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ABSTRACT

ENERGY PRESERVING METHODS FOR KORTEWEG DE VRIES TYPE EQUATIONS

Şimşek, Görkem

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Assist. Prof. Dr. Ayhan Aydın

July 2011, 94 pages

Two well-known types of water waves are shallow water waves and the solitary waves. The

former waves are those waves which have larger wavelength than the local water depth and the

latter waves are used for the ones which retain their shape and speed after colliding with each

other. The most well known of the latter waves are Korteweg de Vries (KdV) equations, which

are widely used in many branches of physics and engineering. These equations are nonlin-

ear long waves and mathematically represented by partial differential equations (PDEs). For

solving the KdV and KdV-type equations, several numerical methods were developed in the

recent years which preserve their geometric structure, i.e. the Hamiltonian form, symplec-

ticity and the integrals. All these methods are classified as symplectic and multisymplectic

integrators. They produce stable solutions in long term integration, but they do not preserve

the Hamiltonian and the symplectic structure at the same time.

This thesis concerns the application of energy preserving average vector field integrator(AVF)

to nonlinear Hamiltonian partial differential equations (PDEs) in canonical and non-canonical

forms. Among the PDEs, Korteweg de Vries (KdV) equation, modified KdV equation, the

Ito’s system and the KdV-KdV systems are discetrized in space by preserving the skew-
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symmetry of the Hamiltonian structure. The resulting ordinary differential equations (ODEs)

are solved with the AVF method. Numerical examples confirm that the energy is preserved

in long term integration and the other integrals are well preserved too. Soliton and traveling

wave solutions for the KdV type equations are accurate as those solved by other methods.

The preservation of the dispersive properties of the AVF method is also shown for each PDE.

Keywords: Korteweg de Vries equation, bi-Hamiltonian systems, energy preservation, dis-

persion, average vector field integrator
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ÖZ

KORTEWEG DE VRIES TÜRÜNDEKİ DENKLEMLER İÇİN ENERJİYİ KORUYAN
YÖNTEMLER

Şimşek, Görkem

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Ayhan Aydın

Temmuz 2011, 94 sayfa

Yüzeysel ve tek dalgalar en iyi bilinen iki su dalgası çeşididir. Yüzeysel dalgalar, dalgaboyu

suyun yerel derinliğinden büyük olan dalgalardır. Tekli (soliton) dalgalar ise birbirleriyle

çarpıştıktan sonra başlangıçtaki şekil ve hızlarını koruyanlardır. Fizik ve matematikte sık sık

karşılaşılan tekli dalgaların çoğu Korteweg de Vries (KdV) şeklindeki denklemlerle doğrusal

olmayan kısmi türevli denklem şeklinde ifade edilmektedir. Son yıllarda KdV denklemi ve

benzer denklemlerin çözümü için Hamilton ve simplektik yapıları ile ilk integralleri gibi ge-

ometrik özelliklerini koruyan birçok sayısal yöntem geliştirilmiştir. Bu yöntemler simplektik

ve çoklu-simplektik yöntemler olarak sınıflandırılmakta olup, bunlar uzun vadeli hesapla-

malar sonucunda istikrarlı sonuçlar üretirken, denklemlerin Hamilton ve simplektik yapılarını

aynı anda korumak mümkün olmamaktadır.

Bu tez ortalama vectör alan (OVA) yönteminin Hamilton yapıdaki doğrusal olmayan kısmi

diferansiyel denklemlere uygulanması ile ilgilidir. Bu kısmi diferansiyel denklemlerden KdV

denklemi, değiştirilmiş KdV denklemi, Ito sistemi ve KdV-KdV sistemleri Hamilton yapılarının

aykırı simetrik özellikleri korunarak uzayda ayrıklaştırılmışlar ve elde edilen adi diferan-
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siyel denklemler OVA yöntemi ile çözülmüştür. Uzun zamanlı integrasyon sonucunda den-

klemlerin enerjisinin ve diğer integrallerinin iyi korunduğu sayısal örneklerle doğrulanmıştır.

Çözülen her denklem için OVA yönteminin dağılım özelliklerini ne ölçüde koruduğu gösterilmiştir.

Anahtar Kelimeler: Korteweg de Vries Denklemi, ikili Hamilton sistemler, enerji korunumu,

dalga dağılımı, ortalama vektör alan yöntemi
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CHAPTER 1

INTRODUCTION

The subject of this thesis is the application of the energy preserving average vector field (AVF)

integrators to Korteweg de Vries type equations in Hamiltonian and bi-Hamiltonian form and

investigation of the dispersive properties of the discretized equation.

Traditionally, numerical integration of ordinary and partial differential equations concerns it-

self with the construction of numerical methods to minimize the global error, to ensure the

numerical stability and to control the time step. In the last two decades, the concept of the

design of numerical integrators shifted to preserve the intrinsic geometric properties, like to

preserve the symplectic structure, symmetries, conserved quantities, the volume and phase

space structure. These methods are known as geometric or structure preserving integrators.

Most of the studies are concentrated in construction of symplectic and multisymplectic in-

tegrators for Hamiltonian ordinary and partial differential equations (See [28, 35, 51]). It is

known that all Runge-Kutta methods preserve the linear integrals of the associated differen-

tial equations, and that only symplectic Runge-Kutta methods preserve the quadratic integrals.

No Runge-Kutta method preserves higher order polynomial or nonlinear integrals. It was also

shown that it is not possible to preserve symplectic structure and Hamiltonians simultaneously

[51]. In addition to the fact that the integrators mentioned above fail to preserve many struc-

ture properties of the equations at the same time, there are also no methods except symplectic

integrators constructed as general integrators to be applicable for canonical, non-canonical

Hamiltonian or Poisson differential equations [33]. Recently, other type of integrators were

investigated in the literature instantaneously, namely the so called energy or integral preserv-

ing integrators. Among the most well known is the AVF method developed for the canonical

and non-canonical Hamiltonian systems [15, 27].
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The outline of the thesis is as follows:

In Chapter 2 we outline the main properties of the Hamiltonian partial differential equations

by emphasizing the bi-Hamiltonian structure and in Chapter 3 the chronological development

of the AVF method is examined by comparing the properties of the method theoretically with

other energy preserving methods. Chapter 4 is about the implementation of the AVF method

for the Korteweg de Vries (KdV), modified KdV equations and the coupled system of equa-

tions like the Ito’s system and the KdV-KdV system. The long term preservation of the energy

(Hamiltonian) and the Casimir (integrals) are shown numerically and the soliton solutions are

computed for each equation for different initial and boundary conditions in Chapter 5. Finally,

Chapter 6 is an investigation of the dispersive properties of the AVF methods. The thesis ends

with some conclusions.
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CHAPTER 2

HAMILTONIAN and BI-HAMILTONIAN SYSTEMS

The Hamiltonian differential equations occur in many field such as ideal continuum mechan-

ics, celestial mechanics, electrodynamics, quantization theory cosmology and nonlinear op-

tics.

In this chapter, we will give the main properties of finite and infinite dimensional Hamiltonian

systems. We will mainly focus on bi-Hamiltonian systems and some of them will be solved

in the next chapters using average vector field method (AVF).

In the following sections, we make use of the material in [7, 33, 37] and Chapters 6, 7 in [46].

2.1 Basics of Finite-Dimensional Hamiltonian Systems

The finite and the infinite dimensional Hamiltonian systems are characterized by the so called

Poisson bracket. The Poisson bracket maps the pair of smooth and real-valued functions F, G

to a third function {F,G}, which are all defined on a smooth manifoldM.

Definition 2.1 Let F,G and L are arbitrary smooth real-valued functions onM. The Poisson

Bracket {·, ·} satisfies four basic properties, which are

• Bi-Linearity: {aF + bG,L} = a{F,L} + b{G,L}, {F, aG + bL} = a{F,G} + b{F,L},

where a, b are real constants.

• Skew-Symmetry: {F,G} = −{G, F},

• Leibniz’ Rule: {F,G · L} = {F,G} · L + G · {F,L}, where ′ · ′ presents the ordinary

multiplication of functions.
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• Jacobi Identity: {{F,G},L} + {{L,F},G} + {{G,L},F} = 0.

If the manifold M has a Poisson bracket, it is called a Poisson manifold and the bracket

is said to define a Poisson structure on M. The Poisson manifolds are a general case of

symplectic manifolds, which arise in the Hamiltonian formulation of the classical mechanics.

The symplectic manifolds are smooth manifolds and equipped with differential symplectic

forms. The manifolds force symplectic forms to be non-degenerate, that is, symplectic forms

has to be skew-symmetric. For these forms to be invertible, the symplectic manifolds should

be even dimensional; the Poisson manifolds, on the other hand, can be determined on any

Euclidean space with an arbitrary dimension.

Definition 2.2 LetM be a Poisson manifold and P :M→ R a real-valued, smooth function,

which has the condition {P,H} = 0, for all functions H inM. Then the function P is called a

distinguished or Casimir function.

For an even dimensional manifoldM = Rm, where m = 2n and n is an integer, with coordi-

nates (p, q) = (p1, . . . , pn, q1, . . . , qn), a bracket can be defined as

{F,G} =
n∑

i=1

(
∂F
∂qi

∂G
∂pi −

∂F
∂pi

∂G
∂qi

)
(2.1)

with the identities

{qi, pi} = 1, {qi, p j} = 0 (for i , j), {pi, p j} = 0, {qi, q j} = 0, (2.2)

for i, j = 1, . . . , n. This bracket satisfies the Definition 2.1 and it is called the canonical Poisson

bracket which is widely used in classical mechanics. The only Casimir functions for canonical

Poisson brackets are constants, that is, a function P satisfies

{P,H} =
n∑

i=1

(
∂P
∂qi

∂H
∂pi −

∂P
∂pi

∂H
∂qi

)
= 0, for all H

if and only if it is constant.

In particular, if the Poisson bracket is defined as trivial, such that {F,G} = 0, for all F,G ∈ M

then each function automatically becomes a Casimir function.

The Lie bracket plays an important role in the theory of Hamiltonian systems as well as the

Poisson bracket.
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Definition 2.3 For a Poisson manifold M and a smooth function H : M → R, the Hamil-

tonian vector field associated with H is defined as the unique smooth vector field with the

property

XH(F) = {F,H} = − {H, F}.

To give an example of a Hamiltonian vector field, the canonical Poisson bracket of the man-

ifold of dimension m = 2n + l can be considered. Here, in addition to the coordinates p, q

with the properties (2.2), r is also introduced as l dimensional and with the following extra

relations

{r j, rk} = {pi, rk} = {qi, rk} = 0, for i = 1, . . . , n and j, k = 1, . . . , l.

Using (2.1) and the Definition 2.1 the Hamiltonian vector field is

XH =

n∑
i=1

(
∂H
∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi

)
.

The Hamiltonian equations control the flow of the Hamiltonian vector field and can be found

integrating the following Hamilton’s equations

drk

dt
= 0, for k = 1, . . . , l, (2.3)

dqi

dt
=
∂H
∂pi ,

dpi

dt
= −∂H

∂qi , for i = 1, . . . , n. (2.4)

The equations in (2.4) are the Hamilton’s equations of Newtonian physics. Therefore, in clas-

sical mechanics the coordinate r becomes a Casimir function. In particular, if the Hamiltonian

function H, that we are finding the vector field on, depends only on r, then the flow is zero.

As a quick generalization of this fact, the Hamiltonian vector field of a specific function is

zero everywhere if and only if this function is a Casimir function.

A general m-dimensional Poisson manifoldM has the local coordinates x = (x1, . . . , xm). Let

H(x) be a real-valued function and the related Hamiltonian vector field XH defined as

XH =

m∑
i=1

ξi(x)
∂

∂xi , (2.5)

where ξi(x) are H-dependent coefficient functions.To find the coefficient functions, using the

Definition 2.1 we can write

XH = {·,H} = − {H, ·} =
m∑

i=1

ξi(x)
∂

∂xi
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to get

XH(xc) = {xc,H} = ξc(x), for any c ∈ {1, . . . ,m}.

Therefore, the bracket is obtained as

{F,H} =
m∑

i=1

{xi,H} ∂F
∂xi .

Using the skew-symmetry property of the Poisson bracket, a general definition with the real-

valued functions F,G is introduced as

{F,G} =
m∑

i=1

m∑
j=1

{xi, x j} ∂F
∂xi

∂G
∂x j . (2.6)

After the definition of the general Poisson bracket, one can ask how to find the Poisson bracket

of any two from of the set of the local coordinates. Let us call

Ji j(x) = {xi, x j}, i, j = 1, . . . ,m, (2.7)

the structure functions and let each bracket corresponds to the (i, j)th element of the m × m

skew-symmetric structure matrix, J(x). Hence (2.6) takes the form

{F,H} = ∇F · J∇H, (2.8)

using the matrix J(x) and rewriting the sum of the gradients of the functions F and H.

Proposition 2.4 ([46]) J(x) = (Ji j(x)) is an m × m structure matrix for (2.8) if and only if it

satisfies the properties that the Poisson bracket has, which are:

(i) Bi-linearity, Leibniz’ Rule,

(ii) Skew-symmetry, Ji j(x) = −J ji(x), i, j = 1, . . . ,m,

(iii) Jacobi Identity,

m∑
l=1

{
Jil

∂

∂xl J jk + Jkl
∂

∂xl Ji j + J jl
∂

∂xl Jki

}
= 0 i, j, k = 1, . . . ,m, forallx ∈ M. (2.9)

Proof. The bi-linearity of the structure matrix J(x) and satisfying the Leibniz’ rule are related

directly with the definition (2.8), since the Poisson bracket already satisfies these properties.

For the skew-symmetry of the Poisson bracket

{F,H} = ∇F · J∇H = ∇H · (−J)∇F = −{H, F}
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is satisfied whenever the matrix J has skew-symmetry. It is needed to show the equivalence

of (2.9) to the Jacobi identity of the Poisson bracket. Note that, by (2.6) and (2.7){{
xi, x j

}
, xk

}
=

m∑
l=1

Jlk
∂

∂xl Ji j,

which shows the equivalence of the Jacobi identity for coordinate functions xi, x j and xk. (2.9)

can also be shown for general functionals F,G,H :M→ R,

{{F,G} ,H} =
m∑

k,l=1

Jlk
∂

∂xl


m∑

i, j=1

Ji j
∂F
∂xi

∂G
∂x j

 ∂H
∂xk

=
∑
i, j,k,l

{
Jlk
∂Ji j

∂xl

∂F
∂xi

∂G
∂x j

∂H
∂xk

+ JlkJi j

(
∂2F
∂xl∂xi

∂G
∂x j

∂H
∂xk +

∂F
∂xi

∂2G
∂xl∂x j

∂H
∂xk

)}
.

Here, the second term cancels due to the skew-symmetry of the structure matrix and the first

term is canceled by the virtue of (2.9). �

Definition 2.5 Let x = (xi, . . . , xm) be defined over an open subsetM ⊂ Rm. Then a system

of first order ordinary differential equation is a Hamiltonian system if H(x) is a Hamiltonian

function and J(x) is a structure matrix satisfying the Poisson bracket (2.1) and the system has

the form of
dx
dt
= J(x)∇H(x) (2.10)

or equivalently ẋ = {x,H}.

After the introduction of the finite-dimensional case, we can extend the definitions for the

infinite dimensional Hamiltonian systems.

2.2 Infinite Dimensional Hamiltonian Systems

For Hamiltonian PDEs, the vector gradient operator ∇H has to be changed to the variational

operator δH and the skew-symmetric matrix J(x) becomes skew-adjoint matrix differential

operator J(u).

The differential operator is defined as

P =
∫

P dx ∈ F .
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With these conversions, the formulation of the Poisson bracket (2.6) becomes (2.11) for infi-

nite dimensional systems.

{P,L} =
∫

δP · J · δL dx, for functionals P,L ∈ F . (2.11)

The Poisson bracket with the functionals again satisfies the properties introduced in Defini-

tion 2.1. For the evolution equations, the result of the Poisson bracket of two functionals have

to be a functional which is bi-linearly dependent on the variational derivatives of the initial

functionals.

Even if the properties of the Poisson bracket are inherited from finite dimensional Hamilto-

nian systems, we need to define the differential operator J(u) for (2.11) to be a true Poisson

bracket.

Definition 2.6 Let J(u) be a linear operator. It is called Hamiltonian if the Poisson bracket

(2.11) satisfies the properties of bi-linearity, skew-symmetry and the Jacobi identity as in the

Definition 2.1.

When the Poisson brackets are compared for the finite and the infinite dimensional systems,

the bracket for the latter system does not need to satisfy the Leibniz’ rule, since the rule in

the finite dimension is used to show the existence of the Hamiltonian vector field of a real

valued function H(x), while it does not have any contribution to the bracket in the infinite

dimensional case.

The Definition 2.2 gives clues about the determination of the Hamiltonian operator; however,

it can be identified better using the following property.

Proposition 2.7 ([46]) Let the bracket (2.11) be defined and let J(u) be a q × q differential

operator. For the bracket to be skew-symmetric, J(u) has to be skew-adjoint, that is, J(u) =

−J∗(u) or J(u) +J∗(u) = 0, where J∗(u) stands for the Hermitian conjugate of J(u).

Proof. Let P,L be functionals such that P =
∫

P dx and L =
∫

L dx, then by skew-symmetry

property of the Poisson bracket∫
δP · J(u) · δL dx = −

∫
δL · J(u) · δP dx
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and then ∫
δP · (J(u) +J∗(u)

) · δL dx = 0

if and only if J(u) is skew-adjoint. �

The converse of the proposition also holds.

Corollary 2.8 The differential operator J(u), which is a q × q skew-adjoint matrix, is a

Hamiltonian operator when the matrix elements do not depend on u or its derivatives, that is

the matrix is constant.

After all these definitions and properties introduced, we can write the form of the Hamiltonian

system of evolution equations as
∂u
∂t
= J(u)

δH
δu

, (2.12)

where u(x, t) ∈ Rq, x is a p-tuple, t ∈ R. The functionalsH[u] =
∫
Ω

H(x, un) dx is Hamiltonian

functional with Ω ⊂ Rp × R and dx = dx1 dx2 . . . dxp and J(u) is the Hamiltonian operator.

Here, δHδu represents the variational derivative of the Hamiltonian flow,which gives the answer

of the question how the value of a functional H[u] changes with respect to a little change in

u(x), that is u(x) is moved to u(x)+ ε δu(x), where the latter term is still in the domain Ω. The

variational derivative can be investigated further with the functional calculus [44]. The first

order change inH by δu is the first variation of the functional and can be written as

δH[u; δu] := lim
ε→0

H[u + ε δu] −H[u]
∆x

=
d
dε
H[u + ε δu]|ε=0

=

∫ x1

x0

δu
δH
δu(x)

dx =
⟨
δH
δu

, δu
⟩
,

where δH
δu is the variational derivative ofH .

Now, let H[u] =
∫ x1

x0
H(x, u, ux, uxx, uxxx, . . .) dx be a general functional, the first variant be-

comes

δH[u; δu] =
∫ x1

x0

(
∂H
∂u

δu +
∂H
∂ux

δux +
∂H
∂uxx

δuxx + . . .

)
dx,

applying integration by parts to the integral and canceling the boundary terms, which vanish

due to the choice of δu, we result in the variational derivative

δH
δu
=
∂H
∂u
− ∂x

(
∂H
∂ux

)
+ ∂2

x

(
∂H
∂uxx

)
− . . .

for a system such that p = q = 1.
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A general variational derivative can be defined as

δH
δuk
=
∂H
∂uk
−

p∑
l=1

∂

∂xl

(
∂H
∂uk,l

)
+ . . . for k = 1, . . . , q.

Likewise the finite dimensional case, there are distinguished functionals for evolution equa-

tions, which is because of the degeneracy of the Poisson bracket and leads to conservation

laws for any system with Hamiltonian structure. Let us give the definition of the distinguished

functionals for evolution equations this time.

Definition 2.9 For a Hamiltonian differential operator J(u) of q × q, the functional C ∈ F

which satisfies the equation J · δCδu = 0, for all x, u, is called the distinguished functional.

As the vector field is defined by the Poisson bracket of two functionals with the Hamiltonian

operatorJ , the bracket is trivial for allH ∈ F if and only if the functional C is distinguished.

That means

{H ,C} = 0, for all H ∈ F ,

which tells that the corresponding Hamiltonian system of the functional C is ut = 0 and this

gives rise to conservation laws.

Proposition 2.10 Let C be distinguished functional of a Hamiltonian operator J , then every

Hamiltonian system (2.12) relative to J has a conservation law that is determined by C.

The distinguished functional determines a conservation law, but for the same Hamiltonian op-

erator of the flow, there exists other conserved quantities within the concept of the symmetry

group.

Definition 2.11 Let (2.12) is the Hamiltonian field, then a scalar field T (u(t)) is called a

conserved quantity, if
d
dt
T (u(t)) = {H ,T } = 0.

With this definition, it can be also concluded that any distinguished functional is a conserved

quantity automatically. Again using the Definition 2.2, one can easily show that the Poisson

bracket of two time dependent conserved quantities results in another conserved quantity, that

is
d
dt
{T ,V} = 0, where T ,V are conserved quantities.
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For the Hamiltonian systems, there is another important concept of symmetry which is needed

to determine all of the conserved quantities of the original equation.

Definition 2.12 Let u = f (x, t) be an arbitrary solution to a system and let G be a group of

transformations such that for g ∈ G, g · f (x, t) is also a solution to the system. Then the group

of G is called symmetry group of the given flow.

For the following notions, let us use the Hamiltonian system as

∂u
∂t
= K[u],

instead of (2.12).

Let the time dependent symmetry generator be σ = σ(u, t) of the flow of the group transfor-

mations of G. Then σ satisfies the equation

∂σ

∂t
+ {K, σ} = 0.

In particular, if there is no time dependency for σ, then we have only the trivial Poisson

bracket {K, σ} = 0.

For two different symmetries σ1 and σ2, the Poisson bracket {σ1, σ2} gives again a symmetry,

which is a trivial property of the group.

If the flow, that has the symmetry generator σ, is a Hamiltonian vector field, then we can write

σ = J · δI
δu
, (2.13)

where J is the Hamiltonian operator and I is a conserved quantity. This notation gives clues

about the relation between symmetries and the conserved quantities. The only thing to notice

is that the equation (2.13) does not hold for all symmetries. That is, we can find symmetries

which are not Hamiltonian.

Let us now explain the concept of symmetry, generators and the conserved quantities using

the Korteweg de Vries (KdV) equation in an example.

Example: The general KdV equation has the form of

ut = αuux + ρux + νuxxx. (2.14)
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For simplicity, taking the constant values as α = 6, ρ = 0 and ν = 1, we obtain the following

equation with the solution u(x, t)

ut = 6uux + uxxx. (2.15)

To obtain the generators, we need some transformations, where the equation (2.15) is invari-

ant. These transformations are space, time translations and Galilean, conformal transforma-

tions. Let now the new solution after transformations be ū(x̄, t̄), which can be expressed in

terms of the original solution u(x, t) such that

• Space translation: ū(x̄, t̄) = u(x + ε, t),

• Time translation: ū(x̄, t̄) = u(x, t + ε),

• Galilean transformation: ū(x̄, t̄) = u(x + 6εt, t) + ε,

• Conformal transformation: ū(x̄, t̄) = e2εu(eεx, e3εt).

Then the corresponding generators can be obtained as

σ1 = ux ≈ lim
ε→0

u(x + ε, t) − u(x, t)
ε

,

σ2 = ut ≈ lim
ε→0

u(x, t + ε) − u(x, t)
ε

,

σ3 = 1 + 6tux ≈ lim
ε→0

(u(x + 6εt, t) + ε) − u(x, t)
ε

,

σ4 = 2u + xux + 3t(uxxx + 6uux) ≈ lim
ε→0

e2εu(eεx, e3εt) − u(x, t)
ε

.

Now using these symmetry generators, the conserved quantities can be found. For the well-

known Hamiltonian operator J1 = D, the functional

I1 =

∫
udx

is the trivial and independent Casimir functional, which gives the total mass physically.

As the first three generators can be written as in (2.13), one can easily check that the conserved

quantities are

I2 =

∫
1
2

u2dx, I3 =

∫ (
u3 − 1

2
u2

x

)
dx, I4 =

∫ (
xu + 3tu2

)
dx,

which agree with the first three generators for the equation

σi = J1 ·
δIi+1

δu
, for i = 1, 2, 3.

Since σ4 can not be written in the form of (2.13), it does not construct a Hamiltonian vector

field and does not give any conservation law.
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2.2.1 Bi-Hamiltonian Systems

Definition 2.13 Let ut = K1[u] be a Hamiltonian system. It is called bi-Hamiltonian system,

if it can be written in the form

∂u
∂t
= J1 ·

δH2

δu
= J2 ·

δH1

δu
,

where J1 and J2 are Hamiltonian operators and H1 and H2 are appropriate Hamiltonian

functionals.

Definition 2.14 The Hamiltonian operators J1 and J2 are called compatible if every linear

combination aJ1 + bJ2 is also a Hamiltonian operator for all a, b ∈ R.

Due to the compatibility condition of two operators, infinite symmetries and conservation

laws for the system may be constructed recursively.

Let us start with a Casimir function H0 of the operator J1. Then using the symmetries

between the Hamiltonian vector fields, a sequence of Hamiltonians is obtained. The following

theorem gives the main idea and the recursion definition of the bi-Hamiltonian systems.

Theorem 2.15 ([46]) Let ut = K1[u] = J1 · δH1
δu = J2 · δH0

δu be a bi-Hamiltonian system of

evolution equations and R = J2J−1
1 be the recursion operator to obtain Hamiltonian vector

fields with K0[u] = J1 · δH0
δu . Now, let the vector fields defined recursively by

Kn[u] = RKn−1[u], for n ≥ 1.

Then there exists an infinite sequence ofH0,H1,H2, . . . such that each equation of the form

J1 ·
δHn

δu
= J2 ·

δHn−1

δu
, with n ≥ 1 (2.16)

is a bi-Hamiltonian system.

Indeed, for each system (2.16), there exist infinite conservation laws with the property of the

Hamiltonian functionsHn,Hm such that

{Hn,Hm}J1 = {Hn,Hm}J2 = 0, for n,m ≥ 1
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where the Poisson brackets are defined with respect to the first and the second Hamiltonian

operators as

{F ,G}J1 =

∫
δF
δu
J1

δG
δu

dx and {F ,G}J2 =

∫
δF
δu
J2

δG
δu

dx,

respectively.

In particular, for l > k we have

{Hk,Hl}J1 = {Hk−1,Hl}J2 = {Hk−1,Hl+1}J1 = . . . = {H0,Hk+l}J1 = 0.

Example: There is a second operator J2 = D3 + 2(uD + Du) of the KdV equation (2.14) for

which again the generators satisfy the equation

σi = J2 ·
δIi+1

δu
,

for i = 1, 2 and 4. The conserved quantities are

I2 =

∫
1
2

udx, I3 =

∫
1
2

u2dx, I5 =

∫ (
1
2

xu +
3
2

tu2
)

dx,

whereas there is not any distinguished functional for the operator J2.

Now, with the second Hamiltonian formulation of the KdV equation, we obtained the con-

served quantities with respect to both formulations. Now the recursion operator can be defined

using the Theorem 2.2.1. Then the recursion operator of the KdV equation is

R = J2J−1
1 =

[
D3 + 2(uD + Du)

]
D−1 = D2 + 2u + 2DuD−1.

According to the theorem, we can find infinitely many vector fields with the general recursion

equation

utn = RnK0 =
[
D3 + 2(uD + Du)

]n
ux.

To obtain these vector fields, we need the first vector field K0[u], which can be derived by

applying the recursion relation to the Lie symmetries [7], which results in K0[u] = ux. Then

the following vector fields can be found recursively

K1 = RK0 =
(
D2 + 2u + 2DuD−1

)
ux = uxxx + 6uux,

K2 = R2K0 = RK1 =
(
D2 + 2u + 2DuD−1

)
(uxxx + 6uux) = u5x + 13uxuxx + 5uuxxx + 6u2ux,

...
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Then the corresponding conserved quantities are obtained as [46]

H0 =

∫
1
2

u2 dx,

H1 =

∫ (
−1

2
u2

x + u3
)

dx,

H2 =

∫ (
1
2

u2
xx +

5
2

u2uxx +
5
2

u4
)

dx,

...
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CHAPTER 3

ENERGY PRESERVING METHODS

In the last two decades the conservation of geometric properties of Hamiltonian differential

equations in numerical integrators has attracted a lot of interest (see the monographs [23,

28, 35, 51] ). Examples of such geometric properties are symplecticity, preservation of first

integrals, symmetries, reversing symmetries and volume preservation. Runge-Kutta meth-

ods conserve linear invariants and only symplectic Runge-Kutta methods conserves quadratic

invariants and symplecticity. Also, some Runge-Kutta methods are examined as pseudo sym-

plectic methods, where the preservation of the energy in long time integration is tried [4]. No

Runge-Kutta method conserves higher order polynomial or nonlinear invariants and the vol-

ume. It was also shown that it is not possible to preserve the symplecticness and Hamiltonian

simultaneously [51]. Energy preserving methods are considered in the nineties as symplectic

integrators and then they again gain attraction in recent years [20, 23, 30, 40, 42, 48]. The

development of the energy preserving methods started with the work of Courant, Friedrichs

and Lewy in 1928 [16]. New integrators are designed to preserve the first integrals for the

differential equations using discrete gradients [41] and discrete variational derivative [20].

The energy preserving methods introduced first for the Hamiltonian ODEs with collocation

methods [27] and improved as the average vector field method (AVF) [11] to apply the PDEs.

It was shown in [12] that no Runge-Kutta method applied to Hamiltonian systems can be

energy preserving.

The material in this Chapter is based on the articles [11, 15, 17, 27].

16



3.1 Energy Preserving Integrators

We consider the semidiscretized form of Hamiltonian PDEs (2.10)

u̇ = J(u)∇H(u) = f (u), u ∈ Rm, (3.1)

where J(u) is an antisymmetric matrix. An integral preserving method is constructed by

introducing the discrete approximate gradient ∇H : Rm × Rm → Rm, which is a continuous

mapping satisfying

H(u) − H(v) = ∇H(v, u)T (u − v),

∇H(u, u) = ∇H(u).

There exist several integral preserving methods in the literature satisfying the conditions

above, but their construction is not unique. When the discrete gradient is found, the inte-

gral preserving method can be simply written as

un+1 − un

∆t
= J̄(un, un+1)∇H(un, un+1). (3.2)

Examples of discrete gradient methods are proposed [23] as

∇H(u, v) = ∇H
(v + u

2

)
+

H(v) − H(u) − ∇H
(

v+u
2

)T
(v − u)

∥v − u∥2 (v − u)

and [29]

∇HAVF =

∫ 1

0
∇H((1 − τ)un + τun+1) dτ.

Then the Average Vector Field (AVF) method becomes with the choice of the second discrete

gradient
un+1 − un

∆t
= J∇HAVF = J

∫ 1

0
∇H((1 − τ)un + τun+1) dτ (3.3)

for canonical Hamiltonian systems.

To show the energy preservation of the AVF method, we multiply both sides with ∇HAVF =∫ 1
0 ∇H((1 − τ)un + τun+1) dτ, which results in the equation

∇HAVF
un+1 − un

∆t
= ∇HAVF J ∇HAVF . (3.4)

As J is skew-symmetric, right hand side of (3.4) vanishes and one obtains

∇HAVF
un+1 − un

∆t
=

∫ 1

0

un+1 − un

∆t
∇H((1 − τ)un + τun+1) dτ = 0,
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which can be reduced to ∫ 1

0

d
dτ

(
H((1 − τ)un + τun+1)

)
dτ = 0.

By the fundamental theorem of calculus, we obtain

H(un+1) − H(un) = 0.

3.2 Average Vector Field Method

We will now give the AVF method for a general system of ODE’s

u′ = f (u), u ∈ Rm,

un+1 − un = ∆t
∫ 1

0
f
(
(1 − τ)un + τun+1

)
dτ. (3.5)

This method only requires the evaluation of the vector field. When applied to the Hamiltonian

systems as in (3.3), it exactly preserves the energy of an arbitrary Hamiltonian. In addition, it

is symmetric and it is a B-series method [13].

The AVF method is derived in [27] as an energy preserving collocation method. Let us given

the Lagrange basis interpolation polynomials

li(τ) =
s∏

j=1, j,i

τ − c j

ci − c j
, bi =

∫ 1

0
li(τ) dτ. (3.6)

Then the energy preserving collocation method is defined as

Definition 3.1 Let c1, c2, . . . , cs be distinct real numbers with the same property as in the

original collocation methods such that 0 ≤ ci ≤ 1 and bi , 0 for 1 ≤ i ≤ s and h is the time

step. Now consider a polynomial y(t) having degree s and satisfying

y(t0) = u0

ẏ(t0 + cih) =
1
bi

∫ 1

0
li(τ) f (y(t0 + τh)) dτ. (3.7)

The next step is then defined by u1 = y(t0 + h).

When the integrals are approximated by interpolating quadrature formulas, corresponding

to the nodes c1, . . . , cs, one obtains ẏ(t0 + cih) = f (y(t0 + cih)) and the method reduces to
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the classical collocation method. Therefore, the method is named “the energy-preserving

collocation method”.

When ẏ(t0 + cih) is denoted as ki and the methods can be summarized as

ẏ(t0 + τh) =
s∑

i=1

li(τ)ki (3.8)

y(t0 + τh) = u0 + h
s∑

i=1

(∫ τ

0
li(ξ) dξ

)
ki. (3.9)

A nonlinear system of equations k = G(k) for finite dimensional vector k = (k1, . . . , ks) is

obtained when (3.9) is inserted into (3.7). This equation is solved by fixed point iteration or

by Newton’s method.

The integrals in (3.7) and (3.9) can be computed for polynomial Hamiltonians exactly at the

beginning of the integration. For a non-polynomial Hamiltonian, the integrals have to be

computed accurately by numerical quadrature formulas.

In polynomial Hamiltonians, the computational cost is comparable to the classical collocation

methods like Gauss-Legendre Runge-Kutta methods [27].

The energy preserving collocation methods can be interpreted as continuous-stage Runge-

Kutta methods [27] such that

Kξ = un + ∆t
∫ 1

0
a(ξ, η) f (Kη) dη, un+1 = un + ∆t

∫ 1

0
b(η) f (Kη) dη, (3.10)

for ξ ∈ (0, 1). Here, Kξ ≈ u(t0 + c(ξ)∆t), where c(ξ) =
∫ 1

0 a(ξ, η) dη. The integral stages Kξ

correspond to the values of the polynomial y(t0 + ξ∆t) and the coefficients are given by

c(ξ) = ξ, a(ξ, η) =
s∑

i=1

1
bi

∫ ξ

0
li(α) dα li(η), b(η) = 1. (3.11)

The existence of the method (3.10) and other Runge-Kutta like methods such as AVF methods,

the existence and the uniqueness of the solution can be ensured with the following theorem.

Theorem 3.2 ([13]) Let the function f : Rn → Rn be continuous and satisfies the Lipschitz

condition | f (xi) − f (x j)| ≤ K|xi − x j| for all xi, x j ∈ Rn. If

∆t <
1

Ksupξ∈[0,1]
∫ 1

0 |a(ξ, η)| dη
,

then the solution (3.10) has a unique solution.
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In particular, the AVF method always has a solution, this can be shown with the particular

choice of the functions a(ξ, η) = ξ and b(η) = 1.

The energy preserving collocation methods can be customized for s = 1 and s = 2 as in the

following way:

• s = 1 : The method reduces to y(t0 + τh) = (1 − τ)u0 + τu1, which corresponds to

the average vector field method. This consequence is independent of the choice of the

constant c1.

• s = 2 : If the nodes c1 and c2 are chosen such that they satisfy the equation

1
3
− 1

2
(c1 + c2) + c1c2 = 0,

then the corresponding method has order at least of 3, with Gaussian nodes or Radau

nodes.

In addition to the energy preservation, the symmetry property of this method is also a crucial

property. In general, symmetry of a method is defined in the following way:

Definition 3.3 The numerical method yn+1 = ϕh(yn) is said to be symmetric, if the system

satisfies ϕ−1
h = ϕ−h.

The symmetry condition of the energy preserving collocation method (3.10) given with the

coefficients (3.11) is

a(1 − ξ, 1 − η) + a(ξ, η) = b(η),

which corresponds to

s∑
i=1

1
bi

(li(τ)li(ξ) − li(1 − τ)li(1 − ξ)) = 0.

For the AVF method (3.3), symmetry can also be shown by the replacement of

∆t → −∆t, un → un+1, and un+1 → un.

Despite the energy preserving and symmetry properties of the method, there is a problem

that the method can not be both energy preserving and symplectic. As an alternative for the

method not being symplectic, the concept of conjugate-symplecticity arisen, which means
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that the method can be conjugate to a symplectic integrator up to an order. In [27], it is

offered that if a change of coordinates ψh(y) = y+O(h2s) is applied to the method, where 2s is

the order of the energy-preserving collocation method, then ψ−1
h ϕh ψh behave as a symplectic

integrator in the long term. However, as checking conjugate symplecticity with this idea is

hard to apply, a weaker definition may be given.

Definition 3.4 The method yn+1 = ϕh(yn) having order r is said to be conjugate-symplectic

up to order q, where q > r, if under the change of coordinate ψh(y) = y + O(hr), where the

Jacobian matrix

χh = ψ
−1
h ϕh ψh

satisfies the equation

χh(y) J χh(y) = J + O(hq+1).

Then the method acts as the symplectic integrator on the interval, which has length of hr−q.

According to [27], the energy preserving method of order 2s is conjugate-symplectic up to

order 2s + 2, which shows the fact that the symplecticity property is achieved by the energy

preserving methods up to an order.

3.3 AVF Method for Non-Canonical Hamiltonian Systems

This method is developed again using the same idea as the AVF method (3.3). It can be

defined as [15]

un+1 − un

∆t
= J

(
un + un+1

2

) ∫ 1

0
∇H((1 − τ)un + τun+1) dτ, (3.12)

where the original problem is the Hamiltonian system (2.10).

This method is a general result for any type of the Jacobian, J. In particular, it is simplified to

the energy preserving collocation integrator (3.3), if the matrix J is constant.

In addition to the energy preservation property of the previously introduced method (3.7), the

developed version (3.12) preserves the Casimir functions; the implementation of this numeri-

cal integrator is similar to (3.7) with an exception in the Jacobian due to the u dependency:

y(t0) = u0 (3.13)

ẏ(t0 + ci∆t) = J(y(t0 + ci∆t))
∫ 1

0

li(τ)
bi
∇H(y(t0 + τ∆t)) dτ. (3.14)
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The next step is updated as u1 = y(t0 + h), where li(τ) and bi are same as (3.6).

This method can be reformulated identically as the integrator in [27] with a change of notation

for Poisson systems. When we use the notation Kτ := y(t0 + τ∆t) and Ki := y(t0 + ci∆t),

Lagrange interpolation leads to

ẏ(t0 + ci∆t) =
s∑

i=1

li(τ)J(Ki)
∫ 1

0

li(τ)
bi
∇H(Kτ) dτ (3.15)

and integrating (3.15) gives

Kτ = u0 + ∆t
s∑

i=1

∫ 1

0

(
li(τ)
bi

∫ τ

0
li(α) dα

)
J(Ki)∇H(Kτ) dτ. (3.16)

The s degree polynomial y(t) can be written in terms of u0 and K1, . . . ,Ks. Hence, the equa-

tion (3.16) is needed to compute the polynomial y(t). That leads to a non-linear system of

equations as in the previous case for the canonical Hamiltonian systems and can be solved

by iterative methods. The method is equivalent to the implicit s-stage Runge-Kutta method

(3.10) in its complexity. With the help of the AVF method, it can be shown that Runge-Kutta

methods also preserves energy under special conditions. For more detailed information see

[12].

The method introduced by (3.15) and (3.16) is again energy preserving because of the skew-

symmetry property of J(u). The energy is said to be preserved if

H(y(t0 + ∆t)) − H(y(t0))
∆t

= 0,

that is, if ∫ 1

0
∇H(y(t0 + τ∆t))T ẏ(t0 + τ∆t) dτ = 0. (3.17)

When the derivative of y(t) is replaced by (3.15), the left hand side of (3.17) becomes
s∑

i=1

bi

(∫ 1

0

li(τ)
bi
∇H(y(t0 + τ∆t) dτ

)T

J(Ki)
(∫ 1

0

li(η)
bi
∇H(y(t0 + η∆t) dη

)
,

which vanishes by the skew-symmetry of the matrix J(Ki).

This method is claimed to preserve also the quadratic Casimir functions (2.1), which can

be also defined as the function C(u) such that ∇C(u)T J(u) = 0, ∀u. The constant Casimir

functions are clearly conserved for any Hamiltonian, since
dC(u)

dt
= 0.

Theorem 3.5 ([15]) The Casimir function C(u) of the form C(u) = uT Mu, where M is a

constant matrix, is preserved up to order 2s with the energy preserving method based on the

Gaussian quadrature formula.
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Proof. By the fundamental theorem of calculus

C(y(t0 + ∆t)) −C(y(t0))
∆t

=

∫ 1

0
∇C(y(t0 + τ∆t))T ẏ(t0 + τ∆t) dτ.

Applying the Gaussian quadrature with nodes bi, ci for i = 1, . . . , s, the difference C(u1) −

C(u0) is obtained as

∆t
s∑

i=1

bi∇C(y(t0 + ci∆t))T J(y(t0 + ci∆t))
∫ 1

0

li(τ)
bi
∇H(y(t0 + τ∆t) dτ,

which vanishes due to skew-symmetry of J. �

The AVF methods (3.12) for non-canonical Hamiltonian systems (3.1) is a pseudo Poisson

integrator [15].

3.4 Energy Preserving B-series Integrators

More recently, much attention has been given to a more general class of integrators, which

include the Runge-Kutta methods as a subclass, which are the so-called B-series methods.

The B-series methods are expressed in terms of rooted trees, that are a type of combinatorial

graph and related with the vector field of the original differential equation. The conditions

to conserve the quantities of the equation, such as symplecticity and energy preservation are

examined using the rooted trees. The B-series methods can not be both Hamiltonian and

energy preserving at the same time [6]. Therefore, some linear combinations of the rooted

trees result in Hamiltonian B-series, while other linear combinations give energy preserving

B-series. However, the energy preserving B-series can be conjugate to Hamiltonian B-series

by the introduction of other B-series, which are called conjugate-Hamiltonian B-series or vice

versa [57]. The conjugacy conditions are again expressed in terms of the rooted trees.

In general, B-series method enables numerical solution to be written in terms of rooted trees,

which can be then expanded into B-series. The Taylor series methods and all Runge-Kutta

methods are B-series.

The methods that we examined theoretically are structure preserving. However, insisting on

structure preservation results in expensive computations or forces us to exclude other efficient

numerical integrators with some other good long term properties. To make a connection of

these methods, alternatively, with B-series methods the concept of conjugacy can be thought

again, like we introduced for AVF methods.
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Let the numerical integrator be represented as the map ϕ∆t and let χ∆t be another simpler

integrator. Then if a map

ϕ̄∆t = χ∆t ◦ ϕ∆t ◦ χ−1
∆t

is constructed as the conjugate scheme and applied N times to examine the long term behavior,

the result

ϕ̄N
∆t =

(
χ∆t ◦ ϕ∆t ◦ χ−1

∆t

)N
= χ∆t ◦ ϕN

∆t ◦ χ
−1
∆t

shows that the two conjugate methods are independent of the number of steps taken. This

shows that with a simpler integrator a conjugacy may be obtained and the structure preserva-

tion can be provided.

After the implementation of the AVF method, the existence of energy preserving B-series

methods and the fact that the AVF method is a B-series method are shown in details in [13].

3.5 Modified Equations

The obtained solutions for the differential equations using numerical methods are always

needed to be developed, in terms of the order or the properties of the methods. One way

to obtain better results is to modify the differential equations with a perturbation in the equa-

tion. The idea of the modified equation is a result of the need of a backward error analysis.

Usually the difference between the approximate and the exact solutions of the differential

equation is examined to check the efficiency of the method, which corresponds to the for-

ward error. However, if we can find a modified equation to the original one, then the local

truncation error of the method can be found by taking the difference between the original and

the modified equations. Therefore, for a rigorous treatment, the modified equation has to be

truncated, so that the error can be made exponentially small and that leads to validity for long

time intervals.

For a general differential equation u̇ = f (u), the modified vector field is defined as f̃ (u), where

the first term in the modified vector field is f (u) and the next term is the leading term of the

local truncation error of the method.

The modified differential equation u̇ = f̃ (u) is discussed in [28] and the Taylor expansion of
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the exact solution of the modified equation f̃ (u) is given for a fixed t by

u(t + ∆t) = u(t) + ∆t f̃ (u) +
∆t
2

( f̃ )′ f̃ (u) + . . . .

The modified equations are also applicable for the Hamiltonian system of differential equa-

tions, such that Hamiltonian operator or the Hamiltonian functional can be modified. How-

ever, for energy preservation of the method, only the operator should be modified without

violating the self-adjointness property [13]. In [49], it is observed that the AVF method (3.3)

defined for canonical type of Hamiltonian ode’s is an energy-preserving B-series method, not

a Runge-Kutta method. In its original form, the method has order 2. In order to obtain order

4, the method can be extended for (3.1) as follows:

un+1 − un

∆t
=

I − 1
12

(∆t)2 f ′
(
un + un+1

2

)2 ∫ 1

0
f
(
(1 − τ)un + τun+1

)
dτ.

This is also a skew-gradient method and in particular, the structure matrix J is modified here.

That is, the method becomes

un+1 − un

∆t
= J̃ ∇HAVF(un, un+1)

and this results in a modified structure matrix J̃ such that

J̃ =

I − 1
12

(∆t)2 f ′
(
un + un+1

2

)2 J = J − 1
12

(∆t)2J Hess(J).

We have also used the idea of modified equation by following the formulation in [24] for the

KdV equation (2.14).

The general Hamiltonian system can be written as

ut = J
δH
δu

or equivalently, in semi discrete formut = J̄(u)∇H̄(u).

Let the modified equation be

yt = J̄(y)∇H̄(y) + ∆t A(y), (3.18)

where A(y) is the perturbation for the original equation.

In order to obtain the leading term of the truncation error, A(y), the modified equation is

expanded with Taylor series up to order 3, since the AVF method itself is of order 2, where

y(t + ∆t) = y(t) + ∆t
∂y(t)
∂t
+

(∆t)2

2
∂2y(t)
∂t2 + O(3). (3.19)
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We know ∂y(t)
∂t from our assumption and taking its derivative gives

∂2y(t)
∂t2 =

∂

∂t

(
J̄(y)∇H̄(y) + ∆t A(y)

)
=

(
∂

∂y

(
J̄(y)∇H̄(y) + ∆t A(y)

)) (
J̄(y)∇H̄(y) + ∆t A(y)

)
,

which results in
∂2y(t)
∂t2 =

(
∂

∂y

(
J̄(y)∇H̄(y)

)) (
J̄(y)∇H̄(y)

)
by ignoring the higher order terms. If we substitute the derivatives into (3.19), we obtain

y(t + ∆t) = y(t) + ∆t
(
J̄(y)∇H̄(y) + ∆t A(y)

)
+

(∆t)2

2

(
∂

∂y

(
J̄(y)∇H̄(y)

)) (
J̄(y)∇H̄(y)

)
+ O(3).

Since the order of the AVF method is 2, to satisfy it for the modified equation, A(y) can be

found as

A(y) = −1
2

(
∂

∂y

(
J̄(y)∇H̄(y)

)) (
J̄(y)∇H̄(y)

)
and the semi-discrete modified equation (3.18) becomes

yt = J̄(y)∇H̄(y) − ∆t
2

(
∂

∂y

(
J̄(y)∇H̄(y)

)) (
J̄(y)∇H̄(y)

)
.

When the modified formulation is applied to the semi-discrete first formulation of the KdV

equation, where the first formulation [47] is given in terms of differential operators as

J1 = D, H2 =

∫ (
α

6
u3 +

ρ

2
u2 − ν

2
u2

x

)
dx,

we can find the modified equation for the first pair as

yt = J̄1(y)∇H̄2(y) − ∆t
2

(
J̄1(y)

∂

∂y

(
∇H̄2(y)

)) (
J̄1(y)∇H̄2(y)

)
,

since the operator and the semi-discrete form are not dependent on y and this leads to the final

modified equation

yt = J̃1H2,

where

J̃1 = D − ∆t
2

D
(
νD2 + αy + ρ

)
D.

As offered in [49], the modified equation is obtained by only changing the operator. At that

point, applying the AVF method to the modified equation will facilitate to do the backward

error analysis of the method.
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However, the modified equation can not be applied for the second Hamiltonian formulation

J2,H1 of the KdV system, because the resulting equation can not be written as

yt = J̃2H1

keeping the Hamiltonian as original and modifying the Hamiltonian operator.

27



CHAPTER 4

APPLICATION OF AVERAGE VECTOR FIELD

INTEGRATOR TO KdV TYPE EQUATIONS

The theory behind the Hamiltonian systems has been investigated in Chapter 2, where the

concept of bi-Hamiltonian equations is introduced,too. In this chapter, we apply the energy

preserving AVF method to the bi-Hamiltonian equations, such as Korteweg de Vries (KdV),

modified Korteweg de Vries (mKdV), Ito system and two different coupled KdV-KdV system.

First, the two Hamiltonian PDEs are discretized in space by preserving the skew-symmetric

structure of the underlying PDEs and the resulting ODEs and solved using the AVF method.

Because the energy preserving AVF method is implicit, the resulting implicit nonlinear equa-

tions are solved by Newton iteration within machine accuracy.

4.1 Formulation of the Bi-Hamiltonian Equations

4.1.1 Korteweg de Vries Equation

The KdV equation has a deep history, as a strong example for solitary waves and solitons. The

origin of the KdV equation is in [34], where the equation is first found as the shallow water

waves, which became a model for atmospheric fluid dynamics, with the constants α = −6,

ρ = 0 and ν = −1. The shallow water waves were modeled as KdV equations with a sixty

years of gap after the Scott Russell’s observations of wave translation [50] in the Edinburgh-

Glasgow canal. Another detailed derivation of the KdV equation can be obtained using the

starting point of the governing equations of motion of an ideal fluid, which is introduced in

[59].
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The KdV type equations are generally named as solitons. The concept of the solitons for

the KdV equations was first introduced by Zabusky and Kruskal [62] in 1965. The name of

solitons is used for the waves with particle property. Here, the particle property means that

interaction of any two or more waves does not lead to any deformation in the shape or speed of

the waves, but the phases are shifted. In addition to the soliton property of the KdV equations,

some of the conserved quantities of the KdV equation are obtained in [43].

With the invention of the equation and its properties, various methods are tried to solve the

KdV equation exactly [10], whereas the first implemented one was inverse scattering method,

which is introduced in [21].

KdV equation is governing weakly, nonlinear long waves whose phase speed reaches a maxi-

mum for waves of infinite length. It arises in the study of solitary waves, basically in the phys-

ical models of atmosphere and ocean motion, mid-latitude and equatorial planetary waves,

ion-acoustic waves in plasma, lattice waves, waves in elastic rods, pressure waves in a liquid-

gas bubble mixture. (See, for example, [18, 38, 45, 58].)

The general KdV equation, which was also presented in (2.14)

ut = αuux + ρux + νuxxx.

The bi-Hamiltonian form of the KdV equation (2.14) is given in [47] as

J1 = D, J2 =
α

3
uD +

α

3
Du + ρD + νD3, (4.1)

H1 =

∫
1
2

u2dx, H2 =

∫ (
α

6
u3 +

ρ

2
u2 − ν

2
u2

x

)
dx. (4.2)

In order to apply the AVF method, the skew-adjoint operators J1 and J2 and the Hamilto-

nians H1 and H2 have to be discretized in space. The most important aspect of the semi-

discretization in space is the preservation of the skew-adjoint (skew-symmetric) structure of

the operators J1 and J2 [14, 39]. The skew adjoint operator J1 = D of the first Hamiltonian

pair is discretized as Du = u j+1−u j
2∆x by using central difference. Hence, J1 becomes

J̄1 =
1

2∆x
A, where A =



0 1 −1

−1 0 1
. . .

. . .
. . .

−1 0 1

1 −1 0


(4.3)

29



and A is an N × N circulant tridiagonal matrix.

The discretization of the Hamiltonian functional H2 is not needed to be skew-symmetric

unlike the Hamiltonian operator J1. Many different discretizations, such as backward or

forward are accepted for a Hamiltonian functional, and some of these are offered in [17]. In

this work, for the Hamiltonian functional of the first pair, H2, and for all of the remaining

functionals of the KdV-type equations in this Chapter, we will use the forward difference;

H̄2 =

N∑
j=1

(
α

6
u3

j +
ρ

2
u2

j −
ν

2∆x2 (u j+1 − u j)2
)
∆x, (4.4)

where u j is an element of the N dimensional vector u such that u = (u1, . . . , uN)T . The integral

H̄1 is discretized by the well-known rectangle rule.

The gradient of the discrete Hamiltonian (4.4) is then

∇H̄2(u j) =
α

2
u2

j + ρu j +
ν

∆x2 (u j+1 − 2u j + u j−1), for j = 1, . . . ,N, (4.5)

where ∇H̄2(u) is an N dimensional vector.

After applying the AVF method (3.12), we obtain the system of ODEs

un+1 − un

∆t
=

α

12∆x
A

[
(un)2 + diag(un)un+1 + (un+1)2

]
+

ρ

4∆x
A

(
un + un+1

)
+

ν

4∆x3 A
(
ũn + ũn+1

)
,

(4.6)

with

un = (un
1, . . . , u

n
j , . . . , u

n
N)T , (4.7)

ũn = (un
2 − 2un

1 + un
N , . . . , u

n
j+1 − 2un

j + un
j−1, . . . , u

n
1 − 2un

N + un
N−1)T (4.8)

where diag represents diagonal matrix of dimension N × N with elements of the vector un on

the main diagonal.

The implicit system of equations (4.6) can be written as

F(un+1) = 0. (4.9)

The Newton’s method then can be applied to (4.9) as

JF(un+1
κ )

(
un+1
κ+1 − un+1

κ

)
= −F(un+1

κ ), (4.10)

where JF(un+1
κ ) is the Jacobian of the function F(un+1

κ ). Solving (4.10) for un+1
κ+1 at each step

with a tolerance, will give the approximation to the equation. In the calculation, κ represents
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the iteration level for Newton’s method. In the computation, because the linear system of

equations to be solved during the Newton iteration are sparse and have block tridiagonal

form, sparse matrix solvers of MATLAB is used.

Introducing the constants r = ∆t/4∆x3 and s = ∆t/12∆x, the corresponding Jacobian can be

obtained as

J̄F(un+1) = I − sα(A R(un)) − sα(A Q(un+1)) − 3sρA − rν(A P), (4.11)

which is found by taking the derivative of the equation (4.6) with respect to un+1.

The square matrices R,Q, P are

R(un) = diag(un), Q(un+1) = diag(2 un+1),

where diag is used to represent the diagonal matrix with the given vector elements on the

main diagonal and the constant matrix P can be written as

P =



−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 1 −2


. (4.12)

The implicit equation (4.6) has to be solved within the machine accuracy. We have used

therefore as stopping criteria for Newton’s method tolerance between 10−13 − 10−15.

The formulation of the second Hamiltonian pair J2 and H1 for the KdV equation can be

done similar to the first formulation. The skew-adjoint operator for the second Hamiltonian

pair is more complicated then in the first formulation. But this is compensated by a simpler

Hamiltonian functional in the formulation.

The semi-discretized J2 is given as

J̄2 =
α

6∆x
C(u) +

ρ

2∆x
A +

ν

2∆x3 B, (4.13)

where the matrix A is same as (4.3) in the first formulation. The matrix C(u) can be defined
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as

C(u) =



0 u1 + u2 −(u1 + uN)

−(u2 + u1)
. . .

. . .

. . .
. . . uN−1 + uN

uN + u1 −(uN + uN−1) 0


, (4.14)

which is the discretization of the term α
3 uD+ α

3 Du ofJ2. The terms uD and Du are discretized

together in one matrix in order not to violate the self-adjointness of the operator as offered in

[39]. The matrix B

B =



0 −2 1 −1 2

2
. . .

. . .
. . . −1

−1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . 1

1
. . .

. . .
. . . −2

−2 1 −1 2 0


, (4.15)

corresponds to the discrete D3 in the operator J2, so the constant entries of the matrix B are

the coefficients of the vector elements u j in the central discretization of uxxx as in [3]

uxxx =
u j+2 − 2u j+1 + 2u j−1 − u j−2

∆x3 .

The Hamiltonian functionalH1 of the second Hamiltonian pair can be discretized simply as

H̄1 =

N∑
j=1

1
2

u2
j∆x, (4.16)

then the gradient of the discrete Hamiltonian functional is clearly ∇H̄1 = u, which is the N

dimensional vector.

Applying the AVF method yields

un+1 − un

∆t
=

(
α

12∆x
C(un) +

α

12∆x
C(un+1) +

ρ

2∆x
A +

ν

2∆x3 B
)
·
(
1
2

(
un+1 + un

))
, (4.17)

where C(un) and C(un+1) have the same entries as the matrix (4.14), but they are evaluated at

the time level of n and n+1, respectively. Introducing the constant r = ∆t/4∆x3, s = ∆t/12∆x

and taking the derivative of (4.17) with respect to un+1, the Jacobian, which is used to solve

the system with the Newton’s method, is obtained as

J̄F(un+1) = I − sαG(un) − sαD(un+1) − sαE(un) − 6sρA − rνB. (4.18)
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The square N × N matrices in (4.18) are

D(un+1) =



un+1
2 − un+1

N 2un+1
2 −2un+1

N

−2un+1
1

. . .
. . .

. . .
. . . 2un+1

N

2un+1
1 −2un+1

N−1 un+1
1 − un+1

N−1


and

E(un) =



un
2 − un

N un
2 −un

N

−un
1

. . .
. . .

. . .
. . . un

N

un
1 −un

N−1 un
1 − un

N−1


. (4.19)

The solutions of the KdV equation (2.14) with respect to both of the Hamiltonian formulations

(4.1) and (4.2) with the AVF method (3.12) are examined in the next chapter.

4.1.2 Modified Korteweg de Vries Equation

We consider the general modified KdV (mKdV) equation

ut = −αu2ux − βuxxx. (4.20)

The mKdV equations belong to the category of completely integrable systems as the KdV

equations [63] and they all admit soliton solutions. The mKdV equation can be derived from

the KdV equations using Miura transformations [25]:

u = −vx − v2.

Then the mKdV equation is obtained for α = 6 and β = 1 as

vt + 6v2vx + vxxx = 0.

The bi-Hamiltonian structure of the general mKdV equation is given in [47], where the Hamil-

tonian pairs are given for the case α = −3/2 and ν = 1. When we rewrite it for general

equation(4.20), the bi-Hamiltonian formulation becomes

J1 = D, J2 = −
2α
3

DuD−1uD − βD3 (4.21)

H1 =

∫
1
2

u2dx, H2 =

∫ (
− α

12
u4 − β

2
u2

x

)
dx. (4.22)
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However the term D−1 in the second Hamiltonian operatorJ2 represents integral and prevents

us from writing the finite difference for J2. Therefore, to get rid of the term D−1, the integral

operator is applied to u from right and we obtain the second Hamiltonian operator as

J2 = −
2α
3

D
u3

2
D − βD3.

Since our aim is to obtain the term −αu2ux in the mKdV equation with

ut = J2
δH1

δu
,

the final version of J2 is

J2 = −
α

2
uDu − βD3,

where the new Hamiltonian formulation can be rewritten as

J1 = D, J2 = −
α

2
uDu − βD3 (4.23)

H1 =

∫
1
2

u2dx, H2 =

∫ (
− α

12
u4 − β

2
u2

x

)
dx. (4.24)

The new formulation of J2 is rewritten such that the skew symmetry is preserved in the

discrete form.

Now we can apply the AVF method (3.12) to the general mKdV equation (4.20) using the

Hamiltonian pairs J1,H2 and J2,H1.

The skew-adjoint operator J1 is easy to discretize and it is that of the same as J̄1 in (4.3).

Then the discrete case of the Hamiltonian is

H̄2 =

N∑
j=1

(
− α

12
u4

j +
β

2∆x2 (u j+1 − u j)2
)
∆x, (4.25)

with the gradient

∇H̄2(u j) = −
α

3
u3

j −
β

∆x2 (u j+1 − 2u j + u j−1). (4.26)

Applying the AVF method gives the equation

un+1 − un

∆t
= − α

24∆x
A

[
(un)3 + diag((un)2)un+1 + diag(un)(un+1)2 + (un+1)3

]
− β

4∆x3 A
[
ũn + ũn+1

]
, (4.27)

where diag represents N × N dimensional diagonal matrix, ũn is same as (4.8) and the vector

ũn+1 is the upper time level of ũn. The function F(un+1) can be deduced and the resulting

Jacobian for the Newton’s method is

JF(un+1) = I + sα(A Q(un)) + sα(A Q(un, un+1)) + sα(A T (un+1)) + rβ(A P), (4.28)
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where s = ∆t/24∆x and r = ∆t/4∆x3. The matrices A, P,Q,R and T are all N dimensional

square matrices, where A and P are equal to (4.3) and (4.12), respectively, and the others can

be written as

Q(un) = diag((un)2), R(un, un+1) = diag(2unun+1), and T (un+1) = diag(3(un+1)2).

The second Hamiltonian formulation can be obtained in a similar manner since

H̄1 =

N∑
j=1

1
2

u2
j∆x and ∇H̄1(u j) = u j for j = 1, . . . ,N.

Then the operator J̄2 has the discretized form of

J̄2 = −
α

4∆x
C(u) − β

2∆x3 B,

where B is same as the matrix (4.15) and

C(u) =



0 u1u2 −u1uN

−u2u1
. . .

. . .

. . .
. . . uN−1uN

uNu1 −uNuN−1 0


. (4.29)

Here, the matrix C(u)/2∆x is the discrete version of the term uDu in the Hamiltonian operator.

It is obtained from the discretization of the term uDu inJ2 as
1

2∆x
uT Au, where A is the matrix

(4.3) and u is N dimensional vector.

To apply the AVF method, since J̄2 is dependent on u, it has to be evaluated at
un + un+1

2
,

which gives

J̄2

(
un + un+1

2

)
= − α

16∆x

(
G(un) +G(un+1) + E(un, un+1) + F(un, un+1)

)
− β

2∆x3 B,

where the matrices G(un) and G(un+1) are equal to the matrix (4.29) with the entries calculated

at the time level n and n + 1, respectively. The matrices E, F are

E(un, un+1) =



0 un
1un+1

2 −un+1
1 un

N

−un+1
2 un

1
. . .

. . .

. . .
. . . un

N−1un+1
N

un
Nun+1

1 −un+1
N un

N−1 0


and

F(un, un+1) =



0 un+1
1 un

2 −un
1un+1

N

−un
2un+1

1
. . .

. . .

. . .
. . . un+1

N−1un
N

un+1
N un

1 −un
Nun+1

N−1 0


.
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The full discretized system becomes then

un+1 − un = − sα
(
K(un) + K(un+1)

)
− rβ

(
M(un) + M(un+1)

)
− 2sα

(
P(un, un+1) + R(un, un+1)

)
− sα

(
Q(un, un+1) + T (un, un+1)

)
,(4.30)

with the constants s = ∆t/32∆x and r = ∆t/4∆x3, where the jth row of the N dimensional

vectors are

K(un
j) = un

j

(
(un

j+1)2 − (un
j−1)2

)
, M(un

j) = un
j+2 − 2un

j+1 + 2un
j−1 − un

j−2,

P(un
j , u

n+1
j ) = un

j

(
un+1

j+1un
j+1 − un+1

j−1un
j−1

)
, R(un

j , u
n+1
j ) = un+1

j

(
un+1

j+1un
j+1 − un+1

j−1un
j−1

)
,

Q(un
j , u

n+1
j ) = un

j

(
(un+1

j+1)2 − (un+1
j−1)2

)
, T (un

j , u
n+1
j ) = un+1

j

(
(un

j+1)2 − (un
j−1)2

)
.

Using the equation (4.30), the Jacobian to solve the second formulation with the Newton’s

method can be acquired by taking the derivatives of the vectors K,M, P,R,Q and T with

respect to un+1 as

JF(un+1) = I + sα
[
C(un+1) + 2A(un) + 2D(un, un+1) + S (un, un+1)

]
+ rβB, (4.31)

where B is equal to (4.15),

C(un+1) =



(un+1
2 )2 − (un+1

N )2 2un+1
1 un+1

2 −2un+1
1 un+1

N

−2un+1
2 un+1

1
. . .

. . .

. . .
. . . 2un+1

N−1un+1
N

2un+1
N un+1

1 −2un+1
N un+1

N−1 (un+1
1 )2 − (un+1

N−1)2


,

A(un) =



0 un
1un

2 −un
1un

N

−un
2un

1
. . .

. . .

. . .
. . . un

N−1un
N

un
Nun

1 −un
Nun

N−1 0


,

D(un, un+1) =



un+1
2 un

2 − un+1
N un

N un+1
1 un

2 −un+1
1 un

N

−un+1
2 un

1
. . .

. . .

. . .
. . . un+1

N−1un
N

un+1
N un

1 −un+1
N un

N−1 un+1
1 un

1 − un+1
N−1un

N−1


,

and

S (un, un+1) =



(un
2)2 − (un

N)2 2un
1un+1

2 −2un
1un+1

N

−2un
2un+1

1
. . .

. . .

. . .
. . . 2un

N−1un+1
N

2un
Nun+1

1 −2un
Nun+1

N−1 (un
1)2 − (un

N−1)2


,
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where the matrix S (un, un+1) is the sum of the derivatives of the vectors Q(un, un+1) and

T (un, un+1) in (4.30).

The second formulation of the mKdV equation is more complex than the first one due to the

complexity of the discrete form of the second Hamiltonian operator J2.

4.1.3 Ito’s System

The Hamiltonian operator of the bi-Hamiltonian formulations of the coupled equations such

as Ito’s system become matrices when discretized contrary to the previously examined KdV

type equations, since the solutions of the PDEs turn to coupled system of equations with two

variables.

The original form of the equation proposed by Ito [32] is

utt = uxxxt + (uut)x +

(
ux

∫ x
utdy

)
x
, (4.32)

which can be written as a coupled system [36]. However, a more general way of writing

(4.32) as a coupled system of equations is introduced in [61] as

ut + αuux + βvvx + γuxxx = 0, (4.33)

vt + β(uv)x = 0, (4.34)

with the choice of α = −6, β = −2 and γ = −1. Therefore, the bi-Hamiltonian formulation

offered in [47] is revised as

J1 =

 D 0

0 D

 , J2 =

 uD + Du + 1
2 D3 vD

Dv 0

 ,
H1 =

∫ (
u2 + v2

)
dx, H2 =

∫ (
u3 + uv2 − u2

x

)
dx,

where the one dimensional operators change to 2 × 2 matrix operators. To express the first

formulation of the Ito’s system using AVF method, let us start with the semi-discretization of

the first Hamiltonian pair

J̄1 =
1

2∆x

 A 0

0 A

 , H̄2 =

N∑
j=1

(
u3

j + u jv2
j −

1
∆x2 (u j+1 − u j)2

)
∆x, (4.35)

where the matrix A is known from (4.3).
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Then the gradient of H̄2, which is a vector of 2N dimensional such that

∇H̄2(u, v) =


∂H̄2
∂u

∂H̄2
∂v

 =



3u2
1 + v2

1 +
2
∆x2 (u2 − 2u1 + uN)

...

3u2
j + v2

j +
2
∆x2

(
u j+1 − 2u j + u j−1

)
...

3u2
N + v2

N +
2
∆x2 (u1 − 2uN + uN−1)

2u1v1
...

2u jv j
...

2uNvN



,

where j = 1, . . . ,N. Applying the AVF method results in the following equations, which are

in the block matrix form

un+1 − un

∆t
=

1
2∆x

A
(
ûn +

1
3

v̂n
)
+

1
2∆x3 A

(
ũn + ũn+1

)
,

vn+1 − vn

∆t
=

1
2∆x

A (ũv) ,

where

vn = (vn
1, . . . , v

n
j , . . . , v

n
N)T ,

ûn = ((un
1)2 + un

1un+1
1 + (un+1

1 )2, . . . , (un
j)

2 + un
ju

n+1
j + (un+1

j )2, . . . , (un
N)2 + un

Nun+1
N + (un+1

N )2)T ,

ν̂n = ((νn
1)2 + νn

1ν
n+1
1 + (νn+1

1 )2, . . . , (νn
j )

2 + νn
jν

n+1
j + (νn+1

j )2, . . . , (νn
N)2 + νn

Nν
n+1
N + (νn+1

N )2)T ,

ũν = (. . . ,
2
3

un
jν

n
j +

1
3

(
un

jν
n+1
j + un+1

j νn
j

)
+

2
3

un+1
j νn+1

j , . . .)T ,

the vectors ũn is same as (4.8) and ũn+1 is the n + 1th level of ũn.

When we take the derivative,the Jacobian is obtained as a block square matrix of dimension

2N.

J̄F(un+1, vn+1) =

 J̄F1 J̄F2

J̄F3 J̄F4

 , (4.36)

where the matrix elements are N × N matrices such that

J̄F1 = I − 3rAdiag(2un+1) − 3rAdiag(un) − sAP,

J̄F2 = J̄F3 = −rAdiag(2vn+1) − rAdiag(vn),

J̄F4 = I − rAdiag(2un+1) − 3rAdiag(un),
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where the constants are s = ∆t/2∆x3 and r = ∆t/6∆x and the matrices A and P are (4.3) and

(4.12), respectively, as introduced before.

The second formulation is similar with a simple Hamiltonian but with a more complex oper-

ator. The semi-discrete operator is

J̄2 =

 1
2∆xC(un) + 1

2∆x3 B 1
2∆x E(vn)

1
2∆x D(vn) 0

 .
The matrices E(νn), D(νn) are

E(vn) =



0 vn
1 −vn

1

−vn
2

. . .
. . .

. . .
. . . vn

N−1

vn
N −vn

N 0


, D(vn) =



0 vn
2 −vn

N

−vn
1

. . .
. . .

. . .
. . . vn

N

vn
1 −vn

N−1 0


, (4.37)

B is equal to (4.15) and C(un) has the same entries as (4.14), but evaluated at the nth time

level. The matrices E(νn) and D(νn) satisfy the property E(νn)∗ = −E(νn)T = D(νn), which

preserves the skew-symmetry of discrete J̄2.

The Hamiltonian is discretized as

H̄1 =

N∑
j=1

(
u2

j + v2
j

)
∆x.

After applying the AVF method, we obtain

un+1 − un = s
(
M(un) + M(un+1)

)
+ r

(
K(un) + K(un+1) + N(vn) + N(vn+1)

)
+ r

(
E(un, un+1) + F(un, un+1) + P(vn, vn+1) + S (vn, vn+1)

)
, (4.38)

vn+1 − vn = r
(
Q(un, vn) + Q(un+1, vn+1) + R(un+1, vn) + T (un, vn+1)

)
, (4.39)

where s = ∆t/4∆x3, r = ∆t/4∆x and the jth row of the vectors are as the following

M(un
j) = un

j+2 − 2un
j+1 + 2un

j−1 − un
j−2, K(un

j) = un
j+1

(
un

j+1 + un
j

)
− un

j−1

(
un

j−1 + un
j

)
,

E(un
j , u

n+1
j ) = un+1

j+1

(
un

j+1 + un
j

)
− un+1

j−1

(
un

j−1 + un
j

)
,

F(un
j , u

n+1
j ) = un

j+1

(
un+1

j+1 + un+1
j

)
− un

j−1

(
un+1

j−1 + un+1
j

)
,

P(vn
j , v

n+1
j ) = vn

j

(
vn+1

j+1 − vn+1
j−1

)
, S (vn

j , v
n+1
j ) = vn+1

j

(
vn

j+1 − vn
j−1

)
,

Q(un
j , v

n
j) = un

j+1vn
j+1 − un

j−1vn
j−1, R(un+1

j , vn
j) = un+1

j+1vn
j+1 − un+1

j−1vn
j−1,
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T (un
j , v

n+1
j ) = un

j+1vn+1
j+1 − un

j−1vn+1
j−1 ,

for j = 1, . . . ,N.

The Jacobian in the form of block matrix is

JF(un+1, vn+1) =

 I − sB − rD(un+1) − rA(un) − rC(un) −r
(
X(vn) + X(vn+1)

)
−r

(
Y(vn) + Y(vn+1)

)
I − r

(
Z(un) + Z(un+1)

)
 ,

with B is same as (4.15) and

D(un+1) =



un+1
2 − un+1

N 2un+1
2 −2un+1

N

−2un+1
1

. . .
. . .

. . .
. . . 2un+1

N

2un+1
1 −2un+1

N−1 un+1
1 − un+1

N−1


,

A(un) =



0 un
1 + un

2 −(un
1 + un

N)

−(un
2 + un

1)
. . .

. . .

. . .
. . . un

N−1 + un
N

un
N + un

1 −(un
N + un

N−1) 0


,

X(vn) =



vn
2 − vn

N vn
2 −vn

N

−vn
1

. . .
. . .

. . .
. . . vn

N

vn
1 −vn

N−1 vn
1 − vn

N−1


.

The matrix C(un) is equal to (4.19) and Y(vn) has same entries as D(vn) in (4.37). The last two

matrices Z(un) and Z(un+1) also have the same matrix elements as D(vn) in (4.37), but with

the time level n and n + 1 for the solution un.

4.2 Coupled KdV Equations

In this section, the Hamiltonian formulations of the coupled KdV type equations, which are

not in bi-Hamiltonian form, are solved by AVF method. These coupled equations are named

as KdV-KdV and symmetric KdV-KdV systems in [8] because of the dispersive terms of

third-order derivatives and model surface water waves with two variables u and v, where

both propagates in time and space. In particular both of the coupled KdV-KdV systems are

approximations to two dimensional Euler equations for surface wave propagation along a

40



horizontal channel with an ideal fluid inside. In the model of this ideal fluid, the independent

space and time variable x and t represent the position and the elapsed time, respectively along

the channel, where u is the horizontal velocity and v is the deviation of the free surface from

its rest position [8, 9].

4.2.1 KdV-KdV System

The coupled system

ut + uux + vx +
1
6 vxxx = 0,

vt + (uv)x + ux +
1
6 uxxx = 0

(4.40)

is given in [8] with the Hamiltonian functional

H =
∫ (
−v2 − u2 − u2v +

1
6

u2
x + +

1
6

v2
x

)
dx

and we determine the Hamiltonian operator as

J =

 0 D
2

D
2 0

 ,
by checking whether the system (4.40) satisfies (2.12) with this Hamiltonian formulation as

follows

δH
δu

=
∂H
∂u
− ∂x

(
∂H
∂ux

)
= −2u − 2uv − uxx

3
,

δH
δv

=
∂H
∂v
− ∂x

(
∂H
∂vx

)
= −2v − u2 − vxx

3
,

then

∂u
∂t
= J

 δH
δu

δH
δv

 =
 −uux − vx − 1

6 vxxx

−(uv)x − ux − 1
6 uxxx

 .
Then the semi-discrete Hamiltonian operator and functional are found as

J̄ =
1

4∆x

 0 A

A 0

 , H̄ =
N∑

j=1

(
−u2

j − v2
j − u2

jv j +
1

6∆x2 (u j+1 − u j)2 +
1

6∆x2 (v j+1 − v j)2
)
∆x
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with the matrix A as in (4.3). The gradient of the semi-discrete Hamiltonian functional is

obtained as

∇H̄(u, v) =



−2u1 − 2u1v1 − 1
3∆x2 (u2 − 2u1 + uN)
...

−2u j − 2u jv j − 1
3∆x2

(
u j+1 − 2u j + u j−1

)
...

−2uN − 2uNvN − 1
3∆x2 (u1 − 2uN + uN−1)

−2v1 − u2
1 −

1
3∆x2 (v2 − 2v1 + vN)
...

−2v j − u2
j −

1
3∆x2

(
v j+1 − 2v j + v j−1

)
...

−2vN − u2
N −

1
3∆x2 (v1 − 2vN + vN−1)



,

where j = 1, . . . ,N. Then when we apply the AVF method, the resulting equations in the

vector form are

un+1 − un

∆t
= − 1

4∆x
A

(
vn +

1
3

ûn
)
− 1

24∆x3 A
(
ṽn + ṽn+1

)
,

vn+1 − vn

∆t
= − 1

4∆x
A

(
un + ũv

) − 1
24∆x3 A

(
ũn + ũn+1

)
,

where the vectors un, vn, ũn, ṽn, ûn and ũv are previously introduced.

The Jacobian is a 2N × 2N dimensional block square matrix J̄F(un+1, vn+1) such that

J̄F(un+1, vn+1) =

 J̄F1 J̄F2

J̄F3 J̄F4

 ,
with the matrices

J̄F1 = I + sAdiag(2un+1) + sAdiag(un),

J̄F2 = 3sA + rAP,

J̄F3 = sAdiag(2vn+1) + sAdiag(vn) + 3sA + rAP,

J̄F4 = I + sAdiag(2un+1) + sAdiag(un),

where the constants are r = ∆t/24∆x3 and r = ∆t/12∆x.
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4.2.2 Symmetric KdV-KdV System

The coupled system of equations of the symmetric KdV-KdV are given in [9] without giving

the Hamiltonian functional

ut +
3
2 uux +

1
2 vvx + vx +

1
6 vxxx = 0,

vt +
1
2 (uv)x + ux +

1
6 uxxx = 0.

(4.41)

Introducing the Hamiltonian

H =
∫ (
−uv − 1

4
uv2 − u3

4
− 1

6
uvxx

)
dx,

which is configured from the Hamiltonian given in [26], is for the coupled system (4.41).

Then the skew-adjoint operator is

J =

 D 0

0 D

 .
We obtain the coupled Hamiltonian system of equations (4.41) as

δH
δu

=
∂H
∂u
− ∂x

(
∂H
∂ux

)
= −v − v2

4
− 3

4
u2 − vxx

6
,

δH
δv

=
∂H
∂v
− ∂x

(
∂H
∂vx

)
+ ∂2

x

(
∂H
∂vxx

)
= −u − uv

2
− uxx

6
.

The operator and the functional are written in the semi-discrete form as follows

J̄ =
1

2∆x

 0 A

A 0

 , H̄ =
N∑

j=1

−u jv j −
u jv2

j

4
−

u3
j

4
−

u j(v j+1 − 2v j + v j−1)
6∆x2

 ∆x.

Then the gradient of the centrally discretized Hamiltonian functional becomes

∇H̄(u, v) =



−v1 −
v2

1
4 −

3
4 v2

1 −
1

6∆x2 (v2 − 2v1 + vN)
...

−v j −
v2

j
4 −

3
4 v2

j −
1

6∆x2

(
v j+1 − 2v j + v j−1

)
...

−vN −
v2

N
4 −

3
4 v2

N −
1

6∆x2 (v1 − 2vN + vN−1)

−u1 − u1v1
2 −

1
6∆x2 (u2 − 2u1 + uN−1)

...

−u j − u jv j
2 −

1
6∆x2

(
u j+1 − 2u j + u j−1

)
...

−uN − uNvN
2 − 1

6∆x2 (u1 − 2uN + uN−1)


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for j = 1, . . . ,N and applying the AVF method leads to the following system of equations

un+1 − un

∆t
= − 1

4∆x
A

(
vn + vn+1

)
− 1

2∆x
A

(
1
4

û +
1

12
v̂
)
− 1

12∆x3 A
(
ṽn + ṽn+1

)
,

vn+1 − vn

∆t
= − 1

4∆x
A

(
un + un+1

)
− 1

8∆x
Aũv − 1

12∆x3 A
(
ũn + ũn+1

)
.

The square block Jacobian matrix is of the form 4.36, with the matrices

J̄F1 = I + 3sAdiag(2un+1) + 3sAdiag(un),

J̄F2 = J̄F3 = 6sA + sAdiag(2vn+1) + sAdiag(vn) + rAP,

J̄F4 = I + sAdiag(2un+1) + sAdiag(un),

with the constants are r = ∆t/12∆x3 and r = ∆t/24∆x.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, we will look at the performance of the AVF method for the KdV- type equa-

tions by looking the wave forms, the energy errors and the Casimirs. In all computations,

energy error is defined as

Error = H − H̄,

where H is the exact energy and H̄ is the discrete energy obtained by the AVF method. The

error in the Casimirs can be defined analogously.

5.1 Korteweg de Vries Equation

The general form of the KdV equation is given as (2.14) with its bi-Hamiltonian formulations

in the previous chapter. We solve the KdV equation, using the AVF method (3.12) with the

initial condition

u(x, 0) = cos(πx) (5.1)

for the constants α = −1, ρ = 0 and ν = −0.0222. The error in the semi-discretized energy

H̄2 and in the discrete quadratic conserved quantity Ī2 =

N∑
j=1

1
2

u2
j∆x, which was introduced

in the example in the section 2.2 can be seen in Figure 5.1. The computations are done

with respect to the first Hamiltonian pair of KdV equation J1 in (4.1) and H2 in (4.2). The

trivial conserved quantity Ī1 =

N∑
j=1

u j ∆x is not examined since the linear quantity is already

conserved.

The error in the energy H1 of the second formulation J2, H1 is shown in Figure 5.2, but

Ī2 =

N∑
j=1

1
2

u2
j∆x is not applicable as a conserved quantity since it is equal to the Hamiltonian
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Figure 5.1: KdV equation: Energy error (left) and error for Ī2 (right) for the first formulation
with ∆t = 0.001 and ∆x = 0.01 where x ∈ [0, 2] of equally spaced with initial condition
cos(πx) and constants α = −1, ρ = 0, ν = −0.0222

of the second pair already.
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Figure 5.2: KdV equation: Energy error for the second formulation with ∆t = 0.001 and
∆x = 0.01 where x ∈ [0, 2] of equally spaced with initial condition cos(πx) and constants
α = −1, ρ = 0, ν = −0.0222.

The solutions of the KdV equation using the AVF method can be compared with the sym-

plectic and multisymplectic solutions obtained in [3] in Figure 5.3. The solutions display a

similar profile at different times for the first Hamiltonian formulation, where the same result

is also obtained for the second Hamiltonian pair.

When we solve the KdV equation for a smaller ∆x = 0.005, the error in the energy at time

t = 5 are 7.8e− 18 and 6.6e− 16, at t = 10 are 1.8e− 16 and 1.9e− 15 for the first and second

Hamiltonian formulations, respectively. These results are considerably small compared to

the errors obtained in [3] by using the multisymplectic, narrow box and the semi-explicit

symplectic methods.
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Figure 5.3: KdV equation: Solution for first formulation at various times t = 0.01, t = 1 and
t = 10 obtained with same conditions as in Figure 5.1.

If we check the solution for a rough choice of∆x = 0.02, both of the Hamiltonian formulations

give the same result as in Figure 5.4 at t = 10, which resembles the graphs obtained from the

semi-explicit symplectic and the implicit midpoint methods in [3]. This is an expected result,

since the AVF method has the same order as the semi-explicit symplectic and the implicit

methods.
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Figure 5.4: KdV equation: Solution for first formulation at t = 10 with ∆t = 0.004 and
∆x = 0.02 where x ∈ [0, 2] of equally spaced with initial condition cos(πx) and constants
α = −1, ρ = 0, ν = −0.0222

For the first Hamiltonian formulation snapshots of the solution can be seen in Figure 5.5,

where the second Hamiltonian formulation yield also consistent result with the Figure 2 in

[64].

In [2], same periodic initial condition (5.1) is used for different constant values of α = −3/4,

ρ = −1/10 and ν = −0.002/3. The errors in the energy and the quadratic conserved quantity
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Figure 5.5: KdV equation: Solution for first formulation at various times t = 0, t = 1/π,
t = 3.6/π with ∆t = 5×10−3/π and ∆x = 0.001 where x ∈ [0, 2] of equally spaced with initial
condition cos(πx) and constants α = −1, ρ = 0, ν = −0.0222

for the first formulation are shown in Figure 5.6,where the error is of order 10−16. The result

obtained from the second formulation is same for the energy error. The error in the energy

is around 10−3 in [2], therefore the results that we obtain using AVF methods are dramati-

cally small when compared. The error in the Casimir quantity Ī2 =

N∑
j=1

1
2

u2
j∆x of the first

formulation is also displayed in Figure 5.6, where the conservation is not in higher order as

the Hamiltonian, however, it still shows conservation up to 10−3.
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Figure 5.6: KdV equation: Energy error (left) and error for Ī2 (right) for the first formulation
with ∆t = 0.001 and ∆x = 0.01 where x ∈ [−1, 1] of equally spaced with initial condition
cos(πx) and constants α = −3/4, ρ = −1/10, ν = −0.002/3.
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Figure 5.7 shows the solution of the KdV equation using the AVF method for t = 0, 1, 2, 3 and

4.5. One can see that those solutions are agree with the solution in [2].
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Figure 5.7: KdV equation: Snapshots of the solution for first formulation for t = 0, 1, 2, 3 and
4.5 obtained using the same conditions as in Figure 5.6

A different initial condition is proposed in [64] as

u(x, 0) = sech2
(

x
√

2

)
(5.2)

with the constants α = −6, ρ = 0 and ν = −1. Using these, the computed error in the

Hamiltonian and the Casimir quantity for the first formulation can be seen in Figure 5.8.

Figure 5.8 shows that the energy is exactly preserved by the AVF method, whereas the Casimir

is well preserved, whose order of error is 10−3. The second formulation computations results

are similar to those obtained from the first Hamiltonian formulation, where the error is of

order 10−15 for energy. The single soliton solution is displayed in Figure 5.9, which is exactly

same as the one given in [64].
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Figure 5.8: KdV equation: Energy error (left) and error for Ī2 (right) for the first formulation
with ∆t = 0.02 and ∆x = 40/150 where x ∈ [−20, 20] of equally spaced with initial condition

sech2
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and constants α = −6, ρ = 0, ν = −1.

Figure 5.9: KdV equation: Single soliton for the first formulation obtained using the same
conditions as in Figure 5.8.
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The initial condition

u(x, 0) = 6sech2(x) (5.3)

for the KdV equation without the term ρux, with constants of α = −6 and ν = −1 is used in

[3, 64].

In [3], the solution is shown, which is obtained for the snapshots t = 4 and t = 100 using

four different methods,that are, semi-explicit symplectic, multisymplectic, narrow box and

implicit midpoint. The corresponding solution using AVF method can be seen in Figure 5.10.

The results are given for the first Hamiltonian pair. The results for the second formulation

is also similar. Those solutions are consistent with the results in [3] obtained by the implicit

midpoint rule.
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Figure 5.10: KdV equation: Solution for first formulation at various times t = 4, t = 100
with ∆t = 0.01 and ∆x = 0.005 where x ∈ [−20, 20] of equally spaced with initial condition
6sech2(x) and constants α = −6, ρ = 0, ν = −1

If ∆x and ∆t are taken smaller as 40/300 and 0.002, respectively and the calculation is done

for the time interval [0, 4] with the initial condition (5.3), the temporal development of the

solution in Figure 5.11 and the two soliton in Figure 5.12 are obtained, which give the oppor-

tunity to compare the results with the results in [64].

Figure 5.11 represents the collision of two solutions of the KdV equation (2.14) using the

AVF method (3.12) with the initial condition (5.3) for ∆x = 40/300 and ∆t = 0.002 on the

time interval [0, 4]. We see that two waves are initially located at x = 0 and the taller one

travels faster than the shorter one. Both waves move to the right direction. The taller wave

catches the shorter one approximately at time t = 3.17 and then continue to move to the right

direction. In this collision we see that, waves keep their shapes.
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Figure 5.11: KdV equation: Solution for first formulation at various times for t ∈ [0, 4] with
∆t = 0.002 and ∆x = 40/300 where x ∈ [−20, 20] of equally spaced with initial condition
6sech2(x) and constants α = −6, ρ = 0, ν = −1

Figure 5.12: KdV equation: Two solitons for the first formulation using the same conditions
as in Figure 5.11
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Energy conservation of the waves can also be seen from the Figure 5.13, in which the error in

the energiesH1,H2 are approximately 10−12.

When we take ∆x = 40/200 and ∆t = 0.01, the error in the energy with respect to the first and

the second pairs of Hamiltonian are in Figure 5.13. The error at time t = 4 are 2.2e − 13 and

3.9e − 14; at t = 100 are 1.8e − 11 and 1.4e − 12 for the first and second pairs, respectively.

Even if the computations are done for greater ∆t values than used in [3], the results that we

obtain are more efficient than [3]. In [3] the best approximation for the energy is correct of

order 10−4, but for our computations we get the error around 10−12. These results clearly

show that the conservation laws hold for the AVF method up to machine precision.
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Figure 5.13: KdV equation: Energy error with respect to first(left) and second(right) formu-
lations with ∆t = 0.01 and ∆x = 0.005 and the rest of the conditions are same as in Figure
5.11

5.2 Modified Korteweg de Vries Equation

For the modified KdV equation (4.20), many initial conditions exist and some of them are

introduced in [19, 65].

A general solution offered for the mKdV equation in [65] is

u(x, t) = 2ηsech2η(x − 4η2t − x0). (5.4)

To have a one soliton solution, (5.4) is used as the initial condition, which is centrally located,

that is x0 = 0 with the constant η = 1 at t = 0. The error in the energy with respect to first and

second formulations can be seen in Figure 5.14. The results again show the conservation of

the energy within small error values with respect to both Hamiltonian formulations.
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Figure 5.14: mKdV equation: Energy error with respect to first(left) and second(right) for-
mulations with ∆t = 0.01 and ∆x = 20/256 where x ∈ [−10, 10] of equally spaced with initial
condition 2sech(2x) and constants α = 6, β = 1.

The conserved quantity I2 is the same as the one for the KdV equation, which is I2 =

1
2

∫
u2dx. This can be computed only for the first Hamiltonian formulation of mKdV equation,

as for the second one I2 corresponds to the total energy itself. With respect to the first

formulation the difference between the continuous and the discrete I2, which is represented

as Ī2, can be seen in Figure 5.15 for long term propagation up to t = 20.
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Figure 5.15: mKdV equation: Energy in I2 with respect to first formulation with the same
conditions as in Figure 5.14

When the same conditions with the Figure 5.15 are used, one soliton for the mKdV is obtained

as in Figure 5.16 with respect to second formulation, where the first one also gives the same

result. When we compare the soliton figure with the original one soliton obtained from the

dual-Petrov-Galerkin spectral method used in [65], the solution that we obtained seems to

have two peaks and may seem as different at first instant. However, in [65] only the first

group of waves is presented due to the homogenous boundary condition. The other groups of
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waves in our case repeat itself since we use a periodic boundary condition.

Figure 5.16: One soliton for mKdV equation for the first formulation using the same condi-
tions as in Figure 5.14

Now, we will check the performance of the AVF method for interaction of the solitons. We

use the initial condition

u(x, 0) =
3∑

i=1

2ηisech2ηi(x − xi) (5.5)

with

η1 = 2, η2 = 1, η3 = 0.5,

x1 = −10, x2 = 0, x3 = 10.

The initial condition (5.5) represents three solitons initially located as x = −10, 0 and 10.

Figure 5.17: Interaction of three solitary waves for the first formulation using the initial con-
dition obtained from (5.5) with ∆t = 0.0005 and ∆x = 40/512 where x ∈ [−20, 20] of equally
spaced

In Figure 5.17, we plot the time evolution of the solution of interaction of the solitons. The
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moment of interaction can be clearly seen in the lightened region of the figure, where the

waves collide and the phases are shifted. Within the collision, the velocities and the shapes of

the group of waves are conserved. This is a consistent result with the idea of solitons, since

solitons are the waves that have both wave and particle properties. Hence in the figure 5.17,

as a result of the particle property of the solitons, the propagating waves are not destroyed in

shape. The reason of having more than one peak in our interacting solitons, which is not the

case in [65], but this again stems from the periodicity of the initial condition.

A different soliton solution can be obtained using a third initial condition. This is given in

[54] as

u(x, 0) = exp(−1.5x2), (5.6)

which is a Gaussian wave packet.

Using the time step of ∆t = 0.001 for t ∈ [0, 30] and x ∈ [−20, 20] with N = 512 of equal

spacing, the evolution of the wave packet is shown in Figure 5.18.

Figure 5.18: Solitary waves generated by an initial Gaussian wave for mKdV equation.

The Gaussian wave packet generates a series of solitons without any observable reflections.

The dispersive properties of the mKdV equation can be observed with the oscillations around

the initially located group of waves in Figure 5.18. In order to see the corresponding error in

the energy with respect to both of the Hamiltonian pairs, we plot the energy errors in Figure

5.19 and the conserved quantities in Figure 5.20.
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Figure 5.19: mKdV equation: Error in the energy of first (left) and second (right) formulations
with ∆t = 0.001 and ∆x = 40/512 where x ∈ [−20, 20] of equally spaced with initial condition
exp(−1.5x2) and constants α = 6, β = 1

0 5 10 15 20 25 30
0

1

2

3

x 10
−4

time

Ī
2
−

I
2

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

x 10
−4

time

Ī
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Figure 5.20: mKdV equation: Energy Casimir functions of the first I2 =
∫

1
2 u2dx (left) and

second I1 =
∫

udx (right) Hamiltonian formulations with the same conditions as in Figure
5.19

5.3 Ito’s System

Some numerical results are introduced in [61], where two different initial conditions are pro-

posed.

The first initial condition is

u(x, 0) = cos x, v(x, 0) = cos x, (5.7)

which are clearly periodic. The computations are done using N = 80 cells for the equally

spaced interval [0, 2π]. The error in the energies for the AVF method of two systems for long

time propagation can be seen in Figure 5.21. The figure shows that the energies are preserved

with respect to both formulations as expected up to the tolerance of the machine precision.
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Figure 5.21: Ito’s system: The error in the energy with respect to first (left) and the second
(right) formulations with ∆t = 0.0001 and ∆x = 2π/80 where x ∈ [0, 2π] of equally spaced
with initial condition (5.7)

The infinitely many conserved quantities of the Ito’s system of equations are investigated in

[22]. Among these conserved quantities, when the, which is the linear sum of the variables

such as I1 =
∫

(u + v) dx, is taken into consideration, the differences between the exact and

the approximate conserved quantity with respect to both of the Hamiltonian formulations are

displayed in Figure 5.22.
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Figure 5.22: Ito’s system: The error in the conserved quantity I1 for the first (left) and the
second (right) formulations using the same conditions as in Figure 5.21

Also the snapshots of the solutions u and v at various times are displayed in Figures 5.23

and 5.24. The solutions found for instantaneous time levels shown here are obtained using

the second formulation, however, the results obtained from the first formulation match up

with the second one. In addition to the consistency of the results between the first and the

second Hamiltonian formulations, they are same with the numerical results in [61], which

were obtained by applying the local discontinuous Galerkin methods.
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Figure 5.23: Solutions for u at time t = 0, 0.5, 1 from left to right using the same conditions
as in Figure 5.21
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Figure 5.24: Solutions for v at time t = 0, 0.5, 1 from left to right using the same conditions
as in Figure 5.21

Using a different initial condition, which is again given in [61] as

u(x, 0) = exp(−x2), v(x, 0) = exp(−x2), (5.8)

we can observe the energy preservation of AVF method in Figure 5.25. The results show that

the difference between the exact and the approximated Hamiltonian functionals with respect

to the bi-Hamiltonian formulation are considerably small and hence consistent with the as-

sumption again that the energy is preserved up to the machine precision for the long time

propagation of the wave.

In addition to the energy preservation, the preservation of the Casimir functional is displayed

in the following Figure 5.26.

Similar to the results obtained for the first initial condition (5.7), solutions of the Ito’s system

for t ∈ [0, 2] and some instantaneous solutions at t = 0, 1 and 2 can be seen in Figures 5.27
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Figure 5.25: Ito’s system: The error in the energy with respect to first (left) and the second
(right) formulations with ∆t = 0.0001 and ∆x = 30/160 where x ∈ [−15, 15] of equally
spaced with initial condition (5.8)
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Figure 5.26: Ito’s system: The error in the conserved quantity I1 for the first (left) and the
second (right) formulations with ∆t = 0.0001 and ∆x = 30/160 where x ∈ [−15, 15] of
equally spaced with initial condition (5.8)

and 5.28 for the variables u and v. The results are obtained using equally spaced interval of

x ∈ [−15, 15] using number of meshes N = 160 in space.

We note that the first equation of the Ito’s system (4.33) is dispersive by looking the oscilla-

tions around the solution u in Figure 5.27, but the second equation (4.34) is not. Dispersive

properties of the waves can be seen from the Figure 5.23 through Figure 5.28. The observed

dispersion in the Figure 5.27 can be explained with a detailed dispersion analysis.
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Figure 5.27: Solutions for u at various times using the same conditions as in Figure 5.25
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Figure 5.28: Solutions for v at various times using the same conditions as in Figure 5.25

5.4 KdV-KdV and Symmetric KdV-KdV Systems

The Hamiltonian formulations of the KdV-KdV system (4.40) and the symmetric KdV-KdV

system (4.41) are studied in the previous chapter. The systems are solved using those formu-

lations together with the periodic initial condition provided in [9], where the initial condition

is generated by a Gaussian initial surface elevation profile and zero initial velocity as follows

u(x, 0) = 0, v(x, 0) = 0.3 exp
(
−(x + 100)2/25

)
. (5.9)

The computations are done for the interval x ∈ [−150, 150] and N = 500 equally spaced grids

with the time step ∆t = 0.04 up to t = 100. The error in the Hamiltonian functional are shown

for both of the KdV-KdV systems in Figure 5.29. The figure shows that the energies in both

systems are conserved up to 14 digits, up to t = 100, which shows the long time consistent

behavior of the systems in energy.
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Figure 5.29: Error for the energy of the KdV-KdV and the symmetric KdV-KdV systems

Other invariant quantities rather than the energy of the KdV-KdV systems are introduced in

[9]. For the KdV-KdV system, the conserved quantity is I1 =
∫

uv dx, whereas the symmetric

system has the quantity I1 =
∫ (

u2 + v2
)

dx. The conserved quantities for each of the KdV-

KdV systems can be seen in Figure 5.30.
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Figure 5.30: Conserved quantities I1 of the KdV-KdV (left) and the symmetric KdV-KdV
system

We also examine the wave solutions for both of the systems. Since the results of the systems

are similar, we only show the solution of the KdV-KdV system for the variables u and v in

Figure 5.31.

In this section, the KdV-KdV and the symmetric KdV-KdV systems are investigated together

using the same initial condition, since each system yield the same result when the waves are

solved.

According to the figures and the results throughout this chapter, the solutions show that our
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Figure 5.31: Solutions of the KdV-KdV systems for u (left) and v (right)

formulation gives consistent results with those in the articles. In addition to the wave forms,

we see that the energy of the system and the Casimir functions are well preserved for the AVF

method.
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CHAPTER 6

DISPERSION ANALYSIS

Up to this chapter, the AVF method has been presented with the energy preservation prop-

erty to determine the dynamics of the previously analyzed KdV-type equations.The problems

involved are nonlinear like KdV-type equations, there are still many questions behind the be-

havior of the equations such that the magnitude of the global errors may be dependent with

the local errors of the solution and the stability of the boundary conditions may be related

with numerical dispersion. Conservation of energy does not give sufficient information about

the behavior of the solutions. To understand the solution behavior of the AVF methods, we

will consider the linearized equations and investigate numerical dispersion relations. The

linearized PDEs will be solved again using the energy preserving AVF method in order to

compare the continuous and the discrete versions of the dispersion relations of the equations.

Investigation of the discrete dispersion relation plays an important role [1] together with the

group velocity for the discretized linear and nonlinear wave equations.

The solutions of KdV type equations are in form of wave packets which are changing both

in time and space. Wave packets are known as superposition of waves having different wave

numbers. As the equations possess the wave nature, a general type of a proposed solution is

symbolized with a wave number k and a frequency ω. Wave number and frequency are related

concepts for the waves with the wavelength which is the distance between two consecutive

points with equal phase on the wave in space. The relation between the wave number and the

frequency of the superposed modes can be determined with the continuous dispersion relation.

The dispersion for the waves can be defined as when the modes of differing wave numbers

propagate at different speeds and that leads to some undesired oscillations in the solutions.
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The dispersion can be defined as function of k as

ω = ω(k). (6.1)

Throughout the chapter, the dispersion relations are analyzed for the continuous and the dis-

cretized linearized PDEs.

6.1 Linear Dispersion Relations

The solution of a linear problem with periodic initial condition may be obtained using the

Fourier integral transform method which corresponds to the integral superposition of the nor-

mal mode solutions of the equation. The general normal mode solution of any linear time-

dependent PDE with constant coefficients on an unbounded space domain is of the form

u(x, t) =
∫ ∞

−∞
A(k) eikx+λ(k)t dk, (6.2)

where A(k) is an arbitrary function and i is imaginary unit.

Assuming each wave mode as a solution of a linearized PDE, the solution takes the form

u(x, t) = û eikx+λ(k)t, (6.3)

where û is constant and λ(k) is a complex function which has to be chosen such that the

exponential function satisfies the linearized equation. Then equation (6.3) can be explicitly

written as

u(x, t) = û ei(kx+Im[λ(k)]t)eRe[λ(k)]t. (6.4)

If Re(λ(k)) = 0 for ∀k, then the equation is said to be conservative type and

λ(k) = iω(k),

where ω(k) is real valued ∀k ∈ (−∞,∞), so the normal mode solutions as proposed in [52, 53]

is of the form

u(x, t) = ûei(kx+ω(k)t). (6.5)

In the following equations we give examples of some PDEs to explain the continuous disper-

sion relations.
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Linear heat or diffusion equation : The equation

ut = a2uxx (6.6)

is linear, therefore using the normal mode solutions (6.3) we can find the relation

λ(k) = −a2k2.

As the equation for λ(k) is real, the equation (6.6) is not conservative type, so it can not be

dispersive.

Wave equation : The original PDE is

utt = a2uxx. (6.7)

The proposed normal mode solutions (6.3) for the linear equation (6.7) yield the relation

λ(k) = ±iak.

The wave equation (6.7) is said to be conservative type, since Reλ(k) = 0 for all k values. This

leads to the following dispersion relation

ω(k) = ak,

which is dependent on k of order one. Therefore, the equation (6.7) is not dispersive.

The last equation is an example of both conservative and dispersive type.

The linear Klein-Gordon equation :

utt = a2uxx − b2u. (6.8)

Normal mode solutions (6.3) yield the equation

λ(k) = ±i
√

a2k2 + b2. (6.9)

Since the equation (6.9) has zero real part, the equation (6.8) is conservative type and it can

be also concluded that the Klein-Gordon equation is dispersive with the dispersion relation

ω(k) =
√

a2k2 + b2.

In addition to the dispersion relation, we need some more definitions about the speed of the

waves. The phase velocity tells the propagation of speed of the wave front, where the term

θ = kx − ω(k)t
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is called phase and

c(k) :=
ω(k)

k
(6.10)

is called the phase velocity.

The group velocity C(k) which characterizes the average speed of propagation of the compos-

ite wave package, can be found by differentiating the dispersion relation as

C(k) :=
dω(k)

dk
. (6.11)

For a PDE to be nondispersive, the phase velocity (6.10) should not depend on the wave

number linearly, which shows different waves travel at the same speed. For example, if the

dispersion relation is

ω(k) = mk, where m ∈ R

then the phase velocity c(k) = m in (6.10) is clearly constant and the solution will be a function

of x−mt only, which is a wave traveling with speed m. Nevertheless, if the dispersion relation

is not linear in k, then the system is called dispersive. That is, for the linear equation to be

dispersive, the condition

ω′′(k) , 0

has to be satisfied and hence for different wave numbers k, each wave travels with different

velocity. That means the nondispersive solutions have a traveling wave form, but a dispersive

wave does not, since its component modes travel at different velocities. Therefore, the group

velocity is more important than the phase velocity in order to characterize the wave behavior.

There is another important property of PDEs, which is numerical dissipation [56]. The partial

differential equations conserves the energy, however, the discrete model may loose energy as

time passes. This lost in energy may seem as a bad characteristic at first instant for some

cases, however, in this way stability is provided and undesired oscillations are prevented. To

check the dissipation, we need a general definition [56]:

Definition 6.1 Let (6.5) be the solution of a linearized PDE with a dispersion relation (6.1).

Since the wave number k has to be real, the absolute value of the wave is

|ei(kx+ω(k)t)| = e−tImω.

If Imω > 0, then the wave is said to be dissipative, ∀k , 0 and nondissipative if Imω = 0.
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This definition also shows that there are finite difference formulas that can be neither dissi-

pative nor nondissipative. Whether a PDE is dissipative or nondissipative, it can be checked

by looking at the PDE. If the differential equation contains only even ordered x derivatives,

then the PDE is dissipative [55]. The dissipation is a result of decay or grow of the Fourier

mode solutions. So, for an equation to be nondissipative, we need that the Fourier modes

neither grow nor decay in time, which is possible only when the frequency ω is purely imagi-

nary, that follows λ(k) is real and the Fourier mode solution becomes ûeikxe−ω(k)t. Hence, the

solution decay or grow depending on the sign of the frequency, which leads to dissipation.

For our case, as the frequency ω is real, all KdV type equations considered in this thesis are

nondissipative.

Now let us continue with the linearized equations to explore the dispersion relations of the

form (6.1).

6.1.1 KdV-type Equations

6.1.1.1 KdV Equation

Assume that ũ : R2 → R is a third order continuously differentiable function, such that

|ũ(x, t)| ≪ 1. Let also u = ū + ũ, where u and ū are solutions to (2.14). Hence, ut = ūt + ũt,

ux = ūx + ũx and uxxx = ūxxx + ũxxx. Substituting into the equation (2.14), we get

ūt + ũt = α(ūūx + ūũx + ũūx + ũũx) + ρ(ūx + ũx) + ν(ūxxx + ũxxx). (6.12)

Rewriting (6.12) yields

ūt + ũt = αūūx + ρūx + νūxxx + α (ūũx + ũūx + ũũx) + ρũx + νũxxx. (6.13)

Since ū is the solution of (2.14)

ūt − αūūx − ρūx − νūxxx = 0.

Ignoring the quadratic term ũũx in the equation (6.13) and assuming that the solution ū is

constant, that leads to ūx = 0, then we get

ũt = α1ũx + ρũx + νũxxx, (6.14)

where α1 = αu1 is a constant. Then (6.14) is the linearized equation of the KdV equation

(2.14) around the constant solution, ū.
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The linearized equation admits the solution of the form (6.5), clearly ũx = ikûeiωteikx = ikũ,

ũxxx = −ik3ũ and ũt = iωũ. Substituting these into (6.14) and simplifying, we obtain the exact

dispersion relation

ω = α1k + ρk − νk3 (6.15)

of linearized KdV equation (6.14).

In addition to the dispersion relation, we can find the general phase velocity as

ω

k
= α1 + ρ − νk2,

which is not linear in k, so the equation (6.14) is dispersive. The group velocity of the lin-

earized equation (6.15) is
dω
dk
= α1 + ρ − 3νk2. (6.16)

6.1.1.2 mKdV Equation

Using the same method as in the previous section, assume again that ũ : R2 → R is a third

order continuously differentiable function, such that |ũ(x, t)| ≪ 1. When the solution of the

form u = ū + ũ is substituted into the equation (4.20), we obtain

ūt + ũt = −α(ūūx)2(ūxũx) − β(ūxxx + ũxxx). (6.17)

Since we linearize the equation around constant solutions ū, they satisfy the following equa-

tion

ūt + αū2ūx + βūxxx.

When we also ignore the higher order terms, the equation

ūt + ũt = −α
(
ū2ūx + 2ūũūx + ũ2ūx

)
− α

(
ū2ũx + 2ūũũx + ũ2ũx

)
− β (ūxxx + ũxxx)

becomes

ũt = −α(ū2ũx − ũūx) − νũxxx. (6.18)

As we linearize the equation (4.20) around constant solutions, the final linearized mKdV

equation is

ũt = −aũx − νũxxx, (6.19)
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where a = αū2. Substituting (6.5) into the linearized mKdV equation (6.19), we get the

dispersion relation

ω = −ak + νk3. (6.20)

The phase velocity (6.10) can then be computed as

ω

k
= −a + νk2.

The continuous group velocity
dω
dk
= −a + 3νk̄2

is obtained by the first derivative of the dispersion relation (6.20).

6.1.2 Coupled KdV-type Equations

In the following two sections the dispersion relation of the coupled systems are analyzed. As

they are systems in two variable, their linearization has to be done in vector form.

6.1.2.1 Ito’s System

The Ito’s system (4.33) and (4.34) can be rewritten as

ut − uxxx − 6uux − 2vvx = 0

vt − 2uvx − 2vux = 0
(6.21)

and in vector form

yt + Byxxx − A(u, v)yx = 0 (6.22)

with y = (u, v)T ,

B =

 −1 0

0 0

 and A =

 6u 2v

2v 2u

 .
The equation (6.22) is linearized again around a constant solution ȳ = (ū, v̄)T with a small

perturbation of ỹ = (ũ, ṽ)T to y which gives y = ȳ + ỹ, where ỹ :
(
R2 × R2

)
→ (R × R) is

composed from the third order continuously differentiable functions ũ and ṽ. As in the case

of the KdV and the modified KdV equations in sections 6.1.1.1 and 6.1.1.2, respectively,
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taking the derivatives, substituting them into (6.22), ignoring the higher order terms in ỹ and

eliminating the derivatives of the constant solutions ȳ = (ū, v̄)T yields the equation

ỹt + Bỹxxx − A(ū, v̄)ỹx = 0. (6.23)

To get the dispersion relation, the spectral decomposition of the matrix A(ȳ) is introduced as

in [5]. Following [5], we can write the matrix A in (6.23), A = VDV−1 where D is the diagonal

matrix with eigenvalues

λ1,2 = 4ū ± 2
√

ū2 + v̄2 (6.24)

on the diagonals and V is constructed by the eigenvectors of A on its columns. With the

assumption of the eigenvalues to be equal, take λ1 = λ2 as constant and equal to a. Then

assume that the multiplication of the matrices B and V is constant, so the linearized system of

equations will be of the form

ũt = ũxxx + aũx, ṽt = aṽx, (6.25)

and the corresponding dispersion relations are

ω1 = −k3 + ak, ω2 = ak. (6.26)

The phase velocities can be computed from the continuous dispersion relations (6.26) , which

are
ω1

k
= −k2 + a,

ω2

k
= a.

Since the phase velocity ω2(k) has the property of ω′′2 (k) = 0, ν is not a dispersive wave,

whereas the solution u is dispersive.

The continuous group velocities of (6.25) are

dω1

dk
= −3k2 + a,

dω2

dk
= a. (6.27)

6.1.2.2 KdV-KdV System

The coupled system (4.40) is

ut +
1
6 vxxx + uux + vx = 0,

vt +
1
6 uxxx + (1 + v)ux + uvx = 0

(6.28)
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and in vector form

yt +
1
6

Byxxx + A(u, v)yx = 0 (6.29)

with y = (u, v)T ,

B =

 0 1

1 0

 (6.30)

and

A(u, v) =

 u 1

v + 1 u

 .
Similar to (6.22), (6.29) is linearized around the constant solution ȳ = (ū, v̄)T with a small

perturbation of ỹ = (ũ, ṽ)T . When we substitute y = ȳ + ỹ, yt = ȳt + ỹt, yx = ȳx + ỹx and

yxxx = ȳxxx + ỹxxx into the vector form (6.29), we obtain the equation

ỹt +
1
6

Bỹxxx + A(ū, v̄)ỹx = 0, (6.31)

where we assume that ū the constant solution and ignore higher order terms of ỹ. With the

aid of the decomposition of the matrix A with eigenvalues λ1,2 = ū ±
√

v + 1 and assuming

λ1 = λ2 = a, we obtain

ũt +
1
6

ṽxxx + aũx = 0

ṽt +
1
6

ũxxx + aṽx = 0,
(6.32)

which is the linearized version of (6.28) around the constant solution. The dispersion relations

for the linearized equation (6.32) are

ω1 =
1
6

k3 ṽ
ũ
− ak

ω2 =
1
6

k3 ũ
ṽ
− ak,

(6.33)

where the term ṽ/ũ is introduced as constant and it appears as a multiplier and a divisor for

the dispersion relations in (6.33) [56].

In order to prove the dispersive property of the KdV-KdV equation, the phase velocities can

be obtained as
ω1

k
=

k2

6
ṽ
ũ
− a,

ω2

k
=

k2

6
ũ
ṽ
− a.

Since the phase velocities with resect to the variables u and v are quadratic functions of the

wave number k, they are both dispersive.

Contrary to the Ito’s system whose dispersion relations for ũ and ṽ were separated, in the

KdV-KdV system the relations are related to each other by a constant term.
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The continuous group velocities of the wave solutions u and v are computed by taking the first

derivative of the equations in (6.33) with respect to k and obtained

dω1

dk
=

1
2

k2 ṽ
ũ
− a,

dω2

dk
=

1
2

k2 ũ
ṽ
− a, (6.34)

where ω̄ = ω∆t and k̄ = k∆x

6.1.2.3 Symmetric KdV-KdV System

The symmetric version of the KdV-KdV system (4.41) can be rewritten as follows

ut +
1
6

vxxx +
3
2

uux +

(
1 +

1
2

v
)

vx = 0,

vt +
1
6

uxxx + (1 +
1
2

v)ux +
1
2

uvx = 0.
(6.35)

As in the previous sections on coupled equations, to linearize (6.35), it has to be written in

terms of vector y = (u, v)T such that

yt +
1
6

Byxxx + A(u, v)yx = 0, (6.36)

where the 2 × 2 square matrix B is same as (6.30) and

A(u, v) =

 3
2 u 1

2 v + 1
1
2 v + 1 1

2 u

 .
We linearize (6.36) around a constant solution ȳ = (ū, v̄)T with a small perturbation ỹ = (ũ, ṽ)T ,

where |ũ|, |ṽ| ≪ 1. When the solution y and its derivatives such that

yt = ȳt + ỹt, yx = ȳx + ỹx, yxxx = ȳxxx + ỹxxx

are inserted into (6.36) and simplified as in the previous sections, then we obtain

ỹt +
1
6

Bỹxxx + A(ū, v̄)ỹx = 0. (6.37)

As in the previous cases of coupled KdV equations, we take the equation (6.37) to apply the

spectral decomposition to the matrix A(ū, v̄) to write it as a diagonal matrix and hence to write

in the linearized form. We can find the eigenvalues of the matrix A as

λ1,2 = ū ±
√

ū2 − 4v̄2 − 4v̄ − 4

and write it as A = VDV−1, where the columns of the matrix V represent the eigenvectors of

A. Once we multiply the equation (6.37) with V−1 from left and choose the eigenvalues to
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be equal to each other and a constant a as λ1 = λ2 = a, we can get the following linearized

equations

ũt +
1
6

ṽxxx + aũx = 0

ṽt +
1
6

ũxxx + aṽx = 0,
(6.38)

which is exactly the same as (6.32). Now, since the linearized equations are the same for

the equations (6.32) and (6.38), continuous dispersion relations and hence group velocities,

which were found before in (6.33) and (6.34) will be the same. Also, it can be concluded that

the phase velocities are equal, so the symmetric KdV-KdV system is dispersive as well.

6.2 Numerical Dispersion Relations

This section deals with the numerical dispersion relations of the same equations whose lin-

earized forms and the continuous dispersion relations with the group velocities are found in

the previous section. The numerical dispersion relations are obtained using the discrete ver-

sion of the Fourier mode (6.5) [60]:

ũn
j = ûei( jk∆x+nω∆t), i =

√
−1. (6.39)

To simplify the calculations, we continue with the solution u instead of ũ for the linearized

equations and also introduce the notation of k̄ = k∆x and ω̄ = ω∆t, then (6.39) is written as

un
j = ûei( jk̄+nω̄). (6.40)

In order to compare the discrete dispersion relation with the continuous one, the relation in

the form (6.1) is rewritten as ω̄ = ω̄(k̄). The plots for the dispersion relations and the group

velocities are drawn as k̄ vs. ω̄, that is, k∆x vs. ω∆t in the range −π ≤ k∆x, ω∆t ≤ π, since

the solutions are periodic in the intervals of length 2π. The periodicity of the solutions can be

explained as follows:

The semi-discrete Fourier transform of (6.2) can be written as

ũ(x, t) = Σ∞j=−∞u j(t)e−ik j∆xeiω(k)t ∆x, (6.41)

where x j = j∆x.

Since the Euler’s formula eiy = cos y + i sin y satisfies e−i(2πm j) = 1, for any integer m, (6.41)

can be written as

ũ(x, t) = Σ∞j=−∞u j(t) e−ik j∆x eiω(k)t ∆x = Σ∞j=−∞u j(t) e−i(k+2πm/∆x) j∆x iω(k)t ∆x
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and this tells us that any wave number k is indistinguishable from all other wave numbers

k + 2πm/∆x, where m ∈ Z. This is called aliasing. Hence, that proves k̄, which is k∆x is 2π

periodic. The same can be done for semi-discretization in time for ω∆t to show that ω∆t is

also 2π periodic.

The dispersion relations in this section are given for the first formulation of the bi-Hamiltonian

systems, since both of the discretizations end up with the same result after applying the AVF

method. Since there is only one pair to be considered, for simplicity we drop the sub numbers

of the Hamiltonian functional and the operator, that is, J1 and H2 will be mentioned as J

andH , respectively.

6.2.1 KdV Equation

We consider, the linearized KdV equation (6.14) with the revised Hamiltonian operator and

the Hamiltonian functional with respect to the first formulation

J = D, H =
∫ [(

α1

2
+
ρ

2

)
u2 − ν

2
u2

x

]
dx. (6.42)

Semi-discrete form of (6.42) is written as

J̄ =
1

2∆x
A, H̄ =

N∑
j=1

[(
α1

2
+
ρ

2

)
u2

j −
ν

2∆x2 (u j+1 − u j)2
]
, (6.43)

where A is the same matrix as (4.3).

Taking the gradient of H̄ gives

∇H̄(u j) = (α1 + ρ)u j +
ν

∆x2 (u j+1 − 2u j + u j−1) for j = 1, . . . ,N. (6.44)

Then we apply the AVF method to the linearized KdV equation (6.14) and obtain

un+1 − un

∆t
=

1
2∆x

A
[
α1

2
(un+1 + un) +

ρ

2
(un+1 + un) +

ν

2∆x2 (ũn+1 + ũn)
]
. (6.45)

When multiplied with the matrix A in (4.3), the equation (6.45) can be rewritten as

un+1
j − un

j

∆t
+

ν

4∆x3 (un+1
j − 2un+1

j−1 + un+1
j−2) +

ν

4∆x3 (un
j − 2un

j−1 + un
j−2)

+
α1

4∆x
(un+1

j−1 + un
j−1) +

ρ

4∆x
(un+1

j−1 + un
j−1) (6.46)

− ν

4∆x3 (un+1
j+2 − 2un+1

j+1 + un+1
j ) − ν

4∆x3 (un
j+2 − 2un

j+1 + un
j)

− α1

4∆x
(un+1

j+1 + un
j+1) − ρ

4∆x
(un+1

j+1 + un
j+1) = 0.
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To obtain the numerical dispersion relation, we substitute (6.40) into (6.46) and simplify to

get

(eiω∆t − 1) + ν
∆t
∆x3 (e−2ik̄ − 2e−ik̄ + 1)(eiω∆t + 1) − ν ∆t

4∆x3 (e2ik̄ − 2eik̄ + 1)(eiω∆t + 1)

+ α1
∆t

4∆x
e−ik̄(eiω∆t + 1) − α1

∆t
4∆x

eik̄(eiω∆t + 1) (6.47)

+ ρ
∆t

4∆x
e−ik̄(eiω∆t + 1) − ρ ∆t

4∆x
eik̄(eiω∆t + 1) = 0.

We consider two different approaches to obtain the discrete dispersion relation introduced

in the joint work of Islas, Schober, Wlodarczyk [31] and of McLachlan’s and Ascher’s [2].

These two different approaches are applied to the Sine-Gordon equation in [60].

First approach: [31] Assuming that k̄ , iπ, w∆t , (2i+ 1)π for i ∈ Z. Dividing both sides of

the equation (6.47) by (eiω∆t + 1), we obtain

eiω∆t − 1
eiω∆t + 1

+ ν
∆t

4∆x3 (e−2ik̄ − 2e−ik̄ + 1) − ν ∆t
∆x3 (e2ik̄ − 2eik̄ + 1)

+ α1
∆t
∆x

(e−ik̄ − eik̄) + ρ
∆t
∆x

(e−ik̄ − eik̄) = 0. (6.48)

Using the complex definition of the sine, cosine and tangent functions such that

sin θ =
eiθ − e−iθ

2
, cos θ =

eiθ + e−iθ

2
, tan θ =

e2iθ − 1
e2iθ + 1

,

we arrive at

tan(
ω∆t

2
) − ν ∆t
∆x3 [sin k̄(cos k̄ − 1)] −

(
α1
∆t

2∆x
+ ρ
∆t

2∆x

)
sin k̄ = 0. (6.49)

When the continuous dispersion relation (6.15) and the numerical dispersion relation (6.49)

are compared, it is seen that the AVF scheme does not preserve the form of the analytic

dispersion relation (6.15).

To check the accuracy between the continuous dispersion relation (6.15) and the numerical

dispersion relation (6.49), we take the limit of the numerical dispersion as ∆t,∆x → 0. For

this, first we multiply (6.49) by 1/∆t and get

tan(ω∆t
2 )
∆t

− ν
[
sin k∆x
∆x

(
cos k∆x − 1
∆x2

)]
−

(
α1

2
+
ρ

2

) sin k∆x
∆x

= 0, (6.50)

where the notations k̄ is taken as k∆x. Now using the fact that

lim
∆t→0

tan(ω∆t
2 )
∆t

=
ω

2
, lim
∆x→0

sin k∆x
∆x

= k and lim
∆x→0

cos k∆x − 1
∆x2 = −k2

2
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when we take the limit of (6.50) as (∆t,∆x)→ (0, 0), we obtain

ω + νk3 − α1k − ρk = 0,

which is equivalent to (6.15). This shows us that the numerical dispersion relation tends to

the continuous one for the ideal choice of ∆t and ∆x.

Moreover, we can rewrite (6.49)

tan(
ω̄

2
) − ν λ

∆x2 [sin k̄(cos k̄ − 1)] −
(
α1
λ

2
+ ρ

λ

2

)
sin k̄ = 0, (6.51)

where λ = ∆t
∆x . This leads to the dispersion relation

ω̄(k̄) = 2 arctan
[(
ν
λ

∆x2 [sin k̄(cos k̄ − 1)] +
(
α1
λ

2
+ ρ

λ

2

)
sin k̄

)]
. (6.52)

The necessary condition to write the equation (6.51) as (6.52) is the invertibility of the tangent

function. Tangent function is invertible on the interval (−π/2, π/2), which corresponds to the

condition −π < ω < π for ω. This is automatically satisfied since for the dispersion relation

both ω and k are defined on the interval [−π, π] as explained before at the beginning of this

Chapter.

Now, we consider two terms of Maclaurin’s series expansion for trigonometric terms in (6.49)

and we get

tan
(
ω∆t

2

)
=

ω∆t
2
−

(
ω∆t

2

)2

+ O(ω3),

sin k̄
(
cos k̄ − 1

)
= − k̄3

2
+

k̄5

8
+ O

(
k̄7

)
, (6.53)

sin k̄ = k̄ − k̄3

6
+ O

(
k̄5

)
.

When we take the first term from each expansion the resulting relation is consistent with the

continuous dispersion relation (6.15).

McLachlan’s and Asher’s approach: [2] In this approach all the terms are written with

respect to cosine function as much as possible, instead of the tangent. Starting from the

equation (6.47), we can rewrite it as

eiω∆t − 1
eiω∆t + 1

− ν ∆t
4∆x3

(
eik̄ − e−ik̄

)
(e−ik̄ + eik̄ − 2) −

(
α1
∆t

4∆x
+ ρ
∆t

4∆x

) (
eik̄ − e−ik̄

)
= 0. (6.54)

Using the fact that cos θ = 1
2

(
eiθ + e−iθ

)
, (6.54) can be written as

sin(ω∆t) + cos(ω∆t) − 1
sin(ω∆t) + cos(ω∆t) + 1

− ν ∆t
∆x3 [sin k̄(cos k̄ − 1)] −

(
α1
λ

2
+ ρ

λ

2

)
sin k̄ = 0. (6.55)
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In the equation (6.55), when we consider the McLaurin’s series expansion of the first term

sin(ω∆t) + cos(ω∆t) − 1
sin(ω∆t) + cos(ω∆t) + 1

=
ω∆t

2
−

(
ω∆t

2

)2

+ O(
ω∆t

3
)

and using the identities in (6.53), we can see that first non-zero terms in the series expansion

gives the continuous dispersion relation (6.15).

Similar to the result obtained for the sine-Gordon equation in [60], different approaches agree

in the same result for the KdV equation in our work. Therefore, for the following equations,

we will follow the first approach.

The continuous dispersion relation (6.15) and the numerical dispersion relation (6.49) with

the coefficients α1 = −2.6, ν = −0.0222, ρ = 0 are displayed in Figure 6.1. To compare

the dispersion curves with the results in [3] we have chose ∆x = 0.0005, ∆x = 0.02 and

∆x = 1/30.
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Figure 6.1: Dispersion of the linearized KdV for λ = 0.2 and various values of ∆x

The Figure 6.1 shows that the AVF method introduce numerical dispersion. It is seen that the

dispersive properties of the AVF scheme is different for different ∆x values. The dispersion

curves in Figures 6.1(a)- 6.1(b) for the AVF method is below the analytical dispersion curve

for k > 0. On the other hand, for ∆x = 1/30, the dispersion curves for AVF make transitions

from below to above the analytical curve at a value of the wave number k̄ that depends on λ.

The Figure 6.1(a) shows that for the case that frequencies ω and the wave numbers k are both

small, then the discrete dispersion is consistent with the theoretical dispersion. However, as

they are getting larger in absolute value, then the discrete dispersion can not be catched by

the theoretical one. The cases ∆x = 0.02 and ∆x = 1/30 with λ = 0.2 are displayed in
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Figure 6.1(b) and 6.1(c), where the discrete scheme becomes closer to the exact linearized

KdV for the larger frequency and wave number values in absolute. When we compare the

dispersion graphs in Figure (6.1) with the curves in [3], we see that, the continuous and the

numerical dispersion curves in Figure 6.1 show similar behavior as the dispersion curves in

[3], where the latter results are obtained by midpoint rule. This is an expected result since

the AVF method that we use is consistent with the midpoint rule. These conclusions give

a rough estimate on the dispersion relation of the linearized KdV equation (6.14) such that

the decrease in ∆x by fixing other variables leads to the exact and discrete dispersions to be

closer in the vertical axis. In a similar manner, when ∆x ∼ 1, the continuous and the numerical

dispersion curves tend to each other in the horizontal axis as can be seen in Figure 6.2.
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Figure 6.2: Dispersion of the linearized KdV for λ = 0.2, very small and big values of ∆x

Taking the derivative of (6.52) with respect to k, where k∆x, we obtain the numerical group

velocity

dω̄
dk̄
= λ

ν
∆x2

(
cos2 k̄ − sin2 k̄ − cos k̄

)
+ (α1+ρ

2 )
(
cos k̄

)
1 +

[
ν∆t
∆x3

[
sin k̄

(
cos k̄ − 1

)]
+ (α1+ρ

2 ) ∆t
∆x sin k̄

]2 . (6.56)

Figure 6.3 shows the graphs of the continuous group velocity (6.16) and the numerical group

velocity (6.56) for different ∆x values and λ = 0.2.

We can also compare the group velocities of the KdV equation that we have plotted in Figure

6.3 with the results obtained from the dispersion relations. The numerical dispersion relation

is well preserved for different values of ∆x when k̄ is in the interval (−1, 1). The slope of

the dispersion curves in Figure 6.1, which corresponds to the group velocity ω̄′(k̄), gives

consistent information with the one obtained from Figure 6.3. That is, for the analytical
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Figure 6.3: Group velocity of the exact and discrete linearized KdV for λ = 0.2 and various
values of ∆x

dispersion, the curves are increasing on the interval k̄ ∈ (−π,−0.8016) ∪ (0.8384, π) and

decreasing on the interval k̄ ∈ (−0.8016, 0.8384) for ∆x = 0.0005, or ∆x = 0.02, or ∆x =

1/30. When the continuous group velocity is investigated, we have seen that the sign of the

group velocity is almost preserved, where ω̄′(k̄) > 0 on the interval k̄ ∈ (−π,−0.5416) ∪

(0.5384, π) and ω̄′(k̄) < 0 on the interval k̄ ∈ (−0.5416, 0.5384). The continuous and the

numerical group velocities in Figure 6.3 move close to each other up to some wave number,

but then the numerical group velocity differ from the continuous one.

The group velocity curves in Figure 6.3 shows that the sign of the group velocity is not pre-

served by the AVF method.

6.2.2 mKdV Equation

The linearized mKdV (6.19) can be written as an infinite dimensional Hamiltonian system

with

J = D, H =
∫
−1

2
(au2 − νu2

x) dx, (6.57)

where a = αū2. Discretizing the Hamiltonian functionalH

H̄ =
N∑

j=1

−1
2

[
au2

j −
ν

∆x2 (u j+1 − u j)2
]
∆x,

we get the gradient of the Hamiltonian

∇H̄(u j) = au j +
ν

∆x2 (u j+1 − 2u j + u j−1) for j = 1, . . . ,N. (6.58)
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Applying the average vector field method results in the following dispersion relation for the

linearized mKdV equation (6.19), we get

tan(
ω̄

2
) + a

λ

2
sin k̄ + ν

λ

∆x2 [sin k̄(cos k̄ − 1)] = 0, (6.59)

which can be rewritten as

ω̄(k̄) = 2 arctan
(
−a

λ

2
sin k̄ − ν λ

∆x2

[
sin k̄(cos k̄ − 1)

])
, (6.60)

where −π < ω < π.

Then one can find the discrete group velocity by taking the derivative of (6.60) with respect

to k
dω̄
dk̄
= λ

ν
∆x2

(
cos2 k̄ − sin2 k̄ − cos k̄

)
− a

2

(
cos k̄

)
1 +

[
ν∆t
∆x3

[
sin k̄

(
cos k̄ − 1

)]
+ a

2
∆t
∆x sin k̄

]2 . (6.61)

For the following dispersion relation and group velocity plots from now on, we will use vari-

ous values for the mesh ratio λ with a constant time step ∆t = 0.001.

The difference between the exact and the approximate dispersion relations and the group

velocities for the mKdV equation can be found in Figure 6.4 and 6.5,respectively, for a = 1

and ν = 1.
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Figure 6.4: Dispersion of the linearized mKdV equation for ∆t = 0.001, a = 1 and various
values of λ.

When the discrete and the continuous cases are compared, according to Figure 6.4 the results

that we obtained are similar to the KdV equation. That is, the curves move near to each other

for small values of k, which corresponds to a long wave with a high frequency ω. However,

for the large wave numbers the curves move away from each other as seen on Figure 6.4.
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Figure 6.5: Group velocities of the equation (6.19) for ∆t = 0.001, a = 1 and various values
of λ.

Moreover, as in the case of the KdV equation, the sign of the group velocity is not preserved

exactly by the AVF method.

6.2.3 Ito’s System

For the linearized Ito’s system (6.25), we have to find the Hamiltonian functional and the

operator regarding the new system. The corresponding pair of the Ito’s system for the first

Hamiltonian formulation becomes

J =

 D 0

0 D

 , H =
∫ (
−u2

x

2
+

a
2

(u2 + v2)
)

dx, (6.62)

where the constant a is chosen such that both of the eigenvalues (6.24) are equal to each other

and also equal to a.

We apply the energy preserving method to the linearized Ito’s system (6.25) with the Hamilto-

nian and the Hamiltonian operator in (6.62) by using the semi-discrete Hamiltonian functional

is

H̄ =
N∑

j=1

(
− 1

2∆x2 (u j+1 − u j)2 − a
2

(u2
j + v2

j)
)
∆x

and its gradient

∇H̄(u, v) =

 ∂H̄
∂u

∂H̄
∂v

 ,
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where

∂H̄
∂u
=



1
∆x2 (u2 − 2u1 + uN) + au1

...

1
∆x2 (u j+1 − 2u j + u j−1) + au j

...

1
∆x2 (u1 − 2uN + uN−1) + auN


and

∂H̄
∂v
=



av1
...

av j
...

avN


for j = 1, . . . ,N. For the discretization of J in (6.62), we have used the matrix (4.35). Now,

we can apply the AVF method in the vector form and when we make all computations using

the first approach as in section (6.2.1), we can find the following dispersion relations

tan
(
ω̄1

2

)
− λ

∆x2 [sin k̄(cos k̄ − 1)] − a
λ

2
sin k̄ = 0,

tan
(
ω̄2

2

)
− a

λ

2
sin k̄ = 0,

(6.63)

for u and v, respectively. These dispersion equations are equivalent to

ω̄1 = 2 arctan
(
λ

∆x2 [sin k̄(cos k̄ − 1)] + a
λ

2
sin k̄

)
,

ω̄2 = 2 arctan
(
a
λ

2
sin k̄

)
,

(6.64)

where −π < ω1, ω2 < π.

One can easily show that the pair of equations (6.64) turn to (6.26) by expanding the McLau-

rin’s series up to two terms.
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Figure 6.6: Dispersion curves for the solution u of the linearized Ito’s system for ∆t = 0.05
and various values of a and λ.

The curves corresponding to the continuous dispersion relation (6.26) and the discrete disper-

sion relations (6.64) for wave solution u can be found in Figure 6.6 for various values a and λ

for ∆t = 0.05.
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Several observations can be made considering the Figure 6.6. The first is that the numerical

dispersion introduced by the AVF method. Secondly, the dispersive properties of the AVF

method are different. From the Figure 6.6, we see that numerical dispersion curves are above

the analytical dispersion curve for a = 0.1, λ = 0.4 and a = 0.1, λ = 0.01, however an

opposite situation is observed for a = 0.5, λ = 0.01.
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Figure 6.7: Travel of the wave solution v of the linearized Ito’s system for ∆t = 0.05, a = 0.1
and λ = 0.4

Since the wave solution v is not dispersive, in other words since the wave modes are traveling

with a constant speed, the behavior is same for different values of a and λ. Therefore, the travel

is shown by the single Figure 6.7. From the figure we see that the AVF method introduces the

numerical dispersion, since the exact dispersion relation for v is linear and numeric dispersion

relation for v is nonlinear.

The discrete group velocities then can be found by taking the derivative of (6.64) as

dω̄1

dk̄
= λ

1
∆x2

(
cos2 k̄ − sin2 k̄ − cos k̄

)
− a

2

(
cos k̄

)
1 +

[
∆t
∆x3

[
sin k̄

(
cos k̄ − 1

)]
+ a

2
∆t
∆x sin k̄

]2

dω̄2

dk̄
= λ

a
2 cos k̄

1 +
(

a
2
∆t
∆x sin k̄

)2 . (6.65)

and compared with the continuous group velocities (6.27) in Figure 6.8, which are

dω̄1

dk̄
= −3

λ

∆x2 k̄2 + aλ,
dω̄2

dk̄
= aλ

to understand the behaviors of the waves.

Figure 6.8 shows that the group velocity curves of the AVF method are very close to the

analytical one for a = 0.1. Although the analytical group velocity curves are monotonically
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Figure 6.8: Group velocities of the solution u of the linearized Ito’s system for ∆t = 0.05 and
various values of a and λ.

decreasing for k > 0, the group velocity curve for the AVF method is not monotone. Moreover,

the sign of the group velocity is not preserved by the AVF method.

6.2.4 KdV-KdV and Symmetric KdV-KdV System

In this section, the dispersion relations and the group velocities of the linearized KdV-KdV

(6.32) and the symmetric KdV-KdV (6.38) systems are examined together, since they have

the same linearized coupled equations and that leads to same dispersion relations, hence leads

to same group velocities.

We consider the equations (6.32) and (6.38), their infinite Hamiltonian formulations have to

be revised as in the following way.

The linearized equation (6.32) can be reformulated as an infinite Hamiltonian system by using

J =

 D
2 0

0 D
2

 , H =
∫ (

1
6

(
u2

x + v2
x

)
− 2auv

)
dx, (6.66)

where a is constant. The spatial discretization of the Hamiltonian operator J is obvious (see

(4.35)) and the Hamiltonian functional takes the form

H̄ =
N∑

j=1

[
1

6∆x2

(
(u j+1 − u j)2 + (v j+1 − v j)2

)
− 2au j + v j

]
∆x.
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Then the gradient of H̄ can be computed as

∇H̄(u, v) =

 ∂H̄
∂u

∂H̄
∂v

 =



− 1
3∆x2 (u2 − 2u1 + uN) − 2av1

...

− 1
3∆x2

(
u j+1 − 2u j + u j−1

)
− 2av j

...

− 1
3∆x2 (u1 − 2uN + uN−1) − 2avN

− 1
3∆x2 (v2 − 2v1 + vN−1) − 2auN

...

− 1
3∆x2

(
v j+1 − 2v j + v j−1

)
− 2au j

...

− 1
3∆x2 (v1 − 2vN + vN−1) − 2auN



,

where j = 1, . . . ,N.

Before we move on to the discrete dispersion relation, let us also write the new Hamilto-

nian formulation of the linearized symmetric KdV-KdV system (6.38). The corresponding

Hamiltonian operator and the functional are

J =

 D 0

0 D

 , H =
∫ (
−uvxx

6
− a

2

(
u2 + v2

))
dx. (6.67)

Then the semi-discrete Hamiltonian and its gradient are obtained as

H̄ =
N∑

j=1

u j
(
v j+1 − 2v j + v j−1

)
6∆x2 − a

2

(
u2

j + v2
j

)∆x

∇H̄(u, v) =

 ∂H̄
∂u

∂H̄
∂v

 =



− v2−2v1+vN
6∆x2 − au1

...

− v j+1−2v j+v j−1

6∆x2 − au j
...

− v1−2vN+vN−1
6∆x2 − auN

− u2−2u1+uN
6∆x2 − av1

...

−u j+1−2u j+u j−1

6∆x2 − av j
...

−u1−2uN+uN−1
6∆x2 − avN



,
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where j = 1, . . . ,N.

When we apply the AVF method to both Hamiltonian pairs (6.66) and (6.67), we get the

following common dispersion relations

tan
(
ω̄1

2

)
+

λ

6∆x2 [sin k̄(cos k̄ − 1)]
ṽ
ũ
+ a

λ

2
sin k̄ = 0,

tan
(
ω̄2

2

)
+

λ

6∆x2 [sin k̄(cos k̄ − 1)]
ũ
ṽ
+ a

λ

2
sin k̄ = 0,

(6.68)

which are equivalent to

ω̄1 = 2 arctan
(
− λ

∆x2 [sin k̄(cos k̄ − 1)]
ṽ
ũ
− a

λ

2
sin k̄

)
,

ω̄2 = 2 arctan
(
− λ

∆x2 [sin k̄(cos k̄ − 1)]
ũ
ṽ
− a

λ

2
sin k̄

)
.

(6.69)

The numerical dispersion relation (6.68) for the AVF method shows that the form of the

analytical dispersion relation (6.33) is not preserved.

The comparison between the continuous (6.33) and the discrete (6.69) dispersion equations

can be done by Figures 6.9 and 6.10 with respect to u and v for different choices of values for

a, λ and
ṽ
ũ

.
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ũ = 3

−3 −2 −1 0 1 2 3
−0.015

−0.01

−0.005

0

0.005

0.01

k ∆ x

w
 ∆

 t

 

 

KdV−KdV PDE, Solution u
Discrete KdV−KdV

(c) a = 0.5, λ = 0.01 and ṽ
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Figure 6.9: Dispersion curves for the solution u of the linearized KdV-KdV and symmetric
KdV-KdV systems for ∆t = 0.05 and various values of a, λ and ṽ

ũ .

Then the group velocity of the linearized KdV-KdV systems can be obtained from the first

derivative of the dispersion relations (6.69) as

dω̄1

dk̄
= λ

1
6∆x2

(
cos2 k̄ − sin2 k̄ − cos k̄

)
ṽ
ũ −

a
2

(
cos k̄

)
1 +

[
∆t

6∆x3
ṽ
ũ

[
sin k̄

(
cos k̄ − 1

)]
+ a

2
∆t
∆x sin k̄

]2 ,

dω̄2

dk̄
= λ

1
6∆x2

(
cos2 k̄ − sin2 k̄ − cos k̄

)
ũ
ṽ −

a
2

(
cos k̄

)
1 +

[
∆t

6∆x3
ũ
ṽ

[
sin k̄

(
cos k̄ − 1

)]
+ a

2
∆t
∆x sin k̄

]2 . (6.70)
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Figure 6.10: Dispersion curves for the solution v of the linearized KdV-KdV and symmetric
KdV-KdV systems for ∆t = 0.05 and various values of a, λ and ṽ

ũ .

When the curves of the continuous (6.34) and the discrete (6.70) group velocities can be seen

in Figures (6.11) and (6.12) for u and v, respectively.
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ũ = 15

Figure 6.11: Group velocities of the solution u of the linearized KdV-KdV and symmetric
KdV-KdV systems for ∆t = 0.05 and various values of a and λ.

As we have seen in the previous sections, the AVF method introduces numerical dispersion. In

addition, the dispersive properties of the AVF method are distinct with respect to the different
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Figure 6.12: Group velocities of the solution v of the linearized KdV-KdV and symmetric
KdV-KdV systems for ∆t = 0.05 and various values of a and λ.

initial conditions used to solve the equations.
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CHAPTER 7

CONCLUSIONS

In this thesis, the energy preserving AVF method is applied the to KdV type Hamiltonian

equations. The numerical results confirm the excellent long time preservation of the energy

(Hamiltonian) and the other invariants of the underlying equations. The numerically obtained

soliton solutions show a very similar behavior with those in the literature obtained by other

methods.

With full discretization of the nonlinear equations, AVF method results in the implicit equa-

tions and to solve these equations Newton’s method is used within machine accuracy. In this

iterative manner, for each time step the result is obtained after at most 3 iterations and this

leads to an increase in the cost of computation substantially. An alternative to reduce the

computational cost would be using linearly implicit energy preserving methods as introduced

in [20].

Once we obtained the results, there exist small oscillations around some of the solutions. The

reason of this comes from the third order derivative in the equations and leads to dispersion.

Therefore, a thorough dispersion analysis of the AVF method is carried out. When the exact

and the numerical dispersion relations are compared, it is seen that for small wave numbers

the dispersion curves show close behavior. However, as the wave number is getting larger

in absolute value the numerical dispersion curves fail to catch the exact dispersion relation

for all equations. On the other side, for large wave numbers the continuous (exact) group

velocity does not match to the numerical one. Therefore, we concluded that there exists no

diffeomorphism for the discrete dispersion relations, so that the sign of the group velocity is

not preserved. This shows the weakness of the AVF method compared with the other structure

preserving methods such as symplectic and multsymplectic integrators.
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