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ABSTRACT

COMPLETION, PRICING AND CALIBRATION
IN A LEVY MARKET MODEL

Yılmaz, Büşra Zeynep

M.Sc., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor: Assoc. Prof. Dr. Işıl Erol

September 2010, 106 pages






In this thesis, modelling with Lévy processes is considered in three parts. In the first part, the

general geometric Lévy market model is examined in detail. As such markets are generally

incomplete, it is shown that the market can be completed by enlarging with a series of new

artificial assets called “power-jump assets” based on the power-jump processes of the underlying

Lévy process. The second part of the thesis presents two different methods for pricing European

options: the martingale pricing approach and the Fourier-based characteristic formula method

which is performed via fast Fourier transform (FFT). Performance comparison of the pricing

methods led to the fact that the fast Fourier transform produces very small pricing errors so the

results of both methods are nearly identical. Throughout the pricing section jump sizes are

assumed to have a particular distribution. The third part contributes to the empirical applications

of Lévy processes. In this part, the stochastic volatility extension of the jump diffusion model is

considered and calibration on Standard&Poors (S&P) 500 options data is executed for the jump-

diffusion model, stochastic volatility jump-diffusion model of Bates and the Black-Scholes

model. The model parameters are estimated by using an optimization algorithm. Next, the effect
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of additional stochastic volatility extension on explaining the implied volatility smile

phenomenon is investigated and it is found that both jumps and stochastic volatility are required.

Moreover, the data fitting performances of three models are compared and it is shown that

stochastic volatility jump-diffusion model gives relatively better results.

Keywords: Lévy Processes, Power-Jump Assets, Complete markets, Martingale representation

property, Jump-Diffusion Processes, Stochastic Volatility Jump-Diffusion Processes, Fast

Fourier Transform, Calibration
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ÖZ

LEVY PİYASASI MODELİNDE TAMLAMA, FİYATLAMA
VE KALİBRASYON

Yılmaz, Büşra Zeynep

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Ortak Tez Yöneticisi: Doç. Dr. Işıl Erol

Eylül 2010, 106 sayfa

Bu tezde, Lévy süreçleri ile modelleme üç kısımda ele alınmıştır. Birinci kısımda genel

geometrik Lévy piyasa modeli detaylı olarak incelenmiştir. Bu tip modeller genellikle  tam

olmadıkları için, piyasanın, Lévy süreçlerine dayalı kuvvet-sıçrama süreçleri ile genişletilerek

tam hale getirilebileceği gösterilmiştir. Tezin ikinci kısmı, Avrupa tipi opsiyonlar için iki farklı

fiyatlama metodu sunmaktadır, bu metodlar  martingale yaklaşımı ve hızlı Fourier dönüşümü

kullanılarak hesaplanan Fourier metoduna dayalı karakteristik formül metodudur. Fiyatlama

metodlarının performans karşılaştırması, hızlı Fourier dönüşümünün ürettiği hataların çok küçük

olduğu bu yüzden iki metodun neredeyse özdeş sonuçlar verdiği sonucuna götürmüştür.

Fiyatlama bölümü boyunca Lévy sürecinin sıçrama büyüklüklerinin belirli bir dağılıma sahip

olduğu varsayılmıştır. Üçüncü kısım, Lévy süreçlerinin deneysel uygulamalarına katkıda

bulunmaktadır. Bu bölümde sıçrama-difüzyon modellerinin stokastik volatilite genişlemesi ele

alınmış ve Standard&Poors (S&P) 500 endeksi opsiyon verisi üzerinde sıçrama-difüzyon

modeli, Bates stokastik volatilite sıçrama-difüzyon modeli ve Black-Scholes modelinin
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kalibrasyonu yapılmıştır. Model parametreleri bir optimizasyon algoritması yardımıyla tahmin

edilmiştir. Stokastik volatilite genişletmesinin etkileri araştırılmış ve zımni volatilite grafiğini

açıklayabilmek için sıçrama ve stokastik volatilitenin gerekli olduğu bulunmuştur. Ek olarak, üç

modelin veri uyum performansları karşılaştırılmış ve stokastik volatilite sıçrama-difüzyon

modelinin daha iyi sonuçlar verdiği gösterilmiştir.

Keywords: Lévy Süreçleri, Kuvver-Sıçrama Süreçleri, Tam Piyasalar, Martingale Temsili

Özelligi, Sıçrama-Difüzyon Süreçleri, Stokastik Volatilite Sıçrama-Difüzyon Süreçleri, Hızlı

Fourier Dönüşümü, Kalibrasyon
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CHAPTER 1

1. INTRODUCTION

1.1. Motivation

During the past few decades financial analysts experienced significant success by using simple

diffusion models to approximate the asset returns. The most popular example is the Black-

Scholes (BS) model [1] which is the best known of all Lévy processes.  However some well-

known contradictions arised by Black-Scholes revealed that a simple geometric Brownian

motion (GBM) process fails to represent some important features of the data. High frequency

returns data display excess kurtosis (fat tailed distributions), skewness, and volatility clustering.

Also as Cont&Tankov discuss in [13] various empirical results show that sudden downward

jumps have been observed in stock price processes. To capture these essential characteristics and

improve on the pricing and hedging performance of the Black-Scholes model, recently the

majority of the research has been done on alternative pricing models such as exponential-Lévy

models that incorporate jumps.  Exponential-Lévy models consist of two categories. In the first

category, called jump-diffusion models (Merton [4] or Kou [5]), the evolution of prices is given

by a diffusion process, intervened by jumps at random times where the jumps represent rare

events. Infinite activity models fall into the second category, in these models the paths have

infinitely many jumps in any finite time interval. Brownian component is not needed in infinite

activity models as the jump component covers small fluctuations. Also to be able to prevent the

occurrence of the volatility smile phenomenon, which appears due to the constant volatility

assumption of Black-Scholes, stochastic volatility models have been proposed (Hull and White

[2] or Heston [3]).  Lastly models that combine jumps and stochastic volatility draw attention

because of their good performances on market data. (Bates [6, 7] or Duffie, Pan, and Singleton

[8]). Empirical work on these models has generally supported the need for both stochastic
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volatility and jumps at the same time. The additional stochastic differential equation in volatility

gives a tractable system of differential equations for pricing options. This extension of the GBM,

called geometric Lévy model or exponential Lévy model, is able to incorporate several stylized

features of asset prices such as heavy tails, high-kurtosis, and asymmetry of log returns. For

more extensive reviews of different types of geometric Lévy models in finance see Kyprianou

[12] and Cont and Tankov [13].

An important feature of the standard Black-Scholes model is that market is complete, that is, any

contingent claim can be replicated by a self-financing portfolio. In such a market there exists a

unique equivalent martingale measure under which the unique price of a contingent claim can be

calculated as an expectation. Incompleteness arises in a market when the sources of randomness

are more than the number of assets available.

In this thesis we study under more general Lévy processes that incorporate jumps. In Lèvy

markets, as in the most realistic models, there are many equivalent martingale measures thus

such markets are incomplete. There are a few different approaches towards the completion of a

Lévy Market in the literature. Leon et al. [16] approximate the Lévy process by a sum of a

Brownian motion and a countable number of compensated Poisson processes. They then

introduce enough additional securities to complete the market. Via Malliavin calculus they

calculate the hedging portfolio in the approximated market. On the other hand Corcuera et al.

[14] enlarged the market by a series of very special assets (power-jump assets) related to the

power-jump processes of the underlying Lévy process suitable compensated. To obtain a

predictable representation-like property in the general Lévy case, Nualart & Schoutens [24]

proved the existence of a Chaotic Representation Property, which states that every square

integrable random variable adapted to the filtration generated by a Lévy process can be

represented as its expectation plus an infinite sum of zero mean stochastic integrals with respect

to the orthogonalised compensated power-jump processes of the underlying Lévy process.

Hence, the market can be completed even in the case of a general Lévy process if trades in these

processes are allowed.

In the next chapter, we present the basic tools of stochastic calculus and jump processes that will

be used further.

In Chapter 3, we describe the set up of geometric Lévy model and discuss the so-called Power-

Jump processes. By its definition the power-jump process of order two is just the quadratic

variation process (see, e.g., [60,61] and [62]), and is closely linked with the so-called realized

variance. Contracts on realized variance have managed to get into OTC markets and are traded

regularly now. Higher order power-jump processes have a similar relationship with
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realized skewness and realized kurtosis processes. However contracts on these objects are

uncommon. Other than these, Carr et al. [63] study contracts on the quadratic variation processes

in a model driven by a so-called Sato process.

In Chapter 4, we enlarge the market by adding “Power-Jump Assets” as suggested in [14]. We

showed that the enlarged market is complete by the Martingale Representation Property [24, 64].

The notion of completeness used is equivalent to the notion of approximate completeness of

Björk et al. [26]. Moreover the explicit hedging portfolios for claims whose payoff function

depends on the prices of the stock are given.

Chapter 5 contains equivalent martingale measure and absence of arbitrage conditions.

Ultimately it is shown that the enlarged market is complete and arbitrage-free.

Then in Chapter 6, we determine a jump-size distribution for the jump component and obtain

prices of European options by using two different methods, Martingale approach and

characteristic formula via fast Fourier transform (FFT). We also compare the speeds and results

of these methods.

Chapter 7 includes a stochastic volatility extension of jump-diffusion: Bates model. Then both

JD and Bates models are calibrated to the S&P 500 option data. The optimization algorithm used

for parameter estimation is presented and numerical results of the calibration procedure are

given. The results support that both stochastic volatility and jumps are needed at the same time

to describe market behaviour.

Lastly, we conclude the thesis with Chapter 8.

1.2. Imperfections of the Black-Scholes Model

Empirical evidence shows that the classical Black–Scholes model does not describe the

statistical properties of financial time series very well. We will focus on two main problems. A

more extended list of stylized features of financial data can be found in [13].

In Table 1.1, we summarize the empirical mean and the standard deviation for S&P 500 index

daily returns over the period 1989–2010.
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Table 1.1: Mean, standard deviation, skewness and kurtosis of S&P 500 index

Index Mean Std. Dev. Skewness Kurtosis

S&P 500 (1989–2010) 0,000271346 0,011730694 -0,037727667 9,12247009
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Figure 1.1: Time series of S&P 500 Index data

1.2.1. Log-normally Distributied Returns Assumption

In Black-Scholes model the stock price follows a geometric Brownian motion therefore the

logarithmic return is normally distributed. Figure 1.2 reveals that the returns of the S&P 500

index are not log-normally distributed. Also comparing Figures 1.3 and 1.4 we can reach to the

same conclusion.
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Figure 1.2: Q-Q Plot of S&P 500 log-returns data.

It is shown in Figure 1.3 that price changes in consecutive days are small in some periods and

large in other periods. This inconsistency of returns leads to volatility clustering. This feature is

not taken into account by geometric Brownian motion i.e. Black-Scholes model.
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Figure 1.3: S&P 500 Index daily returns from Jan. 2, 2003 to Jun. 30, 2010.
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Figure 1.4: Returns generated from a geometric Brownian motion.

1.2.2. Excess Kurtosis and Skewness

In financial data, it is often observed that large movements in asset price occur more frequently

than in a model with Normal distributed increments. This feature is named as excess kurtosis or

fat tails and it is the main reason for researchers to consider asset price processes with jumps.

A way of measuring this fat tail behaviour is to look at the kurtosis, which is defined by

  
 

4

.
E X

Var X



For the Normal distribution, the kurtosis is 3. For our case from Table 1.1 we see that our data

give a kurtosis bigger than 3, indicating that the tails of the Normal distribution go to zero much

faster than the tails of empirical. Thus the empirical distribution is much more peaked than the

Normal distribution. Also, for the Normal distribution the skewness is zero but we we observe a

significant negative skewness when we look at the daily log returns of S&P 500 index.

The fat tail of the data and bigger kurtosis can also be observed from Figure 1.5.
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Figure 1.5: Empirical density function for the S&P 500 Returns vs. the Normal Distribution

1.2.3. The Volatility Smile

Another well-known contradiction arised by the Black-Scholes model is the so-called volatility

smile. The implied volatility is the volatility that, when used in Black-Scholes model, yields the

theoretical value of the option equal to the current market price. By its definition, we expect the

implied volatilities to be the same over the periods because the model presumes constant

volatility. Nevertheless, this is not the case when one observes real market prices. The implied

volatilities of options on the same underlying with different strike prices tend to change.
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Figure 1.6: Volatility smile. Implied Volatilities for S&P 500 call options with maturity Jun. 17,

2005. Valuation date is Feb. 24, 2005. On that day the S&P 500 index is 1200.20.
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It is usually revealing to plot implied volatility as a function of both strike price and time to

maturity since implied volatilities also change with maturity. The implied volatility surface

simultaneously shows the volatility smile and the term structure of volatility.

Obviously, volatility smile phenomenon is an inconsistency of  the Black-Scholes model.

Figure 1.7: Volatility surface. Implied volatilities of vanilla options on the EUR/USD exchange

rate on Nov. 5, 2001.

Recent studies in mathematical finance focused models that reflect statistical facts of the market

data. Lévy processes appear as a natural candidate with all the required properties to describe the

price process of a stock price. In addition to Lévy processes, stochastic volatility models and

models that combine both stochastic volatility and jumps are focal points.
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CHAPTER 2

2. PRELIMINARIES

In this section we give some definitions and fundamental results of stochastic calculus, Lévy

processes and martingales. More details can be found in Sato [41], Applebaum [54] and

Kyprianou [55]. Furthermore recent overviews of applications of Lévy processes are provided in

Schoutens [15], Cont&Tankov [13].

We consider a filtered probability space  PF ,,,  where the filtreation   0 ttF satisfies

the following usual hypotheses,

(i) 0F contains all the P -null sets of , 

(ii) 
tu

ut FF


 , t ,  t0 ; i.e. the filtreation  is right continuous.

The probability space  , , ,F P  is said to be P -complete if  for each  HE such that

  0P H  , we have that E . By a filtration we mean a family of σ-algebras   0t t
F




that is increasing, i.e., ts FF  for ts  . 

Throughout this study we will work on a complete filtered probability space. 

2.1. Basic tools of Stochastic Calculus

Definition 2.1.1 A stochastic process is family   0t t
X X


 of random variables on d with

parameter  0,t  defined on a probability space.
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Definition 2.1.2 Two stochastic processes X and Y are modifications if t tX Y a.s., each t .

Two processes X and Y are indistinguishable if a.s., for all t , t tX Y .

Definition 2.1.3 A stochastic process   0t t
X X


 on  PF ,,,  is said to be adapted to the

filtreation if tFX  that is, X is tF measurable for each t .

If X is adapted then we have  s s sE X F X a.s., i.e., sF contains all the required

information to predict the behaviour of X up to and including time s .

Definition 2.1.4 A stochastic process   0t t
X X


 is said to be càdlàg or right-continuous with

left limits (RCLL) if it a.s. has sample paths which are right continuous, with left limits.

For each t the limits
,

limt ss t s t
X X  

 , ststst XX
  ,

lim exist and  tt XX . Every

continuous function is càdlàg but càdlàg functions can have discontinuities. If t is a

discontinuity point we define the expression  ttt XXX as the jump of X at t . The most

remarkable property of a càdlàg process is that it can have at most a countable number of

discontinuities. We can interpret this as such: it has finite number of large jumps on a time

interval  0,T . Càdlàg processes are thence natural models for the trajectories of processes with

jumps.

Definition 2.1.5 If a stochastic process   0t t
X X


 satisfies  lim 0t ss t

P X X 


   for

every 0t and 0 ; it is said to be stochastically continuous or continuous in probability.

Definition 2.1.6 Let I be some index set and   0t t
X X


 be a family of random variables. X

is said to be uniformly integrable if   limsup 1 0
ii X nn i I

E X  
 .

A process   0t t
X X


 is said to be integrable if  tE X   for all 0t .
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Theorem 2.1.1 (Lévy's Convergence Theorem) Let 1( )n nX  be a uniformly integrable

sequence of random variables that satisfies XX
sa

n

..
 . Then it follows that:

(i)   ,E X  

(ii)     ,nE X E X

(iii)   0.nE X X 

This theorem is a special case of Lebesgue's Dominated Convergence Theorem in measure

theory.

Definition 2.1.7 (Martingale) A real-valued adapted process   0t t
X X


 is called an tF -

martingale if the following conditions hold:

(i) X is adapted to the filtreation    TottF , ..

(ii) For all  Tt ,0 ,  tE X   .

(iii) ts  ,  t s sE X F X .

A process satisfying the inequality   sst XFXE  for every ts  is called a supermartingale,

and a process satisfying  t s sE X F X is called a submartingale.

A commonly known example of a martingale is the Brownian motion which is defined below.

Definition 2.1.8 (Brownian Motion) A real-valued process   0t t
W W


 is said to be a

Brownian motion if the following hold:

(i) The paths of W are P -almost surely continuous.

(ii)  0 0 1.P W  

(iii) For ts 0 , st WW  is equal in distribution to stW  .

(iv) For ts 0 , st WW  is independent of the  t u s
W


.

(v) For each 0t , tW is equal in distribution to a normal variable with variance t .
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2.2. Lévy Processes and Infinite Divisibility

In this subsection we first identify infinitely divisible distributions and point out their

relationship with Lévy processes. Then we define Lévy processes and give some examples that

are very commonly used in modeling underlying price processes.

Definition 2.2.1 (Infinite Divisibility) A real-valued random variable Y has an infinitely

divisible distribution if for each ,...2,1n , there exist a sequence of i.i.d. random variables

nYYY ,...,, 21 such that n

d
YYYY  ...21 where the sign

d
 represents equality in

distribution. Alternatively, we can express this relation in terms of probability laws. That is to

say, the law  of a real-valued random variable is infinitely divisible if for each ,...2,1n

there exists another law n of a real valued random variable such that *n
n   where

*n
n denotes the n-fold convolution of n .

Another relation can be constructed in terms of characteristic functions. The law of a random

variable Y is infinitely divisible, if for all n , there exists a random variable nY such that

   
n

n

Y Yu u     where Y and
nY are characteristic functions of Y and nY , respectively.

Definition 2.2.2 (Lévy Process). A càdlàg, adapted, real-valued stochastic process

  0t t
X X


 with 00 X a.s. is said to be a Lévy process if the following conditions are

satisfied:

(i) X has independent increments, i.e. st XX  is independent of sF for any ts 0 .

(ii) X has stationary increments, i.e. for any s0 , Tt  the distribution of sst XX 

does not depend on t .

(iii) X is stochastically continuous, i.e. for every 0t and 0 :

 lim 0t ss t
P X X 


   .
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Proposition 2.2.1 Let   0t t
X X


 be a Lévy process. Then for every t , tX has an infinitely

divisible distribution. Conversely, if  is an infinitely divisible distribution then there exists a

Lèvy process   0t t
X X


 such that the distribution of 1X is given by  .

Definiton 2.2.1 implies that one way to examine whether a given random variable has an

infinitely divisible distribution or not is via its characteristic exponent. Suppose that Y has

characteristic exponent,

   log iuYu E e  

for all u .

Then Y has an infinitely divisible distribution if for all 1n there exists a characteristic

exponent of a probability distribution, say n , such that

   nu n u 

for all u .

Proposition 2.2.2 (Characteristic function of a Lévy process) Let   0t t
X X


 be a Lèvy

process on d . There exists a continuous function : d   called the characteristic

exponent of X , such that:

  ( )tiuX t uE e e  , .du

The full extent to infinitely divisible distributions is described by an expression known as the

Lévy Khintchine formula.

2.2.1. Some Examples of Lévy Processes

We proceed our introduction to Lévy processes with some prominent examples which are mostly

used as base processes for jump models.
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Definition 2.2.3 (Poisson Process) A càdlàg, adapted stochastic process   0t t
N N


 is said to

be a Poisson process with intensity 0 if the following hold:

(i) The paths of N are P -almost surely right continous with left limits.

(ii)   100 NP .

(iii) For ts 0 , st NN  is equal in distribution to stN  .

(iv) For ts 0 , st NN  is independent of   suuN  .

(v) For each 0t , tN is equal in distribution to a Poisson random variable with

parameter t .

We alternatively can define Poisson process as in the following definition.

Definition 2.2.4 (Poisson Process) Let   0t
 


 be a sequence of independent exponential

random variables with parameter  and
n

n i
i=1

T =

τ

 .

The process   0t t
N N


 defined by  nt t T

n 1
N = 1 


 is called a Poisson process with intensity λ.

The Poisson process is therefore defined as a counting process: it counts the number of random

times  nT which occur between 0 and t , where  1 1n n n
T T  
 is an i.i.d. sequence of

exponential variables.

Characteristic function of Poisson process can be obtained as follows,

     
0 0 !

t

k
iuN iuk iuk t

t
k k

t
E e e P N k e e

k
 

 

   

 

 

0

1

!

.

iu

iu

kiu
t

k

t te

t e

te
e

k

e e

e



 










 









Definition 2.2.5 (Compensated Poisson Process) Let   0t t
N N


 be a Poisson process with

parameter  . We shall call the process   0t t
M M


 where
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tNM tt :

a compensated Poisson process.

Proposition 2.2.3 The compensated Poisson process is a martingale.

Note that the compensated Poisson process is no longer integer valued like the  Poisson process,

it is not a counting process. Its rescaled version tM


has  the same first two moments as a

standard Brownian motion: 0tME


   
 

, tMVar t


   
 

.

Definition 2.2.6 (Compound Poisson Process) A compound Poisson process with intensity

0 and jump size distribution YF is a stochastic process tQ defined as

Nt

t i
i=0

Q = Y ,

where jumps sizes iY are i.i.d. with distribution YF and   0t t
N N


 is a Poisson process with

intensity  , independent from   1
.i i

Y


Characteristic function of a compound poisson process has the following representation:

    t tiuQ iuQ
tE e E E e N n 

   
0

tiuQ
t

n
E e P N n



 

   

   
0

0

!

.
!

t

n
iuQ t

n
n n

iuy t
Y

n

t
E e e

n

t
e F dy e

n















 



 
  

 



 

Using the fact that N has stationary independent increments and mutual independency of the

random variables   1i i
Y


, for ts 0 by writing
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



t

s

N

Ni
ist YQQ

1

it is clear that tQ is the sum of sQ and an independent representative of stQ  .  Right continuity

with left limits of the Poisson process also guarantee the right continuity with left limits of Q .

Thus compound Poisson processes are Lévy processes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Figure 2.1: Sample paths of a Poisson process.
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Figure 2.2: Sample path of a compensated Poisson process.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-1

0
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5

Figure 2.3: Sample path of a compound Poisson process with Gaussian distribution of jump

sizes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

0.15

0.2

Figure 2.4: Sample path of a jump-diffusion process (Brownian motion + compound Poisson).

Definition 2.2.7 (Lévy measure) Let   0t t
X X


 be a Lèvy process on d . The measure 

on d defined by

     # 0,1 : 0,t tA E t X X A       ,   dA B

is called the Lévy measure of X .
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Namely,  A is the expected number, per unit time, of jumps whose size belongs to A .

2.2.2. Random Measures and Point Processes

A useful tool for analyzing the jumps of a Lévy process is the random jump measure of the

process.

Consider a set  0A  such that 0 A and a Lévy process   0t t
X X


 , let Tt 0 .

The random measure of the jumps of the process X is defined by

       ; , # 0 : 1X s A s
s t

J t A s t X A X  


       .

The measure  ; ,XJ t A counts the jumps of the process X of size in A up to time t .

Here the path is fixed and  ,;tJ X  is a measure on    0, 0T   , on the other hand

when the set A is fixed  ,XJ t A becomes a random variable. Moreover, since

   , ,X XJ t A J s A is independent of sF and it equals the number of jumps of uus XX 

for stu 0 ,  ; ,XJ t A has independent and stationary increments. Therefore

 ; ,XJ t A is a Poisson process and XJ is said to be a Poisson random measure.

The following definition describes a Poisson random measure in detail.

Definition 2.2.8 (Poisson random measure) Let  , ,F P be a probability space, E  

and  a given (positive) Radon measure,  on  ,E  . A  Poisson random measure on E with

intensity measure  is an integer valued random measure:

:XJ  

such that

(i) For  ,  ; ,XJ t  is an integer valued Radon measure on E .
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(ii) For each measurable set EA  ,    ; , ,X XJ t A J t A  is a Poisson random

variable with parameter  A .

(iii) For disjoint measurable sets nAAA ,...,, 21 , the variables

   1, ,..., ,X X nJ t A J t A are independent.

We can define integrals with rescpect to  ; ,XJ t  . Consider a finite, Boreal measurable

function :f   and a set A determined as above. Then the integral with respect to the

Poisson random measure  ; ,XJ t  is defined as the following

        
, 0

; , 1
s

X s A s
s t XA

f x J t dx f X X 
  

   .

Integrating f with respect to XJ up to time t produces a stochastic process as follows

   
 0 0

,
d

t

t XY f x J ds dx


  


.

Theorem 2.2.4 Consider a set  0A  such that A0 and a Lévy process   0t t
X X




Lévy measure  . Then the following is satisfied

       
0

,
t

X
A A

E f x J ds dx t f x dx
 

 
 
   .

Theorem 2.2.1 (Lévy-Khintchine formula) A probability law P of a real-valued random

variable is infinitely divisible with characteristic exponent  ,

( )( ) ( )tiuX iux t uE e e dx e  


for all ,u
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if and only if there exists a triplet  2, ,c  where ,  0c and  is a measure

concentrated  0 on satisfying
2

(1 ) ( )x dx  


, such that

 
2 2 i x

1

1( ) (e 1 1 ) ( )
2

u
xu i u u c iux dx      



for every u , where  is the distribution of X .

Theorem 2.2.2 (Lévy-Itô Decomposition) Consider a triplet  2, ,c  where, , 

0c and  is a measure satisfying   0 0  and
2

(1 ) ( )x dx  


. Then, there exists

a probability space  , ,F P on which three independent Lévy processes exist  1X ,  2X and

 3X where  1X is a Brownian motion with drift,  2X is a compound Poisson process and
 3X is a square integrable (pure jump) martingale with an a.s. countable number of jumps of

magnitude less than 1 on each finite time interval.  Taking      321 XXXX  , we have

that there exists a probability space on which a Lévy process   0t t
X X


 with characteristic

exponent given by Theorem 2.2.1.

Remark 2.2.1 The measure is called the Lévy measure.  is a positive measure on P but not

a probability measure since 1(dx)    .

Let us now discuss in further detail the relationship between infinitely divisible distributions and

processes with stationary independent increments. From the definition of a Lévy process we see

that for any 0t , tX is a random variable belonging to the class of infinitely divisible

distributions. This follows from the fact that for any n =1, 2, ..., consider a Lévy process

  0t t
X X


 and a partition of

2 ( 1)0 ... .t t n t t
n n n


    

           / 0 2 / / 1 / 2 / 1 /... .t t n t n t n tn t n n t n n t nX X X X X X X X X          

By the stationary increments property of the Lévy processes, this equation results in:



21

/ / /... .
d

t t n t n t nX X X X   

Suppose now that we define for all u , 0t ,

( ) log ( )tiuX
t u E e 

Then using (2.1) we have for any two positive integers ,m n that

1 /( ) ( ) ( )m m nm u u n u    ,

and hence for any rational 0t ,

1( ) ( ).t u t u 

Theorem 2.2.3 For any Lévy process   0t t
X X


 we have,

( )( )tiuX t uE e e ,

where  u is the characteristic exponent of 1X , a random variable with an infinitely divisible

distribution.

Hence by Lévy Khintchine formula we can determine the characteristic function of a Lévy

processs if its triplet is known.

Definition 2.2.10 (Subordinator) A subordinator is an a.s. increasing Lévy process. For L to

be a subordinator, the triplet must satisfy   ,0 0   , 0c .

Subordinators can be used as time changes for other Lèvy process so they are very important

ingredients for building Lèvy-based models in finance.

Definition 2.2.11 Let  1 2 1... nP a t t t b      be a partition on the interval

 ,a b  . The variation of a function f over the partition P is defined by

(2.1)
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     1
1

var .
n

i iP
i

f f t f t


 

If the supremum over all partitions is finite,  sup varP P f   , f is said to be of finite

variation on  ,a b . If this is not the case, the function is said to be of infinite variation.

Proposition 2.2.4 Let   0t t
X X


 be a Lévy process with triplet  2, ,c  .

(i) If 2 0c  and   
1x

dxx then almost all paths of X have finite variation.

(ii) If 2 0c  or   
1x

dxx then almost all paths of X have infinite variation.

We say that a Lévy process   0t t
X X


 is of finite variation if the sample paths are of finite

variation with probability 1. Again if this is not the case, we say that the process is of infinite

variation.

Representative examples of finite and infinite variation processes are Poisson process and

Brownian motion, respectively. Because the Brownian motion is of infinite variation, a Lévy

process with a Brownian component is also of infinite variation.

By Proposition 2.2.5 a pure jump Lévy process, i.e. one with no Brownian component,

with  
1x

x dx


  is of infinite variation. In that case special attention has to be paid to the

small jumps since the sum of all jumps smaller than some 0 does not converge. So to make

it converge we should compensate the sum of the jumps by a compensator term which is in fact

their mean  11 xiux  .
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Proposition 2.2.5 Let   0t t
X X


 be a Lévy process with triplet  2, ,c  .

(i) If     then almost all paths of X have a finite number of jumps on every

compact interval. In that case, the Lévy process has finite activity.

(ii) If     then almost all paths of X have an infinite number of jumps on every

compact interval. In that case, the Lévy process has infinite activity.

Three most important examples of such pure jump infinite activity Lévy processes which are

widely used in financial modeling are the normal inverse Gaussian (NIG) model of Barndorff-

Nielsen [31], the symmetric variance gamma (VG) model studied by Madan and Seneta [56] and

the CGMY model developed by Carr, Geman, Madan, and Yor (CGMY) [57], which further

generalizes the VG model.

They find that the empirical performance of these models is generally not improved by adding a

diffusion component for returns. These results arise the question that do we need diffusion

components when we model asset returns.

An important goal of stochastic calculus is to give the meaning of the stochastic integral

 
0

t

sf s dX for a proper class of adapted processes X . The processes defined below are ideally

suited for the role of integrators.

Definition 2.2.12 (Semimartingale) An adapted stochastic process   0t t
X X


 is said to be a

semimartingale if for each 0t it can be written as follows,

0t t tX X M C   ,

where 0 0X F ,   0t t
M M


 is a local martingale and   0t t

C C


 is an adapted process of

finite variation.
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Proposition 2.2.6 Every Lévy process is a semimartingale.

Proposition 2.2.7 Every finite variation process is a semimartingale.

Proposition 2.2.8 Every square integrable martingale is a semimartingale.

The proofs of the Propositions 2.2.6, 2.2.7 and 2.2.8 can be found in [13], Chapter 8.

A Lévy process can be split into a sum of a square integrable martingale and a finite variation

process which is Lévy-Itô decomposition (Theorem 2.2.2). Thus, every Lévy process is a

semimartingale.

The proof of the next Proposition can be found in [13], Chapter 8.

Proposition 2.2.9 (Itô formula for semimartingales) Let   0t t
X X


 be a semimartingale.

For any 1,2C function  : 0,f T    ,

           
2

0 2
0 0 0

1, 0, , , , ,
2

t t t
c

t s s s s s

f f ff t X f X s X ds s X dX s X d X X
s s x 

  
   

    

     
0

0

, , , .

s

s s s s
s t

X

ff s X f s X X s X
x 

 
 

     


Definition 2.2.13 Consider the Lévy process   0t t
X X


 with triplet  2, ,c  . The

quadratic variation process of X is given by

   2

0

, , .
t

Xt
X X ct x J ds dx   



Definition 2.2.14 A semimartingale  is called quadratic pure jump if  , 0.cX X 

Definitions and theorems below can be found in [21], Chapter 5.
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Definition 2.2.15 (g-moment) Let  g x be a nonnegative measurable function on  . We call

   g x dx the g-moment of a measure  on  . We call   E g x the g-moment of a

random variable X on  .

Definition 2.2.16 (Submultiplicativity) A function  g x on  is called submultiplicative if it

is non negative and there is a constant 0a  such that

     g x y ag x g y  for ,x y .

Remark 2.2.2 A function bounded on every compact set is called locally bounded.

Theorem 2.3.1 (g-Moment). Let g be a submultiplicative, locally bounded, measurable

function on  . Then, finiteness of g-moment is not a time dependent property in the class of

Lévy processes. Let   0t t
X X


 be a Lévy process on  with Lévy measure  . Then, tX

has finite g-moment for every 0t if and only if    
 1x

g x dx


  .

2.3. Martingale Measures and Market Completeness

Definition 2.3.1 Consider a probability space  , ,F P . A probability measure Q defined on

 , F is said to be an equivalent martingale measure if

(i) Q is equivalent to P , i.e. they have the same null sets: for any A

   1 1P A Q A   .

(ii) The discounted stock-price process    
00

rt
t t tt

S S e S


   is a martingale under Q .

The existence of an equivalent martingale measure Q allows one to obtain the price of options

on the risky asset by calculating the expected values of the discounted payoffs with respect to
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Q . When we work under Q , we are in a risk-neutral world, since under Q the expected return

of the stock equals the risk-free return of the bank account:

 0 0.rt Q
te E S F S 

Equivalent martingale measure is of high importance since its existence is related to the absence

of arbitrage, while its uniqueness is equivalent to market completeness.

Besides absence of arbitrage, another important problem is hedging. A contingent claim can be

perfectly hedged if there exists a self-financing strategy  that can replicate the claim in the

sense that there is a dynamic portfolio, investing in the bank account and the stock, such that at

every time point the value of the portfolio matches the value of the claim. Moreover, the strategy

must also be admissible, that is the portfolio’s value must be bounded from below by a constant.

0 0
0

T T

t t t t
o o

H V dS dS     .

Therefore in a complete market a contingent claim can be valued only one way, the value of any

contingent claim is given by the initial capital 0V needed to set up a perfect hedge for H . So all

equivalent martingale measures give the same pricing rules. Therefore market completeness

seems to imply  the uniqueness of pricing rules/equivalent martingale measures.

Proposition 2.3.1 A market defined by the assets  0 1, ,..., d
t tS S S ,  0,t T described as

stochastic processes on  , , ,F P  is complete if and only if there is a unique martingale

measure Q equivalent to P .

In Black-Scholes model the question of completeness is identified with the uniqueness of the

martingale measure, which is in turn linked with the mathematical predictable representation

property (PRP) of a martingale.

Definition 2.3.2 (Predictable Representation Property) Let   0t t
M M


 be a martingale.

M is said to have the predictable representation property if, for any square-integrable random

variable TH F , we have
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 
0

T

s sH E H a dM   ,

for some predictable process  ,0sa a s T   .

The predictable process  ,0sa a s T   represents the weights of the assets in the

portfolio, hence gives us the necessary self-financing admissible strategy.

An important point is that the PRP is an exceptional property, which only a few martingales

possess. Examples include Brownian motion, the compensated Poisson process, and the Azéma

martingale (see [58]). So uniqueness of an equivalent martingale measure implies the PRP which

in turn implies market completeness. Since in the markets driven by Lévy processes, contingent

claims do not generally possess the PRP the market is incomplete.

To obtain a similar property in the general Lévy case, Nualart & Schoutens [24] proved the

existence of a Chaotic Representation Property, which states that every square integrable random

variable adapted to the filtration generated by a Lévy process can be represented as its

expectation plus an infinite sum of zero mean stochastic integrals with respect to the

orthogonalised compensated power-jump processes of the underlying Lévy process. Hence, the

market can be completed even in the case of a general Lévy process if trades in these processes

are allowed.

When we show the completeness of the market in Section 4.2, we will make use of Martingale

Representation Property.
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CHAPTER 3

3. THE LÉVY MARKET MODEL

3.1. Introduction

We consider a continuous time Lévy market model with finite horizon T . The uncertainty in the

market is modelled by the complete probability space  , ,F P and the market consists of a

bond (risk-free asset) and a stock (risky asset). We will model the stock price process

 , 0tS S t  with the following Lévy-driven stochastic differential equation (SDE)

t
t

t

dS bdt dX
S 

  , 00 S ,

whereas the bond price process is given by  , 0tB B t  .

The solution to equation (3.1) with initial condition 10 S is called the stochastic exponential

of the process btX t  and is given by

   
1 ,
2

, 0

1
c c

t t s

s

X bt X X X
t s

s t X

X bt e X e
     

  

    .

Here if the Lévy process tX is a Brownian motion, the model becomes the classical Black-

Scholes model [1], which is complete. In complete markets all the contingent claims in the

market can be replicated by a self-financing portfolio, moreover there exist a unique equivalent

(3.1)



29

martingale measure under which the expectation of the discounted payoff at maturity is equal to

the unique price of a contingent claim.

In our study we assume that tX is a Lèvy process which incorporates jumps and we consider

the càdlàg version of tX . Here the process t tJ X  represents the jump size process of

tX and may or may not have a specified distribution.

Like most of the Lévy models, the above described model is incomplete. So as suggested in [14],

we will complete the market by enlarging it with a series of very special assets related to the

power-jump processes of the underlying Lévy process, called power-jump assets.

The completion procedure will be done in the following order: First we assume that the unique

equivalent martingale measure is given and then we enlarge the market in such a way that it will

remain-arbitrage free.

Since tX is a Lèvy process by the Lèvy-Kintchine formula its characteristic exponent has the

following form:

 
2 2 i x

1
R

1( ) (e 1 1 ) ( )
2

u
xu i u u c iux dx       ,

where  2, ,c  is the characteristic triplet of tX with ,  0c .  is the Lèvy measure

of X on  0 with 2(1 ) ( )x dx




   . Again from the Lèvy-Kintchine formula it can

be shown that X has the following decomposition,

t t tX cW L  ,

where   0t t
W W


 is a Brownian motion,   0t t

L L


 is a pure jump process and the

processes W and L are independent. By the Lèvy-Itô Decomposition we can express L as a sum

of three independent Lèvy processes. Taking a constant drift 1
tL t , a Brownian motion, a

compound Poisson process
 

2

( , ] 1

( , )t
o t x

L xN ds dx
 

  and a square integrable martingale with

(3.2)
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an a.s. countable number of jumps on each finite interval of magnitude less than one,

 

3

( , ] 1

( ( , ) ( ))t
o t x

L x N ds dx t dx
 

  we have 1 2 3L L L L   .

Thus we can write:

   ( , ] 1 1

( ( , ) ( )) ( , )t
o t x x

L x N ds dx t dx xN ds dx t 
  

    

where ( , )N ds dx is a Poisson random measure on    0, 0   with intensity dt  .

Here dt denotes the Lebesgue measure and  is the Lèvy measure of X .

In this model it is supposed that the Lèvy measure satisfies for some 0 , and 0 ,

( , )

exp( ) ( )
c

x dx
 

 


  .

Here   exp( )g x x is submultiplicative, therefore we deduce that tL has finite g-moment

for every 0t or that exponential moments E(exp( x ) exist, (see Theorem 25.3 of [21]).

Since we can obtain all moments  iE x by simply differetiating exponential moments, it is

clear that all moments of tL exist.

This implies that

( )ix dx




  , ,2i

and that the characteristic function  exp( )tE iuL is analytic in a neighborhood of 0. Consider

selection of ihu  thus there exist  21 ,0 hh such that  1exp( )E hX   for all

 1 2,h h h  . By stationary increments property of tX it can be shown that

   )exp( thXE for all t . Hence all moments of tX also exist.

(3.3)

(3.4)
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By the equation (3.3) we have,

   ( , ] 1 1

( ) ( ( , ) ( )) ( , )t
o t x x

E L E x N ds dx t dx E xN ds dx t 
  

   
      
   
   
 

 1
( , )

x

E xN ds dx t


 
  
 
 
 .

Since the first expectation equals to zero due to the fact that compensated compound Poisson

process is a martingale.

From this last equation we have

 
 

1
1

( )
x

E L x dx 


   .

Since every Lèvy process is a semimartingale, by semimartingale decomposition theorem tL can

under these assumptions be written as a sum of a martingale and a predictable of finite variation

as follows:

atML tt  ,

where   0t t
M M


 is a martingale and  1E L a .

Consider the measure  , : ( , ) ( )N dt dx N dt dx dt dx  . Since the second term is the

intensity measure of the Poisson random measure,  ,N dt dx is a compensated Poisson random

measure and we can write the martingale part of tL in terms of  ,M dt dx as

( , ]

( , )t
o t

M xN ds dx


 


 .

(3.5)
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Ultimately, our Lèvy process tX takes the form

 ( , ] 1

( , )t t
o t x

X cW xN ds dx at
 

    ,

and the SDE of tS becomes

 t
t t

t

dS a b dt cdW dM
S 

    .

Since have we described the properties of the Lèvy processes we will work, we can now obtain

the stock price process.

3.2. The Stock Price Process

In this subsection we make use of Itô’s formula (see [22]) for càdlàg semimartingales to obtain

the solution of equation (3.6)

     0
0 0

1'( ) ''( ) ,
2

t t
cc

t s s s s
f S f S f S dS f S d S S    

    
0

'( )s s s s
s t

f S f S f S S 
 

    .

Applying Itô’s formula to equation (3.6) for ( ) log( )t tf S S we get:

     0 2
0 0

1 1 1log log ,
2

t t
cc

t s s
s s

S S dS d S S
S S 

 
    

 
 

   
0

1log logs s s
s t s

S S S
S

  

 
    

 


    2 2
0 2

0 0

1 1 1log ( )
2

t t

s t s
s s

S S a b dt cdW S c ds
S S 

 

     

(3.6)
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0

1log s
s

s t s s

S S
S S   

       
   

 .

Note that   2 2, c
ss

d S S S c ds and s s sS S M   with s s sS S S    . These equations

imply that (1 )s s sS S M   and  log log 1s
s

s

S M
S 

 
   

 
.

By using these relations in the above equation we can easily deduce the explicit solution of (3.6)

as

   
2

0
0

exp 1 exp
2t t t s s

s t

cS S cW M a b t M M
 

  
         

  
 .

Since stock price process has to be non-negative for all t , in order to guarantee that

1 0tM   for all 0t a.s., we should put the constraint that 1 tM . Thus we need our

Lèvy measure to have a domain that is a subset of [ 1, )  .

The market consists of one risky and one riskless assets, a stock and a bank account or a riskfree

bond. Throughout the study we will assume that the riskless interest rate r is constant. So, the

value of the bank account or risk-free bond at time t is given by, exp( ).tB rt

3.3. Equivalent Martingale Measures

In this section we investigate structure-preserving P -equivalent measures which enable us to

stay within an analytically tractable family of models. Under the structure-preserving P -

equivalent martingale measures, X remains a Lévy process and the discounted stock price

process  exp( ) , 0t tS S rt S t     is a martingale.

As we are working on a market with finite horizon T , locally equivalence will be regarded the

same as equivalence.

(3.7)

)
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The following theorem (see Proposition 9.8 in [13] or Theorems 33.1 and 33.2 in [21]) gives the

relations between the triplets of X according to the equivalent probability measures and an

expression for the densities on the path space.

Theorem 3.3.1 Let X be a Lèvy process with Lèvy triplet  2, ,c  under the probability

measure P .

Then the following two conditions are equivalent.

(a) There exists a probability measure Q , locally equivalent to P for any t ≥0,  such that

X is a Q -Lèvy process with triplet  2, ,c   .

(b) All of the following conditions hold.

(i)      dx H x dx  where  : 0,H   is a Borel function satisfying

    
2

1 H x dx




   .

(ii)       11 1xx H x dx Gc  





    for some G .

(iii) cc ~ .

When P and Q are equivalent, the Radon-Nikodym derivative is given by

tt U

t

dQ F
e

dP F
 ,

where

      
 

2 2

0
( , ]

lim ln ( , ) 1
2

c
t t

xo t x

G c tU GL G t H x N ds dx t H x dx




 


 

 
      
 
 

  .
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Here the process c
tL represents the contionuous part of tL and tU is a Lèvy process with

characteristic triplet  2, ,U U Uc  given by:

    

2 2 2

1

2 1
1

,

,

1 1 1 ,
2

U

U

y
U y

c c G

G e y dy

 

 













    

where  : ln H x  .

The above theorem shows that we are able to change the Lèvy measure, while retaining the

equivalence of measures, but, if a diffusion component is not present, we cannot freely change

the drift.

Consider the compensated Poisson random measure      , ,M dt dx M dt dx dt dx   ,

where  ,M dt dx is a Poisson random measure on  0,  under Q with intensity

 dt dx  .

Suppose the equivalent conditions in the above theorem hold, and X be a Lèvy process with

triplet  2, ,c   . Then we the following results:

By Lèvy-Itô decomposition we can write X as

t t tX cW L   , 0t

where tL~ , the pure jump process with respect to measure Q , is defined by:

 
 

 ( , ] 1 ( , ] 1

( , ) ( , ) ( )t
o t x o t x

L xM ds dx x M ds dx t dx t 
   

      

with  
 

1
1

( ).Q
x

E X x dx 


   
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By equations (3.2) and (3.3) we have that,

 t t t t t tX L cW L L c W Gt      

thus Brownian motion with respect to Q is defined by t tW W Gt  . Moreover if the

condition
( , )

exp( ) ( )
c

x dx
 

 


    is satisfied, then we have:

 
  

( , ]( , ] 1

( , ) , ( )t
o to t x

L xM ds dx x M ds dx t dx t 
 

    


  

with

 
 

1
1

( ).Q
x

E L x dx 


   

Hence the Doob-Meyer decomposition of tL~ is given by:

t tL M at    ,

where

( , ]

: ( , )t
o t

M xM ds dx


 


  ,

is a Q -martingale, moreover by (3.7) we have

 1
( ).

x

a x dx 


   

If the equivalent conditions of the previous theorem hold, Brownian motion under Q ,W~ can be

defined as:

GtWW tt ~
.

(3.7)

(3.8)

(3.9)

(3.10)

)

(3.11)
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Equations (3.8) and (3.10) results in
 1

( )t t
x

L M x dx t 


 
   
 
 

    . Furthermore if condition

(ii) is satisfied, L is a quadratic pure jump process with Doob-Meyer decomposition

    1t tL M a x H x dx t




 
    

 
 ,

where M~ is a Q -martingale and the Lèvy measure is given by      dx H x dx  .

By equations (3.12) and (3.5) we have the relation     1t tM M x H x dx




   .

Now, our aim is to find an equivalent martingale measure Q under which the discounted price

process S~ is a martingale. By the above theorem, under such a Q , X has the Doob-Meyer

decomposition given by (3.12).

Noting that tt MM ~ and using equations (3.6), (3.11) and (3.12) the discounted asset prices

under Q can be written as follows:

2

0 exp
2t t t
cS S cW M a b r cG

  
        

  
  

        
0

exp 1 1 exps s
s t

t x H x dx M M


 

 
     

 
   .

So a necessary and sufficient condition for S~ to be a Q -martingale is the existence of G and

 xH with the condition     
2

1 H x dx




   such that

     01  




dxxHxrbacG  .

(3.12)

(3.13)
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By using equations (3.2), (3.11), (3.12) and (3.13) we deduce that,  t t tX W M r b t     .

Since process tW~ and tM~ are Q -martingales, the process  :t tX X r b t   is also a Q -

martingale and hence   0Q tE X  .

The risk neutral dynamics of S~ can be written in terms of tX~ as follows:

t
t t t

t

dS cW dM dX
S 

  
   


with solution

   
2

0
0

exp 1 exp
2t t t s s

s t

cS S cW M M M
 

 
       

 
     .

Note that S has the dynamics

t
t t t

t

dS rdt cW dM rdt dX
S 

       , under Q .

with solution    
2

0
0

exp 1 exp
2t t t s s

s t

cS S cW M r t M M
 

  
         

  
    .

Remark 3.3.1 If there exists a (non-structure preserving) equivalent martingale measure Q1

under which Z is not a Lèvy process, there always exists a (structure preserving) equivalent

martingale measure Q2 under which Z is a Lèvy process (see, e.g., [48]).

(3.14)
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CHAPTER 4

4. COMPLETION OF THE LÉVY MARKET MODEL

4.1. Power-Jump Processes

In this part we introduce power-jump processes which are transformations of the Lèvy process

  0t t
X X


 and will be used to construct a series of special artificial assets the next chapters.

Consider the process

   
0

ii
t s

s t
X X

 

  , 2i ,

where s s sX X X    is the amplitude of jump at time s. For convenience we set  1
t tX X .

Notice that the equation s s sX X X    is not satisfied all the time, it is only satisfied if

sX has bounded variation i.e. in the case when c is equal to zero.

Consider the processes  i
tL defined as follows:

   
0

ii
t s

s t
L L

 

  ,  1
t tL L ,

since t tX L   is satisfied by equation (3.2), we have

   i i
t tL X , 2i .

It is clear that    2, tt
L L L as      2 2

0 0
, s s st

s t s t
L L L L L

   

     .

(4.1)

)
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The processes     
0

i i
t t

L L


 are Lèvy processes for 2i and are called the ith-power-jump

processes. They jump at the same points as the original Lèvy process X , but the jump sizes are

the i-th power of the jump size of the original Lèvy process.

Corollary 4.1.1 Let :f   be bounded and vanish in a neighborhood of 0.

Then

     
0

s
s t

E f X t f x dx


  

   
 
  .

By the corollary and the definition of  i
tL , we have    1

1t tE L E L ta tm     , where

1m is a constant and also

    i i
Q tE X a t , .2i

Let  i
tY denote the compensated power-jump processes (or Teugels martingales) for 1i

defined by:

        i i i i
t t t t iY L E L L m t    .

As  i
tY are martingale for all 1i  , they have zero mean.

According to the procedure described to orthonormalize the sequence of martingales   
1

i

i
Y


in

[24], by taking a suitable linear combination of  iY ’s, we can obtain a set of pairwise strongly

orthonormal martingales   
1

i

i
T


. Thus, for ji  , the process    i jT T is a martingale (see

Leon [16]).

  
1

i

i
T


represents a basis for 2L space and each iT is a linear combination of the

jY , ij ,...,2,1 :

(4.2)

)

(4.3)

)
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       1 1
, , 1 ,1...i i i

i i i i iT c Y c Y c Y
    , 1i .

It is proved in [24] that, this orthogonality ensures the existence of an orthogonal family of

polynomials  , 0np n  with respect to the measure      2 2
0dx x dx c dx    and jic ,

corresponds to the coefficients of the orthonormalization of the polynomials , 0np n  .

The polynomials, defined by   1
,

1
:

n
j

n n j
j

p x c x 



 are orthogonal with respect to the

measure  :

      0n mp x p x dx 


, mn  .

The resulting processes     
0

i i
t i

T T


 are called the orthonormalized ith-power-jump

processes.

4.2. Volatility Trading with Power-Jump Assets

Volatility trading is a trading strategy that is designed to speculate on changes in the volatility of

the market rather than the direction of the market. Besides a few custom volatility indices, the

volatility can be traded by combining stable positions in options with dynamic trading in the

underlying. Neuberger [58] showed that by delta-hedging a contract, the hedging error

accumulates to the difference between the realized variance and the fixed variance used in the

delta-hedge. Therefore a hedged position makes money if the realized volatility exceeds implied

volatility with an amplitude depending on option’s curvature.

Similar strategy is valid for the trade in the power-jump assets as it is too a trade based on

volatility of the stock. The 2th-power-jump asset, which is the quadratic variation of the Lévy

process L , in a sense quantifies the volatility of the stock because it accounts for the square of

the jumps. If one believes that in the future the market will be more volatile than the current

market’s prediction, trading the 2th-power-jump asset can be logical. Moreover if one wants

protection against periods of high (or low) volatility, buying (or selling) 2th-power-jump assets

can cover the possible losses due to such unfavorable periods.
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The same strategy works for the higher order variation assets.  The 3th-power-jump asset

measures a kind of asymmetry therefore it can be traded based on expections of realized

skewness. Similarly the 4th-power-jump process is measuring extremal movements so a trade in

this asset can be of use if one likes to bet on the realized kurtosis of the stock. These positions

can be hold when one believes that the market is not adequately taking asymmetry and possible

extremal moves into account.

Furthermore, an insurance against a crash can be easily built by trading in the 4th- or higher-

power-jump assets.

4.3. Enlarging the Lévy Market Model

In this subsection we consider a fixed finite planning horizon T . Suppose we have an equivalent

martingale measure Q under which X maintains being a Lèvy process with characteristic triplet

 2, ,c   and the discounted stock price process  exp( ) ,0t tS S rt S t T      is a

martingale.  In the previous section we have showed that the process  :t tX X r b t   is a

Q -martingale. Moreover, since Q is a structure-preserving equivalent martingale measure it is

also a Lèvy process.

It is clear that jump sizes of X~ and X are equal that is, tt XX ~
. This result leads us to

the fact that the power-jump processes transformed by them are also equal    i i
t tX X , 2i .

Now let us consider the ith-power-jump processes     
0

i i
t t T

Y Y
 

 based on  
0t t T

X X
 

 

and their orthonormalized version     
0

i i
t t T

T T
 

 for 2i .
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By using the ith-power-jump processes, Nualart and Schoutens (see [14]) built up a new series of

assets called ith-power-jump assets and introduced to the market. The price process

    
0

i i
t t T

H H
 

 of the assets is defined as follows:

     expi i
t tH rt Y , 2i ,

and the orthonormalized version is denoted by     
0

i i
t t T

H H
 

 with

     expi i
t tH rt T , 2i .

The compensators are   1
i

i Qm t tE L  . Note that for 2i ,  i
im x dx





   and we will

require ~ to fulfill (3.4).

It is clear that the discounted price processes      expi i
t tH rt H  which are in fact the

power-jump processes, are martingales under Q .

We will enlarge the Lévy market with ith-power-jump assets with price processes,

        expi i i
t tH rt L a t  , 2i .

The constants  ia , 2i are chosen in such a way that the market remains arbitrage-free. This

is a delicate selection as  ia may lead or prevent arbitrage opportunities.

For example, if  ia and risk-free rate r are chosen as zero, this may cause arbitrage

opportunities since the processes  i
tH for even i are strictly increasing and starting at zero.

So the choice of the constants  ia will be discussed later in Chapter 5.
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4.4. Market Completeness

Market completeness is often identified with the predictable representation property (PRP)

which states that any square integrable Q -martingale M in can be represented as follows

 
0

T

s tM E M dS    .

It was shown in [25] that PRP holds when S~ is a Brownian motion or a Brownian stochastic

integral, but it fails to hold for most discontinuous models used in finance like non-Gaussian

Lèvy processes.

Even though the predictable representation property holds, it does not automatically lead to

market completeness by itself. For a predictable process t to be interpreted as a trading

strategy, we must be ableto approximate its value process using  an admissible portfolio.

The next theorem presents the chaotic representation property (CRP) in terms of orthogonalised

compensated power-jump processes which is derived by Nualart & Schoutens [45]. The CRP is

important since it implies the predictable representation property (PRP), which provides the

hedging portfolio for a contingent claim. Based on the PRP of Lévy processes, Corcuera et al.

(2005) completed the market by introducing power-jump assets.

Theorem 4.4.1 (Chaotic Representation Property) Every square integrable random variable

H has a representation of the form

     
11

2 1

2 11
1

1,...
1 ,..., 1 0 0 0

... ,..., ...
j

j

jj
j

tt
i i i

j t t ti i
j i i

H E H f t t dT dT dT
 

 

     

where  1 ,... ji i
f ’s are j

 -valued square integrable functions and the processes

    
0

i i
t t T

T T
 

 the orthonormalized power-jump processes.
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The Martingale Representation Property (MRP), which is obtained by Nualart and Schoutens in

[24], is an immediate result of the CRP.

Theorem 4.4.2 (Martingale Representation Property) Every square integrable Q -martingale

 0t t T
M M

 
 has the following representation

   
0

20 0

t t
i i

t s s s s
i

M M h dX h dT




   

where sh and  i
sh are predictable processes, satisfying the conditions

2

0

t

sE h ds
 

  
 
 and   2

20

t
i

s
i

E h ds




 
  

 
 .

Martingale representation property allows any square integrable Q -martingale to be represented

as an orthogonal sum of stochastic integrals with respect to the orthonormalized power-jump

processes     
0

i i
t t T

T T
 

 .

Next theorem states that the market enlarged with power-jump assets is complete in the sense

that every square-integrable contingent claim X is reachable that is, it can be replicated by a

sequence of self-financing portfolios whose values converge in space of square integrable Q -

martingales to X .

Self-financing portfolios will consist of finite number of bonds, stocks and ith power-jump

assets. This notion of completeness is equivalent to the approximately complete which is studied

by Björk given in [26].

Theorem 4.4.3 The Lèvy market model enlarged with the ith-power-jump assets is complete, in

the sense that any square integrable contingent claim X can be replicated.

Proof: Consider a square-integrable contingent claim X under Q with maturity T .
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Define the process tM as

  expt Q tM E rT X F  ,

where r is the constant risk-free rate.

tM is a square-integrable martingale since the following conditions hold:

(i) tt FM  (adaptedness)

(ii)  Q tE M   since      expQ t Q Q tE M E E rT X F 

  
   
exp

exp
Q

Q

E rT X

rT E X

 

   

(iii)      expQ t s Q Q t sE M F E E rT X F F  , ts 

  expQ s

s

E rT X F

M

 



By MRP we write tM in the following form:

   
0

20 0

t t
i i

t s s s s
i

M M h dX h dT




    .

If we define

   
0

20 0

:
t tN

i iN
t s s s s

i
M M h dX h dT



   

we have that

lim N
t tN

M M




in space of square integrable Q -martingales.
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Define the sequence of portfolios in terms of the orthonormalized ith-power-jump assets as

       2 3: , , , ,..., , 0NN N N
t t t t t t t         , 2N ,

where the weights of the assets in the portfolio are as follows

   

2
,

N
i iN N rt rt

t t t t t t
i

M S e e H   
  



   
1,rt

t t te h S 


    ,i i
t th  .,...,3,2 Ni 

Here N
t corresponds to the number of bonds at time t ; t is the number of stocks at that time

and  i
t is the number of assets  iH , Ni ,...,3,2 one needs to hold at time t .

The claim is that  , 2N N  is the sequence of self-financing portfolios which replicates the

contingent claim X .

Let N
tV denote the value of N at time t , then the value at time t is given by

   

2

N
i iN N rt rt N

t t t t t t t
i

V e S H e M  


    .

This last equation shows that the value of the portfolio at time t is equal to

   exprt N
t Q te M E r T t X F   .

which is in fact value of the contingent claim at time t . So the sequence of portfolios

 , 2N N  replicates the claim.

Now let’s show that the portfolio is also self-financing.
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Denote by

   

20 0

u u uN
i iN N rt

u t t t t t
i o

G r e dt dS dH  


    

the gain process, that is the gains or losses obtained up to time u by following N .

We should show that ruN
u

N
u eMMG  0 that is, the change in value of the portfolio only

occurs as the price of the participating securities changes.

       1

2 20 0 0

.
u u u u uN N

i i i iN N rt rt rt
u t t t t t t t t t

i io o

G r M e dt h e dt r h H dt h e S dS h dH
  

 

         

By using integration by parts formula we can write

   
0

20 0

u u uN
i iN rt ru N rt rt

t u t t t t
i o

r M e dt e M M h e dX h e dT


      ,

substituting (4.5) into (4.4) yields

   
0

20 0

u u uN
i iN ru N rt rt

u u t t t t t
i o

G e M M r h e dt r h H dt h e dX


       

       1

2 20

u u uN N
i i i irt rt

t t t t t t t
i io o

h e S dS h dH h e dT


 

     

1
0

0 0 0

u u u
ru N rt rt rt

u t t t t t te M M r h e dt h e dX h e S dS
      

0.ru N
ue M M 

Thus every square-integrable contingent claim it can be replicated by a sequence of self-

financing portfolios.

(4.4)

(4.5)
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4.5. Hedging Portfolios

In this section we investigate the sequence of self-financing portfolios that replicates the

contingent claim X which has a payoff only a function of the value at maturity of the stock

price, i.e.  TX f S .

The price function  , tF t S of the contingent claim X at time t is given by

       , expt Q TF t S E r T t f S Ft   .

Now we will derive the Partial Differential Integral Equation (PDIE) that  , tF t S will satisfy

in the Lèvy market setting.

It is clear that the discounted option price process  ,rt
te F t S is square-integrable Q -

martingale. Hence the process  ,rt
te F t S is a semimartingale and has the following

decomposition  ,rt
t t te F t S K A   where tK is a local martingale and tA is a finite

variation predictable process.

Applying lto formula for semimartingales to  ,rt
te F t S (see [13] Proposition 8.19) yields

           
2

0 2
0 0 0

, , ,1, 0, ,
2

t t t
cs s s

t s s
s s

F s S F s S F s S
F t S F S ds dS d S S

s S S
   

   
    

     
0

,
, , s

s s s
s t s

F s S
F s S F s S S

S



 

 
    
 .

If we differentiate both sides the following equation is obtained in terms of differential operators

         2
1 2 2

1, , , , ,
2

c
t t t t t t

dF t S D F t S dt D F t S dS D F t S d S S   

        ,
, 1 , ,t

t t t
t

F s S
F t S y F t S S y M dt dy

S


  

 
     



, (4.6)
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where 1D denotes the differential operator with respect to the time variable, and 2D denotes the

differential operator with respect to the space variable i.e. the stock price.

Now we will apply Itô’s formula to the product  ,rt
te F t S :

      , , ,rt rt rt
t t td e F t S re F t S dt e dF t S     .

Substituting (4.6) into (4.7) we obtain

         1 2, , , ,rt rt rt
t t t t td e F t S re F t S dt e D F t S dt D F t S dS  

   

   2
2

1 , ,
2

c
t t

D F t S d S S

        ,
, 1 , , .t

t t t
t

F s S
F t S y F t S S y M dt dy

S


  

          



The right hand side can be written as the sum of a local martingale and a finite variation

predictable process as

         1 2, , , ,rt rt rt
t t t t t td e F t S re F t S dt e D F t S dt cS D F t S dW  

     

     2 2 2
2 2 2

1, , ,
2t t t t t t trS D F t S dt S D F t S c dt S D F t S dM        

        ,
, 1 , t

t t t
t

F s S
F t S y F t S S y dy

S


  

          



 ,

where  dy is the compensator of the Poisson random measure  ,M dt dy . Since

 ,rt
te F t S is a Q -martingale, the finite variation part in the equation must be equal to zero.

Then the price function (at time t)  ,F t x satisfies the following PDIE

         2 2 2
1 2 2

1, , , , ,
2

D F t x rxD F t x c x D F t x DF t x rF t x   

(4.7)

(4.8)
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where           ,
, , 1 ,

F t x
DF t x F t x y F t x xy dy

x


 
     



 with

   , T TF T S f S .

Following lemma will enable us to calculate the sequence of self-financing portfolios that

replicates X .

Lemma 4.5.1 Consider a real function  , ,h s x y       which is infinitely

differentiable in the y variable and satisfies  , ,0 0,h s x  and  , ,0 0.h s x
y





Set

   1, , ,0 ,
!

i

i i

ha s x s x
i y





and assume that

 
0, 2

sup , ,i
i

x K s s i
a s x R



  

 

for all .0,0, 0  sRK Then we have

         
2

1 1, , , ,0 , ,
! !

T Ti i
i

s s s s si i
t s T i t t

h s S L h s S dY h s S y dy ds
i y i y




  
   

 
  

      .

Proof: Consider the Taylor expansion of  , ,h s x y in the neighborhood of 0

   
2

, , , .i
i

i
h s x y a s x y







(4.9)
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Then we have

    
2

, , , i
s s i s s

t s T t s T i
h s S L a s S L



 
    

    

   

2
,

T
i

i s s
i t

a s S dL





 .

By equation (4.3) this equals to the following summation,

     
2 2

, ,
T T

i
i s s i s i

i it t

a s S dY a s S m ds
 

 
 

   ,

where the sums converge for every  because of (4.9).

Since im is defined by  i
im y dy





   , we have

         
2

, , , ,
T T

i i
s s i s s i s

t s T i t t

h s S L a s S dY a s S y dy ds


  
   

      

       
2

, , ,
T T

i
i s s s

i t t

a s S dY h s S y dy ds


 
 

     .

Next theorem specifies the weights of the assets in the self-financing portfolio and can be found

in [14].

Theorem 4.5.1 The sequence of self-financing portfolios replicating a contingent claim X, with a

payoff only depending on the stock value at maturity and a price function    ,1, CxtF which

satisfies

 
0

2
, 2

sup , ,n n

x K t t n
D F t x R



  

 

for all 0,0, 0  tRK , is given at time t by:

number of bonds         21 1
2

2

,
, , ,

!

i iN
it tN

t t t t t t t
i t

S D F t S
B F t S S D F t S B H

i B
   

   


   

number of stocks  2 , ,t tD F t S 

(4.10)
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number of ith-power-jump assets    2 ,
,

!

i i
i t t

t
t

S D F t S
i B

   .,...,3,2 Ni 

Proof: Consider a portfolio which has the value  , tP t S at time t . Our market consists of a

risk-free bond, a stock and ith-power-jump assets. Assume that portfolio  , tP t S contains

N
t numbers of risk-free bond, t numbers of stock and  i

t numbers of ith-power-jump

assets. Then its value at time t is given by,

     

1
, i iN

t t t t t t s
i

P t S B S H  




   .

In order  , tP t S to replicate the contingent claim X , its value should be equal to the price of

X at each time t . Thus the equation,

   , ,t tP t S F t S , for 0t ,

or equivalently      

1
, i iN

t t t t t t s
i

F t S B S H  




   must be satisfied.

To determine the weights of the portfolio, first, apply Itô’s formula to  , TF T S .

Then we have the following

       
2

2 2
1 2, , , ,

2

T T

T t s s s
t t

cF T S F t S D F s S ds S D F s S ds     

        2 2, , , , .
T

s s s s s s
t s Tt

D F s S dS F s S F s S D F s S S  
 

    

Noting that sss LSS   this becomes

         
2

2 2
1 2 2, , , , ,

2

T T T

T t s s s s s
t t t

cF T S F t S D F s S ds S D F s S ds D F s S dS        

      2, 1 , , .s s s s s s
t s T

F s S L F s S D F s S L S   
 

     
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Now, define the function  , ,h t x y as follows

        2, , : , 1 , ,h t x y F t x y F t x xyD F t x    .

Then the following results can be deduced easily,

 

 

   2

, ,0 0,

, ,0 0,

, ,0 , , 2.
n

n n
n

h t x

h t x
y

h t x x D F t x n
y









 



As condition (4.10) is satisfied,  , ,h t x y satisfies the conditions in the previous Lemma.

Thus applying Lemma 2 gives,

       
2

2 2
1 2, , , ,

2

T T

T t s s s
t t

cF T S F t S D F s S ds S D F s S ds     

     2
2

2

,
,

!

i iT T
is s

s s s
it t

S D F s S
D F s S dS dY

i


 




  

         2, 1 , ,
T

t

F t x y F t x xyD F t x dy ds




     

     
2

2 2
1 2, , ,

2
T s s s

s
st

cD F s S S D F s S DF t x
dB

rB

   
 

     2
2

2

,
,

!

i iT T
is s

s s s
i st t

S D F s S
D F s S dS dH

i B


 




  

   2

2

,
!

i iT
is s

s s
i st

S D F s S
Y dB

i B


 




 .
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Finally by using the PDIE equation (4.8) for the price, we obtain

   
       2 2

2
2

,
, ,

!, ,

i i
is s

s s s sT
i s

T t s
st

S D F s S
F s S S D F s S H

i BF T S F t S dB
B


 

   


 
 




     2
2

2

,
,

!

i iT T
is s

s s s
i st t

S D F s S
D F s S dS dH

i B


 

 


   .

Hence it can be seen from equation (4.7) that the weights of the portfolio are found as given in

the theorem.

In the light of this theorem we can now determine the sequence of self-financing portfolios.

Contrary to our model, Black-Scholes model is complete and the risk-neutral dynamics of the

stock price is given by,

21 ,
2

t
t

t

dS r dt dW
S

    
 

,00 S

where   0t t
W W


 is a standard Brownian motion. Hedging portfolio consists of

   2, ,s s s

s

F s S S D F s S
B


number of bonds and  2 , sD F s S number of stocks.

In the Poissonian case however the risk-neutral dynamics of the stock price is the following

  ,t
t

t

dS r dt dN
S

   ,00 S

where   0t t
N N


 is  Poisson process with intensity parameter .0

Consider a contingent claim with a payoff  , TF T S that only depends on the value of the stock

price at maturity T . In this case since the payoff also depends on the Poisson process at time T ,

we can represent the payoff as    , ,T TG T N F T S .
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Since the stock price follows the process   0 exp 2 tN
tS S r t  , payoff function becomes

   , 1 , 2T TG T N F T S  .

Considering these relations we have,

       2
2

2

,
, 2 , ,

!

i i
s s

s s s s
i

S D F s S
F s S F s S S D F s S

i


 

   


  

     2, 1 , ,s s s sG s N G s N S D F s S       .

Thus the equality (4.7) becomes

         , , 1 ,
, ,

T
s s s

T t s
st

F s S G s N G s N
F T S F t S dB

B
    

  

    
1

1, 1 ,
T

s s s s
t

G s N G s N S dS



     .

Hence, it is clear that market is already complete and that an enlargement is not necessary.

Moreover the hedging portfolio is given by
   2 , , 1s s

s

G s S G s N
B

  
number of bonds and

     1, 1 ,s s sG s N G s N S 
    number of stocks.
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CHAPTER 5

5. ARBITRAGE

In this section we proceed assuming that the market is enlarged by power-jump assets with the

constants  ia , 2i . So the trade in the bond, the stock and the power-jump assets are allowed

in the market where the power-jump assets have the price process

        expi i i
t tH rt L a t  , 2i .

Now our aim is to  examine whether after this enlargement the market remains arbitrage-free or

not. It is shown in [46] that the existence of an equivalent martingale measure in continuous time

is a sufficient but not a necessary condition to ensure no-arbitrage condition.

So to ensure that the enlarged market is free of arbitrage, we should show the existence of an

equivalent martingale measure Q making S~ and the discounted  iH ’s martingales.

The martingale condition for S~ has already been derived and given by (3.13).

On the other hand discounted  iH ’s are martingale only if    i i
tL a t are martingales for

2i . Again by Theorem 10 we know that the Lévy measure under Q is given by

     dx H x dx  , hence we can write

     iix H x dx a




 , 2i .

The existence question of G and  H x is associated with the moment problem which is the

problem of finding necessary and sufficient conditions for the existence of equivalent martingale

measure with n as n-th moments , given a series of number  n .

(5.1)
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A result is that if the moment problem has a solution with bounden support, then the solution

will be unique (see [47]).

The following proposition ensures the uniqueness of such measure.

Proposition 5.1.1 Suppose that the measure  dx has compact support. Then, if there exists a

martingale measure in the market enlarged with the power-jump assets, the martingale measure

is unique, structure preserving and the market is complete.

Proof: If there is a martingale measure in the enlarged market, using the same arguments as in

[48], there exists an  H x verifying (3.13) and (5.1) with   0H x  . The measure

     2dx x H x dx  is finite and has a bounded support. Then  H x is determined by

condition (5.1). Also, as the support is bounded,    H x dx verifies (3.4) and hence the

model enlarged with the power-jump assets is complete. Lastly, as the contingent claim

1T AB with FA can be replicated, the uniqueness of its initial arbitrage price  1AE implies

the uniqueness of the martingale measure.

Generally, it is known that uniqueness of the martingale measure implies completeness.

Proposition 5.1.2 If the probability measure under which the discounted stock price and the

power-jump assets are martingales is unique, the market is complete.

Proof: Assume that Q is a martingale measure in the market. If the market is not complete,

there exists a contingent claim 0X ,  2X L Q , not zero for every t , which is orthogonal

to any replicable contingent claim. If we define,      * : 1Q d X Q d   is a martingale

measure different from Q .

In fact, for any ts  , and sFA we have

                 * 1 1 1 0i i i i i i
Q A t s Q A t s Q A t sE Y Y E Y Y E X Y Y     
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and   , 0i
tY t  are *Q -martingales for all 2i .

Hence, it is clear that S~ is also a *Q -martingale.

5.1. A Completion Example: Brownian Motion plus a finite number

of Poisson Processes

In this example we will complete a market where the Lévy process tL is a compound Poisson

process with finite number of jumps.

Thus the process tX is sum of a Brownian motion and the compound Poisson process given by

tj

n

j
jtt NccWX ,

1





where ,0c  , 0tW W t  a standard Brownian motion and  , , 0j j tN N t  are

independent Poisson processes with intensities 0ja . The constants are jc are assumed to be

non-zero and different from each other for nj ,...,1 . Then we have  1
1

n

j j
j

E L c a a


  .

In this market the price processes of power-jump assets are given by

     
,

1
exp

n
i i

t j j t
j

H rt c N a t


 
  

 
 for ,....3,2i

It is shown in [16] that for 1 ni ,  i
tH can be written as as a linear combination of the  i

tH

, 1,...,3,2  ni . So clearly in this case we can enlarge the market with only n assets which are

driven by  i
tH 1,...,3,2  ni .

Similarly for an equivalent measure to exist in the market the conditions (3.13) and (5.1) must be

satisfied.
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The support set of  i
tH is now the set  2 1,..., nc c  and the equations (3.13), (5.1) reduce to

 
1

n

j j j
j

c H c a r cG b


   ,

   

1

n
ii

j j j
j

c H c a a


 , .1,...,2  ni

The existence of an equivalent martingale measure is ensured if the following system of

equations for  jH c , nj ,...,1 has a positive solution.

 
 

 

 

 

 

22 2 2
11 1 2 2

3 3 3 3
21 1 2 2

1 1 1 1
1 1 2 2

...

...
...... ... ... ... ...

...

n n

n n

n n n n
nn n

aH cc a c a c a
H cc a c a c a a

H cc a c a c a a
   

   
   
        
   
         

.

By Proposition 8, the existence of a positive solution  jH c , nj ,...,1 can be represented by

to condition

0'1  aC ,

where 1C is the inverse of the Vandermonde matrix

1 2

1 1 1
1 2

1 1 ... 1
...

... ... ... ...
...

n

n n n
n

c c c

c c c  

 
 
 
 
 
 

,

and 'a is the transpose of    2 1... na a  
  .  Since all ic ’s are different from each other

0det C .

For calculation of the inverse of Vandermonde matrices see [49] and for further details and

applications of Vandermonde matrices see [50].
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CHAPTER 6

6. PRICING THE CONTIGENT CLAIM

In this section we discuss two predominant methods for pricing European options on assets

driven by Lèvy processes and obtain the explicit prices under these methods. The methods are

Martingale pricing approach, fast Fourier transform based characteristic formula method.

Throughout the pricing section, we assume that the jump size of the compound Poisson process

has a particular distribution which will be clarified below. Ultimately we will obtain the value at

time t of a European option with strike price K and payoff function  Tf S only depending

on the stock price at maturity.

By Proposition 3.5 in [13] we know that the compensated compound Poisson process tM~ ,

defined by equation (3.9), can be represented in the following form

 
0( , ]

( , ) Q
t t t

s to t

M xM ds dx M E M t
 

    


    .

Here, we have only rewritten the process tM~ as the sum of its jumps. Since a compound

Poisson process has almost surely a finite number of jumps in interval  t,0 , the summation is

finite, so there are no convergence problems.

Now let the sequence of independent random variables   1i i
U U


 denote the jump size

process of tM~ i.e., ii MU ~ for 1i .

Then equation (6.1) takes the form

(6.1)
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 

 
1( , ]

( , )
N t

Q
t i i

io t

M xM ds dx U E U t


     .

Under these circumstances risk-neutral dynamics of the stock price process can be rewritten as:

   
2

0
0

exp 1 exp
2t t t s s

s t

cS S cW M r t M M
 

  
         

  
   

 

   
 2

0
1 1

exp 1
2

i

N tN t
UQ

t i i i
i i

cS cW U E U t r t U e 

 

    
               

 

 

   
 2

0
1 1

exp ln 1
2

i

N tN t
UQ

t i i i
i i

cS cW U E U t r t U e 

 

     
                    

 

   
 2

0
1

exp ln 1 .
2

N t
Q

t t i i
i

cS S cW E U t r t U


  
          



Moreover let us now assume that the intensity process of the jumps modelled by the variable

 1 U follows a log-normal distribution with mean m and volatility 2v , i.e.,

   2ln 1 ~ ,U N m v . The expectation of U is thus given by  
2

2 1
vmQE U e


  .

Finally the stock price process under Q becomes

 
 2 2

2
0

1
exp 1 ln 1

2

N tvm

t t i
i

cS S cW r e t U




   
               

 .

Under these assumptions tS has now jump-diffusion dynamics.

(6.2)
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6.1. Martingale Pricing Approach

The value at time t of a contingent claim X with a payoff function  TSf is defined as

       , exp Q
t T tF t S r T t E f S F  

Using equation (3.14) the stock price process at time T takes the following form underQ ,

         
2

exp 1 exp
2T t T t T t s s

t s T

cS S c W W M M r T t M M
 

  
           

  
      .

Substituting this into equation (6.3) we have

    
     

 
2

2, exp 1
T t T t

s

cc W W M M r T t
MQ

t t s t
t s T

F t S r T t E f S e M e F
 

         

 

  
           


   

 .

By the stationary increments properties of   0
~

ttW and   0
~

ttM , the equations

tTtT WWW ~~~  and tTtT MMM ~~~  are satisfied. Also noting that the σ-algebra tF is the

knowledge of xS t  we obtain,

    
 

 
2

2, exp 1
T t T t

s

ccW M r T t
MQ

s
t s T

F t x r T t E f xe M e
 

 
       

 

  
      
  

  


 
 .

Now consider the price of the option under the Black-Scholes model (with volatility c):

      
2

, exp exp
2

Q
BS T t

cF t x r T t E f x cW r T t

    
               

 .

Then we can write the value of the option in terms of  ,BSF t x as

(6.3)
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   
0

, , 1T t sM M
Q BS s

s T t

F t x E F t xe M e 

  

  
    

  
  .

The derivative with respect to x, which is also needed in the formula for the number of n-th

power-jump assets in the replicating portfolio, is given by

     2 2
0 0

, 1 , 1T t s T t s
nnM n M M Mn n

Q s BS s
s T t s T t

D F t x E e M e D F t xe M e   

     

  
     

  
      .

In the Black-Scholes case the derivative BS
n FD2 are very simple. For instance for a European

call the first two derivatives are given in terms of the cumulative probability distribution

function  N x and the density function  n x of a Standard Normal random variable by

   
 

2

1
2 1

log
2

,BS

x cr T t
T t

D F t x N d N
c T t

               
 
 
 

and

     12
2 2,BS

n d
D F t x N d

xc T t
 


,

where
 

2

1

log
2

x cr T t
T t

d
c T t

           


and 2 1d d c   .

 1N d and  2N d are known as the delta and the gamma of the option, respectively.

In equation (6.2) it is given that under the certain assumptionsthe stock price process at time t

has the following form underQ ,

 
 2 2

2
0

1
exp 1 ln 1

2

N tvm

t t i
i

cS S cW r e t U




   
               

 .

(6.4)

(6.5)
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Then by (6.3) we can write the option price as

        
 2

2
2

1
1 ln 1

2
, exp exp

N T tvm
iT t

i

Q ccW r e T t Ut t tF t S r T t E f S F







              
  

   
           

 .

Since tF can be viewed as  tS x ,

        
 2

2
2

1
1 ln 1

2
, exp exp

N T tvm
iT t

i

Q ccW r e T t UF t x r T t E f x 







              
  

   
           



      
 

 
2

2
2

1
1 ln 1

2
0

exp exp
N T tvm

iT t
i

Q ccW r e T t U
n

r T t E f x N T t n







                  

   
            

 

  Q N T t n   .

Setting tT  we have,

     
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2
2

1
1 ln 1

2
0

, exp exp .
!

nvm
i

i

n

Q ccW r e U
n

e
F t x r E f x
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 



                 

   
          








The process inside of the exponential function is normally distributed so we have,

 
2 22 2

2 22 2

1
1 ln 1 ~ 1 ,

2 2

v vnm m

i
i

c cr e cW U N r e nm c nv    
 



                                         
  ,

We can rewrite the process such that its distribution will remain the same,

2 22 2 2 2
2 22 21 ~ 1 ,

2 2

v vm mc c nv cr e nm W N r e nm c nv
    


                                         

  .

Now we are able to express the equation (6.3) in the following form
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   
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  .

By adding and subtracting
2

2nv
into the exponential function we get
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By setting

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22 nvccn  above equation becomes
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We know that in the Black-Scholes model the price formula is given by,

   
2

, ; exp exp
2

Q
BS t

cF t S c r E f x cW r 
    

             
.

Hence our price formula  ,F t x can be represented as a weighted average of Black-Scholes

price in terms of number of jumps n ,

 
 

 
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F t S F S c
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

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Alternatively, we can write
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which yields
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2
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1
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  
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 
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2

2
vm

e 


  .

This formula is the same as the one derived from solving the PDE by forming a risk-free

portfolio. This relation shows that PDE approach and Martingale approach give the same result.

(6.6)
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By equation (6.6)
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where
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By (6.4) and (6.5) we know that
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Then the delta and the gamma of the option under Black-Scholes model are as follows
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


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2  .

Hence by Proposition 7.10 in [28] the price of a European call option with strike price K is

     1 2,C r
t tF S S N d Ke N d   ,

where  1N d and  2N d are given as in (6.9).

(6.7)

(6.8)

(6.9)
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Similarly by using Put-Call Parity (see [28], Proposition 9.2) European put option price can be

obtained as

     2 1,P r
t tF S Ke N d S N d     .

6.2. Characteristic Formula via Fast Fourier Transform Method

In this section we will obtain the price of a European call option by using fast Fourier transform

(FFT) method. This method has significant advantages compared to the classical martingale

approach.  First of all, when the risk neutral density is unknown, as is very often the case, we can

find the price by using the Fourier transform of tS which is known from the Lévy Khintchine

representation. Besides, the algorithms used for the inversion of the Fourier transform are fast

and optimized which enables us to price options with different strikes in a single calculation.

We again consider the European call option with payoff function  maturity T and strike price

K , written on TS . Assume tS has the form specified in the previous section, that is, has log-

normally distributed jumps. Then as shown above we know that

 
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2
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1
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t t i
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 .

The characteristic function of the log-return process  TT Ss ln can be found explicitly as

follows:
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2 212
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      

                   

  . (6.10)
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 
2

2 212
2 2 2 21exp
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vm ium u v

T
cu iu r t u c t iu t e e 

    
              



Let k denote the log of the strike price K , and let  TC k be the desired value of a T maturity

call option with strike  exp k . Let the risk-neutral density of the log price be  Tq s .

The characteristic function of  lnT Ts S is defined by:

    .ius
T Tu e q s ds





 

The initial call value  kCT is related to the risk-neutral density  sqT by the following steps:

    0
Q rT

T TC k E e S K F


  .

Clearly  T TS K S K


   nder the condition that KST  or, equivalently,

   ln lnTS K .

Thus equation (6.11) can be written as

     rT s k
T T

k

C k e e e q s ds


  .

Here note that  TC k , tends to 0S does not decay as k . Since it does not decay at the

negative log strike axis  TC k is not integrable. So the Fourier transform of  TC k , which is

defined as

   C iuk
T Tu e C k dk





  ,

does not exist. To overcome this problem Carr and Madan used a dampening coefficient

0 and defined a new square integrable modified call price  TC k as

     kCkkC TT exp for .0

(6.11)

(6.12)

(6.13)
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To show that  TC k does have a Fourier transform well-defined by

   iuk
T Tu e C k dk





  ,

provided that 0 is chosen appropriately, we consider the next theorem.

Theorem: Consider the payoff function    0 1, b x b kf x k e e


  where 0 1, nb b  are arbitrary

constants. Assume that f satisfies Ab 1 . Then there exists 0 with Abb  10 . For

any such  , the Fourier transform  uT of  kCT exists and is given by
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

   
.

Proof: Proof is presented in the Appendix section. For details see [42].

Consider now the Fourier transform of  kCT defined by:

   iuk
T Tu e C k dk





  .

By the inversion formula it is known that the following satisfied
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and using equality (6.13) we have
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Since the integrand is even in its real part  kCT can be written as

   
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.
k

iuk
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eC k e u du
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
  (DFT) (6.14)
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Here the integration (6.14) is a direct Fourier transform which is adapted to an application of the

FFT.

Now we derive an analytical expression of  T u in terms of  T u and then obtain call prices

numerically using the inverse transform.

The expression for  T u is established as follows:

       iuk iuk k rT s k
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By Fubini’s Theorem (see [22], Theorem 64) above equation takes the form
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The boundaries  sk and  k of the integrals yield  sk .
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.

where   1T u i   is the characteristic function of  lnT Ts S for  1u u i     .
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Hence we obtained the following analytical relation between  T u and  T u ,

    
 2 2

1
2 1

rT
T
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e u i
u

u i u
 


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  


   
.

To obtain the option price we will substitute (6.15) into (6.14) and perform the required

integration.

    
 2 2

0

1
2 1

rTk
Tiuk
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e u ieC k e du
u i u

  
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
  


    .

Here notice that the denominator vanishes when 0u and causes a singularity in the integrand

when 0 . So the factor  exp k necessary since the FFT evaluates the integrand at 0u .

Now consider the issue of the appropriate choice of the coefficient . A range of positive values

for  provide the integrability of  TC k over the negative log strike axis, but for the positive

log strike axis the same condition is not satisfied. For  TC k to be integrable in the entire log

strike axis, a sufficient condition is provided by  0 being finite.  By equation (6.15) the

condition  0   yields that   1T i     .

From the definition of the characteristic function, this inequality is equaivalent to:

          1 1 ln 1 .T Ti i s S
TE e E e E S        

Using (6.15) and (6.16) an upper bound on  can be determined and Carr-Madan find that one

fourth of this upper bound is a good choice.

The next issue to be considered is the infinite upper limit of integration in (6.14). The absolute

value of t is bounded by  1
TE S  which is independent of u, so by equation (6.15)

   
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2 42 2 22 1
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E S Au
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  



 
   

(6.15)

(6.16)
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for some constant A.

The above inequality can be written as

  2

Au
u

  .

Thus the integral of the upper tail by can be bounded as;

  .
a

Au du
a






With this bound establishing a truncation procedure. Since the integral of the tail in computing

the transform of (6.14) is bounded by
a
A

the truncation error is bounded by:

 exp k A
a





.

By choosing
 exp k Aa


 


 the truncation error can be made smaller than  .

6.2.1. Time value of an option

The purpose of this section is  to derive an alternative approach, introduced by Carr and Madan

[61], which works for only out-of-the money options since for the out-of-the money options the

intrinsic value is zero. The formula derived in the previous section depends on the intrinsic value

of the option so a pricing formula for out-of-the money options is needed but since the authors

do not see a big difference between the two methods, we will use the formula of the previous

section.

Again set  lnT Ts S ,  lnk K , where K is the strike price of the option and 0S the

initial spot price.
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 Tz k is assumed to be the price of a T maturity put when  0lnk S and a T maturity call

price when  0lnk S . The price function  Tz k is peaked as  0lnk S and declines in

both directions as k goes to  and to  .

Next, we derive an analytic expression between the Fourier transform of  Tz k and the

characteristic function of the log of the terminal stock price. The Fourier transforum of  Tz k

is given by

   iuk
T Tu e z k dk
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and by inversion formula
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Simplifying the above integral and writing the outer integration in terms of characteristic

functions, we obtain

   
2

1
1

rt
TrT

T

u ieu e
iu iu u iu


   

     
. (6.17)
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Since the function  Tz k approximates the shape of a Dirac delta function near 0k  when

maturity is small and thus the transform is wide and oscillatory.

So it is useful in this case to consider the transform of    sinh Tk z k as this function

vanishes at 0k .

Define

     : sinhiuk
T Tu e k z k dk 





 

 
2

k k
iuk

T
e ee z k dk
  




 

   
2

T Tu i u i     
 .

The time value is then given by:

     1 1
sinh 2

iuk
T Tz k e u du

k


 





  ,

where      
2

T T
T

u i u i
u

   


  
 and    

2

1
1

rt
TrT

T

u ieu e
iu iu u iu


   

     
.

6.2.2. Option Pricing Using the FFT

The FFT is an efficient algorithm for computing the sum:

      
2 1 1

1

N i j k
N

j
k e x j




  



 for .,...,1 Nk 

where N is typically a power of 2. The algorithm reduces the number of multiplications in the

required N summations from an order of 2N to that of  NN 2ln , a very considerable

(6.18)
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reduction. We present in this section the details for writing the integration (6.14) as an

application of the summation (6.18). We will make use of the following theorem to approximate

the summation.

Theorem (Trapezoidal Rule): Consider  xfy  over  0 1,x x where hxx  01 . The

trapezoidal rule is       
1

0

0 12

x

x

hf x dx f x f x  .

Dividing the interval into N segments of width  and setting  1ju j  yields

 1 2 30, , 2 ,..., 1 .Nu u u u N      

Using the Trapezoidal rule for the integral on the right hand side of (6.14), we have

     
0 1

10

0
2

N
iuk iuk

j
j

e
e u du e u


  

 
 



 
  

 
 .

Thus an approximation for  TC k is obtained as follows

   
1

1
.j

k N
iu k

T T j
j

eC k e u


 


 




 

The effective upper limit for the integration is now: .Na 

We are mainly interested in at-the-money call values  TC k which correspond to k near 0. The

FFT returns N values of k and we employ a regular spacing of size  so that, our values for

k are:

 1k b      for .,...,1 N

(6.19)

(6.20)

(6.21)
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This gives us log strike levels ranging from b to b where

2
Nb  .

Substituting (6.21) into (6.19) yields

      
1

1

1

j j
k N

iu b ibu
T T j

j

eC k e e u


 
  



 
   



  for .,...,1 Nu 

Noting that  1ju j  we write

      
1

1 1

1

j
k N

ibui j
T T j

j

eC k e e u


 
  



 
  



  .

To apply the fast Fourier transform, we note from (6.18) that

.2
N
 

Hence if we choose  small in order to obtain a fine grid for the integration, then we observe

call prices at strike spacings that are relatively large, with few strikes lying in the desired region

near the stock price. We would therefore like to obtain an accurate integration with larger values

of  and for this purpose, we incorporate Simpson's rule weightings into our summation. With

Simpson's rule weightings and the restriction (6.24), we may write our call price as,

         1

1

1

112

13
3 







  j
j

N

j
j

ibuj
N

ik

ueeekC j 









,

where n is the Kronecker delta function that is unity for n =0 and zero otherwise. The

summation in (6.25) is an exact application of the FFT. One needs to make the appropriate

choices for  and .

(6.22)

(6.23)

(6.24)

(6.25)
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Now we will discuss these issues within the frame of the Lèvy market model which was

described in the previous section. By (6.10) we know that

           
2

2 212 12 2 2 211 exp 1 1
2 2

vm i u i m u v

T
cu i i u i r t u i c t t e e


    

      
                    



.

By substituting (6.26) into (6.15) we get the fourier transform of  uT in terms of

characteristic function of  TT Ss ln as

 
        

 

2
2 212 12 2 2 2

2 2

1exp 1 1
2 2

2 1

vm i u i m u v

T

ci u i r t u i c t t e e rT

u
u i u


  


  

      
                  

   



.

Finally substituting (6.27) into (6.25) yields the call price.

 

        

 

2 1 2 22 12 2 2 211 1
2 2

1

2 2
1 2 1

vm i u i m u vj j
j j

ci u i r t u i c t t e e
k N

j j j

e eC k
u i u





  


    

   
                        





     







  

    
2 1 1

12 2 3 1
2 1 3

jrT ibu i j
N j

j
j j

e
u i u

 
 

  

    




        

.

(6.26)

(6.27)

(6.28)



80

6.3. Comparison of Pricing Methods

In this section we compare the results of the pricing methods. We perform the FFT-price formula

given by equation (6.28) and the original price formula

     
0

, , ; ,
!

n

t BS t n n
n

e
F t S F S c r

n










for 1 . For the comparison we used common parameters and variables fixed ,500 S

,02.0c ,05.0r ,252/20T ,1 1.0m and .1.0v As shown in Figures 6.1

and 6.2 the outcomes of both methods are one and the same and this is the expected result since

in fact equation (6.28) is just a series representation of the original price formula.
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Figure 6.2: FFT - Call price
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CHAPTER 7

7. CALIBRATION

7.1. Stochastic Volatility Extension

In the previous sections we studied under a geometric Lévy market model and in particular

jump-diffusion model. We completed the Lévy market and valued European options under the

complete jump-diffusion market model. Even though the class of Lévy processes is considerably

rich, it is sometimes unsatisfactory in multiperiod financial modeling. First of all because of the

stationarity of increments, the stock price returns for a fixed time horizon always have the same

law. That is why we can not integrate any kind of new market information into the return

distribution. On the other hand since the law of a Lévy process tX for any given time horizon t

is completely determined by the law of 1X , moments and cumulants depend on time in a well-

defined manner which does not always coincide with the empirically observed time dependence

of these quantities [53].

For these reasons, several models which combines jumps and stochastic volatility attracted

interest in the literature. The Bates model is one of the most popular examples of the class.

Therefore in this chapter in addition to the Jump-Diffusion and Black-Scholes we will calibrate

Stochastic Volatility Jump-Diffusion model of Bates [6] to compare the empirical findings of

each models.

In Bates model an independent jump component is added to the Heston stochastic volatility

model:

1 ,t
t t t

t

dS dt V dW dQ
S




  

  2 ,t t t tdV V dt V dW    
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where  1
tW and  2

tW are Brownian motions with non-zero correlation and tQ is a compound

Poisson process with intensity  and log-normal distribution of jump sizes. Namely if U is its

jump size then     2 21ln 1 ~ ln 1 ,
2

U N U      
 

. By the no-arbitrage condition the drift

term becomes Ur  under the risk-neutral probability.

Applying Itô’s lemma to Equation (9.1) we obtain the log-price equation

  11log
2t t t t td S r U V dt V dW dQ      

 
 ,

where  
0t t

Q Q


  is a compound Poisson process with intensity ~ and Gausssian distributed

jump sizes. This model can also be considered as a stochastic volatility extension of the

Merton’s jump-diffusion model. The only difference is jumps of the log-price process do not

have to be Gaussian so they can be replaced by any other distribution.

7.1.1. Option Pricing

In this stochastic volatility model the characteristic function of the log-price is known in closed

form which is derived below. Therefore, European options can be priced using the fast Fourier

transform the process is described in Section 6.2.

7.1.2. Characteristic function of the log-price

The log-price  : logt ts S can be written as a sum of a continous part and a jump part. If we

represent the contionous part of ts as c
ts , defining the function

   , , ,
c
Tius c

t tf x t E e s x V    and applying Itô’s formula to    , ,
c
Tiusc

t tf s V t E e

yields the characteristic function of the contionuous part as
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 
2 2 2

2
2 2

1 1, ,
2 2 2

c t
t t t t

Vf f f fdf s V t V V r U
x x x

  
 

                 

  1 2 ,t
f f f fV dt dW dW

t x
    

 
          

where is the correlation between 1W and 2W .

As  , ,c
t tf s V t is a martingale the drift term must be equal to zero. Then we get

 
2 2 2

2
2 2

1 1 0.
2 2 2

t
t t

Vf f f f f fV r U V
x x x t

     
  

                      

Moreover by definition we have the following terminal condition

     , , ,
c
Tius c iux

T Tf x u T E e s x V u E e    .

With this condition we are able to solve (7.1) and find the characteristic function of the log-price

ts .

Assume f is of the form

      , , expf x u t A T t B T t iux     ,

where A and B are functions of time t only. Substituting this into equation (7.1) we obtain

ordinary differential equations for A and B:

     'A s B s iu r U   

       
2

2 21'
2 2

u iuB s B s i u B s   
   

with initial conditions    0 0 0.A B  It is given in [29] that these equations have the

solutions

(7.1)

(7.2)
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     
2 2

2 ln cosh sinh
2 2

s i u s i u sA s ius r U
       

  
  

     
 

 
2

coth
2

u iuB s s i u  


 

 
,

where    222 uiiuu   .

Now we have the explicit formula for the characteristic function of c
ts . To incorporate the jump

part, all we have to do is to multiply (7.1)with  the characteristic function of the jumps since

jumps are homogeneous and independent from the continuous part.

Let  J
t u denote the characteristic function of the jump part i.e. the compound Poisson

process. Then we can write

     exp 1J
t Uu t u    ,

where    2 2 21exp / 2 ln 1
2U u u i U u            

is the characteristic function of the

jump sizes which are distributed as     2 21ln 1 ~ ln 1 ,
2

U N U      
 

.

Hence the characteristic function of the log-price is the followincan be found as:

   

   
2

02

2

exp

cosh cosh
2 2

J
t t

t i u
iut r U iux

u u
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

  



 

   


 
   

 
 

 
 

 2
0exp

coth
2

u iu
t iu


  

 
 

  
  
 

.
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The above characteristic function is exactly what is needed in the FFT option pricing formula

(6.28). Therefore under this model a call option price can be easily obtained by substituting (7.2)

into (6.28).

7.2. Calibration of the Models

In this section we illustrate the theory of the previous parts and calibrate the jump-diffusion (JD)

model to an option set on Standard & Poors 500. We also calibrate the stochastic volatility jump-

diffusion (SVJD) model of Bates [6] on the same data set to investigate the additional stochastic

volatility effect and Black-Scholes model to compare the data fitting performances.

In the calibration of Lévy-based models, qualitative features of the model must be considered

such as infinite/finite activity and time homogeneity. Moreover, as discussed in [38] testing the

concerned data for the presence of jumps will provide accuracy in model choice. Several authors

have investigated the presence of a jump component looking at the S&P 500 option data. They

showed that next to a continuous diffusion component, the jump component exists but may not

be present every single day in the sample (see [40]). Based on this study, it can be concluded that

it is not possible to determine whether the jump component is of finite or infinite activity, as the

small jumps are completely reflected by the diffusion part. It is shown in [41] that Lévy

processes produce a reasonably better implied volatility smile for a single maturity, but when it

comes to calibrating several maturities at the same time, the calibration by Lévy processes

becomes much less precise. This difficulty of calibrating an exponential Lévy model to options

of several different maturities arises due to independence and stationarity properties of the

increments.

7.2.1. Data Set

The concerned models are calibrated to S&P 500 index option prices observed in the market on

20 August 2010 at 2.42 pm and at that time, the S&P 500 Index quote was 1075.63. The data

consist of call options on with 21 different strike prices, ranging from 925 to 1500 and with the

following maturities:
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211 T days, 512 T days, 823 T days, 2034 T days, 2955 T days, 4786 T days,

6627 T days and 8458 T days.

Selected options have at least 20-days maturity since prices of the options near to the maturity

are very close to the intrinsic value. Also options whose implied volatilities are unrealistic or

cannot be calculated are eliminated such as Deep-ITM options (close to intrinsic value)  and

Deep-OTM (close to zero). Lastly, options with a very large bid-ask spread are ignored since it

often implies inaccurate option price. The data is presented in the Appendix.

7.2.2. Parameter Estimation

The parameter estimation procedure is carried out by minimizing numerically the squared norm

of the difference between market and model prices for both JD and SVJD models.

The vector of unknown parameters  are thus determined by minimizing the following

expression

 
2

,
mod

1

N
i i
market el

i
C C 



 .

The numerical method used in this process is the DIRECT optimization algorithm. In this next

section we outline and give motivation of the algorithm.

7.2.3. The Algorithm

DIRECT algorithm [44] is a deterministic sampling method for finding the global minimum of a

multivariate function subject to simple bounds. It was created in order to solve difficult global

optimization problems with bound constraints and a real-valued objective function.

The algorithm attempts to solve the following problem:
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Problem: Let , Na b ,  :N
i i ix a x b     and :f   be Lipschitz

continuous with constant  . Find optx such that

  * ,opt optf f x f   

where  is a given small positive constant.

Since DIRECT is a sampling algorithm, it doesn’t require any knowledge of the objective

function gradient. In place of this, it samples points in the domain, and uses the information it

has obtained to decide where to search next. A global search algorithm like DIRECT can be very

useful when the objective function is a simulation. The algorithm will globally converge to the

minimal value of the objective function [3].

We consider a bound-constrained optimization problem,

 min
x

f x


, : Nf  

where

 :Nx l x u    

and f is Lipchitz continuous on  .

DIRECT begins by scaling the domain  , to the unit hypercube. Thus, we will assume that

 1: 0 1Nx x     .

This transformation doesn’t affect results, it just abbreviates the analysis. DIRECT's sample

points are centers of hyperrectangles and it initiates its search by sampling the objective function

at the center of  . The entire domain is treated as the first hyperrectangle, which DIRECT

identifies as potentially optimal and divides.
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In the division phase, it determines hyperrectangles that has the most potential to contain

unsampled points and in the sampling stage it samples f at the centers of the newly-created

hyperrectangles.

Figure 7.1 illustrates the division process.

Figure 7.1: Two dimensional divison example of DIRECT algorithm

7.2.4. Results

The main goal of models with stochastic volatility is to resolve the implied volatility smile

phenomenon. These models provide explanations for the implied volatility smile phenomenon

since the implied volatility is both different from the historical volatility and changes as a

function of strike and maturity. But the performance of stochastic volatility models at short

maturities is not very different from that of the Black-Scholes model, the effect of stochastic

volatility becoming visible only at longer time scales: short-term skews cannot match

empirically observed ones.

In Figures 7.2 and 7.3 we plot the implied volatility surfaces of jump-diffusion and stochastic

volatility jump-diffusion models for fixed parameters.

Comparing the Figures, it can be seen that the stochastic volatility jump diffusion model yields a

flatter smile however a smile still exists.

It can be seen from Figure 7.2 that the implied volatility surface generated by JD model shows a

peak at the money for short maturities which is observed in real markets rarely.

On the other hand the implied volatility surface of Bates model, given by Figure 7.3, is more

similar to surfaces observed on the market because the implied volatilities decrease for

increasing time to maturity. Moreover, in this surface the smile flattens with increasing time to
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maturity and this feature can be regarded as a stylized characteristic of implied volatility

surfaces.

Figure 7.2: Implied volatility surface generated by the Jump-Diffusion process. ( 05.0r ,

1.0 , 15.0 , mean jump size 05.0m , jump size standard deviation 4.0 )

Figure 7.3: Implied volatility surface generated by Bates model.

(initial volatility 124.00 V , rate of volatility mean reversion 72.3 , long-run volatility

118.0 , volatility of volatility 501.0 , correlation 488.0 , jump intensity

038.0 , mean jump size 0.05J   , jump size standard deviation, 0.4Jv  )
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As a result, the smile of JD model is more definite and its shape does not resemble that of the

market. Therefore, explaining the implied volatility smile phenomenon requires a model that

allows both jumps and stochastic volatility.

The calibration procedure of jump-diffusion model is carried out both simultaneously for all

maturities and separately for each maturity in the S&P 500 option data sample. As seen in

Figures 7.4 and 7.5, the calibration for each individual maturity gives quite good results, despite

the fact that the options with different maturities correspond to the same underlying and the same

trading day, the parameter values for each maturity are different, as seen from Table 7.1.

Figure 7.6 presents the result of simultaneous calibration of the model to 8 different maturities

ranging from 1 month to 3 years. As can be seen from the Figure, the calibration error is much

higher than in Figures 7.4 and 7.5.
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Figure 7.4: Calibration of jump-diffusion model to market data separately for each maturity.

Top: maturity 51 days. Bottom: maturity 203 days. (circles are market prices, stars are model

prices)
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Figure 7.5: Calibration of jump-diffusion model to market data separately for each maturity.

Top: maturity 662 days. Bottom: maturity 845 days. (circles are market prices, stars are model

prices)
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Figure 7.6: Calibration of jump-diffusion model simultaneously to 8 maturities. (circles are

market prices, stars are model prices)
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This problem arises due to the fact that log-price process, which is a Lévy process, has

independent and stationary incerements. So the law of the entire process is completely

determined by its law at any given time t .  If we have calibrated the model parameters for a

single maturity T , this fixes completely the risk-neutral stock price distribution for all other

maturities.

To adequately calibrate a jump-diffusion model to options of different maturities at the same

time, the model must have a sufficient number of degrees of freedom to generate different term

structures. The Bates model on the other hand has a significant number of degrees of freedom to

generate different term structures, so calibrating simultaneously for different maturities is

possible. The volatility smile for short maturities is accounted by the jump component while the

smile for longer maturities and the term structure of implied volatility is taken into consideration

using the stochastic volatility process.

Figure 7.7 shows the calibration of the Bates model to the same data set. As we see, the

calibration quality is better and almost as good as when each maturity was calibrated separately

for JD.
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Figure 7.7: Calibration of the Bates stochastic volatility jump-diffusion model simultaneously to

8 maturities. (initial volatility 0 0.0633V  , rate of volatility mean reversion 0.7446  ,

long-run volatility 0.01  , volatility of volatility 0.8673  , correlation 0.578   , jump



93

intensity 0.0624  , mean jump size 0.2147J  , jump size standard deviation

0.0815Jv  .) (circles are market prices, stars are model prices)

Comparing the Figures 7.7 and 7.6 we can conclude that simultaneous calibration of the Bates

model gives superior result than the simultaneous calibration of jump diffusion model.

Estimated parameter values for separate and simultaneous calibration of JD and are given in

Tables 7.1 and 7.2, respectively.

Table 7.1: Separately calibrated jump-diffusion model parameters for different times to

maturity.

Maturity   J Jv

21 days 0.2550 0.0261 0.0750 0.1289

51 days 0.2006 0.1550 -0.2167 0.2600

82 days 0.2006 0.1550 -0.0500 0.2600

203 days 0.1824 0.2517 -0.1056 0.2067

295 days 0.1824 0.1550 0.0056 0.2067

478 days 0.1824 0.1872 -0.1611 0.3133

662 days 0.1461 0.1550 -0.2667 0.1000

845 days 0.1461 0.2194 0.1167 0.4733

As we can see from the estimated parameter values, the qualitative behaviour for short and long

maturities is different. For longer maturities the jump intensity tends to increase while the mean

jump size decreases for extensive holding period.
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Table 7.2: Simultaneously calibrated jump-diffusion model parameters for different times to

maturity.

  J Jv

Estimates 0.2369 0.2517 -0.1015 0.42

Table 7.3 presents the parameter estimates for Bates model. The estimation procedure of the

stochastic volatility parameters converged to the same estimates for quite different starting

values, so these are relatively better estimations.

Table 7.3: Simultaneously calibrated Bates model parameters for different times to maturity.

0V      J Jv

Estimates 0.0633 0.0100 -0.578 0.7446 0.8673 0.0624 0.2187 0.0815

We also test the fitting performance of the Black-Scholes (BS) model and compare the results

with JD and SVJD models. The historical volatilities of the underlying index for the last 15 and

35 days are used as inputs for the model which are given Table 7.4. Figure 7.8 shows the graph

of historical volatilities and prices of S&P 500 index in last four months.

Figure 7.8: Historical volatility and price of S&P 500 index in last 4 months.
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Table 7.4: Historical volatilities of S&P 500 index used as an input in the Black-Scholes model.

SPX 15 days 25 days 35 days
Hist.Vol. 11.467% 17.89% 18.47%

Figure 7.9 presents the calibration of BS model for two different historical volatilities (15 days

and 35 days) used as an input.
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Figure 7.9: Calibration of Black-Scholes model simultaneously to 8 maturities. Top: historical

volatility 11.46%. Bottom: historical volatility 18.47%. (circles are market prices, stars are

model prices)

From the Figure 7.9 we can easily infer that the Black-Scholes (BS) model fails to fit market

option prices, especially considering the performances of the JD and SVJD models. Calibrating

the model with a  parameter estimated from the market option prices is an alternative but we

still get a really bad fitting.

Next, the call option prices generated by SVJD, JD and BS models are compared for the

maturity times 51 days, 203 days, 478 days and 845 days, respectively. As it was expected,

Figures 7.10-7.13 reveal that call prices of SVJD and JD models are higher than those of Black-

Scholes model with respect to the strike price. The reason for this is the stochastic volatility and

jump  increase the risk premium. It is also found that the differences are bigger for longer the
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maturity time. Moreover the SVJD and JD models have higher option prices, especially for

longer maturity and near at-the-money strike price.
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Figure 7.10: Call option prices for the SVJD, JD and BS models calculated with corresponding

estimated parameters with maturity 51 days.
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Figure 7.11: Call option prices for the SVJD, JD and BS models calculated with corresponding

estimated parameters with maturity 203 days.
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Figure 7.12: Call option prices for the SVJD, JD and BS models calculated with corresponding

estimated parameters with maturity 478 days.
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Figure 7.13: Call option prices for the SVJD, JD and BS models calculated with corresponding

estimated parameters with maturity 845 days.

Moreover, Figures 7.11-7.13 display that prices generated by JD model are higher than prices of

SVJD model for at the money options.
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CHAPTER 8

8. CONCLUSION

In this thesis, a geometric Lévy market model is considered in three parts. In the first part, the

market setup is examined. Since generally these models are incomplete, i.e., all contingent

claims cannot be replicated by a self-financing strategy, the market is enlarged by a series of

artificial assets called “Power-Jump assets” which are related to the power-jump processes of the

underlying Lévy process. These assets are linked to options on the stock and contracts on

realized variance that are traded in OTC markets and thus can be traded for volatility expectation

purposes.

It is shown by using the martingale representation property that the enlarged market is complete.

Then the equivalent martingale measure conditions are given and market is shown to be

arbitrage-free. Next the explicit hedging portfolios for contingent claims whose payoff function

depends on the prices of the stock are derived.

In the second part, we obtained prices for European options by using two different methods

under a specified jump-size distribution for the jump component. The methods were Martingale

approach and characteristic formula via fast Fourier transform (FFT). Moreover, we made

comparisons of the performances and speeds of these methods and found that the fast Fourier

transform produces very small pricing errors so the results of both methods are nearly identical.

In the third part, we considered the stochastic volatility extension of the jump diffusion model

and performed calibration of the jump-diffusion model, stochastic volatility jump-diffusion

model of Bates and the Black-Scholes model on Standard&Poors (S&P) 500 options data. The

optimization algorithm used is discussed and the parameter estimation values are presented. We

found that the behaviour for short and long maturities is different. For longer maturities the jump

intensity tends to increase meanwhile the mean jump size decreases for extensive holding period.



99

We also examined the effect of additional stochastic volatility assumption and reveal that

explaining the implied volatility smile phenomenon requires a model that allows both jumps and

stochastic volatility.

The calibration of jump-diffusion model is executed both simultaneously for all maturities and

separately for each maturity in the S&P 500 option data sample. We found that the calibration

for each individual maturity gives better results than separate calibration does.

The reason for this problem is the fact that log-price process, which is a Lévy process, has

independent and stationary incerements. So the law of the entire process is determined by its law

at any given time t . That is why, when we calibrate the model parameters for a single maturity

T , this fixes completely the risk-neutral stock price distribution for all other maturities.

Simultaneous calibration of SVJD model on the other hand gives quite good results since the

model a significant number of degrees of freedom to generate different term structures. Also, we

showed that the data fitting performance of SVJD model is better than that of the other models.

We compared the call option prices generated by SVJD, JD and BS models for the maturities 51

days, 203 days, 478 days, 845 days, respectively and showed that call prices of SVJD and JD

models are higher than those of Black-Scholes model with respect to the strike price. This is

observed because the stochastic volatility and jump  increase the risk premium. It is also found

that the differences are bigger for longer the maturity time.

To conclude, the calibration part revealed that both stochastic volatility and jump component are

needed factors in a model in order to describe market behaviour adequately.

In this thesis, numerical methods for solving the PDIE’s and pricing in time changed-Lévy

models are not touched on. Thence accordingly, these subjects could be two possible extensions

based on the results of this thesis.
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APPENDIX

The following table contains the call option prices on the S&P 500 on 20 August 2010 at 2.42

pm. On that day, the S&P 500 Index closed at 1075.63. We set 0q and the risk free rate

estimated with the future quotes was 5.0%.

Table 8.1: SPX option prices

STRIKE

TIME TO MATURITY

Sep.10 Oct.10 Nov.10 Mar.10 Jun.11 Dec.11 Jun.12 Dec.12

925 158.45 152.65 168.00 190.90 202.70 230.30 257.65 279.05

950 125.40 134.15 143.65 166.70 182.00 205.75 236.20 251.20

975 105.20 114.50 130.50 152.10 164.55 195.60 220.60 235.50

1000 82.55 91.50 108.90 137.20 145.60 165.90 194.24 198.15

1025 62.50 72.25 85.60 110.00 133.00 158.00 177.50 183.35

1050 43.65 54.20 65.00 94.00 115.00 134.00 150.00 179.50

1075 27.00 40.00 52.00 82.50 97.60 116.34 140.00 172.95

1100 14.50 27.50 39.50 64.90 81.23 88.00 114.10 145.80

1125 6.50 16.00 30.50 52.80 61.00 89.70 94.60 141.00

1175 0.80 5.00 12.00 40.80 50.00 68.64 83.00 110.00

1200 0.35 2.15 4.50 31.50 46.00 66.20 79.20 99.50

1225 0.15 1.15 4.00 29.50 41.00 57.10 72.00 90.50

1250 0.10 0.55 1.95 17.00 28.00 53.00 66.00 83.00

1275 0.05 0.45 1.80 15.00 20.65 50.00 59.30 74.70

1300 0.05 0.25 1.20 11.00 17.00 39.00 50.00 67.00

1325 0.24 0.60 8.00 14.20 35.10 42.00 62.45

1350 0.20 0.55 6.00 8.85 30.40 18.00 57.80

1400 0.30 2.32 6.30 25.00 15.60 40.60

1425 0.15 1.50 5.00 15.00 14.00 38.90

1450 1.20 3.40 12.54 13.90 34.55

1500 1.00 2.10 10.00 13.00 20.10
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