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ABSTRACT

NUMERICAL METHOD FOR CONFORM REFLECTION

Kushnarov, Andriy
M.S., Department of Scientific Computing
Supervisor : Assist. Prof. Dr. Hakdbktem

January 2010, 45 pages

Conformal map has application in a lot of areas of science, e.qg., fluid flat,doaduction,
solidification, electromagnetic, etc. Especially conformal map applied to elastieityy can
provide most simple and useful solution. But finding of conformal map fistaam domain
is not trivial problem. We used a numerical method for building a conformal taaolve

torsion problem. In addition it was considered an infinite system method to s@v&ame

problem. Results are compared.

Keywords: Conformal Map, Numerical Methods, Torsion Problem, it&i8ystems



Oz

KONFORM REFLECTON ICIN NUMERIK METOD

Kushnarov, Andriy
Y lksek Lisans, Bilimsel HesaplamaBmi
Tez Yoneticisi : Prof. Dr. Haka®ktem

Ocak 2010, 45 sayfa

Konformal mapin (Acikorur @nderim) akiskanlar dinami, 1s1 iletimi, donma elektromanyetik
gibi bilimin birgok alaninda uygulamalari bulunmaktadzellikle esneklik kuramindaki en
basit ve kullanish sonuglar konformal mapntemiyle bulunmaktadir. Ancak rastgele bir
tanim Kimesi icin konformal mapin bulunmasi@adan §zulebilir bir problem déildir. Bu
tezde burulma probleminibgmek icin konformal mapi bulan bitimerik metod gelistirilmistir.
Gelistirilen yontem ayni problemin ¢@mil icim duginiimis olan sonsuz sistem metoduyla

karsilastiriimistir.

Anahtar Kelimeler: Konformal Map, timerik Metodlar, Burulma Problemi, Sonsuz Sistem-

ler
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CHAPTER 1

INTRODUCTION

1.1 CONFORMAL MAP AND ITS APPLICATIONS

A conformal (or angle-preserving) map between two domains is a functiochvpreserves
oriented angles between curves as well as their direction. Such functisarpes both angles
and the shapes of infinitesimally small figures, but not necessarily their §iomformal
mapping has for more then a century, been powerful tool in mathematidéseenigg, physics
and a lot of other subjects of the science, especially in solving variouilpditferential

equations (PDESs).

Some classical applications of conformal mappings to steady state problemaghefmatical
physics and especially for the solution of the Laplace equation can bel tradbe begin-
ning of the twentieth century. A noteworthy contribution to the theory of elastisityy
Muskhelishvili [32]. Modern contributions can be found in areas of fflod/, heat conduc-
tion, solidification, electromagnetic, ion optics, acoustics, vibrations, waideg and grid
generation. To name a few; a detailed review and biography of the apptisatioough
1972 was supplied by Laura [25]. The problem of flow and heat tearisfconduits of arbi-
trary shape in space vehicles was investigated by Sparrow and HajikgB6ik This study
was extended to noncircular conduits with uniform wall temperature byr€éesat al. [6].
Unsteady heat conduction problems in bars of arbitrary cross sectiengsimvestigated by
Laura and Chi [26]. Ives [19] analyzed the incompressible flow betviwe concentric cir-
cles and computed the streamlines by using Garrick’s method of conjugatiofusy The
problem of solidification of steady state and transient frozen layers tamgalar channels

has been solved by Siegel, Goldstein and Savino [35]. In transient szdihin the shape



of a frozen region is determined by mapping it onto a potential plane and tmputing
the time-dependent conformal map between the potential and the physital dlhe ther-
moelastic problem of uniform heat flow distributed by an isolated hole of a/&om was
investigated by Florence and Goodier [12] and extended by Deresig@¥ita holes which

are mapped onto the unit circle and approximated by polynomials.

Conformal mapping has been applied to acoustic waveguides of complicatesisection
where the Galerkin method is applied to obtain a functional approximation fasalugion
of the boundary value problem. The gain of a solid propellant rocket mtbra starlike
internal propagation is in the form of a circular cylinder bounded by a ts®cTo solve any
boundary value or eigenvalue problem, the gain cross section is corlfipmmepped onto
a circle or an annulus. Studies on the shear vibrations of such rocketawatoe done by
Baltrukonis et al. [4] and Laura and Shahady [27]. Conformal mapfgalghiques are used
in a study on the Rayleigh-Taylor instability for ideal fluid by Menfikand Zemach [30, 31].
Grid generation for cascades of blades and inlet flows has been iatestly Inoue [17, 18].
Other contemporary applications can be found in the book on numerictaromsd mapping

edited by Trefethen [40].

1.2 NUMERICAL METHODS

The oldest known transformation was used by Claudius Ptolemy (ca. 150. A'Bis map-
ping is known as the stereographic projection of the sphere and it espisethe celestial
sphere. In a totally dierent mapping of a sphere onto a plane, known as Mercator’s pro-
jection, the spherical earth is cut along a meridian circle and conformally edlajopa plane
strip and published in 1569. Even till now all sea maps are constructed bmétisod. In
1851 Riemann made a breakthrough in conformal mapping theory. He danelamental
result, known as the Riemann mapping theorem, which has since been a fpoimnfpr all

subsequent developments in the theory of conformal mapping.

Since then a lot of methods for building of conformal map were developée. r@sults of
some of these methods provide us with an explicit form of a function whichoappately

evaluates the mapping function for a certain source region.
One major approach in developing methods for numerical conformal majgdiraged on the
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following interpretation of the Riemann mapping theorem: there exists a conforagpgping
f: D — U with f(z) = 0 and f'(z) nonzero real, whergy € D, and this function has a
power series expansioi(z) = c1(z— z9) + Z cn(z — 20)", with ¢; nonzero real andy € D,
which converges uniformly in every closgazdisk with cergand contained ifD. However,

a polynomial which is a good approximation bfin D is not the same as a truncated power
N

series. If a polynomiap(z) = c}(z - 2) + Z(z— 20)" approximates with accuracye > 0
then it is necessary that every termpuf) ?rzﬁjst approximate the corresponding term of the
power series with accuraay > 0 on the seD N B(z, R), whereR = |z - 7] is the radius

of convergence of the power series. All this means is that a polyngmidiich is a good
approximation of the power series starts in the same way as the power batitg relative

error in the co#icients increases with increasing24].

The widely used current computational techniques are based on thelrgggation methods
where an integral equation is developed to relate the boundaries of thiemroegion and
the standard region like the unit disk. Once the boundaries are discratipggoints, the
integral equation is reduced to a system of algebraic equations. The majoégearches in
computational conformal mapping is basically divided in two groups: thedirst where the
maps are constructed from a standard region(such as the unit disk) énpodaiblem region,

and the second, where the maps are constructed the other way around.

General methods of approximate conformal map building can be foundveysarticles by
A.F. Bermant and A.l. Markushevich [5], M.K. Govurin and L.V. Kantaah [13]. Also
one can check monographs by L.V. Kantarovich and V.I. Krilov [21]Kdpenfels and F.

Shtalman [23], P.F. Filchakov [11] et al.

There are several types of approximate methods for building the mappintidnz = w(?)
— analytical, graphical-analytical and experimental-analytical. In these nfetpproximate

expression of mapping function is built as polynomial
m
z=w(Q)= ), C* (1.1)
k=1

where, in general, cdigcientsCyx = « +i8 are complex. In general, representation of approxi-
mate mapping as a polynomial (1.1) makes solution of boundary-value probfgreciably
easy. The most easy solution of boundary-value problem can be fexaatly when the

conformal mapping is represented as a polynomigl pdwers.
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There was developed an alternative method for building of interpolatiompotials for sim-
ply connected and biconnected regions using Lagrange polynomialsit das designed the
methodology for constructing of successive approximations with addingrietiiate nodes.

Description of this method can be found in work by A.G. Ugodchikov [41].

In this thesis we introduced an algorithm for building conformal map numeridalighapter
2 the way of approximation of conformal map by polynomial is presentedreTisea de-
scription of infinite systems method in Chapter 3. In Chapter 4 we introducetbarthm
of successive approximations for conformal map building. Finally we coenpalutions re-

ceived by numerical algorithm and infinite systems method.



CHAPTER 2

CONFORMAL MAP METHOD

2.1 PROBLEM DEFINITION

Let us consider the most simple problem — a problem of approximating to adaic= w(?).
This function is conformal map from unit digk] < 1 into the domairs of complex plane
Z = X+ iy. The domainS is bounded by piecewise-smooth contdur Let the origin of
coordinates for the planebe insideL. We will normalize conformal map in the way such
that the center of the unit disk = /o = 0 maps toz = zg = 0 € S and the pointAy, of
the boundary of the unit disk with the complex coordinatég = 1 maps toM, from the

boundary ofS (Fig. 2.1).

z=x+y My (=E+140 Ay

My (g, y1)

_-nlfm "'1m

=

Figure 2.1: Conformal map from unit di${ < 1 into domainS

Building the conformal map we will keep in mind the theorem [42].
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Theorem 2.1.1Let X be finite or infinite simply connected domain on the complex plane
z = x+ iy with the simple closed boundary. Lefo) be function regular irk and continuous
up to a boundary. Let point z defined by 2zv(¢) circumscribe simple closed circuitwhen
, circumscribe circuity. Then relation z= w(¢) is conformal map from S (enclosed witrﬁh

into X.

A polynomial of positive degrees is a regular function in unit digkc 1. So we will search

for approximation of conformal map that maps unit digk 1 into domairS as a polynomial
m
z=wn(@) = ) C*. (2.1)
k=1

This means that we have to find ¢heientsCy = ax + iBk(k = 1,...,m) such that curve

L’(with the parametric equatian= wm(€?) ):

¢ will not have double points and cusps,
¢ will have set of common points with the boundaiy

o deflection of curvd.’ from boundar)fof domainS should be in tolerable limit.

Note that conformity is violated in the corner points. So the exact mappingroécpoints

(at least two-tangent points) by the polynomial (2.1) is impossible. Bea#Hukes the piece-
wise smooth boundarly should be transformed into curtewith the continuously changing
tangent. In general corners btan be rounded by arcs of constant radius. Such rounding can

be found in real world, for example in machine elements and structural esmiig.

2.2 CONSTRUCTION OF CONFORMAL MAP

Let Aj (j = 1,...,m) be points equispaced on the borger the boundary of unit disk. Let
these points have complex coordinages: €%, whereg; = HJ (j =1,...,m). Suppose for
a while that we know location of pointsl; with coordinateg; = x; + iyj such thatA; are

transformed intdM; by the conformal map of unit disk| < 1 to domainS (Fig. 2.1).

To solve the problem of approximate conformal map we should construgbtileomial (2.1)

such that



e at/ = 0 it will be zero ¢ = 0 — first normalization condition),

e atj(j=1,...,m) itwill be equal to giverg; (j = 1,...,m).
Note that value ofy, is the second normalization condition, otlzg(j = 1,..., m) are unique
but previously not known.

It is easy to see that this problem is the same as the problem of constructigarpblation
Lagrange polynomiaf,(¢). Ininterpolation nodeg; (j = 1,...,m) the Lagrange polynomial

possesses the valué§j) = fj. This polynomial can be written as

i AQ)
fn(0) = JZ fjm (2.2)
where m
AO =[] - (2.3)
j=1

We should keep in mind the normalization conditiof0) = 0. Now we will construct the

Lagrange polynomial:

m
om(@) = ) Cl® (2.4)
k=0

This polynomial will match to values of conformal map= () in interpolation nodes
{={¢o=0andl =¢j = exp(iej) (j =1,...,m). Itis easy to see that polynomial (2.4) will

be
m

_ A)
z=wm(l) = JZ Jm (2.5)
where
mrﬂ@§W§ﬂ@a) (2.6)
j=1

We know that/j = V-1 = exp(iﬁj) (j=1,...,m), so
AlQ) = ¢(™ - 1), (2.7)
A)=m (2.8)
After substitution (2.7) and (2.8) into (2.5) we have

1" L5 2.9)

Z=wm(() =




Inside the unit diskZ| < 1 it is true

Z; — — -
T T LA GOt GO (2.10)

Note thatzk = k™. After substitution (2.10) into (2.9) we have

m
2= o= = > T+ GO+ -+ GO (2.11)
=1

After simple cancellation in (2.11) we will get
m
on(@)= ) Gl (2.12)
k=1

where

m
Cy = ax + Bk = % > ze ™ (k=1,...,m). (2.13)
j=1

Polynomial (2.12) satisfies normalization conditions and the boundawith the equation

Z = wm(¢) has at leasin nods in common with. a boundary of simply connected dom&n

After simple cancellation of real and imaginary parts in (2.13) we have
m
1 2, . .2 .
= — -Zl(Xj COSEKJ +Yj smﬁkj),
g (2.14)
1 2r, . .2 .
Bk = = jZl(yj cosﬁkj = X smﬁkj).

After calculation of cofficientsCy (k = 1,...,m) we should build boundarl’. We should
also be sure that curve does not have double points and cusps fleatiol® of curvel’ from

boundaryL is in tolerable limit.

We can conclude that in case of known nodiés(j = 1,...,m) from boundaryL process of

construction of approximate conformal map as an interpolation polynomialys eas

The problem of match making between nodes of boundarasdL is separate and fiicult
problem by itself. In particular it is nearly impossible to predefine this matcttlgx&ecause

of this we will use the approximate methods of determining this match. Another way is
algorithm which conjectures the first approximation and then let us obtain atagrate

location of such points.



Similarly to polynomial (2.12) we will build another approximation polynomial
m
o) = Y Gl (2.15)
k=1

such that it matches to values of conformal mapw(¢) in interpolation nodes = ¢y = 0 and
{=¢p = V-1=¢€%, Wheree}‘ = %(Zj -1)(j =1,...,m). On the picture (2.1) interpolation
nodes! = (j- are marked a#\j-. These nodes are called intermediate and corresponding

nodesM;- on boundaryL have coordinates;:.

In the same way as for polynomial (2.5) we can find

m

_ _ , A({)
Z=ww({) = jgozrm’ (2.16)
where
AQ) =™+ 1), (2.17)
A(j) = -m (2.18)

After elementary cancellation in (2.16) we have formulas fofficcients of polynomial (2.15)
AL -
Ce =ak +ife == > zpe™ (k=1,...,m). (2.19)
M=

This formula is the same as

m
1 T, N/ S
e = — .Zl (X} cosm(ZJ - Dk +yj SIHE(ZJ - 1)k),
= (2.20)
=23 (v cosZ(2] - Dk - x;- sin Z (2] - 1K)
,Bk*—mj_1YJ* <) prsinie] '




CHAPTER 3

METHOD OF INFINITE SYSTEMS

3.1 INTRODUCTION

The problem of torsion of a polygonal-base prism was reduced in [2Etadimerical solution
of completely regular infinite systems of linear algebraic equations. Studidssosubject
are reviewed in the monograph [3]. The theory of regular and quas#eipfinite systems
applied to other problems in the mechanics of elastic bodies is addressedranoefs [14,
15, 16, 21, 22, 29, 20, 28, 36, 37, 38]. The torsion of a cross-pesm is studied in [1, 3].
Not very accurate solutions of infinite systems allow a satisfactory assesefiie torsional
stiffness of a prism, but do not allow a reliable analysis of the stress statejadispia the

neighborhood of the vertex of the reentrant angle.

The limitants method was proposed in [22] to estimate solutions of regular infirdtersy
of linear algebraic equations. The applications of the method are reviewedeirences
[14, 21, 29, 28]. The use of the limitants method iffidult because of the necessity of
solving a great number of finite systems of linear algebraic equations. awaetive is the
improved reduction method [14, 15], which leads to one finite system otiegsaHowever,
this method does not allow assessing the reliability of approximate solutions. Aicatidn

of Koyalovich’s limitants method that estimates the upper and lower bounds\iggonly
two auxiliary systems of linear algebraic equations is proposed in [7]. Weigélthis method

here to solve the problem of torsion of a cross-base prism.
We would like to talk about method described in article [8] more detailed.

10



3.2 PROBLEM DEFINITION

As it was described in previous chapter Hooke’s law for a prism undsiotocan be written
in form (4.16). The tangential stresses in the prism are expressed indétinesPrandtl stress
function (4.17). Which is determined by solving Dirichlet’s problem for Paiigs equation

(4.18) in the domain occupied by the prism base.

Following paper [3], we will restrict ourselves to a cross-shaped dosyaimmetric about the
coordinate axes (Fig. 3.1). The symmetry allows us to consider three malixDg, D;,

andD» with boundaries dashed (see the Fig. 3.1).

Figure 3.1: Subdomairsg, D1, andD»

3.3 REPRESENTATION OF THE SOLUTION OF DIRICHLET'S PROBLEM

In references [1, 3], a solution was obtained by introducing a systesmadfiary functions.

We will outline a diferent method that leads to somewhdfatent results.

11



Using partial solutions of Poisson’s equation

U=2a2-x%(xy) e DU Dy,
(X,y) € DoU D2 (3.1)

U =b”-y% (xy) € Dy,
we reduce Dirichlet’s problem (4.18) to Dirichlet’s problems for harmoniwfionsV;(x, y)
in the subdomainBg, D1, D,:

Y
P Vit _o; Di,
et Vi =0 kY D (3.2)

Vi |Fi - I:I (X7 y)

The solution of Dirichlet’s problem (3.2) for a harmonic function in a rectdagdomain
is described in the monograph [21]. We will reduce the solution to a serisgeafial form
having the property of Kronecker deltas relative to the values on thesides rectangle and

formulate this as a lemma.

Lemma 3.3.1 The solution of Dirichlet’s problem for a harmonic functiorfa/y) in a rect-

angular domain@ < x < a, 0 <y < b) can be expanded into a series:
sin(nrx/a)

(b) © g b-y
V= Z{[ smh(nn )+77n smh(nn 3 ) sinh(wb/a)

a— x\| sin(nry/b)
b )] sinh(nzra/b)}

+ [ @ smh(nyrB) +79 sinh(n:r

where the cqﬁcientsnﬁb), 77%0), o), (O) are determined by expanding the boundary value of

the function \{x, y) continuous on the boundary of the rectangle into Fourier sine series:

Viy=p = %o] 77 sm(nnx/a) Vly=o = Z n(o) sin(hrx/a),

Vlsea = z 79 sin(ry/b), Viyeo = z £ sin(ry/b).
=1

According to (3.1) the stress function in the domBinis represented as

Uy = b? = y? + Vi(x, ),

which can be used to calculate the boundary values of the harmonic fuMg(ry) on the

sidesy = +bandx = f:

-3 «— 1 +b
Vl|y:ib =0, Vl|x:f = y2 - b2 = Z @ Sm(nﬂy_)- (3-3)

73

12



On the segmemnt = a of the internal boundary of the subdomd&, we formally expand the

boundary condition into a series with unknown fiméentsY,:

Vilyea = 4ib Z —Yn sm(nyr b) (3.4)

n13

According to Lemma 3.3.1, series (3.3) and (3.4) yield a representatiorefstréss function

U(x,y) in the subdomai;:

Up=b2—y2
0 35 [sinn{oe' ) - g sl )| Tt
The solution in the subdomalD; is represented similarly:
Uy =a - x2
I R T

The boundary conditions for the function harmonic in the subdorigifiollow from the

continuity of the functiorlJ (X, y) on the internal boundaries= aandy = b

Uolx=a = Uilx=a> U0|y=b = U2|y=b-

As aresult, Lemma 3.3.1 leads to the following representation of the solution:
Ug = a2 — X2
dab < Xn AR ( X + a)
— coshinr= |sin|n
T Z [ncosh(mb/(Za)) t‘( Za) ™ 2 (3.7)

. 1 n2 2Yn+8b/aC sh(n X)sm n7Ty+b
nx2 coshwra/(2b)) "% 2b

Integrating (3.5) — (3.7) according to (4.20), we obtain a formula for theidpal stifness

codficientC:
1 c ah 88 W X, b e
= C=—+ 20, T8N I anh{ th(—)
160°G 3b+3b4+7r3b3 n;3 2 | (””2a)+ an Ir"T4a]
8a Yn a
3b [tanh(nﬂ Zb) + tanh(n;r%)] (3.8)
=% tanh(mi)+tanh(m£)_a_“tanh(mz)
78 L 2b 4] b 4a

whereG is modulus of rigidity.

13



3.4 INFINITE SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

The equations for the cfiecients{X,, Yn} follow from the smoothness of the stress function
on the internal boundaries= a andy = b:

Aol _ Uy

| U
OX lyea  OX

x:a’ 3_)/ y=b B ay

. (3.9)
y=b

Substituting expressions (3.6) and (3.7) into the second condition (3.%etve

n=13

8a . X+a
2.-2h i e Sm(kﬂ 2a )}
ken2bsinh(kr2) (3.10)

_2 3 Yn + &b cost(n X)/cost(nna)(—a<x<a)
“b £\ e "2b 2b '

b e
tanh(kyrzl) + coth(kn%)} Xi +

Using the well-known [34] series for hyperbolic cosine:
X a\ — k . X+ a
cost{rzg ) = 7 costfre 2. ey sinflr=2,-) (-a<x<a
we represent the right-hand side of (3.10) as a Fourier sine serieangi@lg the order of
summation (indices andk) and equating the cdigcients of the sines on the left- and right-
hand sides leads to a countable set of linear algebraic equatioXg, iy, which are written

simultaneously with a corollary of the first continuity condition (3.9) deriviedlarly:

4kb < Yn 114 8a b
X = Aera | Z 21 k20222 ' Ae [kn T (t ”h(k’rz_)+ o S'”h(kﬂz_))]
dka Xn 1[4 8b
Y= Ao nz M2+ KaZ/b2 [kﬂ K2n?a (t ”h(k’r%)+ 1 S'”h(k”z_b))}
(3.11)
wherek=1,3,5,..., Ac = tanh(k:rz%) + coth(anb) Ae = tanh(k:rg) + COth(kﬂ—)

Comparing the infinite system (3.11) with the similar pair infinite system derive8]jimje
can transform the matrix of one system into the matrix of the other system. &&eeimms

have an elementary form in (3.11) and are expressed in terms of infiniks gef3].

If the parameters andc (Fig. 3.1) are equal to zero, then the cross-shaped domain degener-
ates into a rectangle with sidea @nd 2. Passing to the limit as — 0 in the first equation

in (3.11) and ag — 0 in the second equation in (3.11), we obtain a limiting solution of the
pair infinite system:

-8a -8b
nr2b’ Yn= nr2a’

14



which transforms expression (3.7) for the functigg(x,y) into the well-known Prandtl’s

stress function for a rectangular-base prism under torsion.

If the cross-shaped domaia % 0, e > 0) is nondegenerate, we use the standard notation [21]

for the pair infinite systems of linear algebraic equations (with odd indices):

Xk = Z acnyn + by, Yk = Z an¥n + Bk (k=1,3,5,...) (3.12)
n=1,3 n=1,3

and calculate the auxiliary infinite sequences

pk=1- > laknl rc=1- ) local (k=1,35,..). (3.13)
n=13 n=13

itanhérz/Z) [34], we transform sequences

Using the infinite series sumZ o2 T 1

n_

(3.13) to

T tanh(kzr

gk =

) tanh(kr

)
)

Blo

PRlo| -

1+ tanh(kr &) tanh(kr
(k=1,35,...).
This yields the obvious estimateg2l< px < 1 and ¥2 < ri < 1, which suggest that the pair

Blo

infinite system (3.11) is completely regular. The free terms of system (3.4d Ydezero with

increasingk. Therefore, the infinite system (3.11) has a unique bounded solution [21]

In the specific case of equal-cross bdse (@, e = c), the infinite system (3.11) becomes

K Yy, 4 8
XkAc—7n:Zl:3n2+k2 Kt Kn2 (ta"h( 2)+1/ S'”h(k’rz_))

4k < Xn 4 8
Vo= ) e e i i (1anh(i )+ 3/ sinh(fr ).

(3.14)

Subtracting the second equation from the first one in (3.14), we see ddiffdrences{ — Yk

satisfy the homogeneous, completely regular, infinite system

&’ D X
X = Yic+ Acznz+k2(k 1,35,..)),

which has a unique limited solutiax — Yx = 0 [21]. Therefore, the pair system (3.14) is

equivalent to the following completely regular system:

Kk Xy 4 8 c
Ae= 2§ A0 t h( ) 1 h( )) 3.15
Kihe nn;3n2+k2+kﬂ Kon Z(a” 2)+1/sinh{kro (3.15)

15



wherek=1,3,5,..., A¢ = tanh(kz) + coth(kn%)

Due to symmetry, itis diicient to use the representation of solution (3.5), (3.7) in the domains

D, andDg:

Ui =a?-y?
ECERS . f—x 8 X —a\| sin(v(y + a)/(2a))
+7n;3[X”S'nh(”” %a )_ 22 S'”h(”” %a ) nsinh(rc/(2a)
422 1 y X+ a (3.16)
— 2 — — — —
Uo_a X<+ - Z n[xncosh(nHZa)sm(nn >3 )

n=13

+ (Xn + %) cosr‘(m%) sin(nzryzL:)] / cosh(ng) .

3.5 ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF AN INFINITE SYS-
TEM

According to Chekhov [3], the tangential stresses at the pdiffig. 3.1) have a power
singularity with exponenn = —%. For example, the tangential stresgy|xza on the segment

X = atends to infinity as the corner poiAtis approached:

O-Xy|X:a ~ m asy— b. (317)

Substituting (3.5) into formulas (4.17), we obtain expressions for the sg@sthe domain

Di:

1 Xy e fox) 8 x—a] coshfu(y+b)/(2b))
2aee‘fzx‘n;3[\(”s'”h(n” 20 ) n2n2as'nh(”” ) ) sinh{rc/(2b))
y
a
1 f—x 8b —a\| sinh{r(y + b)/(2b))
2a60"Y = _13[Y”°osr(”” 2b ) Zr ZaCOSh( 2b ) sinh(wc/(20)
(3.18)

hereG is modulus of rigidity.

On the segmemnt = a, the first expression in (3.18) becomes simpler:

2aG@ Z Yn cos(nnL) - g. (3.19)
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To relate the singularity order of the stresses at the corner point to thgpastyc behavior of

the solution of the infinite system at large valuespive replace variables:
Xn = (a/b)"*Xa/N', Yo = (b/a)""?yn/n" (v > 0) (3.20)
and assume that the new variables tend to a nonzero real constartatedues on, i.e.,

Xn — Co, Yn — Cp asn — oo. (3.21)

After replacement (3.20) in (3.19), we separate out the part of sexgesent with the constant
Co:
1

[ - y+b
2aG0” Xy 2 COS(”” 25 )
n=13

otz (5]
nm—— — - =.
n=13 a a

(3.22)

:4|8

e

The constanty is taken out of last series, which can be expressed in terms of a spewiabh
Li, (2) called a polylogarithm of order[34]:

(o8]

oy =- Z E cos| myLb
nv 2b
n=13 (3.23)

- Re[LiV(— exp(ianLby)) - Liv(exp(m%’))]

The first series in (3.22) turns into a finite sum because of (3.21):

yn_v cos(nzr—) y” cos( ybe)
n=13 n n=1,3

)

The error of this approximate formula can be made arbitrary small by irngettse upper

limit g. Thus, transformations (3.20)-(3.23) improve the convergence ottliessn (3.19).

The right-hand side of (3.23) has an asymptotic representation in the neigita § < b) of

the pointA:
o(vy) = casyn(vy) + O(1 - y/b),
where
Tasld) = @I G REC) T 2N, @329

, I'(2) being the Gamma functio(2) is the Riemann zeta function.
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Comparing expressions (3.17) and (3.24), we find 2/3. Formulas (3.23) and (3.24) be-

come
o(2/3y) = Zi ZL (nn%)b)
n= (3.25)
=Re [LI 2/3(— exp(mb ) — L|2/3(exp(|7rb2%/))]
V3r(1/3) 3

o(2/3,y) = ————— + (2 V2)7(2/3). 3.26
(2/3.y) = ( )(2/3) (3.26)

Table 3.1: Comparison of asymptotic (3.26) and exact (3.25) values

y/b 0.75 0.79 0.83 0.87 091 0.95 0.99

o(2/3,y) 0.59726| 0.74966 | 0.95701| 1.2558 | 1.7309 | 2.6557 | 6.4623
oasyn{2/3,y) | 0.60675| 0.75634| 0.96137 | 1.2584 | 1.7321 | 2.6561 | 6.4624

In table 3.1 the comparision of the asymptotic (3.26) and exact (3.25) vatuide segment
(3/4b, b) is presented.

Using eq. (3.20) withv = 2/3in (3.11),
Xn = (a/b)l/3xn/n2/3, Yh = (b/a)l/SYn/nz/sa (3.27)

we arrive at a pair infinite system that has a solution tending to the nonaestamicy as the

numbem tends to infinity:

455/3 - Yn Ik [ 4 8a b
2 tanh(kr—
= e ;3 2+ el Ae [kﬂ kzan(a”( Za)

11/ sinh(kfr%))] ,

Ye= Acn R (" + UE)”Z/?’ Ae | kn kznza 2b

11/ sinh(kn%))] ,

(3.28)

wherely = kb/a andny = ka/b.

To apply the limitants method, should necessarily be the infinite system reguiarpdir

infinite system (3.28) is regular if

445/3 o0 y 4775/3 o0 %
n
<1, <1 (k=135,..). (3.29)
Aert n:zl;ii (n? + glf)nzw Acrt n;g (N2 + nk)n2/ 3
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Figure 3.2: The dependence of the susp®n the index

The explicit dependence of the sums of the series in (3.29) on the knchax be represented

using the Euler-Maclaurin formula [10]:

00 q—2 (o)
> f(= 3 f)+3 [ f(dx+ () - BifD(q) + £B:2°1C)(q)
n=13 n=13 q !

3.30
~L1B251ONq) + ...+ (1) 1(2k B 1223 §(2-3)(g) (3.30)

+9(—l)kﬁ Bk22k—1 f(2k- 1)(Q),

where 0< 6 < 1, the odd numbeq is introduced to improve the asymptotic formuBy; =
1/6,B, = 1/30,B3 = 1/42,... are Bernoulli numbers. All the even-order derivatiféd)(x)
should have the same sign withiq o), and all the odd-order derivativé&-1(x) should
tend to zero ax — oo. The error of the asymptotic formula can be estimated by comparing

the results obtained with= 1 andd = 0.

Denoting the first series in (3.29) I8¢ and using four terms of the asymptotic formula (3.30),

we obtain
S 4§5/ [+ 1 1
k = Z 2 4 §2)n2/3 4 45/3

arctané)
-13

Vo 1+ (2~/a/dk - ‘/_)ZH (3.31)
3arctan(\/§k/ )+ (1 (2M+ \/_)2
1 1( 2q1/3

T2+ DR B\ (P + 222 3(q2+§£)q5/3
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This is an upper-bound estimate of the sum. The lower-bound estimate is oldigiregecting

the last expression in brackets multiplied by6lin (3.31). The upper- and lower-bound
estimates are made to coincide in the first five decimal places by choosindubkg wa201.

The dependence of the surBgon the indexk is shown in Fig. 3.2. Curve 1 corresponds to
b/a = 1/10, curve 2 tdb/a = 1, and curve 3 td/a = 10 (fore = b). The similarity between

the two series in (3.29) allows us to interpret curve 3 as dependencesithef the second
series witha/b = 1/10 andc = a on the index. Thus, the curves in Fig. 3.2 show that the
sums of series (3.29) asymptotically tend to the limiting vé8ue= 1 from below. Note that

the limit lim Sk = 1 can be evaluated in an elementary way using formula (3.31). Thus, the

X—00

pair infinite system (3.28) appears regular.

Note that the unigueness of a bounded solution of system (3.28) fromevkesibility of
transformation (3.27), which establishes one-to-one correspondetwedn any bounded
solution of system (3.28) and the unigue solution of the pair regular sy&dr) that tends

to zero.

The stress state of an angle subject to torsion was studied in the articleldf@vjd3], which

was the first to use a transformation of the form (3.27) for variables ingbe wherd = a.

3.6 ESTIMATES OF THE SOLUTION OF THE INFINITE SYSTEM

Estimates of the Solution of the Infinite System. We will restrict ourselves to thgarase
of an equal-cross bask £ a,e = ¢, andh = f ). It was shown in before that the pair infinite

system (3.28) can be replaced by a regular infinite system of the for®){(3.1

IEISEIRS o 5
" Aer Z (P + |<2)n2/3Jr © (3.32)
where
b kP14 _ 8 hkr/2) + 1/ sinh 2
K = A—C[E—@(tan kr/2) + 1/ sinhkry/2))|, (3.33)

Ac = tanhr/2) + cothkry/2), k=1,3,5,..., y = ¢c/a.

According to [7], to estimate the lower and upper bounds for the solutioneofahular

infinite system (3.32), it is necessary to find the solutions of two auxiliary feysems
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(k=13,...,2p-1):
asr T %,

Act &4, (n? + k2)n?/3
4k5/3 2p-1 ~

2 1 k2\n2/3
Acrt = (n? + k9)n

X + by,
(3.34)
+ Bk,

X
where
453 &

At . ; (N + K2)n2/3 k2)n2/3

by = (3.35)

The solutions of the auxiliary systems are substituted into the following expreks the

"limiting” limitant V" for system (3.32):

2p-1 2p-1
b+ akx]/ [pk+ D an(l- x)] (3.36)

n=13 n=13

Substituting the free terms (3.33) and thefioeents of (3.32) and performing reduction, we

get
" 1- 7rzk [tanh( 2) +1/ Slnh(kny)] Z W .
O e es

where
2p-1 ~

Z (n2/k2 T2 n_Zl:3 (N2/k2 + D3

n=2p+1

The sum of the infinite series in the denominator is again calculated by the Matdaurin

formula (3.30). Itis desirable to find a limiting expression of limitant (3.37 as . It has

the form
2p-1 o q-2 1 2p-1 %
Vin = [1+ nz/s}/ Fasymg) - Z 273 n2/3’ ’
n=13 2p+1 n=1,3

3_1_2b 8, 4928 11968, 286274565
h 2 - - oG ™).
where asyml) = 2 ~ 34 " 3 T 81f _ 218%F° © 19683F _ 159432310 T 04 )

The exact lower and upper bounds for (3.37)

h*® = inf VP, H** = sup V,P. (3.38)
k=2p+1 k>2p+1

allow us [7] to estimate the lower and upper bounds for the variables:

Xk = ¥n + WPy < X < X0+ HPR, (n=1,3,...,2p-1),
h*P < X, < H*P (n>2p+1).

(3.39)
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The solutions of the auxiliary systems (3.34) can also be associated with thevedpre-
duction method. It is assumed that the approximate equalities cp hold beginning with
2p + 1. Then the firsp equations in (3.32) form a linear system whose free terms are linear

combinations of the free terms (3.33) and (3.36) of the auxiliary system91{3.34

4k5/3 2p-l Xn o
Xk = + Cobk + bk.
At &, (n? + k2)n2/3

(3.40)

Accordingly, the solution of the linear system (3.40) is represented byathe §inear combi-

nation of solutions of these auxiliary systems:

-
i

Xn =X+ Co%y (n=1,3,...,2p—1). (3.41)
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Figure 3.3: Determination of the exact bounds for limitants

The unknowncy can be calculated, additionally assuming tﬁrg,tl. Then the last equation
in (3.41) yields

Co = ;(Zp—l/(l - )?Zp—l)- (342)

Table 3.2: Monotonic decrease of limitants in the upper bounds and inare#ise lower
bounds

p 5 30 100 500 2000
H*P | 0.584784| 0.580679| 0.580352| 0.580284| 0.580279
h*P | 0.568374| 0.579047| 0.580026| 0.580254| 0.580273

Co | 0.564796| 0.578991| 0.580023| 0.580254| 0.580273
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A typical property of limitants is [22] monotonic decrease in the upper bo(d®8) and
increase in the lower bounds with increase in the opef the auxiliary systems. Table 3.2
illustrates this property for some valuespffor v = 1). For comparison, the table includes
a row of values oty calculated by formula (3.42) corresponding to the improved reduction

method.

It follows from Table 3.2 that the lower-bound estimate produced by the weproeduc-
tion method is worse than that by the limitants method. pAacreases, both lower-bound

estimates tend to each other (in this example).
The use of a limitant curve facilitates the determination of the exact bountimf@ants.

Such a curve is shown in Fig. 3.3 for221, p = 5, andg = 201. Lines 1, 3, and 4 represent
the estimates from the first column of Table 3.2, while curve 2 corresporitsitant (3.37)

fork > 6.

The upper- and lower-bound estimatesand x¢ (3.39) are illustrated by Table 3.3 for the

case where the order of the auxiliary systems is equal tofiveX).

Between the upper- and lower-bound estimates (3.39) there is a row @svaluithe exact

solutionx; obtained using auxiliary systems of higher order.
For comparison, the table includes the soluﬁQproduced by the improved reduction method.

It follows from Tables 3.2 and 3.3 that thefidrence between the upper- and lower-bound
estimates increases with the variable number, reaching the maximum values fiomitimg

estimatedd*P andh*P.

Table 3.3: The upper- and lower-bound estimageand xx

10x¢ | 1.6733| 5.2041 | 55069 | 5.6185| 5.6770 | 5.8478
10x, | 1.6722| 51998 | 54987 | 5.6064 | 5.6613 | 5.6940
10x¢ | 1.6717 | 5.1978 | 5.4948 | 5.6004 | 5.6532 | 5.6837
10% | 1.6714 | 51964 | 54921 | 5.5964 | 5.6480 | 5.6480
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Figure 3.4: Surface = U(X,Y)

3.7 ESTIMATES OF THE SOLUTION STRESS STATE OF THE PRISM

It is not difficult to calculate the stress function inside the prism base after the substitution
of the lower- and upper-bound estimates for the solution of the infinite syistien{3.16).

Only on the boundary does the exponential convergence of the segesefate into power
one with exponent 8. The surface = U(x,y) shown in Fig. 3.4 has been obtained without
accelerating the convergence of the series. THines cofficientC can also be calculated

by formula (3.8). This co@cient is proportional to the volume bounded by the surfaee

U(xy).

Table 3.4: The estimaté&s™ andC~

y=c/a 1/2 1 2 3 4 9
C*/(16a%G) | 0.571320| 1.064226| 1.874217| 2.573292| 3.246777| 6.581903
C-/(16a’G) | 0.571319] 1.064225| 1.874216]| 2.573290| 3.246775| 6.581901
CA/(16a°G) | 0.580 1.0504 | 1.8436 | 25421 | 3.2152 | 6.5487
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The estimate€* andC~ have been found by solving auxiliary systems of ordet 30 and
are collected in Table 3.4 for fiierent values o = c/a. According to the estimates, the
first five to six significant digits are exact. The bottom row of the table comigiproximate

values ofC” from the monograph [3]. Comparing to the upper and lower bounds sthaws
their precision is one to two significant digits.
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Figure 3.5: Surface = o,4(X, y)

Difficulties arise when assessing the stresses that, according to (4.1 #pmodipnal to the
partial derivatives of the stress function with respect to the coordin@eshe boundary of
the prism base where the stresses are maximum, the exponent of the Eodfieients is
2/3. Figure 3.5 shows the surfaze= o,x(X, y) over the subdomain®g, D1, andD,, which
qualitatively demonstrates the distribution of tangential stresses. Thesarfa o,4(X,Y)
results from that in Fig. 3.5 turned in the plane of the prism base by a rigtet.afihe neigh-
borhood of the vertices of the reentrant angles (the point A in Fig. 3d)reneighborhoods
of the intersection points between the prism base boundary and the aterdies< andy
appear the most critical zones for the stress state. More critical areitifdonehoods of the

intersection points because right angles in real structural elementsvagsabunded unlike
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the idealized mathematical model used here. The rounding decreasetloé $#ress, which

depends on the rounding curvature.

Improving the convergence of series (3.18) for the tangential strggx,y) at the critical
point (x = f,y = 0) leads to a formula whose principal pa 8> coincides with that of a

similar formula for a prism with a rectangular bd3e(hereG is Catalan’s constant, = c/a);

n-1
) 8 & (1 exp(-nr)
2aG "0 = |G 2

“is  m2sinh(nr})
(_1)%1 Xn
nopa N3 sinh(nn%)'

21 (3.43)

The sum of a Leibnitz-type series remaining in (3.43) can be estimated in anntdayne
way [10]. The bounds calculated by formula (3.43) are presented ile Bab for diferent
values ofy. The row of values ofrﬁy from the monograph [3] are included for comparison.
The diference between the upper- and lower-bound estimates for the maximusesties

insignificant. Fory > 9, the stress is equal to the stre€/8 in a rectangular-base prism.

The values in the bottom row of the table are in good agreement with the estimakes in
neighborhood of = 9. In the neighborhood of = 1, however, the precision of the values in

the bottom row reduces to one significant digit.

Figure 3.6 shows the stressy in the subdomairD,. These curves fall into two groups
depending on their behavior. One group includes curves 5, 6, and a¢c/2,y = a+ 3c/4,
andy = f, respectively) and characterizes the neighborhood of the pwiat 0,y = f)

with the maximum stress,x. The other group includes curves 1, 2, 3, andy a,y =
a+c¢/100y = a+¢/30, andy = a+c/10, respectively) and characterizes the neighborhood of
the point A (the vertex of the reentrant right angle (Fig. 3.5)). The stieBicrease abruptly

in a small neighborhood of the point A. To plot curve 1 along which steets®d to infinity

asx — a, the convergence of the series was improved by formulas (3.22) ar).(#2 a

Table 3.5: The estimates;, ando, have been found by solving auxiliary systems

y=c/a 1/2 1 2 3 4 9
505,/(aGo) | 9.048541| 8.839721| 7.807063| 7.507353| 7.441889| 7.424544
50,,/(aGe) | 9.048539| 8.839719| 7.807063| 7.507353| 7.441889| 7.424544
507,/(aGe) | 9.3331 8.929 7.8505 7.510 7.443 7.425
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Figure 3.6: Stressin the subdomaiib,

result, we obtain the formula

L. _Zil H*P - coth(wry/2) 8 in(mﬂ)
2aGo T dy= _n=13 n2/3 n2n2 sinh(ry/2) 2a (3.44)

1 * . X+a . X2
+§H PIm [le/g( (-Z‘I Za) L|2/3(e' 2a )] (0O<x<a),
which together with the formula derived from (3.44) by replackag@ndH*P with x, andh*P

allows us to estimate the lower and upper bounds for stressgs @n

In Figure 3.7 estimates the local perturbation of the stress state near thé\piatgiven.
These estimates have been obtained after improving the convergenceefiissorr, (X, )
onx = a(0 <y < a) based on (3.25). The following formula similar to (3.44) has been

obtained:

2aG9 ZX

e )
o )) L -enn{in=27 )

Curves 1, 5in Fig. 3.7 correspond to the following valuey ef c/a: y = 1/4,1/2,1,2,4.

+;H pRe[L|2/3 (exp

It should be noted that all the curves in Fig. 3.7 are antisymmetric aboutithe of coordi-

nates.

Figure 3.7 leads us to the conclusion that the stress state is highly localizeddgssawgth

short legs and high level of tangential stresses in a cross with long legad®ethe stress state
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Figure 3.7: Local perturbation of the stress state near the point

is less localized here. Note that the abruptly decreas@ereince between curve 4 £ 2)

and curve 5¢ = 4) is indicative of a limit point near curve 5.

Indeed, the curves with > 4 are hardly dierent from curve 5. The stress pattern near the

point A remains almost the same fpr> 4.
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CHAPTER 4

NUMERICAL METHOD

4.1 ALGORITHM OF SUCCESSIVE APPROXIMATION

Now we will consider the algorithm of successive approximation. This #lgarhelps to
obtain more accurate location of poirl (Mj-) on the boundary.. So this algorithm will

let us build the approximate polynomial with the minimum deviatioth/ofrom L.
Here is the sequence of steps:

1. Prestore some number of nodes: m; and define somehow coordinates

0) _ (0 L /0
Zjal - Xjal + ijal (4-1)

of nodesM; of boundaryL in a zero-approximation. These nodes we will marlMég)l (see

Fig. 4.1).

2. Take down point# fg)l normally onto the curvé to prevent probable deflection. Lb‘tﬁ)

(zﬁ?) be new points.

3. Compute coficients using (2.13)

1 0 -
c@- o Z zﬁ)e—'kei (k=1,...,m) (4.2)
=1
of function (2.12)
my
2=l = Y, o (43
k=1

in a zero-approximation. Herg = EJ (j=1,...,m).
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i F'I_.i---1;-u] | e

Figure 4.1: Take down poimz%;)l normally onto the curvé
4. Compute coordinates Mfgz

22, = wQE%). (4.4)

jarl

These points correspond to intermediate nodes in a zero-approximatim\e)]fl-te ml(Zj -
1

1) (j = 1,...,m). Note that these points are not necessary be on barder

5. Take down pointM © normally onto the boundary. After that we will have pointsME?i

with coordlnatesz(ol (i=1....,m).

6. Using (2.19) lets compute ciiieients
my

1 _iko*
c = o > A (k=1,....my), (4.5)
j=1
of function (2.15)
z= a)(o)(()— Z clO (4.6)

in a zero-approximation. Het% = E(Zj -1D((=1,...,m).

@
7. Compute coordinates Mlal

A _ w(o)(eiej) (j=1,...,m).

jal
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These points correspond to main nodes in a first approximation. Note tsatfgbats do not

necessary be on border

8. Take down pointi;/lfjl)1 normally onto the boundary. After that we will have pointsMﬁ)

with coordinates

(1) = x(l) + |y§11) (J=1,...,m).

Let these points are a first approximation of poikts Then starting from step number 3 we

will repeat the algorithm until nodd\sdj(f)l coincide withM}fil).
9. Finally we get polynomial
z= W) = Z Ccls

This polynomial can be controlled by building big amownhtof points of border.’. The

equation forl” will be w{(€).

10. LetA be a deflection of” from L, whereL is boundary ofS. If A less then permissible

valuee and curvel’ does not have double points and cusps then finish the algorithm.

11. If deflectionA is grater then permissible value then amount of nodes is doubjed

2my and the algorithm starts from step 1. New zero-approximation for main neilldse

Jaz(J 1,....,m)

20 = o) = Z CRe (j=1,...,m)

where

on . .
0; :Ej(j:].,...,mz).

We will double the amount of nodes until the polynomial
2= () = Z cilex

satisfies the condition: the deflectiarof a curve with parametric equatiar= wﬁﬁ)(e‘@) from

the bordelL of domainS is less then permissible value.

After that we can reduce number of interpolation nodes (power of ineipo polynomial).
Reduced number of nodes should be in the ran’%m@] but only if it is met the condition

A<e.
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Calculations are made in such way:

(a) Letnewm1 bem -1

(b) Calculate coordinatres of nodmégzlﬂ)

0 ()6
Z(ja(|+1) = wiy (€%),
where
0 = i(j=1,..., .
=) (J m.1)

(c) Take down pointswlj(gzm) normally onto the boundarly. Also make the sequence of

approximations 2 - 7.
(d) Control resulting polynomial by condition

A<e.

If A <ethenlet
My2=m;; -1
and so on starting from step (b) till we find minimal number of nodesThis numbem

should satisfy the condition < &.

Let sequence of steps 2 — 7 be inner circle. In inner circle the numbetespaiation nodes
does not change. Let sequence of steps in which the number of intéspaiades is changed
(decreased or increased) be outer circle. Now it is understood thgomotapper index of

z or Cy corresponds to number of inner circles; the last digit of lower indexespondes to

number of outer circles.

4.2 IMPROVEMENTS

Please note that conformal map which is built by previously describedidigocan be used

for solving of boundary value problems(e.g. in theory of elasticity).

As for theory of elasticity local deflections of boundaryfrom boundaryL will seriously ef-
fect on local stress on boundary. These local disturbances dof §iglekare caused uppermost

not by deflectiom of boundand.’ from givenL but they are caused by distortion of radius of
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curvature. And this is true because boundarias form of wave curve which passes main or
intermediate interpolation nodes. In case of wave curve the radius Gftovevof boundary’
changes in wide range. For complex cutvéhe radius of curvature can change it's direction

twice in the range of single step.

According to [11] the function

m
z=w() = Z Cil, (4.7)
k=1
where
& = C"+2C“* (k=1,....m)

has same disadvantage. The cur{/eorresponding to function (4.7) has nearly twice smaller

deflectionA but boundant” saves it’s form.

Because of local distortions of boundary for fia@entsCy or Cy- as well as for coficients
Cx there are essential errors in determining of stress in boundary poinese ®rrors can
reach 50:- 80% (and even more) as compared with the exact solution for dur¥ealso is

easy to see that increasing of power of mapping function will not cotinesituation.

We can increase the accuracy of boundiahand accuracy of solution for boundary-value
problem by a simple transformation — the integral averaging. We will apply tistorma-
tion to approximate solution on intervél- & < 6 < 6 + = which is equal to one step of

interpolation. So we have:

2= n(0) = 5 f wnlpd@*]dt 4.8)

E{E]

It is good to use here functian, () according to (4.7) because the corresponding clufve

has deflections to both sides of the cutveAfter integration we get

m

% m m
~ m ~ ; m ~ :
Z=n(d) = o ka 1Ckp"é"("“>dt = — k§ ) Ckg"fé"‘dt -

g "z (4.9)
m . m
sinkZ
k m _ k
k=1 m k=1
Here
Dy = Crok (k=1,...,m), (4.10)
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whereoy (k= 1,..., m) — weighting coéicients, which are defined by

. T
sink—

ok =—2 (k=1,...,m). (4.11)

m

The border oL, which corresponds to (4.9), is nearly to match boiddefhis means that
L”" has deflection fronh. much less then curveds andL’”. But the biggest advantage is that
errors in radius of curvature are not more than 50%. In the same time curvés andL”
could not be compared with cuntein the sense of radius of curvature. On the one step of
interpolation these curves/(andL’) could change not only magnitude but also a sign of

curvature.

Please note that the operation of integration is applied to all approximatessipre of con-
forming map. And because of this, in future, we will not distinguish betwesotes for
codficients ofwn () andwn (). Even after the essential increasing of accuracy of the border
of S’ (using weighting coficients (4.11)) local distortions of the field of stresses partly can

be saved.

On the other hand the real machine elements and structural members are maseméath

tolerance of the form. This means that real boundary does not match Hidalendaryl.

4.3 SYMMETRICAL PROFILE CASE

It is usual case when we need to solve a particular problem for a prdiilehvihas one ore
more () symmetry axes. Lets choose the coordinate origin in the point where symanesy
cross. Coordinate axig direction will match one of these symmetry axes. Then interpolation
polynomial which agrees with mapping function on interval 6 < a in interpolation nodes

¢ =¢j=é% wheregj = = j (j=0,...,my) will be

2m -1
Z=wm () = Z Ao s2¢ %L, (4.12)
ki=0

Here codficientsdy = dqx,+1 are real. The formulas fat can be easily found from (2.13):

m -1
k-1 T T
+(-1)a + Xij cos—Kkj + yj sin—Kj|;,
[1Zol + (~1) @ |Zm,] j;l(J g vising J)
k=1q9g+1,...,2m-1)qg+1,

11

de =
km12

(4.13)
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wherez; = x; +iy; are coordinates of nodés; of the bordel. HereL is a border of domain
S. Nodes(j (j = 0,...,m) from a unit disk after the conformal map are transformeito

the interpolation nodes.

In the same way as for arbitrary profile form we can develop an algorithsuccessive

approximation. Let us build an interpolation polynomial:

2m1 -1
Z=wp@= ). dgasay®h (4.14)
kg =0

This polynomial will be equal to functiom = w(?) in interpolation nodeg}‘ = €%, where

0]!‘ = 2qul(Zj—l) (j=1,...,m). Codficientsdy- = d(gk+1)- can be found from next formulas:
m i i —
Oy = mil D |:Xj* cosMk+yj* sian ,
j=1 2qm 2qmy (4.15)

k=19+1,...,2m - 1)+ 1,
wherezj- = xj- +iyj- is the value of mapping function in interpolation noq”?s

The methodology for building of successive approximations for the symnpewide is the
same as for the general case but in case of symmetric profile we usemtietds (4.12) —

(4.15).

4.4 SELECTION OF INITIAL APPROXIMATION

Let’s consider a problem of selection of initial approximation.

We will consider two ways of solving this problem. Since we use describedeadigorithm

for calculation these two ways are practically identical.

1. Usage of electrical simulation of conformal mapping for experimentakéntation of

nodes of conformity of boundaty and boundary’| = 1 [42].

2. The numerical solution of the problem, starting from= 2, when one nodMéO) is known

exactly (it is defined by normalization). The second Mﬁg) can be selected arbitrary.

The second way of selection of initial approximation is trivial. Let us comdidg way more

detailed.
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Conformal mapping of unit disi] < 1 into domainS (under described above normalization

conditions) behaves like this:

1) orthogonal net which consists of radii £ cons) and circles 4 = cons) of disc|¢] < 1
will be mapped into orthogonal net of lines which starzat 0 and ending on the bordér

and closed linep = const

2) circle of infinitesimal radiug| = 6 on plane/ maps into circle of infinitesimal radius

|2 = 61 = 6|w’(0)| on planez,

The same situation can be simulated on electrical machine. This is becausmeftigs
of equivalent potential lines. It is known that equivalent potential lined eurrent lines
make form orthogonal net in some conditions. Because of uniquenessifwirmal map that

orthogonal net will match the orthogonal et constandp = const

45 SOLUTION OF TORSION PROBLEM

As an example we will solve a torsion problem for the rod (prism) with the avutifprofile.

First let us consider the problem definition. Let us consider the rod (ikmsolid) which

has cruciform base. Lengttbetween prism bases is much more grater then the base sizes.
Also we add right-hand coordinate syste@yz. Superpose planeOywith one of the prism
bases and axes turn to center axis of a rod. Let us fix the base of rod (the same as lays in
planexOy). We will rule out travel of the fixed base as a unit but deformations koe/ed.

The center of forces on another base will be the node of intersectmraoid another base.

It is known that in case of torsion Hook’s law expresses dependdmmdadion angles on
torsional momenMy. Torsional momenMy characterizes tangent directionsy, o2y On

base of prism
_ M1l
¢ = Gx’

wherel — prism heightG — modulus of rigidity,Jr — torsion constant.

The Hook’s law can be written in such a way

_Mr

b=2 (4.16)
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Hered = ¢|—’ is the specific torsion angl€, = G Jy is the stifness cofficient for torsion. The

tangent directions in prism can be written using Prandtl’s function of siséss, y)

0 0
The Prandtl’s function is defined by solution of Dirichlet’s problem for Boiss equation in

domainD — the base of the prism

& &
2Vt 7Y =2 Ur=0 (4.18)

Formulas (4.17) allow us to express torsional moment through stress functio
Mr = ZGefodxdy. (4.19)
D

After substitution of (4.19) into Hook’s law 4.16 we get the formula foftis@ss:
C=2G fodxdy (4.20)
D

We can see that the problem of torsion of the rod is equivalent to the salwiRgisson’s
equation. This dferential equation is solved by method of conformal maps. Usage of this
method simplifies solving of the problem of torsion. Solution of the problem easvaluated
using the conformal map which maps from unit digk € 1) into given domain (in our case it

is cruciform domain, Fig. 4.2). In general finding of such conform magwtgrivial problem.

The most &ective solution of boundary-value problem for simply connected domairbea
produced when it is known the conformal map- w(¢) that maps from unit diski{] < 1)
into given domairt (in our case it is cruciform domain). We will search this conformal map

as a polynomial (2.1) as it was described in Section 2.2.

Please note that in corners of profile conformity is violated, as it was medtion8ection
2.1. This means that a polynomial (2.1) of a finite power will not provide usdormal map
in corners of a profile. Because of this the piecewise-smooth bounkamasbe transformed
into curve with continuously changing tangent. In most of cases corfighe boundary can
be rounded by arcs of the constant radius as it happens in real mabkinents. In case of

cruciform domain corners can be transformed into quarters of circles.
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2h
Figure 4.2: Cruciform profile

Using the cofficients of polynomial (2.1) which implements conformal mapping we can ex-

press tangential stresses on the border. Let

m-k

Dk = ) CiwCr (k=0,...,m-1)
r=1

and
m-k

Bix= > rC,Crx(k=0,...,m-1),
r=1

Bk = kDy + g—k (k= O,...,m—l).
Then tangential stress can be expressed as

m-1 _
Bo + 2Re(2 B_kakH .

k=1

_ Mt
(o)l

To

Torsional stiftness
- m-1 m-1
D=u={ByDg- > KDy + 2R D«B_k|}.
MZ{BO 0 l; |Dyl” + e(kZ:; k k)}
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There is one feature described in [43] — the selection of way for deffenbdes. In case of
cruciform profile (in which corners are rounded by quarters of theeideflection is made

through the perpendicular to tangent.

= . L

B N

n=2 K=2384194 n=238, K=290221

| L

N N

n=16 K =-9367236

Figure 4.3: Algorithm of successive approximations

On Figure 4.3 it is shown the working process of algorithm of succesgipeoximation for
solving of torsion problem for the rod with the cruciform profile. Herés a number of
steps in algorithm. The curve shown on the figures is a graph of polynoraiahtiplements
conformal map. It can be seen that with increasing of number of steps cames closer to

border of profile.
Also it is interesting to check not only matching of curve forms but also raaficsirvature
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in inner cornelK. The curvature in inner corner is calculated from such a formula

1 ow’ (o)
e = @) [“ Re( o) )]

and radius of curvature is inverse value

Xl =

In case of our example we rounded corners of the profile with the gaarteircles with the
. 1 :
radiusr = K= 1073, So we can also see that the radius of curvature also converges to the

real radius of profile when number of steps increases.

Also we investigated dependence of stress in inner corners on radiasrafing arcs. This
dependence is shown on the Plot 4.4. In this figure the abscissa is trdimpuadius and
ordinate is stress value. This plot was developed for profile with thedsiza (please see

Fig. 4.2).

!
0,001 0,029 0,050 0,009 0,14

Figure 4.4: Dependence of stress in inner corner on radius of cuevatu
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CHAPTER 5

COMPARISON AND CONCLUSIONS

In this thesis we introduced a numerical method for conformal mapping leasadorithm of
successive approximations. In Table 5.1 a comparison of valuesfokss cofficient calcu-
lated by the Chekhov’s method described in the chapter 3 (Uppand lowerC~ estimates)
and valueCK found by conformal maps method (given values are calculated for tiss-cro
shaped domain with rounded corners). The bottom row of the table corppreximate
values ofC” from the monograph [3]. In Fig. 5.1 you can see the relative error estimatio

graph for conformal map method (solid line) and Abramyan’s method (dasied

Please note that estimation offBtess cofficient in [3] is very crude. Maybe this error of
estimator ensue from errors in calculation, e.g. accumulated roundirrgerotd computers.
As for Chekhov's method we consider it results to compare with results @otaiith the
help of conformal map method. Chekhov’s estimation is considered as tbe(aralytical)

solution of the torsion problem for the cross-based (with the right angtesj.

We should note that estima@® obtained by conformal map method is less then lower
Chekhov’s estimat€~ which are calculated for the cross-shaped (without rounded cdrners

domain. This can be explained by the fact that according to (4.20) the vhlstifness

Table 5.1: Comparison of exact and numerical solutions

y=c/a 1/2 1 2 3 4 9
C*/(16a’G) | 0.571320| 1.064226| 1.874217| 2.573292| 3.246777| 6.581903
C-/(16a’G) | 0.571319| 1.064225| 1.874216| 2.573290| 3.246775| 6.581901
CK/(16a’G) | 0.570416| 1.063575| 1.863686| 2.571791| 3.238395| 6.571751
CA/(16a’G) | 0.580 10504 | 1.8436 | 25421 | 32152 | 6.5487
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Figure 5.1: Relative error estimation

codficient is directly proportional to the volume bounded by the surtaedJ (X, y).

Also please note that the introduced conformal map method (see Section &ajyscon-
venient. As we said above this method can be easily applied in practical, usagein
engineering calculations. This is because of property of real world imaefements have no
right angles. Instead of right angles there is some curve which carslig @aproximated by

arcs of finite radius.

Another practical advantage of the conformal map method is relativelyveagwyf program
implementation. Convenience in programming is because of modules (librarietheiet
of functions) written for the prism with the specific base are easily exteadddcadapted to
new complex domains. Especially the core algorithm functions are not eddagall simply

connected domains but it is only changed the algorithm of fetching dowadss

And the main advantage of the conformal map method consists of the facothabst of
complex simply connected domains analytical solution cannot be found.e@iifavis found
that it is hard to use it in practice. But numerical solution found by conformep method

can be easily found and used (e.g., in engineering calculations)
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