
GENERATING FUNCTIONS AND THEIR APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BEGÜL BİLGİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

AUGUST 2010

Approval of the thesis:

GENERATING FUNCTIONS AND THEIR APPLICATIONS

submitted by BEGÜL BİLGİN in partial fulfillment of the requirements for the degree of
Master of Science in Department of Cryptography, Middle East Technical University
by,

Prof. Dr. Ersan Akyıldız
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Department of Mathematics

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Dr. Muhiddin Uğuz
Department of Mathematics, METU

Dr. Nurdan Saran
Department of Computer Engineering, Çankaya University

Assist. Prof. Dr. Zülfükar Saygı
Department of Mathematics, TOBB ETU

Date:

∗

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: BEGÜL BİLGİN

Signature :

iii

ABSTRACT

GENERATING FUNCTIONS AND THEIR APPLICATIONS

Bilgin, Begül

M.Sc., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

August 2010, 54 pages

Generating functions are important tools that are used in many areas of mathematics and

especially statistics. Besides analyzing the general structure of sequences and their asymptotic

behavior; these functions, which can be roughly thought as the transformation of sequences

into functions, are also used efficiently to solve combinatorial problems.

In this thesis, the effects of the transformations of generating functions on their corresponding

sequences and the effects of the change in sequences on the generating functions are exam-

ined. With these knowledge, the generating functions for the resulting sequence of some

combinatorial problems such as number of partitions, number of involutions, Fibonacci num-

bers and Catalan numbers are found. Moreover, some mathematical identities are proved by

using generating functions.

The sequences are the bases of especially symmetric key cryptosystems in cryptography. It is

seen that by using generating functions, linear complexities and periods of sequences gener-

ated by constant coefficient linear homogeneous recursions, which are used in linear feedback

shift register (LFSR) based stream ciphers, can be calculated. Hence studying generating

functions leads to have a better understanding in them. Therefore, besides combinatorial

iv

problems, such recursions are also examined and the results are used to observe the linear

complexity and the period of LFSR’s combined in different ways to generate “better” system

of stream cipher.

Keywords: generating functions, linear complexity, period, stream cipher, combinatoric, LFSR

v

ÖZ

ÜRETEÇ FONKSIYONLAR VE UYGULAMALARI

Bilgin, Begül

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Assoc. Prof. Dr.Ali Doğanaksoy

Ağustos 2010, 54 sayfa

Üreteç fonksiyonlar matematiğin ve bilhassa istatistiğin bir çok sahasında kullanılan önemli

araçlardır. Kabaca, dizilerin fonksiyonlar cinsinden ifadesi olarak düşünebileceğimiz bu fonk-

siyonlar, dizilerin genel yapılarının ve asimtotik davranışlarının incelenmesinin yanısıra kom-

binatorik problemlerin çözümünde de etkinlikle kullanılan önemli araçlardır.

Bu tezde, üreteç fonksiyonlara uygulanan dönüşümlerin, karşı gelen diziler üstündeki etkileri

ve dizilerdeki değişimlerin de üreteç fonksiyonlar üzerindeki etkileri incelenmiştir. Bu bil-

giler ışığında tam sayıların parçalanış sayıları, involusyon sayıları, Fibonacci sayıları ve Cata-

lan sayılarının bulunması gibi bazı temel kombinatorik problemlerin sonucu olan dizilerin

üreteç fonksiyonları elde edilmiştir. Bunun yanısıra, bazı matematiksel özellikler üreteç

fonksiyonlar kullanılarak ispatlanmıştır.

Diziler, kriptografi alanında, özellikle simetrik anahtarlı kriptosistemlerin yapı taşlarıdır. Doğ-

rusal geribeslemeli ötemeli yazdırgaç (DGÖY) tabanlı akan şifrelerin teorik altyapısını teşkil

eden sabit katsayılı doğrusal homojen indirgeme bağıntıları ile tanımlanan dizilerin doğrusal

karmaşıklığı ve periyodlarının, üreteç fonksiyonlar kullanılarak hesaplanabileceği görülmüştür.

vi

Üreteç fonksiyonları incelemek bu konuların daha iyi anlaşılmasını sağlamaktadır. Bu ne-

denle, kombinatorik problemlerin yanısıra, bu tip bağıntılar incelenmiş ve elde edilen sonuçlar

“daha iyi” akan şifreler tasarlamak amacıyla birden çok DGÖY’nin birleştirilmesiyle oluşan

sistemlerin incelenmesinde kullanılmıştır.

Anahtar Kelimeler: üreteç fonksiyonlar, doğrusal karmaşıklık, periyod, akan şifre, kombina-

torik, DGÖY

vii

To the two most important men in my life

viii

ACKNOWLEDGMENTS

I owe my deepest gratitude to my supervisor, Assoc. Prof. Dr. Ali Doğanaksoy, for his

guidance not only throughout this thesis but also in my whole study in METU. He taught too

much about life and mathematics with his jokes and anecdotes.

I am very grateful to Prof. Turgut Önsiper who encouraged me to study cryptography.

I would like to thank my family, my uncle and my grandmother for always supporting and

trusting in me.

It is a pleasure to thank to my friends in this department who made the study so rich and fun.

Last but not least, very special thanks to Gökhan Öztürk for believing in me and sharing his

love with me.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

2 OPERATIONS . 3

2.1 Operations on the Sequences . 4

2.1.1 Scalar Multiplication . 4

2.1.2 Shifting and Truncation 4

2.2 Operations on the Functions . 5

2.2.1 Changing the Variable 5

2.2.2 Differentiation and Integration 6

2.2.3 Summation . 7

2.2.4 Convolution . 7

2.2.5 Composition . 8

2.3 Blending . 8

2.4 Decimation . 9

3 Combinatorial Problems . 12

3.1 Distributing n Candies to r Children 12

3.2 Fibonacci’s Rabbits . 14

3.3 Regions in the Plane . 15

x

3.4 Partitions . 16

3.5 Permutations . 17

3.6 Functions . 19

3.7 Parentheses and Catalan Numbers 20

3.8 Derangements . 22

3.9 Involutions . 23

3.10 Graphs . 24

3.11 Radioactive Particles . 26

4 Constant Coefficient Linear Homogeneous Recursions 27

4.1 General Term . 30

4.2 Linear Complexity . 34

4.3 Periodicity . 40

5 Linear Feedback Shift Registers . 42

5.1 Nonlinear Combiner . 47

5.1.1 Geffe Generator . 48

5.1.2 Majority Generator . 48

5.2 Nonlinear Filter . 49

5.3 Some Other Possible Generators 49

5.4 Clock Control Generators . 52

5.4.1 Shrinking generator . 52

5.4.2 Alternating Step Generator 53

REFERENCES . 54

xi

LIST OF FIGURES

FIGURES

Figure 5.1 Diagram of a feedback shift register . 42

Figure 5.2 LFSR with < 7, (D5 ⊕ D3 ⊕ D ⊕ 1) > . 44

Figure 5.3 A non-linear combiner . 47

Figure 5.4 A non-linear Filter . 49

Figure 5.5 Combination of two LFSRs without filtering 50

Figure 5.6 Combination of two LFSRs with filtering 51

Figure 5.7 Combination of three LFSRs without filtering 51

Figure 5.8 Combination of three LFSRs with filtering 52

xii

CHAPTER 1

INTRODUCTION

Generating functions are used in a wide area from statistics to mechanics, from combinatorics

to cryptology, especially in topics involving sequences. They help us

• to find the explicit formula for the general term of a sequence,

• to find recurrence relations,

• to compute averages and some other statistical properties,

• to find asymptotic formulas,

• to prove some mathematical identities

and more. They can roughly be thought as the transformations of sequences into functions.

To understand generating functions and how they are used better, we consider the problem of

determining the number of ways to pay a fixed amount of money, say 6 TL, in terms of 2 and

3 TL coins. This counting problem can be solved easily by hand for small payments and less

variety of coins, actually for 6 TL there exists two different ways. However it gets harder to

count as the money to be paid and the variety of coins increases. This is why there is a need

for a generic method rather then counting by hand.

Let us represent paying a TL as xa and b TL as xb. This representation may seem unusual but

this is not without purpose. Actually paying a + b TL can be symbolized as xa+b = xaxb and

na TL as xaxaxa . . . xa = (xa)n = xna which is convenient for our choice of representation.

Moreover paying no money can be represented as (xa)0 = 1 without any confusion. With this

knowledge, we represent paying one 3 TL coin as x3 and one 2 TL coin as x2 to solve the

1

problem. Then the representation of paying a total of 6 TL can be seen in different ways like

paying three 2 TL coins
(
x2

)3
or paying two 3 TL coins

(
x3

)2
both of which are equal to x6.

Recall that we wish to find a general solution, so let us consider all possible payments that

can be done with only 2 TL coins, namely 0, 2, 4, 6, 8, 10, . . . TL. This can be represented as

(
x2

)0
+

(
x2

)1
+

(
x2

)2
+

(
x2

)3
+ · · · = 1 + x2 + x4 + x6 + x8 + · · · =

∞∑
n=0

x2n . (1.1)

In a similar way representation of all possible payments with only 3 TL coins is

(
x3

)0
+

(
x3

)1
+

(
x3

)2
+

(
x3

)3
+ · · · = 1 + x3 + x6 + x9 + x12 + · · · =

∞∑
n=0

x3n . (1.2)

When we multiply these two representations, the resulting function

1 + x2 + x3 + x4 + x5 + 2x6 + x7 + 2x8 + 2x9 + · · · (1.3)

indicates all possible ways of payments using 2 TL and 3 TL coins. Moreover, by looking

at the coefficient of x6 in this representation we again see that paying 6 TL can be done in

two different ways. We also observe that the element x1 does not exist in the product; as

expected, since 1 TL can not be paid using 2 or 3 TL coins. To generalize, the coefficient of

xn say an represents the number of ways of all possible payments of n TL. The corresponding

representation of the sequence an which is
∞∑

n=0

anxn is called the generating function of the

sequence.

For the sake of simplicity, the above functions are sometimes thought as power series and

displayed in their corresponding closed forms. The variable x is thought to be in the radius

of converge of the power series which allows to perform operations in their closed form. So

one can write the generating function (1.1) as
1

1 − x2 and the function (1.2) as
1

1 − x3 so the

product (1.3) of these functions is
1(

1 − x2) (1 − x3) =
1

1 − x2 − x3 + x6 .

2

CHAPTER 2

OPERATIONS

Definition 2.0.1 The ordinary generating function of a sequence {an} = {a0, a1, a2, . . .} is

the formal power series

A(x) = a0 + a1x + a2x2 + · · · =
∑

aixi .

The above definition is not the only way to form a generating function. Actually another

formation will be studied in section 3.5, however the ordinary generating functions are the

most commonly used type. Hence, from this point forward they will be mentioned simply as

generating functions.

Note that, whether the sequence is finite or infinite, the formal power series in Definition 2.0.1

can be formed.

Example 2.0.1 The finite sequence S n =

{(
n
0

)
,

(
n
1

)
,

(
n
2

)
, · · · ,

(
n
n

)}
has the generating func-

tion

g(x) =

(
n
0

)
+

(
n
1

)
x +

(
n
2

)
x2 + · · · +

(
n
n

)
xn = (1 + x)n .

It is seen from the closed form of the sequence that the problem of finding the generating

function of S n can be thought as deciding whether to take an element or not which refers to

x1 or x0 respectively from a set of n elements.

Example 2.0.2 The infinite sequence {1}∞n=0 = {1, 1, 1, 1, . . .} has the generating function

g (x) = 1 + x + x2 + x3 + · · · =
1

1 − x
.

3

It is not straight forward to obtain the closed form of the generating function of a sequence

immediately, however it may be useful in some applications. To find the closed form of the

generating function of a sequence, one may manipulate some sequences, closed forms of

whose generating functions are already known, using certain operations until he reaches the

closed form of the desired function. In a similar way, one can also manipulate the generating

functions of sequences, observing how these operations affect sequences until he reaches the

sequence he wanted. We now examine some common operations.

2.1 Operations on the Sequences

2.1.1 Scalar Multiplication

In this first operation, scalar multiplication, every element of the sequence is multiplied by a

scalar. Assume that {an} with generating function A (x) =

∞∑
i=0

aixi is taken and every term is

multiplied with λ. Then the generating function of {λan} becomes

∞∑
i=0

λaixi = λ

∞∑
i=0

aixi

= λA (x) .

2.1.2 Shifting and Truncation

Shifting (right) a sequence by t terms means to pad the sequence with t 0’s from left, without

loosing any terms. To be more clear, after such a shifting, the sequence {a0, a1, a2, . . .} takes

the form {0, 0, 0, . . . 0︸ ︷︷ ︸
t−terms

, a0, a1, a2, . . .} whose generating function is

Â(x) = 0 + 0x + 0x2 + · · · + 0xt−1 + a0xt + a1xt+1 + · · ·

= xt
(
a0 + a1x + a2x2 + · · ·

)
= xtA (x) .

However, in truncation (shifting left), the first t terms are lost. To be more explicit, the se-

4

quence {a0, a1, a2, . . .} becomes {at, at+1, at+2, . . .} with the generating function

Ã(x) = at + at+1x + at+2x2 + · · ·

=
A (x) −

(
a0 + a1x + · · · + at−1xt−1

)
xt .

2.2 Operations on the Functions

2.2.1 Changing the Variable

Obviously, there are countless ways of changing the variable of a generating function. We

find two specific ways particularly important and mention them here.

One of the methods is to multiply the original variable x with a constant, say λ and to get

another generating function with the variable λx which corresponds to another sequence.

Example 2.2.1 Take the generating function A (x) which represents {an} and the constant

λ = −1. After changing the variable by constant multiplication, the new generating function

turns out to be

A (−x) = a0 − a1x + a2x2 − a3x3 + · · ·

which corresponds to the sequence {(−1)n an} .

To generalize, the function A(x) becomes A (λx) = a0 +a1λx+a2λ
2x2 + · · · with the sequence{

a0, a1λ, a2λ
2, . . .

}
= {λnan} after changing the variable by constant multiplication.

The second change is done by taking a constant power of the variable. Again taking λ as the

exponent, the function is obtained with the change of variable x 7→ xλ .

Example 2.2.2 Take the constant λ = 2 for a simple example and the function A (x). When

the constant power of the variable is taken, the generating function will yield to

A
(
x2

)
= a0 + a1x2 + a2x4 + a3x6 + · · · .

The new function belongs to the sequence {a0, 0, a1, 0, a2, 0, a3, 0, . . .} since odd degreed terms

are missing.

5

In a similar way, when λ = 3, the function becomes

A
(
x3

)
= a0 + a1x3 + a2x6 + a3x9 + · · ·

which is the generating function of the sequence {a0, 0, 0, a1, 0, 0, a2, 0, 0, a3, 0, 0, . . .}.

It is seen that when the λth (λ ∈ Z+) power of the variable is taken, λ − 1 zeros arises in

between each pair of terms of the sequence.

2.2.2 Differentiation and Integration

As mentioned in section (1), one can take the corresponding power series representation of a

generating function assuming the variable in the radius of convergence. This means that one

can apply differentiation and integration operations over generating functions without any

problem as defined below.

Dx (A (x)) = Dx
(
a0 + a1x + a2x2 + a3x3 + · · ·

)
= a1 + 2a2x + 3a3x2 + 4a4x3 + · · · . (2.1)

∫ x

0
A (t) dt =

∫ x

0

(
a0 + a1t + a2t2 + a3t3 + · · ·

)
dt

= a0x +
a1

2
x2 +

a2

3
x3 +

a3

4
x4 + · · · . (2.2)

The meaning of these operations may be understood better with the following example.

Example 2.2.3 Consider the generating function g (x) =
1

1 − x
which represents the se-

quence {1, 1, 1, . . .} . Then

Dx (g (x)) = 1 + 2x + 3x2 + 4x3 + 5x4 + · · · =
1

(1 − x)2

and ∫ x

0
g (t) dt = x +

1
2

x2 +
1
3

x3 +
1
4

x5 + · · · = −ln (1 − x)

correspond to the sequences {1, 2, 3, . . .} and {1, 1
2 ,

1
3 , . . .} respectively.

6

2.2.3 Summation

In some operations more than one function is used unlike what is done so far in this section.

One such operation is summation. Take B (x) and {bn} = {b0, b1, b2, . . .} in addition to A (x)

and {an} . As A (x) and B (x) are added,
∞∑

i=0

aixi +

∞∑
i=0

bixi =

∞∑
i=0

(ai + bi) xi

which is the generating function of {(a + b)n}, is taken as a result. So it is seen that the ith term

of the sequence, that corresponds to the sum of two functions, is the sum of the ith terms of

those sequences.

2.2.4 Convolution

Although multiplying two functions is as natural as adding them, as it is seen below, general

term of the resulting sequence of multiplication is not the product of ith terms of the sequences.

In fact

A(x)B(x) = a0
(
b0 + b1x + b2x2 + · · ·

)
+ a1

(
b0 + b1x + b2x2 + · · ·

)
x

+a2
(
b0 + b1x + b2x2 + · · ·

)
x2 + · · ·

= a0b0 + (a0b1 + a1b0) x + (a0b2 + a1b1 + a2b0) x2 + · · ·

=

∞∑
k=0

 ∑
i+ j=k

aib j

 xk .

This is why the resulting sequence {a0b0, a0b2 + a1b0, a0b2 + a1b1 + a2b0, . . .} has the special

name convolution of {an} and {bn}.

Example 2.2.4 Take A (x) which may correspond to any sequence {an} and B(x) =
1

1 − x
which belongs to the constant sequence {1}.

A (x)
1

1 − x
= a0 + (a0 + a1) x + (a0 + a1 + a2) x2 + · · ·

=

∞∑
k=0

 k∑
i=0

ai

 xk

As it is seen the resulting function above is actually the generating function of the sequence

of partial sums. So if A (x) is also taken to be 1
1−x , the multiplication becomes 1

(1−x)2 =

1 + 2x + 3x2 + · · · which matches with what was found in Example 2.2.3.

7

2.2.5 Composition

Take A(x) and B(x) once more to form the composed function

A (B (x)) = a0 + a1
(
b0 + b1x + b2x2 + b3x3 + · · ·

)
+ a2

(
b0 + b1x + b2x2 + · · ·

)2
+ · · ·

=
(
a0 + a1b0 + a2b2

0 + a3b3
0 + · · ·

)
+ · · · .

It is seen that the coefficients have infinite sums unless b0 = 0. If B(0) = 0, i.e., b0 = 0,

A (B (x)) = a0 + a1b1x +
(
a1b2 + a2b2

1

)
x2 +

(
a1b3 + 2a2b1b2 + a3b3

1

)
x3 + · · ·

is found with a finite sum in every coefficient. To sum up, if a function without the 0th coeffi-

cient is taken as B(x), the composition can be done without any problem. Some examples to

this operation will be studied in the following chapters.

2.3 Blending

This operation is a combination of some operations that is done so far. Assume that the

generating function g (x) of the sequence S = {a0, b0, a1, b1, a2, b2, . . .} is needed and the

generating functions of the sequences {an} and {bn} as A (x) and B (x) are already known.

With some simple operations one can see

g (x) = a0 + b0x + a1x2 + b1x3 + a2x4 + b2x5 + · · ·

=
(
a0 + a1x2 + a2x2 + · · ·

)
+ x

(
b0 + b1x2 + · · ·

)
= A

(
x2

)
+ xB

(
x2

)
.

It can be easily seen that actually the sequences {a0, 0, a1, 0, a2, 0, . . .} and {0, b0, 0, b1, . . .},

which is the one shifted right version of {b0, 0, b10, b2, . . .}, were added. To extend a

little bit, if both of the sequences were taken as {an} the blending operation would give

{a0, a0, a1, . . .} with the corresponding generating function (1 + x)A(x2). Now it is obvi-

ous that a 3-blending {a0, b0, c0, a1, b1, c1, . . .} with {cn} and its generating function C(x)

besides {an} and {bn}, can be seen as A(x3) + xB(x3) + x2C(x3). With this fashion one can

blend two or more sequences however he wants.

8

2.4 Decimation

This is the last operation that will be mentioned in this thesis. A decimation, sometimes

referred to as a d-decimation is taking every dth term of a sequence. Assume that the closed

form of the generating function of the 2-decimation of the sequence {an}, in other words the

sequence S =
{
a0, a2, a4,a6, . . .

}
, is wanted. It is already known from the Example 2.2.1 that

A (−x) belongs to the sequence {a0,−a1, a2,−a3, . . .}, then

g̃(x) = A (x) + A (−x)

= (a0 + a1x + a2x2 + a3x3 + · · ·) + (a0 − a1x + a2x2 − a3x3 + · · ·)

= 2
(
a0 + a2x2 + a4x4 + · · ·

)
corresponds the sequence S

′

= {2a0, 0, 2a2, 0, 2a4, 0, . . .} . As it is seen if every x2 in g̃(x)

is replaced with x, namely the variable is changed from x to
√

x, the zeros in S ′ will be

discarded. So

g (x) =
A

(√
x
)

+ A
(√
−x

)
2

is the generating function of S .

What about 3-decimation? Let 1, w and w2 be the 3rd roots of unity. The sum of the functions

A (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + · · ·

A (wx) = a0 + a1wx + a2w2x2 + a3w3x3 + · · ·

A
(
w2x

)
= a0 + a1w2x + a2w4x2 + a3w6x3 + · · ·

is

g̃(x) (x) = A (x) + A (wx) + A
(
w2x

)
= 3a0 + a1

(
1 + w + w2

)
x + a2

(
1 + wa2 + w4

)
x2 + a3

(
1 + w3 + w6

)
x3 + · · · .

Since 1, w and w2 are the 3rd roots of unity, w3 = 1, 1 + w + w2 = 0 , but 1 + w3 + w23
= 3.

This is why

g̃(x) = 3
(
a0 + a3x3 + a6x6 + · · ·

)
.

Hence the function for the 3-decimated sequence becomes

g (x) =
1
3

(
A

(
3√x

)
+ A

(
3√wx

)
+ A

(
3√

w2x
))
.

9

To generalize, to find the d-decimation of a sequence starting with the 0th term, one needs to

use the dth roots of unity e
2nπi

d , n = 0, 1, . . . , d − 1; d ∈ Z and to generate the functions

f
(
e

2nπi
d x

1
d

)
=

∞∑
k=0

ake(2nπi
d)kx

k
d ,∀n = 0, 1 . . . , d − 1

then to sum them up to get

d−1∑
n=0

f
(
e

2nπi
d x

1
d

)
=

∞∑
k=0

ak

d−1∑
n=0

(
e

2nπi
d

)k
x

k
d

 .
Since

d−1∑
n=0

(
e

2nπi
d

)k
=

d d|k

0 d - k
,

d−1∑
n=0

f
(
e

2nπi
d x

1
d

)
= da0 + dad x + da2d x2 + · · · .

Hence the generating function for the d-decimation becomes

1
d

d−1∑
n=0

f
(
e

2nπi
d x

1
d

)
.

Example 2.4.1 Consider the sequence S = {a0, a1, 0, a2, a3, 0, . . .} where a zero is inserted

following every two consecutive terms. If the sequence {an} has the generating function A(x),

then the 2-decimated sequences {a0, a2, a4, . . .} and {a1, a3, a5, . . .} have the generating

functions B(x) =
A(√x)+A(

√
−x)

2 and C(x) =
A(√x)−A(

√
−x)

2 as mentioned before. It is seen that

if the sequences {a0, 0, 0, a2, 0, 0, a4, 0, 0, . . .} and {0, a1, 0, 0, a3, 0, 0, a5, 0, 0, . . .} are

added the desired sequence S is obtained. Moreover it is known that changing the variable

is enough to put zeros between every term. Therefore the generating function B(x3) + xC(x3)

represents the sequence S.

Example 2.4.2 As opposed to what is done in the previous example, one could also need the

generating function for the sequence S = {a0, a1, a3, a4, a6, a7, . . .} in which every third term is

dismissed from the sequence {an} with generating function A(x). It is seen easily that this time

the desired sequence is simply the sum of {a0, 0, a3, 0, a6, 0, . . .} and {0, a1, 0, a4, 0, a7, . . .}. As

it is seen they are the 3-decimated versions of the sequences {an} and {an+1} with 0’s between

terms. Therefore, if {a0, a3, a6, . . .} and {a1, a4, a7, . . .} have generating sequences B(x) and

C(x) respectively than the desired function for S is B(x2) + xC(x2).

10

Example 2.4.3 The final problem of this chapter is finding the generating function g (x) of

the sequence S = {a0, b1, a2, b3, a4, b5} assuming that A (x) and B (x) are known. First the

two decimated versions of the sequences needs to be taken and between each term zeros must

be inserted to get {a0, 0, a2, 0, a4, 0, . . .} and {0, b1, 0, b3, 0, b5, 0, . . .} then S will simply be

the sum of these sequences. So

g (x) =
A (x) + A (−x)

2
+

B (x) − B (−x)
2

.

11

CHAPTER 3

Combinatorial Problems

Combinatorics is one of the topics that uses generating functions to solve the problems occa-

sionally. In this chapter we will give some examples of the usage of generating functions in

combinatorics besides the problem we have solved in Chapter 1.

3.1 Distributing n Candies to r Children

In this section, it is always assumed that the candies are indistinguishable. Before studying the

question on distributing candies under a specific rule, we first consider the problem of finding

the number of distributing n candies to r children without any restriction using generating

functions. That means that every child can have any number of candies, of course up to n

since the number of candies are finite, including none, in which case the generating function

for a child becomes

1 + x + x2 + x3 + · · · + xn =
1 − xn+1

1 − x
.

The order of the candies a child gets does not matter since the candies are indistinguishable.

That is why distributing t candies can be done in only 1 way for a child, therefore the coeffi-

cients are all 1. Moreover since there are r children, the rth power of this generating function

should be taken to get (
1 − xn+1

1 − x

)r

.

At this point, looking at the coefficient of xn in the above function is enough to solve the

question, however, one can make a trick and solve the same question in another way and

get the coefficient exactly. Observe that even if the generating function for a child is taken

as
1

1 − x
, without any upper restriction, the overall generating function still gives the same

12

result since only the coefficient of xn is important. In that case the overall generating function

becomes
1

(1 − x)r =

∞∑
k=0

(
r + k − 1

k

)
xk with

(
r+n−1

n

)
as the nth coefficient.

As another version of this problem assume that every child gets at least t candies. In that case

the generating function for distribution of candies for one child becomes

xt + xt+1 + · · · =
xt

1 − x

which gives (
xt

1 − x

)r

= xtr 1
(1 − x)r = xtr

∞∑
k=0

(
r + k − 1

k

)
xk

for r children. Again one should look at the coefficient of xn to solve the question. Hence, it

is necessary to find the coefficient of xn−tr in
∞∑

k=0

(
r + k − 1

k

)
xk which is

(
r+n−tr−1

n−tr

)
. This result

also matches with giving t candies to every children first then distributing the remaining n− tr

candies.

One other thing that can be done is to give at most t candies to each of the children, not to

make them sick. Again there are n candies to distribute and this time n < tr is taken not to

face with any problem. Then the distribution function for a child becomes

1 + x + x2 + · · · + xt =
1 − xt+1

1 − x
.

This is why the answer to the question is(
1 − xt+1

)r

(1 − x)r =
(
1 − xt+1

)r
∞∑

k=0

(
r + k − 1

k

)
xk

=

r∑
i=0

(−1)i
(
r
i

)
xi(t+1)

∞∑
k=0

(
r + k − 1

k

)
xk

=

r∑
i=0

∞∑
k=0

(−1)i
(
r
i

)(
r + k − 1

k

)
xk+i(t+1)

with
r∑

i=0

(−1)i
(
r
i

)(
r + n − i(t + 1) − 1

r − 1

)
being the coefficient of xn .

Here is one last illustrating example to combine everything mentioned so far in this section. In

this one there are 4 children from whom the first child gets at least 3 candies, the second one

gets at most 5 candies, the third one gets even number of candies and the last one takes either

4 or 5 candies. The question is to find the number ways to distribute 17 candies for those

children. To solve the question one should first look at the generating functions of taking

candies for every child .

13

1st child : x3 + x4 + · · · = x3

1−x

2nd child : 1 + x + · · · + x5 = 1−x6

1−x

3rd child : 1 + x2 + x4 + · · · = 1
1−x2

4th child : x4 + x5 = x4 (1 + x)

Then the generating function for the whole distribution becomes

x3

1 − x
1 − x6

1 − x
1

1 − x2 x4 (1 + x) =
x7

(
1 − x6

)
(1 − x)3 .

Recall from Example 2.2.4 that multiplying a generating function with
1

1 − x
means taking

partial sums of the sequence and the generating function
1

(1 − x)2 represents the sequence

{n + 1}∞n=0. Therefore the generating function for the distribution can be viewed as

x7
(
1 − x6

)
(1 − x)3 = x7 1

(1 − x)2

1
1 − x

− x13 1
(1 − x)2

1
1 − x

=

∞∑
k=0

k∑
i=0

(i + 1)xk+7 −

∞∑
k=0

k∑
i=0

(i + 1)xk+13 (3.1)

=

∞∑
k=0

(k + 1)(k + 2)
2

xk+7 −

∞∑
k=0

(k + 1)(k + 2)
2

xk+13 (3.2)

=

∞∑
k=0

(
k + 2

2

)
xk+7 −

∞∑
k=0

(
k + 2

2

)
xk+13 (3.3)

in which the coefficient of x17 which is equal to
(
12
2

)
−

(
6
2

)
is the answer.

3.2 Fibonacci’s Rabbits

In the year 1202, Fibonacci (Leonardo of Pisa) investigated the breeding of rabbits in ideal

circumstances. If a suitable environment is created, a pair of rabbit can give birth to a new

pair every month and a new born grows enough to be bred after one month. The Fibonacci

question is to find the number of pairs after n months starting with only one new born pair

and assuming that every mother give birth to exactly two children, a male and a female and

none of the rabbits die. Since the rabbits in hand at the beginning are newly born they can not

breed in the first month however, they can mate at the end of that month so that in the second

14

month the female gives birth to a new pair. In the third month, the original female gives birth

to a new pair again but her children can not however they mate at the and of that month.

Observing more deeply, it is seen that at the end of every month, the rabbits in hand 2 months

ago give birth to a new pair and the ones in the previous months stays in the population. If the

number of rabbit pairs in the nth month is fn, referring to Fibonacci number,

fn = fn−1 + fn−2 .

Think every Fibonacci number as an element of the Fibonacci sequence { fn} = { f0, f1, . . .}

with generating function f (x) and initial terms f0 = f1 = 1. Then the sum of { fn−1} =

{0, f0, f1, f2, . . .} and { fn−2} = {0, 0, f0, f1, f2, . . .} with generating functions x f (x) and

x2 f (x) respectively gives { fn} except for the first term. So

f (x) = x f (x) + x2 f (x) + 1(
1 − x − x2

)
f (x) = 1

f (x) =
1

1 − x − x2 .

At this moment, to find the coefficient of xn it is enough to see the generating function as

f (x) =
1

(1 − α1x) (1 − α2x)

=
A

1 − α1x
+

B
1 − α2x

=
1
√

5

(
1

1 − α1x
−

1
1 − α2x

)
=

1
√

5

 ∞∑
i=0

αi
1xi −

∞∑
i=0

αi
2xi

where α1,2 = 1±

√
5

2 . Therefore the coefficient of xn is fn = 1√
5

((α1)n − (α2)n) .

Looking at the sequence {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .} this function represents, it is seen

that every term is actually sum of the previous and the second previous element.

3.3 Regions in the Plane

It is countable with ease that one, two or three lines on a plane divide the plane into two, four

or seven regions respectively. What if the number of lines were somewhat higher? In this

section, the generating function for the number of regions pn on a plane that n different lines

15

create will be found. Of course, it is assumed that lines are in general position 1. To start with

consider a line l1. When another line l2 is drawn, it intersects l1 and the intersection point

separates it into two pieces where each piece divides one of the previous regions into two. If

this is continued with another line l3, the two intersection points of l3 with l1 and l2 divide it

into three pieces where every piece again divides one of the previous regions into two. As this

goes on it is seen that ln is divided into n pieces by the intersection points with the existing

lines where each piece divides a region into two. Therefore the below recursion is taken.

pn = pn−1 + n

If p (x) =
∑∞

i=0 pixi , then

p (x) = xp (x) +
x

(1 − x)2 + 1

since function for {nn} is x
(1−x)2 as shown in Example 2.2.3. This implies that

p (x) (1 − x) =
x

(1 − x)2 + 1

p (x) =
x

(1 − x)3 +
1

1 − x
.

Hence with an operation similar to what was done in equation 3.1, it is seen that pn =
(
n+1

2

)
+1.

3.4 Partitions

A partition of a positive integer n is a set of positive integers which sum to n. For example

for the integer 4, the partitions are {1, 1, 1, 1} , {1, 1, 2} , {2, 2} , {1, 3} , {4} . If the number of

partitions for an integer n is denoted as pn then p4 = 5. In this section, the question is to

find the number of all partitions of a number n without counting every possible sets, namely

using generating functions. For every element k in the partition, the corresponding factor in

the generating function is

1 + xk + x2k + x3k + · · · =
1

1 − xk .

Moreover, in a partition, it is obvious that the greatest number that can be used is n. Hence

the generating function for pn becomes

p (x) =
1

(1 − x)
(
1 − x2) (1 − x3) · · · (1 − xn)

=

n∏
k=1

1
1 − xk . (3.4)

1 No two lines are parallel or coincident

16

Unlike the previous problems, in this problem the exact value of pn can not be extracted by

looking at the generating function of the sequence {pn}. However as mentioned in Chapter 1,

the generating functions can be used to prove mathematical identities. Namely, the following

lemma can be proved by using the above generating function.

Lemma 3.4.1 The number of partitions with unequal elements in the set is equal to the num-

ber of partitions where each element in the set is an odd integer.

Proof. Let un be the number of partitions of n with unequal elements. That means every

integer can be seen at most once in the set. Therefore, the representation of seeing an integer

k is 1 + xk which makes the generating function for unequal partitions

u (x) = (1 + x)
(
1 + x2

) (
1 + x3

)
· · ·

(
1 + xn)

=

n∏
k=1

1 + xk . (3.5)

In a similar fashion, let on be the number of partitions with only odd numbers in the set.

Unlike to the equation 3.4, this time only the integers 1, 3, 5, . . . can be used which makes the

generating function for odd partitions

o (x) =
1

(1 − x)
(
1 − x3) (1 − x5) · · ·

=

b n
2 c∏

k=1

1
1 − xk . (3.6)

So if the equivalence of the equations (3.5) and (3.6) are shown, the proof will be done. It is

easily seen that

u (x) = (1 + x)
(
1 + x2

) (
1 + x3

)
· · ·

(
1 + xn)

=
1 − x2

1 − x
1 − x4

1 − x2

1 − x6

1 − x3 · · ·
1 − x2n

1 − xn

=
1

(1 − x)
(
1 − x3) (1 − x5) · · · = o (x) .

�

3.5 Permutations

Until this point, in each problem the order of choice was not important unlike permutations.

It is known that the ordinary generating function for P (n, k) which stands for the number of

17

k-permutations on a set of n elements is

P (x) = P (n, 0) + P (n, 1) x + P (n, 2) x2 + · · · + P (n, n) xn

=

n∑
k=0

P (n, k) xk

=

n∑
k=0

n!
(n − k)!

xk

for a fixed n. Moreover the relation between P (n, k) and C (n, k) which stands for choosing

k-elements from a set of n- elements is also known to be P (n, k) = C (n, k) k! since every

ordering count as a different permutation. As it is done in Example 2.0.1

C (x) = (1 + x)n

which immediately implies that

P (n, 0)
x0

0!
+ P (n, 1)

x1

1!
+ P (n, 2)

x2

2!
+ · · · + P (n, n)

xn

n!
= (1 + x)n .

Therefore, in the expansion of (1 + x)n, the coefficient of
xk

k!
gives the number P (n, k). This

type of generating function, namely the generating function
∞∑

k=0

ak
xk

k!
of the sequence {an}

is called the exponential generating function for that sequence. This name makes perfect

sense since for {an} = {1} the generating function is

1 + x +
x2

2!
+

x3

3!
+ · · · = ex.

Example 3.5.1 To have a better understanding consider the number of ways to generate 5

letter words with or without meaning from the word “GENERATING”. While generating the

words a special attention for the letters E, N and G needs to be paid since there are two of

them. To be more specific one should not count the word GENRE two times as the E’s change

places with each other. Except for E, N and G the representation of taking a letter is simply

(1 + x), either take it or leave it. But for E,N and G, the representation becomes 1 + x + x2

2! .

Therefore the coefficient of x5

5! in the product
(
1 + x + x2

2!

)3
(1 + x)4 gives the number of all

possible 5-letter words.

The operations with exponential generating functions are similar to the ordinary generating

functions. However there are some special features of them that one needs to pay attention.

18

Let E (x) be the exponential generating function for the sequence {an} . After differentiation

Dx (E (x)) = a1 + a2x + a3
x2

2!
+ a4

x3

3!
+ · · · (3.7)

belongs to the sequence {an+1} and after integration, which works in the opposite way the

exponential generating function∫ x

0
E (t) dt = a0x + a1

x2

2!
+ a2

x3

3!
+ · · · (3.8)

corresponds to {an−1}. In other words the operations shifting and truncating are seen as inte-

gration and differentiation respectively.

Another thing to point out is the multiplication of two exponential generating functions. Take

the exponential generating functions E (x) and F (x) which correspond to {an} and {bn} re-

spectively. Then

E (x) F (x) =

∞∑
i=0

ai
xi

i!

∞∑
j=0

b j
x j

j!

=
∑
j,i>0

a jbi

j!i!
x j+i

=

∞∑
k=0

xk
∑

i+ j=k

a jbi

j!i!

=

∞∑
k=0

xk

k!

∑
i+ j=k

k!
a jbi

j!i!

=

∞∑
k=0

xk

k!

k∑
i=0

(
k
i

)
aibk−i

which implies that the coefficient of xn

n! is

n∑
k=0

(
n
k

)
akbn−k . (3.9)

3.6 Functions

Since high school, it is taught that the number of functions that can be formed from a set X

with n elements to another set Y with m elements is mn. This can be easily seen by choosing

an element from a set of m elements for every different xi ∈ X. Now the same problem will be

19

solved by using generating functions. Every yi ∈ Y can be the image of one or more xi values.

Also since the function is not necessarily onto, yi may not be an image of any xi . This gives

the representation

1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
+ · · · = ex

for a single yi, therefore the overall generating function becomes (ex)m = exm =
∑∞

k=0 mk xk

k!

with mn as the coefficient of xn

n! .

Another similar question is finding the number of onto functions from X to Y . This time, the

only difference is that every yi must be an image of some xi so the function for an element in

Y becomes

x +
x2

2!
+

x3

3!
+ · · · +

xn

n!
+ · · · = ex − 1.

That gives the generating function

(ex − 1)m =

m∑
k=0

(
m
k

)
exk (−1)m−k

=

m∑
k=0

∞∑
i=0

(
m
k

)
(xk)i

i!
(−1)m−k

=

∞∑
i=0

 m∑
k=0

(−1)m−k
(
m
k

)
ki

 xi

i!

as the overall generating function, with
∑∞

k=0 (−1)m−k
(
m
k

)
ki being the number of onto func-

tions.

3.7 Parentheses and Catalan Numbers

In this problem, one wants to count all possible ways of arranging n pairs of parentheses

such that every arrangement is valid, meaning that the number of closing parentheses at a

point on the row is always less then or equal to the number of opening ones. i.e: ())(is

not a valid arrangement whereas ()(()()) is. If the number of possible ways with n pairs is

denoted by cn, then c3 = 5; ((())) , (() ()) , (()) () , () (()) and () () (). Notice that in the first and

second examples, the first parentheses is not closed until the end of the arrangement. This

type of an arrangement is called primitive of order n. Then the third example is actually the

concatenation of a primitive arrangement of order 2 and of order 1. So it can be said that an n-

arrangement is generated by either using one primitive of order n or concatenating a primitive

of order k < n and some other arrangement. If the number of primitive arrangements with n

20

elements are denoted by pn, then cn =

n∑
i=1

picn−i, but what about pn? It is seen that as one

deletes the first and the last parenthesis - a pair- from a primitive arrangement, what remains

are arrangements of order n − 1 which may or may not be primitive. So pn = cn−1 and so

cn =

n∑
i=1

ci−1cn−i. Let C (x) = c0 + c1x + c2x2 + c3x3 + · · · be the generating function for all

arrangements, where we set c0 = 1, then the generating function for {cn−1} is xC (x) as we did

in section (2.1.2). As a result

C (x) = xC (x) C (x) + 1

C (x) =
1 ±
√

1 − 4x
2x

.

It can be seen that if the + sign is taken as the result, lim
x→∞

C(x) does not exists. That is why

the result should be the one with the − sign. Hence, the generating function for the number of

arranging parentheses is

C (x) =
1 −
√

1 − 4x
2x

.

Getting cn from this function is not as straight forward as the previous ones. For that reason

one needs to think C (x) as 1
2x (1 − f (x)), and get the power series representation for f (x) =

√
(1 − 4x) first. To find that observe f (x) as it is differentiated a few times to see how it

behaves.

f ′ (x) = −
1
2

4 (1 − 4x)−
1
2

f ′′ (x) = −
1
2

1
2

42 (1 − 4x)−
3
2

f ′′′ (x) = −
1
2

1
2

3
2

43 (1 − 4x)−
5
2

...

f (k) (x) = −
1.3.5.7.9 · · · (2k − 3)

2k 4k (1 − 4x)−
2k−1

2

Since f (k) (0) = −
(2k−2)!

2k−1(k−1)! 2
k ,

f (x) = 1 −
∞∑

k=1

2
(2k − 2)!
(k − 1)!

xk

k!

= 1 −
∞∑

k=1

2
k

(
2k − 2
k − 1

)
xk.

21

Then,

C (x) =
1
2x

(1 − f (x))

=
1
2x

∞∑
k=1

2
k

(
2k − 2
k − 1

)
xk

=

∞∑
k=1

1
k

(
2k − 2
k − 1

)
xk−1

=

∞∑
k=0

1
k + 1

(
2k
k

)
xk.

Now, it is seen that cn = 1
n+1

(
2n
n

)
. The sequence {cn} plays a very important role in combina-

torics and it is used to solve lots of other problems. Named after Eugene Charles Catalan, the

numbers in {cn} are called Catalan numbers.

3.8 Derangements

In this question, there is a distracted secretary, who is supposed to put n letters in n envelopes.

Unfortunately the secretary mixes the letters and envelopes so they do not go to the places

they are supposed to. The question is how many ways are there for the secretary to put the

letters in the envelopes so that none of the letters go to its correct place. This question actually

refers to a permutation in which none of the elements in the set go to its original place which

is called a derangement. Let the set of derangements with n elements be denoted by Dn, then

the union of all possible derangements, namely Dn−k, for all possible k values gives every

single permutation of those n elements. While creating the set Dn−k, k elements are chosen

to be fixed, meaning k letters to be put into the correct envelopes, then the rest is mixed such

that none of them gets into its original envelope. So if dn is the number of elements in Dn,

n! =

n∑
k=0

(
n
k

)
dk.

Since only the exponential generating function for n! is known, taking the exponential gen-

erating function for both sides will be appropriate. It is seen from the equation (3.9) that

the right hand side of this equation becomes exD (x) if D (x) is thought to be the generating

function of dn. So the above equation becomes

1
1 − x

= exD (x)

D (x) =
e−x

1 − x
.

22

As always, getting the coefficient of xn in the above equation will give the answer.

3.9 Involutions

An involution of a set S is a permutation of that set in which there exists no cycles of length

greater then 2. In other words all permutations are their own inverses. For example for

S = {1, 2, 3} , the number of involutions are i3 = 4 which are (1 2 3) , (2 1 3) , (1 3 2) , (3 2 1).

There are two different ways an involution with n elements can be formed. The first way is to

put the element n to the nth position, and distribute the remaining n − 1 elements so that they

form an involution. The second way is to put the element n not to its original position but

some jth where j < n . In that case, j is in the nth position since every cycle has length at most

2. This implies that, the remaining n − 2 elements, except n and j, must form an involution.

Therefore the recursion for the number of involutions is

in = in−1 + (n − 1) in−2 .

What about the generating function? As it is done for all ordered sets, an exponential gen-

erating function, say I (x) is considered. Then as shown in the equation (3.8), the generating

function for in−1 and (n − 1) in−2 is found to be
∫ x

0 I(t)dt and x
∫ x

0 I(t)dt respectively. Therefore

I (x) =

∫ x

0
I(t)dt + x

∫ x

0
I(t)dt

= (1 + x)
∫ x

0
I(t)dt

I (x)
1 + x

=

∫ x

0
I(t)dt

and when both sides are differentiated

Dx(I (x)) (1 + x) − I (x)
(1 + x)2 = I (x)

Dx(I (x)) − I (x)
(

1
1 + x

+ 1 + x
)

= 0

23

is obtained. Solving this differential equation gives

I (x) =
1

1 + x
e
−

(
x+ x2

2

)

=
1

1 + x

 ∞∑
k=0

(−1)k xk

k!

 ∞∑

l=0

(−1)l x2l

2ll!

=

1
1 + x

∑
k,l>0

(−1)k (−1)l 1
2lk!l!

xk+2l

=

∞∑
m=0

xm

m!

∑
k+2l=m

m! (−1)k+l 1
2lk!l!

=

∞∑
m=0

xm

m!

bm
2 c∑

l=0

m! (−1)m−l 1
2ll! (m − 2l)!

where in =

b n
2 c∑

l=0

n! (−1)n−l 1
2ll! (n − 2l)!

.

3.10 Graphs

Throughout this section, simple and undirected graphs will be considered 2.

A labeled graph L with n vertices is a graph where every vertex v ∈ V(L) is numbered differ-

ently. So two graphs L1 and L2 are the same if there is a 1-1 map f : V (L1) → V (L2) such

that v1 and v2 are adjoint in L1 if and only if f (v1) and f (v2) are adjoint in L2. The number

lp of labeled graphs with n vertices and p edges for a fixed n can be thought as either getting

an edge from the set of
(
n
2

)
possible edges or not. So that the generating function becomes

Lp (x) = (1 + x)(
n
2) =

n∑
k=0

((n
2

)
k

)
xk.

Therefore the number of labeled graphs with n vertices is

L = Lp (1) = 2(n
2). (3.10)

A connected graph is a graph in which every two vertices is joined by a path. To count

the number of connected labeled graphs, one also needs to know what a rooted graph and a

component is. A component of a graph is a maximal, connected sub-graph and a rooted graph

is a graph where there is a vertex, called the root, which is distinguished from other vertices.

2 A graph that has no loop (an edge which joins a vertex to itself) and no more than one edge between any
two different vertices

24

Hence the number of rooted labeled graphs with p edges is plp. Furthermore, from these

explanations, it is seen that the number of rooted labeled graphs is
∑p

k=0 k
(

p
k

)
cklp−k where ck

is the number of connected graphs with k vertices. This is true, since for every rooted graph,

there is a component with k vertices which has the root in it. Knowing all these, the number of

connected labeled graphs cn can be found by subtracting the number of disconnected graphs

-graphs with more then one component- from all possible labeled graphs

cn = 2(n
2) −

1
p

p−1∑
k=0

k
(
p
k

)
2

p−k
2 ck .

Now, let C (x) =
∑∞

k=1 ck
xk

k! and L (x) =
∑∞

k=1 lk xk

k! be the exponential generating function for

labeled connected graphs and labeled graphs respectively. It is desired to find a relationship

between these two. For that reason again the idea above will be used. That is the union

of k connected labeled graphs for all k gives us all labeled graphs. i.e. labeled graphs are

composed of k connected labeled graphs. The result is

L (x) =

∞∑
k=1

Ck (x)
k!

,

which gives us the relation between labeled and connected labeled graphs.

1 + L (x) = eG(x) (3.11)

The same idea can also be used to find the generating function of labeled Eulerian graphs

which are connected even graphs 3. To find the number of labeled Eulerian graphs, first the

number of labeled even graphs wn with n vertices will be found. It can be seen easily that

wn = ln−1. The reason for that is, taking a labeled graph of order n− 1, then connecting all the

odd vertices to a new vertex to make them even gives us a labeled even graph of order n and

this relation is 1-1. So wn = 2(n−1
2) as in equation (3.10). Hence the function becomes

W (x) =

∞∑
i=0

2(i−1
2) xi

i!
.

From that and the equation (3.11) the function E (x) for Eulerian graphs will be

1 + W (x) = eE(x)

E (x) = ln (1 + W (x))

= x +
x3

3!
+

3x4

4!
+

38x5

5!
+ · · ·

which gives En = 2(n−1
2) − 1

n
∑n−1

k=0 k
(
n
k

)
2(n−k−1

2)Ek.

3 An even graph is a graph where each of its vertices have even degree.

25

3.11 Radioactive Particles

In this section, we will define two recursions that are related to each other. Let there be two

particles, say α and β. At each minute, the particle α dissolves into 5 α-particles and 3 β-

particles and the particle β dissolves into 2 α-particles and 4 β-particles. Then the question is

given α0 and β0 how many α and β-particles are there after 30 minutes. So the recursions are

αn = 5αn−1 + 2βn−1

βn = 3αn−1 + 4βn−1.

Let f (x) and g(x) be the generating functions for the sequences {αn} and {βn} respectively.

Since x f (x) is the function for {0, α0, α1, α2 . . . , } and xg(x) is the function for {0, β0, β1, . . . , }

f (x) = 5x f (x) + 2xg(x) + α0

g(x) = 3x f (x) + 4xg(x) + β0

which give

f (x) =
α0 + 2xg(x)

1 − 5x

g(x) =
β0 + 3x f (x)

1 − 4x
.

After solving them together we get

f (x) =
α0 + (−4α0 + 2β0)x

1 − 9x + 14x2

=
1
5

(
3α0 + 2β0

1 − 7x
+

2α0 − 2β0

1 − 2x
)

g(x) =
β0 + (−5β0 + 3α0)x

1 − 9x + 14x2

=
1
5

(
3α0 + 2β0

1 − 7x
+

3β0 − 3α0

1 − 2x
) .

So the coefficients of x30 in both of the equations, which are

α30 =
1
5

((3α0 + 2β0)730 + (2α0 − 2β0)230)

β30 =
1
5

((3α0 + 2β0)730 + (3β0 − 3α0)230) ,

give the number of α and β-particles after 30 minutes.

26

CHAPTER 4

Constant Coefficient Linear Homogeneous Recursions

Definition 4.0.1 A recurrence relation for a sequence {an}
∞
n=0 is an expression that relates an

to the previous terms of the sequence for all n ≥ n0 for some positive integer n0. The terms

a0, a1, . . . , an0 , called the initial terms, should be defined explicitly.

A recurrence relation represents different sequences as it is initialized differently. The set of

all sequences a recurrence relation represents is called the solution set and two recursions are

said to be equivalent if they have the same solution set.

If the recursion is of the form an = F(an−1, an−2, . . . , an−d) for some fixed 1 ≤ d ≤ n0, then d

is called the degree of the recursion.

To make it more clear, the recursion in section 3.3 for the regions of the plane has degree 1;

the recursions for the Fibonacci sequence in section 3.2 and for the involutions in section 3.9

have degree 2. However the recursion for Catalan numbers described in section 3.7 does not

have a degree since to express cn all previous ci’s where 0 ≤ i ≤ n− 1 are used so ’d’ changes

as n changes.

A recursion does not have a degree does not necessarily mean that all of its equivalent recur-

sions also do not have one. Take the recursion for partial sums which is an =
∑n−1

i=0 ai, that

does not have a degree; however, the recursion an = 2an−1 which also has the same solution

set has degree 1.

The degree of a recursion is not the only distinctive property it has. Until now, we have

dealed with different kinds of recursions. The recursion for parenthesis in section 3.7 has

a non-linear coefficient ci−1cn−i, the one for involutions in section 3.9 has a not constant

27

coefficient (n − 1) in−2 and the one for regions in the plane in section 3.3 has the coefficient n

which makes it non homogeneous. However the recursion for the Fibonacci numbers satisfies

everything that is expected from a constant coefficient linear homogeneous recursion.

A recurrence relation of the form

an+k = ck−1an+k−1 + ck−2an+k−2 + · · · + c0an (4.1)

is called a constant coefficient linear homogeneous recursion of order k provided that c0 , 0.

Such a relation is proper if given the first k values, the rest of the sequence is formed in terms

of the given elements. Sometimes, instead of k initial values m > k initial values may be

given so that ai, 0 ≤ i ≤ m do not satisfy the recursion but the rest do. Such recursions are

called improper. From now on, we will study constant coefficient linear homogeneous proper

recurrence relations unless stated otherwise.

Theorem 4.0.1 A sequence satisfies a constant coefficient linear homogeneous recursion if

and only if its generating function is a rational function.

Proof. Assume that {an}, with generating function A (x) =
∑∞

i=0 aixi, satisfies an+k = ck−1an+k−1+

ck−2an+k−2 + · · ·+ c0an, c0 , 0 . To prove this theorem, the idea that was used in section 3.2 to

find the generating function of Fibonacci numbers will be used.

{an} =⇒ a0 a1 a2 a3 a4 · · · ak−1 ak · · ·

{an+1} =⇒ 0 a0 a1 a2 a3 · · · ak−2 ak−1 · · ·

{an+2} =⇒ 0 0 a0 a1 a2 · · · ak−3 ak−2 · · ·

{an+3} =⇒ 0 0 0 a0 a1 · · · ak−4 ak−3 · · ·

...

{an+k−1} =⇒ 0 0 0 0 0 · · · 0 a0 · · ·

After multiplying with the proper coefficients the above sequences are added, the appropriate

changes are done to get the first k−1 elements properly and as a result {an} is obtained. Hence,

A (x) = ck−1xA (x) + ck−2x2A (x) + · · · + c0xkA (x)

+a0 + (a1 − ck−1a0) x + (a2 − ck−1a1 − ck−2a0) x2 + · · ·

+ (ak−1 − ck−1ak−2 − · · · − c1a0) xk−1.

28

This implies that

A (x)

1 − k∑
j=1

ck− jx j

 = a0 +

k−1∑
i=1

ai −

i∑
j=1

ck− jai− j

 xi

A (x) =
a0 +

∑k−1
i=1

(
ai −

∑i
j=1 ck− jai− j

)
xi

1 −
∑k

j=1 ck− jx j
. (4.2)

If the notation A (x) =
p(x)
q(x)

is used, then q (x) is a polynomial of degree k that depends only

on the coefficients of the recursion and p (x) is a polynomial with degree not exceeding k − 1,

moreover p (x) depends on the initial terms.

The other way of the if and only if statement can be proved by simply reversing the above

operations. �

Although the above proof assumes that the recursion is proper; the same idea also applies for

improper recursions. Say m + k elements are given instead of k where the first m + k elements

do not satisfy the recursion but the rest do. Such a sequence can be generated from a proper

sequence by shifting elements by m terms in order to feed the sequence with the first improper

m elements. In that case

Ã (x) = a0 + a1x + · · · + am−1xm−1 + xm
a0 +

∑k−1
i=1

(
ai −

∑i
j=1 ck− jai− j

)
xi

1 −
∑k

j=1 ck− jx j

=

(
a0 + a1x + · · · + am−1xm−1

)
q (x) + xm p (x)

q (x)

=
p′ (x)

q (x)

where p′ (x) has degree m + k depending on all the initial conditions. Throughout this thesis

as p (x) and q (x) are mentioned, they will be considered as they appear in the equation (4.2).

Even though it is proved that q (x) is of degree k , one must be aware of the fact that, for

some initial values, p (x) and q (x) might have non-trivial common factors in which case,

the generating function becomes A (x) =
p(x)
q(x) with gcd (p (x) , q (x)) = 1 and deg (q (x)) <

deg
(
q (x)

)
. From this point forward, when the notations p (x) and q (x) is used, it means that

they do not have any non-trivial common factor.

Definition 4.0.2 The linear complexity of a sequence is the smallest degree of the denomina-

tor of its generating function.

29

Therefore the linear complexity is the degree of q (x), not q (x) in general.

Example 4.0.1 Consider the recurrence relation an+2 = 3an+1 − 2an where the generating

function is

A (x) =
a0 + (a1 − 3a0)x

1 − 3x + 2x2 .

If the initial terms are a0 = 1 and a1 = 2 ,

A (x) =
1 − x

1 − 3x + 2x2 =
1

1 − 2x

which shows that actually, the sequence is {1, 2, 4, · · · } with the recursion an+1 = 2an which

has linear complexity 1. However if the initial terms are taken as a0 = 1 and a1 = 3 , then the

function is

A (x) =
1

1 − 3x + 2x2

which represents the sequence {1, 3, 7, 15, · · · } with linear complexity 2 since gcd(1 − 5x, 1 −

3x + 2x2) = 1 .

4.1 General Term

Definition 4.1.1 The “general term” of a sequence {an} is an explicit expression that repre-

sents an in terms of n.

Given the general term of a sequence, one can calculate the nth term of that sequence, without

knowing the previous terms which makes the general term valuable. However, most of the

time, even though the recursion can be derived obviously from the given problem, the general

term can not. In that case, the problem becomes finding the general term of the sequence from

the recursion. If it is not found, one has to extract all the previous terms to find the nth term.

This problem is as complex as the problem of finding the solution for a given differential

equation in the continuous case. Fortunately the method for finding the general term of a

constant coefficient linear homogeneous recursion is well known. Actually that method is

used in finding the general term fn for the Fibonacci numbers in section 3.2 and the general

term pn for the number of regions in a plane in section 3.3.

Observation 4.1.1 A constant coefficient linear homogeneous recursion has q (x) = 1 −∑k
j=1 ck− jx j , therefore q (0) = 1 . This implies that 0 is not a root of q (x) hence x - q (x).

30

Theorem 4.1.1 Let the sequence {an} ∈ C∞ , (ai ∈ C, 1 ≤ i ≤ k) have the generating function

A (x) =
p(x)
q(x) where deg (q (x)) = k and let (1 − α1x) , . . . , (1 − αkx), (αi ∈ C\{0}) be the distinct

factors of q (x) ∈ C. Then the general term is an = C1α
n
1 + C2α

n
2 + · · · + Ckα

n
k where Ci ∈ C .

Proof. q (x) having k distinct factors implies that

A (x) =
p (x)

(1 − α1x) (1 − α2x) · · · (1 − αkx)

=
C1

(1 − α1x)
+

C2

(1 − α2x)
+ · · · +

Ck

(1 − αkx)

= C1

∞∑
i=0

αi
1xi + C2

∞∑
i=0

αi
2xi + · · · + Ck

∞∑
i=0

αi
kxi.

Therefore the general term is found as an = C1α
n
1 + C2α

n
2 + · · · + Ckα

n
k . �

Theorem 4.1.2 Let the sequence {an} ∈ R∞ , (ai ∈ R, 1 ≤ i ≤ k) have the generating function

A (x) =
p(x)
q(x) where deg (q (x)) = k and q(x) has no multiple roots, i.e. (1 − αix), (αi ∈ C {0}),

are all different factors of q (x) in C . Then the general term is an = C1α
n
1 + C2α

n
2 + · · ·+ Ckα

n
k

for some Ci ∈ C.

Proof. As in the proof of the previous theorem q (x) having k distinct roots in C implies that

A (x) =
p (x)

(1 − α1x) (1 − α2x) · · · (1 − αkx)

=
C1

(1 − α1x)
+

C2

(1 − α2x)
+ · · · +

Ck

(1 − αkx)
.

Moreover, in this case, if (1 − αkx) is a factor of q (x) such that αk < R, then (1 − αkx) is also

a factor. So A (x) can be written as

p (x)
q (x)

=
A

1 − αkx
+

B
1 − αkx

+
p̂ (x)

q̂ (x)

Then

p (x) = A (1 − αkx) q̂ (x) + B (1 − αkx) q̂ (x) + p̂ (x) (1 − αkx) (1 − αkx) .

When x = 1
αk
, p

(
1
αk

)
= A

(
1 − αk

αk

)
q̂
(

1
αk

)
which implies

A =
p
(

1
αk

)
αk

q̂
(

1
αk

)
(αk − αk)

(4.3)

31

and when x = 1
αk
, p

(
1
αk

)
= B

(
1 − αk

αk

)
q̂
(

1
αk

)
which implies

B =
p
(

1
αk

)
αk

q̂
(

1
αk

)
(αk − αk)

. (4.4)

From the equations (4.3) and (4.4), one can see that the complex conjugate of A is

A =
p
(

1
αk

)
αk

q̂
(

1
αk

)
(αk − αk)

=
p
(

1
αk

)
αk

q̂
(

1
αk

)
(αk − αk)

= B .

Therefore the summand corresponding to (1 − αkx) and (1 − αkx) in the general term is

A (αk)n + A (αk)n = A (x + iy)n + A (x − iy)n

= (m + in)
n∑

i=0

(
n
i

)
xn (iy)n−i + (m − in)

n∑
i=0

(−1)n
(
n
i

)
xn (iy)n−i

= m

 n∑
i=0

(
n
i

)
xn (iy)n−i +

n∑
i=0

(−1)n
(
n
i

)
xn (iy)n−i

+in

 n∑
i=0

(
n
i

)
xn (iy)n−i +

n∑
i=0

(−1)n+1
(
n
i

)
xn (iy)n−i

= mM + in (iN) M,N ∈ R

= mM − nN

which is a real number.

It’s seen that even if q (x) is factorized in C, the general term always gives a real number

because if 1
αk

is a root so is 1
αk

. So even the terms of the sequence are in R, the factors can be

found in C which is the smallest complete field containing R. �

Note that the above theorems do not cover multiple factors in the denominator.

Example 4.1.1 Take the function g (x) = x
1−4x+4x2 which has multiple factor (1 − 2x)2 in the

denominator. Then

g (x) =
x

(1 − 2x)2

= −
1
2

(
1

1 − 2x
−

1
(1 − 2x)2

)
=

1
2

(
∞∑

i=0

i2ixi −

∞∑
i=0

2ixi)

32

which gives the general term gn = 1
2 (n2n − 2n) = n2n−1 − 2n−1 .

This idea can be generalized as in the following theorem.

Theorem 4.1.3 Let {an} ∈ C∞ have the generating function A (x) =
p(x)
q(x) where deg (q (x)) =

k and (1 − αix) is a k−multiple factor of q (x) in C. Then the general term has summand∑k−1
t=0 Ctntαn

i corresponding to that factor.

Proof. If q (x) has a factor (1 − αix)k, then the corresponding summand in A (x) for that factor

becomes

Bi,1

(1 − αix)
+

Bi,2

(1 − αix)2 + · · · +
Bi,k

(1 − αix)k

= Bi,1
1

(1 − αix)
+ Bi,2

1
αi

Dx

(
1

(1 − αix)

)
+ · · · + Bi,k

1
αk−1

i

Dk−1
x

(
1

(1 − αix)

)
= Ci,1

∞∑
t=0

αt
i x

t + Ci,2

∞∑
t=0

tαt
i x

t + · · · + Ci,k

∞∑
t=0

tk−1αt
i x

t

=

k∑
j=1

Ci, j

∞∑
t=0

t j−1αt
i x

t

which implies that the general term has the summand
∑k−1

t=0 Ctntαn
i . �

It’s seen easily that the same idea also applies for sequences in R.

Until this point all the work is done in infinite fields. However, sometimes a desire to work in

finite fields may occur. If that is the case, examples given below may be helpful to understand

the basic idea of the operations done in finite fields.

Example 4.1.2 Take the recursion rn+2 = rn+1 + 2rn in GF (5) with initial conditions r0 = 1,

r1 = 1. The generating function for the recursion is

A (x) =
1

1 − x − 2x2

=
1

1 + 4x + 3x2

=
c1

1 + x
+

c2

1 + 3x

=
2

1 + x
+

4
1 + 3x

hence the general term is 2 · 4n + 4 · 2n in GF (5) .

33

Example 4.1.3 Take rn+3 = rn+1 + 2rn in GF (3) with initial conditions r0 = 1, r1 = 1,

r2 = 1. The function for the recursion is A (x) = 1
1−x2−2x3 = 1

1+2x2+x3 . But in this case q (x) is

irreducible in GF (3) . As it is done on the infinite case, again one should go to the smallest

complete field, which contains 1 + 2x2 + x3 reducible, that is the splitting field GF (3) /1 +

2x2 + x3. In that case if 1−αx is a factor then 1−α3x = 1− (2+α)x and 1−α9x = 1− (1+α)x

are also factors of 1+2x2 +x3. So the generating function for the recursion can be represented

as

A(x) =
1

1 − x2 − 2x3

=
1

1 + 2x2 + x3

=
A

1 − αx
+

B
1 − (2 + α)x

+
C

1 − (1 + α)x

=
α

1 − αx
+

2 + 2α
1 − (2 + α)x

+
2

1 − (1 + α)x

therefore the general term is rn = αn+1 + (2 + 2α)n+1 + 2(1 + α)n .

4.2 Linear Complexity

Linear complexity of a recursion becomes important frequently in different topics. That is

why we will go deeper and see how the complexity changes as different operations are applied

to functions or sequences. During this section we will always deal with proper sequences. If

as a result of an operation we get an improper one, we will take the linear complexity of the

truncated proper sequence as the linear complexity of the generated sequence.

It is obvious that if every term of a sequence is multiplied by a constant, deg(q (x)) and hence

the linear complexity does not change. Also shifting the sequence by n, which actually cor-

responds to multiplying the corresponding generating function with xn, does not change the

complexity since 0 is not a root of q (x)1. But if n zeros are inserted between every pair of suc-

cessive terms of a sequence namely if the variable of the corresponding function is changed

from x to xn, then the complexity becomes n times the original one since deg(q (xn)) = n

deg(q (x)).

1 We must note that multiplying p (x) with xn may cause deg(p (x)) become greater than deg(q (x)) in which
case we might need to specify more initial values, but we take the complexity of the ultimate sequence.

34

Theorem 4.2.1 Let {an} and {bn} be two different sequences with linear complexities l and k.

Then the sequence {cn} = {an + bn} has linear complexity not larger than k + l.

Proof. Let A (x) =
p(x)
q(x) and B (x) =

p′(x)
q′(x) be generating functions of {an}and {bn} respectively.

Then the generating function for {(a + b)n} is

C (x) =
p (x)
q (x)

+
p′ (x)
q′ (x)

=
p (x) q′ (x) + p′ (x) q (x)

q (x) q′ (x)

=
P (x)
Q (x)

.

Notice that P (x) and Q (x) may have common factor, therefore

deg (Q (x)) ≤ deg (q (x)) + deg
(
q′ (x)

)
= k + l.

�

Theorem 4.2.2 If two sequences with linear complexities k and l are convolved, the generated

sequence will have linear complexity at most k + l.

Proof. Let A (x) =
p(x)
q(x) and B (x) =

p′(x)
q′(x) be generating functions for {an} and {bn} respectively.

As the sequences are convolved, the generating function becomes

C (x) =
p (x) p′ (x)
q (x) q′ (x)

=
P (x)
Q (x)

which implies that

deg (Q (x)) ≤ k + l .

Equality occurs only when gcd (p (x) , q′ (x)) = 1 and gcd (p′ (x) , q (x)) = 1 . �

After this point one can see the affect of blending and regular decimation easily.

Theorem 4.2.3 If two sequences with linear complexities k and l are blended, then the newly

generated sequence will have a linear complexity not higher then 2(k + l).

Proof. Remember from section 2.3 that when two sequences with generating functions

A (x) =
p(x)
q(x) and B (x) =

p′(x)
q′(x) are blended the generating function of the resulting sequence

35

becomes

A
(
x2

)
+ xB

(
x2

)
=

p
(
x2

)
q
(
x2) + x

p′
(
x2

)
q′

(
x2)

=
p
(
x2

)
q′

(
x2

)
+ xp′

(
x2

)
q
(
x2

)
q
(
x2) q′

(
x2)

=
P (x)
Q (x)

.

In that case deg (Q (x)) ≤ 2 (k + l) where deg (q (x)) = l and deg (q′ (x)) = k. �

Theorem 4.2.4 Taking the d-decimation (d ∈ Z+)of a sequence does not increase its linear

complexity.

Proof. When the d-decimation of a sequence with the function A (x) =
p(x)
q(x) is taken as in

section 2.4

Ã (x) =
1
d

d−1∑
n=0

A
(
e

2nΠi
d x

1
d

)
is obtained as the result which is the summation of d different functions with degree 1

d deg (A (x))

that gives Q (x) ≤ d 1
d deg (q (x)) = deg (q (x)) . �

Example 4.2.1 Remember the Example 2.4.1 where a zero is inserted after every two terms

of the sequence {an} to generate the sequence S = {a0, a1, 0, , a2, a3, 0, . . .} . The sequence

S has generating function D(x) = B(x3) + xC(x3) where B(x) and C(x) corresponds to the

generating functions of the two decimated sequences. When Theorem 4.2.4 is considered it is

seen that the linear complexity of the 2-decimated sequences has the same linear complexity

as {an} say l. Therefore S has linear complexity at most 3l since the variable is changed from

x to x3 in functions B and C.

Example 4.2.2 The sequence S = {a0, a1, a3, a4, a6, a7, . . .} generated from the sequence {an}

with linear complexity l in Example 2.4.2 has linear complexity 2l since it has the generating

function B(x2)+ xC(x2) where the functions B and C corresponds to the decimated sequences.

Lemma 4.2.1 The linear complexity of the sequence {cn} = {anbn}, which is generated from

the sequences {an} and {bn} with linear complexities k and l has linear complexity not exceed-

ing kl.

36

Proof. Let the general terms of the given sequences be an =
∑k

i=1 ciα
n
i and bn =

∑l
i=1 diβ

n
i .

Then the general term of {cn} is

cn = anbn

=

k∑
i=1

ciα
n
i

l∑
i=1

diβ
n
i

=

kl∑
t=1

etγt

where each γt ∈ {αiβ j|i = 1, . . . , k; j = 1, . . . , l} and et are constants. Observe that there are

at most kl different γt s which implies that the linear complexity of the sequence is not larger

than kl . �

Theorem 4.2.5 If a sequence {bn} is generated by combining k sequences {a1
n}, {a

2
n}, . . . , {a

k
n}

with respective linear complexities l1, l2, . . . , lk with a polynomial function f , i.e. bn =

f (a1
n, a

2
n, . . . , a

k
n), then the linear complexity of {bn} is at most g(l1, l2, . . . , lk) where g is ob-

tained from the polynomial f by replacing every non-zero coefficients with 1.

Proof. Proof follows from Theorem 4.2.1 and the above lemma immediately. �

Example 4.2.3 Combine three sequences {an} , {bn} and {cn} with complexities k, l and m

respectively with a polynomial to get the new sequence {dn} = {an + 2anbn + bncn} . The

linear complexities of {anbn} and {bncn} are at most kl and lm respectively and even if every

term of {anbn} is multiplied with the constant 2 to get {2anbn} the linear complexity does not

change therefore the overall complexity becomes at most k + kl + lm .

Lemma 4.2.2 The linear complexity of the sequence {bn} = {anan−t} where 0 ≤ t ≤ n has

linear complexity at most
(

k
2

)
where k is the linear complexity of {an}.

Proof. Let an =
∑k

i=1 ciα
n
i be the general term of {an}. Then the general term for {an−t} is∑k

i=1 diα
n
i since it has the same recurrence relation with different initial conditions. Hence the

37

general term for {bn} becomes

bn = anan−t

=

k∑
i=1

ciα
n
i

k∑
i=1

diα
n
i

=

(k
2)∑

l=1

elγl

where all γl ∈ {αiα j|i = 1, . . . , k; j = 1, . . . , k} and el are constants. Observe that there can be

at most
(

k
2

)
different γk s so the linear complexity can not exceed

(
k
2

)
. �

Theorem 4.2.6 Given a sequence {an} with linear complexity k, the sequence {bn} generated

by polynomial f over the terms of {an}, i.e bn = f (an, an−1, . . . , an−i), has linear complexity at

most
∑d

j=0

(
k
j

)
where d is the degree of the polynomial f .

Proof. Proof follows from Theorem 4.2.1 and the above lemmas immediately. �

To be more precise, the linear complexity of {bn} in the above theorem is
(

k
d1

)
+

(
k
d2

)
+ · · ·+

(
k
d j

)
where j is the number of different degreed summands in f and d j s are the corresponding

degrees.

Example 4.2.4 Let {an} =
∑l

i=1 ciα
n
i have linear complexity l and {bn} = {an + 2an−1an−2 +

anan−2}. The linear complexity of {an−1an−2} is less then or equal to
(

l
2

)
because the set {γt}

where γt ∈ {αiα j|i, j = 1, . . . , l} has at most
(

l
2

)
elements. As in the previous example shift-

ing and multiplying with a constant does not change the linear complexity so the sequences

{2an−1an−2} and {anan−2} have linear complexities
(

l
2

)
moreover, they have the same set of γts.

So, the overall linear complexity of {bn} becomes at most l +
(

l
2

)
.

Lemma 4.2.3 Let {an} and {bn} be two sequences formed in a way that they both affect each

other linearly, i.e an = f (an−1, . . . , an−k) + f ′(bn−1, . . . , bn−k′) and bn = g′(an−1, . . . , an−l′) +

g(bn−1, . . . , bn−l) where f , f ′, g, g′ are all linear functions with complexities k, k′, l, l′ respec-

tively, then the linear complexities of both of these sequences are at most max(k + l, l′ + k′)

and moreover they actually represent the same recurrence relation.

38

Proof. Let {an} and {bn} have generating functions A(x) and B(x) respectively which give

A(x) = p1(x)A(x) + p′1(x)B(x) + α0 + α1x + · · · + αK−1xK−1

B(x) = p′2(x)A(x) + p2(x)B(x) + β0 + β1x + · · · + βL−1xL−1

where K = max(k, k′), L = max(l, l′) and p1 is formed from the function f such that if can−t

is a summand in f then there exist the coefficient cxt for the corresponding sequence in the

function p1 . In a similar way p′1, p2 and p′2 are generated from the functions g, f ′ and g′

respectively. Moreover αi and β j are chosen so that the initial conditions hold. Then

(1 − p1(x))A(x) = p′1(x)B(x) + α0 + α1x + · · · + αK−1xK−1

(1 − p2(x))B(x) = p′2(x)A(x) + β0 + β1x + · · · + βL−1xL−1

and solving them together gives

(1 − p1(x))A(x) = p′1(x)
p′2(x)A(x) + β0 + · · · + βL−1xL−1

(1 − p2(x))
+ α0 + α1x + · · · + αK−1xK−1

A(x) =
β0 + β1x + · · · + βL−1xL−1 + (1 − p2(x))(α0 + α1x + · · · + αK−1xK−1)

(1 − p1(x))(1 − p2(x)) − p′2(x)p′1(x)

and

(1 − p2(x))B(x) = p′2(x)
p′1(x)B(x) + α0 + · · · + αK−1xK−1

(1 − p1(x))
+ β0 + β1x + · · · + βL−1xL−1

B(x) =
α0 + α1x + · · · + αK−1xK−1 + (1 − p1(x))(β0 + β1x + · · · + βL−1xL−1)

(1 − p1(x))(1 − p2(x)) − p′2(x)p′1(x)
.

As it is seen both of the generating functions have the same denominator so the same recur-

rence relation, moreover the linear complexities are at most max(k + l, k′+ l′) since p1(x)p2(x)

has degree k + l and p′1(x)p′2(x) has degree k′ + l′. �

Theorem 4.2.7 If k sequences {a1
n}, {a

2
n}, . . . , {a

k
n} are generated such that all of them affect

each other linearly, i.e ai
n = f i

1(a1
n−1, . . . , a

1
n−li1

) + f i
2(a2

n−1, . . . , a
2
n−li2

) + · · ·+ f i
k(ak

n−1k
, . . . , ak

n−lik
)

where f i
j s are all linear i, j = 1, . . . , k, then the linear complexity of any of them can not

exceed max
∑k

j=0 li j
j where 1 ≤ i j ≤ k are all different.

Proof. Follows from the previous lemma immediately. �

An example to such sequences can be seen in the radioactive particles question in section

3.11.

39

4.3 Periodicity

Definition 4.3.1 A sequence {an} is said to be periodic with s ∈ N, if an+s = an is satisfied for

all n ∈ N. Smallest such s is the period of the sequence.

From the definition it can be said that if a sequence is periodic then it has the generating

function A (x) =
p̃(x)
1−xs . The numerator is denoted by a tilde to indicate that gcd (p (x) , 1 − xs)

may or may not be 1.

Theorem 4.3.1 Let A (x) =
p(x)
q(x) be the generating function of the sequence {an} . Then {an} is

periodic with s if and only if q (x) |1 − xs .

Observation 4.3.1 Periodicity and the period of the sequence, represented by the same gen-

erating function, may change as the field changes.

Example 4.3.1 It is immediately seen that the sequence {1, 0, 1, 0, . . .}with the function f (x) =

1
1−x2 has period 2 or the sequence {1, 2, 3, . . .} represented by 1

(1−x)2 does not have a period in

C since (1 − x)2 - 1 − xs for any s ∈ C . However, the period of the same generating function
1

(1−x)2 = 1
1−2x+x2 in GF(3) exists. Actually the corresponding sequence is {1, 2, 0, 1, 2, 0 . . .}

which has period 3 since 1 − 2x + x2 = 1 + x + x2|1 − x3 = (1 − x)(1 + x + x2). Moreover

the same generating function has period 5 in GF(5) since 1 − 2x + x2 = 1 + 3x + x2|1 − x5 =

(1 − x)(1 + 3x + x2)2.

Theorem 4.3.2 The general term of a periodic sequence {an} ∈ F of order s is an =

s∑
j=1

C jα
n
j

where α j s are the sth root of unities over F.

Proof. If {an} has period s then its generating function is

A(x) =
p̃(x)

1 − xs

=
p̃(x)

(1 − α1x)(1 − α2x) . . . (1 − αsx)

=
C1

(1 − α1x)
+

C2

(1 − α2x)
+ · · · +

Cs

(1 − αsx)

Therefore the general term becomes an =

s∑
j=1

C jα
n
j where α j s are the sth root of unities. �

40

In the previous section we have observed how linear complexity changes when different op-

erations are applied to sequences. What about the change of the period when the same opera-

tions are applied. The idea is very similar. Shifting and multiplying every term of a sequence

with a constant does not change the period since it does not change the denominator of the cor-

responding generating function. If two sequences with periods m and l where A (x) =
p(x)
q(x) such

that q (x) |1−xm and B (x) =
p′(x)
q′(x) such that q (x) |1−xl respectively are taken, both the sum and

the product of the two functions give the denominator q (x) q′ (x) | (1 − xm)
(
1 − xl

)
|1−xlcm(l,m).

Theorem 4.3.3 Every sequence in a finite field which satisfies a recurrence relation of a

certain degree is periodic.

Proof. An element an in a sequence that satisfies a recurrence relation can be written as a

function of the previous k elements. Assume that the field has m distinct elements. Then there

exist mk different k-tuples that an element can be generated from. So in the worst case, after

mk k-tuples a k-tuple repeats itself, thus the sequence is periodic. �

41

CHAPTER 5

Linear Feedback Shift Registers

There is a need for random sequences in different areas including mathematics, statistics,

computer engineering and cryptography. However, generating truly random sequences is a

hard task. Even though, any sequence obtained as an output of an algorithm is not random,

some particular algorithms can be used to obtain sequences that look like random which are

called pseudo random sequences. It is expected from those sequences to possess some of

the properties a random sequence possess. A common way to generate such sequences is

feedback shift registers.

A feedback shift register, r-FSR, is a machine with r-registers, x1, x2, . . . , xr that generates

every element an from previous r elements with respect to a function f (x1, x2, . . . , xr) and

some initial elements a0, . . . , ar−1. At the nth clocking an+1 is generated, ais in the registers

are shifted one stage and an+1 is pulled. If output is needed then an−r is taken as output.

 ...a a a a a4 a5

a a ...

f

f

a

a65

321

3 42a a a a a 10

0

r+4

r+3

time t

time t

5

4

Figure 5.1: Diagram of a feedback shift register

42

The sequences generated by FSRs can be thought as the sequences that were studied in the

previous sections and elements in the registers while initialization can be thought as the initial

terms of those sequences. The functions and so the recursions, can be linear or non-linear with

constant or non-constant coefficients. However, in this section only the FSRs with constant

coefficient linear homogeneous recursions which are called linear feedback shift registers,

LFSRs, will be studied.

Even though LFSRs can be defined in any field and generate sequences as described in pre-

vious sections, because of its importance and common use, they are examined on the fields

with characteristic 2 in this section unless stated otherwise. Therefore recursions are of the

form an+r = cr−1an+r−1 ⊕ cr−2an+r−2 ⊕ · · · ⊕ c0an where ci ∈ {0, 1} and ⊕ is addition in the field

GF(2).

Definition 5.0.2 Let D be the shift operator D : an −→ an−1. Define as D0 = 1, D1 = D and

Dn = D ◦ D ◦ · · · ◦ D for n > 1. It is evident that Dran = an−r. Therefore any given recursion

of the form an+r + cr−1an+r−1 ⊕ cr−2an+r−2 ⊕ · · · ⊕ c0an = 0 can be written as

an+r ⊕ cr−1Dan+r ⊕ · · · ⊕ c0Dran+r = 0(
c0Dr ⊕ c1Dr−1 ⊕ · · · ⊕ cr−1Dr−1

)
an+r = 0

L (D) an+r = 0 .

L (D) in the definition is called the connection polynomial and an LFSR is represented as

< r, L (D) >.

Example 5.0.2 Look at the recurrence relation an+5 = an+3⊕an+1⊕an and its corresponding

LFSR with initial elements (1, 0, 1, 0, 0, 1, 1).

an+5 ⊕ an+3 ⊕ an+1 ⊕ an = 0

D5an ⊕ D3an + Dan + an = 0

(D5 ⊕ D3 ⊕ D ⊕ 1)an = 0

D5 ⊕D3 ⊕D⊕ 1 is the connection polynomial of the corresponding LFSR (figure (5.2)) which

can be represented as < 7, (D5 ⊕ D3 ⊕ D ⊕ 1) > .

43

1 11 0 0 0 0

Figure 5.2: LFSR with < 7, (D5 ⊕ D3 ⊕ D ⊕ 1) >

An important observation coming from the Example 5.0.2 is that the first two terms of the

LFSR do not affect the rest of the sequence. Therefore if those two terms are truncated, the

ultimate sequence will still be represented by the same connection polynomial. In such a

case, representing the truncated LFSR as < 5, (D5 ⊕ D3 ⊕ D ⊕ 1) > or equivalently L(D) =

D5 ⊕ D3 ⊕ D ⊕ 1 is enough. From this point forward only ultimate sequences will be worked

on as it is done in previous sections by assuming the length of the LFSR being equal to the

degree of its connection polynomial unless stated otherwise.

Now consider the generating function of the sequence, derived from the LFSR in Example

5.0.2. It can be found as

A(x) =
1 ⊕ x2 ⊕ x5 ⊕ x6

1 ⊕ x ⊕ x3 ⊕ x5

=
p̃(x)
L(x)

using the Theorem 4.2. Hence q̃(x) = L(x) and one can see easily that this is true for any

LFSR.

Recall that if L(x) is reducible then the period and the linear complexity of the sequence may

change as the initial conditions change because for some initial terms gcd(p̃(x), q̃(x)) may be

different then 1. This is why the connection polynomial L(D) and hence q̃(x) will be taken

to be irreducible and they will be denoted by q(x) without causing any confusion throughout

this section. As a result, an r-LFSR with these properties has linear complexity r without any

confusion.

Observation 5.0.2 The all zero state (0)r = (0, 0, . . . , 0) is an exceptional state. Observe

that for (0)r to occur at a time t, the state at time t − 1 must be either (1, 0, 0, . . . , 0) or

(0, 0, 0, . . . , 0) . However, the connection polynomials are taken to be constant coefficient

linear and homogeneous with degree r. That is why the state (1, 0, . . . , 0) is never followed

by the all zero state. Therefore if at any time the state (0)r is observed, one can say without a

doubt that the r-LFSR is actually initialized with (0)r .

44

Theorem 5.0.4 The period of an LFSR with r-registers is at most 2r − 1.

Proof. From Theorem 4.3.3, it is already known that an LFSR has finitely many states, at

most 2r. Moreover it is observed that the all zero state may not occur in an LFSR unless it is

initialized with it. And if it is initialized so, the period will be simply 1. Therefore, for the

period to be maximum, it should not be initialized with (0)r which gives 2r − 1 distinct states.

That is why the period of an r-LFSR is at most 2r − 1 . �

Throughout this section, the initialization vector is always assumed to be different then (0)r.

Lemma 5.0.1 If F is a finite field with q elements and K is a subfield of F, then the polynomial

xq − x in K[x] factors in F[x] as

xq − x =
∏
α∈F

(x − α)

and F is a splitting field of xq − x over K.

Lemma 5.0.1 shows that if an LFSR with generating function A(x) =
p(x)
q(x) has r-registers,

deg(q(x)) = r, then q(x) ∈ GF(2r)[x], namely q(x)|x2r
− x. To be more precise q(x) | x2r−1 − 1

since x - q(x) as shown in the previous section. This also proves the Theorem 5.0.4.

Definition 5.0.3 If the period of the generated sequence for an r-LFSR is maximal, i.e 2r − 1,

then q(x) is a primitive polynomial.

The above definition also suits with the definition of a primitive polynomial in a finite field,

where a primitive polynomial is a polynomial that powers of its root covers all nonzero ele-

ments in the generated field.

As a result of the above definition, the function q(x) in the generating function is always taken

as a primitive polynomial throughout this section to have the maximum period.

The properties of sequences generated by LFSRs become important in cryptography as it is

mentioned in the beginning of this section. LFSRs are most widely used in stream cipher

based crypto-systems in which randomness is very important. The generated sequences must

satisfy the randomness postulates of Golomb which can be studied deeply from [5]. It is seen

that if an LFSR has maximal length, then it satisfies all of these postulates.

45

Linear complexity is also an important issue. Using the Berlekamp-Massey algorithm[6],

one can find the generating function of a sequence with linear complexity l in O(l2) time by

knowing only 2l terms. For this search to be infeasible, in cryptography a linear complexity

larger than 280 is used nowadays. Also it is desired for the sequence to have a very high

period, so that combined with linear complexity and randomness, the LFSR based stream

cipher acts much like a Vernam Cipher. Moreover, to increase the security, instead of using

one very large LFSR it is preferred to combine reasonably small LFSRs somehow and to

achieve a high linear complexity and period. This is why we want to observe how complexity

and period changes as more than one LFSRs are combined.

Get two LFSRs with lengths l1 and l2 generated by primitive connection polynomials then

add the outputs of every clock to get a new sequence. Remember from Theorem 4.2.1 that

the new sequence has linear complexity at most l1 + l2. Observe that initially from the two

LFSRs, there are already l1 + l2 registers and with a proper connection polynomial one can get

the maximal linear complexity easily, so it is seen that even though an additional operation is

done, the linear complexity of the sequence generated by l1 + l2 registers did not increase. As

oppose to this, when the outputs at each clock of the generated sequences are multiplied, a

sequence with linear complexity of l1l2 can be taken as a result if the connection polynomials

are chosen properly as seen in the proof of lemma 4.2.1.

Lemma 5.0.2 Take αi ∈ GF(2k) and β j ∈ GF(2l). The products αiβ j for all i,j are distinct if

gcd(k, l) = 1.

Theorem 5.0.5 Taking two maximal length LFSRs with lengths l1 and l2 with the condition

that gcd(l1, l2) = 1 and generating a sequence by multiplying the elements popped from the

LFSRs gives a sequence with linear complexity at most l1l2.

Proof. Let the generated sequences from the two LFSRs L1 and L2 have general terms∑l1
i=1 ciα

n
i and

∑l2
j=1 diβ

n
i where each 1 − αix and 1 − βix are factors of the connection polyno-

mials of L1 and L2 respectively. It is known from the proof of lemma 4.2.1 that the generated

sequence has general term
∑

etγ
n
t where each γt ∈ αiβ j for all i = 1, . . . , l1 and j = 1, . . . , l2.

If all γts are distinct than the generated sequence will have linear complexity at most l1l2. It

is seen from the above lemma that the upper bound is reached when gcd(l1, l2) = 1 and initial

terms are chosen properly. �

46

Using the above idea one can combine some relatively short LFSRs and get a sequence with

higher linear complexity.

5.1 Nonlinear Combiner

One technique to generate a random looking sequence is to use n different LFSRs working in

parallel and to combine the outputs of them in every clock using a non-linear function f to

increase the linear complexity.

LFSR 1

LFSR 2

LFSR n

.

.

.
f.

.

.
Output

Figure 5.3: A non-linear combiner

The function f has n inputs say x1, x2, . . . , xn which are the outputs of the LFSRs in every

clock. The length of the LFSRs will be defined relatively prime with each other to get greater

linear complexity as stated in Theorem 5.0.5.

Theorem 5.1.1 The linear complexity of the output sequence of a non-linear combiner which

uses n LFSRs with lengths l1, l2, . . . , ln and a non-linear function f (x1, x2, . . . , xn) ∈ GF(2)

is at most f (l1, l2, . . . , ln) ∈ Z+.

Proof. The proof follows from the Theorems 5.0.5 and 4.2.5 �

Theorem 5.1.2 If maximum length LFSRs are used in the combiner with pairwise relatively

prime lengths l1, l2, . . . , ln then the period of the generated sequence is (2l1−1)(2l2−1) · · · (2ln−

1).

47

5.1.1 Geffe Generator

Geffe Generator is an example of a non-linear combiner with three LFSRs say L1, L2 and L3.

In every clock all of the LFSRs are clocked, if the output of L2 is 1 the output of L1 is taken

as the system output, otherwise the output of L3 is taken. One can observe that this schedule

can be described using the function

f (x1, x2, x3) = x1x2 ⊕ (1 ⊕ x2)x3

= x1x2 ⊕ x2x3 ⊕ x3

where xi is the output of Li at a time. With the knowledge of f , one can easily say that

the linear complexity of the generator is at most l1l2 + l2l3 + l3 and the period is at most

(2l1 − 1)(2l2 − 1)(2l3 − 1) where li is the length of Li. Moreover, if lis are pairwise relatively

prime and the connection polynomials are primitive, then the maximum value is reached with

the proper initialization.

5.1.2 Majority Generator

A majority generator is another example of a non-linear combiner. In this section the one

with three LFSRs will be defined, however one can use any odd number of LFSRs without

facing with any problems. Let the LFSRs be defined as in the Geffe Generator schedule with

primitive connection polynomial. In every clock, all the LFSRs are clocked and the output of

the system is taken as the majority of the outputs of the three LFSRs, i.e. If any two of them

gives output 1, then the output of the system is 1, otherwise it is 0. As it is done in the previous

section for Geffe Generator, once again the system can be described with a function, namely

f (x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x1x3. Using this function one can find the highest possible linear

complexity as l1l2 + l2l3 + l1l3 which is higher then the Geffe generator; however the period is

the same.

It may seem that as linear complexity of the system increases, the security also increases

however, this may not be the case. While combining the LFSRs, one may loose the correlation

immunity or balancedness properties of the sequence which may cause serious weaknesses.

Different attacks like correlation attacks may be applied to such ciphers. The techniques to

prevent those attacks is not in the scope of this thesis and will not be mentioned but we feel

obligated to make this warning.

48

5.2 Nonlinear Filter

In some cases, instead of using more than one LFSRs, one may have a desire to use only one

single LFSR but still increase the linear complexity. In such cases, a non-linear filter may be

the answer.

f Output

...

Figure 5.4: A non-linear Filter

Theorem 5.2.1 The linear complexity of the sequence generated by a non-linear function

from an l-LFSR is at most 2l − 1.

Proof. Remember from Theorem 4.2.6 that the linear complexity of the sequence is at most∑d
i=1

(
d
i

)
where d is the degree of the recursion; in this case it can be viewed as the number of

registers multiplied in the filter. So the maximum value is reached when all the registers are

used and there exist at least one term of all possible degrees in the recursion. �

Example 5.2.1 Let L be a maximum length LFSR with degree l. If the filtering function is

f = x1x2 + x5 then the linear complexity of the system becomes
(
5
2

)
+
(
5
1

)
= 15 as it is explained

in lemma 4.2.2. Moreover even if the function is changed as f = x1x2 + x2x4 + x5 the

linear complexity does not change as in Example 4.2.4 and the maximum linear complexity is

reached if the function is f = x1x2x3x4x5 + x1x2x4x5 + x3x4x5 + x2x4 + x1, namely if there

exist a term for every possible degree in the function.

5.3 Some Other Possible Generators

The knowledge of filters and combiners yield to combine more then one LFSR in different

ways. The figures (5.5) and (5.6) are some examples. In both of the examples the functions

are linear functions. However one must be careful that the output of an LFSR affects the other

49

 ...

 ... f

 g

 hOutput

Figure 5.5: Combination of two LFSRs without filtering

one. With a similar idea that was used in the proof of lemma 4.2.3, the generating functions

of the output sequences of the LFSRs just before the function h can be written as A(x) and

B(x) respectively. Let the first LFSR have linear complexity l1 after the f function and the

other one have linear complexity l2 right after the g function. Then the generating functions

A(x) and B(x) for the sequences in figure (5.5) can be written easily as

A(x) = α0 + α1x + · · · + αr1 xr1−1 + p1(x)B(x)

B(x) = β0 + β1x + · · · + βr2 xr2−1 + p2(x)A(x)

where p1(x), p2(x) and αis and βis are formed as in lemma 4.2.3.

After solving these equations one gets

A(x) = α0 + α1x + · · · + αr1 xr1−1 + p1(x)(β0 + β1x + · · · + βr2 xr2−1 + p2(x)A(x))

=
α0 + α1x + · · · + αr1 xr1−1 + p1(x)β0 + p1(x)β1x + · · · + p1(x)βr2 xr2−1

1 − p1(x)p2(x)

and

B(x) = β0 + β1x + · · · + βr2 xr2−1 + p2(x)(α0 + α1x + · · · + αr1 xr1−1 + p1(x)B(x))

=
β0 + β1x + · · · + βr2 xr2−1 + p2(x)α0 + p2(x)α1x + · · · + p2(x)αr1 xr1−1

1 − p1(x)p2(x)
.

It is seen that both of the sequences have linear complexity at most l1 + l2 that is the sum of the

linear complexities of the original sequences generated by the LFSRs. Moreover, if the initial

conditions are chosen properly, gcd(p(x), q(x)) may be equal to one therefore the maximum

bound will be reached. The rest is just an easy combining operation.

50

 ...

 ...

 hOutput

 f’

 g’

Figure 5.6: Combination of two LFSRs with filtering

Now, look at the structure in figure (5.6). It is seen from the lemma 4.2.3 that the linear

complexity of the whole structure just before the h function is again l1+l2 which is an expected

result since the maximum degrees of the linear functions f ′ and g′ are l1 and l2 respectively

which is the same as the degrees of the feedback functions.

Moreover, the period in both cases are the same which is at most (2r1 −1)(2r2 −1) if they have

primitive connection polynomials with gcd(r1, r2) = 1.

fOutput ...

...

...

Figure 5.7: Combination of three LFSRs without filtering

Even though the above generators have two LFSRs, while finding the linear complexity and

the period of generators that has more than two LFSRs the same idea is used. As an example

look at the figure (5.7). When the same method to find the linear complexity of the generator

as in figure (5.5) is applied, it is seen that the linear complexity of the system just before

the combining operation is at most l1 + l2 + l3 if li is the length of the LFSR Li. Moreover

if the connections polynomials are irreducible and the initial conditions are chosen properly,

the upper bound is reached. In addition to that, if the polynomials are primitive and lis are

relatively prime, than the period of the system is (2l1 − 1)(2l2 − 1)(2l3 − 1).

As a last example look at the figure where the first and the third LFSRs affect the second

and the second affecting them. Let the LFSRs have linear complexity l1, l2 and l3, then the

maximum possible degrees are also the same for the linear functions f , g and h respectively.

Therefore the maximum possible linear complexity is l1 + l2 + l3. Moreover, assuming that

51

Output

...

...

...

g

h

f

Figure 5.8: Combination of three LFSRs with filtering

the polynomials are primitive and lis are relatively prime, than the period of the system is

(2l1 − 1)(2l2 − 1)(2l3 − 1).

Even though the functions f , g and h here are said to be linear, they can also be a filtering

operation in which case the linear complexity of the sequences after the filtering operations

increase. Remember from Theorem 4.2.7 that the linear complexity is calculated by adding

the maximum linear complexities of the sequences generated by the LFSR. So for example

if f was a filtering operation where the sequence has linear complexity l′1 after the operation,

then the linear complexity of the system can be at most l′1 + l2 + l3 by choosing proper initial

conditions.

5.4 Clock Control Generators

In this type of generators, as opposed to what was done so far, the LFSRs in the system

are not controlled by the same clock. This means that they may not be clocked at the same

time. Generally the clocking of an LFSR is determined by the output of another LFSR in the

system. In this thesis, two particularly important types of clock controlled generators, namely

shrinking generator and alternating step generator, and their behaviors will be examined.

5.4.1 Shrinking generator

A shrinking generator is composed of two LFSRs L1 and L2 with lengths l1 and l2 respec-

tively. Both of the LFSRs are clocked at the same time. This opposes how the clock control

generators are defined but since a shrinking generator is taken as a clock control generator

by the researchers studying on this subject, we take this subject in this chapter. In a shrink-

52

ing generator the output of L2 is taken as the system output only when the output of L1 is

1; otherwise the output of L2 is discarded. Remember that the connection polynomial of

the LFSRs are taken to be primitive, so that they will possess all the randomness postulates

of Golomb. Therefore, the number of ones in a period is nearly half of the length of the

period. Hence the period of the generator is 2l1−1(2l2 − 1) . While finding an upper bound

for the linear complexity L(x) of the system, again the number of ones in the first LFSR is

used. Since there are 2l1−1 ones in L1, by taking proper decimations for 2l1−1 different starting

points and inserting 2l1−1 − 1 zeroes in between every consecutive terms of the decimated

sequences, the decimated sequences will have linear complexity at most l22l1−1. As we add

those sequences after making proper changes, the output of the shrinking generator is gained

therefore, L(x) ≤ l22l1−1.

In the previous formation of generators, finding the upper bound for the system was enough

because, by looking at the denominator of the generating functions, the conditions for the

linear complexity to reach the upper bound can be observed easily. However, in this type of

generators, analyzing the generating functions is difficult therefore it is necessary to give a

lower bound for the linear complexity. By using the properties of decimations and period, it

can be seen that l22l1−2 < L(x). Hence the linear complexity of the generator L(x) satisfies

l22l1−2 < L(x) ≤ l22l1−1.

5.4.2 Alternating Step Generator

Three LFSRs L1, L2 and L3 with linear complexities l1, l2 and l3 and output sequences {an},

{bn} and {cn} respectively are used for this type of generators. L1 is used as the clock control

and the others determine the output sequence. To be more clear, L2 is clocked if the output

of L1 is 1, otherwise L3 is clocked and the sum of the outputs of L2 and L3 at that time

is taken. Therefore at time t, the output can be represented as rt = bT (t) ⊕ ct−T (t)−1 where

T (t) = (
t∑

i=0

ai) − 1. As opposed to shrinking generators, in alternating step generators the

whole periods are used for every LFSR,that is why the period of the generator is (2l1 −1)(2l2 −

1)(2l3 − 1). Moreover it can be shown by using the properties of decimation that the linear

complexity L(x) satisfies (L2 + L3)2L1−1 < L(x) ≤ (L2 + L3)2L1 .

53

REFERENCES

[1] Herbert S. Wilf. generatingfunctionology. Academic Press, Inc., 2 edition, 1994.

[2] Fred S. Roberts. Applied combinatorics. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1984. ISBN 0-13-39313-4.

[3] F. Harary and E. M. Palmer. Graphical Enumeration. New York, Academic Press, 1973.
ISBN 0123242452.

[4] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996. ISBN 0849385237.

[5] Solomon W. Golomb. Shift Register Sequences. Holden-Day, 1967.

[6] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory, 15:122–127, 1969.

54

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTERS
	INTRODUCTION
	OPERATIONS
	Operations on the Sequences
	Scalar Multiplication
	Shifting and Truncation

	Operations on the Functions
	Changing the Variable
	Differentiation and Integration
	Summation
	Convolution
	Composition

	Blending
	Decimation

	Combinatorial Problems
	Distributing n Candies to r Children
	Fibonacci's Rabbits
	Regions in the Plane
	Partitions
	Permutations
	Functions
	Parentheses and Catalan Numbers
	Derangements
	Involutions
	Graphs
	Radioactive Particles

	Constant Coefficient Linear Homogeneous Recursions
	General Term
	Linear Complexity
	Periodicity

	Linear Feedback Shift Registers
	Nonlinear Combiner
	Geffe Generator
	Majority Generator

	Nonlinear Filter
	Some Other Possible Generators
	Clock Control Generators
	Shrinking generator
	Alternating Step Generator

	REFERENCES

