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ABSTRACT

COMPLETION, PRICING AND CALIBRATION
IN A LEVY MARKET MODEL

Yilmaz, Biisra Zeynep
M.Sc., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor: Assoc. Prof. Dr. Isil Erol

September 2010, 106 pages

In this thesis, modelling with Lévy processes is considered in three parts. In the first part, the
general geometric Lévy market model is examined in detail. As such markets are generally
incomplete, it is shown that the market can be completed by enlarging with a series of new
artificial assets called “power-jump assets” based on the power-jump processes of the underlying
Lévy process. The second part of the thesis presents two different methods for pricing European
options: the martingale pricing approach and the Fourier-based characteristic formula method
which is performed via fast Fourier transform (FFT). Performance comparison of the pricing
methods led to the fact that the fast Fourier transform produces very small pricing errors so the
results of both methods are nearly identical. Throughout the pricing section jump sizes are
assumed to have a particular distribution. The third part contributes to the empirical applications
of Lévy processes. In this part, the stochastic volatility extension of the jump diffusion model is
considered and calibration on Standard&Poors (S&P) 500 options data is executed for the jump-
diffusion model, stochastic volatility jump-diffusion model of Bates and the Black-Scholes

model. The model parameters are estimated by using an optimization algorithm. Next, the effect



of additional stochastic volatility extension on explaining the implied volatility smile
phenomenon is investigated and it is found that both jumps and stochastic volatility are required.
Moreover, the data fitting performances of three models are compared and it is shown that

stochastic volatility jump-diffusion model gives relatively better results.
Keywords: Lévy Processes, Power-Jump Assets, Complete markets, Martingale representation

property, Jump-Diffusion Processes, Stochastic Volatility Jump-Diffusion Processes, Fast

Fourier Transform, Calibration
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0z

LEVY PiYASASI MODELINDE TAMLAMA, FIYATLAMA
VE KALIBRASYON

Yilmaz, Biisra Zeynep
Yiiksek Lisans, Finansal Matematik Boliimii
Tez Yoneticisi : Dog. Dr. Azize Hayfavi
Ortak Tez Yoneticisi: Dog. Dr. Isil Erol

Eyliil 2010, 106 sayfa

Bu tezde, Lévy siirecleri ile modelleme ii¢ kisimda ele alinmigtir. Birinci kisimda genel
geometrik Lévy piyasa modeli detayli olarak incelenmistir. Bu tip modeller genellikle tam
olmadiklar i¢in, piyasanin, Lévy siire¢lerine dayali kuvvet-sigrama siirecleri ile genisletilerek
tam hale getirilebilecegi gosterilmistir. Tezin ikinci kismi, Avrupa tipi opsiyonlar i¢in iki farkli
fiyatlama metodu sunmaktadir, bu metodlar martingale yaklasimi ve hizli Fourier doniigiimii
kullanilarak hesaplanan Fourier metoduna dayali karakteristik formiil metodudur. Fiyatlama
metodlarmin performans karsilagtirmasi, hizli Fourier doniisiimiiniin iirettigi hatalarin ¢ok kiigiik
oldugu bu yiizden iki metodun neredeyse Ozdes sonuglar verdigi sonucuna gotiirmiistiir.
Fiyatlama boliimii boyunca Lévy siirecinin sigrama biiyiikliiklerinin belirli bir dagilima sahip
oldugu varsayilmigtir. Ugiincii kisim, Lévy siireglerinin deneysel uygulamalarma katkida
bulunmaktadir. Bu bdliimde sigrama-difiizyon modellerinin stokastik volatilite geniglemesi ele
alinmig ve Standard&Poors (S&P) 500 endeksi opsiyon verisi iizerinde sigrama-difiizyon

modeli, Bates stokastik volatilite sigrama-diflizyon modeli ve Black-Scholes modelinin

vil



kalibrasyonu yapilmistir. Model parametreleri bir optimizasyon algoritmasi yardimiyla tahmin
edilmistir. Stokastik volatilite genisletmesinin etkileri arastirilmig ve zimni volatilite grafigini
aciklayabilmek i¢in sigrama ve stokastik volatilitenin gerekli oldugu bulunmustur. Ek olarak, {i¢
modelin veri uyum performanslar1 karsilagtirilmis ve stokastik volatilite sigrama-difiizyon

modelinin daha iyi sonuglar verdigi gosterilmistir.

Keywords: Lévy Siiregleri, Kuvver-Sigrama Siiregleri, Tam Piyasalar, Martingale Temsili
Ozelligi, Sigrama-Difiizyon Siiregleri, Stokastik Volatilite Sigrama-Difiizyon Siirecleri, Hizli

Fourier Doniigiimii, Kalibrasyon
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CHAPTER 1

INTRODUCTION

1.1. Motivation

During the past few decades financial analysts experienced significant success by using simple
diffusion models to approximate the asset returns. The most popular example is the Black-
Scholes (BS) model [1] which is the best known of all Lévy processes. However some well-
known contradictions arised by Black-Scholes revealed that a simple geometric Brownian
motion (GBM) process fails to represent some important features of the data. High frequency
returns data display excess kurtosis (fat tailed distributions), skewness, and volatility clustering.
Also as Cont&Tankov discuss in [13] various empirical results show that sudden downward
jumps have been observed in stock price processes. To capture these essential characteristics and
improve on the pricing and hedging performance of the Black-Scholes model, recently the
majority of the research has been done on alternative pricing models such as exponential-Lévy
models that incorporate jumps. Exponential-Lévy models consist of two categories. In the first
category, called jump-diffusion models (Merton [4] or Kou [5]), the evolution of prices is given
by a diffusion process, intervened by jumps at random times where the jumps represent rare
events. Infinite activity models fall into the second category, in these models the paths have
infinitely many jumps in any finite time interval. Brownian component is not needed in infinite
activity models as the jump component covers small fluctuations. Also to be able to prevent the
occurrence of the volatility smile phenomenon, which appears due to the constant volatility
assumption of Black-Scholes, stochastic volatility models have been proposed (Hull and White
[2] or Heston [3]). Lastly models that combine jumps and stochastic volatility draw attention
because of their good performances on market data. (Bates [6, 7] or Duffie, Pan, and Singleton

[8]). Empirical work on these models has generally supported the need for both stochastic



volatility and jumps at the same time. The additional stochastic differential equation in volatility
gives a tractable system of differential equations for pricing options. This extension of the GBM,
called geometric Lévy model or exponential Lévy model, is able to incorporate several stylized
features of asset prices such as heavy tails, high-kurtosis, and asymmetry of log returns. For
more extensive reviews of different types of geometric Lévy models in finance see Kyprianou
[12] and Cont and Tankov [13].

An important feature of the standard Black-Scholes model is that market is complete, that is, any
contingent claim can be replicated by a self-financing portfolio. In such a market there exists a
unique equivalent martingale measure under which the unique price of a contingent claim can be
calculated as an expectation. Incompleteness arises in a market when the sources of randomness
are more than the number of assets available.

In this thesis we study under more general Lévy processes that incorporate jumps. In Lévy
markets, as in the most realistic models, there are many equivalent martingale measures thus
such markets are incomplete. There are a few different approaches towards the completion of a
Lévy Market in the literature. Leon et al. [16] approximate the Lévy process by a sum of a
Brownian motion and a countable number of compensated Poisson processes. They then
introduce enough additional securities to complete the market. Via Malliavin calculus they
calculate the hedging portfolio in the approximated market. On the other hand Corcuera et al.
[14] enlarged the market by a series of very special assets (power-jump assets) related to the
power-jump processes of the underlying Lévy process suitable compensated. To obtain a
predictable representation-like property in the general Lévy case, Nualart & Schoutens [24]
proved the existence of a Chaotic Representation Property, which states that every square
integrable random variable adapted to the filtration generated by a Lévy process can be
represented as its expectation plus an infinite sum of zero mean stochastic integrals with respect
to the orthogonalised compensated power-jump processes of the underlying Lévy process.
Hence, the market can be completed even in the case of a general Lévy process if trades in these

processes are allowed.

In the next chapter, we present the basic tools of stochastic calculus and jump processes that will
be used further.

In Chapter 3, we describe the set up of geometric Lévy model and discuss the so-called Power-
Jump processes. By its definition the power-jump process of order two is just the quadratic
variation process (see, e.g., [60,61] and [62]), and is closely linked with the so-called realized
variance. Contracts on realized variance have managed to get into OTC markets and are traded

regularly now. Higher order power-jump processes have a similar relationship with



realized skewness and realized kurtosis processes. However contracts on these objects are
uncommon. Other than these, Carr et al. [63] study contracts on the quadratic variation processes

in a model driven by a so-called Sato process.

In Chapter 4, we enlarge the market by adding “Power-Jump Assets” as suggested in [14]. We
showed that the enlarged market is complete by the Martingale Representation Property [24, 64].
The notion of completeness used is equivalent to the notion of approximate completeness of
Bjork et al. [26]. Moreover the explicit hedging portfolios for claims whose payoff function
depends on the prices of the stock are given.

Chapter 5 contains equivalent martingale measure and absence of arbitrage conditions.
Ultimately it is shown that the enlarged market is complete and arbitrage-free.

Then in Chapter 6, we determine a jump-size distribution for the jump component and obtain
prices of European options by using two different methods, Martingale approach and
characteristic formula via fast Fourier transform (FFT). We also compare the speeds and results
of these methods.

Chapter 7 includes a stochastic volatility extension of jump-diffusion: Bates model. Then both
JD and Bates models are calibrated to the S&P 500 option data. The optimization algorithm used
for parameter estimation is presented and numerical results of the calibration procedure are
given. The results support that both stochastic volatility and jumps are needed at the same time
to describe market behaviour.

Lastly, we conclude the thesis with Chapter 8.

1.2. Imperfections of the Black-Scholes Model

Empirical evidence shows that the classical Black—Scholes model does not describe the
statistical properties of financial time series very well. We will focus on two main problems. A

more extended list of stylized features of financial data can be found in [13].

In Table 1.1, we summarize the empirical mean and the standard deviation for S&P 500 index

daily returns over the period 1989-2010.



Table 1.1: Mean, standard deviation, skewness and kurtosis of S&P 500 index

Index Mean Std. Dev. Skewness Kurtosis

S&P 500 (1989-2010) 0,000271346 0,011730694 -0,037727667 9,12247009
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Figure 1.1: Time series of S&P 500 Index data

1.2.1. Log-normally Distributied Returns Assumption

In Black-Scholes model the stock price follows a geometric Brownian motion therefore the
logarithmic return is normally distributed. Figure 1.2 reveals that the returns of the S&P 500
index are not log-normally distributed. Also comparing Figures 1.3 and 1.4 we can reach to the

same conclusion.



Q-Q Plot of S&P 500 Log-Returns versus Standard Normal
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Figure 1.2: Q-Q Plot of S&P 500 log-returns data.

It is shown in Figure 1.3 that price changes in consecutive days are small in some periods and
large in other periods. This inconsistency of returns leads to volatility clustering. This feature is

not taken into account by geometric Brownian motion i.e. Black-Scholes model.

S&P 500 Daily Returns
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Figure 1.3: S&P 500 Index daily returns from Jan. 2, 2003 to Jun. 30, 2010.
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Figure 1.4: Returns generated from a geometric Brownian motion.

1.2.2. Excess Kurtosis and Skewness

In financial data, it is often observed that large movements in asset price occur more frequently
than in a model with Normal distributed increments. This feature is named as excess kurtosis or

fat tails and it is the main reason for researchers to consider asset price processes with jumps.

A way of measuring this fat tail behaviour is to look at the kurtosis, which is defined by

£for-s7)

Var(X)

For the Normal distribution, the kurtosis is 3. For our case from Table 1.1 we see that our data
give a kurtosis bigger than 3, indicating that the tails of the Normal distribution go to zero much
faster than the tails of empirical. Thus the empirical distribution is much more peaked than the
Normal distribution. Also, for the Normal distribution the skewness is zero but we we observe a

significant negative skewness when we look at the daily log returns of S&P 500 index.

The fat tail of the data and bigger kurtosis can also be observed from Figure 1.5.
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Figure 1.5: Empirical density function for the S&P 500 Returns vs. the Normal Distribution

1.2.3. The Volatility Smile

Another well-known contradiction arised by the Black-Scholes model is the so-called volatility
smile. The implied volatility is the volatility that, when used in Black-Scholes model, yields the
theoretical value of the option equal to the current market price. By its definition, we expect the
implied volatilities to be the same over the periods because the model presumes constant
volatility. Nevertheless, this is not the case when one observes real market prices. The implied

volatilities of options on the same underlying with different strike prices tend to change.

Volatility Smile of S&P 500 Call Option

T T T T T

Implied Volatility

9 : : : : :
900 1000 1100 1200 1300 1400 1500
Strike

Figure 1.6: Volatility smile. Implied Volatilities for S&P 500 call options with maturity Jun. 17,
2005. Valuation date is Feb. 24, 2005. On that day the S&P 500 index is 1200.20.



It is usually revealing to plot implied volatility as a function of both strike price and time to
maturity since implied volatilities also change with maturity. The implied volatility surface

simultaneously shows the volatility smile and the term structure of volatility.

Obviously, volatility smile phenomenon is an inconsistency of the Black-Scholes model.

Izplisd Valztitity

Sprik Drice T e Maturity

Figure 1.7: Volatility surface. Implied volatilities of vanilla options on the EUR/USD exchange
rate on Nov. 5, 2001.

Recent studies in mathematical finance focused models that reflect statistical facts of the market
data. Lévy processes appear as a natural candidate with all the required properties to describe the
price process of a stock price. In addition to Lévy processes, stochastic volatility models and

models that combine both stochastic volatility and jumps are focal points.



CHAPTER 2

PRELIMINARIES

In this section we give some definitions and fundamental results of stochastic calculus, Lévy
processes and martingales. More details can be found in Sato [41], Applebaum [54] and
Kyprianou [55]. Furthermore recent overviews of applications of Lévy processes are provided in

Schoutens [15], Cont&Tankov [13].

We consider a filtered probability space (Q, F.,3, P) where the filtreation 3 = (E) satisfies

0
the following usual hypotheses,

(i) F, contains all the P -null sets of J,

i) F, = |F, V¢ . 0<t<o0. ie. the filtreation J is right continuous.
t u 5 5

u>t

The probability space (Q,F , S,P) is said to be P -complete if for each £ < H € J such that

~

P (H ) =0, we have that £ € 3. By a filtration we mean a family of c-algebras J = (F )tZO

t
that is increasing, i.e., F, C F, fors <t.

Throughout this study we will work on a complete filtered probability space.

2.1. Basic tools of Stochastic Calculus

Definition 2.1.1 A stochastic process is family X = (X . )t2 , of random variables on R with

parameter ¢ €|0,00) defined on a probability space.
y



Definition 2.1.2 Two stochastic processes X and Y are modifications if X, =Y, a.s., each ¢.

Two processes X and Y are indistinguishable ifa.s., forall t, X, =Y

t [

Definition 2.1.3 A stochastic process X = (X , )tZO on (Q, F.3, P) is said to be adapted to the
filtreation 3 if X € F, thatis, X is F, measurable for each ¢.

If Xis adapted then we have E (XS

Fs):Xs a.s., Le., I, contains all the required

information to predict the behaviour of X up to and including time s .

Definition 2.1.4 A stochastic process X = (X ,) is said to be cadlag or right-continuous with

>0

left limits (RCLL) if it a.s. has sample paths which are right continuous, with left limits.

For each ¢ the limits X, = lim X , X, = lim X  exist and X, =X, . Every

st,8<t : St,5>t
continuous function is cadlag but cadlag functions can have discontinuities. If ¢ is a
discontinuity point we define the expression AX, = X, — X, _as the jump of X at ¢. The most

remarkable property of a cadlag process is that it can have at most a countable number of

discontinuities. We can interpret this as such: it has finite number of large jumps on a time
interval [O, T ] . Cadlag processes are thence natural models for the trajectories of processes with

jumps.

Definition 2.1.5 If a stochastic process X = (X )20 satisfies limP(|Xt - XS| > 8) =0 for

! st

every t >0 and ¢ > 0; it is said to be stochastically continuous or continuous in probability.

Definition 2.1.6 Let / be some index setand X = (X , )tZO be a family of random variables. X

is said to be uniformly integrable if limsup E(|Xi | 1{‘X_‘>n} ) =0.

n—»0 iel

A process X = (X ) , is said to be integrable if E(|Xt|) <oo forall £ >0.

t)e>

10



Theorem 2.1.1 (Lévy's Convergence Theorem) Let (X)) be a uniformly integrable

n>1

a.s.

sequence of random variables that satisfies X, — X . Then it follows that:
i E (|X |) <o,
(i) E(X,)>E(X),

(i)  E(X-X,

)—0.

This theorem is a special case of Lebesgue's Dominated Convergence Theorem in measure

theory.

Definition 2.1.7 (Martingale) A real-valued adapted process X = (X , )120 is called an F, -

martingale if the following conditions hold:

(i) X is adapted to the filtreation J = (Ft)

te[o,T] E

(ii)  Forall t € [O,T], E(|X[|)<oo.

(i) Vs<t, E(X

t

F)=X,.

S S

A process satisfying the inequality £ (X , |FS ) < X, forevery s <t is called a supermartingale,

and a process satisfying E (X , |E) > X is called a submartingale.

A commonly known example of a martingale is the Brownian motion which is defined below.

Definition 2.1.8 (Brownian Motion) A real-valued process W:(Wt) 0is said to be a

>

Brownian motion if the following hold:

(i)  The paths of W are P -almost surely continuous.
@  P(W,=0)=1.

(iii)  For 0<s<t¢t, W, —W_ isequal in distribution to W,__

N t

(iv)  For 0<s<t, W, —W_is independent of the (W,)

us<s”

(v)  Foreach t >0, W, isequal in distribution to a normal variable with variance 7.

11



2.2. Lévy Processes and Infinite Divisibility

In this subsection we first identify infinitely divisible distributions and point out their
relationship with Lévy processes. Then we define Lévy processes and give some examples that

are very commonly used in modeling underlying price processes.

Definition 2.2.1 (Infinite Divisibility) A real-valued random variable Y has an infinitely
divisible distribution if for each n =1,2,..., there exist a sequence of i.i.d. random variables

d d
Y,,Y,,...,Y, such that Y=Y +Y,+..+Y, where the sign = represents equality in

distribution. Alternatively, we can express this relation in terms of probability laws. That is to
say, the law Z of a real-valued random variable is infinitely divisible if for each n =1,2,...

*n

there exists another law = of a real valued random variable such that Z=X" where

E:n denotes the n-fold convolution of = .

Another relation can be constructed in terms of characteristic functions. The law of a random

variable Y is infinitely divisible, if for all #n € N, there exists a random variable Y, such that

Oy (u) = [(PY (u)]n where @, and ¢, are characteristic functions of ¥ and Y, respectively.

Definition 2.2.2 (Lévy Process). A cadlag, adapted, real-valued stochastic process

X = (X , )120 with X, =0a.s. is said to be a Lévy process if the following conditions are

satisfied:

(i) X has independent increments, i.e. X, — X is independent of F, forany 0 <s <¢.

(i) X has stationary increments, i.e. for any 0 <s , # <7 the distribution of X, — X

s

does not depend on 7.

(iii) X is  stochastically continuous, ie. for every ¢t>0and £>0:

lim P(|X, - X,|>¢)=0.

st

12



Proposition 2.2.1 Let X = (X . )t> , be a Lévy process. Then for every 7, X, has an infinitely
divisible distribution. Conversely, if Z is an infinitely divisible distribution then there exists a

Lévy process X = (X )tZ , such that the distribution of X, is given by =.

t

Definiton 2.2.1 implies that one way to examine whether a given random variable has an
infinitely divisible distribution or not is via its characteristic exponent. Suppose that ¥ has

characteristic exponent,
w(u)= —logE(e[“Y)

forall u e R.
Then Y has an infinitely divisible distribution if for all 7z > 1there exists a characteristic

exponent of a probability distribution, say i/, , such that

v (u)=ny,(u)
forall u e R.

Proposition 2.2.2 (Characteristic function of a Lévy process) Let X = (X )t> 0 be a Levy

t

process on R. There exists a continuous function l//:Rd — R called the characteristic

exponent of X | such that:

E(ei"X‘ ) =" yeR.

The full extent to infinitely divisible distributions is described by an expression known as the

Lévy Khintchine formula.

2.2.1. Some Examples of Lévy Processes

We proceed our introduction to Lévy processes with some prominent examples which are mostly

used as base processes for jump models.

13



Definition 2.2.3 (Poisson Process) A cadlag, adapted stochastic process N = (N , )t>0 is said to

be a Poisson process with intensity A > 0 if the following hold:
(i)  The paths of N are P -almost surely right continous with left limits.
@ P(N,=0)=1.

(iti) For 0<s<t, N, —N,isequal in distribution to N,_|

(iv) For 0<s<t, N, — N, isindependent of (Nu )uﬁs :

(v) For each t>0, N, is equal in distribution to a Poisson random variable with

parameter Af.

We alternatively can define Poisson process as in the following definition.

Definition 2.2.4 (Poisson Process) Let 7 = (T)zzo be a sequence of independent exponential

n
random variables with parameter A and 7, = z .-
i=1

The process N = (N )QO defined by N, = Z ]{ o) is called a Poisson process with intensity A.

t
n>1

The Poisson process is therefore defined as a counting process: it counts the number of random

times (Tn) which occur between 0 and ¢, where (T -1

n n—1

)n>1 is an i.i.d. sequence of

exponential variables.

Characteristic function of Poisson process can be obtained as follows,

k
E(eiuN,):Z zukP N, = k Zezuk —/1; )

k>0 k>0
iu k

e ()

—ery
oo k!

e—it e/ltd“

-t l—e’b")
=e .

Definition 2.2.5 (Compensated Poisson Process) Let N = (Nt )t>0 be a Poisson process with

parameter A . We shall call the process M = (M , )zz , Where

14



M, =N, - At

a compensated Poisson process.
Proposition 2.2.3 The compensated Poisson process is a martingale.

Note that the compensated Poisson process is no longer integer valued like the Poisson process,

t

2

M M
standard Brownian motion: £ ( ! j =0, Var( ! ] =t.

has the same first two moments as a

it is not a counting process. Its rescaled version

7 7

Definition 2.2.6 (Compound Poisson Process) A compound Poisson process with intensity
A >0 and jump size distribution F} is a stochastic process O, defined as
Ni
0=2%,
=0

i

where jumps sizes Y, are i.i.d. with distribution F, and N = (N )t>0 is a Poisson process with

1 t

intensity A , independent from (Y )M.

i

Characteristic function of a compound poisson process has the following representation:

E(e"%)=E(E(e"?|N, =n))

=ZE(ei“Qf)P(Nt =n)

n=0

= Z E (ei”Q’ )e’ﬂ’ ﬂ

n>0 }’l'
A n /11‘)"
— luyF d —At ( )
;(é[e Y( y)] ¢ n!

Using the fact that N has stationary independent increments and mutual independency of the

random variables (Y )121 ,for 0 <5 <t by writing

i

15



it is clear that (), is the sum of (), and an independent representative of (J, . Right continuity

with left limits of the Poisson process also guarantee the right continuity with left limits of Q.

Thus compound Poisson processes are Lévy processes.

Figure 2.1: Sample paths of a Poisson process.

Figure 2.2: Sample path of a compensated Poisson process.
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Figure 2.3: Sample path of a compound Poisson process with Gaussian distribution of jump

sizes.
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Figure 2.4: Sample path of a jump-diffusion process (Brownian motion + compound Poisson).

Definition 2.2.7 (Lévy measure) Let X = (X . )120 be a Lévy process on R“. The measure v

on R defined by
v(4)=E(#{t[0,1]:AX, #0,AX, € 4}), Ae B(R?)
is called the Lévy measure of X .

17



Namely, v (A) is the expected number, per unit time, of jumps whose size belongs to A4 .

2.2.2. Random Measures and Point Processes

A useful tool for analyzing the jumps of a Lévy process is the random jump measure of the

process.

Consideraset A R— {0} such that 0 & A and a Lévy process X = (X )zzo et 0<¢<T.

t

The random measure of the jumps of the process X is defined by

Iy (@5, A)=#{0<s<t:AX (0)e A} =) 1,(AX, (@)).

s<t

The measure J (a); t, A) counts the jumps of the process X of size in A up to time ¢.

Here the path is fixed and J (a);t,-) is a measure on [O,T ]XR—{O} , on the other hand
when the set A4 is fixed J, (l‘,A) becomes a random variable. Moreover, since
Jy (t,A) -Jy (S,A) is independent of F. and it equals the number of jumps of X, —X,

for O<u<t-s, J, (-;l‘ ,A) has independent and stationary increments. Therefore

Jy (-; t, A) is a Poisson process and J ,, is said to be a Poisson random measure.
The following definition describes a Poisson random measure in detail.

Definition 2.2.8 (Poisson random measure) Let (Q,F ,P) be a probability space, £ < R

and  a given (positive) Radon measure, £/ on (E ,& ) . A Poisson random measure on E with

intensity measure # is an integer valued random measure:

Jy 1 Qxé—->N
such that

(i) ForweQ,J, (a);t, ) is an integer valued Radon measure on F .

18



(ij)  For each measurable set Ac E, J, (-;t, A) =J, (t, A) is a Poisson random
variable with parameter u (A) .

(iii)  For disjoint measurable sets 4,,4,,.,4, ¢, the variables

n

Jy (t, A4 ),...,JX (t, A, ) are independent.

We can define integrals with rescpect to J (a);t,‘). Consider a finite, Boreal measurable
function f:IRR — R and a set A determined as above. Then the integral with respect to the

Poisson random measure J (a); t, ) is defined as the following

Integrating f with respect to J , up to time ¢ produces a stochastic process as follows

Y =j; J. f(x)Jy (ds,dx).

r {0}

Theorem 2.2.4 Consider aset 4 C R — {0} such that 0 ¢ 4 and a Lévy process X = (X )20

Lévy measure v . Then the following is satisfied

EU | f(x)JX(ds,dx)]:tj £ () (d).

A

Theorem 2.2.1 (Lévy-Khintchine formula) A probability law P of a real-valued random

variable is infinitely divisible with characteristic exponent i ,

E(eiuX,) — J.eiux#(dx) — efl//(u) for all u e R’

R

19



if and only if there exists a triplet (a,cz,v) where ¢ € R, ¢>0and v is a measure

2
concentrated R — {0} on satisfying I(IA |x| )v(dx) < o0, such that
R

1 4
w(u) =icu——u’c’ JrJ.(e”’X —1—iuxl, )v(dx)
2 J {lsl<1}
for every u € R, where £ is the distribution of X .

Theorem 2.2.2 (Lévy-Itdo Decomposition) Consider a triplet (a,cz,v) where, a €R,

¢ >0 and Vv is a measure satisfying V({O}) =0and J(1A|x|2)v(dx) < 0. Then, there exists
R

a probability space (€2, F', P)on which three independent Lévy processes exist X 0 , X @) and
Yy y

X% where X"is a Brownian motion with drift, X @) s a compound Poisson process and
X% isa square integrable (pure jump) martingale with an a.s. countable number of jumps of
magnitude less than 1 on each finite time interval. Taking X = X Wy x®yx (3), we have
that there exists a probability space on which a Lévy process X = (X ; )tZO with characteristic

exponent given by Theorem 2.2.1.

Remark 2.2.1 The measure V is called the Lévy measure. V is a positive measure on P but not

a probability measure since I vidx)=A#1.

Let us now discuss in further detail the relationship between infinitely divisible distributions and

processes with stationary independent increments. From the definition of a Lévy process we see
that for any 7 >0, X, is a random variable belonging to the class of infinitely divisible

distributions. This follows from the fact that for any n =1, 2, ..., consider a Lévy process

t 2t -1
X=(Xz),>0 andapartitionof0<—<—<...<(n )
B n n n

1<t.

X, = (X, = Xy)+(Xy, _Xt/n)+"'+(X(n—l)t/n _X(n—Z)t/n)+(Xt _X(n—l)t/n)'

By the stationary increments property of the Lévy processes, this equation results in:
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XtiXt/n+X,/n+...+Xt,n. 2.1)
Suppose now that we define forall u e R, 1 >0,
v, (u) = log (")
Then using (2.1) we have for any two positive integers m,n that
my,(u) =y, (u)=ny,,, (1),
and hence for any rational ¢ > 0,

v, ) =ty ().
Theorem 2.2.3 For any Lévy process X = (X . )tZO we have,
E(eiuX, ) — et;//(u)

where (u) is the characteristic exponent of X, a random variable with an infinitely divisible

distribution.

Hence by Lévy Khintchine formula we can determine the characteristic function of a Lévy

processs if its triplet is known.

Definition 2.2.10 (Subordinator) A subordinator is an a.s. increasing Lévy process. For L to

be a subordinator, the triplet must satisfy v ((—OO, 0)) =0,c=0.

Subordinators can be used as time changes for other Lévy process so they are very important

ingredients for building Lévy-based models in finance.

Definition 2.2.11 Let P= {a =1 <t,<..<t b} be a partition on the interval

n+l

[a,b] R . The variation of a function f over the partition P is defined by
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var, (£)= 2| £ ()~ £ (1)

If the supremum over all partitions is finite, sup; vars ( f ) <oo, f is said to be of finite

variation on [a,b] . If this is not the case, the function is said to be of infinite variation.

Proposition 2.2.4 Let X = (X , )t> , be aLévy process with triplet (a, v ) :

(i) If¢*=0 and J.|x|v(dx) < oo then almost all paths of X have finite variation.

‘x‘Sl

(i) Ifc*#0 or I|x|v(dx) = o0 then almost all paths of X have infinite variation.

‘x‘sl

We say that a Lévy process X = (X ; )z>0 is of finite variation if the sample paths are of finite

variation with probability 1. Again if this is not the case, we say that the process is of infinite

variation.

Representative examples of finite and infinite variation processes are Poisson process and
Brownian motion, respectively. Because the Brownian motion is of infinite variation, a Lévy

process with a Brownian component is also of infinite variation.

By Proposition 2.2.5 a pure jump Lévy process, i.e. one with no Brownian component,

with j |x|V (dx) =00 is of infinite variation. In that case special attention has to be paid to the
|x]<1

small jumps since the sum of all jumps smaller than some & > 0 does not converge. So to make

it converge we should compensate the sum of the jumps by a compensator term which is in fact

their mean fux1 )
{bel<1}
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Proposition 2.2.5 Let X = (X , )t> , be a Lévy process with triplet (a,cz,v).

@ If V(R) < oothen almost all paths of X have a finite number of jumps on every
compact interval. In that case, the Lévy process has finite activity.
(i) If V(R) = oothen almost all paths of X have an infinite number of jumps on every

compact interval. In that case, the Lévy process has infinite activity.

Three most important examples of such pure jump infinite activity Lévy processes which are
widely used in financial modeling are the normal inverse Gaussian (NIG) model of Barndorff-
Nielsen [31], the symmetric variance gamma (VG) model studied by Madan and Seneta [56] and
the CGMY model developed by Carr, Geman, Madan, and Yor (CGMY) [57], which further

generalizes the VG model.

They find that the empirical performance of these models is generally not improved by adding a
diffusion component for returns. These results arise the question that do we need diffusion

components when we model asset returns.

An important goal of stochastic calculus is to give the meaning of the stochastic integral

t
I f (S) dX  for a proper class of adapted processes X . The processes defined below are ideally
0

suited for the role of integrators.

Definition 2.2.12 (Semimartingale) An adapted stochastic process X = (X )t> ,is said to be a

t

semimartingale if for each ¢ > 0 it can be written as follows,
X, =X,+M,+C,

where X, e F), M = (Mt )20 is a local martingale and C = (C

t)zzo is an adapted process of

finite variation.
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Proposition 2.2.6 Every Lévy process is a semimartingale.

Proposition 2.2.7 Every finite variation process is a semimartingale.

Proposition 2.2.8 Every square integrable martingale is a semimartingale.

The proofs of the Propositions 2.2.6, 2.2.7 and 2.2.8 can be found in [13], Chapter 8.

A Lévy process can be split into a sum of a square integrable martingale and a finite variation
process which is Lévy-It6 decomposition (Theorem 2.2.2). Thus, every Lévy process is a

semimartingale.

The proof of the next Proposition can be found in [13], Chapter 8.

Proposition 2.2.9 (Ité formula for semimartingales) Let X = (X ; )z>0 be a semimartingale.

For any C" function f : [O,T] xR—>R,

1!
2

f(tX)-f !al (s,X,) ds+j (s, X, )dX, + L)X X

0

) (f(SaXs)—f(S,Xs-)—AXs%(&Xs-)j—

0<s<t
AX #0

Definition 2.2.13 Consider the Lévy process X :(X )120 with triplet (a,cz,v). The

t

quadratic variation process of X is given by

[x.x] -

+
[SY .

IXZJX (ds, dx).
R

Definition 2.2.14 A semimartingale is called quadratic pure jump if [X , X ]c =0.

Definitions and theorems below can be found in [21], Chapter 5.
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Definition 2.2.15 (g-moment) Let g (x) be a nonnegative measurable function on R . We call

Ig(x),u(dx) the g-moment of a measure gon R. We call E(g(x))the g-moment of a

random variable X on R .

Definition 2.2.16 (Submultiplicativity) A function g (x) on R is called submultiplicative if it

is non negative and there is a constant @ > 0 such that
g(x+y) < ag(x)g(y) for x,yeR.
Remark 2.2.2 A function bounded on every compact set is called locally bounded.

Theorem 2.3.1 (g-Moment). Let g be a submultiplicative, locally bounded, measurable
function on R . Then, finiteness of g-moment is not a time dependent property in the class of

Lévy processes. Let X = (X , )z>0 be a Lévy process on R with Lévy measure V. Then, X,

has finite g-moment for every ¢ > 0 if and only if I g (x) 1% (dx) <0,
{lsl<1}

2.3. Martingale Measures and Market Completeness

Definition 2.3.1 Consider a probability space (Q,F , P) . A probability measure O defined on

(Q, F ) is said to be an equivalent martingale measure if

(i) QO is equivalent to P, ie. they have the same null sets: for any A4 €

P(4)=1=0(4)=1.

(ii) The discounted stock-price process S = (S't) .= (eirtSt )t>0 is a martingale under Q.
t=> 2>

The existence of an equivalent martingale measure () allows one to obtain the price of options

on the risky asset by calculating the expected values of the discounted payoffs with respect to
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Q. When we work under (0, we are in a risk-neutral world, since under Q the expected return

of the stock equals the risk-free return of the bank account:
e "E°(S,|F,) =S5,

Equivalent martingale measure is of high importance since its existence is related to the absence

of arbitrage, while its uniqueness is equivalent to market completeness.

Besides absence of arbitrage, another important problem is hedging. A contingent claim can be
perfectly hedged if there exists a self-financing strategy ¢ that can replicate the claim in the

sense that there is a dynamic portfolio, investing in the bank account and the stock, such that at
every time point the value of the portfolio matches the value of the claim. Moreover, the strategy

must also be admissible, that is the portfolio’s value must be bounded from below by a constant.
T T
H=V,+[¢dS, +[g'ds, .

Therefore in a complete market a contingent claim can be valued only one way, the value of any
contingent claim is given by the initial capital }; needed to set up a perfect hedge for / . So all

equivalent martingale measures give the same pricing rules. Therefore market completeness

seems to imply the uniqueness of pricing rules/equivalent martingale measures.

Proposition 2.3.1 A market defined by the assets (Sto ,S;,...,S d), tE[O,T ]described as

stochastic processes on (Q,F ,S,P)is complete if and only if there is a unique martingale

measure QO equivalent to P .

In Black-Scholes model the question of completeness is identified with the uniqueness of the
martingale measure, which is in turn linked with the mathematical predictable representation

property (PRP) of a martingale.

Definition 2.3.2 (Predictable Representation Property) Let M = (M . )20 be a martingale.

M is said to have the predictable representation property if, for any square-integrable random

variable H € F}., we have
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for some predictable process a = {as ,0<s<T } .

The predictable process a:{aS,OSSST } represents the weights of the assets in the

portfolio, hence gives us the necessary self-financing admissible strategy.

An important point is that the PRP is an exceptional property, which only a few martingales
possess. Examples include Brownian motion, the compensated Poisson process, and the Azéma
martingale (see [58]). So uniqueness of an equivalent martingale measure implies the PRP which
in turn implies market completeness. Since in the markets driven by Lévy processes, contingent

claims do not generally possess the PRP the market is incomplete.

To obtain a similar property in the general Lévy case, Nualart & Schoutens [24] proved the
existence of a Chaotic Representation Property, which states that every square integrable random
variable adapted to the filtration generated by a Lévy process can be represented as its
expectation plus an infinite sum of zero mean stochastic integrals with respect to the
orthogonalised compensated power-jump processes of the underlying Lévy process. Hence, the
market can be completed even in the case of a general Lévy process if trades in these processes

are allowed.

When we show the completeness of the market in Section 4.2, we will make use of Martingale

Representation Property.
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CHAPTER 3

THE LEVY MARKET MODEL

3.1. Introduction

We consider a continuous time Lévy market model with finite horizon 7" . The uncertainty in the
market is modelled by the complete probability space (Q, F,P ) and the market consists of a
bond (risk-free asset) and a stock (risky asset). We will model the stock price process

S = {St 1= 0} with the following Lévy-driven stochastic differential equation (SDE)

‘;Sf =bdt+dX,, S,>0, (3.1)

—

whereas the bond price process is given by B = {B t> 0} .

to

The solution to equation (3.1) with initial condition S, =1 is called the stochastic exponential

of the process X, + bt and is given by

X, +bt—%[X“ X°]

e(X,+bt)=e

" [T (1+Ax )™,

Here if the Lévy process X, is a Brownian motion, the model becomes the classical Black-

Scholes model [1], which is complete. In complete markets all the contingent claims in the

market can be replicated by a self-financing portfolio, moreover there exist a unique equivalent
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martingale measure under which the expectation of the discounted payoff at maturity is equal to

the unique price of a contingent claim.

In our study we assume that X, is a Leévy process which incorporates jumps and we consider
the cadlag version of X,. Here the process J, = AX, represents the jump size process of

X, and may or may not have a specified distribution.

Like most of the Lévy models, the above described model is incomplete. So as suggested in [14],
we will complete the market by enlarging it with a series of very special assets related to the

power-jump processes of the underlying Lévy process, called power-jump assets.

The completion procedure will be done in the following order: First we assume that the unique
equivalent martingale measure is given and then we enlarge the market in such a way that it will

remain-arbitrage free.

Since X, is a Lévy process by the Lévy-Kintchine formula its characteristic exponent has the

following form:

. 1 2.2 iux .
v(u)=iau —Eu c +£(e —l—zuxl{‘xkl})v(dx),

where (a,cz,v) is the characteristic triplet of X, with ¢ € R, ¢ 2 0. v is the Lévy measure

+o0
of X on R —{0} with j (1A x*)v(dx) < oo. Again from the Lévy-Kintchine formula it can

—00

be shown that X has the following decomposition,

X, =cW +1L, (3.2)

where W = (Wt );20 is a Brownian motion, L = (Ll )zz , is a pure jump process and the
processes W and L are independent. By the Lévy-Itd Decomposition we can express L as a sum

of three independent Lévy processes. Taking a constant drift th =t , a Brownian motion, a

compound Poisson process L. = J. XN (ds,dx) and a square integrable martingale with
(o,t]x{‘x‘zl}
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an a.s. countable number of jumps on each finite interval of magnitude less than one,

L= j x(N(ds,dx)—tv(dx))wehave L=L + > + L.

t
(o,t]x{‘x‘d}

Thus we can write:

L= j x(N(ds, dx) —tv(dx))+ j xN(ds, dx) + at (3.3)
(o,t]x{‘x‘d} {‘x‘zl}

where N(ds,dx) is a Poisson random measure on(O, +oo) xR - {O} with intensity dt xv .

Here dt denotes the Lebesgue measure and v is the Lévy measure of X .

In this model it is supposed that the Lévy measure satisfies for some & > 0,and 4 >0,

j exp(A|x])v(dx) <. (3.4)

(-&,6)°

Here g (x) =exp(4 |x|) is submultiplicative, therefore we deduce that L, has finite g-moment

for every ¢ > 0or that exponential moments E(exp(/1|x|)exist, (see Theorem 25.3 of [21]).
Since we can obtain all moments £ (|x|l) by simply differetiating exponential moments, it is

clear that all moments of Lt exist.

This implies that

T|x|iv(dx) <o, i>2,

—o0

and that the characteristic function £ (exp(iuLt)) is analytic in a neighborhood of 0. Consider
selection of u =ih thus there exist 0 </,,h, <ocosuch that E(exp(—th)) <o for all
he (—h1 , hz) . By stationary increments property of X, it can be shown that

E (exp(—hX , )) < oo for all #. Hence all moments of X, also exist.

t
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By the equation (3.3) we have,

E(L)=E| [ x(N(ds,dx)-tv(dx)) |+E| [ xN(ds,dx)+at
(n,t]x{‘xkl} {‘X‘Zl}

=E j xN(ds,dx) |+at.
{idb)

Since the first expectation equals to zero due to the fact that compensated compound Poisson

process is a martingale.

From this last equation we have

a :E(Ll)— I xv(dx).
{l>1}

Since every Leévy process is a semimartingale, by semimartingale decomposition theorem L, can

under these assumptions be written as a sum of a martingale and a predictable of finite variation

as follows:

L =M, +at, (3.5)

where M = (Mt) is a martingale and E(Ll) =a.

>0

Consider the measure N (dt, dx) = N(dt,dx)—dtv(dx) . Since the second term is the
intensity measure of the Poisson random measure, N (dt s dx) is a compensated Poisson random

measure and we can write the martingale part of L, in terms of M (dt, dx) as

M = j xN(ds, dx).

t
(0,t]xR
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Ultimately, our Levy process X, takes the form

X, =cW + I xN (ds,dx)+at ,
(o,t]x{‘x‘d}

and the SDE of §, becomes

ds, =(a+b)dt+cdW,+dM,. (3.6)

-

Since have we described the properties of the Lévy processes we will work, we can now obtain

the stock price process.

3.2. The Stock Price Process

In this subsection we make use of It6’s formula (see [22]) for cadlag semimartingales to obtain

the solution of equation (3.6)

c

s

F(S)=F(80)+ [ £, S+5 [ £, M[S.]

+ 2 A (8)-1(5,)=-1(S,)A8, .

O<s<t

Applying It6’s formula to equation (3.6) for f(.S,) =log(S,) we get:

A R YA ;
1og(5,)=1og(so)+j—ds S +Ej(——sz JJ[S,S]S
0 “s— 0

S—

£y {mg(ss)—log(ss_)_SLAss}

O<s<t S—

2
5= 0 “s—

t t
=log(S,)+ J'SLSS_ ((a+b)dt+cdW,) —% SLSf_czds
0
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S 1
+ lo L |l——AS ;.
025;1‘{ s ( sz ] sz ’ }

Note that d[S,S]Z = Sszfczds and AS, =S _AM with AS =S —S§ . These equations

S—

imply that S, =S _(1+AM ) and log[;s J=10g(1+AMS).

By using these relations in the above equation we can easily deduce the explicit solution of (3.6)

as

S, =S, exp(cW, +M, +(a+b—§]t] [T(+AM ))exp(-AM ).  (3.7)

0<s<t

Since stock price process has to be non-negative for all ¢, in order to guarantee that

1+AM, >0 forall >0 a.s., we should put the constraint that AM, > —1. Thus we need our

Lévy measure to have a domain that is a subset of [—1,+00) .

The market consists of one risky and one riskless assets, a stock and a bank account or a riskfree

bond. Throughout the study we will assume that the riskless interest rate » is constant. So, the

value of the bank account or risk-free bond at time ¢ is given by, B, = exp(r?).

3.3. Equivalent Martingale Measures

In this section we investigate structure-preserving P -equivalent measures which enable us to
stay within an analytically tractable family of models. Under the structure-preserving P -

equivalent martingale measures, X remains a Lévy process and the discounted stock price

process S = {S't =exp(-rt)S,,t = 0} is a martingale.

As we are working on a market with finite horizon 7", locally equivalence will be regarded the

same as equivalence.
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The following theorem (see Proposition 9.8 in [13] or Theorems 33.1 and 33.2 in [21]) gives the
relations between the triplets of X according to the equivalent probability measures and an

expression for the densities on the path space.

Theorem 3.3.1 Let X be a Lévy process with Lévy triplet (a,cz,v) under the probability

measure P .
Then the following two conditions are equivalent.

(a) There exists a probability measure Q, locally equivalent to P for any t >0, such that

X isa Q -Leévy process with triplet (5{,52,17).
(b) All of the following conditions hold.

(i) 17(dx)=H(x)V(dx) where H:R—)(0,00) is a Borel function satisfying

+00

j(l— H(x))zv(dx)<oo.

(i) d=a +I XI{\X\Q} (H(x)—l)v(dx)+ Gc for some GeR.

(iii) ¢ = c.

When P and Q are equivalent, the Radon-Nikodym derivative is given by

dolF, _
=e",
dP|F,
where
2.2
U, =6L -7 Gat+lim| [ InH(x)Nds,dx)~1 [ (H(x)-1)v(dx) |

(0.01x{|x{>¢} x>
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Here the process L; represents the contionuous part of L, and U, is a Lévy process with

characteristic triplet (aU ,clzj, VU) given by:

¢, =c’G?,
Vu :V7/_1a
1 ¢ -
o =G~ | (ey —l—yl{‘y‘sl})(w/ Y (dv),

where y = lnH(x).

The above theorem shows that we are able to change the Lévy measure, while retaining the
equivalence of measures, but, if a diffusion component is not present, we cannot freely change
the drift.

Consider the compensated Poisson random measure M (dt,dx):M (dt, dx)—dtﬁ (dx),
where M (dt, dx)is a Poisson random measure on (0, +OO)><]R under O with intensity

dix v (dx).

Suppose the equivalent conditions in the above theorem hold, and X be a Lévy process with

triplet (0?, v ) . Then we the following results:

By Lévy-Ité decomposition we can write X as

where L, , the pure jump process with respect to measure Q, is defined by:

L= j xM (ds, dx) + j x(M (ds, dx) - t¥(dx)) + Gt
(o,t]x{‘x‘zl} (o,t]x{‘x‘d}

with &= E,(X,)- j xv(dv).
{1k
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By equations (3.2) and (3.3) we have that,

X,—L=cW +L ~L =c(W,-Gt)

t t

thus Brownian motion with respect to Q is defined by 14 =W, —Gt. Moreover if the

t

condition I exp(4 |x|)17(dx) < oo is satisfied, then we have:

(-&,6)°

L= j xM (ds, dx) + j x(M (ds,dx)—tv(dx)) +dt

(o,t]x{‘x‘zl} (0,t]xR

with

a=Ey(L)- {x[ 1} xv(dx). (3.7)

Hence the Doob-Meyer decomposition of Zt is given by:

L=n,+ar. G3)

where

M = j xM (ds, dx), (3.9)

is a O -martingale, moreover by (3.7) we have

a=a+ | xv(dr). (3.10)
(i)

If the equivalent conditions of the previous theorem hold, Brownian motion under O, W can be

defined as:

W, =W, -Gt. (3.11)
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Equations (3.8) and (3.10) results in Zt =M Fla+ j xv(dx) |t . Furthermore if condition
{1}

(ii) is satisfied, L is a quadratic pure jump process with Doob-Meyer decomposition
~ +00
Lt:Mt+(a+J-x(H(x)—l)v(dx)Jt, (3.12)
where M isa O -martingale and the Lévy measure is given by v (dx) =H (x) 1% (dx) .
B +o0
By equations (3.12) and (3.5) we have the relation M, = M, — J. x(H (x) — 1)1/ (dx) .

Now, our aim is to find an equivalent martingale measure (J under which the discounted price

process Sis a martingale. By the above theorem, under such a O, X has the Doob-Meyer
decomposition given by (3.12).
Noting that AM, = AM , and using equations (3.6), (3.11) and (3.12) the discounted asset prices

under () can be written as follows:
~ ~ ~ CZ
S =S,exp| cW, + M, +(a+b—r+cG—?j

xexp[th(H(x)—l)v(dx)] H (1+AMS)exp(—AMS).

—o 0<s<t

So a necessary and sufficient condition for S to be a Q -martingale is the existence of G and

H(x) with the condition j (1 —JH (x) )21/ (dx) < oo such that

—00

¢G+a+b—r+ [x{H(x)-1){dx)=0. (3.13)
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By using equations (3.2), (3.11), (3.12) and (3.13) we deduce that, X, = O'W; +Mt +(r—b)t.

Since process W and ]\th are () -martingales, the process X =X —(r—b)t is alsoa Q-

t t t

martingale and hence E,, ()~( t) =0.

The risk neutral dynamics of S can be written in terms of X , as follows:

‘éSf _ oW +dbT, = dX,

t—

with solution

S =38, exp(th +M, —%)x I (1+AMS)exp(—AMS).

O<s<t

Note that S has the dynamics

d5, _ rdt +cW,+dM, = rdt +dX, , under Q.
S

-

2
with solution S, =S, exp(th +M, +(r—%jt}< [T(1+AM, )exp(-aM,). (3.14)

O<s<t

Remark 3.3.1 If there exists a (non-structure preserving) equivalent martingale measure Q,
under which Z is not a Lévy process, there always exists a (structure preserving) equivalent

martingale measure Q, under which Z is a Lévy process (see, e.g., [48]).
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CHAPTER 4

COMPLETION OF THE LEVY MARKET MODEL

4.1. Power-Jump Processes

In this part we introduce power-jump processes which are transformations of the Lévy process

X = (X , )l> , and will be used to construct a series of special artificial assets the next chapters.

Consider the process

x0=3(Ax,), iz2, 4.1)

where AX =X — X is the amplitude of jump at time s. For convenience we set X, t(l) =X,.

Notice that the equation AX =X —X_ is not satisfied all the time, it is only satisfied if

X , has bounded variation i.e. in the case when c is equal to zero.

(1)

Consider the processes Lti defined as follows:

It is clear that [L,L]t :L(tz) as [L,L]t = z (Ls -L_ )2 = z (ALS )2.
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The processes 10 = (L(i)) are Leévy processes for i > 2 and are called the ith-power-jump
20

t

processes. They jump at the same points as the original Lévy process X , but the jump sizes are

the i-th power of the jump size of the original Lévy process.

Corollary 4.1.1 Let f :R — R be bounded and vanish in a neighborhood of 0.
Then

E(Z f(AXs)j:tIf(x)v(dx).
O<s<t —0
By the corollary and the definition of L(ti), we have £ (Lt)z E (th) =ta = tm, <00, where

m, < s a constant and also
o(X0)=a%, iz2. (4.2)

Let Yt(i) denote the compensated power-jump processes (or Teugels martingales) for i >1

defined by:

YO =1 - E(L)) =1 -m¢ . (4.3)

As Yt(i) are martingale for all i > 1, they have zero mean.

According to the procedure described to orthonormalize the sequence of martingales (Y (i)) in
>l

[24], by taking a suitable linear combination of ¥’ @ ’s, we can obtain a set of pairwise strongly

orthonormal martingales (T ([)) . Thus, for i # j, the process T' D7) is a martingale (see

i~1

Leon [16]).

(T (i)) represents a basis for r space and each 7' is a linear combination of the
i1

Yj,j =1,2,....i:
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T0=c Y9 1c

ii i,i—1

YO e YV

It is proved in [24] that, this orthogonality ensures the existence of an orthogonal family of

polynomials {pn, n> 0} with respect to the measure ,u(dx) =x’y (dx) + 0250 (dx) and ¢,

corresponds to the coefficients of the orthonormalization of the polynomials { p,,n= O} .

n

The polynomials, defined by pn(x) I=ZC X

n,j

I are orthogonal with respect to the

measure [ :

The resulting processes T ) :(ﬂ(i)) are called the orthonormalized ith-power-jump
20

processes.

4.2. Volatility Trading with Power-Jump Assets

Volatility trading is a trading strategy that is designed to speculate on changes in the volatility of
the market rather than the direction of the market. Besides a few custom volatility indices, the
volatility can be traded by combining stable positions in options with dynamic trading in the
underlying. Neuberger [58] showed that by delta-hedging a contract, the hedging error
accumulates to the difference between the realized variance and the fixed variance used in the
delta-hedge. Therefore a hedged position makes money if the realized volatility exceeds implied

volatility with an amplitude depending on option’s curvature.

Similar strategy is valid for the trade in the power-jump assets as it is too a trade based on
volatility of the stock. The 2th-power-jump asset, which is the quadratic variation of the Lévy
process L, in a sense quantifies the volatility of the stock because it accounts for the square of
the jumps. If one believes that in the future the market will be more volatile than the current
market’s prediction, trading the 2th-power-jump asset can be logical. Moreover if one wants
protection against periods of high (or low) volatility, buying (or selling) 2th-power-jump assets

can cover the possible losses due to such unfavorable periods.
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The same strategy works for the higher order variation assets. The 3th-power-jump asset
measures a kind of asymmetry therefore it can be traded based on expections of realized
skewness. Similarly the 4th-power-jump process is measuring extremal movements so a trade in
this asset can be of use if one likes to bet on the realized kurtosis of the stock. These positions
can be hold when one believes that the market is not adequately taking asymmetry and possible

extremal moves into account.

Furthermore, an insurance against a crash can be easily built by trading in the 4th- or higher-

power-jump assets.

4.3. Enlarging the Lévy Market Model

In this subsection we consider a fixed finite planning horizon 7" . Suppose we have an equivalent

martingale measure () under which X maintains being a Lévy process with characteristic triplet
(07,52,17) and the discounted stock price process S = {5; =exp(—rt)S,,0<t < T} is a

martingale. In the previous section we have showed that the process X =X, —(r —b)t is a

O -martingale. Moreover, since ( is a structure-preserving equivalent martingale measure it is

also a Levy process.

It is clear that jump sizes of X and X are equal that is, AX , =AX, . This result leads us to

the fact that the power-jump processes transformed by them are also equal X t(i) =X t(i) 22,

Now let us consider the ith-power-jump processes Y 0 = (Yt(i)) based on X = ()~( t)
0<t<T

and their orthonormalized version 7' 0 — (Tt([)) fori>?2.

0<¢<T
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By using the ith-power-jump processes, Nualart and Schoutens (see [14]) built up a new series of

assets called ith-power-jump assets and introduced to the market. The price process

HY = (H t([)) of the assets is defined as follows:
0<t<T

Ht([) = exp(rt))’t(i) ,i>2,

and the orthonormalized version is denoted by HY = (

Ht(i) = exp(rt)];(i), i22.

+00
The compensators are mt =tE, (Zsl)) Note that for i >2, m, = Ixiﬁ(dx) and we will

—00

require V to fulfill (3.4).
It is clear that the discounted price processes AY = exp(—rt )H () \Wwhich are in fact the

t t

power-jump processes, are martingales under Q.

We will enlarge the Lévy market with ith-power-jump assets with price processes,
H =exp(rt)(L) —a), i>2.

(1)

,i > 2 are chosen in such a way that the market remains arbitrage-free. This

()

The constants a

is a delicate selection as a

(1)

may lead or prevent arbitrage opportunities.

For example, if a ' and risk-free rate » are chosen as zero, this may cause arbitrage

(i)

opportunities since the processes f1,” for even i are strictly increasing and starting at zero.

So the choice of the constants a” will be discussed later in Chapter 5.
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4.4. Market Completeness

Market completeness is often identified with the predictable representation property (PRP)

which states that any square integrable (J -martingale M in can be represented as follows

M:E(M)+j¢sd§,.

0

It was shown in [25] that PRP holds when S is a Brownian motion or a Brownian stochastic
integral, but it fails to hold for most discontinuous models used in finance like non-Gaussian

Levy processes.

Even though the predictable representation property holds, it does not automatically lead to
market completeness by itself. For a predictable process ¢, to be interpreted as a trading

strategy, we must be ableto approximate its value process using an admissible portfolio.

The next theorem presents the chaotic representation property (CRP) in terms of orthogonalised
compensated power-jump processes which is derived by Nualart & Schoutens [45]. The CRP is
important since it implies the predictable representation property (PRP), which provides the
hedging portfolio for a contingent claim. Based on the PRP of Lévy processes, Corcuera et al.

(2005) completed the market by introducing power-jump assets.

Theorem 4.4.1 (Chaotic Representation Property) Every square integrable random variable

H has a representation of the form

St (t5--ert; T AT 2T,

4

0
J=1

H-E()+Y ¥

J=1ipseni;21

Lj
0

S ey 8
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The Martingale Representation Property (MRP), which is obtained by Nualart and Schoutens in
[24], is an immediate result of the CRP.

Theorem 4.4.2 (Martingale Representation Property) Every square integrable Q -martingale

M = (M . ) oer<p has the following representation
t - o I ) )
M, =M+ [hd¥, +Y [ n)dT"
0 i=2 ¢

where h_ and hb(,i) are predictable processes, satisfying the conditions

t t w0
E(I|hs|2ds]<oo and E(IZ hs(i)zds}<oo.
0 0 i=2

Martingale representation property allows any square integrable () -martingale to be represented

as an orthogonal sum of stochastic integrals with respect to the orthonormalized power-jump

processes T’ 0 = (T )

Next theorem states that the market enlarged with power-jump assets is complete in the sense
that every square-integrable contingent claim X is reachable that is, it can be replicated by a

sequence of self-financing portfolios whose values converge in space of square integrable Q-

martingales to X .
Self-financing portfolios will consist of finite number of bonds, stocks and ith power-jump
assets. This notion of completeness is equivalent to the approximately complete which is studied

by Bjork given in [26].

Theorem 4.4.3 The Levy market model enlarged with the ith-power-jump assets is complete, in

the sense that any square integrable contingent claim X can be replicated.

Proof: Consider a square-integrable contingent claim X under O with maturity 7 .

45



Define the process M, as
M,=E,(exp(-rT)X|F,).
where 7 is the constant risk-free rate.

M ,is a square-integrable martingale since the following conditions hold:

(i) M, € F, (adaptedness)

(i) Ey(M,)<oo since Ey(M,)=E,(E,(exp(—rT)X|F,))
=E, (exp(—rT)X)
=exp(—rT)E,(X) <o

(iii) E

o(M

t N

F.)=E,(E,(exp(=rT) X|F,)|F,), s <t

(exp(—rT)X

E, F)
MS

By MRP we write M, in the following form:

t w
M, =M+ [hd¥, +Y [n0dT".
0 i=2 0
If we define
t N t ) )
MY =M+ [hdX +) [#dT"
0 i=2 0
we have that
lim MY =M,

N—ow

in space of square integrable Q -martingales.
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Define the sequence of portfolios in terms of the orthonormalized ith-power-jump assets as

¢ =0 = (@ . B B B )12 0f N 22,

where the weights of the assets in the portfolio are as follows

N

azN = Mt]Y - ﬁtSt—e_rt - e_rt z /Bt(i)]—_lt(i) ’

ﬂ[ — erth S—l

(2l Sl

Here o [N corresponds to the number of bonds at time #; /3, is the number of stocks at that time
and ,Bt(i) is the number of assets H ) , 1=2,3,..., N one needs to hold at time ¢.
The claim is that {¢N,N > 2} is the sequence of self-financing portfolios which replicates the

contingent claim X .
Let VtN denote the value of ¢N at time 7, then the value at time 7 is given by
N . _—
vi=a'e"+pS,+Y pUHY ="M
i=2
This last equation shows that the value of the portfolio at time ¢ is equal to
"M =E, (exp(—r (T-1))X|F, ) :

which is in fact value of the contingent claim at time 7. So the sequence of portfolios

{¢N ,N> 2} replicates the claim.

Now let’s show that the portfolio is also self-financing.
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Denote by

_rjaNe”deﬁdS +Zjﬁ di

i=2 o

the gain process, that is the gains or losses obtained up to time u by following ¢N

We should show that Glf\[ +M,=M ;v e that is, the change in value of the portfolio only
occurs as the price of the participating securities changes.

GN—rjMN "d - Ihe”dt—rz_[h,(’ dt+jhe”s 'ds, +z.[h(l 7. (4.4)

t t
0 i=2 5 i=2 o

By using integration by parts formula we can write

rthNe”dt —e"MY - M j he'dX, — ﬁjh ¢"dT" (4.5)
0 i=2 o
substituting (4.5) into (4.4) yields
G¥=e"MY - M, jh e di - r;:{h}’ dt — j he"dX,
+jhe”S 'ds, +zjh ﬁjh e
i=2 i=2

="MV - M, —r j hedt j he'dX, + j heS7\dS,
0 0 0

=e"M) -M,.
Thus every square-integrable contingent claim it can be replicated by a sequence of self-

financing portfolios.
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4.5. Hedging Portfolios

In this section we investigate the sequence of self-financing portfolios that replicates the

contingent claim X which has a payoff only a function of the value at maturity of the stock

price, i.e. X = f(S;).

The price function F' (l‘ ), ) of the contingent claim X at time # is given by

F(1,8,)=E, (exp(—r(T—t))f(ST)|Ft).

Now we will derive the Partial Differential Integral Equation (PDIE) that F (t, S, ) will satisfy

in the Lévy market setting.

It is clear that the discounted option price process e 'F (t, S[) is square-integrable Q-
martingale. Hence the process e 'F (l‘, St) is a semimartingale and has the following

decomposition e " F (l‘, Sz)=K1+At where K, is a local martingale and 4, is a finite

variation predictable process.

Applying lto formula for semimartingales to e " F’ (t, St) (see [13] Proposition 8.19) yields

COF(s,S)), foF(s,S.) 1:0°F(s,S,) ¢
F(1.8,) = F (0.8,) = [ === s + [ =22, 4 [ =22 [5.5]
0

0 s 0 K

s
O<s<t aS

s

If we differentiate both sides the following equation is obtained in terms of differential operators

dF (,S,)= D,F (1,8, )dt + D,F (1,S, )dS, +%D22F(t,St_)d 5,8

+J‘(F(t’5t(1+y))_F(tsS;)_Styw}\/(dt,dy), (4.6)

as,
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where D, denotes the differential operator with respect to the time variable, and D, denotes the
differential operator with respect to the space variable i.e. the stock price.

Now we will apply It6’s formula to the product ¢ F (l‘ ), ) :

A (1)) = —re (1,5, di+¢ " (15,). @)
Substituting (4.6) into (4.7) we obtain
d (eirtF (t) St )) = —”'eirtF (t) St )dt + e*” {DIF (t’ St )dt + D2F (t’ S’* )dS’

+%D§F(t,s,_)d[s,s]j

+ﬁ|iF(t,St (1+y))—F(t,St)—Sty%}\/(dt,dy)}

t

The right hand side can be written as the sum of a local martingale and a finite variation

predictable process as
d(e"F(1,8,))=—re " F(1,S,)dt+e " {D,F (1,S,)dt +cS, D,F (1,8, )dW,

+rS,_D,F (1,8, )dt +%Sf D;F (1,8, )c’dt+S, D,F (t,S,_)dM,

oS

t

¥ j (F(t,St(H y))_F(z,St)—S,yMjf(dy)}a

where V(dy) is the compensator of the Poisson random measure M (dt, dy) . Since
e"F (t, St) is a O -martingale, the finite variation part in the equation must be equal to zero.

Then the price function (at time t) £ (l‘ , x) satisfies the following PDIE

DIF(t,x)+rxDzF(t,x)+%c2x2D22F(t,x)+DF(t,x) —F(x)  (48)
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where DF(t,x) = JiF(t,x(ler))—F(t,x)—xy aF(t’x)jV(dy) with

F(T’Sr)zf(ST)'

Following lemma will enable us to calculate the sequence of self-financing portfolios that

replicates X .

Lemma 4.5.1 Consider a real function h(s,x,y)e]R+><]R+><R which is infinitely

Oh
differentiable in the y variable and satisfies h (S, X, 0) =0,and —(S, X, 0) =0.

Oy
Set
10'h
a, (S,x) = f—.(s,x,O),
i'oy'
and assume that
sup Z‘ s x m <0, 4.9)
x<K,s<8y j=2
Jorall K,R >0,s, > 0. Then we have
© Tla—l T 4o 6,‘

ZhSS AL z.[

t<s<T i=2 i!

hsS OdY +J.J.——h 5,8, ,y) (dy)ds.

Proof: Consider the Taylor expansion of / (S, X, y) in the neighborhood of 0
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Then we have

o T o T
> [a(s,5.)ar"+Y [a(s,S, )mds,

where the sums converge for every @ € €2 because of (4.9).

+o0
Since m, is defined by m, = I yiﬁ(dy) , we have

—00

T 4+

a,(s,S,_ dY +jj S._)y'V(dy)ds

—00

> h(s,S,_,AL ) Zw:

t<s<T i=2

~ —

T +x

i‘ja s,S, dY .“.h(s S, ,y) (dy)ds

i=2

Next theorem specifies the weights of the assets in the self-financing portfolio and can be found

in [14].

Theorem 4.5.1 The sequence of self-financing portfolios replicating a contingent claim X, with a
payoff only depending on the stock value at maturity and a price function F (t, x) e C" which

satisfies

sup i‘D;F(t,x)PQ” < oo, (4.10)

x<K,t<ty p=2»

Jorall K,R>0,t, >0, is given at time t by:

N DF :
number of bonds aINZB;I(F(Z‘,S, )—=S,_D,F(t,S,_ ) BZIZS 'BtS )Hl(i),
i=2 l

number of stocks 3, = D,F (1,S,_),
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. S'DF(t,S
number of ith-power-jump assets ﬂ[( ) = %ﬁh), i=23,.,N.
i'B,
Proof: Consider a portfolio which has the value P (t , St) at time f. Our market consists of a
risk-free bond, a stock and ith-power-jump assets. Assume that portfolio P(t, St) contains

atN numbers of risk-free bond, S, numbers of stock and ﬂt(i) numbers of ith-power-jump

assets. Then its value at time ¢ is given by,
P(1,S,)=aB +BS,+> pHY.
i=1

In order P (t "y ) to replicate the contingent claim X , its value should be equal to the price of

X at each time #. Thus the equation,

P(t,S,):F(t,St),for t>0,

or equivalently F (t, S;) =a'B,+BS, + z ,Bt(i)H S(i) must be satisfied.
i=1

To determine the weights of the portfolio, first, apply It6’s formula to F (T S )

Then we have the following

T 2T
F(T.S;)-F(t.5,)=[DF(s.s, )ds +% [$2D}F (5.8, )ds

+.T[D2F(S,SS_)dSS + 2 (F(5.8,)=F (5.5, )= D,F (5,5, ) ]AS,.

t t<s<T

Noting that AS, =5 AL_ this becomes

T 2T T
F(T.S;)-F(t.5,)=[DF(s.s, )ds +% [$2D}F (5.8, )ds+[D,F (s.5, )ds,

t

+ Y F(s,S_(1+AL))-F(s,S,_)—D,F(s,5,_)ALS, .

t<s<T
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Now, define the function A (t , X, y) as follows
h(t,x,y) = F(t,x(1+y))—F(t,x)—xyDzF(t,x).

Then the following results can be deduced easily,

h(1,x,0)=0,

0
—h(t,x,0)=0,
h(r.x0)

n

a(j/” h(t,x,O) = x"DfF(t,x),n >2.

As condition (4.10) is satisfied, & (t, X, y) satisfies the conditions in the previous Lemma.
Thus applying Lemma 2 gives,
T c2 T
F(T,8,)-F(4,8,)= [ DF (s,S, )ds +7jsj,D§F(s,Ss,)ds
t t

tSI_DyF (s,S, )dY

j F(s,S,. d5+2j

t i=2

+I_L(F(f’x(1+y))—F(t,X)—WDzF(t,x))&(dy)ds
DF(s,S,.)+S;. C;DzzF(s,Ss_)-kDF(t,x)

T
B '! rB, B,

+jDF (5,5, )ds, +ZjSiD:;SS ar

i=2 ¢

0OTSll)F'SS (z)
Z! m _dBS.
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Finally by using the PDIE equation (4.8) for the price, we obtain

F(s.S, )-8, _DF(s,S,. iS DTBSS )Hff)
i=2 l

F(T,S;)-F(t,S,)=

dB,

~ —

B

S

j F(s,S, )ds, +ZjSID]TBSS )dH_Si).
l

Hence it can be seen from equation (4.7) that the weights of the portfolio are found as given in

the theorem.

In the light of this theorem we can now determine the sequence of self-financing portfolios.

Contrary to our model, Black-Scholes model is complete and the risk-neutral dynamics of the

stock price is given by,

ds,
S

t

=(r—%62jdt+th, S, >0,

where W=(Wt)t20 is a standard Brownian motion. Hedging portfolio consists of

F(s,8,)—-S,D,F(s,8,)
B

s

number of bonds and D, F (S, SS) number of stocks.

In the Poissonian case however the risk-neutral dynamics of the stock price is the following

L —(r—A)di+dN,, S, >0,
where N = (N , )QO is Poisson process with intensity parameter A4 > 0.
Consider a contingent claim with a payoff F (T S )that only depends on the value of the stock

price at maturity 7 . In this case since the payoff also depends on the Poisson process at time T,

we can represent the payoff as G(T, NT) = F(T,ST) )
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Since the stock price follows the process S, = .S, exp ((r - /1) t) 2" payoff function becomes
G(T.N, +1)=F(T.2S,).
Considering these relations we have,

°°S’DFSS

2=

=2

) =F (5,28, )-F(s,S,.)-S,_D,F(s,S, )

= G(S,NS_ +1)—G(S,NS_)—SS_DZF(S,SS_) .

Thus the equality (4.7) becomes

F(S,SS_)—G(S,NS_ +1)+G(S,NS_)
B

s

T
F(T.$,)-F(t.5,)=] dB,

T-1
+ [ (G(s,N,_+1)=G(s,N, ))S.'ds,.

t

Hence, it is clear that market is already complete and that an enlargement is not necessary.
2G(s, S ) — G(s, N, + 1)
B

s

number of bonds and

Moreover the hedging portfolio is given by

s

(G(S, N, + 1) — G(S, N, )) S~ number of stocks.
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CHAPTER 5

ARBITRAGE

In this section we proceed assuming that the market is enlarged by power-jump assets with the

constants a"” , 1 22 . So the trade in the bond, the stock and the power-jump assets are allowed

in the market where the power-jump assets have the price process
H =exp(rt)(L) —a), i>2.

Now our aim is to examine whether after this enlargement the market remains arbitrage-free or
not. It is shown in [46] that the existence of an equivalent martingale measure in continuous time
is a sufficient but not a necessary condition to ensure no-arbitrage condition.

So to ensure that the enlarged market is free of arbitrage, we should show the existence of an

equivalent martingale measure () making S and the discounted H") *s martingales.

The martingale condition for S has already been derived and given by (3.13).
On the other hand discounted H s are martingale only if L(ti) —a" are martingales for
i>2. Again by Theorem 10 we know that the Lévy measure under Q is given by
17(dx) = H(x)v(dx), hence we can write

jxiH(x)V(dx):a(i), i>2. (5.1)
The existence question of G and H (x) is associated with the moment problem which is the

problem of finding necessary and sufficient conditions for the existence of equivalent martingale

measure with £z, as n-th moments , given a series of number { ,un} .
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A result is that if the moment problem has a solution with bounden support, then the solution

will be unique (see [47]).

The following proposition ensures the uniqueness of such measure.

Proposition 5.1.1 Suppose that the measure V(dx) has compact support. Then, if there exists a

martingale measure in the market enlarged with the power-jump assets, the martingale measure

is unique, structure preserving and the market is complete.

Proof: If there is a martingale measure in the enlarged market, using the same arguments as in

[48], there exists an H (x) verifying (3.13) and (5.1) with H (x) > (0. The measure
,u(dx) =x’H (x)v(dx) is finite and has a bounded support. Then H (x) is determined by

condition (5.1). Also, as the support is bounded, H (x)v(dx)veriﬁes (3.4) and hence the
model enlarged with the power-jump assets is complete. Lastly, as the contingent claim
B, 1,with 4 € F can be replicated, the uniqueness of its initial arbitrage price £ (1 A) implies

the uniqueness of the martingale measure.
Generally, it is known that uniqueness of the martingale measure implies completeness.

Proposition 5.1.2 If the probability measure under which the discounted stock price and the

power-jump assets are martingales is unique, the market is complete.

Proof: Assume that () is a martingale measure in the market. If the market is not complete,
there exists a contingent claim X >0, X € r (Q) , not zero for every ¢, which is orthogonal
to any replicable contingent claim. If we define, Q*(d a)) = (1+X )Q(d a))is a martingale

measure different from Q.

In fact, forany s <7, and 4 € F, we have
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and {Yt(i),t > 0} are O *-martingales forall i > 2.

Hence, it is clear that S is also a Q * -martingale.

5.1. A Completion Example: Brownian Motion plus a finite number

of Poisson Processes

In this example we will complete a market where the Lévy process L, is a compound Poisson

process with finite number of jumps.

Thus the process X, is sum of a Brownian motion and the compound Poisson process given by

X, =cW,+>¢,N,,

J=1

where ¢#0, W= {VK,t > 0} a standard Brownian motion and N, = {Nj’t,t > 0} are

independent Poisson processes with intensities a; = 0. The constants are ¢ ; are assumed to be

non-zero and different from each other for j =1,...,n. Then we have E (L1 ) = chaj =aqa.
=1

In this market the price processes of power-jump assets are given by
0 <exp(o)| S ¥, o = 23...
=1

It is shown in [16] that for i > n+1, H t(i) can be written as as a linear combination of the H

(1)
t
,i1=2,3,...,n+1. So clearly in this case we can enlarge the market with only 7 assets which are

driven by Ht(i) i=23,..n+1.

Similarly for an equivalent measure to exist in the market the conditions (3.13) and (5.1) must be

satisfied.
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The support set of H () is now the set {cz,... C } and the equations (3.13), (5.1) reduce to

t > n+l

Zn:ch(cj)aj =r—cG-b,

J=1

Zn:cj.H(cj)aj =a", i=2,..n+1.
=1

The existence of an equivalent martingale measure is ensured if the following system of

equations for H (c ; ) , J =1,...,n has a positive solution.

2 2 2 @
Ga, G4, ... Caq, H(Cl) a
3 3 3 (3)
ca Ga . 64, | H(Cz) _| a
n+l n+l n+l
1
cva, Ma, ... cMa,| |H(c,) "

By Proposition 8, the existence of a positive solution H (c ; ) , J =1L,...,n can be represented by

to condition

C'-a'>0,

where C ™' is the inverse of the Vandermonde matrix

1 1 1
G G Cu
n—1 n-1 n—1
G 3 Cu
and a'is the transpose of [a(z) a("H)] Since all ¢;’s are different from each other

detC #0.

For calculation of the inverse of Vandermonde matrices see [49] and for further details and

applications of Vandermonde matrices see [50].
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CHAPTER 6

PRICING THE CONTIGENT CLAIM

In this section we discuss two predominant methods for pricing European options on assets
driven by Lévy processes and obtain the explicit prices under these methods. The methods are

Martingale pricing approach, fast Fourier transform based characteristic formula method.

Throughout the pricing section, we assume that the jump size of the compound Poisson process

has a particular distribution which will be clarified below. Ultimately we will obtain the value at
time ¢ of a European option with strike price K and payoff function f (ST) only depending

on the stock price at maturity.

By Proposition 3.5 in [13] we know that the compensated compound Poisson processM .o

defined by equation (3.9), can be represented in the following form

M, = [ xM(ds,dx)=") AM,—ZE®(AM, . (6.1)

t
(0,4 ]xR O<s<t

Here, we have only rewritten the process M, as the sum of its jumps. Since a compound

Poisson process has almost surely a finite number of jumps in interval (O,Z], the summation is

finite, so there are no convergence problems.

Now let the sequence of independent random variables U Z(Ul. )i>l denote the jump size

process of AZ ie., U, =A]\Z. fori>1.

Then equation (6.1) takes the form
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i ~ O
M,= [ xM(ds,dx)=> U,~E®(U,)t.

(0,1 xR i=l

Under these circumstances risk-neutral dynamics of the stock price process can be rewritten as:

S =85, exp[th +M, +(r—§]t}x [T (1+AM, )exp(-an,)
0<s<t

. (N . N ()
:Soexp{th—l-(ZUi—/lEQ tj+ r—— thH 1+U
i=1

i=l1

- N . N(1)
e e o]
i=1 ;

S =38, exp(th ~ 1E? (Ui)t+[r—

Moreover let us now assume that the intensity process of the jumps modelled by the variable

(1+U ) follows a log-normal distribution with mean m and volatility v, e,

2

ln(1+ U) ~ N(m,vz) . The expectation of U is thus given by £ (U) e 1,

Finally the stock price process under () becomes

- w2 2 N(t)
S =8, exp cW,Jr[r/{e 2 IJ%}JFZIH(IJFUJ . (6.2)

i=1

Under these assumptions S, has now jump-diffusion dynamics.
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6.1. Martingale Pricing Approach

The value at time ¢ of a contingent claim X with a payoff function f (S r ) is defined as

F(t,8,)=exp(~r(T~1)) E°(f(S,)|F,) (6.3)

Using equation (3.14) the stock price process at time 7 takes the following form under Q,

5 =5 exp(c(WT_W,)+(MT_Mt)+(r_§j(T_t)] T (1 A1, Jexp(-AiT, ).

t<s<T

Substituting this into equation (6.3) we have

F(1,8,)=exp(-r(T-1t))E?| f SteC(W

[1(1+a, e | F

t<s<T

By the stationary increments properties of (W )tZO and (M ; )20 , the equations

t

WN/T_, = VIN/T —W and M = M T -M , are satisfied. Also noting that the c-algebra F, is the

t t

knowledge of S, = x we obtain,

2
CWPI +M77, +[r—%](T—t)

F(t,x):exp(—r(T—t))EQ f| xe

I (1+AMS)e’AMf :

t<s<T

Now consider the price of the option under the Black-Scholes model (with volatility c):

Fy (1.5) = exp( (T —1)) E? [ f{xexp(cWT_t +(r_§](r-t)m .

Then we can write the value of the option in terms of Fjg (t, x) as
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F(t,x)=E, [FBS (t,xeM“ [T (1+anm, )" D .

0<s<T—t

The derivative with respect to x, which is also needed in the formula for the number of n-th

power-jump assets in the replicating portfolio, is given by

0<s<T—t 0<s<T—t

D;F(t,x) =E, [e"MT’ H (1+A]\;IS )nefnws x D Fe (z‘,xeMT’ H (1+AMS )efAM: D

In the Black-Scholes case the derivative D, F,¢ are very simple. For instance for a European
call the first two derivatives are given in terms of the cumulative probability distribution

function N (x ) and the density function » (x) of a Standard Normal random variable by

WES N

D,Fys(1,x)=N(d,)=N I (6.4)
and
n(d
D2F, (1) N(dz):xc(—\/Tl_zt, 6.5)
x c?
log(T ) +(r+2j(T—t)
where d, = — and d, =d, —ez.

N (d1 ) and N (dz) are known as the delta and the gamma of the option, respectively.

In equation (6.2) it is given that under the certain assumptions the stock price process at time ¢

has the following form under Q,

B _ n1+ﬁ 2 N(?)
S =S8,exp| cW, + r—/{e 2 —IJ—% t+> In(1+U,) |.
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Then by (6.3) we can write the option price as

i=1

F(1,8,)=exp(~r(T—1))E?| / (St exp [W . [2{1]] (e S 1n(1+u,)D F

Since F, can be viewed as {St = x} ,

F (l, X) =CXp (—I" (T - t)) EQ [f {XI €xXp [‘Wm + {rcji[em‘flﬂ (T—t) + Ngt) ln(1+U[))]J

= exp(—r(T - t))iEQ [f [x exp(cwﬂ + [rcji[e%IU (7-e)+ N(’f) h«nuJJ]‘ N(T- t) = nj

Setting 7 =T —t we have,

B , " PR
F(t,x)=exp(-r7) ZEQ (f (x exp [CWT . {r-i-i{e””‘z—1” - m(w,)DJﬁ.

n=0 = n '

The process inside of the exponential function is normally distributed so we have,

2 Vv . n 2 m+ﬁ
{r—%—/{e 2 —IJ}T-FCVVT +Zln(1+U,.)~N£{r—%—/{e 2 —lj}ﬂrnm,czﬁtnvz}
i=1

We can rewrite the process such that its distribution will remain the same,

2 Vv 2 2 A
{r—%—i[@ 2 —lj}r—knmh’ﬂWr NNHr—%—/l[e 2 —lj}r+nm,czr+nv2}
T

Now we are able to express the equation (6.3) in the following form
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w (A7) e - . -
F(t,x)=exp(—rr)Z%EQ[f{xexp[(r—%_g[e 2 —1]Jf+nm+ ct+ny r]D
n=0 n! r

2

ny
By adding and subtracting 2— into the exponential function we get
T

2

_,{{enﬁz - IDr +nm+ chf/r]

) 2 B
F(t,x):exp(—rr)zTEQ f| xexp {nmntnzli(em 2 —IJTJ

T

p((_%jﬂwm
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We know that in the Black-Scholes model the price formula is given by,
o2
Fy (2,8,;¢)=exp(—rz) E?| f| xexp| cW, +{F—?JT :

Hence our price formula F (t,x) can be represented as a weighted average of Black-Scholes

price in terms of number of jumps 7,

F(t,S,)= ZTFBS (7,5,5¢,) (6.6)

2 v? 2 2
ny. oz my fc T+nv
where S, =S, exp nm+2——/1[e 2 —1]1 andc, = ,[———— .
T T

Alternatively, we can write

which yields
F(t,St) = ZTFBS (r,St;cn,rn),

o n(m+v2/2) I
where 7 =r—Ajle ?-1|[+——F and A=1e 2.
T

This formula is the same as the one derived from solving the PDE by forming a risk-free

portfolio. This relation shows that PDE approach and Martingale approach give the same result.
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By equation (6.6)

=
~
—~
\_‘ﬂ

=
N—"
1l

IS s

(Zr)n ek mw? -
——|exp| nm+—-A1| e 2 _1|¢ |xD! L Fos (7.5,5¢,) |
n! 27
2 v I
where §, =S, eXpLﬂm—l—nzL/i[e 2 ]2‘] and c, crriv. zanv’
T

By (6.4) and (6.5) we know that

X ¢’
log(rj + (r + 2}' 67)

and

DzzFBs(tax):N(dz):M' (6.8)
xeNT
Then the delta and the gamma of the option under Black-Scholes model are as follows
log(S J+[r+ch (6.9)
) .
Md )= N and N(d, )= ")

cn\/; ’ _Sncn\/;'

Hence by Proposition 7.10 in [28] the price of a European call option with strike price K is

F(z,S,)=S,N(d,)-Ke"N(d,),

where N(dl) and N(a'z) are given as in (6.9).
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Similarly by using Put-Call Parity (see [28], Proposition 9.2) European put option price can be

obtained as

F7(z.8,) = Ke "N (~d,) - S,N (~d,).

6.2. Characteristic Formula via Fast Fourier Transform Method

In this section we will obtain the price of a European call option by using fast Fourier transform
(FFT) method. This method has significant advantages compared to the classical martingale

approach. First of all, when the risk neutral density is unknown, as is very often the case, we can
find the price by using the Fourier transform of S, which is known from the Lévy Khintchine

representation. Besides, the algorithms used for the inversion of the Fourier transform are fast

and optimized which enables us to price options with different strikes in a single calculation.

We again consider the European call option with payoff function maturity 7' and strike price
K, written on S;,. Assume S, has the form specified in the previous section, that is, has log-

normally distributed jumps. Then as shown above we know that

i=1

~ ~ m+ﬁ 2 N(t)
S =S,exp| cW, + r—/?{e 2 —IJ—% t+21n(l+Ui) .

The characteristic function of the log-return process s, = ln(S T) can be found explicitly as

follows:

i=1

2 ﬁ ~ ium—luzv2
=exp£—%u2c2+iu[r—%]t—ﬂ,(e 2—1]t+/1t[e 2 j] (6.10)

. B m+ﬁ 2 N(7)
¢, (u)=E(exp(ius; )) = E| exp| iu| cW, + r—/l[e 2 —IJ—% t+> In(1+U,)
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[

2 v?
1 ~ m+— ium——u*v?
¢ (u) =exp iu(r—%}t—auzczt—iult(e 2—e 2 J

Let k denote the log of the strike price K, and let C, (k ) be the desired value of a 7" maturity
call option with strike €xp (k) . Let the risk-neutral density of the log price be g, (S) .

The characteristic function of s, =In (ST) is defined by:

The initial call value C, (k ) is related to the risk-neutral density g, (S) by the following steps:
C, (k)=E%(e" (S, -K), |F,). (6.11)

Clearly (ST -K )+ =S8,—-K nder the condition that S, >K or, equivalently,

In(S;)>In(K).
Thus equation (6.11) can be written as

C, (k):]ge’T (e“ —ek)qT (s)ds. (6.12)

Here note that C, (k), tends to .S, does not decay as k — —oo .. Since it does not decay at the

negative log strike axis C, (k ) is not integrable. So the Fourier transform of C, (k ), which is

defined as

v (u)= [ e"C, (k)dk,

—00

does not exist. To overcome this problem Carr and Madan used a dampening coefficient

a > 0and defined a new square integrable modified call price éT (k ) as

C, (k)s exp(ak)CT (k) for a > 0. (6.13)
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To show that GT (k) does have a Fourier transform well-defined by

+00

vy (u)= [ e"C, (k)dk,

—00

provided that & > 0 is chosen appropriately, we consider the next theorem.

Theorem: Consider the payoff function f (x,k) = (eb‘]x —e ) where b, b, € R" are arbitrary
+
constants. Assume that f satisfies b, € 4. Then there exists & >0 with ab, +b, € A. For

any such ¢« , the Fourier transform /. (u) of C T (k) exists and is given by

v, ()= e (u—-i(l+a))

_a2+a—u2+i(2a+l)u'

Proof: Proof is presented in the Appendix section. For details see [42].

Consider now the Fourier transform of C, r (k) defined by:

+00

vy (u)= [ e"“Cp (k)dk.

—00

By the inversion formula it is known that the following satisfied

and using equality (6.13) we have

—ak +©

j ey, (u)du.

—00

e
27

C; (k)

Since the integrand is even in its real part C, (k) can be written as

—ak +o©

[ ey, (u)du.  (©FT) (6.14)

0

e

¢, (k)=
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Here the integration (6.14) is a direct Fourier transform which is adapted to an application of the

FFT.

Now we derive an analytical expression of ¥/, (u) in terms of ¢, (u) and then obtain call prices

numerically using the inverse transform.

The expression for /. (u) is established as follows:

+00

v, (u)= I e"“C, (k)dk = Jr.i::e"”k {T e’ (es —e )qT (S)ds}dk .

k

—00

By Fubini’s Theorem (see [22], Theorem 64) above equation takes the form

v, (u) _ Te—rr (eak+s _ M) )qT (S){T eiukdk}ds.

k

—00

The boundaries k < s <400 and — o0 < k < 400 of the integrals yield —o0 < k <5 < +00 .
v, (u) _ J‘ e—rTqT (S){J' ok (eak+.s' —ek(lm))dk}ds
_ e—rTqT (S){J‘ (e(iu+a)k+s _ek(1+a+iu) )dk}ds

‘ 1 es(l+iu+a) _ 1 . es(l+a+iu) s
iu+a l+a+iu

+o0 s(1+a+i
es( a+iu)

— —rT d
¢ QT(S)a2+a—u2+i(2a+l)u :

—rT +o0

_ e - J’ ei(u—i(l+a))qT (S)dS

B o’ +a—u’+i(2a+1)

—00

e—rT

= u¢T(u—i(1+a)).

B o’ +a—u’ +i(2a+1)

where @, (u - i(l + a)) is the characteristic function of s, = ln(ST) for u' =u —i(l + 0{) .
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Hence we obtained the following analytical relation between i/, (u) and @, (u) ,

B e"’T¢T (u—i(1+a)) 6.15
Wr(u)_a2+a—u2+i(2a+l)u' (1)

To obtain the option price we will substitute (6.15) into (6.14) and perform the required

integration.

e ok ok e"’T¢T (u—i(l+a))

C.(k)=— du .
 (K) zr ;[e o’ +a—-u'+i(2a+1)u !

Here notice that the denominator vanishes when ©# = 0 and causes a singularity in the integrand
whena =0 . So the factor exp (ak) necessary since the FFT evaluates the integrand at # =0 .
Now consider the issue of the appropriate choice of the coefficient @ . A range of positive values

for ¢ provide the integrability of éT (k) over the negative log strike axis, but for the positive
log strike axis the same condition is not satisfied. For 5T (k ) to be integrable in the entire log
strike axis, a sufficient condition is provided by l//(()) being finite. By equation (6.15) the

condition ¥ (0) < ooyields that ¢, (—i(l + 05)) <0,

From the definition of the characteristic function, this inequality is equaivalent to:
E(ei(fi(aJrl))sT ) _ E(e(a+1)ln(ST)) _ E(S}”l) <0, (6.16)

Using (6.15) and (6.16) an upper bound on & can be determined and Carr-Madan find that one
fourth of this upper bound is a good choice.

The next issue to be considered is the infinite upper limit of integration in (6.14). The absolute

value of ¢, is bounded by E (S;’ B ) which is independent of u, so by equation (6.15)

<

‘2

E(si") A

‘l//r(u) (0{2+a—u2)2+(2a+1)u2 u
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for some constant A.

The above inequality can be written as

Thus the integral of the upper tail by can be bounded as;

T‘w(u)}du<%.

a
With this bound establishing a truncation procedure. Since the integral of the tail in computing

A
the transform of (6.14) is bounded by —— the truncation error is bounded by:
a

exp(—ak) 4

T a

exp(—ak) A
M— the truncation error can be made smaller than & .
T &

By choosing a <

6.2.1. Time value of an option

The purpose of this section is to derive an alternative approach, introduced by Carr and Madan
[61], which works for only out-of-the money options since for the out-of-the money options the
intrinsic value is zero. The formula derived in the previous section depends on the intrinsic value
of the option so a pricing formula for out-of-the money options is needed but since the authors
do not see a big difference between the two methods, we will use the formula of the previous

section.

Again set 5, = ln(ST), k= ln(K ) , where K is the strike price of the option and S, the

initial spot price.
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z, (k) is assumed to be the price of a T maturity put when k < ln(SO) and a T maturity call

price when k > ln(SO) . The price function z, (k ) is peaked as k = ln(SO) and declines in
both directions as k goes to —ooand to + o0 .

Next, we derive an analytic expression between the Fourier transform of z, (k ) and the

characteristic function of the log of the terminal stock price. The Fourier transforum of z, (k)

is given by

~+00

Sr (u) = I ez, (k)dk

—00

and by inversion formula

Assuming that S, =1, we can define z, (k) as

z (k)=e"" I ((ek —e )1{s<k,k>0} + (es ' )1{s>k,k>0} )QT (s)ds.

Then we have

¢ (u) _ J' o7 J. ((ek —e' )1{.v<k,k>0} +(es Py )1{s>k,k>0} )qT (S)dsdk
= Tei”ke_rrdkj{. (ek —e' )qT (s)ds+ J(Z ei“ke_’TdkT(es —é )1{S>k,k>0} q; (s)ds
b e o k
_ _0 e_rTqT (S)dST(e(“m)k etk )dk +Ice-rTqT (S)dszo(esemk _ plIiuk )1{s>k,k>0} dk

Simplifying the above integral and writing the outer integration in terms of characteristic

functions, we obtain

—rT 1 ert ¢T(u_l) (6.17)
1+iu  iu w’—iu |
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Since the function z, (k) approximates the shape of a Dirac delta function near £k =0 when

maturity is small and thus the transform is wide and oscillatory.

So it is useful in this case to consider the transform of Sinh(ak )ZT (k ) as this function

vanishes at kK =0.

Define

~+00

yp(u):= [ e sinh(ak)z, (k)dk

g (u—ia)—g, (u+ia)
5 .

The time value is then given by:

+00
1 1 iuk

ZT(k)zsinh—(ak)Eje ¥y (u)du

—00

_ S (u—iat)—g, (u+ia)
2

. . 2 .
1+iu iu u- —iu

where 7, (1) and ¢, (u)=e"

6.2.2. Option Pricing Using the FFT

The FFT is an efficient algorithm for computing the sum:
N STk,
o(k)=Ye " x(j) for k=1,...,N. (6.18)

where N is typically a power of 2. The algorithm reduces the number of multiplications in the

required N summations from an order of N* to that of N lnz(N ), a very considerable
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reduction. We present in this section the details for writing the integration (6.14) as an
application of the summation (6.18). We will make use of the following theorem to approximate

the summation.

Theorem (Trapezoidal Rule): Consider y = f(x)over [x,,x ] where x, =x, +/. The

trapezoidal rule is Jlf(x)dx zg(f(xo)+f(xl)).

R

Dividing the interval into N segments of width 77 and setting u ;=1 ( Jj- 1) yields

u, =0,u, =n,uy =21,...,uy =(N-1)7.

Using the Trapezoidal rule for the integral on the right hand side of (6.14), we have

0

Ie"”"w(u)du = n[e 91/2(0) + ge”""/f (, )J :

Thus an approximation for C, (k) is obtained as follows

-ak N-1
Cr(k)x=—Y """y, (u . (6.19)
T j=1
The effective upper limit for the integration is now: a = N7. (6.20)

We are mainly interested in at-the-money call values C, (k) which correspond to k near 0. The

FFT returns N values of k and we employ a regular spacing of size A so that, our values for

k are:

k, :—b+ﬂ,(l)—l) forv=1,..,N. (6.21)
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This gives us log strike levels ranging from —b to b where

AL (6.22)

Substituting (6.21) into (6.19) yields

e—aku N-1

Zefiu/(—bwl(v*l))eih“fl/jr (”j )77 for u=1,..,N.

=

CT (kU) ~

T

Noting that u; =7 ( Jj— 1) we write

-ak, N-1

C. ( k)~ e zefm(j—l)(ufl)eibuj v, (uj )77 ' (6.23)

v

J=1

To apply the fast Fourier transform, we note from (6.18) that

An===. (6.24)

Hence if we choose 77 small in order to obtain a fine grid for the integration, then we observe

call prices at strike spacings that are relatively large, with few strikes lying in the desired region
near the stock price. We would therefore like to obtain an accurate integration with larger values

of 1 and for this purpose, we incorporate Simpson's rule weightings into our summation. With

Simpson's rule weightings and the restriction (6.24), we may write our call price as,

—ak, N- 7i2771' Do-1) . _
C(ku)z e” NZ:le N(/ 1) l)elbu‘fl//(uj )g(:)”_(_ 1)./ _51'—1)5 (6.25)
j=1

where O, is the Kronecker delta function that is unity for n =0 and zero otherwise. The

summation in (6.25) is an exact application of the FFT. One needs to make the appropriate

choices for 7and « .
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Now we will discuss these issues within the frame of the Lévy market model which was

described in the previous section. By (6.10) we know that

2

e o] (il O YN B (o O T 6.26)
¢ (u—i(1+a))=exp| i(u—i(1+cr)) r— t—E(u—z( +a)) ct—At|e 2 —e :

By substituting (6.26) into (6.15) we get the fourier transform of (u) in terms of

characteristic function of s, = ln(S r) as

g WHLZ i(u—i(l+a m—llf
eXp{i(”_i(lJra))(”—;JI—;(u—i(l+a))2czz_j{e 2 _e( (1+a))m— VZJ—FTJ
v (u)= (6.27)

o +a—u’ +i(2a+1)u

Finally substituting (6.27) into (6.25) yields the call price.

2
2 mrl (w1t m—lu 22
[i(uj—i(l+a))[r—cz]t—;(uj—i(l+a))zczt—):{e 2 —e(/ (1) 2/ J]

= a’+a—u’+i(2a+1)u,

e

b, -2 j1)(o-1)

e n J
(3+(-1) -0. )
Xa2+a—uj2+i(2a+l)uj 3( +(=1) ’71) (6.28)
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6.3. Comparison of Pricing Methods

In this section we compare the results of the pricing methods. We perform the FFT-price formula

given by equation (6.28) and the original price formula

F(1,8,)= f (Ir)" e

n=0

Fyq (T,SZ;C r )

n>'n

for a =1. For the comparison we used common parameters and variables fixed §, = 50,

c=0.02, r=0.05, T=20/252, A=1, m=—-0.1and v=0.1. As shown in Figures 6.1

and 6.2 the outcomes of both methods are one and the same and this is the expected result since

in fact equation (6.28) is just a series representation of the original price formula.

35

Call price

' ' ' : L s .
20 30 40 50 60 70 80 90 100
Strike price

Figure 6.1: Original Call Price

35

30|

25L

20}

Call price

. . ' : : . .
20 30 40 50 60 70 80 90 100
Strike price

Figure 6.2: FFT - Call price
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CHAPTER 7

CALIBRATION

7.1. Stochastic Volatility Extension

In the previous sections we studied under a geometric Lévy market model and in particular
jump-diffusion model. We completed the Lévy market and valued European options under the
complete jump-diffusion market model. Even though the class of Lévy processes is considerably
rich, it is sometimes unsatisfactory in multiperiod financial modeling. First of all because of the
stationarity of increments, the stock price returns for a fixed time horizon always have the same

law. That is why we can not integrate any kind of new market information into the return

distribution. On the other hand since the law of a Lévy process X, for any given time horizon ¢

is completely determined by the law of X, moments and cumulants depend on time in a well-

defined manner which does not always coincide with the empirically observed time dependence

of these quantities [53].

For these reasons, several models which combines jumps and stochastic volatility attracted
interest in the literature. The Bates model is one of the most popular examples of the class.
Therefore in this chapter in addition to the Jump-Diffusion and Black-Scholes we will calibrate
Stochastic Volatility Jump-Diffusion model of Bates [6] to compare the empirical findings of

each models.

In Bates model an independent jump component is added to the Heston stochastic volatility

model:

a5, = pdt +\JV,dW! +dQ,,

dV,=&(n=V,)dt+0\V,dw:,
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1 2 . . . . .
where (W, )and (VK ) are Brownian motions with non-zero correlation and Q, is a compound

Poisson process with intensity A and log-normal distribution of jump sizes. Namely if U is its

— 1
jump size then In (1 +U ) ~N (ln (1 +U ) - 55 20 2] . By the no-arbitrage condition the drift

term becomes 7 — AU under the risk-neutral probability.

Applying 1t6’s lemma to Equation (9.1) we obtain the log-price equation
— 1 .
dlog(S,) :(r—w—EthdH\/Zthl +d0,,

where O =0 is a compound Poisson process with intensity A and Gausssian distributed
)10

jump sizes. This model can also be considered as a stochastic volatility extension of the
Merton’s jump-diffusion model. The only difference is jumps of the log-price process do not

have to be Gaussian so they can be replaced by any other distribution.

7.1.1. Option Pricing

In this stochastic volatility model the characteristic function of the log-price is known in closed
form which is derived below. Therefore, European options can be priced using the fast Fourier

transform the process is described in Section 6.2.

7.1.2.  Characteristic function of the log-price

The log-price s, == log(St) can be written as a sum of a continous part and a jump part. If we

represent the contionous part of s,ass;, defining the function

s, =x,V, =U) and applying It6’s formula to f(Sc v t)=E(em;)

271

f(x0,t)= E(e"'”;

yields the characteristic function of the contionuous part as
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2
df (s¢.V,.t)= 1V8f+ eaf+ GVaf ( — U - jaf
2 " ox? oxov 2 'ov ox

o o o o 2
VL D s do Law +0do Law?,
e(n=V)7 +atj YOS TN,

19
where y is the correlation between W 'and W7 .

As f (Stc Vot ) is a martingale the drift term must be equal to zero. Then we get

to

—06f+ Haf HVIG—JZ( - U - jaf éf(n )af af =0. (7.1
2 ox? oxov 2 oV ox ov ot

Moreover by definition we have the following terminal condition

f(xu,T)= E(e””;

Sy =x,V, :u):E(ei“x).

With this condition we are able to solve (7.1) and find the characteristic function of the log-price
s, .

Assume f is of the form
f(xu,t)= exp{A(T—t)+uB(T—t)+iux}, (7.2)

where A and B are functions of time # only. Substituting this into equation (7.1) we obtain

ordinary differential equations for A and B:

A'(s)zf?]B(S)+iu(r—/1(7)

u’ +iu
2

B'(s)=%9232(s)+(i76’u—§)3(s)—

with initial conditionsA(O):B (0):0. It is given in [29] that these equations have the

solutions
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A(S) = ius(r—/’tlj)+ 5773(5;1}/&1) — 29?7 IH(COShﬁ-FMSiDhgj
17 % 2 S

u® +iu

B(S)=— ,
gcoth%Jrf—i)/@u

where ¢ = \/92 (u2 + iu)+ (é — i7&4)2 .
Now we have the explicit formula for the characteristic function of s; . To incorporate the jump
part, all we have to do is to multiply (7.1)with the characteristic function of the jumps since

jumps are homogeneous and independent from the continuous part.

Let ¢IJ (u)denote the characteristic function of the jump part i.e. the compound Poisson

process. Then we can write

& (u) = exp(ﬂt((oU (u)—l)) ,
where ¢, (u) = exp[—52u2 /2+ i(ln(l + U) —%é‘zjuj is the characteristic function of the

jump sizes which are distributed as ln(l + U) ~ N(ln(l + U)—%é‘z,é‘zj.

Hence the characteristic function of the log-price is the followincan be found as:

exp(é:m(é_i?/eu)+iut<r—/1[7)+iuxoj
)

J 92
¢,(u)=¢(u =
[coshgt +§_m?/ecoshgt] ’
2 4 2
(u2 +iu)00

Xexp| — "
ycoth%+(§—iu}/9
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The above characteristic function is exactly what is needed in the FFT option pricing formula
(6.28). Therefore under this model a call option price can be easily obtained by substituting (7.2)
into (6.28).

7.2. Calibration of the Models

In this section we illustrate the theory of the previous parts and calibrate the jump-diffusion (JD)
model to an option set on Standard & Poors 500. We also calibrate the stochastic volatility jump-
diffusion (SVJD) model of Bates [6] on the same data set to investigate the additional stochastic

volatility effect and Black-Scholes model to compare the data fitting performances.

In the calibration of Lévy-based models, qualitative features of the model must be considered
such as infinite/finite activity and time homogeneity. Moreover, as discussed in [38] testing the
concerned data for the presence of jumps will provide accuracy in model choice. Several authors

have investigated the presence of a jump component looking at the S&P 500 option data. They
showed that next to a continuous diffusion component, the jump component exists but may not

be present every single day in the sample (see [40]). Based on this study, it can be concluded that

it is not possible to determine whether the jump component is of finite or infinite activity, as the
small jumps are completely reflected by the diffusion part. It is shown in [41] that Lévy

processes produce a reasonably better implied volatility smile for a single maturity, but when it

comes to calibrating several maturities at the same time, the calibration by Lévy processes
becomes much less precise. This difficulty of calibrating an exponential Lévy model to options

of several different maturities arises due to independence and stationarity properties of the

increments.

7.2.1. Data Set

The concerned models are calibrated to S&P 500 index option prices observed in the market on
20 August 2010 at 2.42 pm and at that time, the S&P 500 Index quote was 1075.63. The data
consist of call options on with 21 different strike prices, ranging from 925 to 1500 and with the

following maturities:
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1, =21 days, T, =51days, T, =82days, T, =203days, T, =295days, T, = 478days,

T, = 662 days and T, = 845 days.

Selected options have at least 20-days maturity since prices of the options near to the maturity
are very close to the intrinsic value. Also options whose implied volatilities are unrealistic or
cannot be calculated are eliminated such as Deep-ITM options (close to intrinsic value) and
Deep-OTM (close to zero). Lastly, options with a very large bid-ask spread are ignored since it

often implies inaccurate option price. The data is presented in the Appendix.

7.2.2. Parameter Estimation

The parameter estimation procedure is carried out by minimizing numerically the squared norm

of the difference between market and model prices for both JD and SVJD models.

The vector of unknown parameters € are thus determined by minimizing the following

expression

2

N
i i,60
Z (Cmarket - Cmodel ) .

=1

The numerical method used in this process is the DIRECT optimization algorithm. In this next

section we outline and give motivation of the algorithm.

7.2.3. The Algorithm

DIRECT algorithm [44] is a deterministic sampling method for finding the global minimum of a
multivariate function subject to simple bounds. It was created in order to solve difficult global

optimization problems with bound constraints and a real-valued objective function.

The algorithm attempts to solve the following problem:
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Problem: Let a,hbeR", Q= {x eR":q,<x < bl.} and f:Q—>R be Lipschitz

continuous with constant ¢ . Find X,y € Q such that

fopt =f(x0p,)£f*+g,

where & is a given small positive constant.

Since DIRECT is a sampling algorithm, it doesn’t require any knowledge of the objective
function gradient. In place of this, it samples points in the domain, and uses the information it
has obtained to decide where to search next. A global search algorithm like DIRECT can be very
useful when the objective function is a simulation. The algorithm will globally converge to the

minimal value of the objective function [3].

We consider a bound-constrained optimization problem,

min f(x), f:R" >R

xeQ)

where
Q:{xeRN:lﬁxSu}

and f is Lipchitz continuous on .

DIRECT begins by scaling the domain €2, to the unit hypercube. Thus, we will assume that
Q={xeR":0<x <1}

This transformation doesn’t affect results, it just abbreviates the analysis. DIRECT's sample
points are centers of hyperrectangles and it initiates its search by sampling the objective function
at the center of (). The entire domain is treated as the first hyperrectangle, which DIRECT

identifies as potentially optimal and divides.
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In the division phase, it determines hyperrectangles that has the most potential to contain
unsampled points and in the sampling stage it samples f at the centers of the newly-created

hyperrectangles.

Figure 7.1 illustrates the division process.

enter

[ ] [ | [ ] [ |
center cenzer ceater verle

Figure 7.1: Two dimensional divison example of DIRECT algorithm

7.2.4. Results

The main goal of models with stochastic volatility is to resolve the implied volatility smile
phenomenon. These models provide explanations for the implied volatility smile phenomenon
since the implied volatility is both different from the historical volatility and changes as a
function of strike and maturity. But the performance of stochastic volatility models at short
maturities is not very different from that of the Black-Scholes model, the effect of stochastic
volatility becoming visible only at longer time scales: short-term skews cannot match

empirically observed ones.

In Figures 7.2 and 7.3 we plot the implied volatility surfaces of jump-diffusion and stochastic
volatility jump-diffusion models for fixed parameters.
Comparing the Figures, it can be seen that the stochastic volatility jump diffusion model yields a

flatter smile however a smile still exists.

It can be seen from Figure 7.2 that the implied volatility surface generated by JD model shows a

peak at the money for short maturities which is observed in real markets rarely.
On the other hand the implied volatility surface of Bates model, given by Figure 7.3, is more

similar to surfaces observed on the market because the implied volatilities decrease for

increasing time to maturity. Moreover, in this surface the smile flattens with increasing time to
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maturity and this feature can be regarded as a stylized characteristic of implied volatility

surfaces.

Implied Volatility Surface

Implied Volutility (T, M)

Time to Matutity T

Moneynes M = £
Figure 7.2: Implied volatility surface generated by the Jump-Diffusion process. (7 = 0.05,

A=0.1, 0 =0.15, mean jump size m = —0.05 , jump size standard deviation v = 0.4)
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Figure 7.3: Implied volatility surface generated by Bates model.

(initial volatility /¥, = 0.124, rate of volatility mean reversion & = 3.72, long-run volatility

\/; =0.118, volatility of volatility & = 0.501, correlation p = —0.488, jump intensity

A =0.038, mean jump size 1, =—0.05, jump size standard deviation,v, =0.4)
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As a result, the smile of JD model is more definite and its shape does not resemble that of the
market. Therefore, explaining the implied volatility smile phenomenon requires a model that

allows both jumps and stochastic volatility.

The calibration procedure of jump-diffusion model is carried out both simultaneously for all
maturities and separately for each maturity in the S&P 500 option data sample. As seen in
Figures 7.4 and 7.5, the calibration for each individual maturity gives quite good results, despite
the fact that the options with different maturities correspond to the same underlying and the same

trading day, the parameter values for each maturity are different, as seen from Table 7.1.
Figure 7.6 presents the result of simultaneous calibration of the model to 8 different maturities

ranging from 1 month to 3 years. As can be seen from the Figure, the calibration error is much

higher than in Figures 7.4 and 7.5.
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Figure 7.4: Calibration of jump-diffusion model to market data separately for each maturity.
Top: maturity 51 days. Bottom: maturity 203 days. (circles are market prices, stars are model

prices)
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Figure 7.5: Calibration of jump-diffusion model to market data separately for each maturity.
Top: maturity 662 days. Bottom: maturity 845 days. (circles are market prices, stars are model

prices)
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Figure 7.6: Calibration of jump-diffusion model simultaneously to 8 maturities. (circles are

market prices, stars are model prices)
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This problem arises due to the fact that log-price process, which is a Lévy process, has
independent and stationary incerements. So the law of the entire process is completely

determined by its law at any given time ¢. If we have calibrated the model parameters for a

single maturity 7', this fixes completely the risk-neutral stock price distribution for all other
maturities.

To adequately calibrate a jump-diffusion model to options of different maturities at the same
time, the model must have a sufficient number of degrees of freedom to generate different term
structures. The Bates model on the other hand has a significant number of degrees of freedom to
generate different term structures, so calibrating simultaneously for different maturities is
possible. The volatility smile for short maturities is accounted by the jump component while the
smile for longer maturities and the term structure of implied volatility is taken into consideration
using the stochastic volatility process.

Figure 7.7 shows the calibration of the Bates model to the same data set. As we see, the
calibration quality is better and almost as good as when each maturity was

for JD.

calibrated separately
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Figure 7.7: Calibration of the Bates stochastic volatility jump-diffusion model simultaneously to

8 maturities. (initial Volatility\/VO =0.0633, rate of volatility mean reversion & =0.7446,

long-run Volatility\/; =0.01, volatility of volatility @ = 0.8673, correlation p =—0.578, jump
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intensity A =0.0624, mean jump size

v, =0.0815) (circles are market prices, stars are model prices)

Comparing the Figures 7.7 and 7.6 we can conclude that simultaneous calibration of the Bates

1, =02147, jump size standard deviation

model gives superior result than the simultaneous calibration of jump diffusion model.

Estimated parameter values for separate and simultaneous calibration of JD and are given in

Tables 7.1 and 7.2, respectively.

Table 7.1: Separately calibrated jump-diffusion model parameters for different times to

maturity.
Maturity o A Hy vy
21 days 0.2550 0.0261 0.0750 0.1289
51 days 0.2006 0.1550 -0.2167 0.2600
82 days 0.2006 0.1550 -0.0500 0.2600
203 days 0.1824 0.2517 -0.1056 0.2067
295 days 0.1824 0.1550 0.0056 0.2067
478 days 0.1824 0.1872 -0.1611 0.3133
662 days 0.1461 0.1550 -0.2667 0.1000
845 days 0.1461 0.2194 0.1167 0.4733

As we can see from the estimated parameter values, the qualitative behaviour for short and long

maturities is different. For longer maturities the jump intensity tends to increase while the mean

jump size decreases for extensive holding period.
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Table 7.2: Simultaneously calibrated jump-diffusion model parameters for different times to

maturity.

(o2 A H Vs

Estimates  0.2369 0.2517  -0.1015 0.42

Table 7.3 presents the parameter estimates for Bates model. The estimation procedure of the
stochastic volatility parameters converged to the same estimates for quite different starting

values, so these are relatively better estimations.

Table 7.3: Simultaneously calibrated Bates model parameters for different times to maturity.

\/V—O \/; P ¢ o0 A Hy Vs

Estimates  0.0633  0.0100 -0.578 0.7446  0.8673 0.0624  0.2187  0.0815

We also test the fitting performance of the Black-Scholes (BS) model and compare the results
with JD and SVJID models. The historical volatilities of the underlying index for the last 15 and
35 days are used as inputs for the model which are given Table 7.4. Figure 7.8 shows the graph

of historical volatilities and prices of S&P 500 index in last four months.
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Figure 7.8: Historical volatility and price of S&P 500 index in last 4 months.
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Table 7.4: Historical volatilities of S&P 500 index used as an input in the Black-Scholes model.

SPX 15 days | 25 days 35 days
Hist.Vol. 11.467% 17.89% 18.47%

Figure 7.9 presents the calibration of BS model for two different historical volatilities (15 days

and 35 days) used as an input.
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Figure 7.9: Calibration of Black-Scholes model simultaneously to 8 maturities. Top: historical
volatility 11.46%. Bottom: historical volatility 18.47%. (circles are market prices, stars are

model prices)

From the Figure 7.9 we can easily infer that the Black-Scholes (BS) model fails to fit market
option prices, especially considering the performances of the JD and SVJD models. Calibrating
the model with a o parameter estimated from the market option prices is an alternative but we

still get a really bad fitting.

Next, the call option prices generated by SVID, JD and BS models are compared for the
maturity times 51 days, 203 days, 478 days and 845 days, respectively. As it was expected,
Figures 7.10-7.13 reveal that call prices of SVID and JD models are higher than those of Black-
Scholes model with respect to the strike price. The reason for this is the stochastic volatility and

jump increase the risk premium. It is also found that the differences are bigger for longer the
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maturity time. Moreover the SVJD and JD models have higher option prices, especially for

longer maturity and near at-the-money strike price.
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Figure 7.10: Call option prices for the SVID, JD and BS models calculated with corresponding

estimated parameters with maturity 51 days.
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Figure 7.11: Call option prices for the SVID, JD and BS models calculated with corresponding

estimated parameters with maturity 203 days.
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Figure 7.12: Call option prices for the SVID, JD and BS models calculated with corresponding

estimated parameters with maturity 478 days.
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Figure 7.13: Call option prices for the SVJD, JD and BS models calculated with corresponding

estimated parameters with maturity 845 days.

Moreover, Figures 7.11-7.13 display that prices generated by JD model are higher than prices of
SVID model for at the money options.
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CHAPTER 8

CONCLUSION

In this thesis, a geometric Lévy market model is considered in three parts. In the first part, the
market setup is examined. Since generally these models are incomplete, i.e., all contingent
claims cannot be replicated by a self-financing strategy, the market is enlarged by a series of
artificial assets called “Power-Jump assets” which are related to the power-jump processes of the
underlying Lévy process. These assets are linked to options on the stock and contracts on
realized variance that are traded in OTC markets and thus can be traded for volatility expectation

purposes.

It is shown by using the martingale representation property that the enlarged market is complete.
Then the equivalent martingale measure conditions are given and market is shown to be
arbitrage-free. Next the explicit hedging portfolios for contingent claims whose payoff function

depends on the prices of the stock are derived.

In the second part, we obtained prices for European options by using two different methods
under a specified jump-size distribution for the jump component. The methods were Martingale
approach and characteristic formula via fast Fourier transform (FFT). Moreover, we made
comparisons of the performances and speeds of these methods and found that the fast Fourier

transform produces very small pricing errors so the results of both methods are nearly identical.

In the third part, we considered the stochastic volatility extension of the jump diffusion model
and performed calibration of the jump-diffusion model, stochastic volatility jump-diffusion
model of Bates and the Black-Scholes model on Standard&Poors (S&P) 500 options data. The
optimization algorithm used is discussed and the parameter estimation values are presented. We
found that the behaviour for short and long maturities is different. For longer maturities the jump

intensity tends to increase meanwhile the mean jump size decreases for extensive holding period.
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We also examined the effect of additional stochastic volatility assumption and reveal that
explaining the implied volatility smile phenomenon requires a model that allows both jumps and

stochastic volatility.

The calibration of jump-diffusion model is executed both simultaneously for all maturities and
separately for each maturity in the S&P 500 option data sample. We found that the calibration

for each individual maturity gives better results than separate calibration does.

The reason for this problem is the fact that log-price process, which is a Lévy process, has
independent and stationary incerements. So the law of the entire process is determined by its law

at any given time . That is why, when we calibrate the model parameters for a single maturity

T , this fixes completely the risk-neutral stock price distribution for all other maturities.

Simultaneous calibration of SVJD model on the other hand gives quite good results since the
model a significant number of degrees of freedom to generate different term structures. Also, we

showed that the data fitting performance of SVJD model is better than that of the other models.

We compared the call option prices generated by SVID, JD and BS models for the maturities 51
days, 203 days, 478 days, 845 days, respectively and showed that call prices of SVID and JD
models are higher than those of Black-Scholes model with respect to the strike price. This is
observed because the stochastic volatility and jump increase the risk premium. It is also found
that the differences are bigger for longer the maturity time.

To conclude, the calibration part revealed that both stochastic volatility and jump component are

needed factors in a model in order to describe market behaviour adequately.
In this thesis, numerical methods for solving the PDIE’s and pricing in time changed-Lévy

models are not touched on. Thence accordingly, these subjects could be two possible extensions

based on the results of this thesis.
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APPENDIX

The following table contains the call option prices on the S&P 500 on 20 August 2010 at 2.42
pm. On that day, the S&P 500 Index closed at 1075.63. We set g = 0 and the risk free rate

estimated with the future quotes was 5.0%.

Table 8.1: SPX option prices

TIME TO MATURITY
STRIKE °Ge5 10 | Oct.10 | Nov.10 | Mar.10 | Jun.il | Dec.ll | Jun.l2 | Dec.12
925 158.45 152.65 168.00 190.90 202.70 230.30 257.65 279.05
950 125.40 134.15 143.65 166.70 182.00 205.75 236.20 251.20
975 105.20 114.50 130.50 152.10 164.55 195.60 220.60 235.50
1000 82.55 91.50 108.90 137.20 145.60 165.90 194.24 198.15
1025 62.50 72.25 85.60 110.00 133.00 158.00 177.50 183.35
1050  [4365 [5420 [6500 [9400 [115.00 |134.00 [150.00 [179.50
1075 [27.00 [4000 [5200 8250 [9760 [11634 14000 |[172.95
1100 1450 [2750 [39.50 6490 [8123 |ss00 [11410 |[145.80
1125 |6.50 1600 [3050 [52.80 [61.00 |89.70 |9460 |141.00
1175 [0.80 5.00 1200 [4080 [5000 [6864 [83.00 |110.00
1200 0.35 2.15 4.50 31.50 46.00 66.20 79.20 99.50
1225 0.15 1.15 4.00 29.50 41.00 57.10 72.00 90.50
1250 0.10 0.55 1.95 17.00 28.00 53.00 66.00 83.00
1275 0.05 0.45 1.80 15.00 20.65 50.00 59.30 74.70
1300  [0.05 0.25 1.20 1100 [17.00 [39.00 [5000 |[67.00
1325 0.24 0.60 8.00 1420 |3510 [42.00 |62.45
1350 0.20 0.55 6.00 8.85 3040 [18.00 [57.80
1400 0.30 2.32 6.30 2500 [15.60 [40.60
1425 0.15 1.50 5.00 1500 [14.00  [38.90
1450 1.20 3.40 12.54 13.90 34.55
1500 1.00 2.10 10.00 13.00 20.10
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