraction ϕ = 0, 0.1, 0.2 and Ra = 103 − 106 with ε = 0.25. Here, we do not observe a

significant change in the maximum eigenvalues for vorticity with a change in volume fraction

as well as Rayleigh number. But for the temperature, maximum eigenvalues tend to decrease

with an increase in the volume fraction. It is also disclosed that an increase in the Rayleigh

number increases the maximum eigenvalue. But for both variables the largest eigenvalue
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do not exceed 1. Relaxation parameters are taken as 0.9 and the time increment is taken as

∆t = 0.1, 0.01, 0.0013 and 0.001 for Ra = 103, 104, 105 and 106, respectively.

In Tables 4.9 and 4.10, the maximum eigenvalues are presented for the heater length ε = 0.5

for vorticity and temperature equations, respectively. We see that there is not a significant

difference in the eigenvalues for the increasing value of the heater length. The eigenvalues for

vorticity and temperature equations are close to each other. Again, the temperature equation

eigenvalues increase with the increase in the Rayleigh number and decrease with the increase

in the volume fraction.

So, we can say that increasing the length of the heat source does not effect much the maximum

eigenvalues for vorticity and temperature equations. But increasing the Rayleigh number in-

creases the maximum eigenvalues. The numerical stability has been shown with the relaxation

parameters βω, βωq , βt, βtq taken to be 0.9, and time increments ∆t given above. These values

are found to be suitable to satisfy the stability condition. The variation of values of maxi-

mum eigenvalues are examined with respect to problem parameters as volume fraction and

Rayleigh number.
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Table 4.7: Maximum eigenvalues for vorticity equation when heater length ε = 0.25

Volume Fraction (ϕ) Ra = 103 Ra = 104 Ra = 105 Ra = 106

∆t = 0.1 ∆t = 0.001 ∆t = 0.0013 ∆t = 0.001

0.0 0.11111143 0.11111136 0.11111135 0.11987413
0.1 0.11111132 0.11111135 0.11111137 0.12652921
0.2 0.11111133 0.11111133 0.11111132 0.13282965

Table 4.8: Maximum eigenvalues for temperature equation when heater length ε = 0.25

Volume Fraction (ϕ) Ra = 103 Ra = 104 Ra = 105 Ra = 106

∆t = 0.1 ∆t = 0.001 ∆t = 0.0013 ∆t = 0.001

0.0 0.11356233 0.14248339 0.47192391 0.86894887
0.1 0.11295121 0.13450205 0.36097764 0.59044134
0.2 0.11251392 0.12886689 0.29201418 0.43951293
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Table 4.9: Maximum eigenvalues for vorticity equation when heater length ε = 0.5

Volume Fraction (ϕ) Ra = 103 Ra = 104 Ra = 105 Ra = 106

∆t = 0.1 ∆t = 0.001 ∆t = 0.0013 ∆t = 0.001

0.0 0.11111129 0.11111130 0.11111140 0.11987325
0.1 0.11111132 0.11111132 0.11111135 0.12652164
0.2 0.11111126 0.11111126 0.11111133 0.13281974

Table 4.10: Maximum eigenvalues for temperature equation when heater length ε = 0.5

Volume Fraction (ϕ) Ra = 103 Ra = 104 Ra = 105 Ra = 106

∆t = 0.1 ∆t = 0.001 ∆t = 0.0013 ∆t = 0.001

0.0 0.11356267 0.14250293 0.36237365 0.89042961
0.1 0.11295103 0.13451257 0.36184936 0.59915453
0.2 0.11251410 0.12886974 0.29243853 0.44336432
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4.5 Stability Analysis of Natural Convection Flow of Micropolar Fluids in a

Square Enclosure

Governing equations for the natural convection flow of micropolar fluids are

∇2u = −∂ ω
∂ y

, ∇2v =
∂ ω

∂ x
, ∇2ψ = −ω

∇2 p =
Ra
Pr

∂ T
∂ y
−

(∂ u
∂ x

)2 −
(∂ v
∂ y

)2 − 2
∂ v
∂ x

∂ u
∂ y

(1 + K)∇2ω =
∂ ω

∂ t
+ u

∂ ω

∂ x
+ v

∂ ω

∂ y
+ K ∇2N̄ − Ra

Pr
∂ T
∂ x

1
Pr
∇2T =

∂ T
∂ t

+ u
∂ T
∂ x

+ v
∂ T
∂ y

(
1 +

K
2

)
∇2N̄ =

∂ N̄
∂ t

+ u
∂ N̄
∂ x

+ v
∂ N̄
∂ y

+ 2K N̄ − K ω.

(4.34)

DRBEM application to vorticity and energy equations results in the following matrix forms

(equation (3.60))

Hu −Guq = m̃ , Hv −Gvq = ñ

Hψ −Gψq = b̃ , Hp −Gpq = a

−S
∂ ω

∂ t
+ H̃ωω − G̃ωωq = d

−S
∂ T
∂ t

+ H̃tT − G̃tTq = 0

−S
∂ N̄
∂ t

+ H̃nN̄ − G̃nN̄q = d̃

(4.35)

Discretizing the time derivatives in equation (4.35) using central difference scheme yields

equation (3.61)
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( −S
2∆t + βωH̃ω

)
ωm+1 − βωqG̃ωωq

m+1 +
(

S
2∆t + (1 − βω)H̃ω

)
ωm−1 − (1 − βωq)G̃ωωq

m−1 = dm+1

( −S
2∆t + βt H̃t

)
Tm+1 − βtqG̃tTq

m+1 +
(

S
2∆t + (1 − βt)H̃t

)
Tm−1 − (1 − βtq)G̃tTq

m−1 = 0

(
−S
2∆t + βnH̃n

)
N̄m+1 − βnqG̃nN̄q

m+1
+

(
S

2∆t + (1 − βn)H̃n
)
N̄m−1 − (1 − βnq )G̃nN̄q

m−1
= d̃m+1

.

(4.36)

Now, we insert boundary conditions of vorticity and temperature at both levels. Once the

known values obtained from ‘m-1’ and ‘m+1’ levels are passed to the right-hand side we

have
K̃ω x̃ωm+1 + L̃ω x̃ωm−1 = b̃ω

K̃t x̃t
m+1 + L̃t x̃t

m−1 = b̃t .

(4.37)

Here, x̃ω and x̃t contain the unknown and known values of ω, ωq and T, Tq at time levels

‘m+1’ and ‘m-1’, respectively. The right-hand side vectors b̃ω and b̃t contain the known

values of ω, ωq and T, Tq at both levels.

We can rewrite equation (4.37) as

K̃ω x̃ωm+1 = b̃ω − L̃ω x̃ωm−1

K̃t x̃t
m+1 = b̃t − L̃t x̃t

m−1 .

(4.38)

For the numerical stability of DRBEM we must have [69]

ρ
(
K̃ω
−1 L̃ω

)
< 1

ρ
(
K̃t
−1 L̃t

)
< 1

(4.39)

where ρ
(
K̃ω
−1 L̃ω

)
and ρ

(
K̃t
−1 L̃t

)
are the largest eigenvalues of the matrices K̃ω

−1 L̃ω and

K̃t
−1 L̃t , respectively.

We employed stability analysis to natural convection flow of micropolar fluids in a square

enclosure. Maximum eigenvalues of the coefficient matrices of vorticity, temperature and mi-

crorotation DRBEM equations are given for different values of Rayleigh number and material

parameter.
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Table 4.11: Maximum eigenvalues and iteration numbers for vorticity, temperature and mi-
crorotation equations, for material parameter K = 2

Rayleigh number Iteration number ρ(vorticity) ρ(temperature) ρ(microrotation)

103 11 0.11104525 0.11097175 0.11101242
104 102 0.10950394 0.10548935 0.10870253
105 123 0.11202013 0.09577748 0.11247544
106 1270 0.12985020 0.07327320 0.13945037

Table 4.11 shows the maximum eigenvalues and iteration numbers for vorticity, temperature

and microrotation equations for Ra = 103 − 106. We observe that it takes more iterations to

converge to steady state for increasing values of Rayleigh number. The maximum eigenvalues

are close to each other for increasing Ra. They are all less than unity. So the method is also

stable for solving natural convection flow of micropolar fluids when relaxation parameters

is 0.9 for vorticity, temperature and microrotation equations, and time increments ∆t = 0.1,

0.01, 0.003 and 0.001 for Ra = 103, 104, 105 and 106, respectively.

While investigating numerical stability of the flows considered we did not find the region

of absolute stability but find the optimum values of the problem variables required in the

stability condition by trial and error. In the lid-driven cavity problem the numerical stability

is investigated in details for different time integration methods, time increments and relaxation

parameters. We observe that the best results are obtained for the central difference method

with βω = βωq = 0.9. ∆t differs with respect to the values of Reynolds number but we showed

that we do not need to use small time increments. For the natural convection problems we

investigate the numerical stability for several Rayleigh numbers and some other variables

that are included in the problems. We need to use small time increments with an increase in

the Rayleigh number in order to obtain the maximum eigenvalues less than one. When the

Rayleigh number increases, the convection terms become dominant and the problem is then

difficult to solve.

For all the problems that are considered in Chapter 3, we can say that the DRBEM with

central difference time integration scheme is stable when ∆t is taken between 0.0005 − 0.8

and all relaxation parameters are taken as 0.9. All other problem parameters may vary in their

physical ranges.
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CHAPTER 5

CONCLUSION

This thesis is devoted to the dual reciprocity boundary element method solution of fluid flow

problems. The flows considered are two-dimensional, transient, laminar and the fluid is taken

as incompressible and viscous. The Navier-Stokes equations are used for modeling the con-

sidered fluid flow. Then, the energy equation is added to the Navier-Stokes equations, and

natural and mixed convection flows are considered in enclosures as well as natural convec-

tion flow of nanofluids. The DRBEM is used to discretize the spatial derivatives. To do so,

fundamental solution of Laplace equation is used. The nonlinearity and the first order time

derivative are taken as nonhomogeneity. We prefer DRBEM due to its flexibility of using

fundamental solution of Laplace equation. The right-hand side function is approximated by a

series in terms of radial basis functions. These radial basis functions are usually polynomials

using the distance between the source and fixed points as independent variable. The degree

of this polynomial is taken as linear and quadratic throughout the computations.

The DRBEM application to the space derivatives gives rise to a system of first order differen-

tial equations in time. To solve these system of ODEs, three different time integration methods

are used; forward and central difference methods and Runge-Kutta method. The comparison

among the methods is made in the solution of Navier-Stokes equations in terms of accuracy,

the size of time step and number of iterations to reach the steady-state. Forward and central

difference methods are used with a relaxation procedure, which is a linear approximation in

time for the variation of the solution. Application of the time integration schemes results with

a system of linear algebraic equations, which are solved directly using Gauss elimination for

the problem unknown and its normal derivative values at the boundary nodes.

The application of DRBEM is given on different types of flows. First, we consider the Navier-
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Stokes equations and solved three problems. We test the efficiency of the method on a problem

where the exact solution is available. Then, the comparison of time integration methods

is made on lid-driven cavity problem. It is disclosed that using fourth-order Runge-Kutta

method needs smaller size of time step, and more number of iterations to reach steady-state.

The use of relaxation parameters in forward and central difference methods enables us to use

considerably large time steps. Thus, we prefer using these methods instead of Runge-Kutta

method. Then, we compare forward and central difference methods in terms of maximum

eigenvalues of the coefficient matrices. We see that both methods are stable but prefer to

use central difference method since maximum eigenvalues obtained are smaller than that of

forward difference method. The choice of the relaxation parameters also effects the efficiency

of the method. From the numerical stability we obtained the optimum values for the relaxation

parameters as 0.9.

The application of the method is extended to solve the natural and mixed convection flows.

Four test problems considering natural convection flow with different geometric configura-

tions are solved. It is observed for all problems that as the Rayleigh number increases the

heat transfer rate increases, and boundary layers occur near the walls of the enclosures. In

mixed convection problems, the effect of the coefficient of the temperature gradient (Gr/Re2)

on the fluid flow is discussed. It is observed that for small values of Gr/Re2 (< 1) the forced

convection is dominant and for Gr/Re2 > 1, the natural convection is dominant. The mixed

convection regime is Gr/Re2 = 1.

In order to enhance the heat transfer rates, we consider natural convection flow of nanoflu-

ids in which nanoparticles are suspended in the base fluid. The base fluid is generally water

and ethylene glycol and common nanoparticles are aluminum oxide, copper and copper ox-

ide. Adding these nanoparticles in the base fluid enhances heat transfer rate about %40. The

method is tested on aluminum oxide-water and copper-water based nanofluids. Simulations

are performed to investigate the effects of the Rayleigh number, the volume fraction and the

heater length on the momentum and heat transfer. As the Rayleigh number increases bound-

ary layer formation starts and the average Nusselt number increases. However, an increase in

the heater length reduces the average Nusselt number. On the other hand, increasing volume

fraction causes a significant increase in the average Nusselt number. It is also observed that

copper-water based nanofluid has greater heat transfer rate than aluminum oxide-water based

nanofluid. The DRBEM enables one to solve these equations by using the fundamental solu-
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tion of Laplace operator only and by taking considerable small number of boundary elements.

Thus, the computational work is much smaller than the other domain discretization methods.

Also, central difference method with relaxation parameters for the time discretization does

not need very small time increment.

Finally, the Navier-Stokes equations which describe the flow of Newtonian fluids is general-

ized by using the micropolar fluid theory which is related to the non-Newtonian fluids. The

Navier-Stokes equations model is inadequate for fluids with microstructure such as polymeric

suspensions, blood and liquid crystals. In order to describe the behaviour of such fluids, we

need a model that takes into account geometry and movement of these microstructures. In

micropolar fluid theory, a new equation, namely the microrotation equation is added to the

Navier-Stokes equations. This equation describes the rotation of microstructures. We ap-

ply the DRBEM for the solution of natural convection flow of micropolar fluids. Two test

problems are solved. It is observed that increasing Rayleigh number increases average Nus-

selt number. It is also disclosed that increasing the material parameter decreases the average

Nusselt number.
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[7] Aydın O., Ünal A., Ayhan T., A numerical study on buoyancy-driven flow in an inclined
square enclosure heated and cooled on adjacent walls, Numerical Heat Transfer, Part
A, 36, 585-599, 1999.

[8] Aydın O., Aiding and opposing mechanisms of mixed convection in a shear-and
buoyancy-driven cavity, Int. Comm. Heat Mass Transfer, 26(7), 1019-1028, 1999.

[9] Aydın O., Pop I., Natural convection in a differentially heated enclosure filled with a
micropolar fluid, Int. J. Thermal Sci., 46, 963-969, 2007.

[10] Aydın O., Pop I., Natural convection from a discrete heater in enclosures filled with a
micropolar fluid, Int. J. Engng. Sci., 43, 1409-1418, 2005.

[11] Banerjee P.K., Butterfield R., Boundary element methods in engineering science,
McGraw-Hill, London, 1981.

[12] Barletta A., Nobile E., Pinto F., Rossi di Schio E., Zanchini E., Natural convection in a
2D-cavity with vertical isothermal walls: Cross validation of two numerical solutions,
Int. J. Thermal Sci., 45, 917-922, 2006.

[13] Basak T., Roy S., Thirumalesha Ch., Finite element analysis of natural convection
in a triangular enclosure: Effects of various thermal boundary conditions, Chemical
Engng. Sci., 62, 2623-2640, 2007.

[14] Beer G., Watson J.O., Introduction to Finite and Boundary Element methods for Engi-
neers, Wiley, Chichester, New York, Brisbane, Toronto, Singapore, 1992.

[15] Beer G., Programming the Boundary Element Method, Wiley, 2001.

177



[16] Bejan A., Convection Heat Transfer, John Wiley & Sons, 1984.

[17] Bennet C.O., Myers J.E., Momentum, Heat, and Mass Transfer, Second Edition,
McGraw-Hill, Inc., 1962,1974.

[18] Bercovier M., Engelman M., A Finite Element for the Numerical Solution of Viscous
Incompressible Flows, Journal of Computational Physics, 30, 181-201, 1979.

[19] Beskos D.E., Boundary element methods in mechanics, Elsevir Science Publishers
B.V., Patras, 1987.

[20] Brebbia C.A., Boundary element methods, Springer Verlag, Berlin, 1981.

[21] Brebbia C.A., The boundary element method for engineers, Pentech Press, London,
1978.

[22] Brebbia C.A., Telles J.C.F., Wrobel L.C., Boundary element techniques, Springer-
Verlag, Berlin, 1984.

[23] Brebbia C.A., Butterfield R., Formal equivalence of direct and indirect boundary ele-
ment methods, Applied Mathematical Modelling, 2, 132-134, 1978

[24] Brinkman H.C, The viscosity of concentrated suspensions and solutions, J. Chem.
Phys., 20(4), 571-581, 1952.

[25] Butcher J.C., Numerical Methods for ordinary Differential Equations, Wiley, 2003.

[26] Chadwick M.L., Webb B.W., Heaton H.S., Natural convection from two-dimensional
discrete heat sources in a rectangular enclosure, Int. J. Heat Mass Transfer, 34(7),
1679-1693, 1991.

[27] Chen S., Tölke J., Krafczyk M., A new method for the numerical solution of vorticity-
stream function formulations, Comput. Methods Appl. Engrn., 198, 367-376, 2008.

[28] Choi C.Y., Balaras E., A dual reciprocity boundary element formulation using the frac-
tional step method for the incompressible Navier-Stokes equations, Engng. Analysis
with Boundary Elements, 33, 741-749, 2009.

[29] De Vahl Davis G., Natural convection of air in a square cavity: A benchmark numerical
solution, Int. J. Numer. Methods Fluids, 3, 249-264, 1983.

[30] De Vahl Davis G., Jones P.,Natural convection in a square cavity: A comparison exer-
cise, Int. J. Numer. Methods Fluids, 3, 27-248, 1983.

[31] Eringen A.C., Theory of micropolar fluids, J. Math. Mech., 16(1), 1-16, 1966.

[32] Erturk E., Discussions on driven cavity flow, Int. J. Numer. Meth. Fluids, 60, 275-294,
2009.

[33] Ganzarolli M.M., Milanez L.F., Natural convection in rectangular enclosures heated
from below and symmetrically cooled from the sides, Int. J. Heat Mass Transfer, 38(6),
1063-1073, 1995.

[34] Gao X.W., Davies T.G., Boundary Element Programming in Mechanics, Cambridge
University Press, Cambridge, 2001.

178



[35] Ghia U., Ghia K.N., Shin C.T., High-Re solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method, Journal of Computational Physics,
48(3), 387-411, 1982.

[36] Griebel M., Dornseifer T., Neunhoeffer T., Numerical simulation in fluid dynamics,
SIAM, 1998.

[37] Guram G.S., Smith A.C., Stagnation flows of micropolar fluids with strong and weak
interactions, Comp. & Maths. with Appls., 6, 213-233, 1980.

[38] Hall W.S., The Boundary Element Method, Kluwer, Dordrecht, 1994.

[39] Hamilton R.L., Crosser O.K., Thermal Conductivity of heterogeneous two-component
systems, Ind. Eng. Chem. Fundam., 1, 182-191, 1962.

[40] Ho C.J., Chen M.W., Li Z.W., Numerical simulation of natural convection of nanofluid
in a square enclosure: Effects due to uncertainties of viscosity and thermal conductiv-
ity, Int. J. Heat Mass Trans., 51, 4506-4516, 2008.

[41] Hsu T.H., Chen C.K., Natural convection of micropolar fluids in a rectangular enclo-
sure, Int. J. Engng. Sci., 34(4), 407-415, 1996.

[42] Hsu T.H., Hsu P.T., Tsai S.Y., Natural convection flow of micropolar fluids in an enclo-
sure with heat sources, Int J Heat Mass Transfer, 40(17), 4239-4249, 1997.

[43] Incropera F.P., De Witt D.P., Fundamentals of Heat and Mass Transfer, (6th ed.), Wiley,
2007.

[44] Jain M.K., Numerical Solution of Differential Equations, 2nd ed.,Wiley, Eastern Lmd.,
1984.

[45] Jena S.K., Bhattacharyya S.P., The effect of microstructure on the thermal convection
in a rectangular box heated from below, Int. J. Engn. Sci., 24(1), 69-78, 1986.

[46] Jou R.Y., Tzeng S.C., Numerical research of nature convective heat transfer enhance-
ment filled with nanofluids in rectangular enclosures, Int. Commun. Heat Mass Trans-
fer, 33, 727-736, 2006.

[47] Kakac S., Pramuanjaroenkij, A., Review of convective heat transfer enhancement with
nanofluids, Int. J. of Heat and Mass Transfer, 52, 3187-3196, 2009.

[48] Khanafer K., Vafai K., Lightstone M., Bouyancy-driven heat transfer enhancement in
a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 639-
653, 2003.

[49] Kumari M., Nath G., Unsteady incompressible boundary layer flow of a micropolar
fluid at a stagnation point, Int. J. Engng. Sci., 22(6), 755-768, 1984.

[50] Kuznik F., Vareilles J., Rusaouen G., Krauss G., A double-population lattice Boltzmann
method with non-uniform mesh for the simulation of natural convection in a square
cavity, Int. J. Heat and Fluid Flow, 28(5), 862-870, 2007.

[51] Lo D.C., Young D.L., Tsai C.C., High resolution of 2D natural convection in a cavity
by the DQ method, JCAM, 203, 219-236, 2007.

179



[52] Lukaszewicz G., Micropolar fluids: Theory and Applications, 1999.

[53] Mansour M.L., Hamed A., Implicit solution of the incompressible Navier-Stokes equa-
tions on a non-staggered grid , Journal of Comput. Physics, 86(1), 147-167, 1990.

[54] Maxwell-Garnett J.C., Colours in metal glasses and in metallic films, Philos. Trans.
Roy. Soc. of London Series A, 203, 385-420, 1904.

[55] Moshkin N.P., Numerical model to study natural convection in a rectangular enclosure
filled with two immiscible fluids, Int. J. Heat and Fluid Flow, 23, 373-379, 2002.

[56] Muralidhar K., Sundarajan T., Computational fluid flow and heat transfer, 2nd ed.,
Alpha Science International Ltd., Oxford, UK, 2003.

[57] Nardini D., Brebbia C.A., Dynamic analysis in a solid mechanics by an alternative
boundary element procedure, Int. J. of Solid Dyn. and Earthquake Eng., 2, 228-233,
1983.

[58] Nardini D., Brebbia C.A., A new approach to free vibration analysis using boundary el-
ements, in Boundary Element Methods in Engineering, Comp. Mech. Pub., Southamp-
ton and Springer-Verlag, Berlin and New York, 1982.

[59] Nardini D., Brebbia C.A., Boundary integral formulation of mass matrices for dynamic
analysis, in topics in Boundary Element Research, Springer-Verlag, Berlin and New
York, 2, 1985.

[60] Onishi K., Kuroki T., Tanaka M., An application of boundary element method to in-
compressible laminar viscous flows, Engng. Analysis, 1(3), 122-127, 1984.
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