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ABSTRACT

DISCONTINUOUS GALERKIN METHODS FOR TIME-DEPENDENT CONVECTION
DOMINATED OPTIMAL CONTROL PROBLEMS

Akman, Tuğba

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

July 2011, 89 pages

Distributed optimal control problems with transient convection dominated diffusion convec-

tion reaction equations are considered. The problem is discretized in space by using three

types of discontinuous Galerkin (DG) method: symmetric interior penalty Galerkin (SIPG),

nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty Galerkin (IIPG).

For time discretization, Crank-Nicolson and backward Euler methods are used. The discretize-

then-optimize approach is used to obtain the finite dimensional problem. For one-dimensional

unconstrained problem, Newton-Conjugate Gradient method with Armijo line-search. For

two-dimensional control constrained problem, active-set method is applied. A priori error

estimates are derived for full discretized optimal control problem. Numerical results for one

and two-dimensional distributed optimal control problems for diffusion convection equations

with boundary layers confirm the predicted orders derived by a priori error estimates.

Keywords: Transient diffusion convection reaction equation, optimal control, discontinuous

Galerkin method, Crank-Nicolson, a priori error estimates

iv



ÖZ

ZAMANA BAĞLI KONVEKSİYON AĞIRLIKLI ENİYİLEMELİ KONTROL
PROBLEMLERİNİN KESİNTİLİ GALERKİN YÖNTEMLERİ

Akman, Tuğba

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Temmuz 2011, 89 sayfa

Zamana bağlı konveksiyon ağırlıklı konveksiyon-difüzyon-reaksiyon denklemlerin dağıtık

eniyileme kontrol problemi ele alındı. Problem uzayda üç farklı sürekli olmayan Galerkin

yöntemiyle ayrıklaştırıldı: Simetrik iç ceza Galerkin yöntemi (SIPG), simetrik olmayan iç

ceza Galerkin yöntemi (NIPG), eksik iç ceza Galerkin yöntemi (IIPG). Zaman değişkeninin

ayrıklaştırılmasında ise Crank-Nicolson ve geriye dönük Euler yöntemi kullanıldı. Sonlu

boyutlu problem, ayrıklaştır-eniyile yaklaşımı ile elde edildi. Tek boyutlu kısıtlı olmayan

problem, Newton eşlenik gradyan yöntemi ve Armijo doğru arama yöntemi ile çözüldü. İki

boyutlu kısıtlı problem için, aktif kümeler yöntemi uygulandı Tam ayrıklaştırılmış eniyileme

kontrol problemi için, a priori hata tahminleri elde edildi. Çözümü katmanlar içeren, tek ve

iki boyutlu dağıtık adveksiyon-difüzyon-reaksiyon denkleminin eniyileme kontrol problemi

için elde edilen sayısal sonuçlar, a priori hata tahminleriyle uyuşmaktadır.

Anahtar Kelimeler: Zamana bağlı konveksiyon-difüzyon problemleri, dağıtık kontrol prob-

lemi, süreksiz Galerkin yöntemi, Crank-Nicolson, önceden hata tahminleri
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CHAPTER 1

INTRODUCTION

Optimal control theory has gained importance during the last few decades. Some applications

can be observed both in the science and the daily life. Optimal control of ordinary differential

equations may be confronted in aviation. In space technology, robotics, movement sequences

in sports, and the control of chemical processes and power plants, while the control of partial

differential equations are required to investigate heat conduction, diffusion, electromagnetic

waves, fluid flows, freezing processes, elastic deformation, option prices, the design of an

airplane wing to achieve the optimal performance, control of pollution in a river, wave prop-

agation, elastic deformation and other phenomena [17, 33, 49, 60].

A optimal control problem consists of an objective function, an ordinary/partial differential

equation, named the state equation, and control constraints depending on the problem. The

state equation establish the relation between the control and the state. The optimal control

problem concerns to find the optimal control so that an adequate state close to the observation

or target is obtained by minimizing the cost or objective function [49].

During this study, we have considered distributed unconstrained and control constrained op-

timal control problem governed by time dependent diffusion convection reaction equation.

Finite element method(FEM) is a tool to obtain the approximate solution of the partial differ-

ential equations by using a variational formulation. The variational formulation is an integral

over the time-space domain. From this point of view, it differs from the finite difference

scheme. By FEM, the domain is divided into elements, which are usually triangles in 2D

and the PDE is approximated on each subdomain [27]. For diffusion convection equations,

the problem with small diffusion terms is singularly perturbed. This small term has a great

influence on the problem that would change the character of the problem. Boundary/interior
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layers, which are observed in such problems, results rapid changes of the solution on the

boundary/interior with large derivatives. The region where the boundary/interior layers occur

cannot be determined a priori, this increases the difficulty in estimating the solution. Sin-

gularly perturbed problems can be analyzed by perturbation theory and the regions of the

boundary/interior layers [42]. In case of convection dominated problems, the spatial dis-

cretization by Galerkin FEM is not efficient unless the mesh size h is not sufficiently small

compared to ε/‖c‖. Node-to-node oscillations can be confronted in practice and by mesh and

time-step refinement, this can be dealt with. The scale between the diffusion and the convec-

tion term results in a constant so called the mesh Peclet number Pe = ch
2ε . It enables us to

extract some information about the problem [49]. It can be noted that the large Peclet number

results in the non-physical oscillations. For such cases, stabilization techniques have to be

used [9, 10, 22, 49].

In 1973, the discontinuous Galerkin (DG) methods proposed for hyperbolic problem by Reed

and Hill by [51] and then the solution of hyperbolic and nearly hyperbolic problems by DG

became the main concern. In addition, purely elliptic problems have been tried to be solved

by DG. For singularly perturbed problems, application do DG to elliptic problems has become

very popular [2, 3, 31, 38, 48, 58].

During this study, interior penalty Galerkin methods have been used to perform spatial dis-

tribution and we have used the definitions and theorem given [53]. DGFEMs results in high-

order and stable solutions spite of the boundary or interior layers, and discontinuous parts of

the solution [12]. DG methods are highly preferable due to their locally conservative, stable,

and high-order accurate nature. By DG, irregular meshes, complex geometries can be han-

dled and basis polynomials of several degrees can be used. However, the degrees of freedom

is increased. Thus, many problems of fluid dynamics and Hamilton-Jacobi equations, second-

order elliptic problems, elasticity are the application areas of the method although the latter

ones is not directly to be the purpose of the action [13].

There are two different approaches to solve the optimal control problems: discretize-then-

optimize and optimize-then discretize. We have used the former one to obtain an approximate

solution. For spatial discretization, interior penalty Galerkin methods, SIPG, NIPG and IIPG

have been used, while temporal discretization has been performed by backward Euler and

Crank-Nicolson methods.
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In contrast to the continuous FEM, DG does not insert a continuity requirement between the

neighboring elements while the solution is approximated by piecewise polynomials on the

mesh. Similar to the finite volume method, a numerical flux is used to obtain the discontinuous

approximations and boundary fluxes. Discontinuities and steep gradients can be caught. As a

common property, it is necessary to add the fact that higher degree polynomial approximations

of the sought solution is used to increase the accuracy of the solution [20].

The outline of the thesis is as follows: In the next Chapter, we provide the optimal control

problems governed by steady and unsteady diffusion convection reaction equation, discuss the

existence and the uniqueness of the solution. Then, we state the optimality system for each

of the problems. In addition, steady and unsteady diffusion convection reaction equations

are discussed by underlining the necessary conditions for the existence and the uniqueness

of the solution. Chapter 3 is devoted to discontinuous Galerkin method by which the space

variable is discretized. Some definitions, properties and DG (bi)linear forms are introduced.

In Chapter 4, two approaches, optimize-then-discretize and discretize-then-optimize are dis-

cussed. Then, we proceed by temporal discretization by backward Euler and Crank-Nicolson

methods. Optimization methods used during this study is described and some remarks re-

lated to the implementation of the model problems are given in Chapter 5. In Chapter 6, we

discuss the consistency of the DG method. Then, we provide stability and convergence esti-

mates for semidiscrete state equation. In addition, these estimates are proved for full-discrete

state, adjoint and the control, separately. Chapter 7 is devoted to numerical results. We have

obtained approximate solution to distributed optimal control problems: One-dimensional un-

constrained optimal control problem and two-dimensional control constrained optimal control

problem. Then, we have calculated the numerical order for both of the problems which con-

firm theoretically obtained a priori error estimates.
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CHAPTER 2

OPTIMAL CONTROL PROBLEM

Optimal control problems arises in science, technology and daily life. While the problem

of obtaining the optimal trajectory of an aircraft is an example of the optimal control, the

problem of roasting a potato up to a pleasant temperature is an optimal control problem, too

[60]. Let us introduce the basic elements of an optimal control problem [23]: A control u of

which minimum is the solution of the problem and it satisfies the constraints of the problem.

A state equation by which the relation between the state y and the control u is constructed. Its

solution uniquely determined. The state of the system y is the solution of the state equation

and depends on the control. Thus, any change in the control causes a change in the state.

Lastly, an objective function is needed and it depends on the state and control variables. The

aim of the optimal control problem is to obtain an admissible control so that a desired state

can be obtained. At the same time, the value of the objective function is minimized. There are

different types of optimal control problems such as distributed control, boundary control and

Dirichlet control problem. For the first one, the control is looked for on the whole domain,

while the control acts on the boundary for the latter one. Dirichlet boundary control problems

are not of variational type. In case of a steady PDE, if the control space is H2 for s ≥ 1/2,

very weak form of the state equation must be considered [36, 41]. We present general form

of the optimal control problems governed by steady and unsteady PDE in this Chapter.

It is beneficial to mention the definitions of the vector spaces that we have used during this

study. The vector space L2(Ω) is the space of square-integrable functions on Ω ⊂ Rn:

L2(Ω) = { f : Ω 7−→ R s.t.
∫

Ω

( f (x))2dΩ ≤ +∞}.

Indeed, L2(Ω) is a space of equivalence of measurable functions. Indeed, L2(Ω) is a Hilbert

4



space with respect to the following inner product and norm:

(u, υ)Ω =

∫
Ω

uυ, ‖υ‖L2(Ω) =

(∫
Ω

υ2
)1/2

.

The space L∞(Ω) is the space of bounded functions:

L∞(Ω) = {υ : ‖υ‖L∞(Ω) < ∞},

with

‖υ‖L∞(Ω) = ess sup{|υ(x)| : x ∈ Ω}.

We introduce the Sobolev space

H1(Ω) =

{
υ ∈ L2(Ω) :

∂υ

∂xi
∈ L2(Ω), i = 1, . . . , d

}
.

Similarly, we denote Hs(Ω) for integer s:

Hs(Ω) = {υ ∈ L2(Ω) : ∀0 ≤ |α| ≤ s,Dαυ ∈ L2(Ω)}.

The Sobolev norm associated with Hs(Ω) is

‖υ‖Hs(Ω) =

 ∑
0≤|α|≤s

‖Dαυ‖2L2(Ω)

1/2

.

The Sobolev seminorm associated with Hs(Ω) is

|υ|Hs(Ω) = ‖∇sυ‖L2(Ω) =

∑
|α|=s

‖Dαυ‖2L2(Ω)

1/2

.

We now introduce the space

W(0,T ) =

{
f | f ∈ L2(0,T ; V),

d f
dt
∈ L2(0,T ; V

′

)
}
.

We define the Sobolev spaces with fractional indices. By an interpolation between Hs(Ω) and

Hs+1(Ω), we obtain the space Hs+1/2(Ω) with s integer. In [53], the K-interpolation is given

as follows: Given υ ∈ Hs(Ω), the following splitting is defined:

υ = υ1 + υ2,

for υ1 ∈ Hs(Ω) and υ2 ∈ Hs+1(Ω). Then, for a given t ∈ R, the kernel is defined as

K(υ, t) =

(
inf
υ1+υ2

= υ(‖υ1‖
2
Hs(Ω) + t2‖υ2‖

2
Hs+1(Ω))

)1/2
.

The space Hs+1/2(Ω) is defined as the completion of all functions in Hs+1(Ω) with respect to

the norm:

‖υ‖Hs+1/2(Ω) =

(∫ ∞

0
t−2K2(υ, t)dt

)1/2

.

Indeed, Hs+1(Ω) ⊂ Hs+1/2(Ω) ⊂ Hs(Ω).
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2.1 Diffusion-Convection-Reaction Equation

Diffusion convection reaction equations can be used to model so many physical problems re-

lated to the transport of air, flow in oil reservoir, ground water pollutants, air pollution, heat

dissipation [4, 18, 25, 26, 50, 49, 61]. The problematic nature of this problem arises from

the multiscale between the diffusion and convection term. In many practical applications,

diffusion term ε is too small compared to convection term. Then, the problem is called a sin-

gularly perturbed equation. Although the perturbation is too small, the nature of the problem

changes completely and boundary layers, which are rapid changes of the solution close to the

boundary, are observed. It becomes harder to obtain stable solutions and more grid points are

required to resolve the boundary layer [42]. Apart from the boundary layers, interior layers

where a rapid change is observed interior of the domain. To overcome this difficulty, perturba-

tion theory can be handled singularly perturbed problems and it facilitates the determination

of the place and width of the layers [42]. Now, let us give some examples of steady and

unsteady diffusion convection reaction equations.

2.1.1 Steady Diffusion-Convection-Reaction Equation

Consider the steady diffusion convection reaction equation with Dirichlet boundary condition

[49])

−∇ · (ε∇y(x)) + c(x) · ∇y(x) + r(x)y(x) = f (x) x ∈ Ω, (2.1)

y(x) = gD x ∈ ∂Ω. (2.2)

where ε, r, c, f and c are given functions. In general, it is assumed that ε > 0, r ∈ L∞(Ω)

and r ≥ 0, c ∈ (W(1,∞(Ω)))n and f ∈ L2(Ω). The weak form of the problem can be stated as

follows:

Find y ∈ V, a(y, υ) = F(υ), ∀υ ∈ V, (2.3)

where a(y, υ) =

∫
Ω

ε∇y · ∇υ + c · ∇yυ + ryυdx, ∀y, υ ∈ V, (2.4)

( f , υ) =

∫
Ω

fυdx, ∀υ ∈ V. (2.5)
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2.1.1.1 Existence and Uniqueness of The Solution

We have to guarantee the existence of the solution before trying to find it. Thus, the conditions

of the Lax Milgram lemma must be satisfied. Let me mention the Lax Milgram lemma.

Lemma 2.1.1 Assume that V is a Hilbert space, a(·, ·) : V × V −→ R is a continuous and

coercive bilinear form, F(·) : V −→ R a linear and continuous functional. Then, the following

problem admits a unique solution

Find y ∈ V, a(y, υ) = F(υ), ∀υ ∈ V.

By [49], for a(·, ·) to be coercive,

−
1
2

div(c) + r ≥ 0, a.e. ∈ Ω,

with the coercivity constant C =
ε0

1+C̃
where C̃ is the constant coming from Poincaré in-

equality applied to determine a bound for ‖υ‖L2(Ω). In addition, a(·, ·) is continuous with the

constant C = ‖ε‖L∞(Ω) + ‖c‖L∞(Ω) + ‖r‖L2(Ω).

2.1.2 Unsteady Diffusion-Convection-Reaction Equation

The convection dominated diffusion convection equation gain great importance. Due to the

multiscale between the diffusion and the convection term, to obtain an accurate and effective

numerical approximation becomes a difficult process [39]. Thus, the numerical methods such

as finite difference or finite element method would result in oscillations that are not observed

in the exact solution. Let us mention the general unsteady diffusion convection reaction equa-

tion

∂y
∂t
− ∇ · (ε∇y(x, t)) + c(x) · ∇y(x, t) + r(x)y(x, t) = f (x, t) (x, t) ∈ Ω × (0,T ], (2.6)

y(x, t) = gD (x, t) ∈ ∂Ω × [0,T ], (2.7)

y(x, 0) = y0 x ∈ Ω, (2.8)

where f ∈ L2(0,T ; L2(Ω)), gD ∈ L2(0,T ; H
1
2 (∂Ω)), y0 ∈ L2(Ω).

Let me give some applications related to the diffusion convection reaction equation. The

7



general form of the problem can be written in terms of temperature as

∂T
∂t
− ∇ · (ε · ∇T ) + c · ∇T = S , in QT ,

T = TD on (0,T ) × ∂Ωin,

T (x, 0) = T0(x), onΩ, t = 0.

The term c ·∇T corresponds to convection. The temperature is transferred by the velocity field

c. Accumulation for the non-steady processes is represented by the term ∂T
∂t . The diffusion

term is related to ∇ · (ε · ∇T ). In general, ε can be a full (but symmetric and positive definite)

second order tensor. Indeed, ε can be a diagonal matrix or a scalar [28]. By [50], temporal

changes of the temperature and the speed of the propagation can be modeled the diffusion

convection reaction equation, too. By the unsteady heat equation, temporal changes of the

temperature y of an isotropic and homogenous instrument in Ω̄ under the heat source f is

modeled. Firstly, let us consider the following heat equation

∂y
∂t
− ∆y = f in QT ,

u = 0 on (0,T ) × ∂Ω,

u = u0, on Ω, t = 0.

Secondly, we consider the speed of propagation denoted by y at any point be a. By the linear

transport equation, the transport of q quantity y is modelled.

∂y
∂t

+ a · ∇y = f in QT ,

u = l on (0,T ) × ∂Ω,

u = u0, on Ω, t = 0.

2.1.2.1 Existence and Uniqueness of The Solution

Let us consider the unsteady diffusion convection reaction equation that we have mentioned.

The weak form of the problem can be written as Find y ∈ L2(0,T ; L2(Ω)) ∩ H1(0,T ; L2(Ω)),(
∂y
∂t
, υ

)
+ a(y, υ) = F(υ), ∀t > 0, ∀υ ∈ V,

(y(0), υ) = (y0, υ), ∀υ ∈ V.

To guarantee the existence and uniqueness of the solution, the following sufficient condition

must hold [49]. That is, the bilinear form a(·, ·) must be continuous and weakly coercive:

For λ ≥ 0, α > 0, a(υ, υ) + λ‖υ‖2L2(ω) ≥ α‖υ‖
2
V , ∀υ ∈ V.
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2.2 Optimal Control Problem For Steady Diffusion-Convection-Reaction Equa-

tion

The distributed unconstrained optimal control problem governed by steady diffusion convec-

tion equation is as follows [31]:

min J(y, u) :=
1
2
‖y − ŷ‖2L2(Ω) +

α

2
‖u‖2L2(Ω) (2.9a)

subject to − ∇ · (ε∇y(x)) + c(x) · ∇y(x) + r(x)y(x) = f (x) + u(x) x ∈ Ω, (2.9b)

y(x) = gD x ∈ ∂Ω. (2.9c)

It is a generalized version of the one given for the heat equation at [60].

The weak form of the state equation (2.9c) is given by

a(y, υ) + b(u, υ) = ( f , υ), ∀t > 0, ∀υ ∈ V = H1
0(Ω) (2.10)

with

a(y, υ) =

∫
Ω

ε∇y · ∇υ + c(x) · ∇yυ + r(x)yυdx, (2.11a)

b(u, υ) = −

∫
Ω

uυdx, (2.11b)

( f , υ) =

∫
Ω

fυdx, ∀υ ∈ V. (2.11c)

We are interested in the solution of the optimal control problem in variational form

min J(y, u) :=
1
2
‖y − ŷ‖2L2(Ω) +

α

2
‖u‖2L2(Ω) (2.12a)

subject to a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V, (2.12b)

y ∈ Y, u ∈ U. (2.12c)

where y ∈ Y = H1
0(Ω), u ∈ U = L2(Ω), V = {υ ∈ H1(Ω) : υ = 0 on ΓD}.

Suppose that Ω is a bounded domain, α > 0, ε > 0, c(x) ∈ (W1,∞(Ω))n, r ∈ L∞(Ω), f ,

ŷ ∈ L2(Ω), gD ∈ H
3
2 (∂Ω), r(x)− 1

2∇·c(x) ≥ r0 ≥ 0 a.e. in Ω.With these assumptions, the

bilinear form a(·, ·) is continuous and coercive. In addition, the vector c is a given divergence-

free velocity field, that is,

∇ · (cy) = (∇ · c)y + c · ∇y = c · ∇y.
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2.3 Optimal Control Problem For Unsteady Diffusion-Convection-Reaction Equa-

tion

In the literature, there are many examples and ways to solve the optimal control problems

governed by steady diffusion convection equation. For example, at [19], optimal control

problem with linear advection-diffusion equation is solved by using a stabilization method.

Instead of stabilizing the state and the adjoint separately, a stabilization method is applied

to the Lagrangian. As a different point of view, an optimal control problem governed by

an elliptic PDE can be viewed as a parameter estimation problem in case that the control

can enter the state equation as a variable [40]. In addition, the edge stabilization Galerkin

method is used to solve the state equation of the optimal control problem [35]. In case of

continuous Galerkin method, the stabilization techniques are suggested [6, 16]. One can find

some solution suggestions for the optimal control problems governed by parabolic PDEs, such

as [5, 25, 26]. While continuous finite element discretization are preferable for much of the

studies, studies by DG methods are not very common, although it is known that they are more

suitable for these kind of problem.

The problem we are interested in is the optimal control problem governed by the unsteady

convection diffusion equations. There have been extensive theoretical and numerical studies

for the finite element approximation of various optimal control problems [7, 8, 26, 32, 35,

44]. We discuss the discontinuous Galerkin finite element(DGFE) approximation of optimal

control problem governed by convection-diffusion equations.

Firstly, we consider the unconstrained distributed linear-quadratic optimal control problem

governed by the time dependent diffusion convection reaction equation, formally defined by

min J(y, u) :=
1
2

∫ T

0
‖y − ŷ‖2L2(Ω)dt +

α

2

∫ T

0
‖u‖2L2(Ω)dt (2.13)

subject to

∂y
∂t
− ∇ · (ε∇y(x, t)) + c(x) · ∇y(x, t) + r(x)y(x, t) = f (x, t) + u(x, t) (x, t) ∈ Ω × (0,T ],

(2.14a)

y(x, t) = gD (x, t) ∈ ∂Ω × [0,T ], (2.14b)

y(x, 0) = y0 x ∈ Ω. (2.14c)
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We define

Ω = (0, 1)× (0, 1), Q = (0,T ]×Ω and Σ = [0,T ]× ∂Ω for T > 0 and it is fixed.

We assume that

α > 0, ε > 0, c(x) = (c1(x), c2(x)) ∈ C(0,T ; C1
0(Ω̄)2)), r(x) −

1
2
∇ · c(x) ≥ r0 ≥ 0 a.e. in Ω

f ∈ L2(0,T ; L2(Ω), ŷ ∈ H1(0,T ; L2(Ω)), y0 ∈ H1
0(Ω), gD ∈ L2(0,T ; H

1
2 (∂Ω)),

y ∈ Y = L2(0,T ; V), u ∈ U = L2(0,T ; L2(Ω)), V = {υ ∈ H1(Ω) : υ = 0 on ΓD}.

The vector c is a given divergence-free velocity field, that is,

∇ · (cy) = (∇ · c)y + c · ∇y = c · ∇y.

The weak form of the state equation (2.14) is given by

(
∂y
∂t
, υ

)
+ a(y, υ) + b(u, υ) = ( f , υ), ∀t > 0, ∀υ ∈ V = H1

0(Ω) (2.15)

(y(0), υ) = (y0, υ), ∀υ ∈ H0
1(Ω), (2.16)

with

(
∂y
∂t
, υ

)
=

∫
Ω

∂y
∂t
υdx, (2.17a)

a(y, υ) =

∫
Ω

ε∇y · ∇υ + c(x) · ∇yυ + r(x)yυdx, (2.17b)

b(u, υ) = −

∫
Ω

uυdx, (2.17c)

( f , υ) =

∫
Ω

fυdx, ∀υ ∈ V. (2.17d)

We are interested in the solution of the optimal control problem in variational form

min J(y, u) :=
1
2

∫ T

0
‖y − ŷ‖2L2(Ω)dt +

α

2

∫ T

0
‖u‖2L2(Ω)dt (2.18a)

subject to
(
∂y
∂t
, υ

)
+ a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V, t ∈ (0,T ], (2.18b)

(y(0), υ) = (y0, υ), ∀υ ∈ V. (2.18c)
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2.4 Existence and Uniqueness of The Solution of The Optimal Control Problem

Let me defineUad = U = L2(0,T ; L2(Ω)). Consider the operator B ∈ L(U; L2(0,T ; V ′)). By

y(υ), we denote a solution of

dy(υ)
dt

+A(t)y(υ) = f + Bυ, (2.19a)

y(υ)|t=0 = y0, (2.19b)

y(υ) ∈ L2(0,T ; V). (2.19c)

Here, y(υ) is a function t −→ y(υ)(t). For simplicity, write it as y(t; υ). Hence,(2.19b) corre-

sponds to y(0; υ) = y0. The state of the system is y(υ). The cost functional is given by

J(v) = ‖Cy(υ) − zd‖
2
H + (Nυ, v)U .

where the observation z(υ) = Cy(υ), C ∈ L(w(0,T );H), N ∈ L(U,U), (Nu, u)U ≥

ν‖u‖2U , ν > 0.,Uad is a closed, convex subset of U and we are interested in

Infυ∈Uad J(υ).

Theorem 2.4.1 [43] Assume that a(·, ·) is coercive and (Nu, u)U ≥ ν‖u‖2U , f or ν > 0 is

satisfied. Let me write the state of the system as Ay(u) = f + Bu, y(u) ∈ V. Then, there

exist a unique element u ∈ Uad such that J(u) = in fυ∈Uad J(υ).

According to [43], this theorem can be applied to unsteady PDE constraint, too. For our case,

we are interested in the continuity of the affine map υ 7−→ y(υ) of u −→ W(0,T ). Hence, there

exist a unique control. Indeed, incase ofN = 0 andUad be bounded, there exist a non-empty,

closed, convex set consisting of optimal controls [43].

2.5 Optimality System For Unconstrained Problems

Let me rewrite the optimization problem as

min J(y, u) over (y, u) ∈ Y × U,

subject to e(y, u) = 0.
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Now, we have denoted the PDE constraint e(y, u) = 0 in a weak from. By [55], the spaces

where we seek the state and control variables y and u of the problem are some Banach spaces

Y and U or often even Hilbert spaces. From the optimal control point of view, in case of the

distributed control, Y consists of functions defined on Ω or a part thereof positive measure

and in case of the boundary control, a space of functions defined on the boundary ∂Ω or a part

thereof (boundary control) are considered. A solution operator for e(y, u) = 0 is

U 3 u 7−→ S (u) ∈ Y.

We have a reduced problem

min J(S (u), u) where u ∈ U.

In order to obtain the Lagrangian, we mention the original problem formulation. Denote a

Lagrange multiplier by p. It is named as the adjoint state which we need to determine during

the optimization part. We define the Lagrangian for the problem above as

L(y, u, p) = f (y, u) + 〈e(y, u), p〉Y∗,Y . (2.20)

By setting the partial Fréchet-derivatives of (2.20) with respect to the unknowns state y, con-

trol u and adjoint p and equating to zero, we determine the necessary, and for our problem,

sufficient optimality conditions. Now, we have the following adjoint, gradient and the state

equations, respectively:

Ly(y, u, p)(δy) = fy(y, u)δy + 〈ey(y, u)δy, p〉 = 0, ∀δy ∈ Y, (2.21a)

Lu(y, u, p)(δu) = fu(y, u)δu + 〈eu(y, u)δy, p〉 = 0, ∀δu ∈ U, (2.21b)

Lp(y, u, p)(δµ) = 〈e(y, u), δp〉 = 0, ∀δp ∈ Y. (2.21c)

As in [55], the optimality system corresponds to

fy(y, u) + ey(y, u)∗p = 0, (2.22)

fu(y, u) + eu(y, u)∗p = 0, (2.23)

e(y, u) = 0. (2.24)

Optimality system for the optimal control problem subject to the steady diffusion-convection-

reaction equation is as follows [55, 30]

−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f (x) + u(x) in Ω, (2.25a)

y(x) = gD on ∂Ω, (2.25b)
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−ε∆p(x) − c(x) · ∇p(x) + (r(x) − ∇ · c(x))p(x) = −(y − ŷ) in Ω, (2.26a)

p(x) = 0 on Σ, (2.26b)

p(x) = αu(x), in Ω. (2.27a)

Optimality system for the optimal control problem subject to the unsteady diffusion-convection-

reaction equation is as follows [26, 55]

∂y
∂t
− ε∆y(x, t) + c(x) · ∇y(x, t) + r(x)y(x, t) = f (x, t) + u(x, t) in Q, (2.28a)

y(x, t) = gD on Σ, (2.28b)

y(·, 0) = y0 in Ω. (2.28c)

−
∂p
∂t
− ε∆p(x, t) − c(x) · ∇p(x, t) + (r(x) − ∇ · c(x))p(x, t) = −(y − ŷ) in Q, (2.29a)

p(x, t) = 0 on Σ, (2.29b)

p(·,T ) = 0 in Ω. (2.29c)

αu = p, in Q. (2.30a)

The adjoint equations (2.26) and (2.29) are also diffusion convection equations with the con-

vection term −c.

2.6 Optimality System For Constrained Problems

Let me rewrite the constrained optimal control problem governed by steady PDE as follows:

min J(y, u) over (y, u) ∈ Y × U, (2.31)

subject to e(y, u) = 0, (2.32)

ua ≤ u ≤ ub on Ω. (2.33)
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For pointwise control constraints, the set of admissible control constraints can be written as

Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. on Ω}.

Here, the only difference from the unconstrained problem arise from the variational inequality.

This can be state in two different ways [55]: As the first choice,

(αu − p, υ − u) ≥ 0 ∀υ ∈ Uad.

As the second choice, we define the additional Lagrange multipliers ξa, ξb for the inequality

constraints and the complementarity conditions. ξa, ξb corresponds to the Lagrange multipli-

ers for the control constraints ua − u ≤ 0 and u − ub ≤ 0 for the local optimal solution. Then

we have,

ξa ≥ 0, ua − u ≤ 0, ξa(u − ua) = 0, (2.34)

ξb ≥ 0, u − ub ≤ 0, ξb(ub − u) = 0. (2.35)

It can be noted that the variational inequality of the control constrained problem can also be

written as

u = P[ua(x),ub(x)]

{
1
α

p
}
.

Let me rewrite the constrained optimal control problem governed by unsteady PDE as follows:

min J(y, u) over (y, u) ∈ Y × U, (2.36)

subject to e(y, u) = 0, (2.37)

ua ≤ u ≤ ub on Q. (2.38)

The only difference from the steady case arises from the time variable. Thus, Uad must be

defined differently. For pointwise control constraints, the set of admissible control constraints

can be written as

Uad = {u ∈ L2(0,T ; L2(Ω)) : ua ≤ u ≤ ub a.e. on Ω × (0,T ]}.

Here, the only difference from the unconstrained problem arise from the variational inequality.

This can be state in two different ways [55]: As the first choice, the variational inequality is

written as a projection ∫ T

0
(αu − p, υ − u)dt ≥ 0 ∀υ ∈ Uad.
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As the second choice, we define the additional Lagrange multipliers ξa, ξb for the inequality

constraints and the complementarity conditions. ξa, ξb corresponds to the Lagrange multipli-

ers for the control constraints ua − u ≤ 0 and u − ub ≤ 0 for the local optimal solution. Then

we have,

ξa ≥ 0, ua − u ≤ 0, ξa(u − ua) = 0, (2.39)

ξb ≥ 0, u − ub ≤ 0, ξb(ub − u) = 0. (2.40)

It can be noted that the variational inequality of the control constrained problem can also be

written as

u = P[ua(x,t),ub(x,t)]

{
1
α

p
}
.
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CHAPTER 3

DISCONTINUOUS GALERKIN METHODS

Discontinuous Galerkin(DG) methods was introduced by Reed and Hill [51] in 1973 to solve

the hyperbolic problems. Then, the methods has been applied to hyperbolic, nearly hyper-

bolic, elliptic and parabolic problems [3]. DG methods are highly preferable because stabi-

lization techniques are not needed. Different degrees of polynomials can be used on different

elements and they are mass-conservative and it is allowed to use non-conforming or unstruc-

tured meshes [48, 53, 54]. Up to now, different variants of DG has been improved, such

as Runga-Kutta discontinuous Galerkin (RKDG), local discontinuous Galerkin (LDG), com-

pact discontinuous Galerkin (CDG) and interior penalty discontinuous Galerkin. Nonlinear

diffusion-convection equation are solved by RKDG in [15] by conducting spatial discretiza-

tion by DG and temporal discretization by Runge-Kutta method. The development of RKDG

method is discussed, too. As an extension of RKDG, LDG method is introduced in [14] for

nonlinear convection diffusion systems and common properties with RKDG and advantages

of LDG are provided. A variation of LDG, CG, is discussed in [48] in order to eliminate

the distant connections between the nonneighboring elements for multiple dimension. Apart

from these, some variations of DG can be found in the literature [3]. During the study, we

have used the interior penalty DG methods such as NIPG, SIPG and IIPG to discretize the

diffusion part and the upwind method has been used to discretize the convection term. We

have used the definitions and properties given in [53].

17



3.1 1-D Discontinuous Galerkin Methods

3.1.1 Model Problem

Consider the one-dimensional steady diffusion-convection-reaction equation

−εy
′′

(x) + cy′(x) + ry(x) = f (x) in Ω = (0, 1), (3.1a)

y(0) = y0, (3.1b)

y(1) = y1. (3.1c)

where f ∈ C0(0, 1). Suppose that µ lies between two constants µ0 and µ1.

If y ∈ C2(0, 1) and (3.1a-3.1c) is satisfied pointwisely, then y is a solution of (3.1a-3.1c).

3.1.2 DG Scheme

Let (0, 1) be divided into N subintervals as 0 = x0 < x1 < · · · < xn = 1. Let me denote each

partition by ξh, each subinterval by In = (xn, xn+1) and the length of these subintervals by

hn = xn+1 − xn, hn−1,n = max(hn−1, hn), h = max
0≤n≤N−1

hn .

The space of piecewise discontinuous polynomials of degree k is

Dk(ξh) = {υ : υ|In ∈ Pk(In) ∀ j = 0, . . . ,N − 1}.

Here, Pk(In) corresponds to the space of polynomials of degree k on the interval In.

The jump and average of υ can be defined for the endpoints of the subintervals as

[υ(xn)] = υ(x−n ) − υ(x+
n ), {υ(xn)} =

1
2

(υ(x−n ) + υ(x+
n )) ∀n = 1, . . . ,N − 1,

where υ(x+
n ) = lim

ε→0, ε>0
υ(xn + ε) and υ(x−n ) = lim

ε→0, ε>0
υ(xn − ε).

These definitions can be extended to the end points of (0, 1) as

[υ(x0)] = −υ(x+
0 ), {υ(x0)} = υ(x+

0 ), [υ(xN)] = υ(x−N), {υ(xN)} = υ(x−N).
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Consider any υ in Dk(ξh). (3.1a) is multiplied by υ and the integration by parts is performed

on each interval In:

xn+1∫
xn

εy
′

(x)υ
′

(x)dx − εy
′

(xn+1)υ(x−n+1) + εy
′

(xn)υ(x+
n )

+

xn+1∫
xn

y′(x)υ(x)dx +

xn+1∫
xn

ry(x)υ(x)dx =

xn+1∫
xn

f (x)υ(x)dx, n = 0, . . . ,N − 1.

We sum all N equations above and get

N−1∑
n=0

xn+1∫
xn

εy
′

(x)υ
′

(x)dx −

N∑
n=0

[εy
′

(xn)υ(xn)]

+

N−1∑
n=0

xn+1∫
xn

y′(x)υ(x)dx +

N−1∑
n=0

xn+1∫
xn

ry(x)υ(x)dx =

∫ 1

0
f (x)υ(x)dx.

By the definition of the jump and the average, the following equality holds

[εy
′

(xn)υ(xn)] = {εy
′

(xn)}[υ(xn)] + {υ(xn)}[εy
′

(xn)], 1 ≤ n ≤ N − 1.

[εy
′

(xn)] = 0 for 1 ≤ n ≤ N − 1, for the exact solution y. Then by substituting (3.1.2) into the

equation above

N−1∑
n=0

xn+1∫
xn

εy
′

(x)υ
′

(x)dx −

N∑
n=0

{εy
′

(xn)}[υ(xn)]

+

N−1∑
n=0

xn+1∫
xn

y′(x)υ(x)dx +

N−1∑
n=0

xn+1∫
xn

ry(x)υ(x)dx =

∫ 1

0
f (x)υ(x)dx.

The exact solution y satisfies [y(xn)] = 0, since it is continuous. Therefore, if y is a solution

of (3.1a-3.1c), then we obtain the following equality satisfied by y

N−1∑
n=0

xn+1∫
xn

εy
′

(x)υ
′

(x)dx −

N∑
n=0

{εy
′

(xn)}[υ(xn)] + γ

N−1∑
n=0

{ευ
′

(xn)}[y(xn)]

+

N−1∑
n=0

xn+1∫
xn

y′(x)υ(x)dx +

N−1∑
n=0

xn+1∫
xn

ry(x)υ(x)dx =

∫ 1

0
f (x)υ(x)dx − γευ

′

(x0)y(x0) + γευ
′

(xN)y(xN).

Here, γ is any real number. However, we restrict ourselves to the case γ ∈ {−1, 0, 1} denoting

which primal DG methods is considered.
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3.1.2.1 DG (Bi)linear Forms

Let me define the DG bilinear form aε : Dk(ξh) X Dk(ξh)→ R :

aε(y, υ) =

N−1∑
n=0

xn+1∫
xn

εy
′

(x)υ
′

(x)dx −
N∑

n=0

{εy
′

(xn)}[υ(xn)] + γ

N−1∑
n=0

{ευ
′

(xn)}[y(xn)] + J0(y, υ) + J1(y, υ).(3.2)

The terms J0(y, υ) and J1(y, υ) penalizes the jump of the solution and its derivative:

J0(y, υ) =

N∑
n=0

σ0

h
[y(xn)][υ(xn)],

J1(y, υ) =

N∑
n=0

σ1

h
[y
′

(xn)][υ
′

(xn)]

where σ0 and σ1 are two real nonnegative numbers.

Let me define the term coming from the convection part and the reaction part, respectively,

b(y, v) =

N−1∑
n=0

xn+1∫
xn

y′(x)υ(x)dx, (3.3)

r(y, v) =

N−1∑
n=0

xn+1∫
xn

y(x)υ(x)dx. (3.4)

and L(υ) : Dk(ξh) −→ R is the linear form

L(υ) =

∫ 1

0
f (x)υ(x)dx − γευ

′

(x0)y(x0) + γευ
′

(xN)y(xN) +
σ0

h0,1
υ(x0)y(x0) +

σ0

hN−1,N
υ(xN)y(xN),(3.5)

The problem has been converted into the following one:

Find y ∈ Dk(ξh) such that ∀υ ∈ Dk(ξh), (3.6)

aε(y, υ) + b(y, υ) + r(y, υ) = L(υ). (3.7)

3.1.3 Existence and uniqueness of the DG solution

By [53], for NIPG with σ0 > 0, the solution exists and it is unique. When SIPG and IIPG

methods is preferred, (uniqueness) existence of the solution is guaranteed if some conditions

on the penalty parameters are imposed [53]. Thus, during the study, we have chosen σ0 as 1

for NIPG and IIPG, σ0 as 2 for SIPG, as in [53].
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3.1.4 The Linear System

Let σ1 = 0. The discontinuous piecewise quadratic polynomials are preferred. We used

P2(In) the monomial basis functions for the local basis functions. They have been translated

from the interval (−1, 1):

P2(In) = span{φn
0, φ

n
1, φ

n
2}

with

φn
0(x) = 1, φn

1 = 2
x − xn+1/2

xn+1 − xn
, φn

2 = 4
(x − xn+1/2)2

(xn+1 − xn)2 .

Define xn+1/2 = 1
2 (xn + xn+1) is the midpoint of the interval In. To facilitate the computation,

let each subinterval have the same length:

xn = x0 + nh, h =
1
N

Now, the local basis and their derivatives can be rewritten as

φn
0(x) = 1, φn

1(x) =
2
h

(x − (n + 1/2)h), φn
2(x) =

4
h2 (x − (n + 1/2)h)2

(φn
0)
′

(x) = 0, (φn
1)
′

(x) =
2
h
, (φn

2)
′

(x) =
8
h2 (x − (n + 1/2)h).

The global basis functions {Φn
i } for the space D2(ξh) can be extended as follows::

Φn
i (x) =

 φn
i (x), x ∈ In

0, otherwise.

Computing Local Matrices

Computing local matrices arising from the diffusion part

The bilinear form aε consists of three kinds of terms: Involving integrals over In, involving

the interior nodes xn, and involving the boundary nodes x0, xn. Now, let me obtain the local

matrices and then arrange them to obtain the global matrix.

First, we focus on the term arising from the integrals over the intervals In. Since we have

preferred to use the quadratic polynomials as the basis functions, the solution y to (3.1a-3.1c)

is a quadratic polynomial on each element In:

∀x ∈ In y(x) = αn
0φ

n
0 + αn

1φ
n
1 + αn

2φ
n
2. (3.8)
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By choosing υ = φn
i for i = 0, 1, 2,, we obtain

∫
In

y
′

(x)υ
′

(x)dx =

∫
In

y
′

(x)(φn
i )
′

(x)dx =

2∑
j=0

αn
j

∫
In

(φn
j)
′

(x)(φn
i )
′

(x)dx. (3.9)

Hence, this linear system can be written as Anα
n, where

αn =


αn

0

αn
1

αn
2

 (An)i j =
∫

In
(φn

j)
′

(x)(φn
i )
′

(x)dx.

Hence,

An =
1
h


0 0 0

0 4 0

0 0 16
3


Second, the terms involving the interior nodes xn is considered.

−{y
′

(xn)}[υ(xn)] + γ{υ
′

(xn)}[y(xn)] +
σ0

h
[y(xn)][υ(xn)] = bn + cn + dn + en, (3.10)

The terms are defined as follows:

bn =
1
2

y
′

(x+
n )υ(x+

n ) −
γ

2
y(x+

n )υ
′

(x+
n ) +

σ0

h
y(x+

n )υ(x+
n ),

cn = −
1
2

y
′

(x−n )υ(x−n ) +
γ

2
y(x−n )υ

′

(x−n ) +
σ0

h
y(x−n )υ(x−n ),

dn = −
1
2

y
′

(x+
n )υ(x−n ) −

γ

2
y(x+

n )υ
′

(x−n ) −
σ0

h
y(x+

n )υ(x−n ),

en =
1
2

y
′

(x−n )υ(x+
n ) +

γ

2
y(x−n )υ

′

(x+
n ) −

σ0

h
y(x−n )υ(x+

n ).

We use the definition of the DG solution y(x) and choose υ = φn
i , the local matrices Bn, Cn,

Dn, and En, can be rewritten respectively:

(Bn)i j =
1
2

(φn
j)
′

(x+
n )(φn

i )x+
n ) −

γ

2
(φn

j)(x+
n )(φn

i )
′

(x+
n ) +

σ0

h
(φn

j)(x+
n )(φn

i )(x+
n ),

(Cn)i j = −
1
2

(φn−1
j )

′

(x−n )(φn−1
i )x−n ) +

γ

2
(φn−1

j )(x−n )(φn
i )
′

(x−n−1) +
σ0

h
(φn−1

j )(x−n )(φn−1
i )(x−n ),

(Dn)i j = −
1
2

(φn
j)
′

(x+
n )(φn−1

i )x−n ) −
γ

2
(φn

j)(x+
n )(φn−1

i )
′

(x−n ) −
σ0

h
(φn

j)(x+
n )(φn−1

i )(x−n ),

(En)i j =
1
2

(φn−1
j )

′

(x−n )(φn
i )x+

n ) +
γ

2
(φn−1

j )(x−n )(φn
i )
′

(x+
n ) −

σ0

h
(φn−1

j )(x−n )(φn
i )(x+

n ).

22



Hence, we obtain the local matrices

Bn =
1
h


σ0 1 − σ0 −2 + σ0

−γ − σ0 −1 + γ + σ0 2 − γ − σ0

2γ + σ0 1 − 2γ − σ0 −2 + 2γ + σ0

 ,

Cn =
1
h


σ0 −1 + σ0 −2 + σ0

γ + σ0 −1 + γ + σ0 −2 + γ + σ0

2γ + σ0 1 + 2γ + σ0 −2 + 2γ + σ0

 ,

Dn =
1
h


−σ0 −1 + σ0 2 − σ0

−γ − σ0 −1 + γ + σ0 2 − γ − σ0

−2γ − σ0 1 + 2γ + σ0 2 − 2γ − σ0

 ,

En =
1
h


−σ0 1 − σ0 2 − σ0

γ + σ0 −1 + γ + σ0 −2 + γ + σ0

−2γ − σ0 1 − 2γ − σ0 2 − 2γ − σ0

 .
Finally, the local matrices obtained from the boundary nodes x0 and xN can be computed as:

f0 = y
′

(x0)υ(x0) − γυ
′

(x0)y(x0) +
σ

h
y(x0)υ(x0), (3.11)

fN = −y
′

(xN)υ(xN) + γυ
′

(xN)y(xN) +
σ

h
y(xN)υ(xN). (3.12)

We substitute the DG solution yDG and υ = φn
i , the terms F0 and Fn are of the form:

F0 = φ
′

(x0)υ(x0) − γυ
′

(x0)y(x0) +
σ0

h
y(x0)υ(x0),

FN = −φ
′

(xN)υ(xN) + γυ
′

(xN)y(xN) +
σ0

h
y(xN)υ(xN).

Then, the matrices F0 and FN are obtained:

F0 =
1
h


σ0 2 − σ0 −4 + σ0

−2γ − σ0 −2 + 2γ + σ0 4 − 2γ − σ0

4γ + σ0 2 − 4γ − σ0 −4 + 4γ + σ0

 ,

FN =
1
h


σ0 −2 + σ0 −4 + σ0

2γ + σ0 −2 + 2γ + σ0 −4 + 2γ + σ0

4γ + σ0 2 + 4γ + σ0 −4 + 4γ + σ0

 .

23



Computing local matrices arising from the convection part

By using the DG solution yDG and choosing υ = φn
i for i = 0, 1, 2,, we obtain

∫
In

y′(x)υ(x)dx =

∫
In

y′(x)(φn
i )(x)dx =

2∑
j=0

αn
j

∫
In

(φn
j)
′(x)(φn

i )(x)dx. (3.13)

Hence, this linear system can be written as Cnα
n, where

αn =


αn

0

αn
1

αn
2

 (cn)i j =
∫

In
(φn

j)
′(x)(φn

i )(x)dx.

Hence,

cn =


0 2 0

0 0 16
3

0 8
3 0

 .

Computing local matrices arising from the reaction part

Similar to the other cases, use yDG and choose υ = φn
i for i = 0, 1, 2,, we have

∫
In

y(x)υ(x)dx =

∫
In

y(x)(φn
i )(x)dx =

2∑
j=0

αn
j

∫
In

(φn
j)(x)(φn

i )(x)dx. (3.14)

Hence, this linear system can be written as Rαn, where

αn =


αn

0

αn
1

αn
2

 (rn)i j =
∫

In
(φn

j)(x)(φn
i )(x)dx.

Hence,

rn = h


1 0 1

3

0 1
3 0

1
3 0 1

5


Computing the right-side
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Let me mention the linear form obtained from the right-hand side:

L(υ) =

∫ 1

0
f (x)υ(x)dx − γευ

′

(x0)y(x0) + γευ
′

(xN)y(xN) (3.15)

+
σ0

h0,1
υ(x0)y(x0) +

σ0

hN−1,N
υ(xN)y(xN). (3.16)

We choose υ = Φi
n and use the given boundary conditions to obtain:

L(Φi
n) =

∫ 1

0
f (x)Φi

ndx − γε(Φi
n)
′

(x0)y0 + γε(Φi
n)
′

(xN)y1

+
σ0

h0,1
Φi

n(x0)y0 +
σ0

hN−1,N
Φi

n(xN)y1

By the definition of the global basis functionsΦn
i , the first term can be rewritten as

∫ 1

0
f (x)Φn

i dx =

xn+1∫
xn

f (x)φn
i dx

If we perform a change of variable, then we obtain

∫ 1

0
f (x)Φn

i dx =
h
2

1∫
0

f (
h
2

t + (n + 1/2)h)tidt

In order to facilitate the computation of the integral,the Gauss quadrature rule is used. Define

a set of weights (w j)1≤ j≤QG and a set of nodes (s j)1≤ j≤QG . Then,

1∫
−1

υ(t)dt ≈
QG∑
j=1

w jυ(s j).

By using above equality, we have

∫ 1

0
f (x)Φn

i dx ≈
h
2

1∑
0

f (
h
2

s j + (n + 1/2)h)si
jdt

Then, the vector L can be constructed by taking into account of the order of αn
i :

(l00, l
0
1, l

0
2, l

1
0, l

1
1, l

1
2, . . . , l

N−1
0 , lN−1

0 , lN−1
0 )
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where the first three components are

l00 =
h
2

1∑
0

f (
h
2

s j + (n + 1/2)h) +
σ0

h
y0

l01 =
h
2

1∑
0

f (
h
2

s j + (n + 1/2)h)s j − εµ
2
h

y0 −
σ0

h
y0

l02 =
h
2

1∑
0

f (
h
2

s j + (n + 1/2)h)s2
j + εµ

4
h

y0 +
σ0

h
y0

the last three components are

lN−1
0 =

h
2

1∑
0

f (
h
2

s j + (n + 1/2)h) +
σ0

h
y1

lN−1
1 =

h
2

1∑
0

f (
h
2

s j + (n + 1/2)h)s j + εµ
2
h

y1 −
σ0

h
y1

lN−1
1 =

h
2

1∑
0

f (
h
2

s j + (n + 1/2)h)s2
j − εµ

4
h

y1 +
σ0

h
y1

and the other components are

∀1 ≤ n ≤ N − 1, ∀0 ≤ i ≤ 2, lni =
h
2

1∑
0

f (
h
2

s j + (n + 1/2)h)si
j.

Up to now, the boundary conditions have been imposed weakly, by the terms −γυ
′

(x0)y(x0) +

σ
h y(x0)υ(x0) and γυ

′

(xN)y(xN) + σ
h y(xN)υ(xN). Indeed, boundary conditions can be imposed

strongly by defining

D0
k(ξh) = {υ ∈ Dk(ξh) : υ(0) = 0, υ(1) = 0}.

Then, define the DG solution as yDG = yDG
0 + ỹ where ỹ is a continuous piecewise polynomial

of degree k such that ỹ(0) = y0 and ỹ(1) = y1. In addition, the modified scheme is satisfied by

yDG
0 ∈ D0

k(ξh) [53].
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Global Matrices For Steady Diffusion-Convection-Reaction Equation

Up to now, we have introduced how to construct the local matrices on each subinterval In.

Now, these matrices need to be assembled by keeping the order of αn
i to obtain the global

matrices. Let me order αn
i as follows:

α0
0, α

0
1, α

0
2, ·, α

N−1
0 , αN−1

1 , αN−2
2 .

Then the global matrices arising from the diffusion, convection and reaction terms are ob-

tained, respectively:

S =



R0 D1

E1 R D2

. . .
. . .

. . .

. . .
. . .

. . .

EN−2 R DN−1

EN−1 RN



C =



c0

c1

. . .

. . .

cN−2

cN−1


R =



r0

r1

. . .

. . .

rN−2

rN−1


where

R = An + Bn + Cn+1, R0 = A0 + F0 + C1, RN = AN−1 + FN + BN−1.

Then (3.1a-3.1c) is converted into a linear system

(S + C + R)y = L (3.17)

where y consisting of the coefficients αn
i , ∀i = 0, 1, 2 and ∀ 0 ≤ n ≤ N − 1.

27



3.2 2-D Discontinuous Galerkin Methods

3.2.1 Model Problem

We consider the time dependent advection-diffusion-reaction problem with Dirichlet bound-

ary conditions. Let Ω be a bounded polygonal in Rd, d = 2 or 3, f ∈ L2(Ω), gD ∈ H
1
2 (∂Ω)

and y0 ∈ L2(Ω),

−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f (x) in Ω, (3.18a)

y(x) = gD on ∂Ω. (3.18b)

If f and gD are smooth, then y ∈ C2(Ω̄) is a strong solution of (3.18a-3.18b).

Suppose that we have a mesh ξh. Let me call the set of interior edges (or faces) as Γh. A unit

normal vector ne is considered with each edge (or face) e. In case of a boundary edge, unit

outward vector normal to the boundary is used.

For the trace of υ along any side of one element E be well-defined, υ must be an element of

H1(ξh). Two traces of υ along e are observed when two elements Ee
1 and Ee

2 are neighbors and

have a common side e. Consider the normal vector ne in the direction from Ee
1 to Ee

2. Then, a

jump and an average are as follows:

[υ] = (υ|Ee
1
) − (υ|Ee

2
) {υ} =

1
2

(υ|Ee
1
) +

1
2

(υ|Ee
2
) ∀e = ∂Ee

1 ∩ ∂Ee
2.

In case of a boundary edge, a jump and an average is given, by convention,:

{υ} = [υ] = (υ|Ee
1
) ∀e = ∂Ee

1 ∩ ∂Ω.

Define the inflow and outflow boundaries Γ−, Γ+ such that

Γ− = {x ∈ Γ : c(x) · n(x) < 0}, Γ+ = {x ∈ Γ : c(x) · n(x) ≥ 0}.

For any element E, the inflow and outflow parts of ∂E are defined by

∂−E = {x ∈ ∂E : c(x) · nE(x) < 0}, ∂+E = {x ∈ ∂E : c(x) · nE(x) ≥ 0},

respectively, where nE(x) denotes the unit outward vector to ∂E at x ∈ ∂E. For each E and

υ ∈ H1(E), define υ+
E the interior trace and υ−E the exterior trace of υ|E on ∂E. Here, jump

depends on the direction of the flow.
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Let us subdivide Ω into elements E. Here, E can be a triangle or a quadrilateral in 2D, or a

tetrahedron or hexahedron in 3D. A conforming mesh is preferred, that is, the intersection of

two elements in the mesh is either empty, a vertex, an edge, or a face. Let me call the mesh

and the maximum element diameter, respectively, as ξh and h. We are interested in a positive

constant ρ defined as follows:

∀E ∈ ξh,
hE

ρE
≤ ρ,

where hE is the diameter of E and ρE is the maximum diameter of a ball inscribed in E. Then,

we obtain a regular mesh.

In order apply the DG methods, the broken Sobolev spaces which depend on the partition of

the domain are used. The broken Sobolev space can be defined for any real number s,

Hs(ξh) = {υ ∈ L2(Ω) : ∀E ∈ ξh, υ|E ∈ Hs(E)},

where the broken Sobolev norm:

‖|υ|‖Hs(ξh) =

∑
E∈ξh

‖υ‖2Hs(E)


1/2

,

and the broken gradient seminorm:

‖|∇υ|‖Hs(ξh) =

∑
E∈ξh

‖∇υ‖2Hs(E)


1/2

.

Then,

Hs(Ω) ⊂ Hs(ξh) and Hs+1(ξh) ⊂ Hs(ξh).

3.2.1.1 The DG (Bi)linear forms

We now define the DG bilinear forms aε : Hs(ξh) × Hs(ξh)→ R:

aε(y, υ) =
∑
E∈ξh

∫
E
ε∇y · ∇υdx −

∑
e∈Γh∪ΓD

∫
e
{ε∇y · ne}[υ]ds (3.19)

+ γ
∑

e∈Γh∪ΓD

∫
e
{ε∇υ · ne}[y]ds + Jσ0,β0

0 (y, υ). (3.20)

Regarding to [53], for s > 3/2, a bilinear form Jσ0,β0
0 (y, υ) : Hs(ξh) × Hs(ξh)→ R that penal-

izes the jump of the function value:
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Jσ0,β0
0 (y, υ) =

∑
e∈Γh∪ΓD

σ0
ε

|e|β0

∫
e
[y][υ]ds.

σ0
e , a penalty parameter, is a nonnegative real number and β0 is a positive number depending

on the dimension d,

∀e ⊂ ∂E, |e| ≤ hd−1
E ≤ hd−1.

The DG forms of convection and the reaction parts are, respectively, [38]:

c(y, υ) =
∑
E∈ξh

(∫
E

c∇y · υdx −
∫
∂−E\Γ

(c · ne)(y+ − y−)υ+ds −
∫
∂−E∩Γ−

(c · ne)y+υ+ds
)
,

(3.21)

r(y, υ) =
∑
E∈ξh

∫
E

ryυ, (3.22)

such that

y+ =


y|E1

e
if c · n ≥ 0

y|E2
e

if c · n < 0,
y− =


y|E2

e
if c · n ≥ 0

y|E1
e

if c · n < 0.

Define the following linear form:

L(v) =
∑
E∈ξh

(∫
E

fυdx −
∫
∂−E∩Γ−

(c · ne)gDυ
+ds

)
+

∑
e∈ΓD

∫
e
(γε∇υ · ne +

σ0
e

|e|β0
υ)gDds +

∑
e∈ΓN

∫
e
υgNds.

(3.23)

If the functions, in the above forms, belong to Hs(ξh) for any s > 3/2, then the fact that the

integrals in these forms are suitable to use Cauchy-Schwartz’s inequality and trace inequalities

[53]. The DG variational form of (3.18a-3.18b) is as follows: Find p ∈ Hs(ξh) for any s > 3/2

such that

aε(y, υ) + c(y, υ) + r(y, υ) = L(υ). (3.24)

3.2.2 DG scheme

The general DG finite element method is as follows: Find yh ∈ Dk(ξh) such that

aε(yh, υ) + c(yh, υ) + r(yh, υ) = L(υ), ∀ υ ∈ Dk(ξh). (3.25)

As in the one-dimensional case, the parameter ε in the bilinear form aε can be any real number.

However, we have chosen ε as -1, 0, or 1.
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• For ε=-1, the method is called symmetric interior penalty Galerkin (SIPG). If a large

penalty term σ0
e is used, then the method is convergent.

• For ε=1, the method is called nonsymmetric interior penalty Galerkin (NIPG). If a

nonnegative value is chosen for the penalty parameter σ0
e , the method is convergent.

• For ε=0, the method is called incomplete interior penalty Galerkin (IIPG). For this

method to be convergent, we choose σ0
e large enough.

• An extra stabilization term Jσ1,β1
1 (υ, ω) can be added to the bilinear form aε . The jump

of the derivative is penalized by this term.

Jσ1,β1
1 (υ, ω) =

∑
e∈Γh

σ1
e

|e|β1

∫
e
[ε∇υ · ne][ε∇ω · ne]ds.

During the study, σ1
e has been taken zero, for simplicity.

Definition 3.2.1 A bilinear form defined on a normed linear space V with norm ‖ · ‖V is

coercive if there exists a positive constant κ such that ∀ υ ∈ V, κ‖υ‖2V ≤ a(υ, υ). �

By [53], a+1 is coercive for any choice of σ0
e . However, for a−1 and a0 to be coercive, β0(d−1)

must be larger than 1 and σ0
e must bounded below by a constant σ∗e that depends only on the

bounds ε0 and ε1 where ε0 ≤ ε ≤ ε1; and the constant in the following trace inequality [53]:

∀ υ ∈ Pk(E),∀ e ⊂ ∂E, ‖∇υ · ne‖L2(e) ≤ Ch−1/2
E ‖∇υ‖L2(E).

Definition 3.2.2 A bilinear form defined on a normed linear space V with norm ‖ · ‖V is con-

tinuous if there exists a positive constant M such that ∀ υ, ω ∈ V, a(υ, ω) ≤ M‖υ‖V‖ω‖V .

�

Continuity of aε on Dk(ξh) depends on σ0
e . The bilinear form is continuous for positive σ0

e for

all e with the energy norm ‖ · ‖ε [53] :

∀ υ ∈ Dk(ξh), aε(υ, ω) ≤ M‖υ‖ε‖ω‖ε .

3.2.3 Existence and Uniqueness of The DG solution

Lemma 3.2.3 Let the following conditions be true:
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• In the NIPG case, k ≥ 1 and either r > 0 or σ0
e > 0 for all e;

• In the SIPG case or IIPG case, k ≥ 1 and σ0
e is bounded below by a large constant for

all e;

• In the NIPG case, k ≥ 2 and σ0
e = 0 for all e and r = 0.

Then, the DG solution yh exist and unique [53].

3.2.3.1 Basic Definitions

We consider the finite element space

Dk(ξh) = {υ ∈ L2(Ω) : ∀E ∈ ξh, υ|E ∈ Pk(E)},

which is a subspace of Hs(ξh) for s > 3/2. Pk(E) denotes the space of polynomials of total

degree less than or equal to k, which is a positive integer. The test functions are chosen from

Dk(ξh) and they are discontinuous along the edges of the mesh. Mesh elements, that is trian-

gles or quadrilateral for 2D, are named as physical elements. To facilitate the computation,

we map the physical elements to the reference elements Ê and perform all computations on

the reference element.

Reference triangular element: Consider a triangle Ê of which vertices are Â1(0, 0), Â2(1, 0),

Â3(0, 1). An affine map FE can be defined from the reference element to the physical one.

Suppose that the vertices Ai(xi, yi) for i = 1, 2, 3 belongs to a physical element E. Then the

map FE can be written as

FE

 x̂

ŷ

 =

 x

y

 x =
3∑

i=1
xiφ̂i(x̂, ŷ), y =

3∑
i=1

xiφ̂i(x̂, ŷ),

where

φ̂1(x̂, ŷ) = 1 − x̂ − ŷ,

φ̂2(x̂, ŷ) = x̂,

φ̂2(x̂, ŷ) = ŷ,
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If we arrange the terms, then  x

y

 = FE

 x̂

ŷ

 = BE

 x̂

ŷ

 + bE

where

BE =

 x2 − x1 x3 − x1

y2 − y1 y3 − y1

 , bE =

 x1

y1

 .
In order to compute the integrals, the determinant of BE , which is twice of the area of an

element, is needed. Then, the fact that BE is invertible is obvious. In addition, ‖BE‖ ≤

hE
ρ̂ , ‖B−1

E ‖ ≤
ĥ
ρE

where ĥ, ρ̂ and ρE refer to the diameter of Ê, diameter of the largest circle

inscribed in Ê and the diameter of the largest circle inscribed in E, respectively. Thus, we

derive that the matrix norm (induced by the Euclidean norm) of BE and B−1
E are bounded.

Passing to the reference element from the physical elements via the mapping FE can be seen

as a change of variables. By υ̂ = υ ◦ FE , we have υ̂(x̂, ŷ) = υ(x, y). Since the gradients of

the functions are seen in the bilinear forms, they must be defined in terms of the affine map.

Then, ∇̂υ̂ the gradient of υ̂ with respect to x̂ and ŷ is:

∇̂υ̂ =

 ∂υ̂
∂x̂

∂υ̂
∂ŷ

 .
It can be written as ∇̂υ̂ = BT

E∇υ ◦ FE in terms of FE .

Reference triangular element: We have mentioned that the test functions are discontinuous

along the edges. Then, the support of the basis functions of Dk(ξh) is contained in one element.

Consider

Dk(ξh) = span{φE
i : 1 ≤ i ≤ Nloc, E ∈ ξh}

with

φE
i (x) =

 φ̂ioFE(x), x ∈ E

0, x < E.

We define (φ̂i)1≤i≤Nloc on the reference element. If we prefer to use the monomials; for 2D, we

have

φ̂i(x̂, ŷ) = x̂I ŷJ , I + J = i, 0 ≤ i ≤ k.
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Nloc =
(k + 1)(k + 2)

2

refers to the local dimension.

• Piecewise linear monomials:

φ̂0 = 1, φ̂1 = x̂, φ̂2 = ŷ.

• Piecewise quadratic monomials:

φ̂0 = 1, φ̂1 = x̂, φ̂2 = ŷ,

φ̂3 = x̂2, φ̂4 = x̂ŷ, φ̂5 = ŷ2.

Numerical quadrature-2D: As we have mentioned before, the integrals obtained by the

(bi)linear forms are computed on the reference element. As in the one-dimensional case, a

quadrature rule can be used. Consider the following approximation:∫
Ê
υ̂dx ≈

QD∑
j=1

ω jυ̂(sx, j, sy, j).

A set of weights ω j and nodes (sx, j, sy, j) ∈ Ê for different values of QD can be found [53].

To obtain a better approximation, high order quadrature rule must be used. By the following

equality, we can observe how the map FE is used to pass to the reference element from the

physical element: ∫
E
υdx =

∫
Ê
υ ◦ FEdet(BE)dx = 2|E|

∫
Ê
υ̂dx.

By a quadrature rule, we can approximate this integral as∫
E
υdx ≈ 2|E|

QD∑
j=1

ω jυ̂(sx, j, sy, j).

In case of a vector function and the gradient, this approximation can be written as∫
E
∇υ · ωdx = 2|E|

∫
Ê

(BT
e )−1∇̂υ̂ · ω̂dx ≈ 2|E|

QD∑
j=1

ω j(BT
e )−1∇̂υ̂(sx, j, sy, j) · ω̂(sx, j, sy, j).

In addition, if the integral of the gradient of two functions is needed, then we have∫
E
∇υ · ∇ωdx ≈ 2|E|

QD∑
j=1

ω j(BT
e )−1∇̂υ̂(sx, j, sy, j) · (BT

e )−1∇̂ω̂(sx, j, sy, j).
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CHAPTER 4

SPACE AND TIME DISCRETIZATION

After having discretized the problem in space by DG method, the problem must be discretized

with respect to time variable. There are some different ways to handle this. In [15], non-linear

convection dominated problems are discretized by a DG method in space and discretized in

time by explicit-high order accurate Runge-Kutta methods. In addition, DG can be used to

perform both of spatial and temporal discretization as in [22, 24]. As a different approach, the

problem, firstly, can be discretized in time by Crank-Nicolson and then spatial discretization

can be performed by usual conforming finite elements [45]. During the study, we have dis-

cretized the problem by DG method in space. Then, we have derived the full discrete problem

by backward Euler and Crank-Nicolson. Since the problem we are interested in is stiff, these

implicit methods are preferable [39]. Consider the following problem

min
u∈U

Ĵ(u), (4.1)

where U is a closed convex subset of Rnu , such as U = Rnu or U = [−1, 1]nu , and Ĵ : U −→ R

is a smooth function. To assess the value of Ĵ, it is required to solve a system of linear

equations. For given J and e, the problem can be written in detail as follows [17]:

Ĵ(u) = J(y(u), u), (4.2)

where y(u) ∈ Rny is the solution of an equation

e(y, u) = 0. (4.3)

We denote the solution of (4.1) as an implicit function y(·) and a vector y in Rny . In addition,

the partial Jacobian of the function e with respect to y and the partial gradient of the function

J with respect to u are notated as ey(y, u) ∈ Rny×ny and ∇uJ(y, u)Rnu , respectively.
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We have to insert some conditions in order to guarantee the existence of a differentiable func-

tion

y : Rnu −→ Rny defined by e(y, u) = 0 (4.4)

by the implicit function theorem [17].

Assumption

• e(y,u)=0 for all u ∈ U and a unique y ∈ Rny corresponding to that u ∈ U.

• J and e are twice continuously differentiable on D, where D is an open set of Rny×nu

with {(y, u) : u ∈ U, e(y, u) = 0} ⊂ D.

• For all (y, u) ∈ {(y, u) : u ∈ U, e(y, u) = 0}, existence of ey(y, u)−1 is guaranteed.

Let me mention the unconstrained optimal control problem:

min J(y, u) :=
1
2

∫ T

0
‖y − ŷ‖2L2(Ω)dt +

α

2

∫ T

0
‖u‖2L2(Ω)dt (4.5)

subject to

∂y
∂t
− ε∆y(x, t) + c(x, t) · ∇y(x, t) + r(x, t)y(x, t) = f (x, t) + u(x, t) in Ω × (0,T ], (4.6a)

y(x, t) = gD on ∂Ω × [0,T ], (4.6b)

y(x, 0) = y0 in Ω. (4.6c)

4.1 Discretize Then Optimize and Optimize Then Discretize Approaches

Optimal control problems can be solved in two different ways [33]: Discretize Then Optimize

and Optimize Then Discretize. If discretize then optimize approach is preferred, then the full

discrete state equation is written and all functions spaces are substituted by the finite dimen-

sional function spaces. Then, Lagrangian for the full discrete problem has been constructed

to extract the optimality system. For optimize-then-discretize approach, we set continuous

necessary optimality conditions which consists of the state, adjoint and the gradient equation.

Then, a finite element method is used to discretize the optimality system [16, 17, 18, 33].
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4.2 Variational Formulation

A strong solution of the PDE lies in C([0,T ] ×Ω). A weak solution of the parabolic problem

is a function of Y = H1((0,T ); H−1(Ω)) ∩ L2((0,T ); H1(Ω)) [53]. A possible weak formula

for the state equation can be written as follows: For given f , u and y0, find y(u) ∈ Y such that(
∂y
∂t
, υ

)
+ a(y, υ) =

∫
Ω

( f + u)υdx (4.7)

(y(·, 0), υ) = (y0, υ) ∀υ ∈ V,

where

a(y, υ) =

∫
Ω

(ε∇y · ∇υ + c(x) · ∇yυ + r(x)yυ)dx, ∀υ ∈ V

and

V = {υ ∈ H1(Ω) : υ = 0 on ΓD}.

4.2.1 Optimize Then Discretize

For this approach, the Lagrangian of the problem is set. Then, by obtaining the partial Fréchet

derivatives of

L = J(y, u) + a(y, p) + b(u, p) − ( f , p)

with respect yo y, p, u to zero, we get the necessary and sufficient optimality conditions. We

have stated that the optimal control problem has a unique solution (y, u) ∈ Y × U [43]. The

functions (y, u) ∈ Y ×U solve the optimal control problem if and only if there exist an adjoint

p ∈ Y such that (y, u, p) satisfies the following optimality conditions [26, 31]:(
∂y
∂t
, υ

)
+ a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V, (4.8)

y(x, 0) = y0; (4.9)

−

(
∂p
∂t
, ψ

)
+ a(ψ, p) = −(y − ŷ, ψ), ∀ψ ∈ V, (4.10)

p(T ) = 0; (4.11)∫ T

0
(αu + p, ω − u) = 0, ∀ω ∈ K, (4.12)

where K = {u ∈ L2(0,T ; U) : ua ≤ u ≤ ub a.e.Q} and inequality is substituted by the

equality in case of pointwise control constraints. Indeed, (4.8)-(4.9) is the weak form the

state equation, (4.10)-(4.11) is the weak form the adjoint equation with with the convection

term −c. (4.12) corresponds to the gradient equation.
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4.2.2 Discretize Then Optimize

Instead of obtaining the solution the the infinite dimensional problem (4.6), we are interested

in the solution of the discretized (4.6).

As we mentioned before, we use monomial basis functions to perform the spatial discretiza-

tion of (4.6) by Discontinuous Galerkin Method.

The state y and the control u are approximated by functions of the form

yh(x, t) =
∑
E∈εh

Nloc∑
i=1

yE
i (t)φE

i (x), ∀x ∈ Ω, ∀t ∈ (0,T ), (4.13a)

uh(x, t) =
∑
E∈εh

Nloc∑
i=1

uE
i (t)φE

i (x), ∀x ∈ Ω, ∀t ∈ (0,T ). (4.13b)

yE
i ’s are called as the degrees of freedom which are functions of time [53]. The number of

elements in the mesh is denoted by Nel. Indeed, the basis functions can be interpreted in detail

as follows:

{φE
i : 1 ≤ i ≤ Nloc, E ∈ εh} = {φ̃E

i : 1 ≤ j ≤ NlocNel, E ∈ εh},

{yE
i : 1 ≤ i ≤ Nloc, E ∈ εh} = {ỹi

E : 1 ≤ j ≤ NlocNel, E ∈ εh}.

We set ȳ(t) = (y0(t), . . . , yN(t)) and ū(t) = (u0(t), . . . , uN(t)).

4.2.2.1 Semi-discretization

The approximate solution Yh(t) lie in the finite-dimensional space Dk(ξh) for all t ≥ 0. The

solution Yh is called as the semidiscreet solution, or sometimes as the continuous in time

solution [53]. The weak form of the state is discretized by DG method in space and then by

θ-method in time. Let

Dk(ξh) = {υ ∈ L2(Ω) : ∀E ∈ εh, ∀υ|E ∈ Pk(E)}

be the DG conforming finite elements with respect to a triangulation εh of the computational

domain Ω and let Mh ∈ RNh×Nh and Ah(t) ∈ RNh×Nh , t ∈ [0,T ] be the associated mass matrix,

the stiffness matrix and the time interval.
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The semi-discreet variational formulation of the state equation is as follows: For all t ≥ 0,

find Yh(t) ∈ Dk(εh) such that

(
∂Yh

∂t
, υ)Ω + aε(Yh(t), υ) + c(Yh(t), υ)Ω = L(t; υ) + (Uh(t), υ)Ω, ∀t > 0, ∀υ ∈ Dk(ξh),

(4.14)

(Y(0), υ)Ω = (ỹ0, υ)Ω, ∀υ ∈ Dk(ξh).

(4.15)

Depending on the value of the parameter γ, the method is called SIPG (γ=-1), NIPG (γ=1),

or IIPG (γ=0). The initial condition ỹ0 can be chosen to be y0 if y0 belongs to the discrete

space Dk(ξh), or it can be chosen to be ỹ0, where ỹ is an approximation to y to be specified

later.

Let me insert (4.13a), (4.13b) into the DG (bi)linear forms, then we obtain the system of

ordinary differential equations

M
d
dt

ȳ(t) + Aȳ(t) + Mū(t) = F(t) + Mȳ(t), t ∈ (0,T ), (4.16)

Mȳ(0) = Ȳ0. (4.17)

If we insert (4.13a), (4.13b) into (4.6), a semi-discretization of the optimal control problem

(4.6) is given by∫ T

0
(
1
2

ȳ(t)T Mȳ(t) − (Yd(t))T ȳ(t) +
α

2
ū(t)T Mū(t)dt)dt +

∫ T

0

∫ 1

0

1
2

ŷ2(x, t)dx, (4.18a)

M
d
dt

ȳ(t) + Aȳ(t) + Mū(t) = F(t) + Mȳ(t), t ∈ (0,T ), (4.18b)

Mȳ(0) = Ȳ0. (4.18c)

The matrices M = (Mi j)i j, A = (Ai j)i j are named as the mass and the stiffness matrices,

respectively; ∀ 1 ≤ i, j ≤ NlocNel, they are defined by

M = (Mi j)i j = (φ j, φi)Ω,

A = (Ai j)i j = D + C + R = aε(φ j, φi) + c(φ j, φi) + r(φ j, φi),

(F(t))i = (L(t; φi))i,

Ȳ0 = ((ȳ0, φi)Ω)i,

Yd = (Yd(t))i = (yd(x, t), φi)Ω.
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The matrix M is block diagonal, symmetric positive definite, and thus invertible. The exis-

tence and uniqueness of ~y is obtained from the theory of ordinary differential equations [53].

4.2.2.2 Full Discretization

We now discretize the time derivative by the θ-method with respect to a partition

0 = t0 < t1 < · · · < tN = T

of the time interval [0,T ] with time step ∆t := T/N, N ∈ N. We also use the following

notation for any function y = y(t, x):

∀ n ≥ 0, tn = n∆t, yn(x) = y(tn)(x) = y(tn, x).

The full discretized state equation is as follows:

(
Yn+1

h − Yn
h

∆t
, υ)Ω + aε(θYn+1

h + (1 − θ)Yn
h , υ) + c((θYn+1

h + (1 − θ)Yn
h ), υ)Ω (4.19)

= θL(tn+1; υ) + (1 − θ)L(tn; υ) + θ(Un+1
h , υ)Ω + (1 − θ)(Un

h , υ)Ω ∀n ≥ 0, ∀υ ∈ Dk(εh),

(4.20)

Mȳ(0) = Ȳ0. (4.21)

We expand the full discreet adjoint solution Yn
h using the basis functions of Dk(ξh)

∀ n ≥ 0, Yn
h =

NlocNel∑
j=1

ỹn
j φ̃

n
j .

The full discretized state equation is equivalent to a linear system with vector of unknowns

ỹn = (ȳi
n)i. The full discrete optimal control problem:

min
ũ0,...,ũN

N∑
i=0

∆t(
1
2

ỹT
i Mỹi − (Yd(ti))T ỹi +

α

2
ũT

i Mũi), (4.22a)

(M + ∆tθA)ỹi+1 = (M − ∆t(1 − θ)A)ỹi

+∆t(θF(ti+1) + (1 − θ)F(ti)) + ∆t(θMũi+1 + (1 − θ)Mũi), (4.22b)

Mȳ(0) = Ȳ0. (4.22c)

i = 0, . . . ,N and y(0) is given. We construct the Lagrangian corresponding to (4.22a) to obtain
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the optimality system:

L(ỹ0, . . . , ỹN , ũ0, . . . , ũN , p̃0, . . . , p̃N) =

N∑
i=0

∆t
(
1
2

ỹT
i Mỹi − (Yd(ti))T ỹi +

α

2
ũT

i Mũi

)

+

N−1∑
i=0

p̃T
i+1[(M + ∆tθA)ỹi+1 − (M − ∆t(1 − θ)A)ỹi

− ∆t(θF(ti+1) + (1 − θ)F(ti)) − ∆t(θMũi+1 + (1 − θ)Mũi)].

(4.23)

We obtain the adjoint equations by setting the partial derivatives with respect to yi of the

Lagrangian to zero:

(M + ∆tθA)T p̃N = −
∆t
2

(MỹN − (Yd(t))N),

(M + ∆tθA)T p̃N = (M − ∆t(1 − θ)A)T p̃N+1 − ∆t(Mỹi − Yd(ti), i = N − 1, . . . , 0.

Optimize-then-discretize and discretize-then-optimize approaches differ in terms of some as-

pects. Although there is no basic difference between these two approaches, one of them is

applied depending on the application and computational requirements related to the problem

[33]. As we have mentioned, the optimize-then-discretize approach leads to an adjoint equa-

tion with a convection term −c. For the distributed optimal control problems governed by a

steady diffusion convection reaction equation, if symmetric interior penalty Galerkin method

(SIPG) is used for spatial discretization, then the optimize-then-discretize and discretize-then-

optimize approaches results in equivalent formulations. However, this is not the case for NIPG

and IIPG. Indeed, for the distributed optimal control problems governed by an unsteady dif-

fusion convection reaction equation, two approaches do not commute. In addition to the

difference arising from convection term of the adjoint equation, there is a difference for the

adjoint evaluated at the final time. For optimize-then-discretize approach, the adjoint equa-

tion is equal to zero, that is, p(·,T ) = 0, while discretize-then-optimize approach results in

the following equality for the final time

(M + ∆tθA)T p̃N = −
∆t
2

(MỹN − (Yd(t))N).

However, in the literature there are some ways to make these two approaches commutative.

In [1], a variant for Crank-Nicolson scheme is suggested for temporal discretization of the

optimal control problem governed by parabolic PDEs. In addition to this, backward Euler is
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used firstly, and then finite element space discretization is applied in [57]. thus, optimize-ten-

discretize and discretize-then-optimize approaches are coincide.

During the study, we have solved the state equation forward in time, and solved the adjoint

adjoint equation backward in time. As we have decrease the mesh size to approximate the so-

lution accurately, a memory problem occurs if all data are stored. For large problems, storing

all necessary data is impossible. Thus, as suggested in [17, 21], storage reducing techniques

like checkpointing can be used. Checkpointing suggested in [17] is as follows: Instead of stor-

ing the coefficients for the state equation for all time steps N, store M of them. Here, N + 1 is

assumed to be a constant multiple of M. It corresponds to storing y0, yM, . . . , yN+1. To com-

pute the coefficients of the adjoint, the coefficients of the state are needed. Thus, to compute

coefficients of the adjoint pi for i ∈ {kM+1, . . . , (k+1)M−1} and some k ∈ {0, . . . , (N+1)/M},

yi is needed which is not stored. Thus, ykM is used to recompute ykM + 1, . . . , yk+1M − 1. In

addition, for the state equation, we have the following system of equations



M

−D0 C1

−D1 C2

. . .
. . .

−DN−2 CN−1

−DN−1 CN





y0

ỹ1

ỹ2
...

ỹN−1

ỹN



=



Ỹ0

∆t(θF1 + (1 − θ)F0)

∆t(θF2 + (1 − θ)F1)
...

∆t(θFN−1 + (1 − θ)FN−2)

∆t(θFN + (1 − θ)FN−1)


+



0

∆tM(θũ1 + (1 − θ)ũ0)

∆tM(θũ2 + (1 − θ)ũ1)
...

∆tM(θũN−1 + (1 − θ)ũN−2)

∆tM(θũN + (1 − θ)ũN−1)



.

where D j = M − ∆t(1 − θ)A and C j = M + ∆tθA.
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Equivalently, the adjoint equation can be written a linear system

C0 −D1

C1 −D2

C2

. . .
. . .

CN−2 −DN−1

DN





p̃0

p̃1

p̃2
...

p̃N−1

p̃N



= −∆t



M

M

M
. . .

M

M





ỹ0

ỹ1

ỹ2
...

ỹN−1

1
2 ỹN


+ ∆t



(Yd)0

(Yd)1

(Yd)2
...

(Yd)N−1

1
2 (Yd)N



.

where C j = M −∆t(1− θ)A and D j = M + ∆tθA. The matrices at the right-hand side is of size

NlocNel(NT + 1) × NlocNel(NT + 1).

Apart from this, if one uses discretize-then-optimize approach, then the full discrete optimal

control problem can be solved by all-at-once method. Discretization of the problem and

the solution via first order necessary optimality condition on a Lagrangian results in a linear

system. the system is in the form of a saddle point problem. Due to the high dimension of

this system, iterative methods are preferable. To accelerate the convergence of the method,

a preconditioner is used. Details related to the all-at-once can be found in [52, 56] for PDE

constrained optimization problems.
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CHAPTER 5

OPTIMIZATION METHODS

Consider the following problem

min
u∈U

Ĵ(u), s.t. e(y, u) = 0, u ∈ U. (5.1)

No bounds are inserted on the control u, so this problem is an unconstrained optimization

problem. A general framework of the optimization algorithms is as follows by [47]: Firstly,

an initial value is set. Then, a sequence of iterations is generated. Depending on the method,

the value of the objective function or the previous iterations are needed to obtain the mew

iterate. Then we decide whether accurate solution is reached or not to terminate the algorithm.

Unconstrained optimization methods are line search and trust region method. During the

study, we have used line search methods. Thus, we give detail only about line search methods.

Idea behind the line search methods lies in obtaining a search direction pk and a step length

αk. Values of them are critical for the efficiency of the method. The search direction can be

obtained by using different schemes, but most of the algorithms requires pk to be a descent

direction. For example, pk must be chosen such a way that pT
k ∇Ĵk < 0. Another way to

choose it is pk = −B−1
k ∇Ĵk. In the steepest descent method, Bk = I, in the Newton’s method

Bk = ∇2 Ĵk. It is critical to choose the step size efficiently. Thus, the following Armijo

condition can be used to determine αk

Ĵ(uk + αpk) ≤ Ĵ(uk) + c1α∇ĴT
k pk, (5.2)

where c ∈ (0, 1). By this formula, we can say that the step length αk and the directional deriva-

tive ∇ĴT
k pk plays an important role in the reduction of Ĵk. However, the sufficient decrease

cannot guarantee the steps to be acceptable. Thus, curvature condition must be satisfied in

order to eliminate the too short step sizes by the following inequality

∇Ĵ(uk + αk pk)T pk ≥ c2∇ĴT
k pk, (5.3)
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where c2 ∈ (c1, 1). Apart from the line search method, Newton’s method can be sued in order

to obtain the search direction pk by

∇2 Ĵksk = −∇Ĵk. (5.4)

We have followed the idea in [17]. Thus, the Newton equation is solved by conjugate gra-

dient(CG) method. Let me state basics of (CG) method. We consider the linear system of

equations Ax = b with a symmetric positive-definite matrix A. Then the linear system can be

written as a minimization problem of 1
2 xT Ax − bT x. Solution of two problems are the same

and unique. It is necessary to mention a theorem given in [17].

Theorem 5.0.1 Assume that ey(y(u), u) be invertible and∇2 Ĵ(u) be symmetric positive semidef-

inite. The solution of ∇2 Ĵ(uk)sk = −∇Ĵ(uk) is the vector sk if and only if

min

 ∇y Ĵ(y, u)T

∇u Ĵ(y, u)T


T  sy

su

 + 1
2

 sy

su


T  ∇yyL(y, u, p) ∇yuL(y, u, p)

∇uyL(y, u, p) ∇uuL(y, u, p)


 sy

su


is solved for (sy, su) with sy = ey(y(u), u)−1cu(y(u), u)su such that

ey(y, u)sy + cu(y, u)su = 0, where y = y(u) and p = p(u).

Thus, the minimization problem in the theorem is equivalent to 1
2 xT Ax − bT x with xk = su,

b = ∇Ĵk and A = ∇2 Ĵk.

In case of boundaries inserted on the control u, then the space of controls are defined as

Uad. Then, the problem is converted into an inequality constrained optimization problem.

Active-set methods, gradient based methods and interior-point methods can be used to solve

the inequality constraint problems. Active-set method is an efficient tool to solve small-to

medium scale problems. The method is started by initiating the optimal active set. If this

guess is wrong, then gradient and Lagrange multiplies information is used to updating the

active set by dropping an index from the chosen active-set and by inserting a new index.

5.1 Unconstrained Optimal Control Problem

For this study, we have followed the idea and use the MATLAB programs given [17]. One-

dimensional unconstrained optimal control problem has been solved by Newton-Conjugate
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Gradient method with Armijo line-search. Two-dimensional constrained optimal control

problem has been solved by active-set method.

The Newton-CG Algorithm with Armijo-Line Search

The conjugate gradient (CG) method is used to approximate the Newton equation

∇2 Ĵ(uk)sk = −∇Ĵ(uk). (5.5)

If the Newton system is close to zero, which means that

‖∇2 Ĵ(uk)sk + ∇Ĵ(uk)‖2 ≤ ηk‖∇Ĵ(uk)‖2, (5.6)

ηk ∈ (0, 1), or in case of a direction of negative curvature, the CG method is terminated.

After having computed the direction sk, we apply a simple Armijo line-search procedure to

determine the step-size αk. The Newton-CG algorithm is as follows [17, 47]:

Algorithm

1. Given u0 and gtol > 0. Initialize k = 0.

2. Evaluate ∇Ĵ(uk).

3. If ‖∇Ĵ(uk)‖ < gtol, stop.

4. Evaluate ∇2 Ĵ(uk).

5. To determine an approximate solution of the Newton equation ∇2 Ĵ(uk)sk = −∇Ĵ(uk),

perform the CG method to compute :

(a) Choose ηk ∈ (0, 1), sk = 0 and pk,0 = rk,0 = −∇Ĵ(uk).

(b) For i = 0, 1, 2, . . . do

i. If ‖rk,i‖2 < ηk‖rk,0‖2 go to 5.3.

ii. Evaluate qk,i = ∇2 Ĵ(uk)pi.

iii. If pT
k,iqk,i < 0 go to 5.3.

iv. γk,i = ‖rk,i‖
2/pT

k,iqk,i.

v. sk = sk + γk,i pk,i.

vi. rk,i+1 = rk,i − γk,iqk,i.

vii. βk,i = ‖rk,i+1‖
2/‖rk,i‖

2.

viii. pk,i+1 = rk,i+1 + βk,i pk,i.
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(c) If i = 0, set sk = −∇Ĵ(uk).

6. Perform Armijo line-search.

(a) Choose αk = 1 and evaluate f (uk + αksk).

(b) While f (uk + αksk) > f (uk) + 10−4αksT
k ∇Ĵ(uk) do

i. Set αk = αk/2 and evaluate f (uk + αksk).

(c) Set uk+1 = uk + αksk, k ←− k + 1. Go to 2.

Gradient Computation Using Adjoints

Algorithm

1. Given u, determine the solution of e(y, u) = 0 for y.

2. Determine the solution, p(u), of the adjoint equation ey(y(u), u)T p = −∇yJ(y(u), u) for

p.

3. Evaluate ∇Ĵ(u) = ∇uJ(y(u), u) + eu(y(u), u)T p(u).

Hessian-Times-Vector Computation

We compute the Hessian of Ĵ because J and e has been assumed to be twice continuously

differentiable. In order to facilitate the computation of the Hessian, the Newton-CG algorithm

has been suggested. Therefore, Hessian-times-vector products ∇2 Ĵ(u)v can be evaluated to

lessen the disadvantage of the expensive nature of the Hessian computation.

Algorithm

1. Given u, obtain the solution of e(y, u) = 0 for y. Let me call the solution as y(u).

2. Determine the solution of the adjoint equation ey(y(u), u)T p = −∇yJ(y(u), u) for p. Let

me call the solution as p(u).

3. Determine the solution ey(y(u), u)w = eu(y, u)v.

4. Determine the solution ey(y(u), u)T p = ∇yyL(y(u), u, p(u))w − ∇yuL(y(u), u, p(u))v.

5. Evaluate ∇2 Ĵ(u)v = eu(y(u), u)T p − ∇uyL(y(u), u, p(u))w + ∇uuL(y(u), u, p(u))v.
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Given ũ0, . . . , ũN and ỹ0, compute ỹ1, . . . , ỹN by solving the full discrete state equation. Then,

compute p̃N , . . . , p̃0 by solving the full discrete adjoint equation. From step 3, the above

algorithm can be adapted to our problem as

1. Compute w̃1, . . . , w̃N from

(M + ∆tθ(A)T w̃i+1 = (M − ∆t(1 − θ)A)T w̃i − ∆tM(θṽi+1 + (1 − θ)ṽi),

i = 0, · · · ,N − 1, where w̃0 = 0.

2. Compute p̃N , . . . , p̃0 by solving

(M + ∆tθA)T p̃i+1 = ∆t
2 Mw̃i+1,

(M + ∆tθA)T p̃i = (M − ∆t(1 − θ)A)T p̃i+1 + ∆tMw̃i,

for i = N − 1, · · · , 0.

3. Compute ∇2
u Ĵ(v).

5.2 Constrained Optimal Control Problem

For given J and e, the problem can be formulated as follows:

Ĵ(u) = J(y(u), u), (5.7)

where y(u) ∈ Rny is the solution of an equation

e(y, u) = 0, (5.8)

ua ≤ u ≤ ub. (5.9)

We have motivated to apply the active set strategy given in [46]. The algorithm that we have

used is as follows. The vectors p̃ and ũ are obtained by listing the solution of p̄ and ū for each

time steps column by column.

Algorithm

1. Initialize u = 0.

2. Set A− = A+ = ∅.

3. Set J = Ω.
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4. Set n = 0.

5. While n < nmax

• Determine the solution of e(y, u) = 0 for y.

• Determine the solution, p(u), of the adjoint equation ey(y(u), u)T p = −∇yJ(y(u), u)

for p.

• Determine the solution of

α∆tC1/2ũ + ∆tdiag(XJ )Cθp̃ = αC1/2(∆tXA− · ũa + ∆tXA+ · ũb),

where

C1/2 =



1/2

1

1
. . .

1

1/2


,

Cθ =



θ

(1 − θ) θ

(1 − θ) θ

. . .
. . .

(1 − θ) θ


.

• DefineA− = {x ∈ Ω : −p̃ − αũa < 0}.

• DefineA+ = {x ∈ Ω : −p̃ − αũb > 0}.

• Define J = Ω \ (A− ∩A+).

• Define δn = α2‖ũ − ũa‖
2
L2(A−) + α2‖ũ − ũb‖

2
L2(A+) + ‖p̃ − αũ‖2

L2(J).

• Stop if δn <
√
ε and δn = δn−1.
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CHAPTER 6

A PRIORI ERROR ANALYSIS

The state, adjoint and the control can be discretized by using different functions to improve the

accuracy of the method. One way is to use the same order of basis polynomial to approximate

the state, adjoint and the control. The control can be approximated by piecewise constants as

in [26, 34]. The other ways is to use the control u without discretization in order to get rid of

the discretization error and increase the order of accuracy [34]. For the steady-state optimal

control problem, [34] gives the following orders for different approximations

α‖u − uh‖U + ‖y − yh‖L2(Ω) ≤


Ch for piecewise constants,

Ch3/2 for continuous and piecewise linear uh,

Ch2 for variational discretization.

In the literature, there are several ways to define DG bilinear and linear forms. As we men-

tioned before, the bilinear form coming from the diffusion part is as follows by [53]:

aε(y, υ) =
∑
E∈ξh

∫
E
ε∇y · ∇υdx −

∑
e∈Γh∪ΓD

∫
e
{ε∇y · ne}[υ]ds (6.1)

+ γ
∑

e∈Γh∪ΓD

∫
e
{ε∇υ · ne}[y]ds + Jσ0,β0

0 (y, υ). (6.2)

where

Jσ0,β0
0 (y, υ) =

∑
e∈Γh∪ΓD

σ0
ε

|e|β0

∫
e
[y][υ]ds.
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In addition to this, this part can be defined as [38]

ã(ω, υ) =
∑
E∈ξh

∫
E
ε∇y · ∇υdx +

∫
ΓD

(ω((ε∇υ) · µ) − ((ε∇υ) · µ)υ)ds (6.3)

+

∫
Γint

([ω]{(ε∇υ) · ν} − {(ε∇ω) · ν}[υ])ds (6.4)

+

∫
ΓD

σωυds +

∫
Γint

σ[ω][υ]ds, (6.5)

where σ is the discontinuity penalization parameter and ν = µ for boundary edges and for

given Dirichlet and Neumann boundary conditions.

For the convection term, we have used the definition in [38]:

c(y, υ) =
∑
E∈ξh

(∫
E

c∇y · υdx −
∫
∂−E\Γ

(c · ne)(y+ − y−)υ+ds −
∫
∂−E∩Γ−

(c · ne)y+υ+ds
)
, (6.6)

The convection term is approximated by an upwind discretization by [53]

c(y, υ) = −
∑
E∈ξh

∫
E

cy · ∇υdx +

∫
Γh

(c · ne)yup[υ]ds +

∫
Γout

(c · ne)yυds, (6.7)

where ωup which is the upwind value of the function is written ∀e = ∂E1
e ∩ E2

e

ωup =


ω|E1

e
if u · ne ≥ 0

ω|E2
e

if u · ne < 0

.

With this definitions, the method is consistent, which will be explained next section, with a

suitable right-hand side

L(υ) =
∑
E∈ξh

(∫
E

fυdx −
∫
∂−E∩Γ−

(c · ne)gDυ
+ds

)
+

∑
e∈ΓD

∫
e
(γε∇υ · ne +

σ0
e

|e|β0
υ)gDds +

∑
e∈ΓN

∫
e
υgNds,

(6.8)

while in [59]

L(υ) =

∫
E

fυdx. (6.9)

For the stability and the convergence estimates, the reaction term can be inserted into the

term coming from the convection part as in [38]. As different from [38, 59], for our case,

(c0(x))2 = r(x) − 1
2∇ · c(x) ≥ 0 in Ω as in [49], which is the coercivity condition. (c0(x))2 is

zero, automatically, because r and c are constants.
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6.1 Consistency of DG method

The interior penalty DG method inserts some terms coming from the penalty parameters,

jump terms and Dirichlet boundary conditions. Thus, each term at the right-hand side of the

DG variational formulation must be matched to the terms the left-hand side. In other words,

we need to confirm the equivalence of the weak form and the PDE. The terms coming from

the aε(·, ·) are matches the ones at the right-hand side L(t; υ) by [53]. In addition, the terms

of the convection parts are consistent with the ones at the right-hand side by [38]. Thus, the

method is consistent.

6.2 Error Analysis For The State Equation

6.2.1 Stability Estimates For The Semi-discrete State

To make the error analysis easy to understand, it is beneficial to proceed term by term. Firstly,

a priori error analysis for the diffusion equation with Dirichlet boundary condition can be

performed as in [53] in detail. Secondly, a priori error analysis for the convection equation

with Dirichlet boundary condition is derived as in [38].

6.2.1.1 Stability Estimates For Diffusion Equation

Consider the semi-discrete DG variational formulation of the diffusion equation:

∀t > 0, ∀υ ∈ Dk(ξh),
(
∂Yh

∂t
, υ

)
Ω

+ aε(Yh, υ) = L(t; v), (6.10)

∀υ ∈ Dk(ξh), (Yh(0), υ)Ω = (y0, υ)Ω; (6.11)

where the DG bilinear from and the right-hand side are as follows:

aε(ω, υ) =
∑
E∈ξh

∫
E
ε∇ω · ∇υdx −

∑
e∈Γh∪ΓD

∫
e
{ε∇ω · ne}[υ]ds (6.12)

+ γ
∑

e∈Γh∪ΓD

∫
e
{ε∇υ · ne}[ω]ds +

∑
e∈Γh∪ΓD

σ0
ε

|e|β0

∫
e
[ω][υ]ds, (6.13)

L(υ) =
∑
E∈ξh

∫
E

f (t)υdx +
∑
e∈ΓD

∫
e
(γε∇υ · ne +

σ0
e

|e|β0
υ)gD(t)ds. (6.14)
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We choose υ = Yh(t) at (6.11). If β0(d − 1) ≥ 1 and and σ0
e is bounded below by a constant,

then aε is coercive by [53]. We use coercivity for the left-hand side of (6.11), apply the trace

inequality and the Cauchy-Schwarz’s inequality for the right-hand side of (6.11) to obtain the

following inequality for a constant C independent of h:

1
2

d
dt
‖Yh‖

2
L2(Ω) +

κ

2
‖Yh‖

2
ε ≤ ‖ f (t)‖2L2(Ω)‖Yh(t)‖2L2(Ω) + C

∑
e∈ΓD

1
|e|β0
‖gD(t)‖2L2(e).

Then, we apply Young’s inequality to ‖ f (t)‖2
L2(Ω)‖Yh(t)‖2

L2(Ω) by choosing the Young’s inequal-

ity constant as 1. Then, we multiply the equation by 2 and integrate from 0 to t. In order to

eliminate the term
∫
‖Yh(s)‖ at the right-hand side, we apply the continuous Gronwall’s in-

equality to obtain

‖Yh‖
2
L2(Ω) + κ

∫ t

0
‖Yh‖

2
ε ≤ C

∫ t

0
‖ f (s)‖2L2(Ω) + ‖Yh(0)‖2L2(Ω) +

∑
e∈ΓD

1
|e|β0
‖gD(t)‖20,e

 ,
C increases exponentially in time. The final result follows for a positive constant C indepen-

dent of h:

‖Yh‖
2
L∞(0,T ;L2(Ω)) +

∫ T

0
‖Yh‖

2
ε ≤ C‖y0‖

2
L2(Ω) + C‖ f (s)‖2L2(0,T ;L2(Ω)) + C

∑
e∈ΓD

1
|e|β0
‖gD(t)‖2L2(0,T ;L2(e)).

6.2.1.2 Stability Estimates For Convection-Reaction Equation

Secondly, we obtain the a priori error estimates for the convection-reaction equation with

Dirichlet boundary condition. Consider the following DG variational formulation

∀t > 0, ∀υ ∈ Dk(ξh),
(
∂Yh

∂t
, , υ

)
Ω

+ c(Yh, υ) = L(t; v), (6.15)

∀υ ∈ Dk(ξh), (Yh(0), υ)Ω = (y0, υ)Ω; (6.16)

where the DG bilinear form and the right-hand side are defined as [38]:

c(ω, υ) =
∑
E∈ξh

(∫
E
L0ω · υdx −

∫
∂−E\Γ

(c · ne)(ω+ − ω−)υ+ds −
∫
∂−E∩Γ−

(c · ne)ω+υ+ds
)
,

(6.17)

L(t; v) =
∑
E∈ξh

(∫
E

fυdx −
∫
∂−E∩Γ−

(c · ne)gDυ
+

)
ds, (6.18)

where L0 = c · ∇y + ry. A bound for the semi-discrete solution of the steady convection

equation is given by [38]∑
E∈ξh

(
‖c0Yh‖

2
L2(E) +

1
2
‖Y+

h ‖
2
∂−E∩Γ−

+ ‖Y+
h − Y+

h ‖
2
∂−E\Γ + ‖Y+

h ‖
2
∂+E∩Γ

)
≤

∑
E∈ξh

(
‖c−1

0 f ‖2L2(E) + 2‖gD‖
2
∂−E∩Γ−

)
,
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where ‖ · ‖E corresponds to the (semi)norm for the following (semi)inner-product

(υ, ω)E =

∫
E
|c · ne|υωds

and c0 ≥ 0. A similar process is observed at [59],too. For our case, c0 = 0. Thus, the bound

above must be modified to make the fraction 1/c0 well-defined. In addition, instead of using

the (semi)norm defined above, L2-norm is preferred to be able use the error estimates in given

in [53] with respect to L2-norm.

We choose υ = Yh(t) in (6.16). There is no need to change anything at right-hand side. The

first difference from [38] arises from the right-hand side. We apply Cauchy-Schwarz’s and

Young’s inequality to the integrals

∫
f Yh(t) and

∫
(c · ne)gDYh(t)+.

The constants used in Young’s inequality are 1 and 2 for these integrals, respectively. Then,

we obtain

1
2

d
dt
‖Yh‖

2
L2(Ω) +

∑
E∈ξh

(
‖c0(x)Yh‖

2
L2(E) +

1
2
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · ne|

1/2Y+
h − Y−h ‖

2
L2(∂−E\Γ) +

1
2
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ)

)

≤
∑
E∈ξh

(
1
2
‖ f ‖2L2(E) +

1
2
‖Yh‖

2
L2(E) +

1
4
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ−) + ‖|c · ne|

1/2gD‖
2
L2(∂−E∩Γ−)

)
.

If we arrange the terms, then we obtain

1
2

d
dt
‖Yh‖

2
L2(Ω) +

∑
E∈ξh

(
‖c0(x)Yh‖

2
L2(E) +

1
4
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · ne|

1/2Y+
h − Y−h ‖

2
L2(∂−E\Γ) +

1
2
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ)

)

≤
∑
E∈ξh

(
1
2
‖ f ‖2L2(E) +

1
2
‖Yh‖

2
L2(E) + ‖|c · ne|

1/2gD‖
2
L2(∂−E∩Γ−)

)
.

Then, we multiply the inequality by 2 and integrate from 0 to t. In order to eliminate the term∫
‖Yh(s)‖ arising from the right-hand side, continuous Gronwall’s inequality can be applied
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with a constant C increasing exponentially in time:

‖Yh‖
2
L2(Ω) +

∑
E∈ξh

(∫ T

0
‖c0(x)Yh‖

2
L2(Ω) +

1
2

∫ T

0
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(∫ T

0
‖|c · ne|

1/2Y+
h − Y−h ‖

2
L2(∂−E\Γ) +

∫ T

0
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ)

)

≤ C

‖Yh(0)‖2L2(Ω) +
∑
E∈ξh

(∫ T

0
‖ f ‖2L2(Ω) + 2

∫ T

0
‖|c · ne|

1/2gD‖
2
L2(∂−E∩Γ−)

) .
Similar to the diffusion equation, we obtain

‖Yh‖
2
L∞(0,T ;L2(Ω)) +

∑
E∈ξh

(
‖c0(x)Yh‖

2
L2(0,T ;L2(Ω)) +

1
2
‖|c · ne|

1/2Y+
h ‖

2
L2(Ω)(0,T ;L2(∂−E∩Γ−))

)
+

∑
E∈ξh

(
‖|c · ne|

1/2Y+
h − Y−h ‖

2
L2(0,T ;L2(∂−E\Γ)) + ‖|c · ne|

1/2Y+
h ‖

2
L2(0,T ;L2(∂−E∩Γ))

)
≤ C‖y0‖

2
L2(Ω) + C

∑
E∈ξh

(
‖ f ‖2L2(0,T ;L2(Ω)) + 2‖|c · ne|

1/2gD‖
2
L2(0,T ;L2(∂−E∩Γ−))

)
.

Stability Estimates For The Semi-discrete State

Let us provide stability estimates for the semi-discrete state equation by combining the bounds

that we have obtained up to now.

Lemma 6.2.1 Assume that β0 ≥ (d − 1)−1. There exists a constant C > 0 independent of h

such that

‖Yh‖
2
L∞(0,T ;L2(Ω)) + κ

∫ T

0
‖Yh‖

2
ε ≤ C̃

‖ỹ0‖
2
L2(Ω) +

∑
E∈ξh

‖ f ‖2L2(0,T ;L2(E))


+ C̃

∑
E∈ξh

‖|c · n|1/2gD‖
2
L2(0,T ;L2(∂−E∩Γ−)) +

∑
e∈∂Ω

1
|e|β0
‖gD‖

2
L2(0,T ;L2(e))

 .
(6.19)

where C increases exponentially in time.

Proof. Choose υ = Yh(t) in the semi-discrete variational formulation of the state equation to

obtain (
∂Yh

∂t
,Yh(t)

)
Ω

+ aε(Yh(t),Yh(t)) + c(Yh(t),Yh(t)) = L(t; Yh(t)).

Let me insert r(·, ·) into c(·, ·) to facilitate the procedure. Then, by [38, 53], the following

bounds can be obtained by using the coercivity of aε , Young’s and Cauchy-Schwartz’s in-
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equality:

1
2

d
dt
‖Yh‖

2
L2(Ω) + κ‖Yh(t)‖2ε +

∑
E∈ξh

(
‖c0Yh(t)‖2L2(E) +

1
2
‖|c · n|1/2Y+

h ‖
2
L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · n|1/2(Y+

h − Y−h )‖2L2(∂−E\Γ) +
1
2
‖|c · n|1/2Y+

h ‖
2
L2(∂+E∩Γ)

)

≤
∑
E∈ξh

(
1
2
‖ f ‖2L2(E) +

1
2
‖Yh(t)‖2L2(E) +

1
4
‖|c · ne|

1/2Y+
h ‖

2
L2(∂−E∩Γ−) + ‖|c · n|1/2gD‖

2
L2(∂−E∩Γ−)

)
+
κ

2
‖Yh‖

2
ε + 2C

∑
e∈∂Ω

1
|e|β0
‖gD‖

2
L2(e).

We arrange the terms and multiply the above inequality by 2 and integrate from 0 to t:

‖Yh‖
2
L2(Ω) + κ

∫ t

0
‖Yh(s)‖2ε +

∑
E∈ξh

(
2
∫ t

0
‖c0Yh‖

2
L2(E) +

1
2

∫ t

0
‖|c · n|1/2Y+

h ‖
2
L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(∫ t

0
‖|c · n|1/2(Y+

h − Y−h )‖2L2(∂−E\Γ) +

∫ t

0
‖|c · n|1/2Y+

h ‖
2
L2(∂+E∩Γ)

)

≤ ‖y0‖
2
L2(Ω) +

∑
E∈ξh

(∫ t

0
‖ f ‖2L2(E) +

∫ t

0
‖Yh(t)‖2L2(E) + 2

∫ t

0
‖|c · n|1/2gD‖

2
L2(∂−E∩Γ−)

)

+ 4C
∑
e∈∂Ω

1
|e|β0

∫ t

0
‖gD‖

2
L2(e).

We arrange the terms and use the continuous Gronwall’s inequality to get rid of
∫ t

0 ‖Yh(t)‖2
L2(E)

with a constant C̃ increasing exponentially in time.

‖Yh‖
2
L2(Ω) + κ

∫ t

0
‖Yh(s)‖2ε +

∑
E∈ξh

(
2
∫ t

0
‖c0Yh‖

2
L2(E) +

1
2

∫ t

0
‖|c · n|1/2Y+

h ‖
2
L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(∫ t

0
‖|c · n|1/2(Y+

h − Y−h )‖2L2(∂−E\Γ) +

∫ t

0
‖|c · n|1/2Y+

h ‖
2
L2(∂+E∩Γ)

)

≤ C̃

‖y0‖
2
L2(Ω) +

∑
E∈ξh

(∫ t

0
‖ f ‖2L2(E) + 2

∫ t

0
‖|c · n|1/2gD‖

2
L2(∂−E∩Γ−)

)
+ 4C

∑
e∈∂Ω

1
|e|β0

∫ t

0
‖gD‖

2
L2(e)

 .
Remark: As we decrease the mesh size h, the last term at the right-hand side of the above

inequality increases rapidly. This occurs because we have inserted the Dirichlet boundary

conditions to the variational from weakly. If the boundary conditions are imposed strongly by

setting the space of the test functions as

D0
k(ξh) = {υ ∈ Dk(ξh) : υ = 0 on ∂Ω},

then, the stability bound can be rewritten as follows [53]:

‖Yh‖
2
L∞(0,T ;L2(Ω)) +

∫ T

0
‖Yh‖

2
ε ≤ C̃‖ỹ0‖

2
L2(Ω) + C̃

∑
E∈ξh

‖ f ‖2L2(0,T ;L2(E)).
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6.2.2 Error Estimates For The Semi-discrete State

6.2.2.1 Error Estimates For Diffusion Equation

For diffusion equation, let me mention how to obtain error bounds as in [53]. The global error

y − Yh can be analyzed as

y − Yh = (y − ỹ) − (Yh − ỹ) = η + ξ

. η = y − ỹ is the elliptic projection, that is,

aε(y − ỹ, υ) = 0, ∀t ≥ 0, ∀υ ∈ Dk(ξh).

The scheme is consistent, then we can write(
∂ξ

∂t
, υ

)
Ω

+ aε(ξ, υ) =

(
∂η

∂t
, υ

)
Ω

+ aε(η, υ), ∀t ≥ 0, ∀υ ∈ Dk(ξh). (6.20)

By the elliptic projection, this equation can be rewritten as(
∂ξ

∂t
, υ

)
Ω

+ aε(ξ, υ) =

(
∂η

∂t
, υ

)
Ω

, ∀t ≥ 0, ∀υ ∈ Dk(ξh). (6.21)

We choose υ = ξ. We find a bound for the left-hand side by using the coercivity of aε with

the condition β0(d − 1) ≥ 1. The left-hand side is bounded as in [53] by Cauchy-Schwartz’s

and Young’s inequalities for positive penalty parameters σe
0:

1
2

d
dt
‖ξ‖2L2(Ω) + κ‖ξ‖2ε ≤

κ

2
‖ξ‖2ε +

1
2κ

∥∥∥∥∥∂(y − ỹ)
∂t

∥∥∥∥∥2

L2(Ω)
.

For the right-hand side, we use the error estimates for the elliptic projection given by [53]: If

y ∈ L2(0,T ; Hs(ξh)) for s > 3/2, then

∀t ≥ 0, ‖y(t) − ỹ(t)‖ε ≤ Chmin(k+1,s)−1‖|y(t)‖|Hs(ξh).

If Ω is convex, then the following error estimates are valid

∀t ≥ 0, ‖y(t) − ỹ(t)‖L2(Ω) ≤ Chmin(k+1,s)‖|y(t)‖|Hs(ξh), for SIPG,

∀t ≥ 0, ‖y(t) − ỹ(t)‖L2(Ω) ≤ Chmin(k+1,s)−1‖|y(t)‖|Hs(ξh), for NIPG/IIPG.

Now, we can use the error estimates to bound the right-hand side

1
2

d
dt
‖ξ‖2L2(Ω) +

κ

2
‖ξ‖2ε ≤ Ch2 min(k+1,s)−2δ

∥∥∥∥∥|∂y
∂t

∥∥∥∥∥ |2Hs(ξh).
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We multiply the inequality by 2 and integrate from 0 to t

‖ξ‖2L2(Ω) + κ

∫ t

0
‖ξ‖2ε ≤ ‖ξ(0)‖2L2(Ω) + Ch2 min(k+1,s)−2δ

∥∥∥∥∥∂y
∂t

∥∥∥∥∥2

L2(0,t;Hs(ξh))
.

Then, the final result is obtained by the triangle inequality in L2 and the energy norm are

respectively,

‖y(t) − Yh(t)‖L2(Ω) ≤ ‖Yh(t) − ỹ(t)‖L2(Ω) + ‖y(t) − ỹ(t)‖L2(Ω),(∫ T

0
‖y(t) − Yh(t)‖2ε

)1/2

≤

(∫ T

0
‖Yh(t) − ỹ(t)‖2ε

)1/2

+

(∫ T

0
‖y(t) − ỹ(t)‖2ε

)1/2

.

6.2.2.2 Error Estimates For Convection-Reaction Equation

Let me mention that η = y − ỹ, ξ = Yh − ỹ. The scheme is consistent, then we can write(
∂ξ

∂t
, υ

)
Ω

+ c(ξ, υ) =

(
∂η

∂t
, υ

)
Ω

+ c(η, υ), ∀t ≥ 0, ∀υ ∈ Dk(ξh). (6.22)

Then, we choose υ = ξ and substitute the bounds given by [38] and use L2-norm∑
E∈ξh

‖c0ξ‖
2
L2(E) +

1
2

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂−E∩Γ−)

+
1
2

∑
E∈ξh

‖|c · n|1/2(ξ+ − ξ−)‖2L2(∂−E\Γ) +
1
2

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂+E∩Γ)

≤ 2
∑
E∈ξh

∫
E

(c0)2ξη −
∑
E∈ξh

∫
E
ηL0ξ +

∑
E∈ξh

∫
∂+E∩Γ

(c · n)ξ+η+

+
∑
E∈ξh

∫
∂+E\Γ

(c · n)ξ+η+ +
∑
E∈ξh

∫
∂−E\Γ

(c · n)ξ+η−.

The first term at the right-hand side can be bounded by using the Cauchy-Schwartz’s and

Young’s inequality with the constant 1 while an upper bound for the second term at the right-

hand side can be obtained by [53], and the bounds for the other terms can be found at [38]:∑
E∈ξh

‖c0ξ‖
2
L2(E) +

1
2

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂−E∩Γ−)

+
1
2

∑
E∈ξh

‖|c · n|1/2(ξ+ − ξ−)‖2L2(∂−E\Γ) +
1
2

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂+E∩Γ)

≤
1
2

∑
E∈ξh

‖c0ξ‖
2
L2(E) + 2

∑
E∈ξh

‖c0η‖
2
L2(E) +

κ

8
‖ξ‖2ε + C‖η‖2L2(Ω)

+
1
4

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂+E∩Γ)) +
∑
E∈ξh

‖|c · n|1/2η+‖2L2(∂+E∩Γ)

+
1
4

∑
E∈ξh

‖|c · n|1/2ξ+ − ξ−‖L2(∂−E\Γ) +
∑
E∈ξh

‖|c · n|1/2η−‖L2(∂−E\Γ).
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We arrange the terms to obtain the following:

1
2

∑
E∈ξh

‖c0ξ‖
2
L2(E) +

1
2

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂−E∩Γ−)

+
1
4

∑
E∈ξh

‖|c · n|1/2(ξ+ − ξ−)‖2L2(∂−E\Γ) +
1
4

∑
E∈ξh

‖|c · n|1/2ξ+‖2L2(∂+E∩Γ)

≤ 2
∑
E∈ξh

‖c0η‖
2
L2(E) +

κ

8
‖ξ‖2ε + C‖η‖2L2(Ω)

+
∑
E∈ξh

‖|c · n|1/2η+‖2L2(∂+E∩Γ) +
∑
E∈ξh

‖|c · n|1/2η−‖L2(∂−E\Γ).

As one can realize, the term κ
8‖ξ‖

2
ε must be eliminated. At [38], this term can be got rid of

by using a special interpolation. For our case, the terms coming from the diffusion equation

are needed. However, it is beneficial to obtain the bounds for the rest for the terms at the

right-hand side by [53] as follows: We have

1
2

∑
E∈ξh

‖c0η‖
2
L2(E) ≤

1
2

∑
E∈ξh

c2
0Chmin(k+1,s)

E |y|Hs(E).

We can bound the third term as follows by the error estimates given previously,

C‖η‖2L2(Ω) ≤ CC̃hmin(k+1,s)−δ‖|y(t)‖|Hs(ξh).

Lastly, we consider
∑

E∈ξh

‖|c · n|1/2η+‖2
L2(∂+E∩Γ) and

∑
E∈ξh

‖|c · n|1/2η−‖L2(∂−E\Γ).

In general, for each element E and υ ∈ H1(E), the trace of υ along any side of one element E

is well-defined [53]. In case of a common side e for the elements Ee
1 and Ee

2, two traces of υ

along e are considered, that is, υ|Ee
1

and υ|Ee
2
. By [38], υ+

E is defined as the interior trace of υE

on ∂E.The trace is taken from within E [37]. Let me mention the definition of υ+
E and υ−E:

y+ =


y|E1

e
if c · n ≥ 0

y|E2
e

if c · n < 0,
y− =


y|E2

e
if c · n ≥ 0

y|E1
e

if c · n < 0.

Firstly, we consider ‖|c · n|1/2η+‖L2(∂+E∩Γ). By the definition of the interior trace, this term can

be written as

‖|c · n|1/2η+‖L2(∂+E∩Γ) =


‖|c · n|1/2η‖L2(E1

e ) if c · n ≥ 0

‖|c · n|1/2η‖L2(E2
e ) if c · n < 0.

Then, by the trace inequality as in [53], it can be bounded by

≤ C|e|1/2‖


|E1

e |
−1/2‖|c · n|1/2η|E1

e
‖L2(E1

e ) + h|E1
e
‖|c · n|1/2∇η|E1

e
‖L2(E1

e ) if c · n ≥ 0

|E2
e |
−1/2‖|c · n|1/2η|E2

e
‖L2(E2

e ) + h|E2
e
‖|c · n|1/2∇η|E2

e
‖L2(E2

e ) if c · n < 0.
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By using the previous theorem and the fact that for i = 1, 2 |e|1/2|E1
e |
−1/2 is bounded below by

a constant C in 2D, we obtain

≤ Chmin(k+1,s)−1


||c · n|1/2y‖Hs(E1

e ) if c · n ≥ 0

||c · n|1/2y‖Hs(E2
e ) if c · n < 0.

If we add them up, we obtain∑
E∈ξh

‖|c · n|1/2η+‖2L2(∂+E∩Γ) ≤ Ch2 min(k+1,s)−2||c · n|1/2y‖2Hs(ξh).

For the term, ‖|c · n|1/2η−‖L2(∂−E\Γ), a similar argument is applied. For this case, we are inter-

ested in η− which is the exterior trace. Then, we obtain∑
E∈ξh

‖|c · n|1/2η−‖2L2(∂−E\Γ) ≤ Ch2 min(k+1,s)−2||c · n|1/2y‖2Hs(ξh).

Error Estimates For The Semi-discrete State

At this part, we determine the bounds for the state equation of which consists of the bounds

that were found for the diffusion and convection-reaction equation separately. In order not to

lose the connection between the terms, the properties and the definitions are mentioned one

more time.

Lemma 6.2.2 Suppose that y ∈ L2(0,T ; Hs(ξh)) and that y0 belongs to Hs(ξh) for s > 3/2

and β0(d − 1) ≥ 1. Let σ0
e is sufficiently large for all e if SIPG and IIPG is preferred. Then,

there exist a constant C independent of h such that

‖y(t) − Yh(t)‖L2(Ω) ≤ Chmin(k+1,s)−δ
(
‖y(0)‖L2(Ω) + ||y(t)||L2(0,T ;Hs(ξh)) +

∥∥∥∥∥∂y
∂t

∥∥∥∥∥
L2(0,T ;Hs(ξh))

)
.

(6.23)

where δ = 0 for SIPG and δ = 0 for NIPG and IIPG if β0 ≥ 3(d − 1)−1 and gD ∈ Dk(ξh).

Otherwise, δ = 1 for NIPG and IIPG.

Proof. We set η = y − ỹ, ξ = Yh − ỹ where ỹ ∈ Dk(ξh) can be chosen as an elliptic projection

of y defined below:

∀t ≥ 0, ∀υ ∈ Dk(ξh), aε(y(t) − ỹ(t), υ) = 0.

Now, we obtain the following for all υ ∈ Dk(ξh) due to the consistent scheme:(
∂ξ

∂t
, υ

)
Ω

+ aε(ξ, η) + c(ξ, η) =

(
∂η

∂t
, υ

)
Ω

+ aε(η, η) + c(η, η). (6.24)
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We choose υ = ξ and use coercivity and continuity of aε , bounds given in [38, 37, 53] to

obtain:

1
2

d
dt
‖ξ‖2L2(Ω) + κ‖ξ‖2ε +

∑
E∈ξh

(
‖c0ξ‖

2
L2(E) +

1
2
‖|c · n|1/2ξ+‖2L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · n|1/2(ξ+ − ξ−)‖2L2(∂−E\Γ) +

1
2
‖|c · n|1/2ξ+‖2L2(∂+E∩Γ)

)

≤
κ

2
‖ξ‖2ε +

1
2κ
‖
∂η

∂t
‖2L2(Ω) +

∑
E∈ξh

(
2‖c0ξ|

2
L2(E) +

1
2
‖c0η|

2
L2(E)

)
+
κ

8
‖ξ‖2ε + C‖η‖2L2(Ω)

+
∑
E∈ξh

(
1
4
‖|c · n|1/2ξ+‖2L2(∂+E∩Γ) + ‖|c · n|1/2η+‖2L2(∂+E∩Γ)

)

+
∑
E∈ξh

(
1
4
‖|c · n|1/2(ξ+ − ξ−)‖2L2(∂−E\Γ) + ‖|c · n|1/2η−‖2L2(∂−E\Γ)

)
.

We use the error estimates satisfied by the elliptic projection [53] and combine the terms that

we found before. Then, we multiply the inequality by 2 and integrate from 0 to t to obtain:

‖ξ‖2L2(Ω) +
3κ
4

∫ t

0
‖ξ(s)‖2ε +

∑
E∈ξh

(
‖c0ξ‖

2
L2(0,T ;L2(E)) + ‖|c · n|1/2ξ+‖2L2(0,T ;L2(∂−E∩Γ−))

)
+

∑
E∈ξh

(
1
2
‖|c · n|1/2(ξ+ − ξ−)‖2L2(0,T ;L2(∂−E\Γ)) +

1
2
‖|c · n|1/2ξ+‖2L2(0,T ;L2(∂+E∩Γ))

)

≤ Ch2 min(k+1,s)−2δ‖|y(0)‖|2L2(Ω) + Ch2 min(k+1,s)−2δ
∥∥∥∥∥∂y
∂t

∥∥∥∥∥2

L2(0,T ;Hs(ξh))

+ 2Cc2
0h2 min(k+1,s)−2δ‖y‖2L2(0,T ;Hs(ξh)) + Ch2 min(k+1,s)−2δ‖y‖2L2(0,T ;Hs(ξh)).

The final result can be reached by using the triangle inequality as follows:

‖y(t) − Yh(t)‖L2(Ω) ≤ ‖Yh(t) − ỹ(t)‖L2(Ω) + ‖y(t) − ỹ(t)‖L2(Ω).

6.2.3 Stability Estimates For The Full-discrete State (Backward Euler)

For the stability estimates of the full-discrete state, we need to use the full-discrete DG varia-

tional formulation of the state equation. At [37, 38], the problems that are considered are not

time-dependent, while error analysis has been performed for only semi-discrete problem at

[59] after having applied optimize-then-discretize approach. As we have mentioned, we have

used discretize-then-optimize approach. Due to the transient nature of the problem, we need
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to conduct error analysis for the full-discrete problem, too. We start by determining a bound

for ‖Ym
h ‖. The only difference arises from

(
Yn+1

h −Yn
h

∆t ,Yn+1
h

)
Ω

.

Lemma 6.2.3 Suppose that there exist a constant C independent of h and ∆t such that for all

m > 0,

‖Ym
h ‖

2
L2(Ω) + κ∆t

m∑
n=1

‖Yn
h ‖

2
ε ≤ C

‖y0‖
2
L2(Ω)) + ∆t

m∑
n=1

‖ f n‖2L2(Ω)


+ C∆t

 m∑
n=1

∑
E∈ξh

‖|c · n|1/2gn
D‖

2
L2(∂−E∩Γ−) +

m∑
n=1

∑
e∈∂Ω

1
|e|β0
‖gn

D‖
2
L2(e)

 . (6.25)

Proof. We obtain the full discrete state equation by backward euler method and choose υ =

Yn+1
h :

Yn+1
h − Yn

h

∆t
,Yn+1

h


Ω

+ aε(Yn+1
h ,Yn+1

h ) + c(Yn+1
h ,Yn+1

h ) = L(tn+1; Yn+1
h ), ∀n > 0, ∀υ ∈ Dk(ξh),

(6.26)

Y0
h = y0. (6.27)

Use coercivity of aε , the inequality ” 1
2 (x2 − y2) ≤ (x − y)x”, bounds for c(·, ·) and L(·, ·) on

[38] and [53], respectively, to obtain:

1
2∆t

(‖Yn+1
h ‖2L2(Ω) − ‖Y

n
h ‖

2
L2(Ω))) + κ‖Yn+1

h ‖2ε

+
∑
E∈ξh

(
‖c0Yn+1

h ‖2L2(E) +
1
2
‖|c · n|1/2(Yn+1

h )+‖2L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · n|1/2(Yn+1

h )+ − (Yn+1
h )−‖2L2(∂−E\Γ) +

1
2
‖|c · n|1/2(Yn+1

h )+‖2L2(∂+E∩Γ)

)
≤

1
2
‖ f n+1‖2L2(Ω) +

1
2
‖Yn+1

h ‖2L2(Ω)

+
∑
E∈ξh

(
1
4
‖|c · n|1/2(Yn+1

h )+‖2L2(∂−E∩Γ−) + ‖|c · n|1/2gn+1
D ‖

2
L2(∂−E∩Γ−)

)
+
κ

2
‖Yn+1

h ‖2ε + 2C
∑
e∈∂Ω

1
|e|β0
‖gn+1

D ‖
2
L2(e).
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We arrange the terms to obtain the following:

1
2∆t

(‖Yn+1
h ‖2L2(Ω) − ‖Y

n
h ‖

2
L2(Ω))) +

κ

2
‖Yn+1

h ‖2ε

+
∑
E∈ξh

(
‖c0Yn+1

h ‖2L2(E) +
1
4
‖|c · n|1/2(Yn+1

h )+‖2L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · n|1/2(Yn+1

h )+ − (Yn+1
h )−‖2L2(∂−E\Γ) +

1
2
‖|c · n|1/2(Yn+1

h )+‖2L2(∂+E∩Γ)

)
≤

1
2
‖ f n+1‖2L2(Ω) +

1
2
‖Yn+1

h ‖2L2(Ω)

+
∑
E∈ξh

(
‖|c · n|1/2gn+1

D ‖
2
L2(∂−E∩Γ−)

)
+ 2C

∑
e∈∂Ω

1
|e|β0
‖gn+1

D ‖
2
L2(e).

We multiply the inequality by 2∆t and sum from n = 0 to n = m − 1:

‖Ym
h ‖

2
L2(Ω) − ‖Y

0
h ‖

2
L2(Ω)) + κ∆t

m∑
n=1

‖Yn
h ‖

2
ε

+ 2∆t
m∑

n=1

∑
E∈ξh

‖c0Yn
h ‖

2
L2(E) +

1
2

∆t
m∑

n=1

‖|c · n|1/2(Yn
h )+‖2L2(∂−E∩Γ−)


+ ∆t

m∑
n=1

∑
E∈ξh

‖|c · n|1/2(Yn
h )+ − (Yn

h )−‖2L2(∂−E\Γ) + ∆t
m∑

n=1

‖|c · n|1/2(Yn
h )+‖2L2(∂+E∩Γ)


≤ ∆t

m∑
n=1

‖ f n‖2L2(Ω) + ∆t
m∑

n=1

‖Yn
h ‖

2
L2(Ω)

+ 2∆t
m∑

n=1

∑
E∈ξh

(
‖|c · n|1/2gn

D‖
2
L2(∂−E∩Γ−)

)
+ 4C∆t

m∑
n=1

∑
e∈∂Ω

1
|e|β0
‖gn

D‖
2
L2(e).

We substitute ‖Y0
h ‖

2
L2(Ω)) by the approximate solution ‖y0‖

2
L2(Ω)). In addition, the term ∆t

m∑
n=1
‖Yn

h ‖
2
L2(Ω)

at the right-hand side must be eliminated to obtain a stability bound. To do this, discreet Gron-

wall’s lemma can be used for a constant C which increases exponentially in time to obtain the

final result.

‖Ym
h ‖

2
L2(Ω) + κ∆t

m∑
n=1

‖Yn
h ‖

2
ε

+ 2∆t
m∑

n=1

∑
E∈ξh

‖c0Yn
h ‖

2
L2(E) +

1
2

∆t
m∑

n=1

‖|c · n|1/2(Yn
h )+‖2L2(∂−E∩Γ−)


+ ∆t

m∑
n=1

∑
E∈ξh

‖|c · n|1/2(Yn
h )+ − (Yn

h )−‖2L2(∂−E\Γ) + ∆t
m∑

n=1

‖|c · n|1/2(Yn
h )+‖2L2(∂+E∩Γ)


≤ C

‖y0‖
2
L2(Ω)) + ∆t

m∑
n=1

‖ f n‖2L2(Ω) + 2∆t
m∑

n=1

∑
E∈ξh

‖|c · n|1/2gn
D‖

2
L2(∂−E∩Γ−)


+ 4C

C̃∆t
m∑

n=1

∑
e∈∂Ω

1
|e|β0
‖gn

D‖
2
L2(e)

 .
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6.2.4 Error Estimates For The Full-discrete State (Backward Euler)

This part is similar to the error estimates for the semi-discrete state equation. Instead of y − ỹ

and Yh − ỹ, we use η = yn − ỹn and ξ = Yn
h − ỹn, respectively.

Lemma 6.2.4 (Backward Euler) For s > 3/2, assume that the exact solution y ∈ H1(0,T ; Hs(ξh)),
∂2y
∂t2 ∈ L2(0,T ; L2(Ω)). There exist a constant C independent of h and ∆t such that for all m > 0

‖Ym
h − ym‖2L2(Ω) ≤ Ch2 min(k+1,s)−2δ

(
‖|y(0)‖|2Hs(ξh) +

∥∥∥∥∥∂y
∂t

∥∥∥∥∥2

H1(0,T ;Hs(ξh))

)
+ C∆t2

∥∥∥∥∥∥∂2y
∂t2

∥∥∥∥∥∥2

L2(0,T ;L2(Ω))

+ C∆th2 min(k+1,s)−2δ
m∑

n=1

‖|yn+1‖|2Hs(ξh) +
∑
E∈ξh

‖|c0yn+1‖|2Hs(ξh) + ‖|c · n|1/2(yn+1)‖2Hs(ξh)

 .
(6.28)

In general, for SIPG, δ = 0 while for NIPG and IIPG, δ = 1.

Proof. Let ỹ be the elliptic projection of y, as we mentioned before. Let me write yn = y(tn),

ỹn = ỹ(tn). Define ξn = Yn
h − ỹn and ηn = yn − ỹn. As in [53], we subtract the semi-discrete

variational form from the full discrete one to obtain:

(
ξn+1 − ξn

∆t
, υ

)
Ω

+ aε(ξn+1, υ) + c(ξn+1, υ) (6.29)

=

(
∂yn+1

∂t
−

yn+1 − yn

∆t
, υ

)
Ω

+

(
ηn+1 − ηn

∆t
, υ

)
Ω

+ aε(ηn+1, υ) + c(ηn+1, υ). (6.30)

We begin with a definition θn+1 = ∂zn+1

∂t −
zn+1−zn

∆t . We choose υ = ξn+1. For the left-hand

side, we use coercivity of aε , the elliptic projection ỹ. Cauchy-Schwarz’s and Poincaré’s

inequalities are used for the first product at the right-hand side. Then, we proceed similar to
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the semi-discrete case to obtain:

1
2∆t

(‖ξn+1‖2L2(Ω) − ‖ξ
n‖2L2(Ω)) + κ‖ξn+1‖2ε

+
∑
E∈ξh

(
‖c0ξ

n+1‖2L2(E) +
1
2
‖|c · n|1/2(ξn+1)+‖2L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · n|1/2((ξn+1)+ − (ξn+1)−)‖2L2(∂−E\Γ) +

1
2
‖|c · n|1/2(ξn+1)+‖2L2(∂+E∩Γ)

)

≤ C‖ξn+1‖ε

‖θn+1‖L2(Ω) +

∥∥∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥∥∥
L2(Ω)


+
κ

8
‖ξn+1‖2ε + C‖ηn+1‖2L2(Ω) +

∑
E∈ξh

(
1
2
‖c0ξ

n+1‖2L2(E) + 2‖c0η
n+1‖2L2(E)

)

+
∑
E∈ξh

(
1
4
‖|c · n|1/2(ξn+1)+‖2L2(∂+E∩Γ) + ‖|c · n|1/2(ηn+1)+‖2L2(∂+E∩Γ)

)

+
∑
E∈ξh

(
1
4
‖|c · n|1/2((ξn+1)+ − (ξn+1)−)‖2L2(∂−E\Γ) + ‖|c · n|1/2(ηn+1)−‖2L2(∂−E\Γ)

)
.

Let me consider the term C‖ξn+1‖ε

(
‖θn+1‖L2(Ω) +

∥∥∥∥ ηn+1−ηn

∆t

∥∥∥∥
L2(Ω)

)
separately to facilitate the

procedure. As in [53], by Young’s inequality,

C‖ξn+1‖ε

‖θn+1‖L2(Ω) +

∥∥∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥∥∥
L2(Ω)

 ≤ κ

2
‖ξn+1‖2ε +

‖θn+1‖2L2(Ω) +

∥∥∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥∥∥2

L2(Ω)

 .
By Taylor expansion, we have

θn+1 =
1
∆t

∫ tn+1

tn
(t − tn)

∂2y
∂t2 dt, ηn+1 − ηn =

∫ tn+1

tn

∂η

∂t
dt.

Using Cauchy-Schwarz’s inequality, they can be written as

‖θn+1‖2L2(Ω) ≤
∆t
3

∫ tn+1

tn

∥∥∥∥∥∥∂2y
∂t2

∥∥∥∥∥∥2

L2(Ω)
dt, ‖ηn+1 − ηn‖2L2(Ω) ≤ ∆t

∫ tn+1

tn

∥∥∥∥∥∂η∂t

∥∥∥∥∥2

L2(Ω)
dt.

We substitute these into the inequality, arrange the terms and multiple the inequality by 2∆t

and sum from n = 0 to n = m − 1.
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‖ξm‖2L2(Ω) − ‖ξ
0‖2L2(Ω) +

3
4
κ∆t

m∑
n=1

‖ξn‖2ε

+ 2∆t
m∑

n=1

∑
E∈ξh

(
1
2
‖c0ξ

n‖2L2(E) + ‖|c · n|1/2(ξn)+‖2L2(∂−E∩Γ−)

)

+ 2∆t
m∑

n=1

∑
E∈ξh

(
1
4
‖|c · n|1/2((ξn)+ − (ξn)−)‖2L2(∂−E\Γ) +

1
4
‖|c · n|1/2(ξn)+‖2L2(∂+E∩Γ)

)

≤ C∆t2
∫ T

0

∥∥∥∥∥∥∂2y
∂t2

∥∥∥∥∥∥2

L2(Ω)
dt + C

∫ T

0

∥∥∥∥∥∂η∂t

∥∥∥∥∥2

L2(Ω)
dt + 2C∆t

m∑
n=1

‖ηn+1‖2L2(Ω)

+ 2∆t
m∑

n=1

∑
E∈ξh

(
2‖c0η

n+1|2L2(E) + ‖|c · n|1/2(ηn+1)+‖2L2(∂+E∩Γ) + ‖|c · n|1/2(ηn+1)−‖2L2(∂−E\Γ)

)
.

Then, we use error bounds given in [53] similar to the semi-discrete case to obtain the follow-

ing:

‖ξm‖2L2(Ω) +
3
4
κ∆t

m∑
n=1

‖ξn‖2ε

+ 2∆t
m∑

n=1

∑
E∈ξh

(
1
2
‖c0ξ

n‖2L2(E) + ‖|c · n|1/2(ξn)+‖2L2(∂−E∩Γ−)

)

+ 2∆t
m∑

n=1

∑
E∈ξh

(
1
4
‖|c · n|1/2((ξn)+ − (ξn)−)‖2L2(∂−E\Γ) +

1
4
‖|c · n|1/2(ξn)+‖2L2(∂+E∩Γ)

)

≤ Ch2 min(k+1,s)−2δ
(
‖|y(0)‖|2Hs(ξh) +

∥∥∥∥∥∂y
∂t

∥∥∥∥∥2

H1(0,T ;Hs(ξh))

)
+ C∆t2

∥∥∥∥∥∥∂2y
∂t2

∥∥∥∥∥∥2

L2(0,T ;L2(Ω))

+ 2∆tCh2 min(k+1,s)−2δ
m∑

n=1

(‖|yn+1‖|2Hs(ξh) +
∑
E∈ξh

‖|c0yn+1‖|2Hs(ξh) + ‖|c · n|1/2(yn+1)‖2Hs(ξh)).

The final result is obtained by the triangle inequality.

6.2.5 Stability/Convergence Estimates For The Full-discrete State (Crank-Nicolson)

Without going into details, the full discrete variational formulation by Crank Nicolson is A-

stable [29]. Under the smoothness assumption for the solution, we deduce that [53]

‖Yn
h − yn‖L2(Ω) ≤ O(hmin(k+1,s)−δ + ∆t2) (6.31)
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6.3 Error Analysis For The Adjoint Equation

6.3.1 Stability Estimates For The Adjoint (Backward Euler)

We have discretized the optimal control by DG in time and by θ-method as follows:

min
ũ0,...,ũN

N∑
i=0

∆t(
1
2

ỹT
i Mỹi − (Yd(t))T ỹi +

α

2
ũT

i Mũi), (6.32)

where ỹ0, . . . , ỹN is the solution of

(M + ∆tθ(D + C + R))ỹi+1 = (M − ∆t(1 − θ)(D + C + R))ỹi

+ ∆t(θF(ti+1) + (1 − θ)F(ti)) + ∆t(θMũi+1 + (1 − θ)Mũi), (6.33)

i = 0, . . . ,N − 1 and Mȳ(0) = Ȳ0. (6.34)

The corresponding adjoint equation by Backward Euler has been written as

(M + ∆tθ(D + C + R))T p̃N = −
∆t
2

(MỹN − (Yd(t))N), (6.35)

(M + ∆tθ(D + C + R))T p̃N = (M − ∆t(1 − θ)(D + C + R))T p̃N+1 − ∆t(Mỹi − (Yd(t))i),

(6.36)

i = N − 1, . . . , 0.

Then, we can obtain the variational from corresponding to the full discrete adjoint equation:Pn
h − Pn+1

h

∆t
, υ


Ω

+ aε(Pn
h, υ) + c(Pn

h, υ) = −(Yn
h − Yn

d , υ)Ω, for 0 ≤ n < NT − 1, ∀υ ∈ Dk(ξh),

pNT
h = pT .

Lemma 6.3.1 There exist constants C independent of h and ∆t such that for 0 ≤ m < NT

‖Pm
h ‖

2
L2(Ω) ≤ C

m−1∑
n=0

‖Yn
h − Yn

d ‖
2
L2(Ω) + ‖pT ‖

2
L2(Ω)

 , (6.37)

where C increases exponentially in time.

Proof. We consider the full discrete adjoint equation and choose υ = Pn
h.Pn

h − Pn+1
h

∆t
, Pn

h


Ω

+ aε(Pn
h, P

n
h) + c(Pn

h, P
n
h) = (Yn

h − Yn
d , P

n
h)Ω, for 0 ≤ n < NT − 1, ∀υ ∈ Dk(ξh),

(6.38)

pNT
h = pT . (6.39)
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As in the full discrete state equation, we use the bounds for c(·, ·), ellipticity of aε , Cauchy-

Schwartz and Young’s inequality to proceed as follows:

1
2∆t

(‖Pn
h‖

2
L2(Ω) − ‖P

n+1
h ‖

2
L2(Ω)) + κ‖Pn

h‖
2
ε

+
∑
E∈ξh

(
‖c0Pn

h‖
2
L2(E) +

1
2
‖|c · n|1/2(Pn

h)+‖2L2(∂−E∩Γ−)

)

+
∑
E∈ξh

(
1
2
‖|c · n|1/2((Pn

h)+ − (Pn
h)−)‖2L2(∂−E\Γ) +

1
2
‖|c · n|1/2(Pn

h)+‖2L2(∂+E∩Γ)

)
≤

1
2
‖Yn

h − Yn
d ‖

2
L2(Ω) +

1
2
‖Pn

h‖
2
L2(Ω).

We multiply the inequality by 2∆t and sum from n = m to n = 1 to obtain:

‖Pm−1
h ‖2L2(Ω) − ‖pT ‖

2
L2(Ω) + 2∆tκ

m∑
n=1

‖Pn−1
h ‖

2
ε

+ 2∆t
m∑

n=1

∑
E∈ξh

(
‖c0Pn−1

h ‖
2
L2(E) +

1
2
‖|c · n|1/2(Pn−1

h )+‖2L2(∂−E∩Γ−)

)

+ 2∆t
m∑

n=1

∑
E∈ξh

(
1
2
‖|c · n|1/2((Pn−1

h )+ − (Pn−1
h )−)‖2L2(∂−E\Γ) +

1
2
‖|c · n|1/2(Pn−1

h )+‖2L2(∂+E∩Γ)

)

≤ ∆t
m∑

n=1

‖Yn−1
h − Yn−1

d ‖2L2(Ω) + ∆t
m∑

n=1

‖Pn−1
h ‖

2
L2(Ω).

We need to eliminate ∆t
m∑

n=1
‖Pn−1

h ‖
2
L2(Ω) at the right-hand side. Thus, we apply the discrete

Gronwall inequality to obtain the final result.

6.3.2 Error Estimates For Adjoint (Backward Euler)

Lemma 6.3.2 (Backward Euler) For s > 3/2, suppose that p ∈ H1(0,T ; Hs(ξh), ∂2 p
∂t2 ∈

L2(0,T ; L2(Ω)). There exist a constant C independent of h and ∆t such that for all 0 ≤ m < NT

‖Pm
h − pm‖2L2(Ω) ≤ Ch2 min(k+1,s)−2δ

(
‖|p(T )‖|2Hs(ξh) +

∥∥∥∥∥∂p
∂t

∥∥∥∥∥2

H1(0,T ;Hs(ξh))

)
+ C∆t2

∥∥∥∥∥∥∂2 p
∂t2

∥∥∥∥∥∥2

L2(0,T ;L2(Ω))

+ 2∆tCh2 min(k+1,s)−2δ
m∑

n=0

(‖|pn‖|2Hs(ξh) +
∑
E∈ξh

‖|c0 pn‖|2Hs(ξh) + ‖|c · n|1/2(pn)‖2Hs(ξh))

(6.40)

Proof. Let p̃ be the elliptic projection of p. Denote pn = p(tn), p̃n = p̃(tn). Let ξn = Pn
h − p̃n
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and η = pn− p̃n. Similar to the convergence proof of the full discrete state equation, we obtain(
ξn − ξn+1

∆t
, υ

)
Ω

+ aε(ξn, υ) + c(ξn, υ) (6.41)

=

(
∂pn

∆t
−

pn − pn+1

∆t
, υ

)
Ω

+

(
ηn − ηn+1

∆t
, υ

)
Ω

+ aε(ηn, υ) + c(ηn, υ). (6.42)

We choose υ = ξn and proceed similar to the full-discreet state equation. At the end, we

multiple the inequality by 2∆t and sum from n = m to n = 0.

‖ξm‖2L2(Ω) +
3
4
κ∆t

m∑
n=0

‖ξn‖2ε

+ 2∆t
m∑

n=0

∑
E∈ξh

(
1
2
‖c0ξ

n‖2L2(E) + ‖|c · n|1/2(ξn)+‖2L2(∂−E∩Γ−)

)

+ 2∆t
m∑

n=0

∑
E∈ξh

(
1
4
‖|c · n|1/2((ξn)+ − (ξn)−)‖2L2(∂−E\Γ) +

1
4
‖|c · n|1/2(ξn)+‖2L2(∂+E∩Γ)

)

≤ Ch2 min(k+1,s)−2δ
(
‖|p(T )‖|2Hs(ξh) +

∥∥∥∥∥∂p
∂t

∥∥∥∥∥2

H1(0,T ;Hs(ξh))

)
+ C∆t2

∥∥∥∥∥∥∂2 p
∂t2

∥∥∥∥∥∥2

L2(0,T ;L2(Ω))

+ 2∆tCh2 min(k+1,s)−2δ
m∑

n=0

(‖|pn‖|2Hs(ξh) +
∑
E∈ξh

‖|c0 pn‖|2Hs(ξh) + ‖|c · n|1/2(pn)‖2Hs(ξh)).

The final result is obtained by the triangle inequality.

6.3.3 Stability/Convergence Estimates For The Full-discrete Adjoint (Crank-Nicolson)

Crank-Nicolson method is A-stable [50]. For the convergence, we consider the weak form of

the adjoint equation. Under the smoothness assumption for the solution, we deduce that [53]

‖Pn
h − pn‖L2(Ω) ≤ O(hmin(k+1,s)−δ + ∆t2). (6.43)

6.4 Error Estimates For The Control

6.4.1 Error Estimates For The Unconstrained Optimal Control

Lemma 6.4.1 (Backward Euler) The solutions to continuous and the discrete optimal control

problem satisfy

‖ū − ūn
h‖L2(0,T ;U) ≤

1
α
‖p(ū) − pn

h(ū)‖L2(0,T ;U) + ‖ū − q‖L2(0,T ;U). (6.44)
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Proof. The PDE constraint of the optimal control problem, e(y, u) = 0 give rise to a solution

operator U 3 u 7−→ S (u) ∈ Y . The reduced cost functional can be written as

j(u) = j(S (u), u) u ∈ U.

We can rewrite the optimal control problem as one piece

min j(u) u ∈ Uad = U.

The fact that the reduced cost functional is continuously differentiable enables us to note the

derivatives as [6]

j
′

(u)(δu) =

∫ T

0
(p, δu) − α

∫ T

0
(u, δu).

Since Uad is convex, we state the necessary optimality condition for this problem as follows:

j
′

(ū)(δu − ū) =

∫ T

0
( p̄ − αū, δu − ū) = 0 ∀δu ∈ Uad,

where ū is the optimal control. The sufficient optimality condition give rise to

j
′′

(ū)(δu, δu) ≥ α‖δu‖2L2(0,T ;U), ∀δu ∈ U.

Similar the continuous case, the discrete solution operator can be defined as [6] S n
h : U 7−→

Dk(ξh) to state the cost functional

jnh(u) = j(S n
h(u), u).

We obtain the necessary and sufficient optimality condition for the discretized problem as

follows:

jnh
′

(ūn
h)(δun

h − ūn
h) = 0 ∀δūn

h ∈ Uadh ,

jnh
′′

(ūn
h)(δun

h, δu
n
h) ≥ α‖δun

h‖
2
L2(0,T ;U), ∀δun

h ∈ Uadh .

Now let me start the proof by choosing any q ∈ Uad,h = Dk(ξh). Consider the following

α‖q − ūn
h‖

2
L2(0,T ;U) ≤ jnh

′′

(ūn
h)(q − ūn

h, q − ūn
h)

= jnh
′

(q)(q − ūn
h) − jnh

′

(ū)(q − ūn
h).

Since Uad = U and Uad,h = Uh, we obtain by [6]

jnh
′

(ū)(q − ūn
h) = 0 = jnh

′

(ūn
h)(q − ūn

h).
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Then,

α‖q − ūn
h‖

2
L2(0,T ;U) ≤ jnh

′

(q)(q − ūn
h) − j

′

(ū)(q − ūn
h).

Now, we use the relation between the solutions of the continuous and the discrete optimal

control problem [21]. Consider

j
′

(u)(φ) =

∫ T

0
(p(u) − αu, φ), jnh

′

(u)(φ) =

∫ T

0
(pn

h(u) − αu, φ), ∀φ ∈ Uad.

Then, we obtain

‖ j
′

(u)(φ)− jnh
′

(u)(φ)‖L2(0,T ;U) = ‖(p(u)−pn
h(u), φ)‖L2(0,T ;U) ≤ ‖(p(u)−pn

h(u)‖L2(0,T ;U)‖φ‖L2(0,T ;U).

which enables us to write

α‖q − ūn
h‖

2
L2(0,T ;U) ≤ ‖p(ū) − pn

h(ū)‖L2(0,T ;U)‖q − ūn
h‖L2(0,T ;U).

By cancelation,

‖q − ūn
h‖L2(0,T ;U) ≤

1
α
‖p(ū) − pn

h(ū)‖L2(0,T ;U).

Let q be the pointwise interpolant of ū [6]. Then, by the triangle inequality, we have

‖ū − ūn
h‖L2(0,T ;U) ≤

1
α
‖p(ū) − pn

h(ū)‖L2(0,T ;U) + ‖ū − q‖L2(0,T ;U).

Solutions to continuous and the discrete optimal control problem satisfy for backward Euler

and Crank-Nicolson, respectively

‖ū − ūn
h‖L2(0,T ;U) ≤ O(hmin(k+1,s)−δ + ∆t), (6.45)

‖ū − ūn
h‖L2(0,T ;U) ≤ O(hmin(k+1,s)−δ + ∆t2). (6.46)

6.4.2 Error Estimates For The Constrained Optimal Control

Lemma 6.4.2 (Backward Euler) The solutions to continuous and the discrete optimal control

problem satisfy

‖ū − ūn
h‖L2(0,T ;U) ≤

1
α
‖p(ū) − pn

h(ū)‖L2(0,T ;U). (6.47)
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Proof. By [60], for ū and p to be an optimal control and a weak solution of the adjoint

equation, respectively; the following variational inequality is satisfied∫ T

0
(p − αū)(u − ū)dt ≥ 0, ∀u ∈ Uad.

A necessary and sufficient conditions for the variational equation to be satisfied for almost

every (x, t) ∈ Ω × [0,T ] is given by [60]

ū(x, t) =


ua(x, t) if p − αū ≥ 0

[ua(x, t), ua(x, t)] if p − αū = 0

ub(x, t) if p − αū ≤ 0.

An equivalent condition can be written pointwisely in R:∫ T

0
(p − αū)(υ − ū) ≥ 0, ∀υ ∈ [ua(x, t), ub(x, t)], for a.e. x ∈ Ω × [0,T ].

Then, one can obtain the weak minimum principle [60]

min
υ∈[ua(x,t),ub(x,t)]

{(p − αū)υ} = (p − αū)ū,

or the minimum principle

min
υ∈[ua(x,t),ub(x,t)]

{
(pυ −

α

2
υ2

}
= pū −

α

2
ū2.

For α > 0 and ū is an optimal control of the problem if and only if ū = P[ua(x,t),ub(x,t)]
{

1
α p

}
,

is satisfied for a.e. x ∈ Ω × [0,T ]. Indeed, for real a ≤ b, P[ua(x,t),ub(x,t)] corresponds to the

projection of R onto [a, b],

P[a,b](u) := min{b,max{a, u}}.

Then, by [33]∥∥∥∥∥P[ua(x,t),ub(x,t)](
1
α

p) − P[ua(x,t),ub(x,t)](
1
α

pn
h)
∥∥∥∥∥

L2(0,T ;U)
≤

1
α
‖p(ū) − p(ū)n

h‖L2(0,T ;U),

we obtain the desired inequality.

In addition, as in the unconstrained case, solutions to continuous and the discrete optimal

control problem satisfy for Backward Euler and Crank-Nicolson, respectively,

‖ū − ūn
h‖L2(0,T ;U) ≤ O(hmin(k+1,s)−δ + ∆t), (6.48)

‖ū − ūn
h‖L2(0,T ;U) ≤ O(hmin(k+1,s)−δ + ∆t2). (6.49)
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CHAPTER 7

NUMERICAL RESULTS

7.1 Unconstrained optimal control problem

We consider the unconstrained optimal control problem on Ω = (0, 1). This problem is a

modified version of a steady diffusion convection equation given by [31] which is solved by

SIPG. At [30], a similar problem with ε = 10−4, α = 10−2 is solved by SUPG. If Dirichlet

boundary conditions are imposed strongly, a boundary layer at x = 1 is observed for the

solution of the state equation with u = 0. The weak treatment of the boundary conditions are

suggested. In addition, the error between the exact solution, which is obtained by a mesh size

h = 1/(5 · 210), and the approximate solution is computed by narrowing the spatial interval

in order to eliminate the boundary layer. We have constructed the following problem, an

unsteady diffusion convection equation. The only difference is the diffusion parameter which

is 10−9 at [30].

Example 7.1.1 We specify the source function f , the desired state yd and the data

f = 1, yd = 1, ε = 0.01, c = [1, 1], r = 0, α = 0.1.

We don’t know analytical solution of the optimal state, adjoint and control of this problem.

Thus, we have just analyzed the order of the optimal control problem for decreasing time

subintervals by fixing ∆x = 1/400. We have used piecewise quadratic polynomials. We show

the evolution of the values of the cost functional J(ȳh, ūh) for a sequence of uniformly refined

temporal interval Th, ∆t tending to zero. From this sequence, we compute the approximative

order of convergence with respect to time by the formula

order =
log |J(ȳ2h,ū2h)−J(ȳh,ūh)|

|J(ȳ4h,ū4h)−J(ȳ2h,ū2h)|

log 2
.
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The maximum number of Newton iterations and tolerance have been set as 20 and 1e − 8,

respectively. The penalty parameters have been chosen as in the [53]: 1 for NIPG and IIPG, 2

for SIPG. At the tables, IN and IC denotes the number of Newton iterations and the maximum

number of CG iterations, respectively.

SIPG NIPG IIPG
∆t IN IC Jh(yh, uh) order IN IC Jh(yh, uh) order IN IC Jh(yh, uh) order

1/100 3 39 0.1716519 - 3 39 0.1716666 - 3 39 0.1716639 -
1/200 3 32 0.1708871 - 3 32 0.1709018 - 3 32 0.1708991 -
1/400 3 35 0.1705129 1.03 3 34 0.1705276 1.03 3 34 0.1705249 1.03
1/800 2 31 0.1703279 1.02 2 31 0.1703426 1.02 2 31 0.1703400 1.02

1/1600 3 37 0.1702359 1.02 4 37 0.1702506 1.01 4 37 0.1702480 1.01
Table 7.1: Piecewise Quadratic Elements - Backward Euler - Newton-CG

SIPG NIPG IIPG
∆t IN IC Jh(yh, uh) order IN IC Jh(yh, uh) order IN IC Jh(yh, uh) order

1/100 2 24 0.1701756 - 2 24 0.1701902 - 2 23 0.1701876 -
1/200 2 28 0.1701523 - 2 28 0.1701669 - 2 27 0.1701643 -
1/400 2 27 0.1701464 1.98 2 27 0.1701611 2.01 2 27 0.1701584 1.98
1/800 2 28 0.1701449 1.98 2 27 0.1701596 1.95 2 27 0.1701569 1.98

1/1600 2 28 0.1701446 2.32 2 24 0.1701592 1.91 2 24 0.1701566 2.32
Table 7.2: Piecewise Quadratic Elements - Crank Nicolson - Newton-CG

For this problem, we have observed the temporal changes of the optimal control problem.

As we decrease the size of the temporal subinterval, we could have obtained a smaller value

of the optimal control problem as expected. We have used piecewise quadratic polynomials.

The solution profiles show that the gradient equation αu = p is satisfied for both of the

solutions with α = 0.1. The boundary layer at x = 1 is properly resolved. For backward

Euler and Crank-Nicolson, we have obtained the solution profiles. As one can observe by

the solution profiles, the results for SIPG, NIPG and IIPG are almost the same. These DG

methods are different from each other in terms of order and symmetry. Indeed, SIPG gives

the optimal solution, while NIPG and IIPG are the suboptimal methods. After having observe

the approximate solutions for 2D problem, some details are given related to the efficiency of

the DG methods.

The numerical order of the objective function is related to the order of the state and the control,

because the objective function is the sum of two terms: The difference between the state and

the desired state, and the control. The average order of backward Euler is 1.02 for for SIPG,

NIPG and IIPG. In case of Crank-Nicolson, average order is 2.09 for NIPG and IIPG, 1.96 for
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Figure 7.1: State solution, t=0.5, ∆x = ∆t = 1/400, Backward Euler
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Figure 7.2: Adjoint solution, t=0.5, ∆x = ∆t = 1/400, Backward Euler
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Figure 7.3: Control solution, t=0.5, ∆x = ∆t = 1/400, Backward Euler
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Figure 7.4: State solution, t=0.5, ∆x = ∆t = 1/400, Crank-Nisolson
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Figure 7.5: Adjoint solution, t=0.5, ∆x = ∆t = 1/400, Crank-Nisolson
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Figure 7.6: Control solution, t=0.5, ∆x = ∆t = 1/400, Crank-Nisolson
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SIPG which match with the orders of backward Euler and Crank-Nicolson. In addition, the

number of Newton and conjugate gradient equation for the backward Euler is more than the

ones for Crank-Nicolson. In Chapter 5, we have given details how to obtain Hessian-times-

vector Computation. To obtain the Hessian-Times-Vector, one needs to compute the state and

the adjoint. As we check the condition number of the matrices at the right-hand side of the

state and the adjoint, we see that the condition number for backward Euler methods is larger

than the one for Crank-Nicolson. Since, the number of iterations for CG method is related

to the condition number of the system matrix [47], we can deduce that the number of CG

iterations are affected by the mentioned condition numbers.
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7.2 Control constrained optimal control problem

We consider the constrained optimal control problem which is given [26]. At the article,

optimize-then-discretize approach has been preferred. The problem has been discretized by

characteristic finite element method in space and by backward Euler method in time in [26].

Example 7.2.1 The data has been set as c = [1, 0], r = 0, α = 1, u ≥ 0. The source function

f (x, t) and yd(x, t) has been chosen to satisfy the optimize-then-discretize scheme given in the

[26]. The analytical solutions of state, adjoint and control solutions are as follows:

y(x, t) = exp(−t) sin(2πx1) sin(2πx2),

p(x, t) = exp(−t)(1 − t) sin(2πx1) sin(2πx2),

u(x, t) = max(−p, 0).

The maximum number of iterations and the tolerance have been set as 100 and 1e − 16. We

have fixed ∆x = 1/40 and the temporal subintervals have been divided by half successively.

We show the profiles of the solutions for ε = 0.001 for linear piecewise basis polynomials.

The penalty term is defined as 2σ0
e SIPG and IIPG, while it is used as σ for NIPG. Indeed,

σ has been chosen as 1 for NIPG, while 3k(k + 1) has been used for SIPG and IIPG for.

The following solution profiles have been obtain by SIPG method in space and backward

Euler(left-hand side) or Crank-Nicolson(right-hand side) in time. In addition, we provide

the error between the exact and the numerical solutions for the state, adjoint and the control.

The solutions obtained by NIPG and IIPG are similar to the ones that we have attached to

the following pages. Although SIPG, NIPG and IIPG gives similar results, they differ in

some respects. In case of an steady diffusion convection reaction equation, if one discretizes

the problem in space by SIPG, then optimize-then-discretize and discretize-then-optimize

approaches commute. To explain this, let me mention the discretized weak formulation of

steady diffusion convection reaction equation for yh ∈ Yh and uh ∈ Uh.

aε(yh, υ) + c(yh, υ) + r(yh, υ) + b(uh, υ) = L(υ).

To simplify the notation, let me insert the convection and the reaction term into the bilinear

form ãh(·, ·). By discretize-then-optimize approach, the necessary and sufficient optimality

conditions are given as follows.

ãs
h(yh, υ) + bh(u, υ) = ls

h(υ), ∀υ ∈ Vh.
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ãs
h(ψh, ph) = −(yh − yd, ψh) ∀ψh ∈ Vh,

bh(wh, ph) + ω(uh,wh) = 0 ∀wh ∈ Uh,

By optimize-then-discretize approach,

ãs
h(yh, υ) + bh(uh, υh) = ls

h(υ), ∀υ ∈ Vh.

ãa
h(ph, ψh) = −(yh − yd, ψh)h ∀ψh ∈ Λh,

b(wh, ph) + ω〈uh,wh〉 = 0 ∀wh ∈ Uh

For SIPG, as
h(υh, ph) is equal to aa

h(ph, υh). However, for NIPG and IIPG, two methods are

not equivalent since

as
h(υh, ph) , aa

h(ph, υh).

If the problem is analyzed in space, then it can be seen that SIPG results in optimal conver-

gence, while suboptimal convergence is attained by NIPG and IIPG. To deal with this subop-

timal nature of the methods, superconvergence can be used. Inconsistency of the adjoint can

restated by using large penalty parameter. But then the condition number of the DG matrices

increases. By the superpenalization, optimize-then-discretize and discretize-then-optimize

approach lead to similar results when compared to the standart penalization. Thus, the ap-

proach in [11], different types of DG methods are compared for the elliptic model problem

with Dirichlet boundary conditions in terms of the spectral condition number of the stiffness

matrix, cost of storage, convergence rates and accuracy. In the article, traces are changed by

the fluxes and different numerical fluxes results in variations of DG methods. Thus, the ap-

proach in the article differs from our approach since we have used the trace values to connect

the neighboring elements in the mesh.
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Figure 7.7: State solution at t=0.5 with ∆x = ∆t = 1/40, Piecewise Linear Elements, Back-
ward Euler versus Crank-Nicolson

Figure 7.8: Adjoint solution at t=0.5 with ∆x = ∆t = 1/40, Piecewise Linear Elements,
Backward Euler versus Crank-Nicolson

Figure 7.9: Control solution at t=0.5 with ∆x = ∆t = 1/40, Piecewise Linear Elements,
Backward Euler versus Crank-Nicolson
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Figure 7.10: Error in the state solution at t=0.5 with ∆x = ∆t = 1/40, Piecewise Linear
Elements, Backward Euler versus Crank-Nicolson

Figure 7.11: Error in the adjoint solution at t=0.5 with ∆x = ∆t = 1/40, Piecewise Linear
Elements, Backward Euler versus Crank-Nicolson

Figure 7.12: Error in the control solution at t=0.5 with ∆x = ∆t = 1/40, Piecewise Linear
Elements, Backward Euler versus Crank-Nicolson
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SIPG NIPG IIPG
∆t IA Jh(yh, uh) order IA Jh(yh, uh) order IA Jh(yh, uh) order

1/10 7 1.243731 - 8 1.243724 - 6 1.243730 -
1/20 8 1.226632 - 7 1.226623 - 7 1.226632 -
1/40 7 1.221406 1.710 8 1.221395 1.708 8 1.221406 1.710
1/80 8 1.219645 1.569 8 1.219632 1.569 8 1.219645 1.569
1/160 8 1.218983 1.410 7 1.218968 1.410 9 1.218983 1.410

Table 7.3: Piecewise Linear Elements - Backward Euler - Active Set

SIPG NIPG IIPG
∆t IA Jh(yh, uh) order IA Jh(yh, uh) order IA Jh(yh, uh) order

1/10 7 1.237547 - 9 1.237530 - 7 1.237547 -
1/20 6 1.223427 - 7 1.223412 - 7 1.223428 -
1/40 8 1.219801 1.961 9 1.219785 1.961 7 1.219801 1.961
1/80 8 1.218848 1.928 9 1.218832 1.928 8 1.218848 1.928
1/160 8 1.218586 1.866 8 1.218571 1.867 10 1.218586 1.867

Table 7.4: Piecewise Linear Elements - Crank-Nicolson - Active Set

SIPG NIPG IIPG
∆t IA Jh(yh, uh) order IA Jh(yh, uh) order IA Jh(yh, uh) order

1/10 7 1.243718 - 7 1.243718 - 7 1.243718 -
1/20 7 1.226617 - 7 1.226615 - 6 1.226617 -
1/40 7 1.221386 1.709 8 1.221384 1.709 7 1.221386 1.708
1/80 8 1.219620 1.567 7 1.219618 1.567 8 1.219620 1.565
1/160 7 1.218954 1.408 9 1.218952 1.407 10 1.218954 1.408

Table 7.5: Piecewise Quadratic Elements - Backward Euler - Active Set

SIPG NIPG IIPG
∆t IA Jh(yh, uh) order IA Jh(yh, uh) order IA Jh(yh, uh) order

1/10 8 1.237501 - 8 1.237498 - 7 1.237501 -
1/20 6 1.223386 - 9 1.223384 - 6 1.223386 -
1/40 7 1.219764 1.962 8 1.219761 1.962 7 1.219764 1.962
1/80 8 1.218813 1.930 9 1.218810 1.930 8 1.218813 1.930
1/160 8 1.218553 1.868 9 1.218550 1.868 10 1.218553 1.868

Table 7.6: Piecewise Quadratic Elements - Crank-Nicolson - Active Set
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For this problem, we have observed the temporal changes of the optimal control problem,too.

As we decrease the size of the temporal subinterval, we could have obtained a smaller value

of the optimal control problem as expected. We have used piecewise linear and quadratic

polynomials. The numerical order of the objective function is related to the order of the state

and the control, because the objective function is the sum of two terms: The difference between

the state and the desired state, and the control. For the results obtained by using piecewise

linear polynomials, average order of backward Euler is approximately 1.563 for SIPG and

IIPG, 1.562 for NIPG. These orders are affected by the temporal subinterval ∆t and the mesh

size h. For Crank-Nicolson, orders are approximately 1.918 for SIPG and 1.919 for NIPG

and IIPG. As one can observe that, the numerical order of backward Euler is little larger than

the expected one. Actually, the a priori error analysis we have derived is valid for a general

unsteady diffusion convection reaction equation. For the convection dominated problems, the

solution contains boundary or interior layers and this may lead to pollute solution. However,

if we decrease the length of the temporal subinterval, then the orders tend to decrease as

expected. Our theoretical results confirm the numerical orders. The orders for piecewise

quadratic polynomials are similar to the ones obtained by the piecewise linear polynomials.

Indeed, the solution profiles are more similar to the exact solution in terms of the smoothness

as expected. The accuracy of this kind of problems can be increased by hp-adaptivity. We

have obtained valid numerical orders for both of the problem. The solution procedure with

hp-adaptivity is more meaningful and there are many examples in the literature that are solved

by hp-adaptivity.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this work, we have considered the linear-quadratic distributed optimal control problem

governed by the unsteady diffusion convection reaction equation. We have discussed the ex-

istence and uniqueness of the optimal control problem and the diffusion convection reaction

equation. Discontinuous Galerkin methods for one and two-dimensional problems have been

introduced. We have performed spatial discretization by three types of discontinuous Galerkin

method: nonsymmetric interior penalty Galerkin (NIPG) method, symmetric interior penalty

Galerkin (SIPG) method and incomplete interior penalty Galerkin (IIPG) method. For tem-

poral discretization, two implicit methods, backward Euler and Crank-Nicolson have been

used to discretize the semi-discrete problem in time. Then, we have converted the infinite-

dimensional problem into a finite-dimensional one.

We have analyzed the the problem by conducting the stability and convergence estimates for

the semi-discrete state equation. In addition, these estimates are provided for the full-discrete

state, adjoint equation and the control. We have determined the order of the methods in space

and in time.

We have solved a one-dimensional unconstrained distributed optimal control problem and a

two-dimensional constrained distributed optimal control problem. Solution profiles of the

state, adjoint and the control have been given and numerical orders of the optimal control

problem have been computed for both of the problems and they are confirmed by a priori

error analysis.

As a future work, we are going to focus on optimize-then-discretize and discretize-then-

optimize approaches and try to make these two approaches commutative. Two studies for

parabolic PDEs and Stokes flow problem are recently online [1, 57]. In these articles, a vari-
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ant of time integration techniques can enable these approaches to commute. Nicolson scheme

is suggested in [1] for temporal discretization of the optimal control problem governed by

parabolic PDEs.
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[34] M. Hinze and F. Tröltzsch. Discrete concepts versus error analysis in pde constrained
optimization. GAMM-Mitt, 33:148–162, 2010.

[35] M. Hinze, N. Yan, and Z. Zhou. Variational discretization for optimal control governed
by convection dominated diffusion equations. J. Comput. Math., 27:237–253, 2009.

[36] R. H.W. Hoppe. Numerical solution of parabolic optimal control problems, Summer
school optimal control of pdes, Cortona, Italy, 2010.
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