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ABSTRACT 
 
 

 

 
 

ROBUST CONIC QUADRATIC PROGRAMMING  

APPLIED TO QUALITY IMPROVEMENT   

-A ROBUSTIFICATION OF CMARS 

 

 

 
 

Özmen, AyĢe 

M.Sc., Department of Scientific Computing 

Supervisor: Prof. Dr. Gerhard-Wilhelm Weber 

Co-Supervisor: Assoc. Prof. Dr.  Ġnci Batmaz 

 

 

September 2010, 139 pages 

 

 

In this thesis, we study and use Conic Quadratic Programming (CQP) for purposes of operational 

research, especially, for quality improvement in manufacturing. In previous works, the 

importance and benefit of CQP in this area became already demonstrated. There, the complexity 

of the regression method Multivariate Adaptive Regression Spline (MARS), which especially 

means sensitivity with respect to noise in the data, became penalized in the form of so-called 

Tikhonov regularization, which became expressed and studied as a CQP problem. This was 

leading to the new method CMARS; it is more model-based and employs continuous, actually, 

well-structured convex optimization which enables the use of Interior Point Methods and their 

codes such as MOSEK. In this study, we are generalizing the regression problem by including 

uncertainty in the model, especially, in the input data, too.  

 

CMARS, recently developed as an alternative method to MARS, is powerful in overcoming 

complex and heterogeneous data. However, for MARS and CMARS method, data are assumed to 

contain fixed variables. In fact, data include noise in both output and input variables. 

Consequently, optimization problem‘s solutions can show a remarkable sensitivity to 



 v 

perturbations in the parameters of the problem. In this study, we include the existence of 

uncertainty in the future scenarios into CMARS and robustify it with robust optimization which 

is dealt with data uncertainty. That kind of optimization was introduced by Aharon Ben-Tal and 

Arkadi Nemirovski, and used by Laurent El Ghaoui in the area of data mining. It incorporates 

various kinds of noise and perturbations into the programming problem. This robustification of 

CQP with robust optimization is compared with previous contributions that based on Tikhonov 

regularization, and with the traditional MARS method.  

 

Keywords: Multi Adaptive Regression Splines, Conic Multi Adaptive Regression Splines, 

Robust Optimization, Data Uncertainty, Conic Quadratic Programming. 
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ÖZ 
 
 

 

 

KALĠTE GELĠġTĠRMESĠNE UYGULANAN  

SAĞLAM KONĠK KUADRATĠK PROGRAMLAMA  

–CMARS METODUNDA BĠR SAĞLAMLAġTIRMA 

 
 

 
Özmen, AyĢe 

Yüksek Lisans, Bilimsel Hesaplama Bölümü 

Tez Yöneticisi: Prof. Dr. Gerhard-Wilhelm Weber 

Ortak Tez Yöneticisi: Assoc. Prof. Dr. Ġnci Batmaz 

 

 

 

 

 

Eylül 2010, 139 sayfa 

 

 

Bu çalıĢmada, yöneylem araĢtırması amacıyla, özellikle, imalat içindeki kalite geliĢtirmesi için  

Konik Karasel Programlamayı   inceliyor ve kullanıyoruz. Önceki dönemde ODTÜ Uygulamalı 

Matematik Enstitüsü‘nde yapılan ve tamamlanan Master tezi projesinde Konik Karasel 

Programlamanın bu alandaki önemi ve yararı zaten açıklanmıĢ oldu. O projede, özellikle veri 

içindeki parazitle ilgili duyarlık anlamındaki regresyon yöntemi MARS‘ın karmaĢıklığı, bir 

Konik Karasel programlama problemi olarak incelenmiĢ ve açıklanmıĢ olan sözde Tikhonov 

düzenleme formu içinde cezalandırılmıĢ oldu. Bu durum yeni metod CMARS‘ın oluĢmasına 

öncülük etmiĢtir. CMARS daha fazla model tabanlıdır ve MOSEK gibi kodlarıyla Ġç Nokta 

Metodlarının kullanılmasına olanak sağlayan sürekli, doğrusu, iyi yapılandırılmıĢ konveks 

optimizasyona hizmet verir. Bu çalıĢmada, biz model içinde özelliklede girdi değiĢkenlerinde 

belirsizlik içerecek Ģekilde regresyon problemimizi geneleleĢtiriyoruz. 

 

Çok değiĢkenli uyarlanabilir regresyon eğrileri (MARS) algoritmasına seçenek olarak son 

zamanlarda geliĢtirilmiĢ yeni bir yaklaĢım olan konik (konveks, sürekli) çok değiĢkenli 

uyarlanabilir regresyon eğrileri (CMARS) algoritması karmaĢık ve türdeĢ olmayan veri 

kümelerini baĢarı ile modelleyen bir yöntem olarak karĢımıza çıkmaktadır. Ancak MARS ve 
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CMARS yöntemleri bağımsız (girdi) değiĢkenlerin sabit olduğunu varsaymaktadır. Aslında 

yaĢam verilerinin tümümde (yani, girdi ve çıktı değerlerinde) gürültü bulunmaktadır ve 

optimizasyon probleminin çözümleri problem değiĢkenlerindeki belirsizliklere karĢı kayda değer 

bir duyarlılık gösterebilmektedir. Bu yeni çalıĢmada, bağımsız değiĢkenlerin rastgele olduğu 

varsayılarak CMARS modeline belirsizlik kavramı eklenmiĢ ve verilerdeki belirsizlikleri ele alan 

sağlam optimizasyon tekniği ile CMARS model ve algoritması sağlamlaĢtırılmaktadır. Bu çeĢit 

optimization Aharon Ben-Tal ve Arkadi Nemirovski tarafından tanıtıldı ve Laurent El Ghaoui 

tarafından veri madenciliği alanında kullanıldı. Bu optimizasyon, programlama problemleri 

içindeki değiĢik tarzda belirsizlikleri ve karıĢıklıkları içermektedir. Sağlam  optimizasyon ile bu 

Konik Karasel Program SağlamlaĢtırma, Tikhonov düzenlemesini temel alan önceki katkılarla  

ve geleneksel MARS yöntemiyle karĢılaĢtırılmaktadır. 

 

Anahtar Kelimeler: Çok DeğiĢkenli Uyarlanabilir Regresyon Eğrileri, Konik Çok DeğiĢkenli 

Uyarlanabilir Regresyon Eğrileri, Sağlam Optimizasyon, Veri Belirsizliği, Konik Karesel 

Programlama. 
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CHAPTER 1 
 

 
 

INTRODUCTION 
 

 
 

1.1 Contributions of the Thesis 

Multivariate Adaptive Regression Spline (MARS) has been applied successfully too many fields 

of science, economy and technology in recent years. It bases on a modern methodology from 

statistical learning, which is important in both regression and classification. MARS builds 

flexible high-dimensional nonparametric regression models, and presents a great promise for 

fitting nonlinear multivariate functions. It generates an additive model in two-stage process: the 

forward and backward stepwise algorithms. In Conic Multivariate Adaptive Regression Spline 

(CMARS) method, the backward stepwise algorithm is not applied. Instead of this, a Penalized 

Residual Sum of Squares (PRSS) is employed for MARS as a Tikhonov Regularization (TR) 

problem [89]. This two-objective optimization problem is treated using the continuous 

optimization technique called Conic Quadratic Programming (CQP). 

 

CMARS is an alternative method to a well-known regression tool MARS from data mining and 

estimation theory. With this study, we further improve CMARS so that it can treat uncertainty in 

the data. In fact, generally, data may include noise in both input and output variable. This means 

that the data of the regression problem are not exactly known or may not be exactly measured, or 

the exact solution of the problem may not be carried out because of intrinsic inaccuracy of the 

devices [17]. Furthermore, the data can undergo small changes by variations in the optimal 

experimental design. These altogether leads to uncertainty in the objective function and in 

possible constraints. To handle this, we refine our CMARS algorithm by an important robust 

optimization developed by Ben-Tal and Nemirovski [7, 9, 10], and El-Ghaoui and Lebret [27], 

and call it as RCMARS. 

 

Robust optimization (RO) is a modeling methodology to process optimization problems in which 

the data are uncertain and are only known to belong to some uncertainty set, except for outliers. 

The purpose of RO is to find an optimal or near optimal solution which is feasible for every 

possible realization of the uncertain scenarios [15]. 

 



 2 

In a previous study, ―a comparison of data mining methods for prediction and classification types 

of quality problems‖ reveals that MARS outperforms with respect to several performance criteria 

[1]. Based on this finding, in this study, we further improve MARS to be able to deal with not 

only fixed but also random type input data. 

 

1.2 Purpose of the Study 

CMARS models depend on the parameters. Small perturbations in data may give different model 

parameters. This can cause unstable solutions. In CMARS, the aim is to reduce the estimation 

error while keeping efficiency as high as possible. In order to achieve this aim, we apply some 

approaches like scenario optimization, robust counterpart and usage of more robust estimators. 

By using robustification in CMARS, we try to reduce the estimation variance. 

 

We firstly analyze how uncertainty incorporated into the CMARS model with complexity terms 

in the form of integrals of squared first- and second-order derivatives of the model functions and, 

then, the discretized TR, and finally, the CQP form of the problem. Then, we introduce a 

robustification of CMARS with robust optimization under polyhedral uncertainty and ellipsoidal 

uncertainty [67, 68]. Because of the computational effort which our robustification of CMARS 

easily need, we also present the concept of a weak robustification.   

 

1.3 Scope of the Thesis 

This thesis is comprised of six main chapters and an Appendix. Briefly summarizing, the 

contents are organized as follows: 

 

Chapter 1: Introduction of the thesis. The objectives and outlines of the study is given in  

                this chapter. 

Chapter 2: The background information about Regression, Tikhonov Regularization, 

                Conic and Robust Optimization.                  

Chapter 3: Theory and approaches of MARS and CMARS methods. 

Chapter 4: Robust CMARS is introduced in theory and method. RCMARS results with 

                  different uncertainty scenarios for the numerical example studied in our study. 

Chapter 5: Simulation results for comparison of MARS, CMARS and RCMARS   

                methods. The results are discussed at the end of this chapter. 

Chapter 6: Conclusion and further studies are stated in the last chapter.  
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CHAPTER 2 
 

 

 

BACKGROUND 

 

 

 

2.1 Regression 

Regression analysis is a mathematical and statistical technique which is very useful for many 

types of problems in engineering and science analyzing the relationship between dependent 

variable and one or more independent variables. Regression analysis is widely used for prediction 

and estimation and most commonly estimates the conditional expectation of the dependent 

variable given the independent variables [57]. 

  

There exist many regression models such as Linear Regression Models, Nonlinear Regression 

Models, Generalized Linear Models, Nonparametric Models, and Generalized Additive Models.  

 

2.1.1 Linear Regression Model 

The case of simple linear regression regards a single predictor (regressor) variable X and a 

response (dependent) variable Y. It is assumed that the true relationship between Y and X is a 

straight line and that the observation Y at each level of x is a random variable [57]. The 

conditional expected value of Y for each value of X (=x) is 

 

0 1
( ) .E Y X X  

                                                     
(2.1.1)

 
 

Here, the intercept 
0

   and the slope 
1

  are unknown regression coefficients. It is supposed that 

each observation, Y, may be defined by the model [57] 

 

0 1
.Y X    
                                                           

(2.1.2)
 

 

Here, 
 
is a random error with zero mean, and 

2
 
is the unknown variance. Also, we suppose 

that the random errors corresponding to different observations are uncorrelated random variables. 

http://en.wikipedia.org/wiki/Prediction
http://en.wikipedia.org/wiki/Conditional_expectation
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Figure 2.1  Deviation of the points about a line from the estimated regression model [57]. 

 

 

To select the best-fitting line for a set of data, the unknown parameters of the simple linear 

regression model in Figure 2.1, 
0 1

and   
 
should be estimated. Maximum Likelihood Estimation 

and Least-Squares Estimation (LSE) could be used to estimate unknown regression parameters. 

However, the easiest method is least-squares (LS) method. We can clearly define the n 

observations in the sample by using the equation (2.1.2) as follows [57] 

 

0 1
  ( 1,2,..., ),

k k k
y X k n     

                                       
(2.1.3) 

 

and the deviation of kth value of y from kth predicted value is equal to 
0 1

( ).
k k

y X  Then, 

for all of the n data points, the sum of the squares of the deviations of the observations from the 

true regression line is [62] 

 

 
22

1 1

0 1 ( ) ( ) .
n n

k

k k

k kL y X   
 

                                   
(2.1.4) 

 

The least squares estimators of 
0

  and 
1

  is defined as 
0

̂  and 
1

̂  which minimize L, and the 

prediction equation represented as  

 

0 1
ˆ ˆˆ .y X                                                               (2.1.5) 

 

The values of 
0

̂  and 
1

̂  should satisfy the two partial derivatives, 
0 1

and/  / ,L L      equal 

to zero. Here, L, hence, is the likelihood function. The equation (2.1.5) is called the LS line. Each 

of pair of observation satisfies the relationship [57, 62]   
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0 1  ( 1,2,..., ),k k ky X e k n      

 

where  ˆ
k k ke y y   is called the kth residual. The residual presents error in the fit of the model 

to the kth observation,  ky .  

 

Many application of regression analysis contain situations that there exist more than one 

predictor variable in. A regression model which includes more than one predictor variable is 

called a Multiple Linear Regression Model and it can be represented as follows [57, 62]: 

 

0 1 1 2 2
... .

n n
Y X X X                                               (2.1.6) 

 

The method of least squares may be used to estimate the unknown regression parameters in the 

equation (2.1.6). 

 

2.1.2  Non-Linear Regression Models 

If there is at least one nonlinear parameter in a model, this model is called as A Non-Linear 

Model. This means that, in a nonlinear model at least one derivative with respect to a parameter 

must include that parameter. Some examples for nonlinear regression models are as follows [74]: 

 

                                                   

2

( ) ,

( ) .

at bt

bt

Y t e

Y t at e







 
                                                                     (2.1.7)                                                                                                                                

 

Some examples for nonlinear functions are: exponential functions, logarithmic functions, 

trigonometric functions, power functions, Gaussian function, and Lorentzian curves. Some 

functions, such as the exponential or logarithmic functions are assumed to be linear because they 

can be transformed. Here, when transformed, standard linear regression may be performed but 

should be employed with caution [74]. 

 

2.1.2.1 Non-Linear Growth Models 

Those models which define the growth behavior over time are used in many areas. In the field of 

population biology, growth occurs in organisms, plants, animals, etc. [71]. The type of model 

which is needed in a specific situation relies on the type of growth that occurs. Generally, growth 

models are mechanistic in nature, rather than empirical.  

 

 

http://en.wikipedia.org/wiki/Exponential_functions
http://en.wikipedia.org/wiki/Logarithmic_growth
http://en.wikipedia.org/wiki/Trigonometric_functions
http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Gaussian_function
http://en.wikipedia.org/wiki/Lorentzian
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i) Malthus Model: 

The Malthusian model depends on two key ingredients: an agricultural production function that 

applies the fixed factor land and an income-population feedback where the population growth 

rate is an increasing function of income per capita. Consider the aggregate production function of 

the form [70, 74]: 

 
1

( )
t t t

Y A X N
 

 ,                                                    (2.1.8) 

  

where 
t

Y  denotes output in period t , 
t

A
 
is productivity, X  is the fixed amount of land, and 

t
N

 

is the size of the population. Dividing 
t

Y  by 
t

N
 
on both sides, we may see that the income per 

capita t

t

t

Y
y

N
  is given by 

.t

t

t

A X
y

N




 
 
                                                           

(2.1.9) 

 

The equation implies that income per capita is an increasing function of productivity, but a 

decreasing function of population: when the size of the population increases, there is less land for 

each person to work with, which lowers income per capita.  

 

ii) Monomolecular Model: 

The monomolecular model defines the progress of a growth situation in which it is believed that 

the rate of growth at any time is proportional to the resources yet to be achieved [71], 

 

( ).
dN

r K N
dt

   

 

Here, K  is a carrying size of the system. Integrating both sides of the equation we get: 

 

0
( ) ( )exp( )N t K K N rt    , 

 

where 
0

(0) .N N   

 

iii) Logistic Model: 

The logistic model is described by the differential equation [71] 
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0
(1 )

dN N
rN r N

dt K
   , 

 

which has the following solution: 

 

0

0 0 0
( ) exp( )

.
t

N K
N

N K N r t


  
                                      

(2.1.11) 

iv) Gompertz Model: 

The gompertz model is described by the differential equation as follows [71]: 

 

log ( / )
e

dN
rN K N

dt
 . 

 

Integration of this equation yields  

 

0
( ) exp(log ( / )exp( ))

e
N t K N K rt  .                                     (2.1.12) 

 

2.1.2.2 Fitting of Non-Linear Models 

The models above are posed deterministically but this is unrealistic. Because of this, adding an 

error term on the right hand side and making an appropriate assumption about them, we replace 

these deterministic models by statistical models. This brings us a Nonlinear Statistical Model. In 

non-linear case, parameter estimates can also be constructed by the method of LS like linear 

regression. Minimization of RSS produces normal equations which are nonlinear in the 

parameters. It is not possible to solve nonlinear equations exactly. For this reason, the next 

alternative is to obtain approximate analytic solutions by using iterative procedures. For this 

approximate solution, three main methods are [70]: 

 

i) Linearization method, 

ii) Steepest Descent method,  

iii) Levenberg-Marquardt’s method. 

 

The linearization method applies the results of least squares theory in a succession of stages but, 

neither this method nor the steepest descent method is ideal. The linearization method is 

converge very rapidly provided the vicinity of the true parameter values are reached, but if initial 

trial values are too far removed, convergence may not occur at all whereas the steepest descent 

method is able to converge on true parameter values even though initial trial values are far from 

the true parameter values [70]. However, this convergence tends to the very slow at the later 

stages of the iterative process.  
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The most widely applied method of computing non-linear least squares estimators is Levenberg- 

Marquardt’s one. This method presents a compromise between the other two methods and 

combines successfully the best features of both and avoids their serious disadvantages. It is good 

in the sense that it almost always converges and does not ‗slow down‘ at the latter part of the 

iterative process. The model is [70] 

 

 
( , )     ( =1,2,..., )

i i i
y f x i n   .                                          (2.1.13)     

 

Here, 
i

y  is the 
th

i  observation of the dependent variable, 
i

x  is 
th

i  independent variable; 

1 2
( , ..., ), T

n
    are parameters, 

i
 ; the error terms are independent and follow  

2
(0, )N 

distribution. The residual sum of squares is given by [70]: 

 

  

2

1

( ) ( ( , )) ,
n

i i

i

S y f x


  

                                                  

(2.1.14)

 
 

where 
0 10 20 0

( , ,..., )
T

n
   is the vector of initial parameter values. The algorithm for 

constructing successive estimates is represented as follows: 

 

       0 1
( )( ) ,  H I g 

  
 

where 

   

0 0

2
( ) ( )

,  .
T

S S

   

 

   

 
 

  
g H

                                       

(2.1.15)

 
 

Here, I  is the identity matrix and   is a suitable multiplier. 

 

2.1.3 Generalized Linear Models 

Generalized Linear Models (GLMs) are used in many application of prediction, in regression and 

classification. GLM, mathematical extensions of linear model, does not force data into unnatural 

scale and so, allows for non-linearity and non-constant variance structures in the data. If the 

normality and constant variance assumptions are not satisfied, this approach can be applied [40]. 

In GLM, it can be assumed that data are from several families of probability distributions, 

involving the normal, binomial, Poisson, negative binomial, or gamma distribution. 

 

By using a link function, GLM makes it possible to search linear and nonlinear relationships 

between the mean of the response variable and the linear combination of the explanatory 

variables [40]. The mean value of a dependent variable rely on a linear predictor through a 
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nonlinear link function and allows the response variable Y; its probability distribution to be any 

member of an exponential family of distributions that has the basic structure 

 

( ) ( ),    T

k k kg g   X 
                                                 

(2.1.16) 

 

where  for( ) 1,2,..., .  
k k

E Y nk    

 

Here, g is the smooth link function, n is the number of observation,
 

T

k
X  is the kth row of the 

model matrix X, and   is the vector of unknown parameters.  

 

GLM generally makes the distribution assumptions which the response variable is independent 

and may have any distribution from an exponential density family (e.g. Gaussian, Poisson or 

binomial). The form of this model represented as follows [40, 92]:  

 

     

( )
( ) exp ( , ) .

( )

y b
f y c y

a


 




 
  

 
                                       

(2.1.17) 

 

Here, b, a, c are arbitrary functions,   is an arbitrary, so-called scale parameter and 
 
is known 

as the canonical parameter of the distribution.  

 

2.1.4 Generalized Partial Linear Models 

A particular semiparametric model of interest is the Generalized Partial Linear Model (GPLM) 

that extends the GLM in that the usual parametric terms are enlarged by a nonparametric 

component. The GPLM model is given by [61, 83] 

 

( , ) ( ( )),
T

E Y G  X R X R
                                           

(2.1.18)
 

 

where 
1 2

( , ,..., )
T

n
    is a finite dimensional parameter and ( ) 

 
is a smooth function 

which we try to estimate by B-splines. Here, X is an n-variable random vector that typically 

covers discrete covariables, and R is a q-variate random vector of continuous covariables to be 

modeled in a nonparametric way. 

 

To estimate the GPLM by semiparametric maximum likelihood, we suppose that the first two 

conditional moments of Y may be specified as [61] 

 

( , ) ( ( )),  
T

E Y G   X R X R
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2
( , ) ( ),Var Y V X R

 
 

and denotes by the log-likelihood function L. Here, maximization of L, which is shown as the 

composite form ( ( , ))L   to emphasize the roles of predictors, parameters, and of the unknown 

curve, is no longer suitable as a method of estimation. This leads to overfitting in the absence of 

any constraints on  . Indeed, it renders the parameters   unidentifiable. However, if we place 

weak constraints on the form of 
 
by supposing that it is smooth, progress can be possible by 

maximizing instead a penalized version of log-likelihood. Therefore, we maximize the penalized 

log likelihood [61, 83] 

 

2
( , ) : ( ( , )) ( ''( )) ,

1

2

b

a

y L t dt      
 

 

where ( ) : ( , ) ( )
T

H     X R X R  and 
1

:G H



 
is a link function that links the mean of 

the response variable to the predictors. 

 

Here,  presents the log-likelihood of the linear predictor and the second term is the penalizing 

part, and   is a smoothing parameter. This parameter controls the trade-off between accuracy of 

the data fitting and its smoothness or complexity [21]. By smoothing, it is wanted to guarantee 

that the estimation is sufficiently robust with respect to noise in data and other forms of 

perturbation. 

 

2.1.5 Nonparametric Regression Models 

Nonparametric regression analysis traces the dependence of a response variable, y, on one or 

several predictors, 
ijx (i=1,2,…,p;  j=1,2,…,n), without specifying in advance the function which 

relates the predictors to the response [33]: 

 

1 2
( ) ( , ,..., ).

k k pk
E y f x x x                                              (2.1.19) 

 

It is supposed that the conditional variance of y, 
1 2

Var ( , ,..., )
k nkk x x xy   is a constant, and that 

the conditional distribution of y is normal.  

 

Nonparametric regression is differentiated from linear regression, in which the function relating 

the mean of y to the ix  is linear in the parameters [33], 

 

0 1 1 2 2
( ) ...

k k n nkkE y x x x       
                                 

(2.1.20) 
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and from traditional nonlinear regression, in which the function relating the mean of y to the 
ix , 

though nonlinear in its parameters, is specified clearly, 

 

1 2 1 2
( ) ( , ,..., ; , ,..., ).

k k k nk l
E y f x x x   

                              
(2.1.21) 

 

In traditional regression analysis, whereas the purpose of classical parametric regression is to 

estimate the model parameters  , the aim of the nonparametric regression is to directly estimate 

the regression function, f.  

Global parametric modeling methods are relatively easy to improve and elucidate. However, they 

have a limited flexibility and work well only in cases where the true underlying relationship is 

close to the hypothesized function in the model [94]. In order to overcome the disadvantages of 

the global parametric approach, nonparametric models are developed locally over specific 

subregions of the data. Therefore, the data is analyzed for optimum number of subregions, and a 

simple function is optimally fit to the realization in each subregion.  

 

Local regression with many predictors proceeds as follows, for instance. The fit 0 0
ˆˆ ( )y f x  is 

wanted at the critical point 
0 10 20 0( , ,..., )T

nx x xx  in the predictor space and the distances 

0( , ) kD x x are needed between the observations on the predictors and the critical point. If the 

predictors are on the same scale (as, for example, if they establish coordinates on a map), 

measuring distance is simple. Otherwise, some sort of standardization or generalized distance 

metric is necessitated [33].  Once distances are described, weighted polynomial fits in many 

predictors proceed much as in the bivariate case. Some kinds of spline estimators may also be 

generalized to higher dimensions.  

 

The easiest use of nonparametric regression consists in smoothing scatterplots. Three widely 

applied methods of nonparametric regression are kernel estimation, local-polynomial regression 

that is a generalization of kernel estimation, and smoothing splines [33]. 

 

The generalization of nonparametric regression to many predictors is mathematically 

straightforward. However, it is often problematic in practice. First, multivariate data are affected 

by the so-called curse of dimensionality: Multidimensional spaces grow exponentially sparser 

with the number of dimensions, requiring very large samples to estimate nonparametric 

regression models with several predictors [33]. Second, it is difficult to visualize a regression 

surface in more than three dimensions (that is, for more than two predictors) though slicing the 

surface may be of some help. 
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Additive regression models are an alternative to unconstrained nonparametric regression with 

many predictors. This regression model has following form [33]: 

 

1 2 21( ) ... (( ) ( ) ),
k k n nkkE y f f fx x x    

                       
(2.1.22) 

 

where 
jf
 
are smooth partial-regression functions, estimated with smoothing splines or by local 

regression. Additive Model (AM) may be extended in two directions:  

 

1. To include interactions among specific predictors; for instance, 

 

1 23 2 31( ) ( ) ( , ),
k k kkE y f fx x x  

                                      
(2.1.23) 

 

which is not as general as the unseparated model 
1 2 3

( ) ( , , )
k k kkE y f x x x  . 

 

2.  To include linear terms, as in the model 

 

1 2 21( ) ( ).
k kkE y fx x   

                                                
(2.1.24) 

 

Such semiparametric models are particularly useful for containing dummy regressors or other 

contrasts derived from categorical predictors. There exist some other models such as projection-

pursuit regression, Classification and Regression Trees (CART) and MARS. In MARS, functions 

are multiplicative nature and nonsmooth. 

 

The main issue in nonparametric regression is the selection of smoothing parameters such as the 

span in kernel and local-polynomial regression or the roughness penalty in smoothing-spline 

regression or equivalent degrees of freedom for any of those [33]. The statistical balance is 

between variance and bias, and some methods such as Cross-Validation (CV) try to choose 

smoothing parameters to minimize estimated mean-square error, e.g., the sum of squared bias and 

variance. 

 

2.1.6 Generalized Additive Models 

Generalized Additive Models (GAMs) are semi-parametric extension forms of the class of GLMs. 

They differ from GLMs in that additive predictors take the place of linear predictors [40]. GAMs 

belong to modern techniques from statistical learning, and can be used in many fields of 

predictions. For identifying and characterizing nonlinear regression effects, they give more 

flexible statistical methods. GAMs are parameterized like GLMs, but some predictors may be 

modeled nonparametrically in addition to linear and polynomial terms for other predictors. The 
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probability distribution of the response variable should still be specified, and in this respect, 

GAMs are parametric [40]. In this sense they are more suitable named semi-parametric models. 

 

A crucial step in employing GAMs is to choose the suitable level of the smoother for a predictor. 

This is best achieved by specifying the level of smoothing applying the concept o effective 

degrees of freedom. A reasonable balance should be continued between the total number of 

observations and the total number of degrees of freedom used when fitting the model [40]. 

Having  j covariates 
1 2, ,..., jx x x , comprised by the j-tuple x

 1 2( , ,..., )T

jx x x , and a response 

y to the input x is assumed to have exponential family density ( , , )
y

g y  
 
with the mean 

1 2( ), ,..., jE y x x x   linked to the predictors through a link function  

 

( 1 )
,

( 1 )

r

r

P y x
G

P y x





 

 

where 
 
is called the natural parameter and 

 
is the dispersion parameter. Link functions can 

be logit link function, the probit link function and identity link function. In a regression setting, 

GAMs have the form [40] 

 

0

1

( ) ( ) ( ),
j

i i

i

G f x  


  x
                                          

(2.1.25) 

 

where the functions 
i

f  are nonparametric and 
0 1 2

: ( , , ,..., )
T

j
f f f   is the unknown entire 

parameter vector to be estimated. The including of 
0

  as an average outcome allows assuming 

( ( )) 0  ( 1,2,..., )
i i

E f x i j   [41]. 

 

2.2 Tikhonov Regularization 

A problem is defined as ill-posed problem if a solution is not existing or not unique or if it is not 

stable under perturbation on data - that is, if an arbitrarily small perturbation of the data can cause 

an arbitrarily large perturbation of the solution [37]. TR is the most common and well-known 

form to make these problems regular and stable. For statistics, it is also known as ride regression. 

 

TR method searches the regularized solution as a minimizer of a weighted combination of the 

residual norm and a side constraint [46]. The regularization parameter controls the weight given 

to the minimization of the side constraint. Therefore, the quality of the regularized solution is 

controlled by the regularization parameter. An optimal regularization parameter should fairly 
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balance between the size of the residual error and the stabilizing of the approximate solution [46]. 

A suitable value of the regularization parameter is considered and computed when the norm of 

the error in the data or the norm of the solution of the error-free problem are available. 

 

The regularization parameter brings the optimal rate of convergence for the approximations, 

which are generated by the application of TR to ill-posed equations [63]. However, when we 

derive rates of convergence, we must make assumptions about the nature of the stabilization (i.e., 

the choice of the semi norm in the TR) and the regularity imposed on the solution. In fact, there is 

a trade-off between stabilization and regularity in terms of the rate of convergence. 

 

2.2.1 L-curve criterion 

The L-curve criterion is a practical method for choosing regularization parameter when data are 

noisy. The method is based on the plot of the norm of the regularized solution versus the norm of 

the corresponding residual [38]. The idea of the L-curve criterion is to select a regularization 

parameter related to the characteristic L-shaped corner of the graph. The corner shows where the 

curve is closest to the origin and where the curvature is maximal. However, when it is plotted in 

linear scale, it is difficult to inspect the features of the L-curve because of the large range of 

values for the two norms. The features become easier to inspect when the curve is plotted in the 

double logarithmic scale [38]. Therefore, in many cases it is better to analyze the L-curve in the 

log-log scale. Figure 2.2 shows a typical L-curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  A typical L-curve for TR [39]. 
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For TR, the L-curve is important in the analysis of discrete ill-posed problems. The L-curve 

shows how the regularized solution changes as the regularization parameter changes. The corner 

of the L-curve corresponds to a good balance between the minimization of the sizes, and the 

corresponding regularization parameter is a good one, because a distinct L-shaped corner of the 

L-curve is located exactly where the solution changes, from being dominated by the 

regularization errors to being dominated by right-hand side errors [46]. 

 

2.2.2  Choosing a Good Solution 

Tikhonov solution can be expressed easily in terms of the singular value decomposition (SVD) of 

the coefficient matrix A of regarded linear systems of equations 

 

,Ax b  
 

where A is an ill-conditioned ( )N m  matrix. The standard approach to approximately solve this 

system of equations is known as (linear) LS. It seeks to minimize the residual 
2

2
Ax b . There 

can be infinitely many solutions for a general linear LS problem. If it is considered that the data 

contain noise, in that situation, the data points cannot be fitted exactly because of noise. It 

becomes evident that there can be many solutions, which can adequately fit the data in the sense 

that the Euclidean distance 
2

Ax b  is smallest. The discrepancy principle [4] can be used to 

regularize the solution of a discrete ill-posed problem based on the assumption that a reasonable 

level for 
2

  Ax b  is known.  

 

Different kinds of TR are represented as minimization problems. Under the discrepancy 

principle, all solutions with 
2

 Ax b  are considered, and we select the one that minimizes 

the norm of x: 

 

                                                       
2

2

minimize

subject to

   

  , 

x

x

Ax b

                                            (2.2.1)                                 

 

or we minimize the norm of residual vector under some tolerance with respect to the norm of x: 

 

                                                  
2

2

minimize

subject to

   

  .





x

Ax b

x

                                               (2.2.2)            
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In the first optimization problem (2.2.1), any important nonzero feature that appears in the 

regularized solution increases 
2
.x  However, these features exist in the solution because they 

are necessary to fit the data. Therefore, the minimum of 
2

x
 
guarantee that unimportant features 

should be removed in the regularized solution. As   increases, the set of feasible models 

expands, and the minimum value of 
2

x decreases.  

 

 In the second optimization problem (2.2.2), it is wanted to choose the minimum norm solution 

among those parameter vectors, which adequately fit the data, because any important nonzero 

feature that appears in the regularized solution must not be ignored to fit the data, and 

unimportant data must be removed by the regularization. As   decreases, the set of all feasible 

solutions becomes smaller, and the minimum value of increases. 

 

 

There is also a third option which is considered a dampened LS problem: 

 

                                                     
2 22

2 2
minimize   

x

Ax b x ,                                         (2.2.3) 

 

arising when the method of Lagrange multipliers is applied to problem (2.2.2).  Here,  is the 

tradeoff parameter between the first and the second part. The problems (2.2.1), (2.2.2) and (2.2.3) 

have the same solution for some appropriate choice of the values and,       [4]. 

 

To solve different kinds of TR problem discussed above, we use ―SVD‖ to have a solution that 

minimizes the objective function including 
2

x . However, in many cases, it is preferred to 

achieve a solution that minimizes some other measure of x, such as the norm of first- or second-

order derivatives. These derivatives are, in approximative sense, given by first- or second-order 

difference quotients of x, considered as a function that is evaluated at the points k and k+1. These 

difference quotients approximate first- and second-order derivate; altogether, they are comprised 

by products Lx of x with matrices L. These matrices represent the discrete differential operators 

of first- and second-order, respectively [4]. Hereby, the optimization problem is the following 

form: 

 

                                               
2 22

2 2
minimize   

x

Ax b Lx  .                                    (2.2.4) 

 

The optimization problem of (2.2.4) turns into the optimization problem of (2.23) when L=I. 

Then, it is called zeroth order TR, which is a special case of (2.2.4). 
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Generally, (2.2.4) consists of high order TR problems. Although zeroth-order TR is solved by 

using SVD, to solve higher-order TR, generalized SVD is used. In many situations, to obtain a 

solution which minimizes some other measure x, the norm of the first or second derivative is 

preferred. In first-order TR, the damped least- squares problem (2.2.4) is solved by using the L 

matrix: 

 

1 1 0 0 0

0 1 1 0 0

0 0 0 0

0 0 1 1 0

0 0 0 1 1











 
 
 
 
 
 
  

L . 

 

Here, Lx is the finite difference approximation to the first derivative of x and minimizing 
2

Lx  

penalizes solutions that are in a first-order derivative sense. 

     

 

In second-order TR, the damped least-squares problem (2.2.4) is solved using the L matrix: 

 

1 2 1 0 0 0 0

0 1 2 1 0 0 0

0 0 0 0 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1











 
 
 
 
 
 
  

L . 

 

Here, Lx is the finite difference approximation proportional to the second derivative of x, and 

minimizing 
2

Lx  penalizes solutions that are in a second-order derivative sense. However, a 

different type of L (cf. Subsection 3.3) is used for our work. For all of these problems and 

matrices, MATLAB Regularization Toolbox can be used [39]. 

 

2.3 Multi-objective Optimization Problems 

In general optimization problems, there is a single objective function and the aim is to find a 

solution which optimizes the objective function value subject to some constraints by using single- 

objective optimization method. Nevertheless, most real-world problems have several objectives, 

and decisions must be made by regarding these objective functions at the same time [77]. When 

an optimization problem includes more than one objective function, this problem is called as 

Multi-Objective Optimization (MOO) problem that has the task of finding one or more optimum 

solutions [24].  
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If optimization problems contain multiple objectives, we cannot use single-objective optimization 

methods. In fact, different objectives are commonly conflicting with each other. Therefore, a 

solution which performs well in one objective cannot do as good as in the other objectives [24]. 

There exist several solutions that do not perform suitably in all objectives. It is not clear which of 

these solutions are better until the decision maker computes them. A MOO problem can be 

written as following form [77]: 

 

1 2
minimize such that( ( ), ( ),..., ( ))     ,T

p
f f f X Ax x x x x                      (2.3.1) 

 

where 
n

x  is a feasible solution and X is the set of all feasible solutions. In this problem, 

there are p objective functions to be minimized and A is a ( p n )-matrix. The qth row of A 

corresponds to the qth objective function, ( )
q

f x .  

 

The point 
1 2

( , ,..., )
T p

p
y y y y  such that y Ax  is the outcome of the solution X x . 

The set X is called decision space, and { , }
p

Y X   y y Ax x  is called the objective 

(criterion) space. A point x is called to dominate point x  if and only if the corresponding 

q q
y y   for all q and 

q q
y y   for at least one q. If there is no Xx  such that x  dominates 

x, then x is called non-dominated or efficient. The complete set of non-dominated solutions is 

also known as the pareto-optimal set. 

 

2.4 Conic Optimization Problems 

 

i)  Primal Conic Problem (CP) 

A general primal conic optimization problem is a problem in the conic form 

 

                                               
minimize

subject to

   

  ,  ,

T

K 

c x

Ax b x
                                                 (2.4.1) 

 

where K is a closed, pointed, non-empty, convex cone. In fact we assume that K is product of the 

following cones [8]:    

         

a) The nonnegative orthant  in  .m n


 

                         

b) The Lorentz (or second order, or ice-cream) cone: 

 2 2 2

1 2 1 2 1
: ( , ,..., )   ...  ( 2).

m T m

m m m
L x x x x x x x m


      x     
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c) The positive semidefinite cone: 

 

     :  ,  0   .
m m m T T m

S



     A A A x Ax x  

 

ii)  Dual Conic Problem (CD) 

 A general primal conic optimization problem is a problem in the conic form 

 

                                               
maximize

subject to

   

  .

T

T
K 

b y

c A y
                                                (2.4.2) 

 

(CD) is called the dual of (CP), the constraint is called linear matrix inequality (LMI) [8]. 

 

iii)  Duality Theorem for Conic Optimization Problem 

(CP)                                       
minimize    

subject to  ,  , 

T

K 

c x

Ax b x
 

(CD)                                      
maximize

subject to

    

  .

T

T
K 

b y

c A y
 

 

For conic problem, the properties of the duality are as follows [8]: 

 

1. The value of the dual objective at every dual feasible solution is the value of the primal    

objective at every primal feasible solution (weak duality). 

 

2. The following two properties are equivalent to each other: 

 

    (i) The primal is strictly feasible and below bounded,  

    (ii) The dual is solvable. 

 

3. The following two properties are equivalent to each other: 

 

    (iii) The dual is strictly feasible and below bounded,  

    (iv) The primal is solvable. 

 

Strong duality: whenever (i)   (ii) or (iii)   (iv) is the case, the optimal values in the primal 

and the dual problems are equal to each other (strong duality): 

 

Opt(CP) = Opt(CD). 
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4. The duality is symmetric: the problem dual to the dual is equivalent to the primal. 

 

There are different conic optimization problems that are considered and coped with. Table 2.1 

shows the function ( ,  )f x D  for different conic optimization problems as follows: 

 

Table 2.1  The function ( , )f x D  for different conic optimization problems (for explanations cf. 

[14]). 

 

 

 

In all these cases, these conic optimization problems can be solved efficiently by an interior-

point method. Here, to find solution for conic optimization problem, MOSEK [58], SeDuMi [79], 

SDPT3 [85] can be used as a solver. 

 

2.4.2 Solution Method for Conic Optimization Problems    

Convex optimization problems such as semidefinite programming, geometric programming and, 

in particular, CQP problems are very important in data mining and classical polynomial time 

algorithms can be applied to solve these kinds of problems. However, these algorithms have 

some disadvantages because they use local information on the objective function and the 

constraints. Therefore, Interior Point Methods (IPMs) [66], firstly introduced by Karmarkar [42], 

are employed to solve ―well-structured‖ convex problems like CQP problems. 

 

In recent years, there has been comprehensive research into interior-point methods for linear 

optimization. One result of this research is the development of a primal-dual interior-point 

algorithm [44, 59] that is highly efficient both in theory and in practice [2, 53]. Therefore, some 

authors have studied how to generalize this algorithm to other problems. An important work in 

this direction is the paper of Nesterov and Todd [65] which presents that the primal-dual 
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algorithm maintains its theoretical efficiency when the nonnegativity constraints are replaced by 

a convex cone as long as the cone is homogeneous and self-dual, or in the terminology of 

Nesterov and Todd, a self-scaled cone [3]. It has subsequently been indicated by Güler [36] that 

the only interesting cones having this property are direct products of 


, the quadratic cone and 

the cone of positive semi-definite matrices. For our work, we will mainly focus on conic 

quadratic optimization and an algorithm for this class of problems. 

 

For conic quadratic optimization, some authors have already studied algorithms. In particular, 

Tuschiya [84], Monteiro and Tuschiya [60] have studied the complexity of different variants of 

the primal-dual algorithm. Schmieta and Alizadeh [73] have presented that many of the 

polynomial algorithms developed for semi-definite optimization may immediately be translated 

to polynomial algorithms for conic quadratic optimization [3]. Sturm [79] reports that his code 

SeDuMi may solve conic quadratic and semi-definite optimization problems. We take into 

account an optimization problem given by [3, 8] 

 

minimize where  ,     .
T n


x

c x x  

 

Here, IPMs base on the interior point of the feasible set  . We suppose that this feasible set is 

closed and convex. An interior penalty function (barrier) ( )F x  is selected, well defined, which 

is smooth and strongly convex, in the interior of    and ―blowing up‖ as a sequence from the 

interior int   approaches a boundary point of  : 

 

0
int lim ( ),          ( )  ( ).

r r r
r

n F r


       x x x  

 

Now, we take into account one parametric family of functions generated by our objective and 

interior penalty function int( ) :  + ( ) :   .
T

p
F p F x c x

 
The penalty parameter p is 

supposed to be nonnegative. Under mild regularity assumptions [3], 

 

 every function ( )pF  attains its minimum over the interior of , the minimizers *( )x p  

being unique; 

 the central path *( )x p  is a smooth curve, and all its limiting points (as p  ), belong 

to the set of optimal solution of  above optimization problem. 

 

These algorithms have the advantage of applying the structure of the problem, of allowing better 

complexity bounds and exhibiting a much better practical performance. In the so-called primal-

dual IPMs, both the primal and the dual problems and their variables are considered, the joint 
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optimality conditions perturbed, parametrically solved and followed towards a solution along a 

central path. 

 

2.5 Conic Quadratic Programming 

Conic quadratic optimization is the problem of minimizing a linear objective function subject to 

the intersection of an affine set and the direct product of quadratic cones of the form 

 

1 2 2

1

1

 .
m

m

m j

j

x x






 
 
 
 

x  

 

The quadratic cone is also known as the second-order (Lorentz or ice-cream) cone. Many 

optimization problems may be created in this form. Some examples are linear, convex quadratic 

and convex quadratically constrained quadratic optimization. Other examples are the problem of 

minimizing the sum of norms and robust linear optimization [3]. Various applications of conic 

quadratic optimization are presented in [8, 51]. 

 

A conic optimization problem can be written as in (2.4.1): 

 

                                                
minimize

subject to

    

  ,  ,  

T

K 

c x

Ax b x
                                          (2.5.1) 

 

associated with a cone K given as a direct product of n cones, each of them being either a 

semidefinite or a second-order (Lorentz) cone: 

 

11 1
1

: ... ...  : ... ... .p p p pn n
m m m mm mm m

K S S L L E S S 

   
              

 

A CQP problem is a conic problem which can be presented as follows [8]:      

                                               

                                         
minimize

subject to

     

  ,

T

K
  0

x

c x

Ax b
                                                (2.5.2) 

 

for which the cone K is the direct product of several ice-cream cones. In case of CQP, there are 

no semidefinite factors im
S . Therefore, K can be represented in the following way: 

 

1 ... .rm m
K L L E     

 

In general, a CQP problem is an optimization problem with linear objective function and finitely 

many ―ice-cream constraints‖ 
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  ( 1, 2,..., ).mii i L
i r  0A x b  

 

Therefore, a CQP problem can be written as [8]: 

 

                                          
minimize

subject to

     

     ( 1, 2,..., ).mi

T

L
i r  0

x

c x

Ax b
                            (2.5.3) 

 

If we subdivide the data matrix, [ ,i iA b ], as follows: 

 

 , ,
i i

i i T

i i
q


 
 
 

D d
A b

p
 

 

where
i

D  is of the size ( 1
i

m  )  dim  ,x the problem can be written as follows: 

 

                                       

2

minimize

subject to

   ,    

     ( 1,2,..., ).

T

x

T

i i i i
q i r   

c x

D x d p x
                    (2.5.4) 

 

This is the most explicit form that is used. In this form, 
i

D  are matrices of the same row 

dimensions as x, 
i

d  are vectors of the same dimensions as the column dimensions of the matrices

i
D , 

i
p  are vectors of the same dimensions as x, and 

i
q  are real numbers [8]. 

 

2.6 Robust Optimization  

In recent years, optimization has become a leading methodology in many fields. In these fields 

such as engineering, finance and control design, most applications assume complete knowledge 

of the data of the optimization problem. In other words, it is assumed that to develop a model, the 

input data are known exactly and equal to some nominal values. However, solutions to 

optimization problems may present a remarkable sensitivity to perturbations in the parameters of 

the problem, thus, often a computed solution is highly infeasible, suboptimal, or both. Therefore, 

optimization affected by parameter uncertainty is a focus of the mathematical programming 

community and a need to tackle uncertain data arises to develop models when optimization 

results are combined within real-life applications [13, 15].  

  

There are some sources for the uncertainty:  the data of the problem are not exactly known or 

may not be exactly measured, or the exact solution of the problem may not be implemented 

because of inherent inaccuracy of the devices [17]. The data uncertainty results in uncertain 
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constraints and objective function. There are two principal methods, which have been proposed 

to deal with data uncertainty over years. These are stochastic programming [19, 43, 69] and 

robust optimization [10, 11].  

 

RO has gained a lot of concentration both from a theoretical and practical point of view as a 

modeling framework for immunizing against parametric uncertainties in mathematical 

optimization. It is a modeling methodology to process optimization problems in which the data 

are uncertain and is only known to belong to some uncertainty set. Robust optimization purposes 

to find an optimal or near optimal solution that is feasible for every possible realization of the 

uncertain data [10, 90].  

 

In the early 1970s, Soyster [76] was one of the first researchers to investigate explicit approaches 

to RO. This short note focused on robust linear optimization in the case where the column vectors 

of the constraint matrix were constrained to belong to ellipsoidal uncertainty sets. He suggested a 

linear optimization model to create a solution that was feasible for all input data such that each 

uncertain input data could take any value from an interval. However, this approach tended to find 

solutions that were over-conservative. Then Falk [32] followed this a few years later with more 

work on inexact linear programs. However, the optimization community was relatively quiet on 

the issue of robustness until the work of Ben-Tal and Nemirovski [5, 6, 7] and El Ghaoui et al. 

[27, 28] in the late 1990s. They coped with the over-conservatism of robust solutions by allowing 

the uncertainty ellipsoid sets for the data and suggested efficient algorithm to solve convex 

optimization problems under data uncertainty [15].  

 

The robust optimization approach makes the optimization model robust regarding constraint 

violations by solving robust counterparts of these problems within prespecified uncertainty sets 

for the uncertain parameters [31]. These counterparts are solved for the worst-case realization of 

those uncertain parameters based on appropriately determined uncertainty sets for the random 

parameters. For a visualization see Figure 2.3:       
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Figure 2.3  Approximating a robust solution [29]. 

 

 

In the figure above, the dark blue rectangle is the feasible set for optimization problem which has 

a solution of nominal values. When we have small perturbations in the data, our nominal solution 

jumps to other points. The light blue rectangles are the perturbed feasible sets. Solutions of these 

optimization problems can show sensitivity to perturbation in parameters of the problem. 

Therefore, we may need robust solutions. The blue area in the figure is the intersection for all 

scenarios and the feasible set for the robust optimization problem that has robust solution. But, 

this area is not a regular geometrical one. Since the robust counterpart can be much harder than 

original problem, we may need to approximate it. The robust optimization problem can be solved 

efficiently when we have a special shape. The regular set in the figure is the ellipsoid set and 

gives us the approximation of a robust solution.      

 

2.6.1 The Approach  

The general optimization problem under uncertainty is defined as follows: 

 

                                         maximize 
T

α x  

                                          subject to   ( ,  ) 0  ( ),
i i

f i I x D                                                 (2.6.1) 

                                                             ,Xx  

where ( , )
i i

f x D ( )i I  are given functions, X is a given set and 
i

D  ( )i I  is the vector of 

random coefficient. Ben-Tal and Nemirovski [5, 6, 7] and independently by El Ghaoui et al. [27, 

28] have taken a significant step forward for developing theory for robust optimization. They 

propose to solve the following robust optimization problem: 
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                                         minimize max  
T

α x  

                                          subject to   ( ,  ) 0,    ( ),   
i i i i

f i I U    x D D  ,                      (2.6.2) 

                                                          ,Xx   

 

where 
i

U  ( i I ) are given uncertainty sets. The motivation for solving problem (2.6.2) is to 

find a solution 
*

Xx  that ―immunizes‖ problem (2.6.1) against parameter uncertainty. In the 

robust optimization literature, it is standard to consider uncertainty sets of the form 

 

                                         
0 0

1

{( , ) ( , ) ( , )   }
K

k k k

k

U u Z


   A b A b A b u , 

 

where the set Z  determines what type of uncertainty set we have. These sets may be: 

 

 convex combination of scenarios: {   1 1 ( 1,2,..., )},  
i

Z u i k    u  

 box uncertainty set: {   , 1},
T

Z e  0u u u  and 

 ellipsoid uncertainty set: {   1}
T

Z  u u u . 

 

2.6.2 Robust Optimization using Mathematical Programming  

 

2.6.2.1 Linear Programming (LP) 

An uncertain LP constraint is of the form 
T

α x b , for which α  and b are subject to uncertainty. 

If the corresponding uncertainty set U is a polyhedron, then the robust counterpart is also an LP 

(see Ben-Tal and Nemirovski [6, 7] and Bertsimas and Sim [12, 13]). On the other hand, if U is 

ellipsoidal, the robust counterpart is an SOCP. For linear programming, there exist probabilistic 

guarantees for feasibility available ([6, 7] and [12, 13]) under reasonable probabilistic 

assumptions on data variation [75]. 

 

2.6.2.2 Quadratic Constrained Quadratic Programming (QCQP)  

An uncertain QCQP constraint is of the form 
2

2
0

T
c  Ax b x , where A, b and c are subject 

to data uncertainty. When the uncertainty set U is a simple ellipsoid, then the robust counterpart 

is an SDP. However, when the set is polyhedral, the robust counterpart is a NP-hard (Ben-Tal and 

Nemirovski [6, 7]). Here, there are no available probabilistic bounds [14, 75].  
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2.6.2.3 Second-Order Cone Programming (SOCP) 

In this class of problems, we are concerned with an uncertain SOCP constraint which is of the 

form
2

T
d  Ax b c x , where A, b, c and d are subject to data uncertainty. The robust 

counterpart is a Semidefinite Programming (SDP) when A, b are in an ellipsoidal uncertainty set 

1
U  and c, d are in another ellipsoidal set 

2
U . On the other hand, when A, b, c, d vary together in 

a common ellipsoidal set, the problem has unknown complexity. Nemirovski [64] suggested a 

tractable approximation in the form of an SDP if c and d are deterministic and represented 

probabilistic guarantees in this case. However, there exist no available probability bounds to 

address the problem if c and d are stochastic [14]. 

 

2.6.2.4 Semidefinite Programming (SDP) 

An uncertain SDP constraint is of the form 
1

,
n

j j

j

x


 A b where  ( 1, 2,..., )
j

j nA  and b are 

subject to data uncertainty. The robust counterpart is NP-hard for ellipsoidal uncertainty sets. 

Nemirovski [64] suggested a tractable approximation in the form of an SDP and presented 

probabilistic guarantees in this case [14, 75]. 

 

2.6.2.5 Conic Programming 

Here, we deal with an uncertain Conic Programming constraint which is of the form

1

 
n

j j K

j

x


 A b , where jA ( 1,2,..., )j n  and b are subject to data uncertainty. The cone K is 

closed, pointed and with a nonempty interior. There are no results available considering 

tractability and probabilistic guarantees in this case. In this work, we concentrate on conic 

optimization problems [14]. 

 

2.6.3  Robust Conic Optimization Problem 

For all (or most) possible realizations of the data, the solution must satisfy the actual constraints 

despite of the data uncertainty. Such a solution is called a robust feasible solution. The problem 

of finding an optimal robust solution is called the robust counterpart of the original problem. In 

fact, it is the problem of minimizing the objective function over the set of robust feasible 

solutions. An uncertain conic problem has the following form [14]: 
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minimize

subject to

 

   ( 1, 2,..., ),  

n

T

i i i
K i N



  

x

   c x

A x b

                              (2.6.3) 

 

where 
 i

K (i = 1,2,…,N) are closed, pointed, non-empty, convex cones, and A, b, c are subject to 

data uncertainty.  

 

It is necessary that the robust counterpart is computationally tractable, meaning solvable in 

polynomial time with respect to the problem size for robust optimization which is an applicable 

methodology for real life large scale problems [14]. Tractability of the robust counterpart 

depends on the original optimization problem and the uncertainty set which is regarded. In many 

cases, if the robust counterpart is not tractable, it is an NP-hard problem. Therefore, the need 

arises to find an approximation to the robust counterpart and to estimate its quality.  

 

2.6.4  Robust Approximation  

 

2.6.4.1 Stochastic Robust Approximation 

An approximation problem is taken into account with basic objective Ax b , which has the 

form of a 
1 2

or norm, ,   


 and regarding some uncertainty or possible variation in the data 

matrix A but it may be extended to overcome the case where both A and b have uncertainty [18]. 

For the variance in A, some statistical models are also considered. It is assumed that A is random 

variable which takes values in 
m n

 with mean A . Therefore, A may be described as 

 

. A A U  

 

Here, U which defines its statistical variation is a random matrix with zero mean and A  is the 

average value of A. As the objective, the expected value of Ax b  is [18] 

 

                                                          minimize .  E Ax b                                                   (2.6.4) 

 

This problem is the stochastic robust approximation problem and always a convex optimization 

problem. However, it is generally not tractable because it is very difficult to evaluate the 

objective or its derivatives in most cases. As a simple case, the problem (2.6.4) may be solved 

when we assume that A has only a finite number of values, that is, 

 

prob(A=
i

A )=         ( 1, 2,..., ).
i

p i k  
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Here, 
n m

i


A , 0p  and 1

T
1 p  where (1,1,...,1) .T

1 =  So the problem (2.6.4) has the 

following form: 

 

                               
1 1 2 2

minimize  ... . 
k k

p p p     A x b A x b A x b                      (2.6.5) 

 

It is generally called a sum-of-norms problem and can be denoted as [18]  

 

                                    
minimize

subject to

   

    ( 1, 2,..., ),

T

i i
t i k  

p t

A x b
                                           (2.6.6) 

 

where the variables are and  .n k
x t   When the norm  is the 

1
or-  -


norm, the sum-

of-norms problem is an LP. On the other hand, when the norm is the Euclidean norm, this 

problem can be represented as an SOCP.  

 

On the statistical robust approximation problem, some variations are tractable. For example, let 

us consider the statistical robust least-squares problem [18] 

 
2

2
minimize  ,E Ax b  

 

where the norm is Euclidean norm. Therefore the objective function may be expressed as 

 
2

2

2

2

( ) ( )

                   ( ) ( )

                   ,

T

T T T

T

E E

E

     

   

  

Ax b Ax b Ux Ax b Ux

Ax b Ax b x U Ux

Ax b x Px

 

 

where .
T

P U U  Consequently, with solution 
1

( ) ,
T T

x = A A P A b this statistical robust 

approximation problem has the following form of a regularized least-squares problem:  

                                                   

 
22 1/2

2 2
minimize  . Ax b P x                                               (2.6.7) 

 

This observation gives us another interpretation of the Tikhonov regularized least-squares 

problem (2.1.3), as a robust least-squares problem, regarding possible variation in the matrix A. 

The solution of the Tikhonov regularized least-squares problem minimizes 
2

( )E  A U x b , 

where 
ij

U  (i=1,2,…,m; j=1,2,…,n ) are zero mean, uncorrelated random variables with variance 

are   and  A is deterministic [18]. 
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2.6.4.2 Worst-Case Robust Approximation 

Using worst-case approach and based on a set, it is possible to model the variation in the matrix 

A. The uncertainty is defined by a set of possible values for A [18]: 

 
mxn

Z A , 

 

which is assumed nonempty and bounded. The associated worst-case error of a candidate 

approximate solution 
nx  is described as  

                                                     

     ( ) sup   ,
wc

e Z  x Ax b A                                    (2.6.8) 

 

that is always a convex function of x. The aim of worst-case robust approximation problem is to 

minimize the worst-case error: 

 

    minimize  sup   ,Z Ax b A                                  (2.6.9) 

 

where the variable is x, the problem data are b and the set Z. If Z is the singleton, Z= {A}, the 

robust approximation problem (2.6.9) can be represented as a basic norm approximation problem 

[18]. The robust approximation problem is a convex optimization problem. However, its 

tractability depends on the description of the uncertainty set Z and the norm used.  

 

The robust approximation problem (2.6.9) exists in many contexts and applications. In an 

estimation case, the set Z gives the uncertainty in the linear relation between the vector to be 

estimated and the measurement vector [18]. On the one hand, the noise term v in the model 

 y Ax v  is called additive noise or additive error, because it is added to the measurement

.Ax  On the other hand, the variation in A is called a multiplicative error, because it multiplies 

the variable x.  

 

In an optimal design case, the variation may describe uncertainty of the linear equations that 

relate the design variables x to the results vector .Ax  Then, the robust approximation problem 

(2.6.9) is represented as the robust design problem: find design variables x which minimize the 

worst possible mismatch between Ax  and b, over all possible values of A [18]. 

 

2.6.4.3 Uncertainty sets 

Robust optimization needs problems to remain feasible for any values of the uncertain parameters 

within the uncertainty set which is specified for problems [31]. These uncertainty sets are 

typically based on statistical estimates and probabilistic guarantees on the solution. If the 
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uncertainty set has a special shape, then the robust optimization problem can be solved efficiently 

[14]. These special shapes for uncertainty sets may be ellipsoidal or polyhedral.     

      

2.6.4.3.1 Polyhedral Uncertainty 

In polyhedral uncertainty, we have 
1 2

{ , ..., }
k

Z  A A A , and the robust approximation problem is 

given by [18]  

 

                                     
1,2,...,

minimize  max  
i k i

A x b .                                                    (2.6.10) 

 

The problem above is equivalent to the robust approximation problem with the polyhedral set

1 2
conv{ , ,..., }

k
Z  A A A : 

                                 

         minimize   sup {
i
A x b  | A 

1 2
conv{ , ,..., }

k
A A A } . 

 

The problem can be put in epigraph form as [18] 

 

                                     minimize  t 

                                     subject to    ( 1,2,..., )
i

t i k  A x b .                                          (2.6.11) 

 

This can be solved in a variety of ways, depending on the norm used. When the norm is the 

Euclidean norm, it is an SOCP. When the norm is the 
1

the norm or   ,l l


  it is an LP. Since we 

deal with CQP (SOCP), we will use the Euclidean norm for this study. 

 

Epigraph Problem Form: 

To define the problem of finding an x which minimize 
0
( )f x  for all x that satisfy the conditions

and ( ) 0  ( 1,2,..., )   ( ) 0  ( 1,2,..., )
k k

f k m g k n   x x , the notation of standard problem is of 

the following form [18]: 

 

                                          

0
minimize

subject to

( ),

   ( ) 0  ( 1, 2,..., ),

                 ( ) 0   ( 1, 2,..., ).    

n

k

k

f

f k m

g k n



 

 

x

   x

x

x

                                  (2.6.12) 

 

The epigraph form of the standard problem is the following problem: 
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0

minimize

subject to   ( ) 0,

                  ( ) 0   ( 1, 2,..., ),  

                 ( ) 0   ( 1, 2,..., ),  

k

k

t

f t

f k m

g k n

 

 

 

    

x

x

x

                                   (2.6.13) 

 

with variables  and  .
n

t x  The standard problem and its epigraph form is equal to each 

other. The epigraph form problem may be explained geometrically in Figure 2.4: 

 

 

Figure 2.4 Geometric explanation of epigraph form problem [18]. 

 

 

2.6.4.3.2 Norm Bound Error 

 Here, the uncertainty set Z  is a norm ball,   ,Z   A U U  where   is a norm on 

.
m n

 In this case, we have the following form 

 

                                          sup( )   ,
wc

e    x Ax b Ux U                                   (2.6.14) 

 

which should be carefully explained because the norm  Ax b Ux  is applied to measure the 

size of the residual and it is on 
m

 while, the second norm U  is used to define the norm ball Z 

and it is on 
m n

[18]. This expression for ( )
wc

e x  may be simplified in many cases. For example, 

the Euclidean norm on 
n

 and the associated induced norm on 
m n

 can be used, e.g., the 

maximum singular value. When and 0  0,  Ax b x  for ( )
wc

e x  in the expression, the 

supremum is reached for ,
T

uvU  with [18] 
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22

and   


 


Ax b x
u v

Ax b x
.                                         (2.6.15) 

 

Then, the resulting worst-case error is given by 

 

                                              
22

( ) .
wc

e   x Ax b x                                          (2.6.16) 

 

It is easily confirmed that this expression is also valid when x or Ax b  is zero. Now, the robust 

approximation problem (2.6.9) is 

 

                                              minimize  
22

 Ax b x .                                      (2.6.17) 

 

This problem is a regularized norm problem and is solved as the SOCP [18] 

 

                                             minimize    
1 2
t at  

                                              subject to   
12
t Ax b ,    

22
.tx                                  (2.6.18) 

 

Here, the solution of this problem is the same as the solution of the regularized least-squares 

problem. Therefore, another form of the regularized least-squares problem can be represented as 

a worst-case robust approximation problem [18]  

 

                                                        minimize  
2 2

22
 Ax b x                                     (2.6.19) 

 

for some value of the regularization parameter  . 

 

2.6.4.3.3 Ellipsoidal Uncertainty 

The variation in A may be defined by giving an ellipsoid of possible values for each row [18]: 

 

U=   1 2
, ,...,    ( 1, 2,..., ) ,

T

m i i
Z i m a a a a  

 

where 

 
2

1    ( 1, 2,..., ).
i i i

Z i m   a Pu u  

 

For each column index values, the matrix 
n n


i

P  represent the variation in 
i

a . When the 

variation in 
i

a  is limited to a subspace, 
i

P  is allowed to have a nontrivial nullspace in order to 
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model the situation. As an extreme case, 0
i
P  is taken when 

i
a  has no uncertainty. With this 

ellipsoidal uncertainty type, an explicit expression for the worst-case magnitude of each residual 

can be described as [18] 

 

        

 2

2

sup sup ( ) 1

                     .

i i

T T T

i i i i i
Z

T T

i i i

b

b



    

  

a

a x b a x Pu x u

a x P x

 

 

Several robust approximations can be solved problems by using this result. For example, the 

robust 
2

-norm approximation problem 

 

                  
2

minimize sup  ( )    ( 1, 2,..., ) 
wc i i

e Z i m   x Ax b a                          (2.6.20) 

 

can be written as an SOCP. For the worst-case error, an explicit expression is represented as the 

following form: 

 

               
1/2 1/2

22

2
1 1

( ) sup
i i

m m
T T T

wc a Z i i i i i

i i

e b b


 

    
   
   
   
 x a x a x P x ,              (2.6.21) 

 

where  ia  is a vector where ― sup
i iZa

‖ is attained. 

 

To minimize ( )
wc

e x , the problem 

 

                                   minimize  
2

t  

subject to 
2

   ( 1, 2,..., )
T T

i i i
b t i m   a x P x  

 

can be solved where we introduced new variables 
1 2
, ,..., .

m
t t t  This problem may be formulated 

as follows where  
1 2

( , ,..., )
m

T
t t tt  [18]: 

 

                                      minimize  
2

t  

                                  
2

2

subject to    ( 1, 2,..., ),

   ( 1, 2,..., ).

T T

i i i i

T T

i i i i

b t i m

b t i m

   

   

  a x P x

                  a x P x

                      (2.6.22) 

 

This problem is an SOCP when put in epigraph form. 
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The main operations are needed to cope with ellipsoidal uncertainty such as affine-linear 

transformations, sums and intersections (fusions) of ellipsoids [48]. The family of ellipsoids in 

n
is closed with respect to affine-linear transformations. However, the sum and the intersection 

of ellipsoids are not generally ellipsoidal. Because of this, both should be approximated by 

ellipsoidal sets. An ellipsoid in 
n

 is parameterized as [48] 

                                                 
1/2

2
( , ) { 1}Z   c P P u c u ,                                  (2.6.23) 

 

where center ,n
c  symmetric non-negative definite configuration matrix 

nxn
P and 

1/2
P  is 

any square root satisfying 
1/2 1/2

( ) .
T
P P P

  

 

The eigenvectors of P  point in the directions of principal semiaxes of Z. The lengths of the 

semiaxes of the ellipsoid ( , )Z c P
 
are given by ,

i
  where 

i
  are the eigenvalues of  P  for 

i=1,2,…, p [48].  The volume of the ellipsoid  ( , )Z c P  is given by vol ( , )Z c P  = det( ),
p

V P
 

 

                                

/2

( 1)/2

for even

for odd 

                         ,   ,
( / 2)!

2 (( 1) / 2)!
   ,  .

!

p

p
p p

p
p

V
p

p
p

















                             (2.6.24) 

 

i) Affine Transformation  

The family of ellipsoids is closed with respect to affine transformations. Given an ellipsoid

( , )
n

Z c P , a matrix 
m n

A  and a vector 
m

b ,  it is found that  A ( , )Z c P + b =

( , )
T

Z Ac b APA  [48]. Therefore, ellipsoids are preserved under affine transformation. The 

affine transformation is called a projection when the rows of A are linearly independent, which 

means ,m n  and b = 0 [50].     

 

ii) Sums of two Ellipsoids 

Given two non-degenerate ellipsoids 
1 1 1

( , )Z Z c P  and 
2 2 2

( , ),Z Z c P their geometric sum 

1 2 1 2 1 1 2 2
{   , }Z Z Z Z    D D D D  is not usually an ellipsoid but, it may be tightly 

approximated by parameterized families of external ellipsoids. The range of values of 
1 2

Z Z  is 

included in the ellipsoid [48] 
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1 2 1 2

: ( , ( )),Z Z Z s  c c P                              (2.6.25) 

 

where, for all, 0s  ,  

 

                                                          
1

1 2
( ) : (1 ) (1 ) .s s s


   P P P                           (2.6.26) 

 

An additional condition has to be fulfilled for a minimal and unique external ellipsoidal 

approximation. The value of s is generally selected to minimize either the trace or the 

determinant of ( )sP . When it is chosen 

 

 

 

this value describes the ellipsoid including the sum that has minimal trace, or, sum of squares of 

semiaxes [48]. It is considered that the minimum trace calculation may be applied in case of 

degenerate ellipsoids [30, 49, 50]. 

 

iii) Sums of K Ellipsoids 

Given K bounded ellipsoids of 
n

, ( , )
k k k

Z Z c P  (k = 1,2,…,K). The notion of the minimal 

trace ellipsoid is adapted from [26], and represented as the outer ellipsoidal approximation 

1
( , )

K

k k
Z R Z


   including the sum 

1

K

k k
S Z


   of ellipsoids, which is determined by [48] 

 

1

:
K

k

k

c


  

and  

1 1

:
K K

k

k

k k k

R Tr
Tr 


  
     

 
P

P
P

.               

 

iv) Intersection of Ellipsoids 

When the intersection of two ellipsoids is commonly not an ellipsoid, this set is replaced by the 

outer ellipsoidal approximation of minimal volume. The notion of fusion of ellipsoids is adapted 

from [72]. Given two non-degenerate ellipsoids 
1 1 1

( , )Z Z c P  and 
2 2 2

( , )Z Z c P  in 
n

 with

1 1 2 2
( , ) ( , ) 0Z Z c P c P , an ellipsoid is described as follows [48]: 

 
1 1

0 0 1 1 1 2 2
( , ) : {  ( ) ( ) (1 )( ) 1}

n T T
Z


 
 

       c P x x c P x c x c P , 

1/2

1

1/2

2

( )
:

( )
,

Tr
s

Tr


P

P
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where [0,1] . 

 

The ellipsoid 
0 0

( , )Z


c P  is the same 
1 1

( , )Z c P  and 
2 2

( , )Z c P  for 1   and 0  , respectively. 

To define a tight external ellipsoidal approximation 
0 0

( )Z


c P  of the intersection of 
1 1

( , )Z c P  

and 
2 2

( , )Z c P , we  represent as [48] 

1 1

1 2
:  (1 ) 

 
  T P P  

 

and 

1 1 1

2 1 2 1 2 1
: 1 (1 ) ( )  ( ).

T
  

  
    c c P T P c c  

 

The ellipsoid 
0 0

( , )Z


c P is given by the center 

 
1 1 1

0 1 1 2 2
(  (1 ) ) 

  
  c T P c P c  

 

and configuration matrix 

1

0
.


P T  

 

The fusion of 
1 1

( , )Z c P  and 
2 2

( , )Z c P , whose intersection is a nonempty bounded region, is 

determined as the ellipsoid 
0 0

( )Z


c P for the value [0,1] that minimizes its volume [72]. If 

1 1 2 2
( , ) ( , ),  Z Zc P c P the fusion of 

1 1
( , )Z c P  and 

2 2
( , )Z c P  is 

1 1
( , )Z c P . Similarly, if 

2 2 1 1
( , ) ( , ),  Z Zc P c P the fusion of 

1 1
( , )Z c P  and 

2 2
( , )Z c P  is 

2 2
( , )Z c P . Otherwise, it is 

0 0
( )Z


c P  described as above where   is the only root in (0,1) of the following polynomial of 

degree 2p − 1 [48]: 

 
1 1 2

1 2

1 1 1 1 1 1

0 1 1 0 2 2 0 2 1 0 1 1 1 2 2 2

(det ) Tr (co( ) ( )) (det )

 (2 2 ( ) ) 0,
T T T T T

p
 

     

 

      

T T P P T

c P c c P c c P P c c P c c P c
 

 

where co( )  is the matrix of cofactors of  . Since 
1 co( ) det( )    , this polynomial is 

represented as [48] 

 
2 1 1 1 2

1 2

1 1 1 1 1 1

0 1 1 0 2 2 0 2 1 0 1 1 1 2 2 2

 (det ) Tr ( ( )) (det )

 (2 2 ( ) ) 0.
T T T T T

p
  

     

 

      

T T P P T

c P c c P c c P P c c P c c P c
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It is pointed out that it is also possible to determine an inner ellipsoidal approximation. The 

method of finding the internal ellipsoidal approximation of the intersection of two ellipsoids is 

defined in [87]. 

 

2.6.4.3.4 Norm Bounded Error with Linear Structure  

As a generalization of the norm bound description   Z   A U U , Z may be described 

as the image of a norm ball under an affine transformation [18]: 

 

                                          1 1 2 2
... .

p p
Z u u u    A A A A

 
 

Here,   is a norm on 
p

, and the p + 1 matrices  
1 2

, , ,...,
mxn

p
A A A A are given. The worst-

case error can be represented as 

 

1 1 2 2
1

1

sup  ( )

     sup ( ) ( ) ,

wc p p
e u u u

q





     

 

u

u

A A A A x b

P x u x
 

 

where P and q are defined as 
1 2  and :   ...   ( ) : .

m p m

p q


     
 P A x x Ax bA x A x  

 

As an example, the robust Chebyshev approximation problem is regarded as being of the 

following form: 

 

            
1 1 2 21

minimize  sup ( +...+ ) .
wc p p

e u u u

 

   
u

A A A A x b                             (2.6.27) 

 

In this case, for the worst-case error, an explicit expression may be derived. Then, ( )
T

i
p x is 

denoted the ith row of P(x). So this problem can be represented as  

 

1,2,...,1 1

1
1,2,...,

sup ( ) ( ) max sup ( ) ( )

                                         max ( ) ( ) .

wc i i
i m

i i
i m

e P x u q x p q

p q

 


 



   

 

u u

x u x

x u x

 

 

 As another example, the robust LS problem is taken into consideration as follows [18]: 

 

            
2

1 1 2 2 2
1

minimize   ( ) sup ( ... ) .
wc p p

e u u u x


     
u

x A A A A b                             (2.6.28) 
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Here, to compute 
wce , Lagrange duality is employed. With u as variable, the worst-case error 

( )wce x  is the square root of the optimal value of the nonconvex quadratic optimization problem  

 

                                        

2

2
maximize

subject to

   ( ) ( )

    1.
T

P q



x u x

u u

                                                   (2.6.29) 

 

The Lagrange dual of this problem can be described as SDP [18] 

 

                                        

, ,
minimize  

subject to

    

( ) ( )

  ( ) 0 0,

( ) 0

T

t
t

I P q

P I

q t








 
 
 
 
 

x

x x

x

x

                            (2.6.30) 

 

with variables t,   . Furthermore, strong duality holds for this pair of primal and dual 

problems. This means that, for any fixed x, 
2

( )
wc

e x  can be evaluated by solving the SDP with 

variables t and  . Optimizing jointly over x, t and   is equivalent to minimizing 
2

( )
wc

e x . It is 

concluded that the robust least-squares problem can be solved as SDP with x,  , t as variables. 

 

2.7 Optimization Software  

It is important to make different between optimization solvers (optimizer) and optimization 

modeling languages [31]. An optimization solver is software which carries out numerical routines 

to find the optimal solution of an optimization problem. Optimization modeling languages are 

appeared as user-friendly platforms that let the user to specify optimization problems. AMPL and 

GAMS are two popular modeling languages. They communicate with a diversified amount of 

solvers. Also, there exist a number of languages which give modeling interfaces for particular 

types of optimization problems or solvers [31]. For example, YALMIP let Matlab users to 

preprocess SDPs and SOCPs. Then, these are passed to semidefinite solvers like SDPT3 and 

SeDuMi. 

 

 SDPT3 [85] and SeDuMi [79] can overcome linear constraints, quasi-convex-quadratic 

constraints and positive semidefinite constraints. Two of them use a primal-dual interior points 

method indicated as the centering-predictors-correctors method, and may exploit sparse matrix 

structure, making them very efficient [78]. For these semidefinite programming solvers, creating 

the inputs may be very time consuming, and can require substantial background in optimization 
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modeling. YALMIP [52] and PROF
1
 which are obtained as layers on top of these solvers in 

Matlab let for intuitive formulation of SDPs and SOCPs, and help the user retrieve the results 

from the solvers very easily [31]. 

 

MOSEK is also a useful optimizer for linear, quadratic, and convex quadratically constrained 

optimization problems well-known for speed and numerical stability [31]. It provides solvers for 

the optimization problems which have the types of the linear, conic quadratic (CQ), convex 

quadratic, general convex and mixed integer. MOSEK optimization tools also consist of 

interfaces which make it easy to apply the functionality of MOSEK from programming languages 

such as C, C++, MATLAB Toolbox, Java, NET, and Python [58]. 

 

MOSEK has some technical benefits. It is an optimization tool to solve large-scale mathematical 

optimization problems and, the problem size is only limited by the available memory. MOSEK 

has an interior-point optimizer with basis identification and it is well known owing to its 

excellent speed and stability [58]. The software uses problem sparsity and structure automatically 

to achieve the best possible efficiency.  

 

MOSEK also has both primal and dual simplex optimizers for LP and corrects sensitivity 

analysis for linear problems. It has an efficient presolver to decrease problem size before 

optimization. It can cope with primal and dual infeasible problems in a systematic way [58]. 

Furthermore, MOSEK consists of tools for infeasibility diagnosis and repair and, it may read and 

write industry standard formats such as MPS, LP and XML.  

                                                
1   Currently being developed by Melvyn Sim at the National University of Singapore,                 

http://www.nus.edu.sg/. 
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CHAPTER 3 
 

 
 

METHODS  
 

 

 
3.1 Multivariate Adaptive Regression Splines Method 

Multivariate Adaptive Regression Splines (MARS), which is introduced by Friedman in 1991 

[35], is a powerful adaptive regression method to estimate general functions of high dimensional 

arguments. Since the choice of basis functions is specific to the problem, MARS is an adaptive 

approach.  

 

MARS builds a flexible model to high-dimensional nonparametric regression and shows a great 

promise for fitting nonlinear multivariate functions. This nonparametric regression approach 

makes no specific assumption about the underlying functional relationship between the 

dependent and independent variables. MARS searches variables one by one using a fast but 

intensive search procedure. Additionally, it also searches for interactions between independent 

variables, allowing any degree of interaction to be regarded as long as the model can better fit the 

data. 

 

3.1.1  The Procedure  

MARS generates an additive model in two-stage process. These are forward stage and backward 

stage [35]. In the forward stage, MARS finds which basis functions (BFs) are added to the 

model by using a fast searching algorithm and construct a possibly large model that overfit the 

data set. The process stops when the model reaches the maximum basis function  maxM  which is 

a specific value for users. However, this model has BFs that contribute most and least to the 

overall performance together. Thus, the model is more complex and includes many incorrect 

terms in the forward stage. In the backward stage, the overfit model is pruned to reduce the 

complexity of the model while supporting the overall performance with considering the fit to the 

data. In this stage, the BFs that contribute to smallest increase in the residual sum of squares 

(RSS) are removed from the model at each stage and at the end an optimally estimated model is 

produced [41]. 
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MARS uses expansions of piecewise linear basis functions created by data set. The form of BFs 

is [ ]x t


  and [ ] ,t x


  and they are: 

 

    [ 
,     ,     

 ]   ,    [ ]
0,         0,          ,

if if

otherwise otherwise

x t x t t x x t
x t t x

   
    

 
 
 

 

 

where t  is a univariate knot obtained from the data set. These two functions are called truncated 

functions. The following Figure 3.1 shows BF pairs for t = 0.5 as an example: 

 

 

Figure 3.1  The BFs used by MARS for t = 0.5 [41]. 

 

 

Each function is piecewise linear, with a knot at the value t, and it is called a reflected pair. The 

aim  is to form reflected pairs for each input 
j

X  ( j = 1,2,3,…,p) with p-dimensional knots at 

each observed value 
 i j

x  of that input (i = 1,2,3,…,N). Thus, the collection of BFs is written by a 

set of B defined as 

 

1 2 3
: {[ ]  , [ ] |   { , , ,..., },  = 1,2,3,..., } ,

j j j j j Nj
B X t t X t x x x x j p

 
     

 

where N is the number of observations, p is the dimension of the input space. There are 2Np BFs 

if all of the input values are distinct. 

 

In the forward stage of MARS, the model that fits the data is built by using BFs from the set B 

and their product. So, the model has the form 

 

                                    
0

1

( ( ) )+ ,
M

m m

m

Y E T X  


   X X                                 (3.1.1) 
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where 
1 2

( , ,..., ) .
T

p
X X XX =  Here,   is uncorrelated random error term which is assumed to 

have a normal distribution with zero mean and unknown constant variance, M is the set of BFs in 

the current model, ( )
m

 X  are BFs from the set B or products of two or more such functions, and 

 are the unknown coefficients for the constant 1 (m = 0) or for the mth BF. The form of the mth 

BF is as follows: 

( , )

1

( ) = [ .( )]
mK

m km v k m km

k

T s x t


X ,                                           (3.1.2) 

 

where 
m

K  is the number of truncated linear functions multiplied in the mth BF, 
( , )v k m

x  is the 

input variable corresponding to the kth truncated linear function in the mth BF, kmt  is the knot 

value corresponding to the variable 
( , )v k m

x  and 1kms   . A lack-of-fit criterion is used to 

compare the possible BFs. 

 

To generate the model, the MARS forward stepwise algorithm starts with the constant function 

0
( ) 1T X  to estimate 0 , and all functions in the set B are candidate functions. Possible forms 

of the BFs
 

( )
m

T X  are [47]: 

 

•  1, 

•  kx , 

•  [ ]k ix t   , 

•  k lx x , 

•  [ ]k i lx t x   and 

•  [ ] [ ]k i l jx t x t   . 

 

For each BF, input variables cannot be same in the MARS algorithm. Therefore, the BFs above 

use different input variables, and  ,
k l

x x  and their knots, and  
i j
t t . At each stage, with one of the 

reflected pair in the BFs set B, all products of a function  ( )
m

T X  in the model set are regarded as 

a new function pair and added the term to the model set. That term which produces the largest 

decrease in training error has the following form: 

 

1 2
( ) [ ] ( ) [ ]

M k j M k j
T X X t T X t X 

   
     .                               (3.1.3) 
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Here, 
1M 
 and 

2M 
 are coefficients and they are estimated by LS, along with all other M +1 

coefficient in the model. Then the ―winning‖ products are added to the model and the process 

stops when the model set reaches some present maximum number of terms. For example, the 

following BFs are possible candidates [47]: 

 

•  1, 

•  kx , 

•  [ ]k ix t  ,  if kx  is already in the model, 

•  k lx x ,  if kx  and lx  are already in the model, 

•  [ ]k i lx t x ,  if k lx x  and [ ]k ix t   are already basis functions, 

•  [ ] [ ]k i l jx t x t   ,  if [ ]k i lx t x  and [ ]l j kx t x  are already in the model. 

 

At the end of this forward stepwise process, a large model of the form is obtained. This model 

typically overfits the data, and so a backward deletion procedure is applied. 

 

The backward stepwise algorithm removes the terms that contribute the smallest increase in the 

residual squared error from the model at each stage, and this iterative procedure continues until 

an optimal number of effective terms are present in the final model [41]. So, an estimated best 

model f̂ of each number of terms   is produced at the end of this process. In the MARS 

model, generalized cross-validation (GCV) is used to find the optimal number of terms  . Also, 

it shows the lack of fit when using MARS. The GCV criterion defined by Friedman [35] is as 

follows: 

2

1

2

ˆ( ( ))
ˆ( )   ( ) :

(1 ( ) / )
                                  

N

i ii
y f

LOF f GCV
M N











 


 x
,                           (3.1.4) 

 

where ( )M   is the effective number of parameter in the model, and N is the number of sample 

observations. 

 

The effective number of parameters ( )M   has different representation. It is represented by 

( )M  = r + cK, where r is the number of linearly independent BFs in the model and K is the 

number of knots selected in the forward process, c is a cost for basis-function optimization  and 

generally chosen as c = 3 (c =2 is used when the model is additive). A larger ( )M   creates a 

smaller model with less basis functions, whereas a smaller ( )M   creates a larger model with 

more basis functions [41].   
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3.1.2  Pros and Cons of MARS 

MARS offers a number of advantages. MARS is capable of identifying a relatively small number 

of predictor variables which are complex transformations of initial variables [25]. It also enables 

to discover nonlinearities that can exist in the relationship between response and predictor 

variables.  

Conventional statistical methods such as regression can handle interactions terms, but they 

requires trying many combinations of the variables in the data set. Therefore, they can be 

computationally infeasible. MARS automatically looks for suitable interactions between 

independent variables, which makes it in particular preferable whenever there is a large number 

of interacting variables. MARS identifies interactions, and also produces graphs that help 

visualize and understand interactions [41]. 

 

However, MARS has some limitations which the analyst must keep in mind. Firstly, MARS is a 

sophisticated technique, requiring a relatively steep learning curve to use the methodology and 

interpret the results. Secondly, it is not yet widely available in the main statistical packages and 

has to be purchased separately. Thirdly, as in other modeling techniques, overfitting in MARS 

must be taken into consideration [25]. In MARS methodology, a very exhaustive search is led to 

identify nonlinearities and interactions. Therefore, it has a risk of overfitting the data, but it is 

possible to protect against overfitting such as setting a lower maximum number of BFs and a 

higher ―cost‖ per knot [35].  

 

3.1.3  MARS vs. Other Algorithms 

MARS algorithm is based on a modified recursive partitioning methodology [35]. It is an 

extension of Classification and Regression Tree (CART) [16]. It is mainly similar to decision tree 

(DT) techniques such as CART on the partitioning of intervals, where two symmetric BFs are 

constructed at the knot location. However, MARS is normally not presented in decision tree 

techniques. While CART uses indicator functions causing the lack of continuity that affects the 

model accuracy, MARS uses piecewise linear functions that are continuous, and it produces a 

continuous model that provides a more effective way to model nonlinearities [23].  

 

MARS is a flexible regression technique which applies a modified recursive partitioning strategy 

for simplifying high-dimensional nonparametric problems. Recursive Partitioning Regression 

(RPR) is a powerful method nonparametric modeling approach but, it has some shortcomings 

such as discontinuity at the subregion boundaries. MARS method handles these restrictions to 

increase accuracy [94].  
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The Artificial Neural Network (ANN) can be characterized as nonlinear, nonparametric function 

estimation techniques, and shows a great promise for fitting general nonlinear multivariate 

functions like MARS. However, it has restrictions like a long training process, interpretation 

difficulties of the model and application in some problems. MARS has also the capability to 

overcome these problems and it is in most cases both more accurate and much faster than neural 

networks [23]. Furthermore, if we compare MARS with other modeling techniques such as 

multivariate linear regression (MLR), regression tree (RT), support vector machine (SVM), 

MARS provide us better prediction accuracy [95]. 

 

MARS is compared to a number of parametric and nonparametric approximations routine in 

terms of its accuracy, efficiency, robustness, model transparency, and simplicity due to its 

inception [22]. MARS is chosen from among other better-known methodologies because it is 

more interpretable than most recursive partitioning, neural and adaptive strategies. It 

distinguishes well between signal and noise variables. MARS‘ computation times are competitive 

for low-dimensional problems and fast for medium- to high-dimensional problems, and it has the 

best prediction success when it is compared to linear models, principal component regression, 

and CART based on efficiency, accuracy, and implementation. MARS performs well for 

predictive modeling of continuous outcomes [22]. 

 

On the other hand, MARS is highly sensitive to both sample size and design of the experiment 

type. This is one main reason for our study of robust CMARS. Also, MARS generally under 

performs other approximation techniques when it is used with small data sets, although it 

performs best with medium or large data sets when it is implemented with controlled 

experimentation [22]. 

 

3.1.4 MARS Software  

For this study, the MARS models are fitted by using MARS (Version 3, Salford Systems, San 

Diego, Calif., USA). MARS allows the user to set control parameters to explore different models 

and create the best model. The maximum number of knots is defined by trial and error; the 

maximum number of interactions may be more than the degree of two (2-way interaction). The 

MARS package which is developed by Salford Systems is available at [20]. It is well-designed 

software which performs MARS technique with a friendly graphical user interface.  

 

The penalty on added variables causes MARS to prefer reusing of variables already in the model 

over adding new variables. While the penalty is increased, MARS makes a tender to obtain new 

knots in existing variables or generates interaction terms in including existing variables [55]. The 
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minimum number of observations between knots is very useful for continuous variables but not 

discrete ones. By default, MARS allows obtaining a knot at every observed data value and this 

default allows the MARS regression to change slope or direction anywhere and as often as the 

data dictate [55].  

 

MARS Software has a different type of speed parameter to search model. This search speed 

parameter can be set one to five and its default value is four [55]. For real-world problems it is 

advised to use four as a search speed parameter, but the use of search speed parameter of three or 

five does not change the models. After setting all the parameters correctly, MARS creates the 

final model in a rather short time. 

 

There exist many result evaluations provided for MARS. In fact, there are 
2R , Mean Square 

Error (MSE), ANOVA, f-value, t-value, p-value, RSS, variable importance measurement assessed 

by observing the decrease in performance when one is removed from the model, etc.. 

Furthermore, various result clarifications are also available: the final model includes a number of 

specific BFs, gain and lift charts, curve and surface plots, etc. [55]. Additionally, a previously 

created model can be applied to a new data set. Consequently, the MARS package is regarded as 

very powerful as it takes in various preferences, criteria, control parameters and constraints for 

the user.  

 
3.2 Conic Multivariate Adaptive Regression Spline (CMARS) 

 

3.2.1  MARS Method Revisited by Tikhonov Regularization  

MARS (cf. Section 3.1) is a method to estimate general functions of high dimensional arguments 

that are given sparse data [35]. It has an increasing number of applications in many areas of 

science, economy and technology. At the same time it is a research challenge, especially, by 

means of using continuous optimization theory. We mostly refer to a regression formulation, but 

also classification will be addressed. The finitely many data underlying can base on different 

types of experiments, questionnaires, records or a preprocessing of information by clustering, etc. 

 

MARS is an adaptive procedure since the selection of BFs is data-based and specific to the 

problem at hand. This algorithm is a nonparametric regression procedure that makes no specific 

assumption about the underlying functional relationship between the dependent and independent 

variables. A special advantage of MARS lies in its ability to estimate the contributions of the BFs 

so that both the additive and the interactive effects of the predictors are allowed to determine the 

response variable.  
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For this model, an algorithm was proposed by Friedman in 1991 [35] as a flexible approach to 

high dimensional nonparametric regression, based on a modified recursive partitioning 

methodology. The above explanations have been given in detail in the previous section. In this 

section, we explain a modified version of MARS called Conic Multivariate Adaptive Regression 

Splines (CMARS). Here, ―C‖ also means convex and continuous. For our explanations on 

CMARS, it is preferred the following notation for the piecewise linear BFs: 

 

                             ( , )  ( ) ,  ( , )  ( ) ,c x x c x x   
 

 
                               (3.2.1) 

 

where    max :=  0,q q


and  is an univariate knot ( ,x   ). Each function is piecewise 

linear, with a knot at the value   , and it is called a reflected pair. For a visualization see Figure  

3.2: 

 

 

 
 

Figure 3.2  Basic elements in the regression with MARS [88]. 

 

 

 

In this figure, the points demonstrate the data ( ,  ) (  1, 2,..., )
i i

y i Nx  comprised of a p-

dimensional input specification of the variable x and the corresponding one-dimensional response 

which specify the variable y. To be more precise, the variable x in Figure 3.2 is one of the 

coordinates of x. Let us take into account the following general model on the relation between 

input and response: 

 

 ( )  ,Y f  X                                                         (3.2.2) 

 

where Y is a response variable, 
1 2

 ( , ,..., )
T

p
X X XX is a vector of predictor random variables 

and   is an additive stochastic component which is supposed to have zero mean and finite 

variance. The aim is to build reflected pairs for each input  ( 1, 2,..., )
j

X j p with p-dimensional 
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knots 
,1 ,2 ,

 ( , ,..., )
T

i i i i p
   at or just nearby each input data vectors 

,1 ,2 ,
 ( , ,..., )

T

i i i i p
x x xx of 

that input (i = 1, 2,...,N). Such a nearby placement means a slight modification made in this study 

[88]. Here, we can without loss of generality suppose that 
, ,

 
i j i j

x  for all i and j, to prevent 

from nondifferentiability in our optimization problem later on. This assumption is also stated into 

Figure 3.2. We could even select the knots 
,i j

  more far away from the input values 
,i j

x  if any 

such a position promises a better data fitting. After these preparations for CMARS, the set of BFs 

is: 

 

                1, 2, ,
:  [ ] ,  [ ]  , ,..., ,  1, 2,..., .

j j j j N j
S X X x x x j p  

 
      

 

When all of the input values are distinct, there exist 2Np BFs altogether. Therefore, we may 

represent ( )f X  by a linear combination which is successively constructed by the set S and with 

the intercept 0 such that (3.2.2) takes the following form: 

 

    
0

1

( ) + .
M

m m

m

Y    


  X                                                (3.2.3) 

 

Here,  
m

  (m = 1, 2,...,M) presents a BF from S or products of two or more such functions,  
m

  

is taken from a set of M linearly independent basis elements, and 
m

  is the unknown coefficient 

for the mth BF (m = 1, 2,...,M) but, m equals to zero for the constant 1. A set of eligible knots 
,i j

  

is given separately for each input variable dimension and is selected to approximately coincide 

with the input levels represented in the data. Interaction BFs are produced by multiplying an 

existing BF with a truncated linear function including a new variable. In this case, both the 

existing BF and the newly created interaction BF are employed in the MARS approximation [80]. 

Provided the observations represented by the data ( ,  ) (  1, 2,..., )
i i

y i Nx the form of the mth 

BF is as follows: 

    
1

( ) := [ .( )] ,
m

m m m

j j j

K

m

j

s x
  

 




x                                        (3.2.4)          

 

where 
m

K is the number of truncated linear functions multiplied in the mth basis function, m

j

x


 is 

the input variable corresponding to the kth truncated linear function in the mth basis function, m

j
  

is the knot value corresponding to the variable m

j

x


 and m

j

s


is the selected sign +1 or -1.  The 
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search of new BFs may be limited to interactions of a maximum order. For example, if only up to 

three-factor interactions are allowed, and then 3
m

K   could be restricted in. 

 

3.2.2 The Penalized Residual Sum of Squares Problem  

The Penalized Residual Sum of Square (PRSS) with maxM
 
BFs is accumulated in the forward 

stepwise algorithm of MARS. To estimate the function ( )f x , it is not employed the backward 

stepwise algorithm of MARS. At its place, as an alternative [80], penalty terms are used in 

addition to the least-squares estimation (LSE) to control the lack of fit from the viewpoint of the 

complexity and stability. It is not needed to run the backward stepwise algorithm of MARS. For 

the MARS model, PRSS has the following form: 

 

 
max

1 2

2
2 2 2

,

1 1       1     

  , ( )  ( , )

 : ( ( )) [ ( )]

MN
m m

i i m m r s m

i m r s

r s V m

PRSS y f D d

 

  
   



      






x t t ,            (3.2.5) 

 

where  V(m) : {
m

j
  | j= 1,2,...,

m
K }  is the variable set associated with the mth basis function 

m
 , 

m
t = 

1 2

( , ,..., )
Km

T

m m m
t t t presents the vector of variables that contribute to the mth basis 

function m . The parameters 0
m
   are in the role of penalty parameters (m = 1,2,..., 

max
M ). 

The integral of the first-order derivatives measure the flatness of the model functions whereas the 

integrals of the second-order derivatives measure the instability and complexity inscribed into the 

model (via the model functions) [41,82]. Moreover,  

 

1 2

,
( ) : ( )( )

m m m m

r s m m r s
D t t

 
    


t t  

 

for 
1 2

( , ),
T

 
1 2 1 2

: ;  , {0,1}      . We note that in any case where 
i

 =2, the 

derivative 
,

( )
m

r s m
D  t


 vanishes, and by addressing indices r < s, it has been applied Schwarz's 

Theorem. In order not to overload the exposition, a slight flaw in the notation is still accepted 

since in case of  =1 and 
m

K >1 the integral terms become mentioned 
m

K  times by the pair r < 

s. By redefining, m  by 
m m

K , this little deficiency could be easily corrected. It is used the 

integral symbol ―  ‖ as a dummy in the sense of ,
m

Q

  where  
m

Q  is some appropriately large 

dimensional parallelpipe (
m

K -dimensional) where the integration takes place. The integrals and 
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entire optimization problems are well defined because all the regarded derivatives of any function 

m  exist except on a set of measure zero [81]. 

 

The optimization problem which we use bases on the tradeoff between both accuracy, i.e., a 

small sum of error squares, and not too high a complexity. This tradeoff is established through the 

penalty parameters 
m
 . In this study, tradeoff is tackled by means of penalty methods, such as 

regularization techniques [4]. 

 

If we consider the representations (3.2.2) and (3.2.3) in (3.2.4), then the objective function (3.2.4) 

will be of the following form [80]:      

         

    

  

max

max

1 2

2

0

1 1 1

2
2 2

,

1       1     

  , ( )   ( , )

( ) ( )

          [ ( )] ,

T

MN M
m m

i m m i m m i

i m m M

M

m m

m m r s m

m r s

r s V m

PRSS y

D d

 

    

  

   

  



   



 
 
 

  

   






x x

t t

                          (3.2.6) 

 

where 
,1 ,2 ,

( , ,..., )
T

i i i i p
x x xx  denotes any of the input vectors and 

, (1) , (2)
( , ,...,

m m m

i i v i v
x xx  

, ( )
)

m

m T

i v K
x stands for the corresponding projection vectors of 

i
x  onto those coordinates that 

contribute to the mth basis function 
m

  (related with the ith output 
i

y ). 

 

It is noted that the second-order derivatives of the piecewise linear functions  
m

   (m=1,2,...,M ) 

and, thus, the penalty terms related are vanishing. The representation of PRSS may be rearranged 

as follows:      

          

 
max

1 2

2
22

2

,

1 1       1     

  , ( )  ( , )

( ) ( )
m

MN
T m m

i i m m r s m

i m r s Q
r s V m

PRSS y D d

 

  
   



         






  b t t ,                   (3.2.7) 

 

where  max1 1

1 1
( ) : 1, ( ),..., ( ), ( ),..., ( )

T
MM M

i i M i M i m i
   




 b x x x x and 

max0 1
: ( , ,..., )

M

T
       

with the point   max1 2 1 2
: , ,..., , , ,..., .

T
MM M M

i i i i i i i

 
b x x x x x x  A discretized form is used to 

approximate the multi-dimensional integrals
2

2

,
( )

m

m m

m r s

Q

D d   

 t t  [80]. For this aim, data 

points ( , )
k k

yx  (k= 1,2,...,N) with 
n

k x  are given. In a natural way, these input data  
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,1 ,2 ,
( , ,..., )

T

k k k k p
x x xx  create a subdivision of any sufficiently large parallelpipe Q of 

n
 that 

includes each of them as elements. Here Q is represented as a parallelpipe that encompasses all 

our input data in the following form [80, 93]: 

Q=   1 1 2 2
, , ... ,

p p
a b a b a b      = 

1

p

j

j

Q


 , 

 

where [ , ]
j j j

Q a b , 
,j k j j

a x b   (j=1,2,...,p;  k=1,2,...,N). 

 

We can assume 
, j k j j

a x b   without loss of generality. For all k , we reorder the coordinates of 

the input data points:   

1 2, , , 
...j j j

Nk j k j k j
x x x   , where 

j
k


=1,2,...,N ( =1,2,...,N;  j=1,2,...,p), and 

 
,  

j
k j

x


 is  jth component of  j
k

x


, the 
j

k


 input vector after reordering. We can suppose   
, , 

j j
k j k j

x x
 

  

for all ,  =1,2,...,N with   ; i.e.,   

1 2, , , 
...j j j

Nk j k j k j
x x x    ( j=1,2,...,p). If ―=‖ is attained 

for some coordinate, we obtain subparallelpipes of a lower dimension in the following integration 

process. When we can denote  

0
0, 

 : ,   :j

j

j jk j
x a k b   

1
and   : 1; j

N
k N


   then,  

1

, ,
10

 ,j j

j jj

pN

k j k j
j

Q x x
  


 
  

 , 

 

and, when we use this idea to our case, we may write the discretized form as follows: 

 

( )

{0 ,1,2 ,..., }

(1, ) ( 2 , ) ( , ) ( , )

(1, ) ( 2 , ) ( , )( , )

2
2 2

,
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n Km

v m v m v K m v n mm
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

  




 







  

 
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
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

t t

( , )

( , )
, ( , )

1

.
m

v n m

n m

K

v n m
n

 
 
 



 

 

When this discretization is applied, PRSS can be approximated in the following way [81]: 

 

 
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1 2

   ( 1) 2
2 2
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
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   

 
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 
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



 b               (3.2.8)  

 

where (1, ) ( 2 , ) ( , )

(1, ) ( 2 , ) ( , )
, (1, ) , (2, ) , ( , )

ˆ , ,...,v m v m v K mm
mv m v m v K mm

m

i k v m k v m k v K m
x x x

  


 
 
 

 x , and  

 

( , ) ( , )

( , ) ( , )
1, ( , ) , ( , )

1

ˆ
m

v n m v n m

v n m v n m

K

m

i k v n m k v n m
n

x x
 




  
 
 
 

x . 
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For a short representation, we may rewrite the approximate relation (3.2.6) as follows: 

 

                                   
max ( 1)

2 2 2

2
1 1

( )

KmM N

m im m

m i

PRSS L 


 

   y b   ,                                     (3.2.9) 

where 

1 2

1/2

2
2

,

      1     

  , ( )  ( , )

ˆ ˆ : ( )
m m

im r s m i i

r s

r s V m

L D


  


 



 

  
  

    
    

 


x x . 

 

 

 Here, 
1 2

( ) ( ( ), ( ),..., ( ))
T

N
   b b b b  is an 

max
( ( 1))N M  -matrix and 

     
2 2

2
1

( ) ( ) ( ) ( )
N

TT

i i i i

i

y


             b y b y b y b . 

 

3.2.3 Tikhonov Regularization Applied 

Now, we deal with the problem PRSS as a TR problem. For this aim, the formula (3.2.5) is 

regarded again and arranged as [80, 81]: 

 

        

max

max max max

( 1)
2 2 2

2
1 1

22 2 2

1 1 1 2 2 22 22 2

( )

          = ( ) ... ,

KmM N

m im m

m i

M M M

PRSS L

L L L

 

     



 

  

    

  

 

y b

y b

                (3.2.10) 

 

where  1 2 max( 1)
: , ,...,   ( 1, 2,..., ) .Km

T

m m m N m
L L L m M


 L  There is a finite sequence of the 

tradeoff or penalty parameters 
max1 2

( , ,..., )
T

M
    such that this equation is not yet a TR 

problem with a single such parameter. Because of this, we make a uniform penalization by taking 

the same   for each derivative term. Then, our approximation of PRSS may be rearranged as 

follows: 

 

    
2 2

22
( )PRSS     y b L ,                                     (3.2.11) 

 

where L is an (
max max

( 1) ( 1)M M   -diagonal matrix with first column 
0 1)

KmN
 0L  and the 

other columns being the vectors mL  introduced above. Moreover,   is an 
max

(( 1) 1)-M    

parameter vector to be estimated through the data points. Then, our PRRS problem looks as a 

classical TR problem (2.2.4) with 0  ,
2

   for some  . 
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3.2.4   An Alternative for Tikhonov Regularization Problem with  

Conic Quadratic Programming 

 

3.2.4.1 Construction of the Conic Quadratic Programming 

Problem 

Let us evaluate the TR problem (3.2.11) with CQP that is a continuous optimization technique. 

PRSS may be easily formulated as a CQP problem. In fact, based on an approximate selection of 

a bound M  we state the following problem [81, 82]: 

 

                                                      

2

2

2

2

minimize

subject to

  ( )

  .M





b y

L


 



                                                (3.2.12) 

   

We underline that this choice of M  must be the outcome of a careful learning process, with the 

help of model-free or model-based methods [4]. In (3.2.12), we have the LS objective function 

2

2
( )  b y  and the inequality constraint function -

2

2
.ML  Now, we equivalently write 

our optimization problem as follows [80, 82]: 

 

                                                    
,

minimize
t 

  t , 

             subject to   
2

2
( )  b y

2
,   0,t t                              (3.2.13) 

     
2

2
,ML  

 

or, equivalently again, 

                                                         

                                                          
,

minimize
t 

  t , 

         subject to   
2

( )  b y ,  t                                 (3.2.14) 

                     
2

.ML  

 

We apply modern methods of continuous optimization techniques, especially; from CQP where 

following the basic notation is used [82] 

 

                                   minimize   c ,   
T

x

x  

                                    subject to  
i i
D x d       ( =1,2,..., ). 

T

i i
q i k p x  

 

Indeed, we can see that our optimization problem is such a CQP program with 
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max 1 1 1 1 1
(1, )  , ( , ) ,  ( , ( )),  ,  (1,0,....,0) ,  0,

T T T T T

M N
x t q


     0 0 c D b d y p  

 

max max max2 1 2 1 2 2 2
( , ),  ,   and .

M M M
q M

  
    0 0 0D L d p   

 

To represent the optimality condition for this problem, we firstly reformulate the problem 

(3.2.14) as follows [80, 81]: 

 

,

minimize
t 

  t , 

such that 

 

max 1

( )
: ,

1 0

N

T

M

t




 

    
    

    

0

0




b y
 

 

maxmax

max

11

1

: ,
0

MM

T

M

t

M





 
   
         

00

0




L

 

                                  

max 21
 ,  .

MN
L L


    

 

The dual problem to the latter primal one is given by 

 

                         maximize  
max1 1 2

( ,0)  + ( , - )
T T

M
M


0 y  

 

        such that max

max max max

1

1 2

1 1 1

1 0 1
 +  = ,
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MN

T T
M M M

 


  

   
    
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   0     0 0 b L
 

 
1 2

1 2
 ,  .

N N
L L

 
    

 

Furthermore, 
1 2

( , , , , , )t       is a primal dual optimal solution if and only if [80, 81] 
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M

t




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    
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max

max max max
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1 2

1 1 1

1 0 1
 +  = ,
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M M M



  
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1 2
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 ,   ,

 ,   ,
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L L

L L





 

 

 

   

 

 

 

 

where 
1N

L


, max 2M
L


 are the ( 1)N  - and 

max
( 2)M  -dimensional ice-cream (or second-order, 

or Lorentz) cones. 
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CHAPTER 4 
 

 
 

THEORETICAL FOUNDATIONS and AN APPLICATION 
 

 

 
4.1 Robust Conic Multivariate Adaptive Regression Splines 

Method 

 

4.1.1  Introduction 

CMARS is an alternative method to a well-known regression tool, called MARS, from data 

mining and estimation theory (cf. Chapter 3). This method is based on a PRSS for MARS as a 

TR problem. CMARS treated this problem by a continuous optimization technique, called CQP, 

which permits to use interior point methods [16]. CMARS is particularly powerful in handling 

complex and heterogeneous data (for more details see Chapter 3). Heterogeneous data includes 

both discrete and continuous variables. In this chapter, we include into CMARS the existence of 

uncertainty about the scenarios. Indeed, data include noise in both output and input variables. 

Therefore, solutions of the optimization problem may reveal a remarkable sensitivity to 

perturbations in the parameters of the problem. The data uncertainty results in uncertain 

constraints and objective function. To overcome this difficulty, we refine our CMARS algorithm 

by important RO technique proposed to cope with data uncertainty (we refer to Section 2.6 for 

more details).  

 

RO is a modeling methodology to process optimization problems in which the data are uncertain 

and are only known to belong to some uncertainty set, except of outliers. The purpose of RO is to 

find an optimal or near optimal solution which is feasible for every possible realization of the 

uncertain scenario [10, 11, 15]. In Subsection 4.1.3, we introduce a robustification of CMARS 

with robust optimization under uncertainty sets which have special shapes. 

 

4.1.2 CMARS Model with Noisy Input Data 

Although all of the real-world data (both input and output variables) can include noise, data are 

assumed to contain fixed variables for MARS and CMARS methods. However, in this chapter, 
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we assume that not only output data but also input data include noise and we refine our CMARS 

algorithm using different notations. 

For CMARS, the large model that has the maximum number of BFs,
max

 M , is created by Salford 

MARS [54]. The following general model is considered to represent the relation between the 

input variables and the response: 

 

                                                        
noisy data

 ( )  ,Y f  X
                                                   

(4.1.1)
          

 

where Y is the response variable, 
1 2

 ( , ,..., )  
T

p
X X XX is a vector of predictor variables, and

   is an additive stochastic component which is assumed to have zero mean and finite variance. 

The aim is to build reflected pairs for each input variable  ( 1, 2,..., )
j

X j p
 
with p-dimensional 

knots 
,1 ,2 ,

 ( , ,..., )
T

i i i i p
   (i = 1, 2,…,N) at or just nearby each input data vectors. Moreover, 

j
X  are assumed to be normally distributed random variables. Here, the following general model 

is considered for each input  
j

X : 

 

j j
X X  

2

        
( 1,2,..., ).j p

                                    
(4.1.2) 

 

So, the multiplicative form of the mth BF can be written as 

 

1

for( ) := ( )    1, 2,..., ,    
m

m m

j j

K

m i i
j

x i N
 

 




 x

                        

(4.1.3)

 
 

where 
m

K  is the number of truncated linear functions multiplied in the mth BF (Section 3.2). 

Then, for the CMARS model, PRSS will have the following representation:     

 

                               

max

1 2

2

1

2
2 2

,

1       1     

  , ( )  ( , )

 : ( ( ))

           [ ( )] ,

T

N

i

i

M

m m

m m r s m

m r s

r s V m

PRSS y f

D d


 

  



  



 





   




i
x

t t

                    

(4.1.4) 

 

 

                                                
2 For the random variable 

j


 
( 1, 2,..., ),j p  we do not make a special distribution assumption. 

However, in the case of ellipsoidal uncertainty which we introduce, but not fully work out in this 

thesis (since we focus more on polyhedral uncertainty), we usually suppose a normal distribution. 
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After using the discretization to approximate the multi-dimensional integrals 

2
2

,
( )

m m

m r s m
D t dt


    [89], our PRSS will be as follows: 

 

                                                    

2 2

22
( )PRSS     y b L .                                         (4.1.5) 

 

Here, PRSS problem looks like a classical TR problem with 0  , i.e., 
2

   for some . 

Then, it can be coped with the CQP (refer to Section 3.2 for more detail).  

 

4.1.3  Robustification of CMARS 

 

4.1.3.1 Introduction 

CMARS models depend on the parameters. Small perturbations in data may give different model 

parameters. This may cause unstable solutions. In CMARS, the aim is to reduce the estimation 

error while keeping efficiency as high as possible. In order to achieve this aim, we use some 

approaches like scenario optimization, robust counterpart and usage of more robust estimators 

[90, 91]. By using robustification in CMARS, we try to decrease the estimation variance.  

 

In CMARS model, to reduce the complexity of the regression method MARS, which especially 

means sensitivity with respect to noise in the data, we do a penalization in the form of TR and 

studied it as a CQP problem. Regularization from CMARS is already some kind of 

robustification, however, in our study, we additionally robustify CMARS with the help of Robust 

Optimization approach (Section 2.6), which is some kind of regularization in the input and output 

domain. Therefore, we have some changes in the part of 
2

2
( ) y b , when we do our 

robustification of CMARS for both  the input and output data by including uncertainty with the 

help of  Robust Optimization. We, however, need not any change in the integration function of 

complexity part of PRSS model (see Subsection 4.1.2). Therefore, the part of  
2

2
L  is the same 

as in CMARS.  

 

 The robust optimization approach is based on making the optimization models robust regarding 

constraint violations by solving robust counterparts of these problems within prespecified 

uncertain sets for the uncertain parameters [31]. Since the worst-case scenarios are defined in 

ways, which do not lead to overly conservative formulations, robust counterparts are worst-case 

formulations of the original problem in terms of deviations of the parameters from their nominal 

values [31]. Robust counterparts are solved for the worst-case realization of the uncertain 
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parameters based on suitably uncertainty sets predetermined for the random uncertain 

parameters. 

 

4.1.3.2  Selecting The Shape of Uncertainty Sets  

Robust optimization needs problems to remain feasible for any values of the uncertain parameters 

within the uncertainty set which is specified for problems. Uncertainty set is based on statistical 

estimates and probabilistic guarantees on the solution [31]. If it has a special shape, then the 

robust optimization problem may be solved efficiently. Special shapes for uncertainty set can be 

ellipsoidal or polyhedral (we refer to Subsubsection 2.6.4.3, for more details). 

 

When ellipsoidal uncertainty sets are employed, robustification is more successful than 

employing of polyhedral uncertainty sets [17]. Nevertheless, using ellipsoidal uncertainty sets 

exhibits an increase in complexity for optimization problems. In fact, robust linear optimization 

problems (LPs) become CQP problems, robust CQPs become semidefinite optimization problems 

(SDPs) and robust SDPs become NP-hard to solve under ellipsoidal uncertainty sets. In contrast, 

robust LPs remain LPs, robust CQPs remains CQPs and robust SDPs remain SDPs under 

polyhedral uncertainty sets [5]. In this thesis, we study our robust CQP (SCOP) and we shall find 

out that it remains CQP. Therefore, we will guarantee polyhedral uncertainty sets by an interval 

concept for input and output data in our model; our robust CQP (SCOP) will be traced back 

directly as a standard conic quadratic program. Therefore, we only focus on polyhedral 

uncertainty with different uncertain scenarios. 

 

4.1.4 CMARS Model with Uncertainty  

To make a robustification of CMARS, we employ robust optimization on BFs in the model 

which are created by MARS, and we assume that the input and output variables of our CMARS 

model are represented by random variables (Section 4.1.2). They lead us to uncertainty sets, 

which are assumed to contain confidence intervals (CIs).  

 

To employ robust optimization on the CMARS model that has these BFs, we incorporate a 

―perturbation” (uncertainty) into the real input data ix  in each dimension, and into the output 

data iy . The perturbation of input and output data will be represented by CIs.  

When we consider that we have p-dimensional input data, each input data vectors 

,1 ,2 ,
 ( , ,..., )

T

i i i i p
x x xx  is represented as 

,1 ,2 ,
 ( , ,..., ) ,

T

i i i i p
x x xx  including the perturbation

,1 ,2 ,
( , ,..., )  ( =1,2,..., )

T

i i i i p
i N    . Since x  can be outliers and perturbations of outliers are 
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not meaningful, for our problem we, instead, refer to x , the average (mean) of the input data x , 

as the value wherever we use x . Here, 
i

  is the element of 
1

U  which is the uncertainty set for 

our input data. So our new values of piecewise linear BFs are shown in the following: 

 

     ;             ,   ( 1,2,..., ;  =1,2,..., ).                 
ij ij ij j ij ij ij

x x x x j p i N          (4.1.6) 

 

Here, 
j

x  is the mean of the vector ( 1, 2,..., ) 
j

j px
 
and  

 

                                                           
1

1
: .

N

j lj

l

x x
N 

                                                            (4.1.7) 

 

The amount of perturbation in each dimension is restricted by 
ij

  which is the semilength of the 

CI for input data. 

 

When we incorporate a ―perturbation” (uncertainty) into output data, our output data vector 

1 2
( , ,..., )

N

T
y y yy  is represented as 

1 2
( , ,..., ) ,

T

N
y y yy  including the perturbation 

1 2
( , ,..., ) .

T

N
     Since y  can be outliers and since perturbations of outliers are not 

meaningful, for our problem, we, instead, refer to y , the average (mean) of the output data y , as 

the value wherever we use y . Here, we restrict vector   to be elements of  
2

U  which is the 

uncertainty set for our output data. So, our new output values can be represented as follows: 

 

                  ;             y ,    ( =1,2,..., ).             
i i i i i i

y y y i N                        (4.1.9) 

 

Here, y  is the mean of the vector y  and 

 

                                                             
1

1
:

N

l

l

y y
N 

  .                                                       (4.1.10) 

 

The amount of perturbation in each dimension is restricted by i which is the semilength of the 

CI for the output variables. 

 

MARS employs expansions of piecewise linear BFs based on the new data set that implies 

uncertainty. We prefer the following notation for the piecewise linear BFs: 

 

                                   ( , )  ( ) ,  ( , )  ( )c x x c x x   
 

 
                                  (4.1.11) 

 



 62 

where,    [ ] = max 0, ,  [ ] = max 0, ,q q q q
 


 
and   is a univariate knot. Incorporating the 

uncertainty sets max

1
,  

N M
U


 and

2
 

N
U  , defined in Section 4.1.6, into the data ( ,  )

i i
yx

 

(  1,2,..., ),i N  the multiplicative form of the mth BF can be represented as: 

 

 
1

( ) := [ ]   for 1, 2,..., .
m

m m

j j

K

m i i
j

x i N
 

 




 x                     (4.1.12) 

 

Here, we can write and estimate [ ]m m

j j
i

x
 




  and  [ ]m m

j j
i

x
 




  in the subsequent ways. Firstly, 

for the positive part, we get: 

 

1
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1
                   max{0, } max{0, }
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We can evaluate 
1

1
max{0, }m m

j j

N

l
l

x
N  




  as follows with the control variable 
m

j
i


 : 

 

1

1
max{0, } max{0, }.m m m m m

j j j j j

N

l i i
l

x x
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When we use the idea above, we can state: 

 

1

1
max{0, } max{0, } max{0, } max{0, }
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m m m m m m m
j j j j j j j
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j j j j
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x x
N

x

      

   

 









 

        

    


 

 

So, [ ]m m

j ji
x
 




  can be estimated in the following form: 

 

                                   [ ] [ ] ( ) .m m m m m m

j j j j j j
i i i i

x x
     

 


  
                                         (4.1.13) 
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Similarly, for the negative part, we obtain: 

 

1

[ ] max{0, } max{0, ( )}

                   max{0, } max{0, }

1
                   max{0, } max{0, }

1
                   max{0, (

m m m m m m m

j j j j j j j

m m m

j j j

m m m

j j j

j

i i i

N

l i
l

x x x

x

x
N

N

      

  

  



  











      

   

   





1

1

)} max{0, }

1
                   max{0, } max{0, }.               

m m m

j j

m m m

j j j

N

l i
l

N

l i
l

x

x
N

 

  






  

   





 

  

We can evaluate 
1

1
max{0, }m m

j j

N

l
l

x
N  




  as follows with the control variable 
m

j
i


 : 

1

1
max{0, } max{0, }.m m m m m

j j j j j

N

l i i
l

x x
N     

 




      

 

When we use the idea stated above, we can understand:  

 

1

1
max{0, } max{0, } max{0, } max{0, }

                                                                  [ ] ( ) .

m m m m m m m

j j j j j j j

m m m m

j j j j

N

l i i i i
l

i i i

x x
N

x

      

   

 









 

        

     


 

 

Therefore, [ ]m m
j ji

x
 

  can be estimated in the following form: 

 

                                       [ ] [ }] ( ) .m m m m m m

j j j j j j
i i i i

x x
     

 


  
                                    (4.1.14) 

 

When we combine (4.1.13) and (4.1.14), we can write: 

 

                                      [ ] [ ] [ ( )]m m m m m m

j j j j j j
i i i i

x x
     

 
  

       .                         (4.1.15) 

 

Here, : max{ , }m m m

j j j
i i i  

 
     is regarded and applied as a control variable. Since the value of 

this control variable directly affects the size of our uncertainty set 
1

U  and our uncertainty sets are 

unknown but bounded, the value of m

ji
  is restricted by m

ji
 . When we consider the 

conservative (risk averse) case, ―worst case‖ for the value of m

ji
 , it will be equal to m

ji
 . 
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However, when the absolute value of our uncertainty set is very high, it may take too much time 

to find a solution or we may not find any meaningful solution for our problems. Therefore, to 

select the value of 
m

ji
 , we may consider the  risk friendly case. 

 

To obtain our ( )
m i

 x  and  ( )
m i

 x  , we can employ (4.1.15) in the following form, where all 

the signs ―+‖ and ―-‖ belongs to each other, respectively, for 1,2,...,i N : 

 

1 1

: ( )

{1,... ,} {1,... ,}/

[ ]  [( ) (( ) ]

                          [ ] [( ) ]

                          [

m m

m m m m m m

j j j j j j

m i

m m

m m

j j

K K

i i i i
j j

ia a ib ib

A K a A b K A

i

x x

x

x

     



 

 





  

 



 

  

      

    

 

 

  

x

{1,... ,}1 {1,... ,}/

  
( )

] [ ] [( ) ]  .
m

m m

m i

K

ia a ib ib

A Kj a A b K A

x




  

  



      

x

 

 

Here, we can obtain the form below with symmetry:   

 

ˆ( ) ( )
ˆˆ ˆ( ) ( ) max{ , }.

ˆ̂( ) ( )

m i m i im

m i m i im im

m i m i im

u
u u

u

 
 

 

 
  

 





x x
x x

x x
 

 

So 
im

u  can be estimated in this way: 

 

  

{1,..., } {1,..., }/

  

1

{1,..., } {1,..., }/

  

  ;     

                                               ( ),

m m

m m

m m m m m ia a ib ib

A K a A b K A

A

i ia ib ib

A K a A b K A

u x    

  

  





  



       

  

  

  
                   (4.1.16) 

   

where for all  1,2,...,i N , 

   

{1,..., } {1,..., }{1,..., }/ {1,..., }/

    

{1,..., } {1,..., }/

  

( )

     ( )

j j

m m

m mm m

ia ia
ib ib

m m
i

im ia a ia ia ib ibi i
A K A Ka A b K A a A b K A

D

A

ia ia ib ib i

A K a A a A b K A

u x
 


 

   

  

    
  



   




       

    

    

   
1

{1,..., } {1,..., }/

  

( ).

m m

ia ib ib

A K a A b K A

  
  



  

 

 

Here, max: {  1,2,..., 1}
i ia m

a K      is also interpreted and employed as a control variable. 

Normally, 
i

  is equal to two, but in the case of an outlier it will be bigger than two.  
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The control variable 
i

  will change depending on outliers in the input data. When our input data 

j
X  have no outliers, we say that all variables in the input data are in the confidence interval 

whose length is 2 . So the value of 
i

  will be two for all variables in the input data. On the 

other hand, when our input data 
j

X  have outliers, we say that some of the variables in the input 

data are out of the CI. For the variables in the input data that are in the CI, the value of 
i

  will 

again be two, but for the variables in the input data, which are out of the confidence interval, the 

value of this control variable will be different from two. For this case, we will have to select 

different values for 
i

 . When we consider the conservative case, we do not want to ignore any 

outlier. Therefore the values of 
i

  may be very large for some variables in the input data, and the 

absolute values of our uncertainty set may be very high because of the values of this control 

variable. If the absolute value of our uncertainty set is very high, it may take too much time to 

find a solution or we may not find any meaningful solution for our problem at all. Consequently, 

instead of the conservative case, we may consider a more risk friendly case to select the values of 

i
   for the outlier case. For a visualization, see Figure 4.1:  

 

 
 

Figure 4.1  The confidence intervals of perturbation   and x  . 

 

  

For the MARS model with uncertainty, PRSS has the following representation:  

 

        
max

1 2

2
2 2 2

,

1 1       1     

  , ( )  ( , )

 : ( ( )) [ ( )]

T

MN
m m

i m m r s m

i m r s

r s V m

PRSS y f D d


 

  
   



      




i
x t t .               (4.1.17) 
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Then the discretized form is used to approximate the multi-dimensional integrals 

2
2

,
( )

m

m m

m r s m

Q

D d


    t t  (see Subsection 3.2.2) and our PRSS with uncertainty can be 

represented as follows: 

 

    
2

2

2
2

( )PRSS     y b L .                                         (4.1.18) 

 

As we mentioned before (see Subsubsection 4.1.3.1), there is no difference for the second 

(complexity) part of our PRSS model after we incorporate a “perturbation” (uncertainty) into the 

real input data 
i

x  in any dimension and into the output data iy , because we need not make any 

change for the function in the multi-dimensional integrals
2

2

,
( )

m

m m

m r s m

Q

D d


    t t . 

 

4.1.5 Ellipsoidal Uncertainty and Robust Counterpart for CMARS 

Model 

To study the robustness problem, we assume that the given model uncertainty is given by a 

family of matrices  ( )   b b U  and vectors , y y v  where 
1 2
 and  U U U v  are 

unknown but bounded sets and , 0    are the semi-lengths of our confidence sets, 

respectively. 

 

Based on  
1 2

and  U U  are ellipsoidal, the robust counterpart is defined by 

 

                               
1

2

2 2

22
minimize max ( ( ) ) ( )

U

U






   


  
U

v

b U y v L ,                          (4.1.19) 

 

where 

 

                                          max1/2

1 2
,  

N M
U 


   U P u   u u ,                               (4.1.20) 

                                           1/2

2 2
,  

N
U      v Q v    v v .                                     (4.1.21) 

 

Here, P and Q are symmetric nonnegative configuration matrix and 
2

  is the Euclidean norm. 

Furthermore, 
1 2

and  U U U v  are defined by  
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max

max

max

1
11 12 1

221 22 2

1 2

and

...

...
     .

...

M

M

NN N NM

uu u v

uu u v

vu u u



   
   
   
   
   
    

U v =                          (4.1.22) 

 

As we stated equations in (4.1.20) and (4.1.21), we have to use the vector form in the typical 

ellipsoidal sets. However, for our first uncertainty set 
1

U , we have the matrices form of 
1

UU . 

To overcome this difficulty, we have three alternatives: 

 

1. We can represent our matrix U as a vector u. We have a 
max

( )N M -matrix 

max

1,2,...,

1,2,...,

( )
ij i N

j M

u




U and we can write it as a vector 
max1,2,...,

( )
k k N M

u
 

u , where :
k ij

u u  with     

k=i+(j-1)N. Therefore, our matrix U can be canonically represented as a vector 

max1 2
( , ,..., )

T

N M
u u u


u  by successively aligning the columns of U. 

  

2. We can obtain an ellipsoidal set for each column vector in the matrix U and we have 
max

M   

different ellipsoidal sets. Then, we can use the sum of these 
max

M ellipsoidal sets [14]. 

 

3. We can use a different form of ellipsoidal set, which is defined in [91], as follows: 

 

                     max

1 1

2 2

1

ˆ( )
-1

 
2

tr

NxM
U

N


 

      
 
 
 

U U P U U P .                            (4.1.23) 

 

Here, 
tr

A  is the trace norm defined as 
2

trace( ),
T

tr
A A A  where  trace( ) :B  

, 1,2,...,

1

( ( ) )  
n

ii ij i j n

i

b b




 B . 

 

If we select the first alternative explained above, based on the uncertainty sets 
1 2

and  U U  from 

the equations (4.1.20) and (4.1.21), our robust counterpart (4.1.19) is redefined as 

 

                        
2

2

2 21/2 1/2

22
minimize max  ( ( ) )

 






 

     
u

v

y Q v b P u L .                  (4.1.24) 
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When we apply Cauchy–Schwarz inequality in its form for both vectors and matrices, we can 

estimate 
2

1/2 1/2

2
 ( ) ( ( ) )   y Q v b P u  in the following form: 

 

2 2

2 2
1/2 1/2

22

2 2 2 22 22 21/2 1/2 2 1/2 2 1/2

2 22 22 2 2 2

( )  ( ) ( ( ) )

( ( ) ( ( ) .

 

 

 

    

       

   

     

y b y Q v b P u

y b P u Q v b y P Q
 

 

Therefore, our robust counterpart is finally defined as 

 

                       
2 22 22 1/2 2 1/2

22 2 2
minimize   ( ) .      


   y b P L Q                  (4.1.25) 

 

The complexity of optimization problems increase if an ellipsoidal uncertainty set is employed. 

In fact, our robust CQPs become SDPs under ellipsoidal uncertainty sets [6] (Section 2.6.2). 

However, since we continue to study our optimization problem as a CQP problem, in this study, 

we use the form of polyhedral sets as our uncertainty sets. 

 

 

4.1.6  Polyhedral Uncertainty and Robust Counterpart for 

CMARS Model 

In order not to increase the complexity of our regarded optimization problem (see Subsubsection 

4.1.3.2), we choose the uncertainty sets 
1 2
 and U U  as polyhedral for input and output data in our 

model to study our robustness problem. Based on these sets 
1 2
 and U U , the robust counterpart is 

defined as follows: 

 

                                         
1

2

2 2

2 2
minimize max  .

U

U






 


 
W

z

W z L                                        (4.1.26) 

 

Here, 
1

U  is a polytope with max2
N M

 vertices 
max2

1 2
, ,..., .

N M

W W W  It is not exactly known, but 

belongs to a convex bounded uncertain domain 
1

U  given by 

 

              

max max

max

2 2

1

1 1

   0 ( {1, 2,..., 2 }),  1 ,

N M N M

N Mj

j j j

j j

U j  

 



 

   
 
 
 
 W                   (4.1.27) 
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where 
1

U = conv{
max2

1 2
, ...,

N M

W W W } is the convex hull. 

 

Furthermore, 
2

U  is a polytope with 2
N

 vertices 
1 2 2
, ,...,

N

z z z . It is not exactly known, but 

belongs to a bounded uncertain domain 
2

U  given by 

 

                      
2 2

2

1 1

 0 ( {1, 2,..., 2 }),  1 ,

N N

i N

i i i

i i

U i  
 

   
 
 
 
 z                               (4.1.28) 

 

where 
2

U = conv{
1 2 2
, ,...,

N

z z z } is the convex hull. 

 

Any uncertainty sets 
1

U   and 
2

U  can be represented as a convex combination of vertices 
j

W  

(j=1,2,…, max2
N M

) and 
i

z  (i=1,…, 2
N

) of the polytope. The entries are found to have become 

intervals. Therefore, our matrix W  and vector z with uncertainty are lying in the Cartesian 

product of intervals that are parallelpipes. To give an easy illustration, the Cartesian product of 

intervals in general and, especially, for three entries, can be represented by Figure 4.2.   

 

 

 
 

 

 

Figure 4.2  Cartesian product of intervals for 3 entries. 

 

 

Here, our matrix W  is represented as a vector with uncertainty which generates a parallelpipe 

C . We have a 
max

( )N M -matrix 
max

1,2,...,

1,2,...,

( )
ij i N

j M

u




W = and we can write it as a vector 
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max1,2,...,
( )

k k N M
t

 
t , where :

k ij
t u with k=i+(j-1)N. So, our matrix W  can be canonically 

represented as a vector 
max1 2

( , ,..., )
k N M

T
t t t


t  by successively aligning the columns of .W  

 

The input data matrix represented as a vector t with uncertainty which generates a parallelpipe C. 

Let C  be a parallelpipe that encompasses entries of input data; we represent it by 

 

                        
max

max max1 1 2 2

1

[ , ] [ , ] .... [ , ] ,

N M

ı u l u l u

N M N M i

i

C x x x x x x C



 



                              (4.1.29) 

 

where : [ , ]
l u

i i i
C x x , 

l u

i i i
x x x  ; 

l

i
x  is the lower bound and 

u

i
x  is the upper bound of the  

confidence intervals in the input  dimension (
max

=1,2,...,i N M ).  

 

The output data vector includes entries 
1 2

( , ,..., )
T

j N
y y yy  with uncertainty which generates a 

parallelpipe D. Let D  be a parallelpipe that encompasses entries of output data; we represent it 

by 

                              
1 1 2 2

1

[ , ] [ , ] .... [ , ] ,
N

l u l u l u

N N j

j

D y y y y y y D


                                     (4.1.30) 

 

where : [ , ]
l u

j j j
D y y , 

l u

j j j
y y y   , 

l

j
y  is the lower bound and 

u

j
y   is the upper bound of the  

confidence intervals in the output dimension ( =1,2,...,j N ). Here, the symbols ― ‖ and ― ‖ 

are used for Cartesian product. 

 

4.1.7 Robust CQP with  Polyhedral Uncertainty 

For our CMARS model, the optimization problem is written as follows: 

 

                                              

,

2

2

minimize

subject to

 ,

 ( ) ,  

                .

t

t

t

M

 





 



b y

L

                                             (4.1.31) 

                                    

When polyhedral uncertainty is used for our CMARS model, based on uncertainty sets 1U  and 

2U  from the equations (4.1.27) and (4.1.28), the robust counterpart is defined by: 
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1

2

2 2

2 2
minimize max   

U

U






 


 
W

z

W z L .                                     (4.1.32)                                           

 

So, robust CQP for our optimization problem is represented in the following form:        

 

                         
max

1 1

,

1 22

  

2

minimize

subject to

  ,

   , ,

                 .

M N
j i

j i

j i

t

t

t U U

M

 

 

 

    

 









W z

W z     W z

L

                   (4.1.33) 

 

If 
1

U  and 
2

U  are polytopes which are described by their vertices: 

 

                                               
 

 

max1 2

1

1 2

2

conv

conv

, ,...,

, ,..., ,

,
M

N

U

U





W W W

z z z

                                            (4.1.34) 

                                                

then, our  robust CQP  can be equivalently represented as  a standard conic quadratic program  

(Section 2.6.3): 

 

                       

,

max2
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subject to
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  ( 1, 2,...,  ;  1, 2,..., ),

                .

 
t

j i

t

t i N j M

M

  









W - z

L

                    (4.1.35) 

Let us use modern methods of continuous optimization techniques, especially, from CQP where 

the basic notation is used [5] 
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subject to

 ,   

       ( =1,2,..., ). 

T

T
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c
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D x d p x

                               (4.1.36) 

 

In fact, we see that our optimization problem is such a CQP program with 

 

max

max max max

1 1 1 1 1

2 1 2 1 2 2 2
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             (4.1.37) 

  

In order to write the optimality conditions for this problem, we reformulate the problem (4.1.35) 

as follows: 
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max 2, 1
 ,  ,

Mi j N
L L


    

 

where 
1N

L


, max 2M
L


 are the ( 1)N  - and 

max
( 2)M  -dimensional ice-cream (or second-order, 

or Lorentz) cones (refer to Subsubsection 3.2.4.1 for more details).  

 

4.2 Numerical Example of  Robust CMARS  
 

4.2.1 Description of Data Set  

Knowledge of components which are responsible for the quality-defining aroma and flavour 

characteristics in wines is highly desirable to let progress in controlling and improving wine 

quality [34]. To suitably understand the chemical compounds in wine which give desirable 

sensory characteristics, information considering both the chemical nature and the sensory 

properties of a wine, or of those components in the wine, is required. The intelligent combination 

of these two different types of information is a powerful strategy which can give large gains in 

knowledge.  

 

A major aim of research efforts in trying to distinguish components of importance to wine 

flavour from a practical is to establish sensory-instrumental correlations [34]. When these 

correlations are adequately robust, in that a practical guide can be obtained considering the 

quality of a wine given its composition, the industry may benefit from the definition of such 

correlations. 

 

The data set, which is used for explaining the implementation of RCMARS algorithm, is taken 

from Minitab package program [56] as a sample of wine quality data. In these data set, for the 

quality-determining aroma, we can only use three chemical components as predictor variables 

1
(x ,

2
x ,

3
x ) because input data and output data are assumed to be normally distributed in this 

study. These chemical components are cadmium (Cd), chrome (Cr) and calcium (Ca) and they 
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have 20 observations. Here x is written as a generic variable in the corresponding space 
n

( {1,2,3}n ). Later on x will substituted by 
1 2 5
, ,..., .t t t   

  

4.2.2 Obtaining  Large Model from MARS Program 

 In order to implement RCMARS algorithm, first, the MARS model is constructed by using the 

Salford MARS version 3 [54], and then, the maximum number of BFs (
max

M ) and the highest 

degree of interactions are determined by trial and error. In our example, 
max

M  is assigned to be 

five and the highest degree of interaction is assigned to be two. Then the largest model, which is 

constructed in the forward MARS algorithm by the software, includes the BFs as follows:  

 

1 3

2 3

3 2

4 2

5 1 3

( ) max{0, 0.0459)},

( ) max{0, 0.0459 }

( ) max{0, 0.1396},

( ) max{0, 0.1396 )},

( ) max{0, 1.6729} max{0, 0.0459 }.

x

x

x

x

x x











 

  

 

  

    

x

x

x

x

x

 

 

Here, 
1

  and 
2

  are the standard BFs and reflected (mirror image) BFs for the predictor variable 

3
x , respectively (presented in  Figure 4.3). Similarly, 

3
  and 

4
  are the standard BFs and the 

reflected BFs for the predictor variable 2x , respectively (given in Figure 4.4).  

 

Figure 4.3  The graphical illustration of 
1

  and 
2

 . 
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Figure 4.4  The graphical illustration of 
3

  and 
4

 . 

 

 

On the other hand, BF 
5

  uses the function 
2

  to express the interaction between the predictor 

variables 1x  and 3x (presented in Figure 4.5). 

 

 

Figure 4.5  The graphical illustration of 
5

  which has interactions  

        between the predictor variables 
1

x  and 
3

x  [54]. 
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In order to prevent our optimization problem from nondifferentiability (Subsection 3.3.2), we 

select the knot values different from data points. However, these knot values very close to data 

points. For each BF, the knot values are selected below:   

 

10,3

1 2 10,3 10,3

10,3

0.0459
 and  :   

0.04586
.x

x


  

 
 
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

  

 

 

4,2

3 4 4,2 4,2

4,2

0.1396
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0.13961
x
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
  

 
 

 





. 

 

 

1,1 10,3

5 1,1 1,1 10,3 10,3

1,1 10,3

1.6729 0.0459
 :    ,     .

1.67292 0.04586
x x

x x

 
  

   
   

   

 
 
 

 

               

Then, the BFs of the form the equation (3.2.4), which we obtain for our numerical example, can 

be written as follows: 

 

1 1 1

1 1 1

1

1 1 1 1 1 1

1 1 1

1 1 3

1
1

1 3

1 1

For :  1,  ,  0.0459,  1,
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2 2 1
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5 5 5 5 5 5

1 2 1 2 1 2

5

5 5 5 5 5 5 5 5 5

1 1 1 2 2 2

5 5 1 3

2
5

5

1 1
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So, for our numerical example, the large model (3.2.3) becomes 
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4.2.3 Evaluating Accuracy and Complexity of PRSS Form 

For this numeric example, we can write the PRSS objective function in the equation (3.2.7) as 

follows: 
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Here, all of the evaluations for the notations ( )V m  and 
m

t  (m=1,2,…,5)  in the equation are 

stated below: 
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Besides, the derivatives for the BFs 
,

( )
m

r s m
D 


t (m=1, 2,…,5) are given below. For our first BF 
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and the sum of them can be written as follows 
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For our second BF 
2

2 3
( ) max{0, 0.0459 },x   t  3r s   due to no interaction. 

Consequently, our indicated first- and second-order derivatives of  
2

  are 
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and the sum of them is equal to following equation 
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For our third BF 
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and the sum of them can be written  below 
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For our fourth BF 
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On the other hand, for our fifth BF 
5

5 1 2
( ) max{0, 1.6729} max{0, 0.0459 },  x x     t  there 

is an interaction between predictors 
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indicated first- and second-order derivatives of 
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51,2 1 25

21

max{0, 0.0459 },       if  1.6729,
1 :   ( ) ( ) ( , )

                 0,                       if  1.6729,

               ( ) ( ) ( , )

x x
D x x

xt x

D x x
xt

 


 


    
   

  

 
  







t t

t t



1 2

2

2 5
22 5 55 5

51,2 1 25 5
1 21 2 2

max{0, 1.6729},       if  0.0459,

                0,                       if  0.0459,

1,   for all  0.0459,
2 :   ( ) ( ) ( , )

  0,   for all  0.0

x x

x

x
D x x

x xt t x

 


  

 

   
   

    





t t
459,





 

 

 

and the sum of them is equal to  

 

1 2

2
2

5 5

, 5

      1     

  , (5)  ( , )

( ) .

T

r s

r s

r s V

D d

 


 



   






t t  

 

If
1 2 3 4 5

:          , then the TR application put the PRSS function and so, our PRSS 

equation can be written as follows: 

 

2 2

22
( ) .PRSS L

 

    

Accuracy Complexity

y b  

 

Here, the first part of the TR and that of the PRSS function are equal to each other. However, the 

second parts of them are approximately equal. These parts are stated subsequently: 

 

Accuracy:        
22

2
1

( ) ( ) ( ) ( ) ,
N

T
T T T

i i

i

y


     y b y b y b b         

 

Complexity:  

1 2

2 2
22 2

,2
1       1     

  , ( )  ( , )

( ) .
m

T

m m

m m r s m

m r s Q
r s V m

L D d

 

   
  



      






 t t  

 

For illustration, the accuracy part is expanded: 
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 
20

2

0 1

1

2

3

( ) ( 1.48931 (max{0.24644 ( 0.0459)})

                                 (max{0, 0.0459 0.24644})

                                 (max{0, 0.49499 ( 0.1396)})

                   

T

i i

i

y  







      

  

   

   b

4

2

5

0

              (max{0, 0.1396 ( 0.49499)})

                                 (max{0, 1.67292 ( 1.6729)}) (max{0, 0.0459 0.24644}) )

                                 ( 0.56113 (max{0, 0.03074 ( 0







   

      

      
1

2

3

4

.0459)})

                                 (max{0, 0.0459 ( 0.03074)})

                                 (max{0, 0.03808 ( 0.1396)})

                                 (max{0, 0.1396 ( 0.03808)})

 









   

   

   

2

5

0

                                (max{0,0.70001 ( 1.6729)}) (max{0, 0.0459 ( 0.03074)}) )

                                  

                                  +( 1.12647 (max{0, 0.56998 ( 0.0459)}





      

     
1

2

3

4

)

                                 (max{0, 0.0459 ( 0.56998)})

                                 (max{0, 0.31730 ( 0.1396)})

                                 (max{0, 0.1396 0.31730})

            









   

  

  

2

5
                     (max{0,0.13051 ( 1.6729)}) (max{0, 0.0459 ( 0.56998)}) ) .      

 

 

When computing the maximum function, the Accuracy term (RSS) becomes:  

 

  

   

 

20
2 2

0 1 4

1

2

0 1 3

0

( ) 1.48931 0.29234 0.35539

                                 + 0.56113 0.01516 0.10152

                                 

                                 + 1.12647 0.52

T

i i

i

y   

  





     

   

 

   b

 
2

2 3 5
408 0.45690 0.94514 .   

  

 

The whole form of RSS can be seen in Appendix A. 

 

The multi-dimensional integral in the complexity part of the equation (3.2.7) turn into the form of 

the equation (3.2.8) after discretization, and finally, the discretized form is indicated by L which 

is given in equation (3.2.11). To apply this discretization, first we sort the data set used for our 

numerical example, and then, we slightly decrease the first value of each predictor variable and 

slightly increase the last value of each predictor variable (see Subsection 3.2.2 for more details). 

Therefore, after adding two new observations to each of the predictor variables, the number of 

observations of our data set increases from 20 to 22, and we obtain a new data set. For each 

predictor variables, the new observations are as follows: 
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For 
1

x : The first discretization value of 
1x  becomes 

1,1
1.6477x   and the last discretization 

value of 
1

x  becomes 
22,1

2.4379x  . 

 

For 
2

x : The first discretization value of 
2

x  becomes 
1,2

1.7627x   and the last discretization 

value of 
2

x  becomes 
22,2

2.5496x  . 

 

For 
3

x : The first discretization value of 
3

x  becomes 
1,3

1.7729x   and the last discretization 

value of 
3

x  becomes 
22,3

1.8441x  . 

 

The values  ( =1,2,...5)
m

L m corresponding to BFs  
1 2 5
, ,...,    are calculated as 

 

1

1 1
1 11 1
1 1

1 1

1 2

1/2

(21) 2
2

1 , 3
1, ,

1       1     

  , (1)  ( , )

(max{0, 0.0459}) 1.5760,

K

T

r s
k k

i r s

r s V

L D x x x
 

 
 

 


 


  



   

   
    

       
       

  


θ
 

 

2

2 2
2 21 1
1 1

1 1

1 2

1/2

(21) 2
2

2 , 3
1, ,

1       1     

  , (2)  ( , )

(max{0, 0.0459 }) 1.2656,

K

T

r s
k k

i r s

r s V

L D x x x
 

 
 

 


 


  



    

   
    

       
       

  


θ

 

3

3 3
3 31 1
1 1

1 1

1 2

1/2

(21) 2
2

3 , 2
1, ,

1       1     

  , (3)  ( , )

(max{0, 0.1396}) 1.6086,

K

T

r s
k k

i r s

r s V

L D x x x
 

 
 

 


 


  



   

   
    

       
       

  


θ
 

 

4

4 4
4 41 1
1 1

1 1

1 2

1/2

(21) 2
2

4 , 2
1, ,

1       1     

  , (4)  ( , )

(max{0, 0.1396 )}) 1.3132,

K

T

r s
k k

i r s

r s V

L D x x x
 

 
 

 


 


  



    

   
    

       
       

  


θ

 

5

5 5
5 55 1 1
1 1

1 1

1 2

1/2

(21) 2
2

5

5 ,
1, ,

1       1     

  , (5)  ( , )

( ) 0.8166,

K

T

r s
k k

i r s

r s V

L D x x
 

 
 

 


 




  



  

   
    

       
       

  


θ
t  

 

where, 
5

5

1 2
( ) max{0, 1.6729} max{0, 0.0459 }.x x     t   
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As a result, the L matrix becomes a (6 6) - diagonal matrix and the first column elements of L 

are all zero. The diagonal elements of this matrix are  ( =1,2,...,5)
m

L m  as given below: 

 

0 0 0 0 0 0

0 1.5760 0 0 0 0

0 0 1.2656 0 0 0
.

0 0 0 1.6086 0 0

0 0 0 0 1.3132 0

0 0 0 0 0 0.8166



 
 
 
 
 
 
 
 
 

L  

 

From the equation (4.1.18), 

 

0

1 1

2 2

3 3

4 4

5 5

00 0 0 0 0 0

1.57600 1.5760 0 0 0 0

1.26560 0 1.2656 0 0 0
,

1.60860 0 0 1.6086 0 0

1.31320 0 0 0 1.3132 0

0.81660 0 0 0 0 0.8166



 

 

 

 

 




  







    
    
    
    
    
    
    
    

     

L  

 

and  
2

2
L  is the squared norm of  L  which is  

 
2 2 2 2 2 2

1 2 3 4 52
(1.5760 ) (1.2656 ) (1.6086 ) (1.3132 ) (0.8166 ) .             L  

 

4.2.4 Calculating Uncertainty  Values for Both Input and      

Output Data Under Polyhedral Uncertainty Sets 

After we obtain accuracy and complexity terms, to employ the robust optimization technique on 

the CMARS model, we incorporate a perturbation (uncertainty) into the real input data in each 

dimension and into the output data. For this purpose, the uncertainty from (4.1.16) is evaluated 

for all input and output values which are represented by CIs and the uncertainty matrices and 

vectors based on polyhedral uncertainty sets are obtained by using (4.1.27) and (4.1.28). After 

we transform the variables into the standard normal distribution, the CI is constructed to be (-3, 

3). The uncertainty values for each BF are represented below: 
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 
{1,..., } {1,..., }{1,..., }/ {1,..., }/

    

{1,..., } {1,..., }/

  

( )

     ( )

j j

m m

m mm m

ia ia
ib ib

m m
i

mi ia a ia ia ib ibi i
A K A Ka A b K A a A b K A

D

ia ia ib ib i

A K a A a A b K A

x
 


 

   

  

    
  

   




       

    

    

   

u

1

{1,..., } {1,..., }/

  

( ).

m m

A

ia ib ib

A K a A b K A

  


  



  

 

 

From worst case approach, for each observation, we use the following equation to obtain the 

uncertainty vectors  ( 1,2,...,5;  1,2,..., 20)
mi

m i u : 

 
1

{1,..., } {1,..., }/

  

( ) ( ) ( ).

m m

A

mi m i m i i ia ib ib

A K a A b K A

    


  



      u x x  

 

Therefore, for our example, the uncertainty values 
1

for    are represented as: 

 

1 1

1

1 1 1

{1,..., } {1,..., }/

  

( ) ( ) ( ),
A

i i i i i i ia ib ib

A K a A b K A

    


  



      u x x  

 

where 

 
1 1 1

11 1 1 1 1 1 1 1 1

{1} {}{1}/ {} {1}

  

1 3.2623

1:   ( ) ( ) =3.2623,
A

a b b a b b

A a A b A a b

i u      
 

    



            

1

2 2 2 2

{1} {1}/

  

2 :   ( ) 3.4009,
A

a b b

A a A b A

i   


  



       

1

3 3 3 3

{1} {1}/

  

3 :   ( ) 2.9977,
A

a b b

A a A b A

i   


  



       

1

4 4 4 4

{1} {1}/

  

4 :   ( ) 2.9322,
A

a b b

A a A b A

i   


  



       

1

5 5 5 5

{1} {1}/

  

5 :   ( ) 3.1590,
A

a b b

A a A b A

i   


  



       

1

6 6 6 6

{1} {1}/

  

6 :   ( ) 2.4686,
A

a b b

A a A b A

i   


  



       

1

7 7 7 7

{1} {1}/

  

7 :   ( ) 2.2166,
A

a b b

A a A b A

i   


  



       

1

8 8 8 8

{1} {1}/

  

8 :   ( ) 2.9751,
A

a b b

A a A b A

i   


  



       
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1

10 10 10 10

{1} {1}/

  

10 :   ( ) 3.4085,
A

a b b

A a A b A

i   


  



       

1

13 13 13 13

{1} {1}/

  

13 :   ( ) 3.1792.
A

a b b

A a A b A

i   


  



       

 

Here, the value of  

1 1

1

{1,..., } {1,..., }/

  

( )
A

i ia ib ib

A K a A b K A

  


  



     vanishes for all other i values. 

2
For  ,  the uncertainty values  are represented as: 

 

2 2

1

2 2 2

{1,..., } {1,..., }/

  

( ) ( ) ( ),
A

i i i i ia ib ib

A K a A b K A

u     


  



      x x  

 

where 

 
1 1 1

9 9 9 9 9 9 9 9

{2} {}{2}/ {} {2}

  

1 3.2492
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a b b a b b

A a A b A a b
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1
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a b b
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  
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1
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a b b

A a A b A
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

  



       

1

16 16 16 16
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a b b

A a A b A
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

  



       

1

18 18 18 18

{2} {2}/

  

18 :   ( ) 2.9317,
A

a b b

A a A b A

i   


  



       

1

19 19 19 19

{2} {2}/

  

19 :   ( ) 3.1131,
A

a b b

A a A b A

i   


  



       

1

20 20 20 20

{2} {2}/

  

20 :   ( ) 3.1005.
A

a b b

A a A b A

i   


  



       
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Here, the value of  

2 2

1

{1,..., } {1,..., }/

  

( )
A

i ia ib ib

A K a A b K A

  


  



     is zero for all other i values. 

 

3
For  ,  the uncertainty values  are represented as: 

 

3 3

1

3 3 3

{1,..., } {1,..., }/

  

( ) ( ) ( ),
A

i i i i ia ib ib

A K a A b K A

u     


  



      x x  

 

where, 

 
1 1 1

2 2 2 2 2 2 2 2

{3} {}{3}/ {} {3}

  

1 3.4513

2 :   ( ) ( ) 3.4513,
A

a b b a b b

A a A b A a b

i      
 

    



          

1

5 5 5 5

{3} {3}/

  

5 :   ( ) 2.9182,
A

a b b

A a A b A

i   


  



       

1

7 7 7 7

{3} {3}/

  

7 :   ( ) 2.8421,
A

a b b

A a A b A

i   


  



       

1

8 8 8 8

{3} {3}/

  

8 :   ( ) 3.2990,
A

a b b

A a A b A

i   


  



       

1

12 12 12 12

{3} {3}/

  

12 :   ( ) 2.2075,
A

a b b

A a A b A

i   


  



       

1

13 13 13 13

{3} {3}/

  

13 :   ( ) 3.3751,
A

a b b

A a A b A

i   


  



       

1

15 15 15 15

{3} {3}/

  

15 :   ( ) 2.8167,
A

a b b

A a A b A

i   


  



       

1

16 16 16 16

{3} {3}/

  

16 :   ( ) 2.8167,
A

a b b

A a A b A

i   


  



       

1

20 20 20 20

{3} {3}/

  

20 :   ( ) 3.2736.
A

a b b

A a A b A

i   


  



       

 

Here, the value of 

3 3

1

{1,..., } {1,..., }/

  

( )
A

i ia ib ib

A K a A b K A

  


  



     vanishes for all other i values. 

 

4
For  ,  the uncertainty values  are represented as: 

 

4 4

1

4 4 4

{1,..., } {1,..., }/

  

 ( ) ( ) ( ),
A

i i i i ia ib ib

A K a A b K A

u     


  



      x x  
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where 

 
1 1 1

1 1 1 1 1 1 1 1

{4} {}{4}/ {} {4}

  

1 3.1062

1:   ( ) ( ) 3.1062,
A

a b b a b b

A a A b A a b

i      
 

    



            

1

3 3 3 3

{4} {4}/

  

3 :   ( ) 3.2585,
A

a b b

A a A b A

i   


  



       

1

4 4 4 4

{4} {4}/

  

4 :   ( ) 3.2838,
A

a b b

A a A b A

i   


  



       

1

6 6 6 6

{4} {4}/

  

6 :   ( ) 2.8523,
A

a b b

A a A b A

i   


  



       

1

9 9 9 9

{4} {4}/

  

9 :   ( ) 2.9285,
A

a b b

A a A b A

i   


  



       

1

10 10 10 10

{4} {4}/

  

10 :   ( ) 3.1315,
A

a b b

A a A b A

i   


  



       

1

11 11 11 11

{4} {4}/

  

11:   ( ) 3.0808,
A

a b b

A a A b A

i   


  



       

1

14 14 14 14

{4} {4}/

  

14 :   ( ) 3.0300,
A

a b b

A a A b A

i   


  



       

1

17 17 17 17

{4} {4}/

  

17 :   ( ) 2.9031,
A

a b b

A a A b A

i   


  



       

1

18 18 18 18

{4} {4}/

  

18 :   ( ) 2.9031,
A

a b b

A a A b A

i   


  



       

1

19 19 19 19

{4} {4}/

  

19 :   ( ) 2.5223.
A

a b b

A a A b A

i   


  



       

 

Here, the value of  

4 4

1

{1,..., } {1,..., }/

  

( )
A

i ia ib ib

A K a A b K A

  


  



     is zero for all other i values. 

 

5
For  ,  the uncertainty values  are represented as: 

 

5 5

1

5 5 5

{1,..., } {1,..., }/

  

( ) ( ) ( ),
A

i i i ia ib ib

A K a A b K A

u     


  



      x x  

 

where  
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1 1 1

9 9 9 9 9 9 9 9

{2,5} {2,5}/ {2,5}/

  

9 :   ( ) ( ) 54.5087,
A

a b b a b b

A a A b A a A b A

i      
 

    



          

1

11 11 11 11

{2,5} {2,5}/

  

11:   ( ) 47.3986,
A

a b b

A a A b A

i   


  



       

1

12 12 12 12

{2,5} {2,5}/

  

12 :   ( ) 45.7299,
A

a b b

A a A b A

i   


  



       

1

14 14 14 14

{2,5} {2,5}/

  

14 :   ( ) 36.4180,
A

a b b

A a A b A

i   


  



       

1

15 15 15 15

{2,5} {2,5}/

  

15 :   ( ) 36.4337,
A

a b b

A a A b A

i   


  



       

1

16 16 16 16

{2,5} {2,5}/

  

16 :   ( ) 41.1340,
A

a b b

A a A b A

i   


  



       

1

17 17 17 17

{2,5} {2,5}/

  

17 :   ( ) 45.7592,
A

a b b

A a A b A

i   


  



       

1

18 18 18 18

{2,5} {2,5}/

  

18 :   ( ) 49.0705,
A

a b b

A a A b A

i   


  



       

1

19 19 19 19

{2,5} {2,5}/

  

19 :   ( ) 47.7710,
A

a b b

A a A b A

i   


  



       

1

20 20 20 20

{2,5} {2,5}/

  

20 :   ( ) 45.7116.
A

a b b

A a A b A

i   


  



       

 

Here, the value of  

5 5

1

{1,..., } {1,..., }/

  

( )
A

i ia ib ib

A K a A b K A

  


  



     vanishes for other i values. 

 

Then, we can write our uncertainty matrix for input data as follows: 

 

11 12 15

21 22 25

201 202 205

 = 

3.5246, 3.5246 0 0

3.8018, 3.8018 0 0
.

0 3.2011, 3.2011 46.4190, 46.4190

u u u

u u u

u u u







 

     
   

     
   
   

            

U

 

 

After we incorporate an uncertainty for each input value, our basis function‘s matrices can be 

represented as the following forms:
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 

1 3.8170 0

1 3.8170 0
 ,

0

1 47.3642

upper upper
  

 
 
 
 
 
 

W b U  

 

 

1 3.2323 0

1 3.7866 0
 .

1 0 45.4739

lower lower




  



 
 
 
 
 
 

W b U
 

 

For output data, the uncertainty vector and the vectors with uncertainty are represented below: 

 

 

 

 

1

2

20

3, 3 1.5107 4.4893

3, 3 2.4389 3.5611
 = ,      ,      .

3, 3 4.1265 1.8735

upper upper lower lower

v

v

v

 

 
      

 

      
      
      
      
      

      

v z y v z y v  

 

Whole form of  and, , , ,
upper lower upper lower

 U v  W W z  z  can be seen in Appendix B. 

 

4.2.5 Obtaining Weak RCMARS Models Using Combinatorial  

Approach  

As we mentioned in the previous section, PRSS is the TR problem and we can easily formulate 

PRSS as a CQP problem. Moreover, using our robust optimization approach for a robustification 

of CMARS, we  incorporate a perturbation (uncertainty) into the real  input data, 

  ( 1, 2,..., ),
i

i Nx  in each dimension and into the output data, .y  For this aim, the uncertainty 

matrices and vectors based on polyhedral uncertainty sets are obtained by applying (4.1.27) and 

(4.1.28). Then, using the equation (4.1.16), uncertainty is evaluated for all input and output 

values which are represented by CIs. The boundaries of CIs are assumed to be (-3, 3) after the 

variables are transformed into the standard normal distribution.  

 

For our example, the uncertainty matrix for input data has a huge size, and we do not have 

enough computer capacity to solve our problem for this uncertainty matrix. Indeed, we have a 

tradeoff between tractability and robustification. To overcome this difficulty, in this example, we 

formulate PRSS as a CQP problem for each sample value (observation) using the combinatorial 

approach, which we call weak robustification. As a result, we obtain 20 different weak RCMARS 

(WRCMARS) models, and solve them by using MOSEK program [58].  



 89 

 

Based on polyhedral uncertainty sets, to solve our problem, we use the vertices. In order to find 

these vertices, we need to apply Cartesian product for each interval of input data in the 

observations (refer to Subsection 4.1.6 for more detail). Hence, our WRCMARS models have 

different structures depending on the number of entries (BFs) which the observations have. In our 

example, we have two or three entries in our sample values. For instance, in our 20 different 

models, we present two models which have two entries and three entries respectively.  

 

We can show the first observation‘s WRCMARS model, which has two entries, in the following 

form:  

 

                        ,

minimize

subject to

 ,
t

t


 
 

0 1 4 1

0 1 3 2

1.51069  3.81696  3.56769                         ,

2.43887  0.01516  0.10152                          ,

                                                                             

   

   

   

   

0 2 3 5 20

              

4.12647  0.52408  0.45690  0.94514 ,        
 

 

0 1 4 21

0 1 3 22

1.51069  3.81696  3.56769                         ,

2.43887  0.01516  0.10152                          ,

                                                                           

   

   

   

   

0 2 3 5 40

                

4.12647  0.52408  0.45690  0.94514 ,        

 

 

0 1 4 41

0 1 3 42

 1.51069  3.23229 3.56769                         ,

2.43887  0.01516  0.10152                          ,

                                                                           

   

   

   

   

0 2 3 5 60

                

4.12647  0.52408  0.45690  0.94514 ,        

 

 

0 1 4 61

0 1 3 62

1.51069  3.23229  2.85691                         ,

2.43887  0.01516  0.10152                          ,

                                                                           

   

   

   

   

0 2 3 5 80

                

4.12647  0.52408  0.45690  0.94514 ,        
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0 1 4 81

0 1 3 82

4.48931  3.81696  3.56769                        ,

3.56113  0.01516  0.10152                           ,

                                                                         

   

   

    

    

0 2 3 5 100

                    

1.87353  0.52408  0.45690  0.94514 ,         

 

 

0 1 4 101

0 1 3 102

4.48931  3.81696  2.85691                       ,

3.56113  0.01516  0.10152                        ,

                                                                          

   

   

    

    

0 2 3 5 120

                   

1.87353  0.52408  0.45690  0.94514 ,         

 

 

0 1 4 121

0 1 3 122

 4.48931 3.23229 3.56769                        ,

3.56113  0.01516  0.10152                          ,

                                                                         

   

   

    

    

0 2 3 5 140

                    

1.87353  0.52408  0.45690  0.94514 ,         

 

 

0 1 4 141

0 1 3 142

4.48931  3.23229  2.85691                        ,

3.56113  0.01516  0.10152                          ,

                                                                        

   

   

    

    

0 2 3 5 160

                     

1.87353  0.52408  0.45690  0.94514 ,         

 

 

1 161

5 165

1.54717  ,

                      

0.81663 ,

 

 





  

 

 

                         

2 2 2 1/2

1 2 20

2 2 2 1/2

21 22 40

2 2 2 1/2

121 122 140

2 2 2 1/2

141 142 160

1/2 1/2

161 162 163 164 165

( ... )   ,

( ... )  ,

                                       

( ... )  ,

( ... )  ,

( )  ( ) .

t

t

t

t

M

  

  

  

  

    

   

   

   

   

    
 

 

For solving this problem, we transform it into the MOSEK format above. The whole form of 

MOSEK model can be seen in Appendix C. For this transformation, we attribute new unknown 

variables in the linear notations in these nine cones. By this way, we simplify the notations in the 

cones and write them as constraints. Therefore, for our first sample, our problem includes one 

hundred seventy three linear constraints and nine quadratic cones. To try to obtain MOSEK 
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model for first sample value in the interval uncertainty case, only the first values 

1 21 41 61 81 101 121 141
and, , , , , ,           in the cones are different for the first eight cones. The 

other values remain the same.  

 

Similarly, we can represent the last observation‘s WRCMARS model, which has three entries, in 

following form:  

 

                        ,

minimize

subject to

 ,
t

t
  

 

0 1 4 1

0 1 3 2

1.51069  0.29234  0.35539                          ,

2.43887  0.01516  0.10152                          ,

                                                                           

   

   

   

   

0 2 3 5 20

                  

4.12647  3.72516  4.00407  47.36416 ,        

 

 

0 1 4 21

0 1 3 22

1.51069  0.29234  0.35539                         ,

2.43887  0.01516  0.10152                         ,

                                                                           

   

   

   

   

0 2 3 5 40

                 

4.12647  3.72516  4.00407  45.47389 ,+       

 

 

0 1 4 41

0 1 3 42

1.51069  0.29234  0.35539                         ,

2.43887  0.01516  0.10152                           ,

                                                                          

   

   

   

   

0 2 3 5 60

                   

4.12647  3.72516 3.09027  47.36416 ,+        

 

 

0 1 4 61

0 1 3 62

1.51069  0.29234  0.35539                        ,

2.43887  0.01516  0.10152                        ,

                                                                             

   

   

   

   

0 2 3 5 80

               

4.12647  3.72516 3.09027 45.47389 ,+ +       

 

 

0 1 4 81

0 1 3 82

1.51069  0.29234  0.35539                          ,

2.43887  0.01516  0.10152                          ,

                                                                         

   

   

   

   

0 2 3 5 100

                     

4.12647 2.67700  4.00407  47.36416 ,+        
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0 1 4 101

0 1 3 102

1.51069  0.29234  0.35539                         ,

2.43887  0.01516  0.10152                        ,

                                                                          

   

   

   

   

0 2 3 5 120

                  

4.12647 2.67700  4.00407 45.47389 ,+ +       

 

 

0 1 4 121

0 1 3 122

1.51069  0.29234  0.35539                        ,

2.43887  0.01516  0.10152                          ,

                                                                          

   

   

   

   

0 2 3 5 140

                 

4.12647 2.67700 3.09027  47.36416 ,+ +       

 

 

0 1 4 141

0 1 3 142

1.51069  0.29234  0.35539                        ,

2.43887  0.01516  0.10152                       ,

                                                                            

   

   

   

   

0 2 3 5 160

               

4.12647 2.67700 3.09027 45.47389 ,+ + +      
 

 

0 1 4 161

0 1 3 162

4.48931  0.29234  0.35539                          ,

3.56113  0.01516  0.10152                           ,

                                                                    

   

   

    

    

0 2 3 55 180

                           

1.87353  3.72516  4.00407  47.36416 ,         

 

 

0 1 4 181

0 1 3 182

4.48931  0.29234  0.35539                       ,

3.56113  0.01516  0.10152                          ,

                                                                         

   

   

    

    

0 2 3 5 200

                    

1.87353  3.72516  4.00407  45.47389 ,+        

 

 

0 1 4 201

0 1 3 202

4.48931  0.29234  0.35539                       ,

3.56113  0.01516  0.10152                        ,

                                                                          

   

   

    

    

0 2 3 5 220

                   

1.87353  3.72516 3.09027  47.36416 ,+         

 

 

0 1 4 221

0 1 3 222

4.48931  0.29234  0.35539                        ,

3.56113  0.01516  0.10152                         ,

                                                                        

   

   

    

    

0 2 3 5 240

                     

1.87353 2.67700  4.00407  47.36416 ,+         
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0 1 4 241

0 1 3 242

4.48931  0.29234  0.35539                       ,

3.56113  0.01516  0.10152                          ,

                                                                         

   

   

    

    

0 2 3 5 260

                    

1.87353  3.72516 3.09027 45.47389 ,+ +        

 

 

0 1 4 261

0 1 3 262

4.48931  0.29234  0.35539                       ,

3.56113  0.01516  0.10152                          ,

                                                                         

   

   

    

    

0 2 3 5 280

                    

1.87353 2.67700  4.00407 45.47389 ,+ +        

 

 

0 1 4 281

0 1 3 282

4.48931  0.29234  0.35539                       ,

3.56113  0.01516  0.10152                          ,

                                                                         

   

   

    

    

0 2 3 5 300

                    

1.87353 2.67700 3.09027  47.36416 ,+ +        

 

 

0 1 4 301

0 1 3 302

4.48931  0.29234  0.35539                      ,

3.56113  0.01516  0.10152                         ,

                                                                           

   

   

    

    

0 2 3 5 320

                  

1.87353 2.67700 3.09027 45.47389 ,+ + +       
 

 

1 321

5 325

1.54717  ,

                      

0.81663 ,

 

 





  

 

                        

2 2 2 1/2

1 2 20

2 2 2 1/2

21 22 40

2 2 2 1/2

281 282 300

2 2 2 1/2

301 302 320

1/2 1/2

321 322 323 324 325

( ... )   ,

( ... )  ,

                                       

( ... )  ,

( ... )  ,

( )  ( ) .

t

t

t

t

M

  

  

  

  

    

   

   

   

   

    
 

 

For solving this problem, we transform it into the MOSEK format above. The whole form of 

MOSEK model can be seen in Appendix C. For this transformation, we attribute new unknown 

variables in the linear notations in these nine cones. By this way, we simplify the notations in the 

cones and write them as constraints. Consequently, for our last sample, our problem includes 

three hundred forty one linear constraints and seventeen quadratic cones. To try to obtain 
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MOSEK model for last sample value in the interval uncertainty case, only the last values 

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
and, , , , , , , , , , , , , ,                   in the cones are 

different for the first sixteen cones. The other values remain the same. 

 

We write this formulation for each value of our sample (N=20) and solve them separately by 

using MOSEK program [58]. After we obtain MOSEK results and find the t values for all 

auxiliary problems, using the worst-case approach, we select the solution which has the 

maximum t value. Then we continue with our calculations using the parameter values 

0 1 2 3 4 5
and, , , ,          that we find from the auxiliary problem which has the highest t value. 

 

4.2.6 Sensitivity to The Changes in the Confidence Interval  

Limits of RCMARS  

 In order to represent sensitivity to the changes in the CI limits of the input data and output data 

and find suitable interval limit for us, we obtain different uncertainty matrices, U, for the input 

data and different uncertainty vectors, v, for the output data as the form of (4.1.22) by using four 

different intervals which are given by the pairs ±3, ±3E-6, ±3E-7, and as a special case, mid-point 

value of our interval (i.e., zero length interval), in which case it reduces to CMARS model. We 

calculate our parameters with 16 different uncertainty scenarios using these values under 

polyhedral uncertainty sets. All of the parameter estimates as well as model accuracies for 

different uncertainty scenarios are shown in Table 4.1 - 4.4. We note here that we defined the 

values M  by a model-free method. When we apply the M  values in our RCMARS code 

and solve by using MOSEK, we use the M  value which has the minimum value of PRSS in 

the equation (4.1.18). 

 

The accuracy measures evaluated based on Average Absolute Error (AAE), Root Mean Squared 

Error (RMSE) and Correlation Coefficient (r). These performance measures and their general 

notations are as follows; 

 

N: a number of observations,       

p: a number of terms in the model,  

iy : an ith observed response value,     

ˆ
iy : an ith fitted response,  

y : the actual response variables,     

y : the mean of actual values,  
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ŷ : the predicted response variables,             

ŷ : a mean of the predicted response variables,  

2( )s y : the standard deviations of actual response variable,  

2( )s y : the standard deviations of predicted response variable. 

 

Comparison Measures: 

 
AAE measures the average magnitude of error. The smaller AAE, the better it is [86]. The 

formula of AAE in the following form: 

1

1
ˆ: . 

N

i i

i

AAE y y
N 

   

 

RMSE is a measure of the differences between values predicted by a model or an estimator and 

the values actually observed from the thing being modeled or estimated. The smaller RMSE, the 

better it is [86].  A model formula is 

2

1

1
ˆRMSE:= ( ) ,  

1

N

i i

i

y y
N p 


 

  

 

Correlation coefficient is a measure of how well linear association between the predicted and the 

actual response values [86]. The formula is represented as 

1

2 2
such that

ˆ ˆ( )( )

( 1)
: 1 1.

( ) ( )
  

n

i

y y y y

n
r r

s y s y



 


    



 

Table  4.1 Parameter estimates and the model performances I 

v  ±3 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0634 -0.0773 -0.3732 

α1 -0.3131 -0.0526 -0.0577 0.0274 

α2 0.0000 0.2596 0.3141 0.1136 

α3 0.0109 -0.0029 -0.0044 -0.0700 

α4 0.0000 -0.0206 -0.0315 -0.0657 

α5 0.0000 -0.0021 -0.0016 0.5238 

AAE 0.7822 0.7241 0.7109 0.4885 

RMSE 1.1814 1.1063 1.0862 0.7888 

r 0.2124 0.6516 0.6617 0.7648 
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Table  4.2 Parameter estimates and the model performances II 

v  ±3e-6 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0654 -0.0815 -0.3733 

α1 -0.3133 -0.0528 -0.0592 0.0274 

α2 0.0000 0.2592 0.3297 0.1136 

α3 0.0110 -0.0033 -0.0046 -0.0700 

α4 0.0000 -0.0179 -0.0337 -0.0656 

α5 0.0000 0.0001 -0.0018 0.5238 

AAE 0.7822 0.7232 0.7080 0.4885 

RMSE 1.1814 1.1043 1.0809 0.7888 

r 0.2124 0.6536 0.6631 0.7648 

 
 

Table  4.3 Parameter estimates and the model performances III 

v  ±3e-7 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0597 -0.0838 -0.3733 

α1 -0.3133 -0.0513 -0.0600 0.0274 

α2 0.0000 0.2441 0.3375 0.1136 

α3 0.0110 -0.0023 -0.0045 -0.0700 

α4 0.0000 -0.0150 -0.0347 -0.0656 

α5 0.0000 -0.0031 -0.0017 0.5238 

AAE 0.7822 0.7285 0.7065 0.4885 

RMSE 1.1814 1.1130 1.0781 0.7888 

r 0.2124 0.6443 0.6638 0.7648 

 

 

Table  4.4 Parameter estimates and the model performances IV 

v  zero 

U ±3 ±3e-6 ±3e-7 zero 

α0 0.1230 -0.0017 -0.0676 -0.3733 

α1 -0.3133 -0.0021 -0.0543 0.0274 

α2 0.0000 0.0074 0.2751 0.1136 

α3 0.0110 0.0000 -0.0029 -0.0700 

α4 0.0000 -0.0001 -0.0239 -0.0656 

α5 0.0000 -0.0001 -0.0016 0.5238 

AAE 0.7822 0.7842 0.7200 0.4885 

RMSE 1.1814 1.2057 1.1001 0.7888 

r 0.2124 0.6191 0.6553 0.7648 
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The above results indicate that solutions obtained are sensitive to the limits of CIs. We obtain 

better performance results when the lengths of CIs are narrow.  Moreover, when we use the mid-

point of our interval values for both input and output data, which is the certain data case, we 

obtain the same parameter estimates, and thus, the same model performances compared with 

CMARS. This reveals that CMARS is a special case of RCMARS. In addition, according to the 

results, the solutions are more sensitive to the changes in the CI limits of the input data than the 

output data. 

  

MOSEK uses an interior-point optimizer as a default for the CQP problem. The interior-point 

optimizer is an implementation of the homogeneous and self-dual algorithm. The values M  in 

our example are defined by a model-free (train and error) method. When we access the M  

values in our RCMARS code and solve by using MOSEK, RCMARS provides us several 

solutions, each of them based on the five BFs.  

 

In addition, as we expected, CMARS produces more accurate models than RCMARS. This is 

mainly due to the randomness involved in the input-output variables. However, we also expect to 

see that the variation of the parameter estimates and hence the variation of accuracy measures 

will be much less than that of CMARS. In order to reveal this expectation, a simulation study is 

conducted and the results are presented in the following section. 
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CHAPTER 4 
 

 
 

SIMULATION STUDY  

 

In previous chapters, we represented and investigated scientifically MARS, CMARS and 

RCMARS in detail. In this chapter, we compare these methods using 20 different data sets 

created by Monte Carlo simulation based on variation of the parameter estimates. 

 

For this simulation study, we assume that similar to RCMARS, MARS and its modified method 

CMARS have random and normally distributed input and output data which are derived from 

data set we use for our numerical example (see Section 4.5 for more details) although they are 

nonparametric and have input data that are assumed to contain fixed variables. So we created 20 

different random data sets to apply simulation for these algorithms. On the other hand, for 

RCMARS, 20 different interval values are determined for our example in Section 4.5 and hence, 

under polyhedral uncertainty sets, 20 different uncertainty scenarios are obtained by using these 

values. Then, 20 different data sets to apply simulation for RCMARS algorithm are also 

constructed with these uncertainty scenarios.  

 

For each data set, parameter values are calculated for MARS, CMARS and RCMARS. To find 

these parameter estimates, for MARS application, Salford Systems [54] is applied while a 

MATLAB code is written and MOSEK software is used to solve the CQP problem for CMARS 

and RCMARS. MARS construct the best model by applying forward and backward stepwise 

algorithm. In this case, we obtain different models by using Salford MARS. Then, with minimum 

GCV, the best model is chosen among the obtained models having different numbers of BFs and 

interaction term. Therefore, 20 best models are generated for MARS. To obtain CMARS models, 

we use the BFs of the large models of MARS which is produced by the forward step-wise 

algorithm with 20 different data sets when the best models are obtained for MARS and we select 

M  for our CMARS code. Conversely, we use the BFs of the large model of MARS which is 

obtained by the forward step-wise algorithm with our numerical example in Section 4.5 and 

choose M  for our RCMARS code.  

 

We have determined the values M  by a model-free method and thus CMARS and RCMARS 

algorithm provides us many different models. However, in this simulation, when we apply the 
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M  values in our CMARS and RCMARS code and solve using MOSEK, we select the M  

value which has the minimum value of PRSS in the equation (4.1.18). Moreover, in order to see 

variation of model performance with parameter estimates, estimation errors of simulation models 

are evaluated based on AAE, RMSE and r. All of the parameter estimates and model 

performance values are shown in Appendix D for these three algorithms. 

 

As we mentioned before, MARS and CMARS models depend on the parameters. Small 

perturbations in data may give different model parameters and this can cause unstable solutions. 

In this simulation study, MARS obtained models which have different numbers of BFs and also it 

obtained models which have interaction or no interaction. Because of this, we receive different 

model parameters for some of our data sets. When we investigate the tables in Appendix D, we 

can easily see that solutions of the optimization problem may reveal a remarkable sensitivity to 

perturbations in the parameters of the problem.  

 

In CMARS, the aim is to reduce the estimation error while keeping efficiency as high as possible. 

CMARS also robustifies in view of the response variable y, not in view of the input variable x. 

However, in RCMARS, our aim is to decrease the estimation variance by implying full 

robustification in CMARS even though the estimation errors of RCMARS is higher than that of 

CMARS when we incorporate perturbation (uncertainty) into the real input data and output data 

based on polyhedral uncertainty set. In portfolio optimization and risk management, reduction of 

the variance is often based the diversification effect [45]. Since it is not easy to illustrate the 

reduction of estimation variance in RCMARS statistically, we represent this reduction 

graphically. For this simulation study, the results for the variance of parameter estimates can be 

seen in Figure 4.6-4.8.  

 

 

 
 

 

 
 

 

 

 

Figure 4.6  The graphical representation for the variance of parameter estimates of MARS 
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Figure 4.7  The graphical representation for the variance of parameter estimates of CMARS 

 

  

Figure 4.3 The graphical representation of the estmation variance of MARS 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  The graphical representation for the variance of parameter estimates of RCMARS 

 

 

As we see in the figures above, the variability of the model parameter estimates of the RCMARS 

is considerably less than that of MARS and much less than that of CMARS. For this simulation 

study, the variance of model performance can be seen in Figure 4.9-4.11 for three methods. 
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Figure 4.9  The graphical representation for the variance of model performance of MARS 

 

 

 

Figure 4.10  The graphical representation for the variance of model performance of CMARS 
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Figure 4.11  The graphical representation for the variance of model performance of RCMARS 
 

 

As we see by the figures above, similar to variability of the model parameter estimates, the 

variability of model performance of the RCMARS is considerably less than that of MARS and 

much less than that of CMARS.  

 

From MARS to CMARS, more BFs are coming into play and the boxes are becoming relatively 

big. This does not come by surprise since we select BFs and their number differently for 

CMARS, compared to MARS, and CMARS implies a higher complexity, so that it was expected 

by us that the variance of the solution estimator would become larger. 

 

From CMARS to RCMARS, the number of BFs diminishes strongly, and the size of the boxes 

becomes smaller again. This is not surprising either: the robustification rules out some BFs which 

are created by MARS differently from our original model. Such to say, their coefficients are 

insignificant for RCMARS and the variances of the parameter estimators became less very 

strongly. 

 

We also see that the estimators partially changed their values, very much as expressed by 

positions in the plot. This reflects the fact which we expected that RCMARS is related with a 

smaller accuracy than CMARS. 

 

Altogether, this shows we are confronted with very heterogeneous outcomes, but all of them 

being explainable, and that we are on a way of gradually understanding deeper and developing 
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RCMARS as a powerful tool and real alternative. By heterogeneous outcomes we mean, on the 

one hand, with pros and cons outcomes regarding criteria such as accuracy, stability, and 

robustness, especially, a small variance of the estimators. On the other hand, our results are 

heterogeneous in the sense of partially incomparable: CMARS and RCMARS may have a 

different number of coefficients (BFs) compared with MARS. 

  



 104 

 

 

 

CHAPTER 5 
 

 
 

CONCLUSION and FUTURE STUDIES 

 

 

In previous works, the importance and benefit of CQP in this area became already demonstrated. 

There, the complexity of the regression method MARS, which especially means sensitivity with 

respect to noise in the data, was penalized in the form of TR, which became expressed and 

studied as a CQP problem. This was leading to the new method CMARS; it is more model-based 

and employs continuous, actually, well-structured convex optimization which enables the use of 

IPMs and their codes such as MOSEK. In this study, we generalize the regression problem by 

including uncertainty in the model, especially, in the input data, too.  

 

CMARS, developed as an alternative method to MARS, is powerful in handling complex and 

heterogeneous data. However, for the methods of MARS and CMARS, data are assumed to 

contain fixed variables. In fact, data include noise in both output and input variables. 

Consequently, our regarded optimization problem‘s solutions can show a remarkable sensitivity 

to perturbations in the parameters of the problem. In this study, we include the existence of 

uncertainty in the future scenarios into CMARS and robustify it with robust optimization which 

is coped with data uncertainty. This is some kind of regularization in the input and output 

domain. It incorporates various kinds of noise and perturbations into the programming problem. 

This robustification of CQP with RO is compared with previous contributions that based on TR, 

and with the traditional MARS method.  

 

In this study, we first briefly review the theory and methods of RCMARS, a newly developed 

method for modeling uncertain data. We run the code for the data that include uncertainties, and 

then evaluate the results with respect to accuracy and efficiency. Then the results of the 

sensitivity analysis on the parameter estimates, and thus, the model performances are presented. 

As expected, CMARS produces more accurate results than RCMARS. As the CIs on the 

variables become narrower, the performance results approaches those of CMARS. 

 

We solve our optimal problem and robustify CMARS by using our continuous RO approach but, 

also a combinatorial approach, which is the weakly robust case, to handle uncertainties that may 
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exist in data and to make our rich approach feasible. In this way, we aim to decrease the 

estimation variance. For this goal, we use 20 different data sets in simulation study and 

represented our results graphically. Although RCMARS results in less accurate models than 

CMARS; its models have much less variability in parameter estimates and thus in accuracy 

measures as expected.  

 

CMARS with its yet given use of MARS is hybrid in the sense that it employs a discrete part on 

optimization and decision and a continuous one. The discrete part comes from the Salford MARS 

with its selection of a finite number of BFs; the continuous part comes from the use of CQP 

together with the IPMs of MOSEK. That makes, in our example, a greater number of BFs to 

appear for the CMARS application and a smaller number for RCMARS. In this respect, the 

variances of the parameters which are regarded insignificant (i.e., dropped) in RCMARS seems 

moved into the variances of the remaining parameters that are treated significant (i.e., remaining 

in the RCMARS model). Herewith, there was a move of risk between CMARS and RCMARS. 

This explanation lets the advantages and disadvantages of CMARS and RCMARS discussed 

above appear more relative.  

 

We are confronted with very heterogeneous outcomes and with certain technical incompatibilities 

because of different continues-discrete characters. However, we are on a way of gradually 

understanding better and developing RCMARS as a powerful tool and real alternative. But, we 

may not expect to see the power of RCMARS at this stage because of the aforementioned yet 

hybrid character of our methods. In fact, the more we can by future works make all of the parts of 

RCMARS and of the other methods prepared continuous (real-valued), the more we can see our 

positive improvements. 

 

In this study, although we have small data set for our numerical example, our uncertainty matrix 

for input data has a huge size, and we do not have enough computer capacity to solve our 

problem for this uncertainty matrix. Indeed, we have a tradeoff between tractability and 

robustification. To overcome this difficulty, in this example, we obtain different WRCMARS 

model for each sample value (observation) applying combinatorial approach, and solve them by 

using MOSEK program. As a future study, we will discuss about how we can obtain a more 

robust model using different methods and about what further research will consist of in this 

respect. 

 

For now, we work on only wine-quality data with small size. We could not find suitable data sets 

easily to apply our RCMARS algorithm because our assumption on normally distribution data.  

As a future work, we will develop the method further by considering other distributional 
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assumptions rather than normal distribution for the data. We will also use robust estimators to 

construct CIs for our data. We will study on real-world application data in some areas e.g., 

financial sector, quality management, manufacturing and biotechnology.  

We work on this Robust CMARS (RCMARS) in terms of both polyhedral and ellipsoidal 

uncertainty; however, in this study, we focus on polyhedral uncertainty. This brings us back to 

CQP naturally. In our future study, we are also going to work on RCMARS under ellipsoidal 

uncertainty. This can be increase our model complexity but will give us a more robust 

approximation and prediction than polyhedral uncertainty. 
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APPENDIX A 
 

 
 

RSS MODEL in THE NUMERICAL EXAMPLE 
 
 

 

The model RSS is addressed in Section 4.2.2 On accuracy (RSS), the model represented as: 
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UNCERTAINT MATRICES and VECTORS  
 

 

The matrices , ,upper lowerU  W W   and the vectors , ,upper lowerv  z z which are addressed in Section  

4.2.3 are of the following form: 
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     

   

0 2.6841, 2.6841 0 0

2.9501, 2.9501 0 3.5979,3.5979 0 0

0 3.4984, 3.4984 0 2.8569, 2.8569 64.4090, 64.4090

3.8169, 3.8169 0 0 3.2631, 3.2631 0

0 3.3825, 3.3825 0 3.1615, 3.1615 49.8253, 49.8253

0 3.3019, 3.3019 1.4149, 1.4149 0





  

 

  

   

   

     

     

     

 

46.4390, 46.4390

3.3583, 3.3583 0 3.7502,3.7502 0 0

0 2.2234, 2.2234 0 3.0600, 3.0600 28.2948, 28.2948

0 2.7274, 2.7274 2.6333, 2.6333 0 28.0932, 28.0932

0 3.1910, 3.1910 2.6333, 2.6333 0 37.1687, 37.1687

0 2.3847, 2.3847 0





  

  

  

    

     

     

     

2.8062, 2.8062 46.2685, 46.2685

0 2.8634, 2.8634 0 2.8062, 2.8062 53.0693, 53.0693

0 3.2263, 3.2263 0 2.0446, 2.0446 50.5855, 50.5855

0 3.2011, 3.2011 3.5472, 3.5472 0 46.4190, 46.4190

 

  

  

  

 































.































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 

1 3.8170 0 0 3.5677 0

1 3.8170 0 4.0041 0 0

1 3.8170 0 0 3.5677 0

1 3.8170 0 0 3.5677 0

1 3.8170 0 4.0041 0 0

1 3.8170 0 0 3.5677 0

1 3.8170 0 4.0041 0 0

1 3.8170 0 4.0041 0 0

1 0 3.7252 0 3.5677 64.4521

1 3.8170 0 0 3.5677 0

1 0 3.7252 0 3.5677 5
upper upper  W b U

0.3782

1 0 3.7252 4.0041 0 47.2425

1 3.8170 0 4.0041 0 0

1 0 3.7252 0 3.5677 32.7137

1 0 3.7252 4.0041 0 31.5027

1 0 3.7252 4.0041 0 38.6644

1 0 3.7252 0 3.5677 47.5409

1 0 3.7252 0 3.5677 53.6828

1 0 3.7252 0 3.5677 51.2721

1 0 3.7252 4.0041 0 47.3642





,


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


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 

1 3.2323 0 0 2,8569 0

1 3.7866 0 3,8010 0 0

1 2,1740 0 0 3,4661 0

1 1,9119 0 0 3,5677 0

1 2,8190 0 1,6688 0 0

1 0,0573 0 0 1,8416 0

1 0,9506 0 1,3641 0 0

1 2,0833 0 3,1918 0 0

1 0 3,2717 0 2,1462 64,3660

1 3,8169 0 0 2,9
lower lower

 

 

 

 

 

 



 

  

 
  W b U

584 0

1 0 3,0399 0 2,7554 49,2724

1 0 2,8786 1,1743 0 45,6354

1 2,8997 0 3,4964 0 0

1 0 0,7216 0 2,5523 23,8760

1 0 1,7295 1,2626 0 24,6837

1 0 2,6568 1,2626 0 35,6730

1 0 1,0442 0 2,0446 44,9962

1 0 2,0017 0 2,0446 52,4559

1 0 2

  

 

 

  

  

  

  

  



.

,7274 0 0,5216 49,8989

1 0 2,6770 3,0903 0 45,4739

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

   
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3
  = 

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3, 3

3,

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

  
 

 
  
 

 
  
 

 
  
 

 
 

 
  

  
 

  
 

 
  
 

 
 


 
  
 

 
  
 

  

v

 

1.5107

2.4389

2.0170

2.0170

3.4514

2.6076

2.7764

3.1983

2.3545

2.3545
,      

3.0295

1.5107

3.7046

5.2234

4.7171

3.3671

4.0421

2.9452

2.60

3

upper upper

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

z y v

4.4893

3.5611

3.9830

3.9830

2.5486

3.3924

3.2236

2.8017

3.6455

3.6455
,      

2.9705

4.4893

2.2954

0.7766

1.2829

2

76

4.1265

lower lower

 
 


 
  
 

 
  
 

 
  
 

 
  
 
  

   
 

  
 

 
  
 

 
  
 
 
 
 
 
 
 

z y v .

.6329

1.9579

3.0548

3.3924

1.8735

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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APPENDIX C 
 

 

 

MOSEK MODELS for FIRST and LAST OBSERVATIONS 

 

 

 

1. MOSEK Model for First Observation 

After incorporating uncertainty into input and output data and turn it into MOSEK format, our 

RCMARS the model represented as following form: 

 

                      ,
minimize  ,

subject to

t
t



 
 

 

0 1 4 1

0 1 3 2

0 1 4

1.51069  3.81696  3.56769                                 ,

2.43887  0.01516  0.10152                                ,

2.01697  0.82150  0.05078                               

   

   

  

   

   

   3

0 1 4 4

0 1 3 5

0 1 4

2.01697  0.95253  0.00001                                

3.45143  0.49896  1.16766                               

2.60763  1.87982  0.86307                               



   

   

  



   

   

    6

0 1 3 7

0 1 3 8

0 2 4 5 9

0

2.77639  2.38379  1.31996                               

3.19829  0.86686  0.40613                              

2.35449  0.22674  0.71077  0.04304        

2.35449  



   

   

    



   

   

    

  1 4 10

0 2 4 5 11

0 2 3 5 12

0 1 3

0.00004  0.30462                              

3.02953  0.34266  0.40616  0.55290        

1.51069  0.42329  2.58916  0.80354         

3.70457  0.45865  0.25383    

  

    

    

  

 

    

    

   13

0 2 4 5 14

0 2 3 5 15

0 2 3 5 16

                          

5.22341  1.50177  0.50769  4.41884          

4.71713  0.99781  1.37073  3.40951        

3.36705  0.53416  1.37073  1.49567        

4.0



    

    

    



    

    

    

0 2 4 5 17

0 2 4 5 18

0 2 4 5 19

0 2 3

4209  1.34050  0.76154  1.27235         

2.94515  0.86174  0.76154  0.61344        

2.60763  0.49888  1.52306  0.68661        

4.12647  0.52408  0.45690  0.

    

    

    

  

    

    

    

    5 2094514        , 
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0 1 4 21

0 1 3 22

0 1 4

2.856911.51069  3.81696 +                                  

2.43887  0.01516  0.10152                               

2.01697  0.82150  0.05078                               

   

   

  

  

   

   23

0 1 4 24

0 1 3 25

0 1 4

2.01697  0.95253  0.00001                                

3.45143  0.49896  1.16766                                

2.60763  1.87982  0.86307                            



   

   

  



   

   

   26

0 1 3 27

0 1 3 28

0 2 4 5 29

    

2.77639  2.38379  1.31996                               

3.19829  0.86686  0.40613                              

2.35449  0.22674  0.71077  0.04304        

2.35



   

   

    



   

   

    

0 1 4 30

0 2 4 5 31

0 2 3 5 32

0 1

449  0.00004  0.30462                                

3.02953  0.34266  0.40616  0.55290       

1.51069  0.42329  2.58916  0.80354        

3.70457  0.45865  0.2

   

    

    

 

   

    

    

   3 33

0 2 4 5 34

0 2 3 5 35

0 2 3 5

5383                               

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3.40951       

3.36705  0.53416  1.37073  1.49567        

 

    

    

   



    

    

    36

0 2 4 5 37

0 2 4 5 38

0 2 4 5 39

0 2

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  1.52306  0.68661        

4.12647  0.52408  0.45690



    

    

    

  



    

    

    

   3 5 40

0 1 4 41

0 1 3 42

0 1 4

3.23229

 0.94514        ,

1.51069 +   3.56769                                 

2.43887  0.01516  0.10152                               

2.01697  0.82150  0.05078       

 

   

   

  

 

  

   

   43

0 1 4 44

0 1 3 45

0 1 4

                         

2.01697  0.95253  0.00001                               

3.45143  0.49896  1.16766                                

2.60763  1.87982  0.86307    



   

   

  



   

   

   46

0 1 3 47

0 1 3 48

0 2 4

                            

2.77639  2.38379  1.31996                               

3.19829  0.86686  0.40613                              

2.35449  0.22674  0.71077  



   

   

  



   

   

    5 49

0 1 4 50

0 2 4 5 51

0 2 3 5 52

0.04304        

2.35449  0.00004  0.30462                               

3.02953  0.34266  0.40616  0.55290        

1.51069  0.42329  2.58916  0.80354         

3.

 

   

    

    



   

    

    

0 1 3 53

0 2 4 5 54

0 2 3 5 55

70457  0.45865  0.25383                                

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3.40951        

   

    

    

   

    

    
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0 2 3 5 56

0 2 4 5 57

0 2 4 5 58

0 2

3.36705  0.53416  1.37073  1.49567         

4.04209  1.34050  0.76154  1.27235          

2.94515  0.86174  0.76154  0.61344         

2.60763  0.49888  1.52306

    

    

    

 

    

    

    

   4 5 59

0 2 3 5 60

0 1 4 61

0 1 3

 0.68661        

4.12647  0.52408  0.45690  0.94514        ,

1.51069  3.23229  2.85691                                 

2.43887  0.01516  0.10152                   

  

    

   

  

 

    

   

   62

0 1 4 63

0 1 4 64

0 1 3

              

2.01697  0.82150  0.05078                                

2.01697  0.95253  0.00001                                 

3.45143  0.49896  1.16766             



   

   

  


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2. MOSEK Model for Last Observation  

After incorporating uncertainty into input and output data and turn it into MOSEK format, our 

RCMARS the model represented as following form: 

 

                      ,
minimize  ,

subject to
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   

   

0 1 4 4

0 1 3 5

0 1 4 6

.01697  0.95253  0.00001                             

3.45143  0.49896  1.16766                             

2.60763  1.87982  0.86307                              

2.77639 

   

   

   

   

   

   

0 1 3 7

0 1 3 8

0 2 4 5 9

0 1

 2.38379  1.31996                             

3.19829  0.86686  0.40613                             

2.35449  0.22674  0.71077  0.04304       

2.35449  0.00004  0.3

   

   

    

 

   

   

    

   4 10

0 2 4 5 11

0 2 3 5 12

0 1 3

0462                             

3.02953  0.34266  0.40616  0.55290       

1.51069  0.42329  2.58916  0.80354         

3.70457  0.45865  0.25383                    

 

    

    

  



    

    

   13

0 2 4 5 14

0 2 3 5 15

0 2 3 5 16

0 2

         

5.22341  1.50177  0.50769  4.41884         

4.71713  0.99781  1.37073  3.40951       

3.36705  0.53416  1.37073  1.49567       

4.04209  1.34050



    

    

    

 



    

    

    

   4 5 17

0 2 4 5 18

0 2 4 5 19

0 2 3 5 20

 0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  1.52306  0.68661       

4.12647  3.72516  4.00407  47.36416      ,

1.510

  

    

    

    

 

    

    

    

0 1 4 21

0 1 3 22

0 1 4 23

69  0.29234  0.35539                               

2.43887  0.01516  0.10152                                

2.01697  0.82150  0.05078                               

2.0

   

   

   

   

   

   

0 1 4 24

0 1 3 25

1697  0.95253  0.00001                               

3.45143  0.49896  1.16766                                

   

   

   

   
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0 1 4 26

0 1 3 27

0 1 3 2

2.60763  1.87982  0.86307                               

2.77639  2.38379  1.31996                               

3.19829  0.86686  0.40613                               

   

   

   

   

   

    8

0 2 4 5 29

0 1 4 30

0 2 4 5 31

0 2

2.35449  0.22674  0.71077  0.04304       

2.35449  0.00004  0.30462                               

3.02953  0.34266  0.40616  0.55290       

1.51069  0.42329  

    

   

    

 

    

   

    

   3 5 32

0 1 3 33

0 2 4 5 34

0 2 3 5

2.58916  0.80354       

3.70457  0.45865  0.25383                               

5.22341  1.50177  0.50769  4.41884       

4.71713  0.99781  1.37073  3.40951      

  

   

    

   

 

   

    

    35

0 2 3 5 36

0 2 4 5 37

0 2 4 5 38

0 2 4

 

3.36705  0.53416  1.37073  1.49567       

4.04209  1.34050  0.76154  1.27235       

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  1.52306



    

    

    

  



    

    

    

   5 39

0 2 3 5 40

0 1 4 41

0 1 3

 0.68661       

4.12647  3.72516  4.00407 +  45.47389      ,

1.51069  0.29234  0.35539                               ,

2.43887  0.01516  0.10152                       

 

    

   

  

 

   

   

   42

0 1 4 43

0 1 4 44

0 1 3

        

2.01697  0.82150  0.05078                                

2.01697  0.95253  0.00001                               

3.45143  0.49896  1.16766                     



   

   

  



   

   

   45

0 1 4 46

0 1 3 47

0 1 3

        

2.60763  1.87982  0.86307                               

2.77639  2.38379  1.31996                               

3.19829  0.86686  0.40613                      



   

   

  



   

   

   48

0 2 4 5 49

0 1 4 50

0 2 4 5 51

0

         

2.35449  0.22674  0.71077  0.04304       

2.35449  0.00004  0.30462                              

3.02953  0.34266  0.40616  0.55290       

1.51069  



    

   

    





    

   

    

  2 3 5 52

0 1 3 53

0 2 4 5 54

0 2 3

0.42329  2.58916  0.80354        

3.70457  0.45865  0.25383                               

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3

   

   

    

  

  

   

    

    5 55

0 2 3 5 56

0 2 4 5 57

0 2 4 5 58

0

.40951       

3.36705  0.53416  1.37073  1.49567        

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.498

 

    

    

    





    

    

    

  2 4 5 59

0 2 3 5 60

88  1.52306  0.68661       

4.12647  3.72516 + 3.09027  47.36416      ,

   

    

  

   
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0 1 4 61

0 1 3 62

0 1 4

1.51069  0.29234  0.35539                               

2.43887  0.01516  0.10152                                

2.01697  0.82150  0.05078                                

   

   

  

   

   

    63

0 1 4 64

0 1 3 65

0 1 4

2.01697  0.95253  0.00001                               

3.45143  0.49896  1.16766                               

2.60763  1.87982  0.86307                               



   

   

  

   

   

   66

0 1 3 67

0 1 3 68

0 2 4 5 69

 

2.77639  2.38379  1.31996                                

3.19829  0.86686  0.40613                               

2.35449  0.22674  0.71077  0.04304        

2.354



   

   

    



   

   

    

0 1 4 70

0 2 4 5 71

0 2 3 5 72

0 1

49  0.00004  0.30462                                

3.02953  0.34266  0.40616  0.55290        

1.51069  0.42329  2.58916  0.80354        

3.70457  0.45865  0.2

   

    

    

 

   

    

    

   3 73

0 2 4 5 74

0 2 3 5 75

0 2 3 5

5383                               

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3.40951       

3.36705  0.53416  1.37073  1.49567       

 

    

    

   



    

    

     76

0 2 4 5 77

0 2 4 5 78

0 2 4 5 79

0 2 3

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  1.52306  0.68661       

4.12647  3.72516 +  3.09027



    

    

    

  

    

    

    

  5 80

0 1 4 81

0 1 3 82

0 1 4

+ 45.47389       ,

4.48931  0.29234  0.35539                            

3.56113  0.01516  0.10152                            

3.98303  0.82150  0.05078              

 

   

   

  





   

    

    83

0 1 4 84

0 1 3 85

0 1 4

              

3.98303  0.95253  0.00001                            

2.54857  0.49896  1.16766                            

3.39237  1.87982  0.86307                   



   

   

  



    

    

    86

0 1 3 87

0 1 3 88

0 2 4 5 89

         

3.22361  2.38379  1.31996                            

2.80171  0.86686  0.40613                             

3.64551  0.22674  0.71077  0.04304     

3.



   

   

    



    

    

     

 0 1 4 90

0 2 4 5 91

0 2 3 5 92

0 1

64551  0.00004  0.30462                             

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2.58916  0.80354     

2.29543  0.45865  0.2538

   

    

    

 

   

     

     

    3 93

0 2 4 5 94

0 2 3 5 95

3                             

0.77659  1.50177  0.50769  4.41884     

1.28287  0.99781  1.37073  3.40951     

 

    

    



     

     
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0 2 3 5 96

0 2 4 5 97

0 2 4 5 98

0 2 4

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235     

3.05485  0.86174  0.76154  0.61344    

3.39237  0.49888  1.52306  0.6866

    

    

    

  

     

     

     

     5 99

0 2 3 5 100

0 1 4 101

0 1 3 102

1     

1.87353  3.72516  4.00407  47.36416   ,

4.48931  0.29234  0.35539                            

3.56113  0.01516  0.10152                            

3.

 

    

   

   





     

   

    

 0 1 4 103

0 1 4 104

0 1 3 105

98303  0.82150  0.05078                            

3.98303  0.95253  0.00001                           

2.54857  0.49896  1.16766                           

3.3923

   

   

   

   

    

    

 0 1 4 106

0 1 3 107

0 1 3 108

7  1.87982  0.86307                            

3.22361  2.38379  1.31996                            

2.80171  0.86686  0.40613                            

3.64551 

   

   

   

   

    

    

 0 2 4 5 109

0 1 4 110

0 2 4 5 111

0 2 3

 0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                             

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2.58916

    

   

    

  

    

    

     

    5 112

0 1 3 113

0 2 4 5 114

0 2 3 5 115

 0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.50177  0.50769  4.41884     

1.28287  0.99781  1.37073  3.40951     

2.63

 

   

    

    

 

    

     

     

 0 2 3 5 116

0 2 4 5 117

0 2 4 5 118

0 2 4

295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235     

3.05485  0.86174  0.76154  0.61344    

3.39237  0.49888  1.52306  0.68661

    

    

    

   

    

     

     

     5 119

0 2 3 5 120

0 1 4 121

0 1 3 122

    

1.87353  3.72516  4.00407 + 45,47389      ,

4.48931  0.29234  0.35539                             

3.56113  0.01516  0.10152                            



    

   

   





    

   

    

0 1 4 123

0 1 4 124

0 1 3 125

3.98303  0.82150  0.05078                            

3.98303  0.95253  0.00001                            

2.54857  0.49896  1.16766                            

3

   

   

   

    

    

    

 0 1 4 126

0 1 3 127

0 1 3 128

.39237  1.87982  0.86307                            

3.22361  2.38379  1.31996                            

2.80171  0.86686  0.40613                            

3.6

   

   

   

   

    

    

 0 2 4 5 129

0 1 4 130

4551  0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                             

    

   

    

    
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0 2 4 5 131

0 2 3 5 132

0 1 3 133

0 2

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2.58916  0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.50177  

    

    

   

 

     

     

    

    4 5 134

0 2 3 5 135

0 2 3 5 136

0 2 4 5 137

0.50769  4.41884     

1.28287  0.99781  1.37073  3.40951     

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235     

3.05485 

  

    

    

    

 

     

     

     

 0 2 4 5 138

0 2 4 5 139

0 2 3 5 140

0 1 4

 0.86174  0.76154  0.61344     

3.39237  0.49888  1.52306  0.68661     

1.87353  3.72516 + 3.09027  47.36416     ,

4.48931  0.29234  0.35539            

    

    

    

  

    

     

    

   141

0 1 3 142

0 1 4 143

0 1 4

                

3.56113  0.01516  0.10152                            

3.98303  0.82150  0.05078                             

3.98303  0.95253  0.00001             



   

   

  



    

    

    144

0 1 3 145

0 1 4 146

0 1 3

              

2.54857  0.49896  1.16766                           

3.39237  1.87982  0.86307                            

3.22361  2.38379  1.31996                 



   

   

  



    

    

    147

0 1 3 148

0 2 4 5 149

0 1 4

           

2.80171  0.86686  0.40613                             

3.64551  0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                             



   

    

   



    

     

     150

0 2 4 5 151

0 2 3 5 152

0 1 3 153

0

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2.58916  0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.50177

    

    

   

 

     

     

    

   2 4 5 154

0 2 3 5 155

0 2 3 5 156

0 2 4 5 157

 0.50769  4.41884     

1.28287  0.99781  1.37073  3.40951     

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235     

3.054

  

    

    

    

  

     

     

     

 0 2 4 5 158

0 2 4 5 159

0 2 3 5 160

0 1 4

85  0.86174  0.76154  0.61344     

3.39237  0.49888  1.52306  0.68661     

1.87353  3.72516 +  3.09027 +  45.47389    ,

1.51069  0.29234  0.35539         

    

    

    

  

    

     

   

   161

0 1 3 162

0 1 4 163

0 1 4

                     ,

2.43887  0.01516  0.10152                              ,

2.01697  0.82150  0.05078                              

2.01697  0.95253  0.00001      



   

   

  



   

   

   164

0 1 3 165

                       

3.45143  0.49896  1.16766                             



   



   
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0 1 4 166

0 1 3 167

0 1 3 168

2.60763  1.87982  0.86307                              

2.77639  2.38379  1.31996                              

3.19829  0.86686  0.40613                             

   

   

   

   

   

   

0 2 4 5 169

0 1 4 170

0 2 4 5 171

0 2

2.35449  0.22674  0.71077  0.04304       

2.35449  0.00004  0.30462                             

3.02953  0.34266  0.40616  0.55290       

1.51069  0.42329  

    

   

    

 

    

   

    

   3 5 172

0 1 3 173

0 2 4 5 174

0 2 3 5

2.58916  0.80354        

3.70457  0.45865  0.25383                             

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3.40951   

  

   

    

   

 

   

    

    175

0 2 3 5 176

0 2 4 5 177

0 2 4 5 178

0 2

    

3.36705  0.53416  1.37073  1.49567        

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  



    

    

    

 



    

    

    

   4 5 179

0 2 3 5 180

0 1 4 181

0 1 3

1.52306  0.68661       

4.12647 +  2.67700  4.00407  47.36416       ,

1.51069  0.29234  0.35539                               

2.43887  0.01516  0.10152           

  

    

   

  

 

   

   

   182

0 1 4 183

0 1 4 184

0 1 3

                    

2.01697  0.82150  0.05078                                

2.01697  0.95253  0.00001                               

3.45143  0.49896  1.16766      



   

   

  



   

   

   185

0 1 4 186

0 1 3 187

0 1

                          

2.60763  1.87982  0.86307                                

2.77639  2.38379  1.31996                                

3.19829  0.86686  0.40613



   

   

 



   

   

   3 188

0 2 4 5 189

0 1 4 190

0 2 4

                              

2.35449  0.22674  0.71077  0.04304        

2.35449  0.00004  0.30462                              

3.02953  0.34266  0.40616  0.552

 

    

   

  



    

   

    5 191

0 2 3 5 192

0 1 3 193

0 2 4 5 194

90       

1.51069  0.42329  2.58916  0.80354        

3.70457  0.45865  0.25383                               

5.22341  1.50177  0.50769  4.41884        

4.717

 

    

   

    



    

   

    

0 2 3 5 195

0 2 3 5 196

0 2 4 5 197

0 2 4

13  0.99781  1.37073  3.40951       

3.36705  0.53416  1.37073  1.49567        

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.6

    

    

    

  

    

    

    

    5 198

0 2 4 5 199

0 2 3 5 200

1344       

2.60763  0.49888  1.52306  0.68661        

4.12647 +  2.67700  4.00407 +  45,47389       ,

 

    

    



    

  
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0 1 4 201

0 1 3 202

0 1 4

1.51069  0.29234  0.35539                               

2.43887  0.01516  0.10152                                

2.01697  0.82150  0.05078                               

   

   

  

   

   

   203

0 1 4 204

0 1 3 205

0 1 4

 

2.01697  0.95253  0.00001                               

3.45143  0.49896  1.16766                                

2.60763  1.87982  0.86307                         



   

   

  



   

   

   206

0 1 3 207

0 1 3 208

0 2 4 5

       

2.77639  2.38379  1.31996                                

3.19829  0.86686  0.40613                               

2.35449  0.22674  0.71077  0.04304        



   

   

   



   

   

    209

0 1 4 210

0 2 4 5 211

0 2 3 5 212

0

2.35449  0.00004  0.30462                              

3.02953  0.34266  0.40616  0.55290       

1.51069  0.42329  2.58916  0.80354        

3.70457  0.45



   

    

    





   

    

    

  1 3 213

0 2 4 5 214

0 2 3 5 215

0 2 3

865  0.25383                               

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3.40951        

3.36705  0.53416  1.37073  1.

  

    

    

  

 

    

    

    5 216

0 2 4 5 217

0 2 4 5 218

0 2 4 5 219

0

49567        

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  1.52306  0.68661       

4.12647 +  2

 

    

    

    





    

    

    

 2 3 5 220

0 1 4 221

0 1 3 222

0

.67700 +  3.09027  47.36416       ,

1.51069  0.29234  0.35539                                

2.43887  0.01516  0.10152                              

2.01697  0.82150

   

   

   



 

   

   

  1 4 223

0 1 4 224

0 1 3 225

0

 0.05078                               

2.01697  0.95253  0.00001                              

3.45143  0.49896  1.16766                              

2.60763  1.879

  

   

   



 

   

   

  1 4 226

0 1 3 227

0 1 3 228

0

82  0.86307                              

2.77639  2.38379  1.31996                              

3.19829  0.86686  0.40613                              

2.35449  0.22

  

   

   



 

   

   

  2 4 5 229

0 1 4 230

0 2 4 5 231

0 2 3

674  0.71077  0.04304        

2.35449  0.00004  0.30462                                

3.02953  0.34266  0.40616  0.55290        

1.51069  0.42329  2.58916  0

   

   

    

  

  

   

    

    5 232

0 1 3 233

0 2 4 5 234

0 2 3 5 235

.80354        

3.70457  0.45865  0.25383                               

5.22341  1.50177  0.50769  4.41884        

4.71713  0.99781  1.37073  3.40951        

 

   

    

    



   

    

    
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0 2 3 5 236

0 2 4 5 237

0 2 4 5 238

0 2 4

3.36705  0.53416  1.37073  1.49567        

4.04209  1.34050  0.76154  1.27235        

2.94515  0.86174  0.76154  0.61344       

2.60763  0.49888  1.52306

    

    

    

  

    

    

    

   5 239

0 2 3 5 240

0 1 4 241

0 1 3

4.48931

 0.68661        

4.12647 +  2.67700 +  3.09027 +  45.47389       ,

  0.29234  0.35539                             

3.56113  0.01516  0.10152                 

 

    

   

  



 

 

   

    242

0 1 4 243

0 1 4 244

0 1 3

           

3.98303  0.82150  0.05078                            

3.98303  0.95253  0.00001                            

2.54857  0.49896  1.16766                   



   

   

  



    

    

    245

0 1 4 246

0 1 3 247

0 1 3

         

3.39237  1.87982  0.86307                            

3.22361  2.38379  1.31996                            

2.80171  0.86686  0.40613                     



   

   

  



    

    

    248

0 2 4 5 249

0 1 4 250

0 2 4 5 251

0

        

3.64551  0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                             

2.97047  0.34266  0.40616  0.55290     

4.48931 



    

   

    





     

    

     

  2 3 5 252

0 1 3 253

0 2 4 5 254

0 2 3

 0.42329  2.58916  0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.50177  0.50769  4.41884     

1.28287  0.99781  1.37073  3

   

   

    

  

   

    

     

     5 255

0 2 3 5 256

0 2 4 5 257

0 2 4 5 258

0

.40951     

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235     

3.05485  0.86174  0.76154  0.61344     

3.39237  0.49888

 

    

    

    





     

     

     

   2 4 5 259

0 2 3 5 260

0 1 4 261

0 1 3

4.48931

 1.52306  0.68661     

1.87353 +  2.67700  4.00407  47.36416    ,

  0.29234  0.35539                             

3.56113  0.01516  0.10152           

   

    

   

  



  

    

   

    262

0 1 4 263

0 1 4 264

0 1 3

                 

3.98303  0.82150  0.05078                             

3.98303  0.95253  0.00001                            

2.54857  0.49896  1.16766            



   

   

  



    

    

    265

0 1 4 266

0 1 3 267

0 1 3

                

3.39237  1.87982  0.86307                            

3.22361  2.38379  1.31996                            

2.80171  0.86686  0.40613              



   

   

  



    

    

    268

0 2 4 5 269

0 1 4 270

              

3.64551  0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                             



    

   



     

    
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0 2 4 5 271

0 2 3 5 272

0 1 3 273

0 2

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2.58916  0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.50177  

    

    

   

 

     

     

    

    4 5 274

0 2 3 5 275

0 2 3 5 276

0 2 4 5 277

0.50769  4.41884      

1.28287  0.99781  1.37073  3.40951     

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235      

3.0548

  

    

    

    

 

     

     

     

 0 2 4 5 278

0 2 4 5 279

0 2 3 5 280

0 1 44.48931

5  0.86174  0.76154  0.61344     

3.39237  0.49888  1.52306  0.68661     

1.87353 +  2.67700  4.00407 +  45.47389    ,

  0.29234  0.35539         

    

    

    

  

    

     

   

   281

0 1 3 282

0 1 4 283

0 1 4

                    

3.56113  0.01516  0.10152                            

3.98303  0.82150  0.05078                            

3.98303  0.95253  0.00001          



   

   

  



    

    

    284

0 1 3 285

0 1 4 286

0 1 3

                  

2.54857  0.49896  1.16766                            

3.39237  1.87982  0.86307                            

3.22361  2.38379  1.31996            



   

   

  



    

    

    287

0 1 3 288

0 2 4 5 289

0 1 4

                

2.80171  0.86686  0.40613                             

3.64551  0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                         



   

    

  



    

     

    290

0 2 4 5 291

0 2 3 5 292

0 1 3 293

0

    

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2.58916  0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.



    

    

   





     

     

    

   2 4 5 294

0 2 3 5 295

0 2 3 5 296

0 2 4 5 2

50177  0.50769  4.41884      

1.28287  0.99781  1.37073  3.40951     

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235      

   

    

    

    

  

     

     

      97

0 2 4 5 298

0 2 4 5 299

0 2 3 5 300

0 14.48931

3.05485  0.86174  0.76154  0.61344     

3.39237  0.49888  1.52306  0.68661     

1.87353 +  2.67700 +  3.09027  47.36416    ,

  0.29234  0.35539

    

    

    

  

     

     

   

   4 301

0 1 3 302

0 1 4 303

0 1

                            

3.56113  0.01516  0.10152                            

3.98303  0.82150  0.05078                             

3.98303  0.95253  0.00001



   

   

  



    

    

    4 304

0 1 3 305

                           

2.54857  0.49896  1.16766                            



   



    
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0 1 4 306

0 1 3 307

0 1 3 308

3.39237  1.87982  0.86307                            

3.22361  2.38379  1.31996                            

2.80171  0.86686  0.40613                             

   

   

   
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    

    

 0 2 4 5 309

0 1 4 310

0 2 4 5 311

0 2

3.64551  0.22674  0.71077  0.04304     

3.64551  0.00004  0.30462                             

2.97047  0.34266  0.40616  0.55290     

4.48931  0.42329  2

    

   

    

 

    

    

     

    3 5 312

0 1 3 313

0 2 4 5 314

0 2 3 5

.58916  0.80354     

2.29543  0.45865  0.25383                             

0.77659  1.50177  0.50769  4.41884      

1.28287  0.99781  1.37073  3.40951     

  

   

    

   
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     

      315

0 2 3 5 316

0 2 4 5 317

0 2 4 5 318

0 2

2.63295  0.53416  1.37073  1.49567     

1.95791  1.34050  0.76154  1.27235      

3.05485  0.86174  0.76154  0.61344     

3.39237  0.49888  1.52306



    

    

    

  
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     

     

    4 5 319

0 2 3 5 320

 0.68661     

1.87353 +  2.67700 +  3.09027 +  45.47389     ,

 

    

 

  
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APPENDIX D 
 

 

 

RESULTS for SIMULATION STUDY  
 

 

 

1. Simulation Result for MARS 

 

  1 2 3 4 5 6 7 8   9 10 

  MARS MARS MARS MARS MARS MARS MARS MARS   MARS MARS 

α0 -0.3970 -0.5168 0.4308 1.0917 -1.1979 -0.4285 -1.7981 -0.6498 α0 1.6127 1.6113 

α1 0.9485 0.0000 -1.0045 -0.5712 0.0000 0.0000 0.6546 0.5567 α1 -0.7479 -0.6205 

α2 0.0000 1.3427 0.0000 0.0000 1.3737 1.1185 0.0000 -0.7419 α2 0.0000 0.0000 

α3 0.0000 0.0000 0.0000 -0.9557 0.3263 0.0000 0.0000 0.0000 α3 0.0000 0.0000 

α4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 α4 0.0000 0.0000 

α5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 α5 0.0000 0.0000 

α6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 α6 0.0000 0.0000 

α7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 α7 0.0000 0.0000 

α8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 AAE 0.5334 0.5444 

AAE 0.6651 0.6721 0.5919 0.7515 0.3798 0.6255 0.5305 0.4894 RMSE 0.8724 1.0307 

RMSE 1.1249 1.0743 1.0312 1.2862 0.6394 1.0853 1.0420 0.9702 r 0.7479 0.6205 

r 0.5780 0.6265 0.6636 0.4488 0.8859 0.6165 0.6546 0.7103 
   

              11 12 13 14 15 16 17 18 19 20 

   MARS MARS MARS MARS MARS MARS MARS MARS MARS MARS 

 α0 0.8903 -0.2782 0.1750 1.6404 0.3220 1.4521 -0.5314 1.1906 0.8094 -0.3352 

 α1 0.0000 0.0000 0.0000 -0.6180 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 α2 -0.2574 0.0000 -0.4768 0.0000 0.0000 0.0000 0.0000 -0.3270 0.0000 0.0000 

 α3 0.0000 0.3359 0.8175 0.0000 -0.3290 -0.4462 0.0000 0.0000 -0.8244 -0.3290 

 α4 0.0000 0.0000 0.0000 0.0000 0.0000 -0.2679 0.9012 0.0000 -0.4452 0.0000 

 α5 0.0000 0.0000 0.0000 0.0000 0.0000 -0.5988 0.0000 0.0000 0.0000 0.0000 

 AAE 0.5037 0.4323 0.4932 0.6327 0.5033 0.5001 0.5319 0.4210 0.4124 0.2484 

 RMSE 0.7544 0.7537 0.7605 0.9505 0.8248 0.9274 0.7767 0.6179 0.6240 0.4058 

 r 0.7814 0.7819 0.7773 0.6180 0.7312 0.7522 0.7663 0.8595 0.8565 0.9420 
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2. Simulation Result for CMARS 

 

  1 2 3 4 5 6 7 8   9 10 

  CMARS CMARS CMARS CMARS CMARS CMARS CMARS CMARS   CMARS CMARS 

α0 -0.1534 -0.1925 -0.1803 0.7089 -0.5074 0.0020 -0.3890 -0.2002 α0 1.0237 0.0699 

α1 0.3361 -0.1350 -0.3305 -0.2036 -0.1093 0.0524 0.2028 0.1294 α1 -0.4353 -0.1837 

α2 -0.0032 0.1496 0.1094 0.1336 0.7672 0.2428 -0.0360 -0.2481 α2 -0.1246 0.0718 

α3 0.0702 0.0611 0.0337 0.0028 0.1273 -0.0407 0.1401 0.0155 α3 -0.0731 0.1296 

α4 -0.1073 0.0649 0.0830 -0.1383 0.0051 -0.0822 -0.2328 0.0323 α4 0.1691 0.0912 

α5 0.1393 0.0480 -0.0163 -0.2969 -0.1925 -0.0089 0.0348 -0.0800 α5 0.0133 -0.0183 

α6 0.2003 -0.0886 0.0557 0.0364 0.0482 0.0074 -0.0230 -0.1112 α6 0.1140 -0.1951 

α7 0.0627 0.0400 0.2093 -0.2624 0.0447 -0.0259 -0.0918 0.2199 α7 0.0749 0.2215 

α8 -0.0500 -0.0623 0.0136 -0.0071 -0.0498 -0.0412 -0.0363 -0.0755 AAE 0.4680 0.5600 

AAE 0.6072 0.6886 0.6436 0.5971 0.4778 0.7083 0.5993 0.5306 RMSE 0.8518 0.9999 

RMSE 1.0881 1.2078 1.1343 1.0094 0.7892 1.2417 1.0701 1.0904 r 0.8092 0.7005 

r 0.6885 0.5548 0.6805 0.7329 0.8649 0.7252 0.6942 0.6905 
   

              11 12 13 14 15 16 17 18 19 20 

   CMARS CMARS CMARS CMARS CMARS CMARS CMARS CMARS CMARS CMARS 

 α0 0.6211 -0.5328 0.6114 0.7956 0.4417 1.0921 -0.3387 1.0282 0.3416 -0.5090 

 α1 -0.1322 -0.0045 -0.0643 -0.1439 0.0123 -0.0811 -0.0008 -0.1059 -0.0274 0.1751 

 α2 -0.1602 0.0555 -0.1267 -0.0862 -0.1530 -0.1745 0.0473 -0.2361 -0.0320 0.9914 

 α3 0.0983 0.2400 0.1148 0.0874 -0.3316 -0.3152 -0.1708 0.0272 -0.2767 0.0514 

 α4 -0.0850 0.1977 -0.1235 0.1020 0.0057 -0.2304 0.6135 -0.1299 -0.3854 -0.0604 

 α5 0.0983 -0.0069 -0.1998 -0.1254 -0.1547 -0.3147 0.0017 0.0917 0.3745 0.3669 

 AAE 0.5012 0.4298 0.5944 0.6379 0.4746 0.3221 0.5270 0.3937 0.4225 0.3295 

 RMSE 0.7344 0.6959 0.8756 0.9468 0.7354 0.5715 0.7652 0.5527 0.6860 0.6195 

 r 0.8059 0.8282 0.7190 0.6618 0.8011 0.8963 0.7936 0.8949 0.8444 0.9169 
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3. Simulation Result for RCMARS 

 

  1 2 3 4 5 6 7 8 9 10 

  RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS 

α0 -0.0550 -0.0666 -0.0674 -0.0676 -0.0624 -0.0676 -0.0677 -0.0682 -0.0743 -0.0744 

α1 -0.0830 -0.0590 -0.0575 -0.0565 -0.0529 -0.0547 -0.0545 -0.0535 -0.0566 -0.0565 

α2 0.2517 0.2788 0.2804 0.2811 0.2584 0.2788 0.2797 0.2817 0.3059 0.3059 

α3 -0.0020 -0.0047 -0.0047 -0.0046 -0.0038 -0.0044 -0.0044 -0.0050 -0.0047 -0.0048 

α4 0.0025 -0.0268 -0.0284 -0.0292 -0.0261 -0.0300 -0.0304 -0.0317 -0.0347 -0.0348 

α5 -0.0031 0.0001 0.0002 -0.0001 0.0003 0.0003 0.0000 0.0000 -0.0007 -0.0006 

AAE 0.7264 0.7173 0.7170 0.7171 0.7223 0.7176 0.7175 0.7173 0.7119 0.7119 

RMSE 1.1080 1.0966 1.0959 1.0961 1.1041 1.0967 1.0966 1.0960 1.0880 1.0879 

r 0.6004 0.6557 0.6586 0.6596 0.6588 0.6621 0.6622 0.6642 0.6648 0.6650 

             11 12 13 14 15 16 17 18 19 20 

  RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS 

α0 -0.0745 -0.0745 -0.0745 -0.0746 -0.0765 -0.0795 -0.0755 -0.0765 -0.0785 -0.0702 

α1 -0.0565 -0.0565 -0.0564 -0.0564 -0.0571 -0.0580 -0.0569 -0.0572 -0.0578 -0.0554 

α2 0.3059 0.3059 0.3059 0.3059 0.3137 0.3254 0.3098 0.3141 0.3219 0.2903 

α3 -0.0048 -0.0048 -0.0048 -0.0048 -0.0050 -0.0054 -0.0049 -0.0050 -0.0053 -0.0041 

α4 -0.0349 -0.0349 -0.0350 -0.0350 -0.0365 -0.0388 -0.0355 -0.0364 -0.0379 -0.0313 

α5 -0.0005 -0.0004 -0.0004 -0.0003 -0.0003 -0.0003 -0.0005 -0.0005 -0.0005 -0.0011 

AAE 0.7118 0.7118 0.7117 0.7117 0.7099 0.7073 0.7109 0.7099 0.7081 0.7158 

RMSE 1.0878 1.0877 1.0877 1.0876 1.0849 1.0807 1.0864 1.0849 1.0822 1.0940 

r 0.6653 0.6654 0.6655 0.6655 0.6666 0.6682 0.6656 0.6662 0.6673 0.6614 

 


