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ABSTRACT

NUMERICAL METHOD FOR CONFORM REFLECTION

Kushnarov, Andriy

M.S., Department of Scientific Computing

Supervisor : Assist. Prof. Dr. Hakan̈Oktem

January 2010, 45 pages

Conformal map has application in a lot of areas of science, e.g., fluid flow, heat conduction,

solidification, electromagnetic, etc. Especially conformal map applied to elasticitytheory can

provide most simple and useful solution. But finding of conformal map for custom domain

is not trivial problem. We used a numerical method for building a conformal map to solve

torsion problem. In addition it was considered an infinite system method to solvethe same

problem. Results are compared.

Keywords: Conformal Map, Numerical Methods, Torsion Problem, Infinite Systems
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ÖZ

KONFORM REFLECṪION İÇİN NÜMERİK METOD

Kushnarov, Andriy

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Hakan̈Oktem

Ocak 2010, 45 sayfa

Konformal mapin (Acıkorur G̈onderim) akışkanlar dinamiği, ısı iletimi, donma elektromanyetik

gibi bilimin birçok alanında uygulamaları bulunmaktadır.Özellikle esneklik kuramındaki en

basit ve kullanışlı sonuçlar konformal map yöntemiyle bulunmaktadır. Ancak rastgele bir

tanım k̈umesi için konformal mapin bulunması doğrudan ç̈ozülebilir bir problem dĕgildir. Bu

tezde burulma problemini çözmek icin konformal mapi bulan bir nümerik metod geliştirilmiştir.

Geliştirilen ÿontem aynı problemin çozünü icim düş̈unülmüş olan sonsuz sistem metoduyla

karşılaştırılmıştır.

Anahtar Kelimeler: Konformal Map, N̈umerik Metodlar, Burulma Problemi, Sonsuz Sistem-

ler
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CHAPTER 1

INTRODUCTION

1.1 CONFORMAL MAP AND ITS APPLICATIONS

A conformal (or angle-preserving) map between two domains is a function which preserves

oriented angles between curves as well as their direction. Such function preserves both angles

and the shapes of infinitesimally small figures, but not necessarily their size. Conformal

mapping has for more then a century, been powerful tool in mathematics, engineering, physics

and a lot of other subjects of the science, especially in solving various partial differential

equations (PDEs).

Some classical applications of conformal mappings to steady state problems ofmathematical

physics and especially for the solution of the Laplace equation can be traced to the begin-

ning of the twentieth century. A noteworthy contribution to the theory of elasticityis by

Muskhelishvili [32]. Modern contributions can be found in areas of fluidflow, heat conduc-

tion, solidification, electromagnetic, ion optics, acoustics, vibrations, wave guides and grid

generation. To name a few; a detailed review and biography of the applications through

1972 was supplied by Laura [25]. The problem of flow and heat transfer in conduits of arbi-

trary shape in space vehicles was investigated by Sparrow and Haji-Sheikh [39]. This study

was extended to noncircular conduits with uniform wall temperature by Casarella et al. [6].

Unsteady heat conduction problems in bars of arbitrary cross sections were investigated by

Laura and Chi [26]. Ives [19] analyzed the incompressible flow between two concentric cir-

cles and computed the streamlines by using Garrick’s method of conjugate functions. The

problem of solidification of steady state and transient frozen layers in rectangular channels

has been solved by Siegel, Goldstein and Savino [35]. In transient solidification the shape
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of a frozen region is determined by mapping it onto a potential plane and then computing

the time-dependent conformal map between the potential and the physical plane. The ther-

moelastic problem of uniform heat flow distributed by an isolated hole of ovaloid form was

investigated by Florence and Goodier [12] and extended by Deresiewicz[9] to holes which

are mapped onto the unit circle and approximated by polynomials.

Conformal mapping has been applied to acoustic waveguides of complicated cross section

where the Galerkin method is applied to obtain a functional approximation for thesolution

of the boundary value problem. The gain of a solid propellant rocket motorwith a starlike

internal propagation is in the form of a circular cylinder bounded by a thin case. To solve any

boundary value or eigenvalue problem, the gain cross section is conformally mapped onto

a circle or an annulus. Studies on the shear vibrations of such rocket motors were done by

Baltrukonis et al. [4] and Laura and Shahady [27]. Conformal mappingtechniques are used

in a study on the Rayleigh-Taylor instability for ideal fluid by Menikoff and Zemach [30, 31].

Grid generation for cascades of blades and inlet flows has been investigated by Inoue [17, 18].

Other contemporary applications can be found in the book on numerical conformal mapping

edited by Trefethen [40].

1.2 NUMERICAL METHODS

The oldest known transformation was used by Claudius Ptolemy (ca. 150 A.D.). This map-

ping is known as the stereographic projection of the sphere and it represents the celestial

sphere. In a totally different mapping of a sphere onto a plane, known as Mercator’s pro-

jection, the spherical earth is cut along a meridian circle and conformally mapped to a plane

strip and published in 1569. Even till now all sea maps are constructed by thismethod. In

1851 Riemann made a breakthrough in conformal mapping theory. He gave afundamental

result, known as the Riemann mapping theorem, which has since been a turningpoint for all

subsequent developments in the theory of conformal mapping.

Since then a lot of methods for building of conformal map were developed. The results of

some of these methods provide us with an explicit form of a function which approximately

evaluates the mapping function for a certain source region.

One major approach in developing methods for numerical conformal mappingis based on the

2



following interpretation of the Riemann mapping theorem: there exists a conformal mapping

f : D → U with f (z0) = 0 and f ′(z0) nonzero real, wherez0 ∈ D, and this function has a

power series expansionf (z) = c1(z− z0) +
∞
∑

n=2

cn(z− z0)n, with c1 nonzero real andz0 ∈ D,

which converges uniformly in every closed disk with centerz0 and contained inD. However,

a polynomial which is a good approximation off in D is not the same as a truncated power

series. If a polynomialp(z) = c′1(z− z0) +
N

∑

n=2

(z− z0)n approximatesf with accuracyǫ > 0

then it is necessary that every term ofp(z) must approximate the corresponding term of the

power series with accuracyǫ > 0 on the setD ∩ B(z0,R), whereR = |z− z0| is the radius

of convergence of the power series. All this means is that a polynomialp which is a good

approximation of the power series starts in the same way as the power series,but the relative

error in the coefficients increases with increasingn [24].

The widely used current computational techniques are based on the integral equation methods

where an integral equation is developed to relate the boundaries of the problem region and

the standard region like the unit disk. Once the boundaries are discretizedat n points, the

integral equation is reduced to a system of algebraic equations. The majorityof researches in

computational conformal mapping is basically divided in two groups: the firstone, where the

maps are constructed from a standard region(such as the unit disk) into the problem region,

and the second, where the maps are constructed the other way around.

General methods of approximate conformal map building can be found in survey articles by

A.F. Bermant and A.I. Markushevich [5], M.K. Govurin and L.V. Kantarovich [13]. Also

one can check monographs by L.V. Kantarovich and V.I. Krilov [21], V.Kopenfels and F.

Shtalman [23], P.F. Filchakov [11] et al.

There are several types of approximate methods for building the mapping functionz = ω(ζ)

– analytical, graphical-analytical and experimental-analytical. In these methods approximate

expression of mapping function is built as polynomial

z= ω(ζ) =
m
∑

k = 1
Ckζ

k (1.1)

where, in general, coefficientsCk = α+ iβ are complex. In general, representation of approxi-

mate mapping as a polynomial (1.1) makes solution of boundary-value problemsappreciably

easy. The most easy solution of boundary-value problem can be foundexactly when the

conformal mapping is represented as a polynomial ofζ powers.
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There was developed an alternative method for building of interpolation polynomials for sim-

ply connected and biconnected regions using Lagrange polynomials. Alsoit was designed the

methodology for constructing of successive approximations with adding intermediate nodes.

Description of this method can be found in work by A.G. Ugodchikov [41].

In this thesis we introduced an algorithm for building conformal map numerically. In Chapter

2 the way of approximation of conformal map by polynomial is presented. There is a de-

scription of infinite systems method in Chapter 3. In Chapter 4 we introduced analgorithm

of successive approximations for conformal map building. Finally we compare solutions re-

ceived by numerical algorithm and infinite systems method.

4



CHAPTER 2

CONFORMAL MAP METHOD

2.1 PROBLEM DEFINITION

Let us consider the most simple problem – a problem of approximating to a function z= ω(ζ).

This function is conformal map from unit disk|ζ | < 1 into the domainS of complex plane

z = x + iy. The domainS is bounded by piecewise-smooth contourL̄. Let the origin of

coordinates for the planez be insideL̄. We will normalize conformal map in the way such

that the center of the unit diskζ = ζ0 = 0 maps toz = z0 = 0 ∈ S and the pointAm of

the boundaryγ of the unit disk with the complex coordinatesζm = 1 maps toMm from the

boundary ofS (Fig. 2.1).

Figure 2.1: Conformal map from unit disk|ζ | < 1 into domainS

Building the conformal map we will keep in mind the theorem [42].
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Theorem 2.1.1 Let Σ be finite or infinite simply connected domain on the complex plane

z= x+ iy with the simple closed boundary. Letω(σ) be function regular inΣ and continuous

up to a boundary. Let point z defined by z= ω(ζ) circumscribe simple closed circuit̄L when

ζ circumscribe circuitγ. Then relation z= ω(ζ) is conformal map from S (enclosed within̄L)

into Σ.

A polynomial of positive degrees is a regular function in unit disk|ζ | ≤ 1. So we will search

for approximation of conformal map that maps unit disk|ζ | < 1 into domainS as a polynomial

z= ωm(ζ) =
m
∑

k = 1
Ckζ

k. (2.1)

This means that we have to find coefficientsCk = αk + iβk(k = 1, . . . ,m) such that curve

L′(with the parametric equationz= ωm(eiθ) ):

• will not have double points and cusps,

• will have set of common points with the boundaryL̄,

• deflection of curveL′ from boundaryL̄ of domainS should be in tolerable limit.

Note that conformity is violated in the corner points. So the exact mapping of corner points

(at least two-tangent points) by the polynomial (2.1) is impossible. Becauseof this the piece-

wise smooth boundarȳL should be transformed into curveL with the continuously changing

tangent. In general corners ofL̄ can be rounded by arcs of constant radius. Such rounding can

be found in real world, for example in machine elements and structural engineering.

2.2 CONSTRUCTION OF CONFORMAL MAP

Let A j ( j = 1, . . . ,m) be points equispaced on the borderγ – the boundary of unit disk. Let

these points have complex coordinatesζ j = eiθ j , whereθ j =
2π
m

j ( j = 1, . . . ,m). Suppose for

a while that we know location of pointsM j with coordinateszj = x j + iy j such thatA j are

transformed intoM j by the conformal map of unit disk|ζ | < 1 to domainS (Fig. 2.1).

To solve the problem of approximate conformal map we should construct thepolynomial (2.1)

such that

6



• at ζ = 0 it will be zero (z= 0 – first normalization condition),

• at ζ j ( j = 1, . . . ,m) it will be equal to givenzj ( j = 1, . . . ,m).

Note that value ofzm is the second normalization condition, otherzj ( j = 1, . . . ,m) are unique

but previously not known.

It is easy to see that this problem is the same as the problem of construction ofinterpolation

Lagrange polynomialfn(ζ). In interpolation nodesζ j ( j = 1, . . . ,m) the Lagrange polynomial

possesses the valuesf (ζ j) = f j . This polynomial can be written as

fn(ζ) =
m
∑

j = 1
f j

A(ζ)
A′(ζ j)(ζ − ζ j)

, (2.2)

where

A(ζ) =
m
∏

j = 1
(ζ − ζ j). (2.3)

We should keep in mind the normalization conditionω(0) = 0. Now we will construct the

Lagrange polynomial:

ωm(ζ) =
m
∑

k = 0
Ckζ

k. (2.4)

This polynomial will match to values of conformal mapz = ω(ζ) in interpolation nodes

ζ = ζ0 = 0 andζ = ζ j = exp
(

iθ j

)

( j = 1, . . . ,m). It is easy to see that polynomial (2.4) will

be

z= ωm(ζ) =
m
∑

j = 0
zj

A(ζ)
A′(ζ j)(ζ − ζ j)

, (2.5)

where

A(ζ) =
m
∏

j = 0
(ζ − ζ j) = ζ

m
∏

j = 1
(ζ − ζ j). (2.6)

We know thatζ j =
m√−1 = exp

(

i
2π
m

j

)

( j = 1, . . . ,m), so

A(ζ) = ζ(ζm− 1), (2.7)

A′(ζ j) = m. (2.8)

After substitution (2.7) and (2.8) into (2.5) we have

z= ωm(ζ) =
1− ζm

m

m
∑

j = 1

ζ

ζ j

zj

1− ζ̄ jζ
. (2.9)
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Inside the unit disk|ζ | < 1 it is true

zj

1− ζ̄ jζ
= 1+ ζ̄ jζ + (ζ̄ jζ)

2
+ . . . + (ζ̄ jζ)

m−1
+ . . . . (2.10)

Note thatζ̄kj = ζ̄
k+m
j . After substitution (2.10) into (2.9) we have

z= ωm(ζ) =
1
m

m
∑

j = 1
zj [ζ̄ jζ + (ζ̄ jζ)

2
+ . . . + (ζ̄ jζ)

m]. (2.11)

After simple cancellation in (2.11) we will get

ωm(ζ) =
m
∑

k = 1
Ckζ

k, (2.12)

where

Ck = αk + iβk =
1
m

m
∑

j = 1
zje
−ikθ j (k = 1, . . . ,m). (2.13)

Polynomial (2.12) satisfies normalization conditions and the boundaryL′ with the equation

z= ωm(ζ) has at leastm nods in common withL a boundary of simply connected domainS.

After simple cancellation of real and imaginary parts in (2.13) we have


















































αk =
1
m

m
∑

j = 1
(x j cos

2π
m

k j + y j sin
2π
m

k j),

βk =
1
m

m
∑

j = 1
(y j cos

2π
m

k j − x j sin
2π
m

k j).

(2.14)

After calculation of coefficientsCk (k = 1, . . . ,m) we should build boundaryL′. We should

also be sure that curve does not have double points and cusps, and deflection of curveL′ from

boundaryL is in tolerable limit.

We can conclude that in case of known nodesM j ( j = 1, . . . ,m) from boundaryL process of

construction of approximate conformal map as an interpolation polynomial is easy.

The problem of match making between nodes of boundariesγ andL is separate and difficult

problem by itself. In particular it is nearly impossible to predefine this match exactly. Because

of this we will use the approximate methods of determining this match. Another way is

algorithm which conjectures the first approximation and then let us obtain moreaccurate

location of such points.
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Similarly to polynomial (2.12) we will build another approximation polynomial

ωm∗(ζ) =
m
∑

k = 1
Ck∗ζ

k (2.15)

such that it matches to values of conformal mapz= ω(ζ) in interpolation nodesζ = ζ0 = 0 and

ζ = ζ j∗ =
m√−1 = eiθ j , whereθ∗j =

π

m
(2 j −1) ( j = 1, . . . ,m). On the picture (2.1) interpolation

nodesζ = ζ j∗ are marked asA j∗ . These nodes are called intermediate and corresponding

nodesM j∗ on boundaryL have coordinateszj∗ .

In the same way as for polynomial (2.5) we can find

z= ωm∗(ζ) =
m
∑

j = 0
zj∗

A(ζ)
A′(ζ j∗)(ζ − ζ j∗)

, (2.16)

where

A(ζ) = ζ(ζm+ 1), (2.17)

A′(ζ j∗) = −m. (2.18)

After elementary cancellation in (2.16) we have formulas for coefficients of polynomial (2.15)

Ck∗ = αk∗ + iβk∗ =
1
m

m
∑

k = 1
zj∗e

−ikθ j∗ (k = 1, . . . ,m). (2.19)

This formula is the same as


















































αk∗ =
1
m

m
∑

j = 1
(x j∗ cos

π

m
(2 j − 1)k+ y j∗ sin

π

m
(2 j − 1)k),

βk∗ =
1
m

m
∑

j = 1
(y j∗ cos

π

m
(2 j − 1)k− x j∗ sin

π

m
(2 j − 1)k).

(2.20)
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CHAPTER 3

METHOD OF INFINITE SYSTEMS

3.1 INTRODUCTION

The problem of torsion of a polygonal-base prism was reduced in [2] to the numerical solution

of completely regular infinite systems of linear algebraic equations. Studies onthis subject

are reviewed in the monograph [3]. The theory of regular and quasiregular infinite systems

applied to other problems in the mechanics of elastic bodies is addressed in references [14,

15, 16, 21, 22, 29, 20, 28, 36, 37, 38]. The torsion of a cross-base prism is studied in [1, 3].

Not very accurate solutions of infinite systems allow a satisfactory assessment of the torsional

stiffness of a prism, but do not allow a reliable analysis of the stress state, especially in the

neighborhood of the vertex of the reentrant angle.

The limitants method was proposed in [22] to estimate solutions of regular infinite systems

of linear algebraic equations. The applications of the method are reviewed inreferences

[14, 21, 29, 28]. The use of the limitants method is difficult because of the necessity of

solving a great number of finite systems of linear algebraic equations. Moreattractive is the

improved reduction method [14, 15], which leads to one finite system of equations. However,

this method does not allow assessing the reliability of approximate solutions. A modification

of Koyalovich’s limitants method that estimates the upper and lower bounds by solving only

two auxiliary systems of linear algebraic equations is proposed in [7]. We willuse this method

here to solve the problem of torsion of a cross-base prism.

We would like to talk about method described in article [8] more detailed.
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3.2 PROBLEM DEFINITION

As it was described in previous chapter Hooke’s law for a prism under torsion can be written

in form (4.16). The tangential stresses in the prism are expressed in termsof the Prandtl stress

function (4.17). Which is determined by solving Dirichlet’s problem for Poisson’s equation

(4.18) in the domain occupied by the prism base.

Following paper [3], we will restrict ourselves to a cross-shaped domainsymmetric about the

coordinate axes (Fig. 3.1). The symmetry allows us to consider three subdomainsD0, D1,

andD2 with boundaries dashed (see the Fig. 3.1).

Figure 3.1: SubdomainsD0, D1, andD2

3.3 REPRESENTATION OF THE SOLUTION OF DIRICHLET’S PROBLEM

In references [1, 3], a solution was obtained by introducing a system ofauxiliary functions.

We will outline a different method that leads to somewhat different results.
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Using partial solutions of Poisson’s equation

U = a2 − x2, (x, y) ∈ D0 ∪ D2,

U = b2 − y2, (x, y) ∈ D1,
(3.1)

we reduce Dirichlet’s problem (4.18) to Dirichlet’s problems for harmonic functionsVi(x, y)

in the subdomainsD0,D1,D2:

∂2

∂x2
Vi +

∂2

∂x2
Vi = 0; (x, y) ∈ Di ,

Vi |Γi
= Fi(x, y).

(3.2)

The solution of Dirichlet’s problem (3.2) for a harmonic function in a rectangular domain

is described in the monograph [21]. We will reduce the solution to a series ofspecial form

having the property of Kronecker deltas relative to the values on the sidesof the rectangle and

formulate this as a lemma.

Lemma 3.3.1 The solution of Dirichlet’s problem for a harmonic function V(x, y) in a rect-

angular domain (0 < x < a, 0 < y < b) can be expanded into a series:

V =
∞
∑

n=1

{[

η
(b)
n sinh

(

nπ
y
a

)

+ η
(0)
n sinh

(

nπ
b− y

a

)]

sin(nπx/a)
sinh(nπb/a)

+

[

ζ
(a)
n sinh

(

nπ
x
b

)

+ ζ
(0)
n sinh

(

nπ
a− x

b

)] sin(nπy/b)
sinh(nπa/b)

}

,

where the coefficientsη(b)
n , η

(0)
n , ζ

(b)
n , ζ

(0)
n are determined by expanding the boundary value of

the function V(x, y) continuous on the boundary of the rectangle into Fourier sine series:

V|y=b =
∞
∑

n=1
η

(b)
n sin(nπx/a), V|y=0 =

∞
∑

n=1
η

(0)
n sin(nπx/a),

V|x=a =
∞
∑

n=1
ζ

(a)
n sin(nπy/b), V|x=0 =

∞
∑

n=1
ζ

(0)
n sin(nπy/b).

According to (3.1) the stress function in the domainD1 is represented as

U1 = b2 − y2
+ V1(x, y),

which can be used to calculate the boundary values of the harmonic functionV1(x, y) on the

sidesy = ±b andx = f :

V1|y=±b = 0, V1|x= f = y2 − b2
=
−32b2

π3

∞
∑

n=1,3

1
n3

sin

(

nπ
y+ b
2b

)

. (3.3)
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On the segmentx = a of the internal boundary of the subdomainD1, we formally expand the

boundary condition into a series with unknown coefficientsYn:

V1|x=a =
4ab
π

∞
∑

n=1,3

1
n

Yn sin

(

nπ
y+ b
2b

)

. (3.4)

According to Lemma 3.3.1, series (3.3) and (3.4) yield a representation for the stress function

U(x, y) in the subdomainD1:

U1 = b2 − y2

+
4ab
π

∞
∑

n=1,3

[

Yn sinh

(

nπ
f − x
2b

)

− 8b

n2π2a
sinh

(

nπ
x− a
2b

)

]

sin(nπ(y+ b))/(2b)
nsinh(nπc/(2b))

.
(3.5)

The solution in the subdomainD2 is represented similarly:

U1 = a2 − x2

+
4ab
π

∞
∑

n=1,3

[

Xn sinh

(

nπ
h− y
2a

)

− 8a

n2π2b
sinh

(

nπ
y− b
2a

)]

sin(nπ(x+ a))/(2a)
nsinh(nπe/(2a))

.
(3.6)

The boundary conditions for the function harmonic in the subdomainD0 follow from the

continuity of the functionU(x, y) on the internal boundariesx = a andy = b

U0|x=a = U1|x=a , U0|y=b = U2|y=b .

As a result, Lemma 3.3.1 leads to the following representation of the solution:

U0 = a2 − x2

+
4ab
π

∞
∑

n=1,3

[

Xn

ncosh(nπb/(2a))
cosh

(

nπ
y

2a

)

sin
(

nπ
x+ a
2a

)

+
1

n3π2

n2π2Yn + 8b/a
cosh(nπa/(2b))

cosh
(

nπ
x

2b

)

sin

(

nπ
y+ b
2b

)]

(3.7)

Integrating (3.5) – (3.7) according to (4.20), we obtain a formula for the torsional stiffness

coefficientC:

1
16b4G

C =
c

3b
+

a3h

3b4
+

8a3

π3b3

∞
∑

n=1,3

Xn

n3

[

tanh

(

nπ
b
2a

)

+ tanh
(

nπ
e

4a

)

]

+
8a

π3b

∞
∑

n=1,3

Yn

n3

[

tanh
(

nπ
a
2b

)

+ tanh
(

nπ
c

4b

)]

+
64

π5

∞
∑

n=1,3

1

n5

[

tanh
(

nπ
a
2b

)

+ tanh
(

nπ
c

4b

)

− a4

b4
tanh

(

nπ
e

4a

)

]

,

(3.8)

whereG is modulus of rigidity.
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3.4 INFINITE SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

The equations for the coefficients{Xn,Yn} follow from the smoothness of the stress function

on the internal boundariesx = a andy = b:

∂U0

∂x

∣

∣

∣

∣

∣

x=a
=
∂U1

∂x

∣

∣

∣

∣

∣

x=a
,
∂U0

∂y

∣

∣

∣

∣

∣

y=b
=
∂U1

∂y

∣

∣

∣

∣

∣

y=b
. (3.9)

Substituting expressions (3.6) and (3.7) into the second condition (3.9), weget

∞
∑

n=1,3



















[

tanh

(

kπ
b
2a

)

+ coth
(

kπ
e

2a

)

]

Xk +
8a

k2π2bsinh
(

kπ e
2a

) sin
(

kπ
x+ a
2a

)



















=
a
b

∞
∑

n=1,3

(

Yn +
8b

n2π2a

)

cosh
(

nπ
x

2b

)

/ cosh
(

nπ
a
2b

)

(−a < x < a).

(3.10)

Using the well-known [34] series for hyperbolic cosine:

cosh
(

nπ
x

2b

)

=
4
π

cosh
(

nπ
a
2b

) ∞
∑

n=1,3

k

k2 + n2a2/b2
sin

(

kπ
x+ a
2a

)

(−a < x < a)

we represent the right-hand side of (3.10) as a Fourier sine series. Changing the order of

summation (indicesn andk) and equating the coefficients of the sines on the left- and right-

hand sides leads to a countable set of linear algebraic equations forXn,Yn, which are written

simultaneously with a corollary of the first continuity condition (3.9) derived similarly:

Xk =
4kb
∆eπa

∞
∑

n=1,3

Yn

n2 + k2b2/a2
+

1
∆e

[

4
kπ
− 8a

k2π2b

(

tanh

(

kπ
b
2a

)

+ 1/ sinh
(

kπ
e

2a

)

)]

Yk =
4ka
∆cπb

∞
∑

n=1,3

Xn

n2 + k2a2/b2
+

1
∆c

[

4
kπ
− 8b

k2π2a

(

tanh
(

kπ
a
2b

)

+ 1/ sinh
(

kπ
c

2b

))

]

,

(3.11)

wherek = 1,3,5, . . . , ∆c = tanh
(

kπ
a
2b

)

+ coth
(

kπ
c
2b

)

, ∆e = tanh

(

kπ
b
2a

)

+ coth
(

kπ
e

2a

)

.

Comparing the infinite system (3.11) with the similar pair infinite system derived in [3], we

can transform the matrix of one system into the matrix of the other system. The free terms

have an elementary form in (3.11) and are expressed in terms of infinite series in [3].

If the parameterse andc (Fig. 3.1) are equal to zero, then the cross-shaped domain degener-

ates into a rectangle with sides 2a and 2b. Passing to the limit ase→ 0 in the first equation

in (3.11) and asc→ 0 in the second equation in (3.11), we obtain a limiting solution of the

pair infinite system:

Xn =
−8a

n2π2b
, Yn =

−8b

n2π2a
, (n = 1,3,5, . . .),
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which transforms expression (3.7) for the functionU0(x, y) into the well-known Prandtl’s

stress function for a rectangular-base prism under torsion.

If the cross-shaped domain (c > 0,e> 0) is nondegenerate, we use the standard notation [21]

for the pair infinite systems of linear algebraic equations (with odd indices):

xk =

∞
∑

n=1,3

ak,nyn + bk, yk =

∞
∑

n=1,3

αk,nxn + βk (k = 1,3,5, . . .) (3.12)

and calculate the auxiliary infinite sequences

ρk = 1−
∞
∑

n=1,3

|ak,n|, rk = 1−
∞
∑

n=1,3

|αk,n| (k = 1,3,5, . . .). (3.13)

Using the infinite series sum
∞
∑

n=1,3

1
n2 + z2

=
π

4z
tanh(πz/2) [34], we transform sequences

(3.13) to

ρk =
1

1+ tanh
(

kπ b
2a

)

tanh
(

kπ e
2a

)

rk =
1

1+ tanh
(

kπ a
2b

)

tanh
(

kπ c
2b

)

(k = 1,3,5, . . .).

This yields the obvious estimates 1/2 < ρk < 1 and 1/2 < rk < 1, which suggest that the pair

infinite system (3.11) is completely regular. The free terms of system (3.11) tend to zero with

increasingk. Therefore, the infinite system (3.11) has a unique bounded solution [21].

In the specific case of equal-cross base (b = a,e= c), the infinite system (3.11) becomes

Xk∆c =
4k
π

∞
∑

n=1,3

Yn

n2 + k2
+

4
kπ
− 8

k2π2

(

tanh
(

k
π

2

)

+ 1/ sinh
(

kπ
c

2a

))

,

Yk∆c =
4k
π

∞
∑

n=1,3

Xn

n2 + k2
+

4
kπ
− 8

k2π2

(

tanh
(

k
π

2

)

+ 1/ sinh
(

kπ
c

2a

))

.

(3.14)

Subtracting the second equation from the first one in (3.14), we see that the differencesXk−Yk

satisfy the homogeneous, completely regular, infinite system

Xk − Yk +
4k
π∆c

∞
∑

n=1,3

Xn − Yn

n2 + k2
(k = 1,3,5, . . .),

which has a unique limited solutionXk − Yk = 0 [21]. Therefore, the pair system (3.14) is

equivalent to the following completely regular system:

Xk∆c =
4k
π

∞
∑

n=1,3

Xn

n2 + k2
+

4
kπ
− 8

k2π2

(

tanh
(

k
π

2

)

+ 1/ sinh
(

kπ
c

2a

))

, (3.15)
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wherek = 1,3,5, . . . , ∆c = tanh
(

k
π

2

)

+ coth
(

kπ
c
2b

)

.

Due to symmetry, it is sufficient to use the representation of solution (3.5), (3.7) in the domains

D1 andD0:

U1 = a2 − y2

+
4a2

π

∞
∑

n=1,3

[

Xn sinh

(

nπ
f − x
2a

)

− 8
n2π2

sinh
(

nπ
x− a
2a

)

]

sin(nπ(y+ a)/(2a))
nsinh(nπc/(2a))

,

U0 = a2 − x2
+

4a2

π

∞
∑

n=1,3

1
n

[

Xn cosh
(

nπ
y

2a

)

sin
(

nπ
x+ a
2a

)

+

(

Xn +
8

n2π2

)

cosh
(

nπ
x

2a

)

sin
(

nπ
y+ a
2a

)

]

/ cosh
(

n
π

2

)

.

(3.16)

3.5 ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF AN INFINITE SYS-

TEM

According to Chekhov [3], the tangential stresses at the pointA (Fig. 3.1) have a power

singularity with exponentm= −1
3. For example, the tangential stressσxy

∣

∣

∣

x=a
on the segment

x = a tends to infinity as the corner pointA is approached:

σxy

∣

∣

∣

x=a
∼

B

(b− y)1/3
as y→ b. (3.17)

Substituting (3.5) into formulas (4.17), we obtain expressions for the stresses in the domain

D1:

1
2aGθ

σzx =
∞
∑

n=1,3

[

Yn sinh

(

nπ
f − x
2b

)

− 8b

n2π2a
sinh

(

nπ
x− a
2b

)

]

cosh(nπ(y+ b)/(2b))
sinh(nπc/(2b))

−y
a

1
2aGθ

σzy =
∞
∑

n=1,3

[

Yn cosh

(

nπ
f − x
2b

)

+
8b

n2π2a
cosh

(

nπ
x− a
2b

)

]

sinh(nπ(y+ b)/(2b))
sinh(nπc/(2b))

,

(3.18)

hereG is modulus of rigidity.

On the segmentx = a, the first expression in (3.18) becomes simpler:

1
2aGθ

σzx =
∞
∑

n=1,3

Yn cos

(

nπ
y+ b
2b

)

− y
a
. (3.19)
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To relate the singularity order of the stresses at the corner point to the asymptotic behavior of

the solution of the infinite system at large values ofn, we replace variables:

Xn = (a/b)ν/2xn/n
ν, Yn = (b/a)ν/2yn/n

ν (ν > 0) (3.20)

and assume that the new variables tend to a nonzero real constant at great values ofn, i.e.,

xn→ c0, yn→ c0 asn→ ∞. (3.21)

After replacement (3.20) in (3.19), we separate out the part of series segment with the constant

c0:

1
2aGθ

σzx

∣

∣

∣

∣

∣

x=a
=

















∞
∑

n=1,3

yn − c0

nν
cos

(

nπ
y+ b
2b

)

+

∞
∑

n=1,3

c0

nν
cos

(

nπ
y+ b
2b

)

















(

b
a

)ν/2

− y
a
.

(3.22)

The constantc0 is taken out of last series, which can be expressed in terms of a special function

Li ν(z) called a polylogarithm of orderν [34]:

σ(ν, y) = −
∞
∑

n=1,3

2
nν

cos

(

nπ
y+ b
2b

)

= Re

[

Li ν(−exp

(

iπ
b+ y
2b

)

) − Li ν(exp

(

iπ
b+ y
2b

)

)

]

.

(3.23)

The first series in (3.22) turns into a finite sum because of (3.21):

∞
∑

n=1,3

yn − c0

nν
cos

(

nπ
y+ b
2b

)

≈
q

∑

n=1,3

yn − c0

nν
cos

(

nπ
y+ b
2b

)

The error of this approximate formula can be made arbitrary small by increasing the upper

limit q. Thus, transformations (3.20)-(3.23) improve the convergence of the series in (3.19).

The right-hand side of (3.23) has an asymptotic representation in the neighborhood (y < b) of

the pointA:

σ(ν, y) = σasym(ν, y) +O(1− y/b),

where

σasym(ν, y) = (2/π)1−ν Γ(1− ν)
(1− y/b)1−νRe[(−1)

ν−1
2 ] + (2− 21−ν)ζ(2/3), (3.24)

, Γ(z) being the Gamma function;ζ(z) is the Riemann zeta function.

17



Comparing expressions (3.17) and (3.24), we findν = 2/3. Formulas (3.23) and (3.24) be-

come

σ(2/3, y) = −
∞
∑

n=1,3

2
n2/3 cos

(

nπ y+b
2b

)

= Re

[

Li2/3(−exp

(

iπ
b+ y
2b

)

) − Li2/3(exp

(

iπ
b+ y
2b

)

)

]

,

(3.25)

σ(2/3, y) =

√
3Γ(1/3)

3
√

4π(1− y/b)
+ (2− 3√

2)ζ(2/3). (3.26)

Table 3.1: Comparison of asymptotic (3.26) and exact (3.25) values

y/b 0.75 0.79 0.83 0.87 0.91 0.95 0.99
σ(2/3, y) 0.59726 0.74966 0.95701 1.2558 1.7309 2.6557 6.4623
σasym(2/3, y) 0.60675 0.75634 0.96137 1.2584 1.7321 2.6561 6.4624

In table 3.1 the comparision of the asymptotic (3.26) and exact (3.25) values on the segment

(3/4b,b) is presented.

Using eq. (3.20) withν = 2/3 in (3.11),

Xn = (a/b)1/3xn/n
2/3, Yn = (b/a)1/3yn/n

2/3, (3.27)

we arrive at a pair infinite system that has a solution tending to the nonzero constantc0 as the

numbern tends to infinity:

xk =
4ζ5/3k

∆eπ

∞
∑

n=1,3

yn

(n2 + ζ2k )n2/3
+

3
√

kζk
∆e

[

4
kπ
− 8a

k2π2b

(

tanh

(

kπ
b
2a

)

+1/ sinh
(

kπ
e
2a

))]

,

yk =
4η5/3k

∆cπ

∞
∑

n=1,3

xn

(n2 + η2k)n2/3
+

3
√

kηk
∆c

[

4
kπ
− 8b

k2π2a

(

tanh
(

kπ
a
2b

)

+1/ sinh
(

kπ
c
2b

))]

,

(3.28)

whereζk = kb/a andηk = ka/b.

To apply the limitants method, should necessarily be the infinite system regular. The pair

infinite system (3.28) is regular if

4ζ5/3k

∆eπ

∞
∑

n=1,3

yn

(n2 + ζ2k )n2/3
< 1,

4η5/3k

∆cπ

∞
∑

n=1,3

xn

(n2 + η2k)n2/3
< 1 (k = 1,3,5, . . .). (3.29)
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Figure 3.2: The dependence of the sumsSk on the indexk

The explicit dependence of the sums of the series in (3.29) on the indexk can be represented

using the Euler-Maclaurin formula [10]:

∞
∑

n=1,3
f (x) =

q−2
∑

n=1,3
f (x) + 1

2

∞
∫

q
f (x)dx+ 1

2 f (q) − B1 f (1)(q) + 1
4! B223 f (3)(q)

− 1
6! B325 f (5)(q) + . . . + (−1)k−1 1

(2k−2)! Bk−122k−3 f (2k−3)(q)

+θ(−1)k 1
(2k)! Bk22k−1 f (2k−1)(q),

(3.30)

where 0≤ θ ≤ 1; the odd numberq is introduced to improve the asymptotic formula;B1 =

1/6, B2 = 1/30, B3 = 1/42, . . . are Bernoulli numbers. All the even-order derivativesf (2 j)(x)

should have the same sign within (q,+∞), and all the odd-order derivativesf (2 j−1)(x) should

tend to zero asx→ ∞. The error of the asymptotic formula can be estimated by comparing

the results obtained withθ = 1 andθ = 0.

Denoting the first series in (3.29) bySk and using four terms of the asymptotic formula (3.30),

we obtain

Sk =
4ζ5/3k

∆eπ



















q−2
∑

n=1,3

1

(n2 + ζ2k )n2/3
+

1

4ζ5/3k

[

arctan(
ζk

q
)

3 arctan(3
√

ζk/q) +

√
3

2
ln















1+ (2 3
√

q/ζk −
√

3)2

1+ (2 3
√

q/ζk +
√

3)2





























+
1

2(q2 + ζ2k )q2/3
+

1
6















2q1/3

(q2 + ζ2k )2
+

2

3(q2 + ζ2k )q5/3





























.

(3.31)
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This is an upper-bound estimate of the sum. The lower-bound estimate is obtained by rejecting

the last expression in brackets multiplied by 1/6 in (3.31). The upper- and lower-bound

estimates are made to coincide in the first five decimal places by choosing the value q = 201.

The dependence of the sumsSk on the indexk is shown in Fig. 3.2. Curve 1 corresponds to

b/a = 1/10, curve 2 tob/a = 1, and curve 3 tob/a = 10 (for e= b). The similarity between

the two series in (3.29) allows us to interpret curve 3 as dependence of thesum of the second

series witha/b = 1/10 andc = a on the indexk. Thus, the curves in Fig. 3.2 show that the

sums of series (3.29) asymptotically tend to the limiting valueSk = 1 from below. Note that

the limit lim
x→∞

Sk = 1 can be evaluated in an elementary way using formula (3.31). Thus, the

pair infinite system (3.28) appears regular.

Note that the uniqueness of a bounded solution of system (3.28) from the reversibility of

transformation (3.27), which establishes one-to-one correspondence between any bounded

solution of system (3.28) and the unique solution of the pair regular system (3.11) that tends

to zero.

The stress state of an angle subject to torsion was studied in the article of Chekhov [33], which

was the first to use a transformation of the form (3.27) for variables in the case whereb = a.

3.6 ESTIMATES OF THE SOLUTION OF THE INFINITE SYSTEM

Estimates of the Solution of the Infinite System. We will restrict ourselves to the special case

of an equal-cross base (b = a,e= c, andh = f ). It was shown in before that the pair infinite

system (3.28) can be replaced by a regular infinite system of the form (3.15):

xk =
4k5/3

∆cπ

∞
∑

n=1,3

xn

(n2 + k2)n2/3
+ bk, (3.32)

where

bk =
k2/3

∆c

[

4
kπ
− 8

k2π2
(tanh(kπ/2)+ 1/ sinh(kπγ/2))

]

,

∆c = tanh(kπ/2)+ coth(kπγ/2), k = 1,3,5, . . . , γ = c/a.
(3.33)

According to [7], to estimate the lower and upper bounds for the solution of the regular

infinite system (3.32), it is necessary to find the solutions of two auxiliary finitesystems
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(k = 1,3, . . . ,2p− 1):

x̆k =
4k5/3

∆cπ

2p−1
∑

n=1,3

x̆n

(n2 + k2)n2/3
+ bk,

x̃k =
4k5/3

∆cπ

2p−1
∑

n=1,3

x̃n

(n2 + k2)n2/3
+ b̃k,

(3.34)

where

b̆k =
4k5/3

∆cπ

∞
∑

n=2p+1

1

(n2 + k2)n2/3
. (3.35)

The solutions of the auxiliary systems are substituted into the following expression for the

”limiting” limitant V∗pk for system (3.32):

V∗pk =

















bk +

2p−1
∑

n=1,3

ak,nx̆n

















/

















ρk +

2p−1
∑

n=1,3

ak,n(1− x̆n)

















. (3.36)

Substituting the free terms (3.33) and the coefficients of (3.32) and performing reduction, we

get

V∗pk =

1− 2
πk

[

tanh
(

k
π

2

)

+ 1/ sinh
(

kπ
γ

2

)]

+

2p−1
∑

n=1,3

x̆n

(n2/k2 + 1)n2/3

π

4
k1/3

[

tanh
(

k
π

2

)

+ 1/ sinh
(

kπ
γ

2

)]

+ S
, (3.37)

where

S = −
∞
∑

n=2p+1

1

(n2/k2 + 1)n2/3
+

2p−1
∑

n=1,3

x̃n

(n2/k2 + 1)n2/3
.

The sum of the infinite series in the denominator is again calculated by the Euler-Maclaurin

formula (3.30). It is desirable to find a limiting expression of limitant (3.37) ask→ ∞. It has

the form

V∗pin f =

















1+
2p−1
∑

n=1,3

x̆n

n2/3

















/



















q1/3asym(q) −
q−2
∑

n=2p+1

1

n2/3
−

2p−1
∑

n=1,3

x̆n

n2/3
,



















,

where asym(q) =
3
2
− 1

2q
− 2b1

3q2
+

80b2

81q4
− 4928b3

2187q6
+

119680b4

19683q8
− 28627456b5

1594323q10
+O(q−12).

The exact lower and upper bounds for (3.37)

h∗p = inf
k≥2p+1

V∗pk , H∗p = sup
k≥2p+1

V∗pk . (3.38)

allow us [7] to estimate the lower and upper bounds for the variables:

x̄k = x̆n + h∗px̃n ≤ xn ≤ x̆n + H∗px̃n (n = 1,3, . . . ,2p− 1),

h∗p ≤ xn ≤ H∗p (n ≥ 2p+ 1).
(3.39)
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The solutions of the auxiliary systems (3.34) can also be associated with the improved re-

duction method. It is assumed that the approximate equalitiesxn ≈ c0 hold beginning with

2p+ 1. Then the firstp equations in (3.32) form a linear system whose free terms are linear

combinations of the free terms (3.33) and (3.36) of the auxiliary systems (3.34):

xk =
4k5/3

∆cπ

2p−1
∑

n=1,3

xn

(n2 + k2)n2/3
+ c0b̃k + bk. (3.40)

Accordingly, the solution of the linear system (3.40) is represented by the same linear combi-

nation of solutions of these auxiliary systems:

˘̆xn = x̆n + c0x̃n (n = 1,3, . . . ,2p− 1). (3.41)

Figure 3.3: Determination of the exact bounds for limitants

The unknownc0 can be calculated, additionally assuming that˘̆x2p−1. Then the last equation

in (3.41) yields

c0 = x̆2p−1/(1− x̃2p−1). (3.42)

Table 3.2: Monotonic decrease of limitants in the upper bounds and increasein the lower
bounds

p 5 30 100 500 2000
H∗p 0.584784 0.580679 0.580352 0.580284 0.580279
h∗p 0.568374 0.579047 0.580026 0.580254 0.580273
c0 0.564796 0.578991 0.580023 0.580254 0.580273
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A typical property of limitants is [22] monotonic decrease in the upper bounds(3.38) and

increase in the lower bounds with increase in the orderp of the auxiliary systems. Table 3.2

illustrates this property for some values ofp (for γ = 1). For comparison, the table includes

a row of values ofc0 calculated by formula (3.42) corresponding to the improved reduction

method.

It follows from Table 3.2 that the lower-bound estimate produced by the improved reduc-

tion method is worse than that by the limitants method. Asp increases, both lower-bound

estimates tend to each other (in this example).

The use of a limitant curve facilitates the determination of the exact bounds forlimitants.

Such a curve is shown in Fig. 3.3 for 2= 1, p = 5, andq = 201. Lines 1, 3, and 4 represent

the estimates from the first column of Table 3.2, while curve 2 corresponds tolimitant (3.37)

for k ≥ 6.

The upper- and lower-bound estimatesxk and x̄k (3.39) are illustrated by Table 3.3 for the

case where the order of the auxiliary systems is equal to five (γ = 1).

Between the upper- and lower-bound estimates (3.39) there is a row of values of the exact

solutionx∗k obtained using auxiliary systems of higher order.

For comparison, the table includes the solution˘̆xk produced by the improved reduction method.

It follows from Tables 3.2 and 3.3 that the difference between the upper- and lower-bound

estimates increases with the variable number, reaching the maximum values for the limiting

estimatesH∗p andh∗p.

Table 3.3: The upper- and lower-bound estimatesxk and x̄k

k 1 3 5 7 9 11
10xk 1.6733 5.2041 5.5069 5.6185 5.6770 5.8478
10x∗k 1.6722 5.1998 5.4987 5.6064 5.6613 5.6940
10x̄k 1.6717 5.1978 5.4948 5.6004 5.6532 5.6837
10˘̆xk 1.6714 5.1964 5.4921 5.5964 5.6480 5.6480
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Figure 3.4: Surfacez= U(x, y)

3.7 ESTIMATES OF THE SOLUTION STRESS STATE OF THE PRISM

It is not difficult to calculate the stress function inside the prism base after the substitution

of the lower- and upper-bound estimates for the solution of the infinite systeminto (3.16).

Only on the boundary does the exponential convergence of the series degenerate into power

one with exponent 5/3. The surfacez= U(x, y) shown in Fig. 3.4 has been obtained without

accelerating the convergence of the series. The stiffness coefficientC can also be calculated

by formula (3.8). This coefficient is proportional to the volume bounded by the surfacez =

U(x, y).

Table 3.4: The estimatesC+ andC−

γ = c/a 1/2 1 2 3 4 9
C+/(16a4G) 0.571320 1.064226 1.874217 2.573292 3.246777 6.581903
C−/(16a4G) 0.571319 1.064225 1.874216 2.573290 3.246775 6.581901
CA/(16a4G) 0.580 1.0504 1.8436 2.5421 3.2152 6.5487
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The estimatesC+ andC− have been found by solving auxiliary systems of orderp = 30 and

are collected in Table 3.4 for different values ofγ = c/a. According to the estimates, the

first five to six significant digits are exact. The bottom row of the table contains approximate

values ofCA from the monograph [3]. Comparing to the upper and lower bounds showsthat

their precision is one to two significant digits.

Figure 3.5: Surfacez= σzx(x, y)

Difficulties arise when assessing the stresses that, according to (4.17), are proportional to the

partial derivatives of the stress function with respect to the coordinates. On the boundary of

the prism base where the stresses are maximum, the exponent of the Fouriercoefficients is

2/3. Figure 3.5 shows the surfacez = σzx(x, y) over the subdomainsD0,D1, andD2, which

qualitatively demonstrates the distribution of tangential stresses. The surface z = σzx(x, y)

results from that in Fig. 3.5 turned in the plane of the prism base by a right angle. The neigh-

borhood of the vertices of the reentrant angles (the point A in Fig. 3.5) and the neighborhoods

of the intersection points between the prism base boundary and the coordinate axesx andy

appear the most critical zones for the stress state. More critical are the neighborhoods of the

intersection points because right angles in real structural elements are always rounded unlike
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the idealized mathematical model used here. The rounding decreases the level of stress, which

depends on the rounding curvature.

Improving the convergence of series (3.18) for the tangential stressσzx(x, y) at the critical

point (x = f , y = 0) leads to a formula whose principal part 8G/π2 coincides with that of a

similar formula for a prism with a rectangular baseD1 (hereG is Catalan’s constant,γ = c/a);

1
2aGθ

σzx|x= f ,y=0 =
8
π2



















G+
∞
∑

n=1,3

(−1)
n−1

2 exp
(

−nπγ2
)

n2 sinh
(

nπγ2
)



















+

2p−1
∑

n=1,3

(−1)
n−1

2 xn

n2/3 sinh
(

nπγ2
) .

(3.43)

The sum of a Leibnitz-type series remaining in (3.43) can be estimated in an elementary

way [10]. The bounds calculated by formula (3.43) are presented in Table 3.5 for different

values ofγ. The row of values ofσA
zy from the monograph [3] are included for comparison.

The difference between the upper- and lower-bound estimates for the maximum stresses is

insignificant. Forγ ≥ 9, the stress is equal to the stress 8G/π in a rectangular-base prism.

The values in the bottom row of the table are in good agreement with the estimates inthe

neighborhood ofγ = 9. In the neighborhood ofγ = 1, however, the precision of the values in

the bottom row reduces to one significant digit.

Figure 3.6 shows the stressσzx in the subdomainD2. These curves fall into two groups

depending on their behavior. One group includes curves 5, 6, and 7 (y = a+c/2, y = a+3c/4,

and y = f , respectively) and characterizes the neighborhood of the point (x = 0, y = f )

with the maximum stressσzx. The other group includes curves 1, 2, 3, and 4 (y = a, y =

a+c/100, y = a+c/30, andy = a+c/10, respectively) and characterizes the neighborhood of

the point A (the vertex of the reentrant right angle (Fig. 3.5)). The stresses increase abruptly

in a small neighborhood of the point A. To plot curve 1 along which stresses tend to infinity

asx → a, the convergence of the series was improved by formulas (3.22) and (3.23). As a

Table 3.5: The estimatesσ+zy andσ−zy have been found by solving auxiliary systems

γ = c/a 1/2 1 2 3 4 9
5σ+zy/(aGθ) 9.048541 8.839721 7.807063 7.507353 7.441889 7.424544
5σ−zy/(aGθ) 9.048539 8.839719 7.807063 7.507353 7.441889 7.424544
5σA

zy/(aGθ) 9.3331 8.929 7.8505 7.510 7.443 7.425
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Figure 3.6: Stressσzx in the subdomainD2

result, we obtain the formula

1
2aGθ

σ∗zx

∣

∣

∣

y=a
=

2p−1
∑

n=1,3

[

H∗p − coth(nπγ/2)

n2/3
− 8

n2π2 sinh(nπγ/2)

]

sin
(

nπ
x+ a
2a

)

+
1
2

H∗pIm
[

Li2/3

(

−eiπ x+a
2a

)

− Li2/3

(

eiπ x+a
2a

)]

(0 ≤ x ≤ a),

(3.44)

which together with the formula derived from (3.44) by replacingxn andH∗p with xn andh∗p

allows us to estimate the lower and upper bounds for stresses ony = a.

In Figure 3.7 estimates the local perturbation of the stress state near the pointA are given.

These estimates have been obtained after improving the convergence of theseries forσzx(x, y)

on x = a (0 ≤ y ≤ a) based on (3.25). The following formula similar to (3.44) has been

obtained:

1
2aGθ σ

∗
zx

∣

∣

∣

x=a
=

2p−1
∑

n=1,3

yn − H∗p

n2/3
cos

(

nπ
y+ a
2a

)

− y
a

+
1
2

H∗pRe
[

Li2/3

(

exp
(

iπ
x+ a
2a

))

− Li2/3

(

−exp
(

iπ
x+ a
2a

))]

.

Curves 1, 5 in Fig. 3.7 correspond to the following values ofγ = c/a: γ = 1/4,1/2,1,2,4.

It should be noted that all the curves in Fig. 3.7 are antisymmetric about the origin of coordi-

nates.

Figure 3.7 leads us to the conclusion that the stress state is highly localized in a cross with

short legs and high level of tangential stresses in a cross with long legs because the stress state
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Figure 3.7: Local perturbation of the stress state near the pointA

is less localized here. Note that the abruptly decreased difference between curve 4 (γ = 2)

and curve 5 (γ = 4) is indicative of a limit point near curve 5.

Indeed, the curves withγ > 4 are hardly different from curve 5. The stress pattern near the

point A remains almost the same forγ ≥ 4.
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CHAPTER 4

NUMERICAL METHOD

4.1 ALGORITHM OF SUCCESSIVE APPROXIMATION

Now we will consider the algorithm of successive approximation. This algorithm helps to

obtain more accurate location of pointsM j (M j∗) on the boundaryL. So this algorithm will

let us build the approximate polynomial with the minimum deviation ofL′ from L.

Here is the sequence of steps:

1. Prestore some number of nodesm= m1 and define somehow coordinates

z(0)
ja1 = x(0)

ja1 + iy(0)
ja1 (4.1)

of nodesM j of boundaryL in a zero-approximation. These nodes we will mark asM(0)
ja1 (see

Fig. 4.1).

2. Take down pointsM(0)
ja1 normally onto the curveL to prevent probable deflection. LetM(0)

j1

(z(0)
j1 ) be new points.

3. Compute coefficients using (2.13)

C(0)
k1 =

1
m1

m1
∑

j = 1
z(0)

j1 e−ikθ j (k = 1, . . . ,m1) (4.2)

of function (2.12)

z= ω(0)
m1(ζ) =

m1
∑

k = 1
C(0)

k1 ζ
k (4.3)

in a zero-approximation. Hereθ j =
2π
m1

j ( j = 1, . . . ,m1).
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Figure 4.1: Take down pointsz(0)
ja1 normally onto the curveL

4. Compute coordinates ofM(0)
ja∗1

z(0)
ja∗1 = ω

(0)
m1(e

iθ∗j ). (4.4)

These points correspond to intermediate nodes in a zero-approximation. Here θ∗j =
π

m1
(2 j −

1) ( j = 1, . . . ,m1). Note that these points are not necessary be on borderL.

5. Take down pointsM(0)
ja∗1 normally onto the boundaryL. After that we will have pointsM(0)

j∗1

with coordinatesz(0)
j∗1 ( j = 1, . . . ,m1).

6. Using (2.19) lets compute coefficients

C(0)
k∗1 =

1
m1

m1
∑

j = 1
z(0)

j∗1e−ikθ∗j (k = 1, . . . ,m1). (4.5)

of function (2.15)

z= ω(0)
m∗1

(ζ) =
m1
∑

k = 1
C(0)

k∗1ζ
k, (4.6)

in a zero-approximation. Hereθ∗j =
π

m1
(2 j − 1) ( j = 1, . . . ,m1).

7. Compute coordinates ofM(1)
ja1

z(1)
ja1 = ω

(0)
m∗1

(eiθ j ) ( j = 1, . . . ,m1).
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These points correspond to main nodes in a first approximation. Note that these points do not

necessary be on borderL.

8. Take down pointsM(1)
ja1 normally onto the boundaryL. After that we will have pointsM(1)

j1

with coordinates

z(1)
j1 = x(1)

j1 + iy(1)
j1 ( j = 1, . . . ,m1).

Let these points are a first approximation of pointsM j . Then starting from step number 3 we

will repeat the algorithm until nodesM(λ)
j∗1 coincide withM(λ−1)

j∗1 .

9. Finally we get polynomial

z= ω(λ)
m1(ζ) =

m1
∑

k = 1
C(λ)

k1 ζ
k.

This polynomial can be controlled by building big amountN of points of borderL′. The

equation forL′ will be ω(λ)
m1(eiθ).

10. Let∆ be a deflection ofL′ from L, whereL is boundary ofS. If ∆ less then permissible

valueε and curveL′ does not have double points and cusps then finish the algorithm.

11. If deflection∆ is grater then permissible value then amount of nodes is doubledm2 =

2m1 and the algorithm starts from step 1. New zero-approximation for main nodeswill be

M0
ja2 ( j = 1, . . . ,m2)

z(0)
ja2 = ω

(λ)
m1(ζ) =

m1
∑

k = 1
C(λ)

k1 eikθ j ( j = 1, . . . ,m2)

where

θ j =
2π
m2

j ( j = 1, . . . ,m2).

We will double the amount of nodes until the polynomial

z= ω(λ)
ml

(ζ) =
ml
∑

k = 1
C(λ)

kl ζ
k

satisfies the condition: the deflection∆ of a curve with parametric equationz= ω(λ)
ml

(eiθ) from

the borderL of domainS is less then permissible value.

After that we can reduce number of interpolation nodes (power of interpolation polynomial).

Reduced number of nodes should be in the range (ml
2 ,ml ] but only if it is met the condition

∆ < ε.
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Calculations are made in such way:

(a) Let newml+1 beml − 1

(b) Calculate coordinatres of nodesM(0)
ja(l+1)

z(0)
ja(l+1) = ω

(λ)
ml

(eiθ j ),

where

θ j =
2π

ml+1
j ( j = 1, . . . ,ml+1).

(c) Take down pointsM(0)
ja(l+1) normally onto the boundaryL. Also make the sequence of

approximations 2 - 7.

(d) Control resulting polynomial by condition

∆ < ε.

If ∆ < ε then let

ml+2 = ml+1 − 1

and so on starting from step (b) till we find minimal number of nodesm. This numberm

should satisfy the condition∆ < ε.

Let sequence of steps 2 – 7 be inner circle. In inner circle the number of interpolation nodes

does not change. Let sequence of steps in which the number of interpolation nodes is changed

(decreased or increased) be outer circle. Now it is understood the notation: upper index of

z or Ck corresponds to number of inner circles; the last digit of lower index correspondes to

number of outer circles.

4.2 IMPROVEMENTS

Please note that conformal map which is built by previously described algorithm can be used

for solving of boundary value problems(e.g. in theory of elasticity).

As for theory of elasticity local deflections of boundaryL′ from boundaryL will seriously ef-

fect on local stress on boundary. These local disturbances of stress field are caused uppermost

not by deflection∆ of boundaryL′ from givenL but they are caused by distortion of radius of
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curvature. And this is true because boundaryL′ has form of wave curve which passes main or

intermediate interpolation nodes. In case of wave curve the radius of curvature of boundaryL′

changes in wide range. For complex curveL the radius of curvature can change it’s direction

twice in the range of single step.

According to [11] the function

z= ω(ζ) =
m
∑

k = 1
C̃kζ

k, (4.7)

where

C̃k =
Ck +Ck∗

2
(k = 1, . . . ,m)

has same disadvantage. The curveL′′ corresponding to function (4.7) has nearly twice smaller

deflection∆ but boundaryL′′ saves it’s form.

Because of local distortions of boundary for coefficientsCk or Ck∗ as well as for coefficients

C̃k there are essential errors in determining of stress in boundary points. These errors can

reach 50÷ 80% (and even more) as compared with the exact solution for curveL. It also is

easy to see that increasing of power of mapping function will not correctthis situation.

We can increase the accuracy of boundaryL′ and accuracy of solution for boundary-value

problem by a simple transformation – the integral averaging. We will apply this transforma-

tion to approximate solution on intervalθ − πm ≤ θ ≤ θ +
π
m which is equal to one step of

interpolation. So we have:

z= ω̃n(ζ) =
m
2π

π
m

∫

− πm

ωn[ρei(θ+t)]dt (4.8)

It is good to use here function ˜ωn(ζ) according to (4.7) because the corresponding curveL′′

has deflections to both sides of the curveL. After integration we get

z= ω̃n(ζ) =
m
2π

π
m

∫

− πm

m
∑

k = 1
C̃kρ

keik(θ+t)dt =
m
2π

m
∑

k = 1
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









C̃kζ
k

π
m

∫

− πm

eiktdt

























=

m
∑

k = 1
Ckζ

k sink πm
k πm

=

m
∑

k = 1
Dkζ

k.

(4.9)

Here

Dk = C̃kσk (k = 1, . . . ,m), (4.10)
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whereσk (k = 1, . . . ,m) – weighting coefficients, which are defined by

σk =

sink
π

m
π

m

(k = 1, . . . ,m). (4.11)

The border ofL′′′, which corresponds to (4.9), is nearly to match borderL. This means that

L′′′ has deflection fromL much less then curvesL′ andL′′. But the biggest advantage is that

errors in radius of curvature are not more than 5÷ 10%. In the same time curvesL′ andL′′

could not be compared with curveL in the sense of radius of curvature. On the one step of

interpolation these curves (L′ and L′′) could change not only magnitude but also a sign of

curvature.

Please note that the operation of integration is applied to all approximate expressions of con-

forming map. And because of this, in future, we will not distinguish between denotes for

coefficients ofω̃n(ζ) andωn(ζ). Even after the essential increasing of accuracy of the border

of S′ (using weighting coefficients (4.11)) local distortions of the field of stresses partly can

be saved.

On the other hand the real machine elements and structural members are made withsome

tolerance of the form. This means that real boundary does not match the ideal boundaryL.

4.3 SYMMETRICAL PROFILE CASE

It is usual case when we need to solve a particular problem for a profile which has one ore

more (q) symmetry axes. Lets choose the coordinate origin in the point where symmetryaxes

cross. Coordinate axis’x direction will match one of these symmetry axes. Then interpolation

polynomial which agrees with mapping function on interval 0≤ θ ≤ π
q

in interpolation nodes

ζ = ζ j = eiθ j , whereθ j =
π

qm1
j ( j = 0, . . . ,m1) will be

z= ωm1(ζ) =
2m1 − 1

∑

k1 = 0
dqk1+1ζ

qk1+1. (4.12)

Here coefficientsdk = dqk1+1 are real. The formulas fordk can be easily found from (2.13):

dk =
1

m1























1
2

[|z0| + (−1)
k−1
q |zm1 |] +

m1 − 1
∑

j = 1

(

x j cos
π

qm1
k j + y j sin

π

qm1
k j

)























,

k = 1,q+ 1, . . . , (2m1 − 1)q+ 1,

(4.13)
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wherezj = x j + iy j are coordinates of nodesM j of the borderL. HereL is a border of domain

S. Nodesζ j ( j = 0, . . . ,m1) from a unit disk after the conformal map are transformed toM j

the interpolation nodes.

In the same way as for arbitrary profile form we can develop an algorithm of successive

approximation. Let us build an interpolation polynomial:

z= ωn∗(ζ) =
2m1 − 1

∑

k1 = 0
d(qk1+1)∗ζ

qk1+1. (4.14)

This polynomial will be equal to functionz = ω(ζ) in interpolation nodesζ∗j = eiθ∗j , where

θ∗j =
π

2qm1
(2 j−1) ( j = 1, . . . ,m1). Coefficientsdk∗ = d(qk1+1)∗ can be found from next formulas:

dk∗ =
1

m1

m1
∑

j = 1

[

x j∗ cos
π(2 j − 1)

2qm1
k+ y j∗ sin

π(2 j − 1)
2qm1

k

]

,

k = 1,q+ 1, . . . , (2m1 − 1)q+ 1,

(4.15)

wherezj∗ = x j∗ + iy j∗ is the value of mapping function in interpolation nodesζ∗j .

The methodology for building of successive approximations for the symmetricprofile is the

same as for the general case but in case of symmetric profile we use other formulas (4.12) –

(4.15).

4.4 SELECTION OF INITIAL APPROXIMATION

Let’s consider a problem of selection of initial approximation.

We will consider two ways of solving this problem. Since we use described above algorithm

for calculation these two ways are practically identical.

1. Usage of electrical simulation of conformal mapping for experimental determination of

nodes of conformity of boundaryL and boundary|ζ | = 1 [42].

2. The numerical solution of the problem, starting fromm1 = 2, when one nodeM(0)
2 is known

exactly (it is defined by normalization). The second oneM(0)
1 can be selected arbitrary.

The second way of selection of initial approximation is trivial. Let us consider first way more

detailed.
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Conformal mapping of unit disc|ζ | < 1 into domainS (under described above normalization

conditions) behaves like this:

1) orthogonal net which consists of radii (θ = const) and circles (ρ = const) of disc |ζ | < 1

will be mapped into orthogonal net of lines which start atz = 0 and ending on the borderL

and closed linesρ = const;

2) circle of infinitesimal radius|ζ | = δ on planeζ maps into circle of infinitesimal radius

|z| = δ1 = δ|ω′(0)| on planez;

The same situation can be simulated on electrical machine. This is because of properties

of equivalent potential lines. It is known that equivalent potential lines and current lines

make form orthogonal net in some conditions. Because of uniqueness ofconformal map that

orthogonal net will match the orthogonal netθ = constandρ = const.

4.5 SOLUTION OF TORSION PROBLEM

As an example we will solve a torsion problem for the rod (prism) with the cruciform profile.

First let us consider the problem definition. Let us consider the rod (the prism solid) which

has cruciform base. Lengthl between prism bases is much more grater then the base sizes.

Also we add right-hand coordinate systemxOyz1. Superpose planexOywith one of the prism

bases and axesz1 turn to center axis of a rod. Let us fix the base of rod (the same as lays in

planexOy). We will rule out travel of the fixed base as a unit but deformations are allowed.

The center of forces on another base will be the node of intersection ofz1 and another base.

It is known that in case of torsion Hook’s law expresses dependence of rotation angleφ on

torsional momentMT . Torsional momentMT characterizes tangent directionsσzx, σzy on

base of prism

φ =
MT l
GJT
,

wherel – prism height,G – modulus of rigidity,JT – torsion constant.

The Hook’s law can be written in such a way

θ =
MT

C
. (4.16)
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Hereθ = φl is the specific torsion angle,C = GJT is the stiffness coefficient for torsion. The

tangent directions in prism can be written using Prandtl’s function of stressesU(x, y)

σzx = Gθ
∂

∂y
U;σzy = −Gθ

∂

∂x
U. (4.17)

The Prandtl’s function is defined by solution of Dirichlet’s problem for Poisson’s equation in

domainD – the base of the prism

∂2

∂x2
U +

∂2

∂x2
U = −2; U |Γ = 0. (4.18)

Formulas (4.17) allow us to express torsional moment through stress function

MT = 2Gθ
"

D

Udxdy. (4.19)

After substitution of (4.19) into Hook’s law 4.16 we get the formula for stiffness:

C = 2G
"

D

Udxdy. (4.20)

We can see that the problem of torsion of the rod is equivalent to the solvingof Poisson’s

equation. This differential equation is solved by method of conformal maps. Usage of this

method simplifies solving of the problem of torsion. Solution of the problem can be evaluated

using the conformal map which maps from unit disk (|ζ | < 1) into given domain (in our case it

is cruciform domain, Fig. 4.2). In general finding of such conform map isnot trivial problem.

The most effective solution of boundary-value problem for simply connected domain can be

produced when it is known the conformal mapz = ω(ζ) that maps from unit disk (|ζ | < 1)

into given domainS (in our case it is cruciform domain). We will search this conformal map

as a polynomial (2.1) as it was described in Section 2.2.

Please note that in corners of profile conformity is violated, as it was mentioned in Section

2.1. This means that a polynomial (2.1) of a finite power will not provide us a conformal map

in corners of a profile. Because of this the piecewise-smooth boundary should be transformed

into curve with continuously changing tangent. In most of cases corners of the boundary can

be rounded by arcs of the constant radius as it happens in real machineelements. In case of

cruciform domain corners can be transformed into quarters of circles.
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Figure 4.2: Cruciform profile

Using the coefficients of polynomial (2.1) which implements conformal mapping we can ex-

press tangential stresses on the border. Let

Dk =

m−k
∑

r=1

Ck+rC̄r (k = 0, . . . ,m− 1)

and
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
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





B−k =

m−k
∑

r=1

rCrC̄r−k (k = 0, . . . ,m− 1),

Bk = kDk + B̄−k (k = 0, . . . ,m− 1).

Then tangential stress can be expressed as

τθ =
µτ

|ω′(σ)|

















B0 + 2Re

















m−1
∑

k=1

B̄−kσ
k

































.

Torsional stiffness

D = µ
π

2















B0D0 −
m−1
∑

k=1

k|Dk|2 + 2Re

















m−1
∑

k=1

DkB−k































.
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There is one feature described in [43] – the selection of way for deflection nodes. In case of

cruciform profile (in which corners are rounded by quarters of the circle) deflection is made

through the perpendicular to tangent.

n = 2, K = 8.4194 n = 8, K = 29.0221

n = 16, K = −936.7236

Figure 4.3: Algorithm of successive approximations

On Figure 4.3 it is shown the working process of algorithm of successiveapproximation for

solving of torsion problem for the rod with the cruciform profile. Heren is a number of

steps in algorithm. The curve shown on the figures is a graph of polynomial that implements

conformal map. It can be seen that with increasing of number of steps curve comes closer to

border of profile.

Also it is interesting to check not only matching of curve forms but also radiusof curvature
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in inner cornerK. The curvature in inner corner is calculated from such a formula

K|L =
1

|ω′(σ)|

[

1+ Re

(

σω′′(σ)
ω′(σ)

)]

and radius of curvature is inverse value

r =
1
K
.

In case of our example we rounded corners of the profile with the quarters of circles with the

radiusr =
1
K
= 10−3. So we can also see that the radius of curvature also converges to the

real radius of profile when number of steps increases.

Also we investigated dependence of stress in inner corners on radius ofrounding arcs. This

dependence is shown on the Plot 4.4. In this figure the abscissa is the rounding radius and

ordinate is stress value. This plot was developed for profile with the sized = 2a (please see

Fig. 4.2).

Figure 4.4: Dependence of stress in inner corner on radius of curvature
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CHAPTER 5

COMPARISON AND CONCLUSIONS

In this thesis we introduced a numerical method for conformal mapping basedon algorithm of

successive approximations. In Table 5.1 a comparison of values of stiffness coefficient calcu-

lated by the Chekhov’s method described in the chapter 3 (upperC+ and lowerC− estimates)

and valuesCK found by conformal maps method (given values are calculated for the cross-

shaped domain with rounded corners). The bottom row of the table containsapproximate

values ofCA from the monograph [3]. In Fig. 5.1 you can see the relative error estimation

graph for conformal map method (solid line) and Abramyan’s method (dashedone).

Please note that estimation of stiffness coefficient in [3] is very crude. Maybe this error of

estimator ensue from errors in calculation, e.g. accumulated rounding error on old computers.

As for Chekhov’s method we consider it results to compare with results obtained with the

help of conformal map method. Chekhov’s estimation is considered as the exact (analytical)

solution of the torsion problem for the cross-based (with the right angles)prism.

We should note that estimateCK obtained by conformal map method is less then lower

Chekhov’s estimateC− which are calculated for the cross-shaped (without rounded corners)

domain. This can be explained by the fact that according to (4.20) the valueof stiffness

Table 5.1: Comparison of exact and numerical solutions

γ = c/a 1/2 1 2 3 4 9
C+/(16a4G) 0.571320 1.064226 1.874217 2.573292 3.246777 6.581903
C−/(16a4G) 0.571319 1.064225 1.874216 2.573290 3.246775 6.581901
CK/(16a4G) 0.570416 1.063575 1.863686 2.571791 3.238395 6.571751
CA/(16a4G) 0.580 1.0504 1.8436 2.5421 3.2152 6.5487
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Figure 5.1: Relative error estimation

coefficient is directly proportional to the volume bounded by the surfacez= U(x, y).

Also please note that the introduced conformal map method (see Section 2.2) isreally con-

venient. As we said above this method can be easily applied in practical usage, e.g. in

engineering calculations. This is because of property of real world machine elements have no

right angles. Instead of right angles there is some curve which can be easily approximated by

arcs of finite radius.

Another practical advantage of the conformal map method is relatively easyway of program

implementation. Convenience in programming is because of modules (libraries withthe set

of functions) written for the prism with the specific base are easily extendedand adapted to

new complex domains. Especially the core algorithm functions are not changed for all simply

connected domains but it is only changed the algorithm of fetching down of nodes.

And the main advantage of the conformal map method consists of the fact that for most of

complex simply connected domains analytical solution cannot be found. Or even if it is found

that it is hard to use it in practice. But numerical solution found by conformal map method

can be easily found and used (e.g., in engineering calculations)
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