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Committee Member 4 Affiliation

Assist. Prof. Ceren Vardar Acar, ETU
Committee Member 5 Affiliation

Date:

∗ Write the country name for the foreign committee member.



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ALPEṘINKAYA
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ABSTRACT

OPTION PRICING WITH FRACTIONAL BROWNIAN MOTION

İnkaya, Alper

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

September 2011, 97 pages

Traditional financial modeling is based on semimartingale processes with stationary and in-

dependent increments. However, empirical investigations on financial datadoes not always

support these assumptions. This contradiction showed that there is a needfor new stochastic

models.Fractional Brownian motion (fBm) was proposed as one of these models by Benoit

Mandelbrot.FBmis the only continuous Gaussian process with dependent increments. Corre-

lation between increments of afBmchanges according to its self-similarity parameterH. This

property offBmhelps to capture the correlation dynamics of the data and consequently obtain

better forecast results. But for values ofH different than 1/2, fBmis not a semimartingale and

classical It̂o formula does not in that case. This gives rise to need for using the white noise

theory to construct integrals with respect tofBm and obtain fractional It̂o formulas. In this

thesis, the representation offBmand its fundamental properties are examined. Construction of

Wick-Itô-Skorohod (WIS) and fractionalWISintegrals are investigated. An Itô type formula

and Girsanov type theorems are stated. The financial applications offBmare mentioned and

the Black&Scholes price of a European call option on an asset which is assumed to follow a

geometricfBm is derived. The statistical aspects offBmare investigated. Estimators for the

self-similarity parameterH and simulation methods offBm are summarized. Using theR/S
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methodology of Hurst, the estimations of the parameterH are obtained and these values are

used to evaluate the fractional Black&Scholes prices of a European call option with different

maturities. Afterwards, these values are compared to Black&Scholes price of the same option

to demonstrate the effect of long-range dependence on the option prices. Also, estimations

of H at different time scales are obtained to investigate the multiscaling in financial data. An

outlook of the future work is given.

Keywords: fractional Brownian motion, long-range dependence, option pricing, Hurst param-

eter, self-similarity
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ÖZ

KEṠIRLİ BROWN HAREKEṪI İLE OPṠIYON FİYATLAMASI

İnkaya, Alper

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Ortak Tez Ÿoneticisi : Yar. Doç. Dr.Yeliz Yolcu Okur

Eylül 2011, 97 sayfa

Geleneksel finansal modelleme bağımsız durăgan semimartingale süreçleriüzerine kurulmuştur.

Ancak, finansal verïuzerinde yapılan çalışmalar buönkabulleri her zaman desteklememiştir.

Bu durum, yeni finansal modellere olan ihtiyacı ortaya koymuştur. KesirliBrown hareketi

(kBh) Benoit Mandelbrot tarafından bu yeni modellerden biri olarakönerilmiştir. KBh’nin

artımları arasındaki korelasyon, kendine benzerlik parametresiH’nin değerine g̈ore dĕgişir.

KBh, H’nin 1/2’den b̈uyük dĕgerleri için uzun-d̈onemli băglılık gösterir. Buözellik verinin

korelasyon dinamiklerinin yakalanmasında kullanılabilmekte ve böylece daha iyïong̈orü sonuçları

elde edilmektedir. Bu tezde,kBh’nin temsili ve temelözellikleri incelenmiştir.KBh’ye göre

Wick-Itô-Skorohod (WIS) ve kesirli WIS integrallerinin yapılandırılması araştırılmıştır. Bu

integraller için It̂o tarzı form̈uller ve Girsanov tarzı teoremler ifade edilmiştir. Finansal uygu-

lamalardafBmkullanımıözetlenmiş ve Avrupa tipi alım opsiyonu için kesirli Black&Scholes

fiyatı elde edilmiştir.KBh’nin istatistikselözellikleri incelenmiştir. Kendine-benzerlik parame-

tresiH için tahmin ÿontemleri vekBh için simülasyon ÿontemleriözetlenmiştir.R/Syöntemi

uygulanmış ve elde edilenH tahmin dĕgerleri Avrupa tipi alım opsiyonunun kesirli Black&Scholes

fiyatının elde edilmesinde kullanılmıştır. Daha sonra elde edilen bu fiyatlar Black&Scholes

fiyatları ile karşılaştırılarak opsiyon fiyatlarında uzun dönem băglılık etkisi gösterilmiştir.
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Ayrıca farklı zaman̈olçekleri için H parametresi tahminleri elde edilmiş ve finansal verinin

çokluölçeklenme ihtimaline dĕginilmiştir. Gelecekteki çalışmalar için bir bakış açısı verilmiştir.

Anahtar Kelimeler: kesirli Brown hareketi, uzun dönem băglılık, opsiyon fiyatlama, Hurst

parametresi, kendine benzerlik
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CHAPTER 1

Introduction

Applying methods of physics to financial markets is a well-established paradigm since the

work of Bachelier [1] and the proof of Einstein [16] on the distribution of Brownian mo-

tion. For more than a hundred years, whenever there is a financial concept that is really

hard to explain or model, a very sophisticated method of physics is chosen and adopted to

financial modeling. Recently, quantum theory and chaos theory have drawn the attention of

financial analysts. Turbulence phenomena has been used to model pricedynamics, and hence

the fractals has been shown to exist in the financial markets [27]. A fractal is “a rough or

fragmented geometric shape that can be split into parts, each of which is (atleast approx-

imately) a reduced-size copy of the whole”, by Benoit Mandelbrot’s words [28]. Fractals

are best known with their self-similarity property. When you look at a fractal, at different

scales, you see smaller shapes that is similar to what you saw at a larger scale. This is called

self-similarity. After the fractals widely known, many natural phenomena hasbeen shown to

exhibit self-similarity. Trees, galaxies, lungs, brain, etc. all shown to have a self-similarity

index which characterizes the behavior of the process. When statistically investigated, self-

similarity shows itself in the sense of finite dimensional distributions. Most of the stochastic

processes used in financial modeling are self-similar in the sense that they generate variance

self-similarly, for different time scales. For example, the most widely known stochastic pro-

cess, Brownian motion is12 self-similar, that is, generating a variance proportional to square

root of the time it has been observed. Sharing the same property with fractals, therefore,

stochastic processes can be regarded as fractals, as shown, again,by Mandelbrot [32].

On the other hand, a hydrogeologist named Edwin Hurst, showed in his study of the Nile River

[25] that the cycle of floods and dryness exhibits a specific type of behavior which has not been

considered then. His work suggested a different covariance structure than that of Brownian
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motion. After this work, Mandelbrot tried to use this behavior to model financial data, and

the fractional Brownian motion (fBm) has been defined [29]. The self-similarity parameter

was called the name of the hydrologist Hurst. The most important property offBm is the

variability of its self-similarity parameter,H. According to the value of this parameter,fBm

exhibits positive or negative correlation between increments, corresponding to ‘persistent’ and

‘antipersistent’ cases respectively. This parameter is used to capture thecorrelation dynamics

of the process to be modeled. IfH = 1
2, fBmbecomes the standard Brownian motion. When

persistent,fBm is said to exhibit long-range dependence.

It is a well known empirical fact in financial markets that the correlation between increments

do not decay at a rate of a Markov process. Some analysts argued thatthe noise in the data

generated this correlation structure and filtering may help to overcome this difficulty. But

filtering may also cause some information of the data to be ignored, sofBm would be used

to model this characteristic of the market data. However, usingfBm as a tool is not as easy

as the standard Brownian motion. Especially, for financial economics, it was not considered

as a proper tool because it is not a semimartingale whenH , 1
2, therefore it is possible

to generate arbitrage in a fractional Brownian market. Classical Itô type formulas does not

work because of its interesting variational properties. It is stationary butits increments are

not independent and therefore it is not a Lèvy process, but it is Gaussian and its distribution

is characterized only by its first and second moments. This makesfBm the only continuous

Gaussian process with long-range dependence and the only alternativeto properly model the

dependence between observations.

After almost a decade,fBm had drawn the attention of the time series analysts. Granger

[20] and Hosking [23] defined the discrete analog of thefBm as the fractionally integrated

ARMA, ARFIMA or FARIMA processes. ARFIMA processes capturesthe slow decay rate

of correlations between increments with only one additional parameter:d. The fractionally

integrated process was constructed upon the integrated processes, ARIMA, defined by Box

and Jenkins [5]. In their setting,d, an integer, is the number of differencing needed to obtain

a stationary process from a non-stationary process. For fractionally integrated series,d can

be noninteger, and this is termed as the fractional differencing. ARFIMA models gave better

forecast results especially in the long-term. Many researchers found the evidence of long-

range dependence in foreign exchange markets [9], commodity prices [27], and electricity

prices [43].
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In order to usefBm in financial modeling, one must define an Itô type formula and a risk-

neutral measure, as done in the Brownian motion case. These contributionsare made mainly

by Øksendal and Hu in [34] and [24], Elliott and Van der Hoek [17] andNorros and Valkeila

[32]. In this work, we mainly follow their approximations to price an option in fractional

Brownian markets. To mathematically definefBm, some difficult mathematical concepts such

as the Gaussian white noise theory, fractional calculus are needed. Malliavin calculus is

used to obtain further results. But in this thesis, we will not use Malliavin calculus, so the

definitions and formulas are results of fractional calculus used in the Gaussian white noise

theory [22]. Using the fractional white noise calculus, the price of a European call option is

presented.

From a statistical point of view, the long-range dependence property is not easy to estimate,

especially in the time domain, because it is defined as an asymptotic behavior andone must

find a cutoff point in estimation procedure. Long computational time needed for precision.

An intuitive estimator of long-range dependence, and also the first one, istheRescaled Range

statistic of Hurst. Hurst’s discovery of the long-range dependence is stillused as a basic tool to

obtain a first idea about the long-range dependence characteristic of aprocess. Another useful

tool is spectral analysis. In the spectral domain, the long-range dependence can be detected

by investigating the behavior of the spectral density for the zero frequency components. This

is the main reason why fast Fourier transform is widely used for estimatingH and simulating

fBmpaths.

In Chapter 2, we give the definition offBm and its properties which are basically the long-

range dependence, self-similarity, and path differentiability.

In Chapter 3, basic tools of white noise analysis that is used in construction of fBm and

the definition of integrals with respect tofBm as defined by Øksendal and Biagini in [34]

summarized. We present the Itô type formula for the Wick-Ito-Skorohod (WIS) integral. Then

we will mention briefly about the fractional white noise theory and Skorohodintegrability as

used in the definition of fractionalWIS integrals in [24]. Then the pathwise integrals with

respect tofBmis defined and It̂o formula for forward pathwise integral are given. The question

of arbitrage is addressed and examples of arbitrage portfolios are presented.

In Chapter 4, some of the financial applications usingfBm are mentioned. A modification

of the Black&Scholes formula to thefBm case is given where the main difference is the

3



assumption that the underlying asset follows a geometric fractional Brownian motion, that is:

dS(t) = µS(t)dt+ σS(t)dBH(t),

whereBH(t) is a fBm.

In Chapter 5, the statistical characteristics offBmand ARFIMA processes, the discrete analog

of fBm, are given and its characteristics are presented. Also, how these characteristics can be

used in estimation and simulation are summarized. Two of the estimation procedures, peri-

odogram and R/S analysis are applied to Dow Jones Industrial Average Index and exchange

rate series and results are used to demonstrate the effect of long-range dependence on the

option prices.

In Chapter 6, we give a brief conclusion and outlook of our study.
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CHAPTER 2

Fractional Brownian motion and its properties

2.1 Definition and Properties

We begin with the definition and basic properties of the fractional Brownian motion (fBm).

Some of these properties differ from the properties of the standard Brownian motion and this

situation makes it harder to use it as a tool in financial mathematics. The stochastic integral

(moving average) representation is first provided by Mandelbrot and Van Ness [29].

Definition 2.1.1 Let H be a constant belonging to(0,1). A fractional Brownian motion (fBm)

BH = (BH(t))t>0 with Hurst index H is a centered Gaussian process with covariance function

E[B(H)(t)B(H)(s)] =
1
2
(
t2H + s2H − |t − s|2H)E[(BH(1))2] (2.1)

For H = 1
2, thefBm is a standard Brownian motion as can be seen by lettingH = 1

2

E[B1/2(s)B1/2(t)] =
1
2
(
t + s− |t − s|) = min(t, s).

A standardfBm BH has the following properties:

1. BH(0) = 0 andE[B(H)(t)] = 0 a.s. for allt > 0.

2. BH has homogeneous increments, i.e.,B(H)(t + s) − B(H)(s) has the same law ofBH(t)

for s, t > 0.

3. BH is Gaussian withE[(BH(t))2] = t2H for all H ∈ (0,1) andt ≥ 0.

4. BH has continuous trajectories.
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Figure 2.1: Simulated path offBmwith H = 0.3

As known, the distribution of a Gaussian process is determined by its mean andcovariance

structure. Since we know thatfBm is Gaussian, its mean and the specific covariance structure

determines a unique Gaussian process.

The dependence between the increments of afBm may bring to one’s mind the questions

about stationarity offBm. In order to see the stationarity, it is enough to carry out a simple

calculation:

E
[(

(BH(t + h) − BH(h))(BH(s+ h) − BH(h))
)]
= E

[
BH(t + h)BH(s+ h)

] − E
[
BH(t + h)BH(h)

]

−E
[
BH(s+ h)BH(s+ h)

]
+ E
[
(BH(h))2]

=
1
2
[(

(t + h)2H + (s+ h)2H − |t − s|2H) −
(
(t + h)2H + h2H − t2H)

−((s+ h)2H + h2H − s2H) + 2h2H]E[(BH(1))]

=
1
2
(
t2H + s2H − |t − s|2H)E[(BH(1))]

= E[BH(t)BH(s)],

with s, t,h > 0. Hence we obtain that [BH(t + h) − BH(h)] = [BH(t)] in distribution. ThefBm

has stationary increments which are not independent. According to Cont and Tankov,fBm is

a self-similar Gaussian process but not a Lèvy process because it does not have independent

6



increments [11].

2.1.1 Stochastic integral representation

This representation offBm gives it the namefractional because of the notion of fractional

calculus used in the stochastic integral. In [29] it is proved thatBH(t) defined as follows is a

fBmwith Hurst indexH ∈ (0,1):

BH(t) = C(H)
∫

R

(
(t − s)

H− 1
2

+ − (−s)
H− 1

2
+

)
dB(s) (2.2)

= C(H)
( ∫ 0

−∞
((t − s)

H− 1
2

+ − (−s)
1
2
+)
)
dB(s) +

∫ +∞

0

(
(t − s)

H− 1
2

+ − (−s)
H− 1

2
+

)
dB(s)

= C(H)
( ∫ 0

−∞
((t − s)H− 1

2 − (−s)H− 1
2 )dB(s) +

∫ t

0
(t − s)H− 1

2 dB(s)
)
, (2.3)

where

C(H) = E[(BH(1))2]1/2[
∫ 0

−∞

(
(t − s)H−1/2 − (−s)H−1/2)2ds+

1
2H
]−1/2

and (x)+ = max{x,0}. According to this definition, we can obtain the variance offBm, using

the Itô isometry :

E[(BH(t))2] = C(H)2E[
( ∫

R

(
(t − s)

H− 1
2

+ − (−s)
H− 1

2
+

)
dB(s)

)2]

= C(H)2E[
∫

R

(
(t − s)

H− 1
2

+ − (−s)
H− 1

2
+

)2
ds]

= C(H)2
∫

R

[(t − s)
H− 1

2
+ − (−s)

H− 1
2

+ ]2ds.

Hence, by the change variabless= tu , we obtain

C(H)2
∫

R

[tH−
1
2

(
(1− u)

H− 1
2

+ − (−u)
H− 1

2
+ ]2tdu = C(H)2 t2H

t

∫

R

[(1 − u)
H− 1

2
+ − (−u)

H− 1
2

+ ]2tdu

= t2HE[(BH(1))2].

The kernel in 2.2 is obtained by using fractional calculus. For preliminary information on

fractional calculus, we refer to Appendix. Using the stochastic integral representation, one

can show that the variance offBmsatisfies (2.1):

E[|BH(t) − BH(s)|2] = C(H)2E
[ ∫

R

[(t − u)
H− 1

2
+ − (−u)

H− 1
2

+ − (s− u)
H− 1

2
+ − (−u)

H− 1
2

+ ]dB(u)
]2

= C(H)2E
[ ∫

R

[(t − u)
H− 1

2
+ − (s− u)

H− 1
2

+ ]2du
]
,
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by the change of variablesu = u
′
+ s, we obtain

= C(H)2
∫

R

[(t − s− u
′
)
H− 1

2
+ − (−u)

H− 1
2

+ ]2du
′

Then by change of variables|t − s|v = u
′
,

C(H)2 |t − s|2H

|t − s|

∫

R

[(1 − v)
H− 1

2
+ − (−v)

H− 1
2

+ ]2dv|t − s| = |t − s|2H
∫

R

[(1 − v)
H− 1

2
+ − (−v)

H− 1
2

+ )]dv

= |t − s|2HE[(BH(1))2].

In the beginning the termE[(BH(1))2] seems a bit unnecessary. From self-similarity property,

one may think thatE[(BH(1))] = 12H = 1. However, the self-similarity does not imply

anything on the variance of the process. Let us consider that we constructed afBm B̂H(t)

with a variance ofσ2
B̂H(1)

= 10. This only magnifies the variance of the process, but now the

variance ofBH(1) will not be equal to 1, but instead it will equal to 10. From self-similarity

we knowBH(t) = tHBH(1) so the variance of the process will always depend on the variance

of BH(1). Keeping this in mind, under the assumptionBH(1) = 1, one obtains the following

covariance function for astandard fBm:

E[BH(t)BH(s)] =
1
2

[t2H + s2H − |t − s|2H]

Although the representation (2.2) is the most used one, it is not unique. It isshown in [40]

that ∫ ∞

−∞
[a
(
(t − x)H+1/2

+ − (−x)H−1/2
+

)
+ b
(
(t − x)H+1/2

− − (−x)H−1/2
−

)
]dB(x)

is a fBmup to a constant.

2.1.2 The representation of fBm over a finite interval

The stochastic integral, or moving average, representation offBm is based on the integration

over the whole real line. By the following approach in [32], afBmcan be represented over a

finite interval using the kernelKH(t, s) in:

BH(t) :=
∫ t

0
KH(t, s)dB(s), t > 0. (2.4)

Here,
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1. ForH > 1/2:

• KH(t, s) = CH s1/2−H
∫ t

s
|u− s|H−3/2uH−1/2du

wherecH = [H(2H − 1)/β(2− 2H,H − 1/2)]1/2 andt > s.

2. ForH < 1/2:

• Kt,s = bH[( t
s)

H−1/2(t − s)H−1/2 −
(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−1/2uH−3/2du

)
]

with bH = [2H/((1− 2H)β(1− 2H,H + 1/2))]1/2 andt > s,

whereβ(·, ·) denotes the Beta function. For the proof, see [32]. Again, the effect of the

parameterH can be seen on the kernels.

2.1.3 Long-range dependence

The most important property offBmis the ability to change its covariance structure depending

on the parameterH. For H = 1/2, BH(t) is a standard Brownian motion , which is a process

with independent increments. But forH , 1/2, the increments offBmare not independent. In

order to see this, we compute the covariance betweenBH(t+h)−BH(t) andBH(s+h)−BH(s)

with s+ h ≤ t andt − s= nh is

E[(BH(t + h) − BH(t))(BH(s+ h) − BH(s))] =
1
2

[(t − s+ h)2H + (t − s− h)2H − 2(t − s)2H]

=
1
2

[((n+ 1)h)2H + ((n− 1)h)2H − 2(nh)2H],

so we have

E[(BH(t + h) − BH(t))(BH(s+ h) − BH(s))] =
h2H

2
[(n+ 1)2H + (n− 1)2H − 2n2H].

As can be seen,fBm has positively correlated increments whenH > 1/2 and negatively

correlated increments whenH < 1/2. These correspond to the cases known as the ‘persis-

tence’ and ‘antipersistence’ cases respectively. Many natural phenomena are shown to exhibit

’persistence’, that is, having positive correlation between increments. This property can be

interpreted as some kind of feedback occuring in the process.

Long-range dependence can be very useful in empirical studies. Thisproperty can be used to

capture the long-term behavior of stock markets. Long-range dependence best realized in the

correlation structure and the spectral density of the process. In this section , we present the

definition based on correlations, in [3].
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Figure 2.2: Simulated path offBmwith H = 0.7

Definition 2.1.2 A stationary process Xn exhibits long-range dependence (or long memory)

if the autocovariance functionρ(n) := cov(Xk,Xk+n) satisfies

limn→∞
ρ(n)
cn−α

= 1 (2.5)

for some constant c andα ∈ (0,1).

In the presence of long-range dependence, the dependence between Xk+n andXk decays slowly

asn increases and
∞∑

n=1

ρ(n) = ∞, (2.6)

We can show that thefBmexhibits long-range dependence using its covariance function. The

covariance between increments is,

ρ(n) := E[(BH(t + h) − BH(t))(BH(s+ h) − BH(s))]

=
h2H

2
[(n+ 1)2H + (n− 1)2H − 2n2H].

Using the expansions

(1+ x)α = 1+ αx+
α(α − 1)x2

2
+ ...

(1− x)α = 1− αx+
α(α − 1)x2

2
− ...

10



we obtain

ρ(n) = 1+ 2H
1
n
+

2H(2H − 1)
2

1
n2
+ 1+ −2H

1
n
+

2H(2H − 1)
2

1
n2
+ ....

¾
n2H

2
(2H(2H − 1))

1
n2
= n2H−2(H(2H − 1)).

So, the definition of long-range dependence holds forfBmwith c = H(2H−1) andα = 2−2H.

We obtain

1. ForH > 1/2,
∑∞

n=1 ρH(n) = ∞.

2. ForH < 1/2,
∑∞

n=1 |ρH(n)| < ∞.

The finiteness property for the sum of correlations does not explain the correlation function

of fBm. WhenH < 1/2, the correlations alternate in sign and in the limit they sum up to a

constant. This situation leads to the mean-reverting property offBmwhenH < 1/2.

2.1.4 Self-similarity

The term ‘self-similar’ was basically used for defining a fractal. Until recently, this term

was not used in statistics. But later, fractal processes have been usedto model many natural

phenomena such as the organization of cells, metal surfaces, lightening strikes, etc. and so

’self-similarity’ has become a well known term. For stochastic processes, itis defined in

the finite dimensional distributions sense. There is a set of self-similar processes used in

modeling. In fact, in statistical terms, a process must be self-similar to be used easily in

modeling. Self-similar processes are invariant under scaling of time and space. Another

widely used set of processes consistsα-stable processes.α-stable processes also can exhibit

both persistence and ‘antipersistence’. When a stationary process is self-similar with indexH

and isα-stable, then the existence of moments limits the values ofα andH. For 0< α ≤ 2,

H ∈ (0,1/α) if α < 1 andH ∈ (0,1] if α ≥ 1. For a givenH, there is a single GaussianH self-

similar process and that isfBm. Standard Brownian motion is the case withα = 2, see[40].

There is also an important relation between the statistical fractal dimension of aprocess and

its self-similarity parameter.

Definition 2.1.3 The real-valued process X(t), t ≥ 0 is self-similar with index H> 0 if for all

a > 0 the finite-dimensional distributions of X(at), t ≥ 0 are identical to the finite-dimensional
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distributions of aHX(t), t ≥ 0; i.e., if for any d≥ 1, t1, t2, ...., td ≥ 0 and any a> 0,

(X(at1),X(at2), . . . ,X(atd)) =d (aHX(t1),aHX(t2), . . . ,aHX(td)). (2.7)

The quantityD = 1/H is called thestatistical fractal dimension of X, which is one of the

basic connections between fractals and statistics. Standard Brownian motionis H = 1
2 self-

similar. Using the stochastic integral representation offBm it can be shown thatfBm is H

self-similar. Denoting the kernel in (2.2) as
∫
R

(
(t − s)H−1/2

+ − (−u)H−1/2
+

)
= lH(t,u), we can

write

BH(at) :=
∫

R

lH(at,u)dB(u) = aH−1/2
∫

R

lH(t,a−1u)dB(u),

using the substitutionv = ua−1, we obtain

aH−1/2
∫

R

lH(t, v)dB(av) = aH−1/2a1/2
∫

R

lH(t, v)dB(v)

= aHBH(t),

where the last equality follows from the12 self-similarity of Brownian motion.

It is also possible to see the self-similarity by using the covariance function offBm:

E[BH(at1)BH(at2)] =
1
2

[(at1)2H + (at2)2H − |at1 − at2|2H]

=
a2H

2
[(t1)2H + (t2)2H − |t1 − t2|2H]

= a2H
E[BH(t1)BH(t2)].

In distribution function, self-similarity can also be seen:

Ft(x) = P(BH(t) ≤ x)

= P(tHBH(1) ≤ x)

= F1(
x

tH
).

Therefore, once we know the distribution of a self-similar process over the unit interval, it is

possible to obtain the distribution of the process over the whole real line.

There is a strong relation between the self-similarity parameterH and the Ḧolder exponent.

It was Mandelbrot’s work that tied these two exponents together. Hölder continuity offBm

is needed to have a continuous version of it by the Kolmogorov-Chentsov theorem. The

following theorem in [14] gives the Ḧolder continuity property offBm:
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Theorem 2.1.4 Let H ∈ (0,1). ThefBm BH admits a version whose sample paths are almost

surely Hölder continuous of order strictly less than H.

The Hölder continuity offBmfollows from

E[|BH(t) − BH(s)|α] = Cα|t − s|Hα,

whereα > 0 andCα is a constant. For the proof of theorem we refer to [14].

2.1.5 Path differentiability

One needs stochastic calculus to define an integral with respect tofBmand this is because the

fBmsample path is not differentiable. The following lemma in [29] states this property.

Lemma 2.1.5 Let H ∈ (0,1). The fBm sample path BH(·) is not differentiable. For every

t0 ∈ [0,∞) lim supt→0 |
BH(t)−BH(t0)

t−t0
| = ∞ with probability one.

Proof. We basically follow the proof in [29]. Let us assume thatBH(0) = 0. Then define the

random variable

Rt,t0 :=
BH(t) − BH(t0)

t − t0

that represents the incremental ratio ofBH. Using the self-similarity property offBm, we can

see that

Rt,t0 ,
(t − t0)H(BH(1))

(t − t0)
=d (t − t0)H−1(BH(1)),

where, denotes the equality in distribution. If we define the event

A(t, ω) := sup
0≤s≤t

|BH(s)|
s
> d,

then, for sequence (tn)n∈N decreasing to zero, we haveA(tn, ω) ⊇ A(tn+1, ω) and

A(tn, ω) ⊇ (|B
H(tn)
tn
| > d) , (|BH(1)| > t1−H

n d)

from the self-similarity offBm. Consider the sequencetn = t − t0 > 0 going to zero as

t0 → t. And since the probability of the last term tends to 1 asn→ ∞, BH(t) does not have

differentiable sample paths. ¥
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2.1.6 FBm with H , 1
2 is not a semimartingale

In financial mathematics, the most important property which is required for a process in order

to use it to model the price process of a financial asset is that itshould notgenerate arbitrage.

Arbitrage in fBm markets will be defined in chapters that follow. In general, the termfree

lunch, that is, a portfolio of assets that has no intrinsic value at the beginning andhas positive

value at a distinct future time with positive probability, is used to define arbitrage. It is known

that if the underlying price process is modeled by using a semimartingale, there isno arbitrage

opportunities in the market. But it is shown in [38] thatfBm is not a semimartingale. In order

to see it, we begin with the definition of a semimartingale. By Theorem 9 in [37], every

semi-martingale is a decomposable process such that

S(t) = S(0)+ M(t) + A(t),

where M(0) = A(0) = 0, M is a locally square integrable martingale, andA is a right-

continuous process with left limits (cádĺag) with paths of finite variation. The fact thatfBm is

not a semi-martingale unlessH = 1/2 is proved by using thep-variation ofBH.

Let (X(t))t∈[0,T] be a stochastic process and consider a partitionπ = 0 = t0 < t1 < ... < tn = T.

Put

Sp(X, π) :=
n∑

i=1

|X(tk) − Xtk−1 |p.

Thep-variation ofX over the interval [0,T] is defined as

Vp(X, [0,T]) := sup
π

Sp(X, π)

whereπ is the partition defined above. The index ofp-variation of a process is defined as

I (X, [0,T]) := inf {p > 0;Vp(X, [0,T]) < ∞}.

Now let us define, forp > 0,

Yn,p = npH−1
n∑

i=1

|BH(
i
n

) − BH(
i − 1

n
)|p.

Using the self-similarity property we obtain,

Yn,p , Ỹn,p = n−1
n∑

i=1

|BH(i) − BH(i − 1)|p

and by Ergodic theorem (see [38] for references),

Ỹn,p = n−1
n∑

i=1

|BH(i) − BH(i − 1)|p
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converges toE[|BH(1)|p] in L1 asn tends to infinity. Using these equalities, it follows that

Vn,p =

n∑

i=1

|BH(
i
n

) − BH(
i − 1

n
)|p

,

∑
i=1 n|BH(i) − B(i − 1)|p

npH
.

So, whenpH > 1, Vn,p→ 0 in probability and

whenpH < 1, Vn,p→ ∞ in probability. Therefore, we can see that:

I (BH , [0,T]) =
1
H

If BH(t) were a semimartingale, it would have a Doob-Meyer decomposition. The problem

is that, this decomposition consists of a continuous local martingale and a finite variation

process, but thefBmhas zero variation ifH > 1/2 and infinite variation ifH < 1/2. This con-

tradicts the usual assumptions of a semimartingale and thereforefBmis not a semi-martingale.

This non-semimartingale property offBmmakes it difficult to define an integral with respect

to it. Classical It̂o type integration is well-defined for semi-martingales. As a consequence,

we need different approaches for the construction of stochastic integrals with respect to fBm.

In the next chapter, we will summarize some of these integral definitions.
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CHAPTER 3

Integration with respect to fBm

As we saw,fBm is not a semimartingale and it has zero quadratic variation whenH > 1/2

and infinite quadratic variation whenH < 1/2. So the definition of stochastic integrals with

respect tofBmcan not be defined with the quadratic variation of the Itô integral for Brownian

motion. In general, we will review two approximations: The first approximationdefines the

integral in thewhite noise spaceand the second in a pathwise sense. Although they have

different results, both approximations give better results forH > 1/2. We begin with some

preliminary knowledge of thewhite noise spaceand its specific tools.

3.1 WIS integral with respect to fBm with 0 < H < 1

The Gaussian white noise theory was first introduced by Hida [22].WIS(Wick-Itô-Skorohod)

integral is defined in the white noise analysis framework and using some advanced mathemat-

ical concepts such as theWick calculus, it is possible to obtain an Itô formula and Girsanov

theorem forfBm. We follow the approximation for the definition of WIS integral with respect

to fBm in [34].

3.1.1 The White noise probability measure

The White noise theory is a very useful tool for the analysis of Gaussian random variables.

The Gaussian property offBm made it attractive to analyzefBm in this setting. The special

case Brownian motion is defined in a natural way using the White noise probability measure.

The definition of this measure is as follows:
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Definition 3.1.1 Let S(R) denote the Schwartz space of rapidly decreasing smooth functions

on R, and letΩ := S
′
(R) be its dual, usually called thespace of tempered distributions.Let

P be the probability measure on the Borelσ-algebraF := B(S
′
(R)) defined by the property

that ∫

R

exp(i < ω, f >)dP(ω) = exp
(
− 1

2
‖ f ‖2L2(R)

)
, (3.1)

where i=
√
−1 and< ω, f >= ω( f ) is the action ofω ∈ Ω = S

′
(R) on f ∈ S(R).

The measureP is called thewhite noise probability measure.Its existence follows from the

Bochner-Minlos theorem. In (3.1), by expanding both sides to Taylor series, and using the

properties of the characteristic functionϕ<ω, f> of < ω, f >, which isϕ admits the Taylor

expansion:

ϕ(< ω, f >) =
n∑

k=0

(it)k

k!
E(< ω, f >k) + o(|t|n)

= 1+ (it)E(< ω, f >) − t2
1
2

E(< ω, f >2) + . . . ,

with t = 1 we obtain

E[< ω, f >] = 0 ∀ f ∈ S(R).

As can be seen in from the Taylor expansion of the characteristic function, there is a useful

isometry property of thewhite noise probability measure:

E[< ω, f >2] = ‖ f ‖2L2(R) ∀ f ∈ S(R).

The expectation of a functionF with respect to this measure is defined by

E[F(ω)] =
∫

Ω

F(ω)dP(ω).

Based on these definitions, the random variable< ω, f > is defined for arbitraryf ∈ L2(R) as

a limit in L2(R) :

< ω, f >= lim
n→∞
< ω, f >, limit in L2(R),

where fn ∈ S(R) is a sequence converging tof ∈ L2(R). Hence, one can extend< ω, f > for

ω ∈ S
′
(R) f ∈ L2(R). We defineB̃(t) by taking f = I[0,t](·) and the idea that any function

f ∈ L2(R) can be approximated using step functions. Indeed,

B̃(t) := B̃(t, ω) :=< ω, I[0,t](·) >
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is well-defined as an element ofL2(P) for all t ∈ R, where

I[0,t](s) =



1, if 0 ≤ s≤ t,

−1, if t ≤ s≤ 0,

0, otherwise.

This definition shows us that̃B(t) is Gaussian withE[< ω, I[0,t] >] = 0 andE[< ω, I[0,t] >
2] =

1 , i.e, a standard normal variable. In order to obtain a continuous versionof B̃(t), we need

the well-known theorem of Kolmogorov and Chentsov:

Theorem 3.1.2 Suppose that a process X= X(t); 0 ≤ t ≤ T on a probability space(Ω, F,P)

satisfies the condition

E|X(t) − X(s)|α ≤ C|t − s|1+β, 0 ≤ s, t ≤ T,

for some positive constantsα,β and C. Then there exists a continuous modificationX̃ =

{ ˜X(t); 0 ≤ t ≤ T} of X, which is locally Ḧolder continuous with exponentγ, for every

γ ∈ (0, β/α), i.e.,

P[ω : sup
0<t−s<h(ω)

|X̃(t, ω) − X̃(s, ω)|
|t − s|γ ≤ δ] = 1, s, t ∈ [0,T].

where h(ω) is an a.s. positive random variable andδ is an appropriate constant.

So by Kolmogorov-Chantsov theorem, the processB̃(t) has a continuous version, which will

be denoted byB(t). Brownian motionB(t) is defined as a natural element of the Gaussian

white noise space. Its covariance function can be computed by

E[B(t1)B(t2)] =
∫

R

I[0,t1] I[0,t2](s)ds=


min{|t1|, |t2|}, if t1, t2 > 0,

0, otherwise.

In this context, integral of an arbitraryf ∈ L2(R) with respect to Brownian motion can be

defined as follows:

< ω, f >=
∫

R

f (t)dB(t), for all deterministicf ∈ L2(R),

with E[< ω, f >] = 0 andE[< ω, f >2] = ‖ f ‖2
L2(R)

is the well-known It̂o isometry.

As we mentioned his name, let us give two theorems that is of fundamental necessity for

defining the integral with respect tofBm. The following theorem is known as theWiener-

Itô chaos expansion theorem I. First we give the definition of theiterated Itô integralof a

symmetric function.
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Let L̂2(Rn) be the set of all symmetric deterministic functionsf ∈ L2(Rn). If f ∈ L̂2(Rn), the

iterated It̂o integral of f is defined by

In( f ) :=
∫

Rn
f (t)dB

⊗
n(t)

:= n!
∫

R

[∫ tn

−∞
. . .
[ ∫ t2

−∞
f (t1, . . . , tn)dB(t1)

]
dB(t2) . . .dB(tn)

]
.

Theorem 3.1.3 Let F ∈ L2(P). Then there exists a unique sequence{ fn}∞n=0 of functions

fn ∈ L̂2(Rn) such that

F(ω) =
∞∑

n=0

In( fn),

where the convergence is in L2(P) and I0( f0) := E[F]. Moreover, there is the following

isometry

E[F2] =
∞∑

n=0

n!‖ fn‖2L2(Rn).

Example 3.1.4 Now let us find the chaos expansion of Brownian motion B(t). We know that

B(t) ∈ L2(P), and it has the representation

B(t) =
∫ T

0
I [0, t](s)dB(s)

= I1( f1).

Therefore, we have f1 = I[0,t] and fn = 0 for n > 1.

In addition to Theorem 3.1.3, theWiener-Itô chaos expansion theorem IIis of fundamental

importance for defining theSkorohod integralof a random variable in thewhite noise space.

In order to be able to give the second chaos expansion theorem, we haveto define some of the

most basic elements used. For detailed proofs and information, we refer to [34].

Let {ξk}∞k=1 be the Hermite functions defined as

ξn(x) = π−1/4((n− 1)!)−1/2hn−1(
√

2x)e−x2/2 forn = 1,2, ...

where

hn(x) = (−1)nex2/2 dn

dxn (ex2/2) forn = 1,2, . . . ,
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are the Hermite polynomials. Using the definition, it is easy to compute the Hermite polyno-

mials

h0(x) = 1, h1(x) = x, h2 = x2 − 1,

h3(x) = x3 − 3x, h4(x) = x4 − 6x2 + 3, ....

The generating function of Hermite polynomials is given by

exp(tx− x2

2
) =

∞∑

n=0

tn

n!
hn(x), ∀t, x ∈ R.

Then ξk ∈ S(R) and for their upper bound, the following relation is known. There exist

constantsC andϑ such that

|ξn(x)| ≤


Cn−1/12 if |x| ≤ 2

√
n

Ceϑx2
if |x| > 2

√
n

The{ξn}∞n=1 constitutes an orthonormal basis forL2(R), see [34] for references. Instead of the

iterated Itô integrals, the second chaos expansion theorem is based on theHermite functions

and their products. The order of theHermite functionsto be used is stated by multi-indicesα =

(α1, α2, . . .) of finite length; it has finite non-zero elementsαi whereαi ∈ N0 = {0,1,2, . . .} for

all i. LetJ be the set of all multi-indicesα = (α1, α2, . . .) of finite lengthl(α) = max{i;αi ,

0}. With α! = α1!α2! . . . αn! and |α| = α1 + . . . + αn, Hα(ω) is defined by

Hα(ω) = hα1(< ω, ξ1 >)hα2(< ω, ξ2 >) . . .hαn(< ω, ξn >).

Thus, as an example

H(2,0,3,1)(ω) = h2(< ω, ξ1 >)h0(< ω, ξ2 >)h3(< ω, ξ3 >)h1(< ω, ξ4 >)

= (< ω, ξ1 >
2 −1)(< ω, ξ3 >

3 −3 < ω, ξ3 >) < ω, ξ4 >,

sinceh0(x) = 1, h1(x) = x, h2 = x2 − 1, h3(x) = x3 − 3x. If we denote the unit vectors

of L2(R) by ε(k) = (0,0, . . . ,0,1) with 1 on thekth entry, and 0 otherwise, wherek = 1,2, . . ..

Using these unit vectors, we obtain a useful equality for our computations:

Hε(k)(ω) = h1(< ω, ξk >)

= < ω, ξk >=

∫

R

ξk(t)dB(t),

which corresponds to thechaos expansionof < ω, ξk > in terms of multiple It̂o integrals. The

main result obtained by Itô gives thechaos expansionof Hα(ω) :

Hα(ω) =
∫

R|α|
ξ
⊗̂
α(x)dB

⊗
|α|(x),
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where⊗̂ denotes symmetrized tensor product. See [34] and [24] for details.

Theorem 3.1.5 Let F ∈ L2(P). Then there exists a unique familycα, α ∈ J of constants

cα ∈ R such that

F(ω) =
∑

α∈J
c = αHα(ω) with convergence in L2(P);

furthermore, there is the following isometry

E[F2] =
∑

α∈J
c2
αα!.

Let us find the chaos expansion of Brownian motionB(t0) for somet0 ∈ R in the sense of

iterated Itô integrals. We can write

B(t0) =
∫

R

I[0,t0](s)dB(s).

We know thatξk’s constitute a basis forL2(R). When we expand in Fourier series we obtain
∫

R

∞∑

k=1

〈I[0,t0] , ξk〉L2(R)ξk(s)dW(s),

where the inner product ofI[0,t0] andξk is

〈I[0,t0] , ξk〉L2(R) =

∫

R

I[0,t0](u)ξk(u)du

=

∫ t0

0
ξk(u)du.

So we see that the expansion ofB(t0) is

B(t0) =
∞∑

k=1

(
∫ t0

0
ξk(u)du)

∫

R

ξk(s)dW(s),

wherecα =
∫ t0
0
ξk(u)duandHεk(ω) = ξk(s)dW(s). We see that

B(t) =
∞∑

k=1

cαHε(k)(ω)

holds for 1-dimensional Brownian motion. Another way to see this is considering B(t) as

< ω, I[0,t] >, the action ofω on f :

B(t) = < ω, I[0,t](.) >=< ω,
∞∑

k=1

〈I0,t, ξk〉L2(R)ξk(.) >

=

∞∑

k=1

∫ t

0
ξk(s)ds< ω, ξk >

=

∞∑

k=1

∫ t

0
ξk(s)dsHε(k) .
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This expansion shows us that, when regarded as a map,B(·) : R→ (S)∗, B(t) is differentiable

with respect tot and the resulting process is called thewhite noise, which, indeed, gives its

name to this theoretical framework. The white noise process, denotedW(t) has the expansion

W(t) =
d
dt

B(t) =
∞∑

k=1

ξk(t)Hε(k) . (3.2)

The white noise process plays an important role in the definition of the Skorohod integral.

After giving the definition of this integral, we will see how it is possible to obtain an Itô type

formula using the Wick-It̂o-Skorohod integral with respect tofBm. Skorohod integral, can be

seen as an extension of the Itô integral to the integrands that may not be adapted. But to define

this integral, there is another necessary concept of the white noise theory: theWick product.

After we define theWick product, we will be able to compute stochastic integrals using the

chaos expansion of functions.

Definition 3.1.6 (Wick Product)

If F i(ω) =
∑
α∈J c(i)

α Hα(ω); i = 1,2 are two elements of(S)∗ we define theirWick product

(F1 ⋄ F2)(ω) by

(F1 ⋄ F2)(ω) =
∑

α,β∈J
c(1)
α c(2)
β

Hα+β(ω) =
∑

γ∈J
(
∑

α+β=γ

c(1)
α c(2)
β

)Hγ(ω). (3.3)

For calculations of theWick productof two functions, we remark some useful properties of

Hα(ω) which are needed:

Hε(i)+ε( j)(ω) =


Hε(i) Hε( j)(ω), if i , j

H2
ε(i)

(ω) − 1, if i = j

There are some advantages of using theWick calculuswhen dealing with square integrable

random variables ([17],[34]). We summarize some of these advantages as follows:

1. If F is deterministic, thenF ⋄G = F ·G.

2. If f ∈ L2(R) is deterministic, then

∫

R

f (t)dB(t) = < ω, f >=
∞∑

k=1

〈 f , ξk〉L2(R) < ω, ξk >

=

∞∑

k=1

〈 f , ξk〉L2(R)Hε(k)(ω).
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3. If g(t) ∈ L2(R) is deterministic, then

[
∫

R

f (t)dB(t)] ⋄ [
∫

R

g(t)dB(t)] =
∞∑

i, j=1

〈 f , ξi〉LR〈g, ξi〉LR Hε(i)+ε( j)(ω)

= [
∫

R

f (t)dB(t)] · [
∫

R

g(t)dB(t)] − 〈 f ,g〉LR .

Another property ofWick productwhich is used to compute the values of stochastic integrals

is that when‖ f ‖2 = 1,< ω, f >⋄n= hn(< ω, f >)

As we will see,Skorohodintegral with respect tofBmmakes it possible to compute the values

of stochastic integrals with respect tofBm. Let us give the definition ofSkorohodintegral.

Definition 3.1.7 Let g(t, ω), ω ∈ Ω, t ∈ [0,T], be a stochastic process that is assumed to

be (t,ω)-measurable, that is, g(t, ω) is F-measurable for all t∈ [0,T] and E[g2(t, ω)] < ∞

∀t ∈ [0,T]. Then we can find the chaos expansion of the random variableω → g(t, ω) and

obtain the functions fn,t(t1, t2, . . . , tn) such that

g(t, ω) =
∞∑

k=1

In( fn,t(·)).

These functions depend only on the parameter t, then we write

fn,t(t1, t2, . . . , tn) = fn(t1, t2, . . . , tn, t)

now the symmetrization of fn, denotedf̃n is a function of n+1 variables t1, t2, . . . , tn, t is given

by, with tn+1 = t

f̃n,t(t1, t2, . . . , tn) =
1

n+ 1
[ fn(t1, t2, . . . , tn) + fn(t1, t2, . . . , tn, t) + . . .

fn,t(t1, t2, . . . , tn+1, ti) + . . . ,

where the sum is over the permutationsσ of the indices(1, . . . ,n+ 1) which interchange the

last component with one of the others and leave the rest in place. Now the Skorohod integral

of g can be defined by

δ(g) :=
∫

R

g(t, ω)δB(t) :=
∞∑

n=0

In( f̃n(., t)).

The relation between the Skorohod integral and theWick productis given by the following

equality for Skorohod integrable functionsY(t, ω):
∫

R

Y(t, ω)dB(t) =
∫

R
Y(t, ω) ⋄W(t)dt.
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Using this relation, let us compute the following stochastic integral as an example. Earlier in

this chapter, we obtained expansions of bothB(t) andW(t). Using these chaos expansions,

we will demonstrate the computation of theWick productof B(t) andW(t) [17]:

Example 3.1.8

B(t) ⋄W(t) =
∞∑

i, j=1

[ξi(t)
∫ t

0
ξ j(u)du]Hε(i)ε( j)(ω)

=

∞∑

i, j=1

[ξk(t)Hε(i)(ω)
∫ t

0
ξ j(u)duHε(i)(ω) − ξk(t)

∫ t

0
ξ j(u)du]

= B(t)W(t) −
∞∑

i=1

ξk(t)
∫ t

0
ξ j(u)du.

As we mentioned before, it is possible obtain the results of stochastic integralsof the type
∫ T

0
B(t)dB(t) as follows:

∫ T

0
B(t)dB(t) =

∫ T

0
B(t) ⋄W(t)dt

=

∞∑

i, j=1

[
∫ T

0
ξi(t)
∫ t

0
ξ j(u)dudt]Hε(i)+ε( j)

=
1
2

∞∑

i, j=1

[
∫ T

0
ξi(u)du

∫ T

0
ξi(u)du]Hε(i)+ε( j)

=
1
2

[
∞∑

i, j=1

(
∫ T

0
ξi(u)du)Hε(i) ]

2 − 1
2

∞∑

i=1

[
∫ T

0
ξi(u)du]2

=
1
2

B(T)2 − 1
2

T,

where we used the Perseval’s identity

∑

i

〈g, ξi〉2L2(R) = ‖g‖
2
L2(R)

to obtain
∑∞

i=1[
∫ T

0
ξi(u)du]2 = T.

3.1.2 Operator M

The namefractional comes from the notion of fractional calculus used in the definition of

fBm. Intuitively, fBmcan be thought as fractionally integrated Brownian motion. Fractional

differentiation and integration is widely used in physics, especially in turbulence phenomena.

At first sight, there no direct connection between fractional integration and long-range de-

pendence or the specific covariance structure offBm, but as we will see, when used together,
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notions from fractional calculus and white noise theory can provide a wayto build this con-

nection. Now we will see how this connection has been established via the operator M. In

fractional calculus notions, M operator is the fractional integral operator of orderα = H − 1
2,

so it is the main reason of the name ‘fractional’ Brownian motion.

Definition 3.1.9 Let0 < H < 1. The operator M= MH is defined on functions f∈ S(R) by

M̂ f (y) = |y|1/2−H f̂ (y), (3.4)

where y∈ R and

f̂ (y) :=
∫

R

eixy f (x)dx (3.5)

denotes the Fourier transform of g.

Equivalently, for every 0< H < 1 the operatorM can be defined as

M f (x) = − d
dx

CH

(H − 1/2)

∫

R

(t − x)|t − x|H−3/2 f (t)dt, (3.6)

where f ∈ S(R) and

CH = 2Γ(H − 1
2

) cos[
Π

2
(H − 1

2
)]
−1

[Γ(2H + 1) sin(ΠH)]1/2

with Γ(·) denoting the classical Gamma function. For 0< H < 1/2 we have

M f (x) = CH

∫

R

f (x− t) − f (x)

|t|3/2−H
dt.

For H = 1/2

M f (x) = f (x)

For 1/2 < H < 1 we have

M f (x) = CH

∫

R

f (t)

|t − x|3/2
dt.

The operatorM extends from theSchwartz space S(R) to the space

L2
H := { f : R→ R(deterministic) : |y|1/2−H f̂ (y) ∈ L2(R)}

=: { f : R→ R : M f (x) ∈ L2(R)}

=: { f : R→ R : ‖ f ‖H < ∞},

where

‖ f ‖H := ‖M f ‖L2(R).

25



Then we are in a new spaceL2
H, defined byM operator operated onf ∈ L2(R). The elements

of the spaceL2
H are fractionally integrated functions of theSchwartz space. The inner product

and norm in this space are also defined using theM operator. The inner product in this space

is 〈 f ,g〉H = 〈M f ,Mg〉L2(R). One of the problems is thatL2
H(R) is not closed with respect to

the inner product (see [34] for references). In particular, the indicator functionI[0,t](·) belongs

to L2
H(R) for fixed t ∈ R. We write

MI[0,t](x) := M[0, t](x),

and if f ,g ∈ L2(R) ∩ L2
HR, then

〈 f ,Mg〉L2(R) = 〈 f̂ ,Mg〉L2(R)〉L2(R)

=

∫

R

|y|1/2−H f̂ (y)ĝ(y)dy= 〈M̂ f ,g〉L2(R)

= 〈M f ,g〉L2(R).

Using the properties ofM operator there are several ways of computingMI[a,b] , which is of

practical importance in defining thefBm:

M[a,b](x) = − d
dx

∫ b

a
(t − x)|t − x|H−3/2dt; (3.7)

using the change of variablesλ = t − x, we get

M[a,b](x) = − d
dx

CH

(H − 1/2)

∫ b−x

a−x
λ|λ|H−3/2dλ

=
CH

(H − 1/2)
− [(x− b)|b− x|H−3/2 − (x− a)|a− x|H−3/2]

=
[Γ(2H + 1) sin(πH)]1/2

2Γ(H + 1/2) cos[π/2(H + 1/2)]

[ b− x

|b− x|3/2−H
− a− x

|a− x|3/2−H

]
.

and M f ∈ L2(R) for this choice of f . By using 3.4 and Perceval’s Theorem, we have, for

0 < H < 1,

∫

R

[M[a,b](x)]2dx =
1

2Π

∫

R

[M̂[a,b](s)]2ds

=
1

2Π

∫

R

|s|1−2H |e−ibs− e−ias|2
|s|2

ds

= (b− a)2H , (3.8)
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where the following relation is used

Î[a,b](s) =
[e−ibs− e−ias]

−is
.

We refer to [34] and [17] for the proof and details.

SinceM[s, t] = M[0, t] − M[0, s] for s< t, and using the following equation,

M[0, t]M[0, s] =
(M[0, s])2 + (M[0, t])2 − (M[s, t])2

2
,

we have
∫

R

M[0, t](x)M[0, s](x)dx=
1
2

(|t|2H + |s|2H − |t − s|2H), (3.9)

which holds for arbitrarys, t ∈ R since
∫
R

[M[a,b](x)]dx = (b − a)2H. So we see that the

operatorM is defined in such a way to obtain the specific covariance structure offBm. When

indicator function is used instead ofM, one would obtain the covariance of a standard Brown-

ian motion. But using theM operator, for a specific value ofH, one can obtain the dependence

between increments of the resulting process;fBm. In the white noise space,fBm is defined in

an analog way of Brownian motion. We can see the operatorM is the only difference between

these definitions. For∀t ∈ R, define

BH(t) := BH(t, ω) :=< ω,M[0, t](·) >,

where< ω, f >= ω( f ) is the action ofω ∈ Ω = S
′
(R) on f ∈ S(R). Since the measure used

in definition offBm is the white noise measure,B̃H(t) is Gaussian,̃BH(0) = E[B̃H(t)] = 0 a.s.

for all t ∈ R, and by using (3.9) we see that

E[B̃H(t)B̃H(s)] =
∫

R

M[0, t](x)M[0, s](x)dx

=
1
2

(|t|2H + |s|2H − |t − s|2H).

Therefore, the continuous version ofB̃H(t), BH(t) is a fBm, as defined in Chapter 1.

Integral with respect tofBm in the white noise space was defined by following an approxima-

tion similar to that of standard Brownian motion. As usual, we begin with the step functions.

Let f (x) = Σ ja j I[t j ,t j+1] be a step function, then by the definitions above and linearity, we can

27



write

< ω,M f > :=
∑

j

a j < ω,M[t j , t j+1] > (3.10)

=
∑

j

a j(B
H(t j+1) − BH(t j))

=:
∫

R

f (t)dBH(t). (3.11)

A Gaussian random variable is characterized by its first two moments. To obtain this charac-

terization for
∫
R

f (t)dBH(t), the It̂o isometry for this random variable must be defined. This

can be done by using the Itô isometry for Brownian motion case and the definition of the norm

in L2
H(R):

‖ < ω,M f > ‖L2(P) = ‖M f ‖L2(R) = ‖ f ‖H .

Comparing to the definition of Itô integral in the white noise space:

< ω, f >=
∫

R

f (t)dB(t) for all deterministicf ∈ R,

we see that

< ω,M f >=
∫

R

f (t)dBH =

∫

R

M f (t)dB(t), f ∈ L2
H(R).

It is surprising to see the integral at the beginning forming into the last term, anItô integral

with respect to Brownian motionB(t)! The amazing properties of the operator M makes it

possible to compute the integral of a function with respect to afBm with an arbitraryH by

only operating the operatorM on the function under consideration. We will use this result in

the following subsections.

SinceM f ∈ L2(R) for all f ∈ S(R), using the isometry,M : S
′
(R) → S

′
(R) satisfies the

following relation:

< Mω, f >=< ω,M f >, f ∈ S(R) for P − a.e. ω ∈ Ω = S
′
(R).

We saw that the operatorM is defined based onf ∈ S(R), then this last equality is hard to

give meaning at first sight because there is no explicit interpretation of thetermMω, where

ω ∈ Ω = S
′
(R). The isometry property states that these two random variables are equalin

the mean-square sense. We know that theM operator is in fact the fractional integration

operator of orderα = H − 1
2 and this gives us the idea of the notion offractionally integrated
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white noise, or as an analog to thefBmcase, thefractionalwhite noise. This interpretation is

true indeed, and to obtain a fractional Black& Scholes formula, thefractionalwhite noise

calculus is used. But the termfractionalwhite noise is used in the sense of a probability

measure, not in the sense of the processfractionalwhite noise defined in the next subsection.

Now let us define

ek(x) = M−1ξk(x), k = 1,2, . . . , (3.12)

thenek
∞
k=1 are orthonormal inL2

H(R) and the closed linear span of{ek}∞k=1 containsL2
H(R) (see

[34]). And keep in mind thatMek(x) = ξk(x).

3.1.3 WIS integral

So far, we presented the definitions of Brownian motion andfBm in the white noise space.

We proceed with the definition of Skorohod integral. To decide if a function isSkorohod

integrable, the following function spaces, theHida space (S) of stochastic test functionsand

Hida space(S)∗ of stochastic distributionsare used. We briefly give the definitions of these

spaces. For details, see [22].

Definition 3.1.10 1. TheHida space (S) of stochastic test functionsis defined to be all

ψ ∈ L2(P), whose expansion

ψ(ω) =
∑

α∈J
aαHα,

satisfies

‖ψ‖2k :=
∑

α∈J
a2
αα!(2N)kα < ∞ ∀k = 1,2, . . . ,

where(2N)γ = (2.1)γ1(2.2)γ2 . . . (2m)γm, if γ = (γ1, . . . , γm) ∈ J .

2. TheHida space (S)∗ of stochastic distributionsis defined to be the set of formal expan-

sions

G(ω) =
∑

α∈J
bαHα(ω),

such that

‖G‖2q :=
∑

α∈J
b2
αα!(2N)−qα < ∞ for some q< ∞.
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Definition 3.1.11 Suppose that Z: R→ (S)∗, is a given function with the property that

〈Z(t), ψ〉 ∈ L1(R,dt), ∀ψ ∈ (S),

then
∫
R

Z(t)dt is defined to be the unique element of(S)∗ such that

〈
∫

R

Z(t)dt, ψ〉 =
∫

R

〈Z(t), ψ〉dt ∀ψ ∈ (S).

If the last equality holds, then Z(t) is said to be dt− integrable in(S)∗.

If a function isdt − integrablein (S)∗, we can define Skorohod integral of it with respect to

an element of (S)∗. SinceBH(t) is an element of (S)∗ [34], we the Skorohod integral of a

function with respect tofBm is given as follows:

Definition 3.1.12 (WIS) integral

If a function Y(t, ω) is dt− integrable in(S∗, then we say that Y is Wick Itô Skorohod (WIS)

integrable and define itsWIS integral with respect to BH(t) by

∫

R

Y(t, ω)dBH(t) :=
∫

R

Y(t) ⋄WH(t)dt,

The fractional analog of the white noise process,fractional white noiseprocess is defined in

these spaces using the operatorM. These definitions are in the sense of finite dimensional

distributions and in this sense,fBm BH(t) is differentiable with respect tot.

Example 3.1.13Let Hα(ω) be as defined before andε(k) are the unit vectors denoted by

ε(k) = (0, . . . ,1,0,0)

with only the kth entry being1 and all the others are 0, k= 0,1, . . .. Now let us find the

chaos expansion of BH(t) in a similar approach that we have followed when we computed the

chaos expansion of B(t). As we expect, the only difference is the operator M, operating on the
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indicator function:

BH(t) = < ω,M[0, t](.) >=< Mω, I[0,t](.) >

= < Mω,
∞∑

k=1

〈I[0,t] ,ek〉Hek(.) >

= < Mω,
∞∑

k=1

〈M[0,t] ,Mek〉L2(R)ek(.) >

=

∞∑

k=1

〈M[0,t] , ξk〉L2(R) < Mω,ek >

=

∞∑

k=1

〈I[0,t] ,Mξk〉L2(R) < ω,Mek >

=

∞∑

k=1

∫ t

0
Mξk(s)dsHε(k)(ω).

The key element in definition ofWIS integral, as seen, is thefractional white noise WH(t).

Again in a similar approach that took us to the expansion of white noiseW(t), we use the

expansion ofBH(t) and take its derivative with respect tot in (S)∗:

WH(t) =
∞∑

k=1

MξkHε(k)(ω)

since

dBH(t)
dt

=WH(t), in (S)∗.

As we mentioned before, in the construction offractional white noise in this setting,M has

operated onξk(s) ∈ S(R), not onω ∈ Ω. Since the expansion offractional white noise is

known, it is possible to compute the WIS integral of a functionf ∈ L2
H(R), with respect

to fBm BH(t). As done in the standard Brownian motion case,Wick calculusis used in this

computation:

∫

R

f (t) ⋄WH(t)dt =
∞∑

k=1

[
∫

R

f (t)Mξk(t)dt]Hε(k)(ω)

=

∞∑

k=1

〈 f ,Mξk〉L2Hε(k)(ω)

=

∞∑

k=1

〈M f , ξk〉L2Hε(k)(ω) =

∫

R

M f ⋄W(t)dt

=

∫

R

M f (t)dB(t).
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When it comes to the definition of this stochastic integral over a finite time interval, indicator

function, as expected, appears to be solving the problem:
∫ T

0
f (t, ω)dBH(t) :=

∫

R

f (t)I[0,T] ⋄WH(t)dt.

Using theWick calculus in (S)∗, we can compute the Skorohod integral
∫ T

0
BH(t)dBH(t) as

follows:
∫ T

0
BH(t)dBH(t) =

∫ T

0
BH(t) ⋄WH(t)dt =

∫
0T BH(t) ⋄ dBH(t)

dt
dt

=
1
2

[(BH(t))⋄2]T
0 =

1
2

(BH(T))⋄2 =
1
2

(< ω,M[0,T] >)⋄2

=
1
2

[(< ω,M[0,T] >)2 − 〈M[0,T],M[0,T]〉L2(R)]

=
1
2

(BH(T))2 − 1
2
‖M[0,T]‖2L2(R) =

1
2

(BH(T))2 − 1
2

T2H .

This result shows us that the stochastic integral has expectation zero, asin the case of It̂o

integral for standard Brownian motion. This property is coined with the notionof martingale

for stochastic integrals. Then, in the white noise universe, this stochastic integral behaves like

a martingale. Generally speaking, when we useWickcalculus in (S)∗, we can deal withfBm

in a similar fashion to that is used in the standard Brownian motion case.

As we mentioned,Skorohodintegral is an extension of the Itô integral. Now let us give the

definition of the It̂o exponential toWISintegral.

Example 3.1.14TheWIS (Wick) exponential

TheWick exponential is defined as

exp⋄ F =
∞∑

n=0

1
n!

F⋄n.

In general we have ([24]),

exp⋄[< ω,M f >] = exp
(
< ω,M f > −1

2
‖M f ‖2L2(R)

)
. (3.13)

When we take the expectation of theWickexponential, we see that

E[exp
(
< ω,M f > −1

2
‖M f ‖2L2(R)

)
] = E[exp

(
< ω,M f >

)
] exp

(
− 1

2
‖M f ‖2L2(R)

)

= exp
(1
2
‖M f ‖2L2(R)

)
exp
(
− 1

2
‖M f ‖2L2(R)

)

= 1,
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which is an analogous property to stochastic exponential process; theWick exponential has

constant expectation.

TheWISanalog of the stochastic exponential is theWISexponential and using its properties

andWick calculusin (S)∗, it is possible to solve fractional SDEs. Let us consider the fractional

stochastic differential equation

dX(t) = α(t)X(t)dt+ β(t)X(t)dBH(t), t ≥ 0, (3.14)

which is the differential form of

X(t) = X(0)+
∫ t

0
α(s)X(s)ds+

∫ t

0
β(s)X(s)dBH(s),

whereα(·), β(·) are locally bounded deterministic functions.Using the definition offractional

white noisein (S)∗, we can write this equation as a differential equation in (S)∗:

dX(t)
dt

= α(t)X(t) + β(t)X(t) ⋄WH(t)

= X(t) ⋄ [α(t) + β(t)WH(t)],

When all the products are considered to be in theWicksense, this equation is the differential

equation for the exponential. The solution of this equation is obtained using theWick calculus

[34]:

X(t) = X(0) ⋄ exp⋄(
∫ t

0
α(s)ds+

∫ t

0
β(s)dBH(s)), (3.15)

where ∫ t

0
β(s)dBH(s) =

∫

R

β(s)I[0,t](s)dBH(s).

Using theWickexponential, our solution can be written as:

X(t) = X(0) ⋄ exp(
∫ t

0
β(s)dBH(s) +

∫ t

0
α(s)ds− 1

2

∫

R

(Ms(β(s)I[0,t](s)))
2ds), (3.16)

whereMs is the operatorM acting on the variables. If X(0) = x is deterministic, the solution

of the fractional SDE becomes

X(t) = xexp(
∫ t

0
β(s)dBH(s) +

∫ t

0
α(s)ds− 1

2

∫

R

(Ms(β(s)I[0, t](s)))2ds).

Furthermore ifβ(s) = β, α(s) = α are constants, we obtain

X(t) = xexp(βBH(t) + αt − 1
2
β2t2H).
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Now we present the Itô type formula forfBm. TheWISexponential, plays an important part

in obtaining this formula.

Theorem 3.1.15Let H ∈ (0,1). Assume that f(s, x) : R×R→ R belongs to C1,2(R×R), and

assume that the random variables f(t, BH(t)),
∫ t

0
∂ f
∂s(s, BH(s))ds and

∫ t

0
∂2 f
∂x2 (s, BH(s))s2H−1ds

all belong to L2(P). Then

f (t, BH(t)) = f (0,0)+
∫ t

0

∂ f
∂s

(s, BH(s))ds+
∫ t

0

∂ f
∂x

(s, BH(s))dBH(s)+H
∫ t

0

∂2

∂x2
(s, BH(s))s2H−1ds.

Proof. We follow the approximation in [34] for the proof of Itô formula.

Let α ∈ R be a constant, and letβ : R→ R be a deterministic function. Define

g(t, x) = exp(αx+ β(t)),

and put

Y(t) = g(t, x).

Using theWISexponential, we can writeY(t) as:

Y(t) = exp(αBH(t)) exp(β(t))

= exp⋄(αBH(t) +
1
2
α2t2H) exp(β(t)).

Using theWickcalculus in (S)∗, we have the following equality for the termddtY(t):

d
dt

Y(t) = exp⋄(αBH +
1
2
α2t2H) ⋄ (αWH(t) + Hα2t2H−1) exp(β(t))

+exp⋄(αBH(t) +
1
2
α2t2H) exp(β(t))β

′
(t)

= Y(t)β
′
+ Y(t) ⋄ (αWH(t)) + Y(t)Hα2t2H−1.

Hence,

Y(t) = Y(0)+
∫ t

0
Y(s)β

′
(s)ds+

∫ t

0
Y(s)αdBH(s) + H

∫ t

0
Y(s)α2s2H−1ds.

If we write this last equations in terms ofg(t, x), we see,

g(t, BH(t)) = g(0,0)+
∫ t

0

∂g
∂s

(s, BH(s))ds+
∫ t

0

∂g
∂x

(s, BH(s)dBH(s)+H
∫ t

0

∂2g

∂s2
(s, BH(s))s2H−1ds,

which is the fractional It̂o formula. ¥
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For a function in the form off , there exists a sequencefn(t, x) of linear combinations ofg(t, x),

since it is shown in [34] that the linear combinations ofg(t, x) is dense in (S)∗. Therefore we

can write

fn(t, x)→ f (t, x),
∂ fn
∂t

(t, x)→ ∂ f
∂t

(t, x),
∂ fn
∂x

(t, x)→ ∂ f
∂x

(t, x)

and∂2 fn(t, x)/∂x→ ∂2 f (t, x)/∂x2, pointwise dominatedly asn→ ∞. Using these arguments,

we define

fn(t, BH(t)) = fn(0,0)+
∫ t

0

∂ fn
∂s

(s, BH(s))ds+
∫ t

0

∂ fn
∂x

(s, BH(s))dBH(s)

+H
∫ t

0

∂2 fn
∂x2

(s, BH(s))s2H−1ds.

Taking the limit inL2(P) (and also in (S)∗), we obtain

f (t, BH(t)) = f (0,0)+
∫ t

0

∂ f
∂s

(s, BH(s))ds+ lim
n→∞

∫ t

0

∂ fn
∂x

(s, BH(s))dBH(s)

+H
∫ t

0

∂2 fn
∂x2

(s, BH(s))s2H−1ds.

Using the continuity ofs→ ∂ fn(s, BH(s))/∂x in (S)∗, we can write
∫ t

0

∂ fn
∂x

(s, BH(s))dBH(s) =
∫ t

0

∂ fn
∂x

(s, BH(s)) ⋄WH(s)ds,

which converges to ∫ t

0

∂ f
∂x

(s, BH(s)) ⋄WH(s)ds

in (S)∗ asn → ∞. Comparing these limit arguments we obtain the fractional Itô formula.

This proof is in the Hida distribution space (S)∗. The only difference between thefractional

Itô formula and the It̂o formula is the form of the quadratic variation term. Other than this, the

general proof of It̂o formula holds. To obtain this term, let us recall the relation between the

L2(R) andL2
H(R), i.e., ‖ f ‖H = ‖M f ‖L2(R). Let us use this equality to compute the quadratic

variation of the process

Z(t) =
∫ t

0
µds+

∫ t

0
σdBH(s),

whereµ andσ are constants, for convenience. Using the operatorM we can obtain the

quadratic variation ofZ(t) as

d〈Z〉(s) = d(MvσI[0,s](v))
2

= d(σ2s2H) = 2Hσ2s2H−1ds,

which is two times the quadratic variation term in thefractional Itô formula.
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3.2 Fractional White noise calculus forfBm with H > 1/2

In this section, we will summarize how thewhite noise theoryis modified to obtain the proper

tools for pricing an option whose price dynamics is modeled by a geometricfractionalBrow-

nian motion. The idea of afractional white noiseprobability measure was mentioned before.

Now we will see how this idea is modeled using thewhite noise analysismainly in [24] and

[34]. The definition of the stochastic integral is again in the sense of a limit of the Riemann

sums.

We saw that one way to construct an integral with respect tofBm is using fractional calculus

by the operatorM and then defining the integral in theWISsense. Now we will see that there

is another way of defining an integral with respect tofBm. A new kernelφ(s, t) was introduced

for this purpose.

Proof. Let us define, for fixed 1/2 < H < 1,

φ(s, t) = H(2H − 1)|s− t|2H−2, s, t ∈ R.

The functionφ(·, ·) is defined in a specific manner that

∫ t

0

∫ t

0
φ(u, v)dudv= t2H , (3.17)

and fors, t > 0, ∫ t

0

∫ s

0
φ(u, v)dudv=

1
2

(s2H + t2H − |t − s|2H), (3.18)

Let us give a proof of these equalities which are essential for the definition of thefractional

white noise. There are three cases to consider:i)s < t, ii )s = t, iii )s < t. Suppose thats , t.

Then ∫ t

0

∫ s

0
φ(u, v)dudv= H(2H − 1)

∫ t

0

∫ s

0
|u− v|2H−2dudv,

where ∫ t

0

∫ s

0
|u− v|2H−2dudv=

∫ s

0

∫ s

0
|u− v|2H−2dudv.

If s= t = r, then

∫ t

0

∫ s

0
|u− v|2H−2dudv =

∫ r

0

∫ r

0
|u− v|2H−2dudv

= 2
∫ r

0

∫ r

v
|u− v|2H−2dudv,
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where we can write the last equality sinceφ(u, v) is unchanged under the transformation

(u, v)→ (v,u). In using the change of variablesw = u− v⇒ dw= du, we obtain
∫ r

0

∫ r

v
|u− v|2H−2dudv =

∫ r

0

∫ r

v
(u− v)2H−2dudv

=

∫ r

0

∫ r−v

0
w2H−2dwdv=

1
2H − 1

∫ r

0
(r − v)2H−1dv,

changing variables asλ = r − v⇒ dλ = −dv, we have

1
2H − 1

∫ r

0
λ2H−1dλ =

1
2H(2H − 1)

r2H .

Furthermore, for the second part of the integral
∫ t

0

∫ s

0
|u− v|2H−2dudv =

∫ s

0

∫ t

s
|u− v|2H−2dudv,

=

∫ s

0

∫ t

s
(u− v)2H−2dudv, if t > s.

Let η = u− v, then

=

∫ s

0

∫ t−u

s−u
η2H−2dηdu

=
1

2H − 1

∫ s

0
[(t − u)2H−1 − (s− u)2H−1]du

=
1

2H − 1
[
∫ s

0
(t − u)2H−1du−

∫ s

0
(s− u)2H−1du]

=
1

2H(2H − 1)
[t2H − (t − s)2H − s2H].

Hence, whent ≥ s,
∫ t

0

∫ s

0
φ(u, v)dudv=

1
2

[s2H + t2H − (t − s)2H].

Sinceφ(u, v) is unchanged under the map (u, v) 7→ (v,u),
∫ t

0

∫ s

0
φ(u, v)dudv=

1
2

[s2H + t2H − |t − s|2H],

for anys, t > 0. ¥

The functionφ(s, t) takes the place of the operatorM in this setting. Usingφ(s, t), an isometry

and a new function space is defined as follows: LetS(R) denote theSchwartz spaceas before.

If the following holds for f ∈ S(R)

| f |2φ :=
∫

R

∫

R

f (s) f (t)φ(s, t)dsdt< ∞,

then it is said thatf ∈ L2
φ(R). If f ,g ∈ L2

φ(R), the inner product in this space is defined by

〈 f ,g〉φ :=
∫

R

∫

R

f (s)g(t)φ(s, t)dsdt,
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thenL2
φ(R), the completion ofS(R), becomes a separable Hilbert space. LetLH(R) denote

the subspace of deterministic functions inL2
φ(R). An isometry fromL2

φ(R) to L2(R) is defined

by the following lemma which is proved in [14]:

Lemma 3.2.1 Let

I H−1/2
− f (u) = cH

∫ ∞

u
(t − u)H−3/2 f (t)dt, (3.19)

where

cH =

√√
H(2H − 1)Γ(3

2 − H)

Γ(H − 1
2)Γ(2− 2H)

,

andΓ denotes the gamma function. Then IH−1/2
− is an isometry from L2φ(R) to L2(R).

The fractional white noise measure, as we will see, is the fractional analog of thewhite noise

measure. It is defined by using the tools and definitions of the white noise calculus. Some of

the basic definitions are as follows. For detailed information and proofs, werefer to [14]. In

this setting, the usual construction of thewhite noise spacewas used. So,S(R) denotes the

Schwartz spaceof rapidly decreasing functions onR andΩ = S
′
(R), the space of tempered

distributions, is the dual ofS(R). Now the mapf → exp(−1
2 | f |

2
φ) is positive definite onS(R).

By the Bochner-Minlos theorem, there exists a probability measureµφ onΩ such that

∫

Ω

exp(i〈ω, f 〉)dµφ(ω) = exp(−1
2
| f |2φ),

for f ∈ S(R). 〈ω, f 〉 is a Gaussian random variable with the first two moments given as

follows

Eµφ [〈·, f 〉] = 0,

and

Eµφ [〈·, f 〉2] = | f |2φ.

Now, under this measure, we can define thefBm in a more natural way by

B̃H(t) = B̃H(t, ω) = 〈ω, I[0,t](·)〉,

where the indicator function is the same that we defined in the white noise section. As we

see, this measure is thefractional analog of the white noise probability measure. As long as

we use this measure, we do not need any operator operating on the indicator function I[0,t](·).

Again, by Kolmogorov-Chentsov theorem,B̃H(t) has a continuous version denoted byBH(t),
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which is a standardfBmunder the measureµφ. We denote the natural filtration ofBH(t) by

F H
t and endowΩ with this filtration.

For f ∈ L2
H(R), the integral with respect tofBmcan be defined in the usual way by considering

simple integrands first. Let us define

fm(t) =
∑

i

am
i I[ti ,ti+1)(t),

and set ∫

R

fmdBH(t) =
∑

i

a(m)
i

(
BH(ti+1) − BH

ti

)
.

Defining the integral, as in the classical case, as the limit of these sums with

lim
m→∞

fm = f (3.20)

in L2
φ(R), we have ∫

R

f (t)dBH(t) = lim
m→∞

∫

R

fmdBH(t).

The limit exists inL2(µφ) because of the isometry

E
( ∫

R
fm(t)dBH(t)

)2
= ‖ fm‖2φ.

Now we can, by approximatingf with step functions, write

〈ω, f 〉 =
∫

R

f (t)dBH(t, ω). (3.21)

The exponential function is of practical use in this setting as in the classical Itô integral ap-

proximation. LetLp(µφ) = Lp denote the space of all random variablesF : Ω → R such

that

‖F‖Lp(µφ) = E[|F|p]1/p < ∞.

The exponential functionalε : L2
H(R)→ L1(µφ) is defined as

ε( f ) : = exp
( ∫

R

f (t)dBH(t) − 1
2

∫

R

∫

R

f (s) f (t)φ(s, t)dsdt
)

= exp
( ∫

R

f (t)dBH(t) − 1
2
‖ f ‖2H
)
.

If f ∈ L2
H(R), theε( f ) ∈ Lp(µφ) for eachp ≥ 1. If we denote the linear span of the exponen-

tials byχ, that is,

χ =
{ n∑

k=1

akε( fk) : n ∈ N,ak ∈ R, fk ∈ L2
φ(R) for k ∈ {1, . . . ,n}}.
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is a dense set ofL2(µφ), for the proof we refer to [24] and [31]. In order to define thefractional

chaos expansion theorems, one needs an orthonormal basis ofLφ(R). This basis is defined in

[24] by the following equation:

en(u) = (I H−1/2
− )−1(ξn)(u),

where theξn(x) are the Hermite functions. Thefractional Wiener-Itô chaos expansion theorem

is stated in terms of the orthonormal basis{en}∞n=1 of L2
φ(R). LetJ = (N0)s denote the set of

all finite multi-indicesα = (α1, . . . , α), whereN0 = N ∪ {0}. If α = (α1, . . . , α) ∈ J , we write

H̃α(ω) := hα1(〈ω,e1〉) . . .hαm(〈ω,em〉).

In particular, ifε(i) := (0, . . . ,0,1,0, . . . ,0) denotes theith unit vector, we get

H̃ε(i)(ω) = h1(〈ω,ei〉) = 〈ω,ei〉

Now let us give thefractional Wiener-Itô chaos expansion theorem,

Theorem 3.2.2 Let F ∈ L2(µφ). Then there exist constants cα ∈ R, α ∈ J , such that

F(ω) =
∑

α∈J
cαH̃α(ω),

where the convergence holds in L2(µφ). Moreover,

‖F‖2µφ =
∑

α∈J
α!c2
α,

whereα! = α1! . . . αm! if α = (α1, . . . , α) ∈ J .

When computing the chaos expansion in terms of the Hermite functions, the innerproduct

〈 f ,ei〉H gives us the coefficients of the chaos expansion. Using the definition of the inner

product inL2
φ(R), one can see

〈 f ,ei〉 =
∫

R

∫

R

f (u)ei(v)φ(u, v)dudv.

Therefore, we have the expansion
∫

R

f (s)dBH(s) =
∞∑

i=1

〈 f ,ei〉HH̃ε(i)(ω), f ∈ L2
H(R).

Taking f = I[0,t] , we obtainfBm,

BH(t) =
∞∑

i=1

[ ∫ t

0

( ∫ ∞

−∞
ei(v)φ(u, v)dv

)]
H̃ε(i)(ω)
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Thefractional white noiseprocessWH(t) is obtained by using the differentiability ofBH(t) in

the fractional Hida test function and distribution spaces defined by the following:

Definition 3.2.3 1. The fractional Hida test function space: Define(S)H to be the set of

all ψ(ω) =
∑
α∈J aαH̃(ω) ∈ L2(µφ) such that

‖ψ‖2H,k :=
∑

α∈J
α!a2
α(2N)kα < ∞ k ∈ N,

where

(2N)γ =
∏

j

(2 j)γ j if γ = (γ1, . . . , γm) ∈ J .

2. The fractional Hida distribution space: Define(S)∗H to be the set of all formal expan-

sions

G(ω) =
∑

β∈J
bβH̃β(ω),

such that

‖G‖2H,−q :=
∑

β∈J
β!b2
β(2N)−qβ < ∞ for some q∈ N.

For the proofs, details on these spaces and the topologies, we refer to [24].

We saw that the white noise process plays a fundamental role in the definition of WISintegral.

This holds also for the fractionalWIS integral. In the fractional Hida distribution space, the

fractional white noise at timet is defined by:

WH(t) =
∞∑

i=1

[ ∫

R

ei(v)φ(t, v)dv
]
H̃ε(i)(ω).

ThefBm is differentiable with respect tot in (S)∗H andWH(t) is integrable in (S)∗H. In fact, for

0 ≤ s≤ t, we have,
∫ t

0
WH(s)ds=

∞∑

i=1

{ ∫ t

0

[ ∫

R

ei(v)φ(u, v)dv
]
du
}
H̃ε(i)(ω) = BH(t).

Therefore we can write
d
dt

BH(t) =WH(t) in (S)∗H .

Using thefractional white noise process, thefractional WIS integralcan be defined using the

Wick product. Suppose we can approximate the random variableZ(t) with the step functions

Fi using the partition 0= t1 < t2 < . . . < tn+1 = t:

Z(t) =
n∑

i=1

Fi(ω)I[ti ,ti+1)(t), where Fi ∈ (S)∗H
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then we can approximate the stochastic integral with respect tofBmas

∫ t

0
Z(s)dBH(s) =

n∑

i=1

Fi(ω) ⋄ (BH(ti+1 − BH(ti)))

=

n∑

i=1

Fi(ω) ⋄ (
∫ ti+1

ti
WH(s)ds)

=

n∑

i=1

[Fi(ω) ⋄ (
∫ ti+1

ti

∞∑

j=1

∫

R

ej(v)φ(s, v)dv)H̃ε( j) ]ds

=

n∑

i=1

[
∫ ti+1

ti
[Fi(ω) ⋄

∞∑

j=1

∫

R

ej(v)φ(s, v)dv)H̃ε( j) ]ds

=

n∑

i=1

∫ ti+1

ti
Fi(ω) ⋄WH(s)ds.

Furthermore, when the mesh size of the partition goes to zero, the last term converges to
∫ t

0
Z(s)dBH(s) in (S)∗H.

As we have seen so far, thefractional WISandWISintegrals are constructed in a very similar

manner. Now let us look at the solution of a geometric fractional Brownian motion in this

setting:

dX(t) = µX(t)dt+ σX(t)dBH(t)

with X(0) = x > 0, µ andσ are constants. As before, this equation can be written in (S)∗H as

dX(t)
dt
= µX(t) + σX(t) ⋄WH(t) = (µ + σWH(t)) ⋄ X(t).

UsingWick calculus, the solution can be shown to be

X(t) = xexp⋄
(
µt + σ

∫ t

0
WH(s)ds

)
,

which is theWick exponential.

It is shown in [34] that

exp⋄(〈ω, f 〉) = ε( f ) for all f ∈ L2
H(R).

Using this definition, we can write

xexp⋄(µt + σBH(t))X(t) = xexp
(
σBH(t) + µt − 1

2
σ2t2H).
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Under thefractional white noise measureµφ we have

Eµφ [X(t)] = xexp
(
µt − 1

2
σ2t2H)Eµφ [exp(σ2BH(t))]

= xexp
(
µt − 1

2
σ2t2H)exp

(1
2
σ2t2H)

= xexp(µt),

where we used the definition of thefractional white noise measureto compute the expectation

on the right-hand side.

The main advantage of definingfBmin the fractional white noise space is thequasi-martingale

property offBm in this setting. In order to show this important property, first, the fractional

version of iterated It̂o integrals and thenfractional(or quasi)-conditionalexpectation are de-

fined in the following pair of spaces. For details, see [24] and [31]:

Definition 3.2.4 1. Let k∈ N. Consider the function

ψ(ω) =
∞∑

n=0

∫

Rn
fnd(BH)⊗,

with fn ∈ L̂2
φ(R

n), whereL̂2
φ(R

n) is the set of functions f(x1, . . . , xn) which are symmetric

with respect to its n variables and satisfies‖ f ‖2
L2
φ
(Rn)
= 〈 f , f 〉L2

φ
(Rn) < ∞. It is said that

ψ belongs to the space(G)k = (G)k(µφ), if

‖ψ‖2(G)k
:=

∞∑

n=0

n!‖ fn‖2Lφ(Rn)e
2kn < ∞,

then(G) is defined as

(G) = (G)(µφ) =
∞⋂

k=1

(G)k(µφ).

2. Let q∈ N. The function F with the formal expansion

F =
∞∑

n=0

∫

Rn
fnd(BH)⊗(t),

where fn ∈ L̂2
φ(R). It is said that F belongs to the space(G)−q = (G)−q(µφ) if

‖G‖2(G)−q
=

∞∑

n=0

n!‖ fn‖2L2
φ

(Rn)e−2qn < ∞.

Then(G)∗ is defined by

(G)∗ = (G)∗(µφ) =
⋃

q∈N
(G)−q(µφ),

Equipped with the proper topologies,(G)∗ is the dual of(G).
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Thefractional(or quasi)-conditional expectation of a function is defined on these spaces.

Definition 3.2.5 Let F =
∑∞

n=0

∫
Rn fn(s)d(BH)⊗. Thequasi-conditional expectationof F with

respect toF H
t = B(BH(s), s≤ t) is defined by

Ẽt[G] := Ẽ[G|FH
t ] :=

∞∑

n=0

∫

R

gn(s)I[0≤s≤t](s)dBH(s).

The following lemma in [31] gives the properties of Wick product underquasi-expectation.

Lemma 3.2.6 1. Let F∈ (G)∗, then we have that̃Et[F] ∈ (G)∗.

2. Let F,G ∈ (G)∗, then we have that̃Et[F ⋄G] = Ẽt[F] ⋄ Ẽt[G].

3. Let F∈ L2(µφ), then we havẽEt[F] = F ⇔ F is FH
t - measurable.

In the first chapter, we saw thatfBm is not a semimartingale. This property makes the use of

fBmin financial modeling and defining integrals with respect to it difficult. But, the fractional

white noise probability measureµφ is constructed in such a way thatWIS integrals with

respect tofBmarequasi-martingales under this measure. The definition ofquasi-martingale

is as follows

Definition 3.2.7 AnF H
t - adapted stochastic process M(t, ω) is a quasi-martingaleif M(t) ∈

(G)∗ for all t and Ẽs[M(t)] = M(s) for all t ≥ s.

The following lemma in [24] states that, when considered as an element of thefractional

white noise space, fBm is aquasi-martingale. This property is of fundamental importance for

financial applications offBm.

Lemma 3.2.8 1. BH(t) is a quasi-martingale

2. Let f ∈ L2
φ(R), then theWick exponential

ζ(t) = exp⋄(〈ω, I[0,t] f 〉) = exp(
∫ t

0
f (s)dBH(s) − 1

2
‖ f ‖L2

H(R))

is a quasi-martingale.
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3. Let f ∈ L1,2
φ

and M(t) :=
∫ t

0
f (s, ω)dBH(s). Then M(t) is a quasi-martingale.

Using this lemma, the following theorem states thequasi-martingale property of a functional

of fBm. Basically, this theorem is of fundamental importance to price an option in fractional

Brownian markets since the price of an option is defined as a function offBm at a distant

stopping timeT.

Theorem 3.2.9 For every0 < t < T andλ ∈ C we haveẼt[eλB
H(T)] = eλB

H(t)+ λ
2
2 (T2H−t2H).

Proof. We know from Lemma 3.2.8 that theWick exponentialis aquasi-martingale. TheWick

exponentialis the solution of

dX(t) = λX(t)dBH(t), X(0) = 1.

Using thequasi-martingale property ofX(t), we can write

Ẽt[X(T)] = X(t),

whereX(t) = expλBH(t) − λ2

2 t2H. Therefore we have

Ẽt[expλBH(T) − λ
2

2
T2H] = expλBH(t) − λ

2

2
t2H ,

where we see that

Ẽt[expλBH(T)] = expλBH(t) +
λ2

2
(T2H − t2H).

¥

The increments offBmare Gaussian and the next theorem in [31] gives the distribution of the

incrementBH(T) − BH(t).

Theorem 3.2.10Let f be a function that E[ f (BH(T))] < ∞. Then, for every t≤ T the

following holds

Ẽt[ f (BH(T))] =
∫

R

1√
2π(T2H − t2H)

exp
(
− (x− BH(t))2

2(T2H − t2H)

)
f (x)dx. (3.22)

Proof. Let f̂ denote the Fourier transform off :

f̂ (η) =
∫

R

e−ixη f (x)dx
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Then f is the inverse Fourier transform of̂f

f (x) =
1
2π

∫

R

eixη f̂ (η)dη.

Then we have

f
(
BH(T)

)
=

1
2π

∫

R

eiBH(T)η f̂ (η)dη.

Now, if we take thequasi-conditional expectation off (BH(T)), we obtain

Ẽt[ f (BH(T))] = Ẽt

[ 1
2π

∫

R

eiηBH(T) f̂ (η)dη
]

=
1
2π

∫

R

Ẽt

[
eiηBH(t)

]
f̂ (η)dη

=
1
2π

∫

R

eiηBH(t)− η
2

2 (T2H−t2H) f̂ (η)dη

= g(BH(t))

and the last function,g, is the inverse Fourier transform of the product betweene−
ξ2

2 (T2H−t2H)

and f̂ . One of these functions,e−
ξ2

2 (T2H−t2H), looks familiar. In fact, it is the Fourier transform,

or the characteristic function, of Gaussian distribution with mean zero and variance (T2H −

t2H). If we denote the density of this function as

nT,t =
1√

2π(T2H − t2H)
exp
(
− x2

2(T2H − t2H)

)

and, the Fourier transform of this function as ˆnt,T(η), we see the following holds:

g(BH(t)) =
1
2π

∫

R

eiηBH(t)n̂t,T(η) f̂ (η)dη.

Using the fact that the Fourier transform of a convolution is the product of the Fourier trans-

form of the two functions, and the functiong being the inverse Fourier transform of the prod-

uct between two Fourier transforms, it follows thatg is the convolution ofnt,T and f , i.e.,

g(BH(t)) =
∫

R

nt,T(BH(t) − y) f (y)dy

=

∫

R

1√
2π(T2H − t2H)

exp
(
− (BH(t) − y)2

2(T2H − t2H)

)
f (y)dy

=

∫

R

1√
2π(T2H − t2H)

exp
(
− (y− BH(t))2

2(T2H − t2H)

)
f (y)dy,

where the last line of the equation comes from the symmetry property of Gaussian distribution

and completes the proof. Let us give the result of this theorem whenf = IA. Let A ∈ B(R).

Then

Ẽt[IA(BH(T))] =
∫

A

1√
2π(T2H − t2H)

exp
(
− (x− BH(t))2

2(T2H − t2H)

)
dx.
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¥ As we saw, these useful results can be obtained forfBmwhen regarded

as an element of the white noise space. But when one defines pathwise integrals with respect

to fBm, its quadratic variational property is lost. We will see some of these pathwise integrals

and corresponding Itô formula in the next section.

3.3 Pathwise integrals with respect tofBm with H > 1/2

As for the standard Brownian motion case, pathwise integrals with respect tofBm is defined

by taking the limit of Riemann sums of the type:

n∑

i=1

f (ti)[B
H(ti+1) − BH(ti)],

where 0= t1 < t2 < . . . < tn = T is a partition of [0,T]. Using this approximation to the

stochastic integral, three types of pathwise integrals has been defined in [33] and [39]. The

following definition in [34] summarizes these definitions:

Definition 3.3.1 Let H ∈ (0,1) and(yt)t∈[0,T] be a process with integrable trajectories. Then

1. The symmetric integral of y with respect to BH is defined as

lim
ǫ→0

1
2ǫ

∫ T

0
y(s)[BH(s+ ǫ) − BH(s− ǫ)]ds.

2. The forward integral of y with respect to BH is defined as

lim
ǫ→0

1
ǫ

∫ T

0
y(s)[BH(s+ ǫ) − BH(s)]ds.

3. The backward integral is defined as

lim
ǫ→0

1
ǫ

∫ T

0
y(s)[BH(s− ǫ) − BH(s)]ds.

whenever the limit exists in probability.

WhenH = 1
2, the symmetric integral is a generalization of the Stratonovich integral for the

standard Brownian motion, and the forward integral extends the Itô integral. So we mainly

deal with the forward integral with respect tofBm. Using the definition of the symmetric
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integral, one can obtain

lim
ǫ→0

∫ T

0
BH(s)

BH(s+ ǫ) − BH(s− ǫ)
2ǫ

ds=

= lim
ǫ→0

1
2ǫ
( ∫ T

0
BH(s)BH(s+ ǫ)ds−

∫ T−ǫ

−ǫ
BH(s)BH(s+ ǫ)ds

)

= lim
ǫ→0

1
2ǫ
( ∫ T

0
BH(s)BH(s+ ǫ)ds−

∫ T

T−ǫ
BH(s)BH(s+ ǫ)ds

)

=
1
2

(BH(T))2 − 1
2

(BH(0))2,

which does not have constant expectation, and therefore, is not a martingale. WhenH < 1/2,

the infinite quadratic variation offBmmakes it difficult to define these integrals. For the rest

of the section, we assumeH > 1/2.

Using the forward integral definition, a simple calculation yields:

E
[ N∑

i=1

BH(ti)
(
BH(ti+1) − BH(ti)

)]
=

N∑

i=1

[
E(BH(ti)B

H(ti+1)) − E((BH(ti))
2)
]

=

N∑

i=1

[1
2

[(ti+1)2H − (ti)
2H]
]

=
1
2

t2H ,

which is not constant, shows that the forward integral is not a martingale.

Using the forward integral, several authors have obtained Itô type formulas. We will mention

three of them. The first formula is obtained in [19]. The well knownTaylor series is used in

order to obtain the formula.

Theorem 3.3.2 Let

dX(t) = µ(t)dt+ σdBH(t)

and X(0) = x be the fractional forward process. Suppose f∈ C2(R) and put Y(t) = f (t,X(t)).

The following holds

dY(t) =
∂ f
∂t

(t,X(t))dt+
∂ f
∂x

(t,X(t))dX(t).
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Proof. Approximating the pathwise integral by the limit of the sums on the partition

0 = t0 < t1 < . . . < tN = t,

Y(t) − Y(0) =
∑

j

[Y(t j+1) − Y(t j)]

=
∑

j

∂ f
∂t

(t j ,X(t j))△t j +
∑

j

∂ f
∂x

(t j ,X(t j))△X(t j)

+
1
2

∑

j

∂2 f

∂x2
(t j ,X(t j))△(X(t j))

2 +
∑

j

o((△t j)
2) + o((△(X(t j)))

2)

=
∑

j

∂ f
∂t

(t j ,X(t j))△t j +
∑

j

∫ t j+1

t j

∂ f
∂x

(t j ,X(t j))△X(t j)

+
1
2

∑

j

∂2 f

∂x2
(t j ,X(t j))△(X(t j))

2 +
∑

j

o((△t j)
2) + o((△(X(t j)))

2),

¥ taking the limit as the mesh of the partition goes to zero, and

using the fact thatfBmhas zero quadratic variation whenH > 1/2, we obtain the It̂o formula

for the pathwise forward integral.

In [41], Shiryaev, using another version of Taylor’s expansion andthe fact that thefBm has

zero quadratic variation whenH > 1/2, obtains the same formula with a similar apporach.

He uses Taylor’s theorem with remainder.

Theorem 3.3.3 If the(n+1)th derivative of f is continuous on an interval containing c and x,

and if Pn(x) is theTaylorpolynomial of degree n for about the point x= c, then the remainder

Rn(x) = f (x) − Pn(x) in Taylor’s formula can be given by

Rn(x) =
1
n!

∫ x

c
(x− t)n f (n+1)(t)dt,

where f(n+1) denotes the(n+ 1)th derivative of f .

Writing explicitly, the theorem states that,

F(x) = F(y) + f (y)(x− y) +
∫ x

0
f
′
(u)(x− u)du.

Since the quadratic variation offBm vanishes whenH > 1/2, a function offBm acts like a

deterministic function in this formulation. Let us consider a sequenceTn = t(n)(m),m≥ 1,
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n ≥ 1, for tn(m) (0 = t(n)(1) ≤ t(n)(2), . . .), we have

F(BH(t)) − F(BH(0)) =
∑

m

[F(BH(t ∧ t(n)(m+ 1)))− F(BH(t ∧ t(n)(m)))]

=
∑

m

f (BH(t ∧ t(n)(m+ 1)))(BH(t ∧ t(n)(m+ 1))− BH(t ∧ t(n)(m)))

+R(n)(t),

where

Rn(t) =
∑

m

∫ BH(t∧t(n)(m+1))

BH(t∧t(n)(m))
f
′
(BH(t ∧ t(n)(m+ 1))− u)du

and f is the first derivative ofF. Then we expand the functionF to Taylor’s formula with

x = BH
t∧t(n)(m+1)

andy = BH(t ∧ t(n)(m+ 1)), and obtain

F(BH(t ∧ t(n)(m+ 1)))− F(BH(t ∧ t(n)(m))) = f (BH(t ∧ t(n)(m)))(BH(t ∧ t(n)(m+ 1))

−BH(t ∧ t(n)(m))) +
∫ BH(t∧t(n)(m+1))

BH(t∧t(n)(m))
f
′
(u)(BH(t ∧ t(n)(m+ 1))− u)du

with P(sup0≤u≤t | f
′
(BH(u))| < ∞) = 1 from the bounded quadratic variation property of

f
′
(BH), and forH ∈ (1

2,1)

P − lim
n→∞

∑

m

|BH(t ∧ t(n)(m+ 1))− BH(t ∧ t(n)(m))|2 = 0,

to obtain an upper bound forR(n)(t). If we take thesupremumof the derivative form of the

remainder, we can use the limit above to obtain

|R(n)(t)| ≤ 1
2

sup
0≤u≤t

| f ′(BH(u))|
∑

m

|BH(t ∧ t(n)(m+ 1))− BH(t ∧ t(n)(m))|2→P 0.

This is the same formula derived before, using theTaylor’sseries, taking the limit in probabil-

ity of the pathwise integral of a function offBm, we see that it has no quadratic variation part

to complicate things. Taking the limit as the mash of the partitionTn going to zero, summing

both sizes on m, and withP− limn
∑

m f (BH(t∧ t(n)(m)))(BH(t∧ t(n)(m+ 1))− BH(t∧ t(n)(m)))

existing, we obtain the It ˆo formula, forH > 1
2,

P − lim
n

∑

m

F(BH(t ∧ t(n)(m+ 1)))− F(BH(t ∧ t(n)(m))) =

P − lim
n

∑

m

f (BH(t ∧ t(n)(m)))(BH(t ∧ t(n)(m+ 1))− BH(t ∧ t(n)(m)))

+

∫ BH(t∧t(n)(m+1))

BH(t∧t(n)(m))
f
′
(u)(BH(t ∧ t(n)(m+ 1))− u)du

= F(BH(t)) − F(BH(0)) =
∫ t

0
f (BH(u))dBH(u).

50



The stochastic integral is well-defined at least for functionsg = (g(u)) of the typeg(u) =

g(BH(u)), with
∫ t

0
g(u)dSµ(u) =

∫ t

0
g(u)µdu+

∫ t

0
g(u)dBH(u). We can write this It̂o type for-

mula in the differential form as

dF(t, BH(t)) = ∂1F(t, BH(t))dt+ ∂2F(t, BH(t))dBH(t).

Example 3.3.4 Let us consider the function Y(t) = eµt+BH(t) and apply the It̂o formula for

pathwise integration model.

dY(t) = d(eµt+BH(t)) = µeµt+BH(t)dt+ eµt+BH(t)dBH(t)

= (µdt+ dBH(t))Y(t).

Using this market model and Itô type formula, it can be shown that it is possible to generate

arbitrage in a market model withfBm

Another It̂o type formula was obtained by Dai and Hayde in [12]. Their formula permits the

integrands to be stochastic processes but requires a number of restrictions on the integrands.

For detailed information see [12]. Under these restrictions, they proved that for the following

type of processes, their Itô type formula holds. Consider the process

X(t) = X(0)+
∫ t

0
a(s, ω)ds+

∫ t

0
b(s, ω)dBH(s),

then the following holds;

Y(t) = Y(0)+
∫ t

0

[∂U
∂t

(s,X(s)) + a(s, ω)
∂U
∂x

(s,X(s))
]
ds+

∫ t

0
b(s, ω)

∂U
∂x

(s,X(s))dBH(s)

or in differential form

dY(t) =
[∂U
∂t

(t,X(t)) + a(s, ω)
∂U
∂x

(t,X(t))
]
dt+ b(t, ω)

∂U
∂x

(t,X(t))dBH(t),

whereU(t, x) : [0,T] × R → R is a two variable function with uniformly continuous partial

derivatives∂U
∂t , ∂U

∂x and ∂
2U
∂x2 and all partial derivatives are inL2(P). As we have seen before in

other formulas, there is no quadratic variation term in their formula too.

For a stochastic differential equation driven by afBm to have a unique solution, there are

some conditions as in the standard Brownian motion case. The following theorem in [12]

states these conditions:

Theorem 3.3.5 Let f(s, x) and g(s) be Borel functions such that
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1. g : [0,∞)→ R is bounded,

2. | f (s, x)| ≤ K|x| + K,

3. | f (s, x) − f (s, y)| ≤ K|x− y|,

where K is a positive constant. Then the stochastic differential equation

dX(t) = f (t,X(t))dt+ g(s)dBH(s)

X(t0) = A(ω)

has a unique solution whose paths are continuous. And if f(s,X(t)) = µX(t) and g(s) =

σX(t),whereσ andµ are constants, the solution is

X(t) = Aexp
(
µ(t − t0) + σ(BH(t) − BH(t0))

)
,

where t> t0 and A(ω) is a positive random variable such that E|A(ω)|2 < ∞.

In order to see this, we apply the Itô formula to SDE and defineS(t) = exp
(
X(t)
)
. Then we

have

dS(t) = µexp
(
X(t)
)
dt+ σexp

(
X(t)
)
dBH(t)

= µS(t)dt+ σS(t)dBH(t).

Their proof is based on the same arguments as the other two Itô type formulas are based

on. As we have seen, using the pathwise integration approximation, one canobtain an It̂o

type formula with no quadratic variation term. But for pricing an option, the Itô formula is

not alone enough. In the following section, we will obtain the pricing formula for an option

whose price process is assumed to follow a fractional SDE.
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CHAPTER 4

Option pricing using fBm

Stochastic processes are used in financial modeling for more than a hundred years. The work

of Bachelier [1] was the first attempt to use Brownian motion for financial modeling. But

after 1973, when Black&Scholes published their work on option pricing [6]and derived their

famous formula, using probability theory in finance has moved to a new level. In this thesis,

we focus on the derivation of a Black&Scholes formula for the price of a European option

where the underlying asset is assumed to follow a geometric fractional Brownian motion.

An option gives its holder the right, but not the obligation, to buy or sell a certain amount

of a financial asset, by a certain date, for a certain strike price. There are two sides of this

transaction. One party is the buyer of the option and the second party is the writer of the

option. An option is specified by the following quantities:

• the type of the option: call option is the option to buy and the put option is the option

to sell;

• the underlying asset: a stock, a bond, a currency, etc.;

• the amount of the underlying asset to be purchased or sold;

• the expiration date: anAmericanoption can be exercised at any time until maturity,

while aEuropeanoption can only be exercised at maturity;

• the exercise price which is the price for the transaction if the option is exercised

The price of the option is called thepremium. Therefore, to price an option means to compute

thepremium. Let us have a look at the case of a European call option on a stock with maturity
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dateT and strike priceK. If we denote the price of the stock atT by S(T), the buyer of the

option makes a profit of (S(T) − K) by exercising the option since he/she buys the stock for

K which indeed has a priceS(T). Therefore, the value of the call at maturity is given by

max((S(T) − K),0).

How much value does this option have att = 0? This question was answered by Black&Scholes,

whereS(t) was assumed to follow a geometric Brownian motion. In the following section,

we will see the computation of this value when the underlying asset is assumed tofollow a

geometric fractional Brownian motion.

4.1 Financial applications offBm

Using a process which is not a semi-martingale for financial modeling causessome problems

to be solved. The specific construction offBm in the white noise space makes the real world

financial interpretations of the integrals with respect to it difficult. Another difficulty is the

possibility of arbitrage in the fractional markets. These problems are not solved at the moment

but there are theoretical results of usingfBm in finance. In the next subsection we will show

how the fractional Black&Scholes price of a European call option was obtained and give

arbitrage examples in the fractional markets.

4.1.1 The fractional Black&Scholes formula

We mainly follow [17], [24] and [31] for the derivation of the fractional Black&Scholes for-

mula. We begin with the definition of the risk-neutral measure under which the discounted

asset prices are martingales which means that the stock price process generates a riskless

return equal to bank deposit rater.

In the case offBm, defining a risk-neutral measure is not trivial. The followingfractional

version of the Girsanov theorem in [24] gives the definition of the Radon-Nikodym derivative

process in thefractional white noise space.
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4.1.1.1 Fractional Girsanov theorem

Theorem 4.1.1 Let T > 0 andγ be a continuous function withsuppγ ⊂ [0,T]. Let K be a

function withsuppK ⊂ [0,T] and such that,

〈K,g〉φ = 〈γ, f 〉L2(R), ∀ f ∈ S(R), supp f⊂ [0,T],

, i.e., ∫

R

K(s)φ(s, t)ds= γ(t),0 ≤ t ≤ T.

Define a probability measureµφ,µ on theσ-algebraF H
T generated by BH(s); 0 ≤ s≤ T by

dµφ,µ
dµφ

= exp⋄
( − 〈ω,K〉) = exp(−〈ω,K〉 + 1

2
‖K‖H),

thenB̃H(t) = BH(t) +
∫ t

0
γsds, 0 ≤ t ≤ T is a fractional Brownian motion underµφ,µ.

As we saw, the fractional analog of the geometric Brownian motion, the geometric fractional

Brownian motion is obtained by using the white noise analysis concepts. Also, afractional

Itô formula is derived and a fractional Radon-Nikodym derivative process is defined. There

are the basic tools one needs to compute the Black&Scholes price of an option.Following

basically the approaches in [31] and [24], we give the price of a European call option. We re-

mark that whenH > 1/2, thefractional WISintegral and theWISintegral definitions coincide

and the It̂o formula for theWISintegral holds. Furthermore, the spaceL2
H(R) of deterministic

functions also coincide [34].

Let BH(t), 0 ≤ t ≤ T, be afBmon a probability space (Ω,F H ,P), and letF H(t) be a filtration

for this fBm. Let us consider a fractional SDE which is the stock price process

dS(t) = µS(t)dt+ σS(t)dBH(t), 0 ≤ t ≤ T. (4.1)

where the differential is in theWick sense. We know that the solution of this equation can

be obtained by applying the Itô formula forWIS integrals. We first change measure to risk-

neutral measure to be able to compute the price of the option. Using the fractional Radon-

Nikodym derivative process:

dP̃

dP
= exp

( ∫

R

θ(s)dBH(s) − 1
2
‖θ‖2

L2
H(R)

)
,

with ∫

R

θ(s)φ(s, t)ds=
µ − r
σ
,
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then, under̃P, the new process

B̃H(t) :=
µ − r
σ

t + BH(t),

is a fBm. We use this newfBmto write the price process under the risk-neutral measureP̃:

dS(t) = rS(t)dt+ σS(t)dB̃H(t), 0 ≤ t ≤ T,

wherer is the risk-free rate and we are now in the risk-neutral world. Let us apply the Itô

formula to solve this equation. Takingf (S(t)) = ln(S(t)), which is a function of onlyS(t) and

applying the It̂o formula yields

ln(S(t)) = ln(S(0))+
∫ t

0

1
S(s)

dS(s) − H
∫ t

0

1
S2(s)

d[S,S](s)

= ln(S(0))+
∫ t

0
(rds+ σdB̃H(s)) − H

∫ t

0

1
S2(s)

σ2S2(s)s2H−1ds

= ln(S(0))+ (rt − 1
2
σ2t2H + σB̃H(t)).

Therefore, we can write

S(t) = S(0) exp
(
rt − 1

2
σ2t2H + σB̃H(t)

)
.

Furthermore, we can apply Itô formula to obtain

S(T) = S(t) exp
(
r(T − t) − 1

2
σ2(T2H − t2H) + σ(B̃H(T) − B̃H(t))

)
, (4.2)

which we will use to compute the price of a European option att.

Now we present thefractional Black&Scholes formulaas given in [17] , [31]. The formula

looks the same as the classical Black&Scholes formula but there is a slight difference in the

borders of the integration of the standard normal distribution denoted byd1 andd2.

Theorem 4.1.2 The price of a European call option with strike price K and maturity T at

time t is equal to:

C(t,S(t)) = S(t)N(d1) − Ke−r(T−t)N(d2), (4.3)

where r is the risk-free interest rate and d1 and d2 are given by

d1 =
ln(S(t)/K) + r(T − t) + 1

2σ
2(T2H − t2H)

σ
√

T2H − t2H

and

d2 = d1 − σ
√

T2H − t2H =
ln(S(t)/K) + r(T − t) − 1

2σ
2(T2H − t2H)

σ
√

T2H − t2H
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Proof. The fundamental theorems of asset pricing state that, under the risk-neutral measure,

discounted asset prices are martingales [42]). As we know,fBm is not a martingale but a

quasi-martingale and we will use this property to obtain the price of an option. We canwrite,

C(t,S(t)) = Ẽt[e
−r(T−t) max((S(T) − K),0)]

= Ẽt[e
−r(T−t)S(T)I{S(T)>K}] − Ke−r(T−t)Ẽt[I{S(T)>K}].

For this expectation to have a value greater than 0, the following should hold

S(T) > K ⇒ ln S + rT − σ
2

2
T2H + B̃H(T) > ln K

so let us denote

d∗2 =
ln(K/S) − rT + 1

2σ
2T2H

σ
.

Then, we see that the following holds:

B̃H(T) > d∗2.

Using (3.24) we obtain

Ẽt[I{S(T)>K}] = Ẽt[I{BH(T)>d∗2}]

=

∫ ∞

d∗2

1√
2π(T2H − t2H)

exp(− (x− B̃H(t))2

2(T2H − t2H)
)

=

∫ ∞
d∗2−B̃H (t)√
T2H−t2H

1
√

2π
exp(−z2

2
)dz

=

∫ B̃H (t)−d∗2√
T2H−t2H

−∞

1
√

2π
exp(−z2

2
)dz

= N(d2),

where
B̃H(t)−d∗2√
T2H−t2H

is a standard normal variable and we see that the last line holds when we write

the equations that defined∗ andd2 explicitly:

B̃H(t) − d∗2√
T2H − t2H

=
B̃H(t) − (

ln(S/K)−rT+σ
2

2 T2H

σ
)

√
T2H − t2H

=
σB̃H(t) − ln(K/S) + rT − σ2T2H

2

σ
√

T2H − t2H
= d2 =

ln(S(t)/K) + r(T − t) − σ
2(T2H−t2H)

2

σ
√

T2H − t2H
,

where we obtain the following equality forS(t)

ln(S(t)) = ln S + rt − σ
2

2
t2H + σB̃H(t),
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which is true forS(t) and therefore the equation holds.

Now we can move to the second part to computeẼt[S(T)I{S(T)>K}]. If we write

Ẽt[e
−r(T−t)S(t)er(T−t)−σ2

2 (T2H−t2H)+σB̃H(T−t)I{S(T)>K}],

we can use this to write this conditional expectation in the integral form sinceS(t) is F H(t)

measurable and we know the distribution ofBH(T − t). We have

S(t)
∫ ∞

−∞
e−
σ2
2 (T2H−t2H)−σ

√
T2H−t2Hz 1

√
2π

e−
z2
2 dz= S(t)

∫ ∞

−∞
e−

1
2y2

dy,

where

z= − B̃H(T) − B̃H(t)
√

T2H − t2H
,

is a standard normal random variable and

y = z+ σ
√

T2H − t2H .

Now let us investigate the borders of the integral. (S(T) − K)+ is positive if and only if

S(T) > K ⇔
ln(S(t)/K) + r(T − t) − σ2

2 (T2H − t2H)

σ
√

T2H − t2H
> z,

sinced1 = d2 + σ
√

T2H − t2H, andy = z+ σ
√

T2H − t2H, we have

S(t)
∫ d1

−∞
e−

1
2y2

dy= S(t)N(d1),

which gives us the price of a European call option att. ¥

The key element in computing the fractional Black&Scholes price of an option isestimating

the Hurst exponentH. We will summarize most widely used procedures for estimatingH in

the following chapter.

4.1.2 WIS portfolios

UsingWickcalculus in finance has been questioned and it is shown that it is possible to build

portfolios that can generate arbitrage. The approximation of Øksendal and Hu in [34] is not

easy to apply nor interpret. They adopt the perspective of quantum mechanics, where the ‘eye

of the beholder’ can effect the observations, to financial markets. One of the difficulties of

their approximation comes into sight when one tried to build a numerical algorithm on it. The
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test functions, a key element in their modeling, are in the form of Radon-Nikodym derivative

process, but to obtain the price of the asset, they useWick calculus. We assume a market with

one risk-free asset and a risky assetS0(t) andS1(t), respectively. The price dynamics of these

assets are given as

dS0(t) = rS0(t)dt,S0(0) = 1, (bankaccount)

and

dS(t) = µS(t)dt+ σS(t)dBH(t), S(0) = x > 0, (stock)

wherer, µ, σ , 0 andx > 0 are constants and the stochastic integral with respect toBH is

in theWISsense. We know that the solution of this SDE is a geometric fractional Brownian

motion, namely,

S(t) = xexp(σBH(t) + µt − 1
2
σ2t2H), t ≥ 0.

In their adaptation of quantum mechanical point of view,S(t) does not represent the observed

stock price at timet. Instead, it represents the total firm value that is not, and probably can

not, be observed directly, but changes according to different market observers. I think this

point of view also holds for the real world. If there were really one stockprice that has been

agreed upon, then which motive would drive the price processes and create price dynamics?

In my opinion, if it was the case with the financial markets, then there would be no financial

markets at all. In theWISsense, this idea is modeled as follows:

First, we begin with regardingS(t, ω) as a stochastic distribution inω, as an element of

(S)∗. Then, the observed stock price, denoted asS̄(t) is obtained applyingS(t, .) ∈ (S)∗ to a

stochastic test functionψ ∈ (S). Here,S(t) denotes the generalized stock price. Following

this interpretation, we see

S̄(t) := 〈S(t, .), ψ(.)〉 = 〈S(t), ψ〉,

where〈S(t), ψ〉 denotes the action of a stochastic distributionS(t, ·) ∈ (S)∗ on a stochastic test

function,ψ(·) ∈ (S). In this setting, stochastic test functions of the type ofψ are called the

market observers. They are assumed to be in the form of aWickexponential:

ψ(ω) = exp⋄(
∫

R

h(t)dBH(t))

= exp(
∫

R

h(t)dBH(t) − 1
2
‖h‖2H) for some h ∈ L2

H(R).
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The set of all linear combinations of suchψ is dense in both (S) and (S)∗ and moreover they

have a very specific property: they are normalized in the sense

E[exp⋄(
∫

R

h(t)dBH(t))] = 1, ∀h ∈ L2
H(R).

The definition of the portfolio value process is also defined by usingWickcalculus. We are still

in thestochastic test functions space (S)andstochastic distribution space(S)∗, the portfolio

process is defined as in the case of the stock price process. So, if we can not directly observe

the prices of a stock at timet directly, then we can not observe the value of a portfolio directly,

neither. We need the definition of ageneralized portfolio. A generalized portfoliois defined

to be the adapted process

θ(t) = θ(t, ω) = (θ0(t, ω), θ1(t, ω)), (t, ω) ∈ [0,T] ×Ω,

such thatθ(t, ω) is measurable with respect toB[0,T] ⊗ FH, whereB[0,T] is the Borelσ-

algebra generated by{BH(s)}s≥0, andθ0(t) is the fraction of wealth invested in the bank ac-

count andθ(t) is the fraction of wealth invested in the stock. In this setting, portfolio process

is defined to be a function of both time andω, a random variable depends on not only the real-

ized path but takes into consideration all of the states that can be generatedby the probabilistic

elementω.

The perspective that led fromgeneralized stock priceto observed stock pricealso applied

to thegeneralized portfolioprocess. Holding in mind that we defined the actualobserved

price at timet asS̄(t) = 〈S(t, .), ψ(.)〉, then the actualobservednumber of stocks held in our

portfolio process is given by

θ̄(t) := 〈θ(t, ·), ψ(·)〉.

According to this definition, the actualobserved wealthheld in the risky asset att, denoted

Ū(t), is defined by

Ū(t) = θ̄(t)S̄(t) = 〈θ(t, ·), ψ(·)〉〈S(t), ψ〉.

Thegeneralized total wealth process U(t) is also defined by using theWickproduct. TheWick

product reduces to ordinary product for deterministic functions, so wehave

U(t, ·) = θ(t, ·) ⋄ S(t, ·) = θ0(t)S0(t) + θ(t) ⋄ S(t).
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If we consider a partition of an interval of time [0,T], tk, and consider a discrete time market

model then thegeneralized portfolio wealthat tk will be

θ(t) = θ(tk, ω), where tk ≤ t < tk+1,

and the change in thegeneralized wealth processbetweentk andtk+1 is

△U(tk) = θ(tk) ⋄ △S(tk).

If we take the sum of the two sides over k and take the limit as the mash of the partition goes

to zero, we obtain the continuous time equation of thegeneralized wealth process, which is

U(T) = U(0)+
∫ T

0
θ(t) ⋄ dS(t) = U(0)+

∫ T

0
θ(t)dS(t).

Writing the equations fordS(t) anddS0(t) the self-financing property is obtained

U(T) = U(0)+
∫ T

0
rθ0(t)Stdt+

∫ T

0
µθ(t) ⋄ S(t)dt+

∫ T

0
σθ(t) ⋄ S(t)dBH(t).

Definition 4.1.3 A generalized portfolioθ(t) in theWIS model is calledWIS self-financingif

dUθ(t) = θ(t)dS(t),

or, explicitly,

Uθ(t) = Uθ(0)+
∫ t

0
θ0(s)dS0(s) +

∫ t

0
θ(s)dS(s),

where the integral with respect to the stock prices process S(t) is a WIS integral, under the

assumption that the two integrals exist. A generalized portfolio is called WIS admissible if it

is WIS self-financing andθ(s) ⋄ S(s) is Skorohod integrable.

In order to see the self-financing property, we will use the risk-neutralmeasure which is

defined by the Girsanov theorem forfBm. There are several approaches to obtain a Girsanov

type formula forfBm. This one is obtained for 0< H < 1 in [17] as an adaptation of the

classical Girsanov theorem.

Let us consider the SDE of a risky asset S(t),

dS(t) = µS(t)dt+ σS(t)dBH(t),

where the drift termµ is interpreted as the riskless rate of return on this asset and is different

from the riskless deposit rater. From a financial mathematical point of view, the classical
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Girsanov theorem provides a useful tool to find equivalent measures toobtain a specific pro-

cess which neutralizes the risk of an underlying asset generating a return that is different than

the riskless deposit rater. Theorem uses the Radon-Nikodym derivative process to change

the measure in the following way:

Let P̃ andP be two equivalent measures in the sense that they have the same negligible sets,

then Radon-Nikodym density is defined by

dP̃

dP
= exp

( ∫

R

ψ(s)dB(s) − 1
2
‖ψ‖2L2(R)

)
,

then, the Girsanov theorem states that the processB̃(t) defined by

B̃(t) := B(t) −
∫ t

0
ψ(s)ds,

is a standard Brownian motion underP̃. Now we remember the definition offBm in terms of

Brownian motion and try to obtain a standardfBmunder this new measurẽP. If we define the

processB̃H

B̃H(t) :=
∫

R

M[0, t](s)dB̃(s),

then it is a standardfBmunderP̃. We can see that

B̃H(t) = BH(t) −
∫

R

M[0, t](s)ψ(s)ds.

In order to obtain a specific drift value, the riskless rate of returnr in our case, we must solve

the following equation:

S(t) = S(0)+
∫ t

0
µS(s)ds+

∫ t

0
σS(s)dBH(s)

= S(0)+
∫ t

0
rS(s)ds+

∫ t

0
σS(s)dB̃H(s),

where we obtain ∫ t

0
µS(s)ds=

∫ t

0
rS(s)ds+ σ

∫ t

0
S(s)Mψ(s)ds.

If we write this equation in the differential form

µS(t)dt = rS(t)dt+ σS(t)Mψ(t)dt,

finally we see that

Mψ(t) =
µ − r
σ

t.

It is shown in [17], using the following property of the operatorM,

M−1[0, t] = M1−H[0, t],
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it is possible to see the explicit form ofψ(t):

ψ(t) =
(µ − r)[(T − t)1/2−H + t1/2−H])

2σΓ(3/2− H) cos[π/2(1/2− H)]
,

then,B̃H(t) defined by

B̃H(t) :=
µ − r
σ

t + BH(t),

is a standard fractional Brownian motion underP̃H. When we write the self-financing condi-

tion under the new measureP̃H by using the newfBm B̃H(t) instead ofBH(t), as done in the

standard Brownian motion case, our SDE becomes

Uθ(t) = Uθ(0)+
∫ t

0
rθ0(s)S0(s)ds+

∫ t

0
rθ(s) ⋄ S(s)ds+

∫ t

0
σθ(s) ⋄ S(s)dBH(s)

and, in differential form,

dUθ(t) = rθ0(t)S0(t)dt+ rθ(t) ⋄ S(t)dt+ σθ(t) ⋄ S(t)dBH(t).

Now we can compute the discounted wealth process as follows:

d(e−rtUθ(t)) = −re−rtUθ(t)dt+ e−rtdVθ(t)

= −re−rt (θ(t) ⋄ S(t))dt+ e−rt (rθ0(t)S0(t)dt+ rθ(t) ⋄ §(t)dt+ σθ(t) ⋄ S(t)dB̃H(t))

= e−rtσθ(t) ⋄ S(t)dB̃H(t).

Finally, we give the definition of strong arbitrage in theWISmarket:

Definition 4.1.4 A WIS admissible portfolioθ(t) is called astrong arbitrageif thegeneralized

total wealth processUθ(t) satisfies

Uθ(0) = 0,

Uθ(T) ∈ L2(P̃H) and,

Uθ(T) ≥ 0 a.s.,

P̃
H(Uθ(T) > 0) > 0,

Taking the expectation with respect to risk-neutral measureP̃H we see that

e−rT Ẽ[Uθ(T)] = Uθ(0),
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so we see that there is no strong arbitrage.

Although in [34], it is stated that theWISmodel being free ofstrong arbitrageis not in conflict

with fBmnot being a martingale, according to [4], arbitrage is possible in fractionalmarkets

because theWick product is used in the definition of the portfolio value process. But, there

is something that leads to the opposition of using theWick product for the definition of a

portfolio value process. After theWick product being applied, thegeneralized total wealth

processbecomes a function only of time; because theWick product takes all the possible

realizations to consideration,that is, it can not be calculated pathwisely. As aconsequence,

one must take into consideration all the states of nature in order to be able to compute the

value ofgeneralized total wealth processat a specific timet. This leads to some unwanted

situations such as a portfolio consisting of a positive amount of stocks having a negative value,

as shown in [4].

4.1.3 Arbitrage in fBm models

One of the most important concepts in financial economics is arbitrage. In real world terms, it

means that there are more than one price for the same financial asset. This isnot interesting for

practitioners since this is the basic motivation for the financial corporations tobe founded. But

in financial mathematics, the existence of arbitrage in a model makes it impossible todefine a

so-called equilibrium price of the asset.fBm is one of these models that causes arbitrage and

therefore it is forbidden until there is a solution to this problem. Bjork and Hultinvestigates

the definitions of self-financing and arbitrage portfolios in detail in [4]. They argued that the

self-financing condition is a fundamental concept in financial economics that depends on the

stochastic integral concept used to construct it. It is stressed that replacing the It̂o integral

with Wick integral is not a proper way of defining a new self-financing condition, and may

result in ‘nonsense’.

It is also shown that when replacing the Itô self-financing condition with Wick self-financing

condition, may cause some serious problems, even breaking trading laws. To see this they

consider a market consisting of

dS(t) = S(t) ⋄ dWH(t)

and a bank account with zero interest rate,i.e., R(t)=1. If we consider a portfolio value process
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V associated with the portfolioh = (h0,h1), then we have

dVh(t) = h0(t)R(t) + h1S(t) = h0(t) + h1(t)S(t)

with ordinary products and let us recall theWickself-financing condition

dVh(t) = h0(t)dR(t) + h1(t)S(t) ⋄ dWH(t)

since in this settingR(t) = 1, we see that

dVh(t) = h1(t)S(t) ⋄ dWH(t).

Let us consider two stopping timest0 ≤ t1. The portfolio that is constructed with ordinary

product satisfies

V(t1) − V(t0) = h(t0)(S(t1) − S(t0)).

and the Wick based portfolio satisfies

V(t1) − V(t0) =
∫ t1

t0
h(t0)S(u) ⋄ dWH(u).

As we mentioned before, Wick product is a product between random variables, therefore
∫ t1

t0
h(t0)S(u) ⋄ dWH(u)

does not in general coincide with

h(t0)
∫ t1

t0
S(u) ⋄ dWH(u)

causing the Wick self-financing condition to differ from the standard self-financing condition.

They also construct simple a portfolio strategy which is self-financing in the standard sense

but not in the Wick sense. A portfolio strategy with initial capitalc > 0. Putting all the

money in the bank account att = 0 and holding it there untilt = 1 where the rate is equal

to zero, resulting in no change in our wealth. Then, att = 1, buy c
S(1) shares with all your

money,whereS(1) is the price of the risky asset att = 1, and hold this position untilt = 2.

Then the value of this portfolio att = 2 is

V(2) =
c

S(1)
S(2).

Since, by construction, this portfolio is self-financing, i.e. no capital added or withdrawn

betweent = 0 andt = 2, the definition of Wick self-financing must include this strategy.

Then it is shown that

c
S(2)
S(1)

, c+
∫ 2

0
h1(u)S(u) ⋄ dWH(u),
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whereh0(t) = I(0,1](t) andh1(t) = c
S(1) I(1,2]. Taking expectation, we see that

E(x+
∫ t

0
h1(u)S(u) ⋄ dWH(u)) = c,

whereas

E(
c

S(1)
S(2)) = xE

(
exp(WH(2)− 22H

2
) exp(−WH(1)+

12H

2
)
)

= cexp
( − 1

2
(22H − 1)

)
E
(
exp(WH(2)−WH(1))

)

= cexp
( − 1

2
(22H − 1)

)
xexp

(1
2
|2− 1|2H)

= cexp(1− 22H−1) , c,

whenH , 1
2. As we see, the expectation is equal toconly whenH = 1

2, the standard Brownian

motion case. Although these results are discouraging, there are some important points that

should be taken into consideration before deciding whether thefBm is a suitable model for

finance or not. One of them is the transaction costs. In real world, there are transaction costs

unlike the theoretical world. In [21], it is shown that geometricfBmmodel is free of arbitrage

under transaction costs, of any magnitude. The other point is transaction time. Although

high-frequency trading is becoming more popular as time goes on, continuous trading is still

impossible. In [8], arbitrage is excluded by introducing a minimal amount of timeh > 0 that

must lie between two consecutive transactions.

Since these work show that it is possible to exclude arbitrage fromfBm models by some

realistic assumptions, it looks possible to build a proper model in financial mathematics using

fBm. Future work may solve these problems andfBmmay then replace the standard Brownian

motion in financial mathematics.
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CHAPTER 5

Estimation and Simulation

5.1 Statistical aspects of thefBm

The main motivation behind usingfBm in modeling is to use its flexible covariance structure

to capture the covariance structure of the data. This can only be done by estimating the Hurst

exponentH. The Hurst exponent can be estimated using the statistical properties that are

specific tofBm. SincefBmis a special case among Gaussain random variables, we can use the

modification of the basic results to obtain an estimate of the self-similarity parameterH. Let

us begin with the usual assumptions and results used in the statistical theory. One of them is

: The variance of the sample mean is equal to the variance of one observation divided by the

sample size, that is,

var(X̄) = σ2n−1, (5.1)

whereX1, . . . ,Xn are observations with common meanµ = E(Xi), σ2 =var[Xi ] = E[(Xi −µ)2]

andX̄ = n−1∑n
i=1 Xi . This result can only be obtained under assumptions numbered below:

1. The population meanµ = E[Xi ] and the population varianceσ2 = E[Xi ] exists and

finite.

2. X1, . . . ,Xn are uncorrelated, that is

ρ(i, j) = 0

for i , j, where

ρ(i, j) =
γ(i, j)
σ2

is the autocorrelation betweenXi andX j , and
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γ(i, j) = E[(Xi − µ)(X j − µ)]

is the autocovariance betweenXi andX j . The first assumption seems to be required for being

able to use Gaussian distributions in statistics and depend on the distribution function F. But

the second assumption, in the case offBm, does not hold because of its long-memory property,

although it is a Gaussian process with finite first two moments. One of the questions arose

is what happens when the second assumption does not hold? Will the other assumptions be

affected? As we will see, when this assumption does not hold, the decay rate ofthe variance

of the sample mean changes.

For X̄ to be meaningful,E[Xi ] = µ is assumed to be constant. The variance ofX̄ = n−1∑n
i=1 Xi

is equal to

var[X̄] = n−2
n∑

i, j=1

γ(i, j) = n−2σ2
n∑

i, j=1

ρ(i, j)

and if the correlations fori , j sum up to zero, then

n∑

i, j=1

γ(i, j) =
n∑

i, j=1

γ(i, i) =
n∑

i=1

σ2,

and (0.1) holds sinceρ(i, i) = 1. But if

n∑

i=1

ρ(i, j) , 0,

then we have

var(X̄) = n−2σ2
n∑

i, j=1

ρ(i, j) = n−2σ2(n+
∑

i, j

ρ(i, j)
)

= σ2n−1(1+ νn(ρ)),

whereνn(ρ) is the non-zero correction term and the first assumption does not hold [3]. But as

the number of observationsn goes to infinity,

ν(ρ) = lim
n→∞
νn(ρ) = lim

n→∞
n−1
∑

i, j

ρ(i, j)

exists and greater than−1. Then we asymptotically have

var(X̄) ≈ σ2n−1[1 + ν(ρ)] = σ2n−1c(ρ).

wherec(ρ) is constant. This relation is first realized by Edwin Hurst in [25] and then several

estimation techniques has been developed based on this relation.
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5.2 Estimation ofH

As we have seen, long term behavior of a process can be modeled byfBm . There are differ-

ent estimation techniques that can be used to estimate the parameterH. We begin with the

estimation ofH under the assumption that the data under consideration is a sample path of a

fBm.

5.2.1 TheR/S statistic

The Nile River has been a great inspiration for people since the early ages, especially its

floods. It has a characteristic long-term behavior which we know defineto be ‘persistent’.

Long periods of floods were followed by long periods of drought. One interesting thing is

that there is reasonably reliable historical data ranging from 622 A.D. to 1281 A.D. There

were long periods of which the maximal level tended to stay high and on the other hand

long periods of low levels, but the overall series look stationary. These characteristics has

drawn the attention of Edwin Hurst, who was a hydrologist, when he was trying to find a way

to regularize the flow of the Nile River. He has done a statistical discovery by empirically

generating a biased sequence of random draws, using playcards. Suppose we want to calculate

the capacity of a reservoir of the ideal capacity for the time interval (t, t + k), assuming the

time is discrete and there is no storage losses. The ideal capacity is defined as follows: the

outflow is uniform, at timet+k the reservoir is as full as it was at timet and the reservoir never

overflows. WhenXi denote the inflow at timei andYj =
∑ j

i=1 Xi is the cumulative inflow up

to time j, the ideal capacity can be shown to be equal to

R(t, k) = max
0≤i≤k

[Yt+i − Yt −
i
k

(Yt+k − Yt)]

− min
0≤i≤k

[Yt+i − Yt −
i
k

(Yt+k − Yt)],

R(t, k) is called the adjusted range. It is standardized to be able to study the properties which

are independent of the scale. The scale coefficientS(t, k) is given by

S(t, k) =

√√√
k−1

t+k∑

i=t+1

(Xi − X̄t,k),
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whereXt,k = k−1∑t+k
i=t+1 Xi , S2(t, k) is equal tok−1

k times the sample variance ofXt+1, . . . ,Xt+k.

Then, the ratio

R/S =
R(t, k)
S(t, k)

is therescaled adjusted rangeorR/Sstatistic. When Hurst plotted the logarithm of this statistic

against several values ofk, he observed that for large values ofk, logR/S was scattered around

a straight line with slope that is grater than1
2. In probabilistic terminology,

logE[R/S] ≈ a+ H logk, with H >
1
2
.

The slope exceeding12 was in contradiction with the assumption that the underlying process

was Markov with independent increments. Since theR/S statistic is based on cumulative

sums and sample variance, it should satisfy the basic statistical results used inmodeling,

which we argued in the beginning of this subsection, andH would be close to12. At first, this

looked like a special case for the Nile River, but after Hurst’s discovery, many natural records

has been shown to act in a similar way to the Nile River, withR/S statistic for someH > 1
2,

and this situation has began to be known as theHurst effect. fBmwas built by Mandelbrot in

order to model theHursteffect, or the Noah effect in Mandelbrot’s terms. ForfBm, it is known

as the ‘persistence’ case. Mandelbrot applied theR/S analysis to financial time series such as

interest rates, commodity prices and stock market data and found evidenceof persistence, or

long-memory in series. He thought this was the evidence of arbitrage in the market, as now

is the case forfBm. Let us denoteQ = Q(t, k) = R(t, k)/S(t, k) then the following theorem in

[30] can explain whyQ(t, k) is useful in terms of detecting the long-range dependence:

Theorem 5.2.1 Let Xt be such that X2t is ergodic and t−
1
2
∑t

s=1 Xs converges weakly to Brow-

nian motion as t tends to infinity. Then, as k→ ∞,

k−
1
2 Q→d ζ,

whereζ is a nondegenerate random variable.

Let us assume the central limit theorem holds for the processXt. Then it can be seen that

since theR/S statisticQ is obtained by subtracting the weighted average from the cumulative

sum and then scaling with the sample variance times a constant,k
1
2 Q should converge to a

well-defined random variable, a Gaussian for instance. For long-memoryprocesses, the slope

of the plot of log(R/S) versus logk, expected to beH > 1/2, for sufficiently large lagsk.
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Mandelbrot states that the asymptotic behavior of theR/S remains unaffected even in the

case ofα-stable processes with infinite variance. The algorithm of theR/S method can be

summarized as follows:

1. CalculateQ for a sufficient number of different values oft andk.

2. Plot logQ against logk.

3. Estimate the regression coefficients. Then, the estimate ofH is the slope coefficient of

the regression.

In terms of application, there arise some difficulties like: How to decide the value ofk that

the asymptotic behavior of the process starts? Is there a bias in the estimate ofH? Is linear

regression the proper tool for this estimation? These problems make it difficult to use and

interpret theR/S statistic. However, theR/S statistic is useful in getting a first idea about the

dependence structure of the data.

5.2.2 The Correlogram

The correlogram is a standard method in time series analysis. It is based on plotting the

correlations against the lagk, where

ρ̂(k) =
ˆγ(k)
γ̂(0)

is the sample correlations. When one draws two horizontal lines at the levels±2/
√

n, corre-

lations outside this lines are considered significant at 0.05 level, since this is the confidence

interval for sample correlations as a limit case [36]. But this is the case whenthe sample under

consideration is uncorrelated. If this is not the case, the significance level would differ from

the uncorrelated level. A more suitable method can be obtained by takin the logarithm of both

sides to linearize the relationship betweenk andρ(k) as the limit case. For a long-memory

process, we have seen that the decay rate of correlations isk2H−1 (k2d−1) ask → ∞. This

property is used to estimateH by plotting log|ρ(k)| against logk and using, again, linear re-

gression. When the asymptotic decay of the correlations is hyperbolic, the slope coefficient is

close to 2H − 2. The correlogram method does not give meaningful results whenk is small or

whenH is close to1
2. One can also use the asymptotic decay rate of partial correlations,k−H− 1

2

to estimateH and this method would also have the same difficulties in application terms.
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5.2.3 Variance Plot method

The third term we will mention is again based on the logarithmic plots, but uses another

property of long-range dependent processes. As we have seen, one of the implications of the

long-memory can be seen by looking at the variance of the sample mean. Fromtheorem 2.2

in [3], we have

var(X̄n) ≈ cn2H−2,

wherec > 0 is a constant. Using this relation, the following method is defined:

1. Letk be an integer with 2≤ k ≤ n/2 and a sufficient number of sub-sampleslk of length

k, calculate the sub-sample meansX1(k),X2(k), . . . ,Xlk(k) and the overall mean

X̄(k) = l−1
k

lk∑

j=1

X̄ j(k).

2. For eachk, calculate the sub-sample variancess2(k):

s2(k) = (lk − 1)−1
lk∑

k=1

(
X̄ j(k) − X̄(k)

)
.

3. Plots2(k) against logk.

This method also has the same difficulties and drawbacks as the first two methods mentioned.

Again, we use the slope of the plot to obtain an estimation ofH.

5.2.4 Absolute moments method

This method is a generalization of the variance plot method. The basic idea is,again, using

the self-similarity property offBm. See [15] for references. The quantity

ABsm =
1
M

M−1∑

i=0

|X(m)
i − ¯X(m)|n

for n = 1,2, . . .. From the asymptotic behavior of the variance, the following relation can be

shown to be satisfied forfBm

E|Xm
i − E[Xm

i ]|n ∼ cMH−1

= mn(H−1)cMH−1
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for big masM → ∞, andc is an appropriate constant. These relations are not fully proven to

hold. But it is known thatE[ABsm] is proportional tomn(H−1) [15]. This method is generally

used withn = 1, and whenn = 2, it is the same method with variance plot method.

5.2.5 Variance of the regression residuals

This method has been proposed by Peng in [35]. Method based on dividing the sample into

blocks of sizem and then linearly regress the series on a lineαk + βki. After the residuals

ǫki =

km+i−1∑

j=km

X j − αk + βki,

are obtained, their variance is computed for each block. The average ofthis sample variance

over all blocks are plotted versusm, again, on a log-log scale. When linear regression is used,

the slope coefficient is equal to 2H.

5.2.6 Periodogram method

This method is based on the idea of detecting long-range dependence in the frequency domain.

The estimation procedure begin with computing the periodogram of the sample. It is shown

in [18] that the periodogram is an unbiased estimator of the spectral density. Periodogram is

defined by

I (λ) =
N−1∑

−(N−1)

γ̂( j) exp(i jλ),

whereγ̂( j) is the sample autocovariance computed as

γ̂( j) =
1
N

N−| j|−1∑

k=0

(Xk − X̄)(Xk+| j| − X̄).

It is shown in [22] that

I (λ) =
1
N

∣∣∣
N−1∑

k=0

(Xk − X̄) exp(ikλ)
∣∣∣2

The periodogram is symmetric around zero, as the spectral density is. Theperiodogram is

asymptotically an unbiased estimator of the spectral densitys(λ) [5], that is,

lim
N→∞

E[I (λ)] = s(λ)
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We compute the periodogram of the sample to investigate the behavior of the spectral density

near the origin. Then we can use the relation:

s(λ) ∼ cs|λ|1−2H (|λ→ 0),

which can be written as

log s(λ) ∼ logcs+ (1− 2H) log |λ|.

The I (λ) is usually calculated at the Fourier frequencies

λk,n =
2πk
n
, k = 1, . . . ,n∗,

wheren∗ is the integer part of (n− 1)/2, to obtain an estimate ofH. For processes that do not

exhibit long-range dependence, the periodogram ordinates at Fourier frequencies are expo-

nentially independent random variables with meanss(λ1), . . . , s(λk) [3]. Then the following

relation holds approximately

log I (λk,n) ≈ logcs+ (1− 2H) logλk,n + logηk,

whereηk are independent standard exponential random variables, withE[log η] = −C =

−0.577215. . . , whereC is the Euler constant [3]. If we define

yk = log I (λk,n), xk = logλk,n, β0 = logcs−C, β1 = 1− 2H

and the error terms as

ek = logη +C,

then we can write

yk = β0 + β1xk + ek.

Geweke-Porter-Hudak suggested applying a least squares regression procedure to estimateH

in [18]. Their method is based on the following relation

Ĥ =
1− β̂1

2
.

Although this method is computationally effective, there are some drawbacks of the method.

First of all, the desired behavior of the spectral density, proportionality toλ1−2H can be de-

tected only around a small neighborhood of frequency zero and this makes it more difficult

for the method to capture the asymptotically defined notion of long-memory. For details, see

3. Another way for estimatingH is to use the discrete time analog offBm: Fractionally inte-

grated ARMA models. Using these processes, it is possible to construct maximum likelihood

estimation procedures to estimateH. We will give the definition and basic properties of these

models in the following subsection.
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5.3 Fractionally Integrated ARMA Models

The classical ARMA models are based on the stationarity assumption of the series. In [5],

integrated time series models are introduced to model nonstationary time series. This models

later used to construct fractionally integrated time series models, which is the discrete time

analog offBm. In the continuous setting, the derivative of thefBm, the fractional white noise

process,WH(t) is defined to be the (1
2 − H)th fractional derivative of the white noiseW(t).

Using this definition, the discrete time analogue ofBH(t) andWH(t) is defined in the following

way. First we remark that the discrete-time analogue of Brownian motion is the random walk

process{yt}, defined by

▽yt = (1− B)yt = at,

whereB is the backshift operator defined byByt = yt−1 and{at} are independent identically

distributed random variables with zero mean and unit variance. The first difference of{yt} is

the discrete time white noise process{at}. In time-series modeling, the process{yt} is said to

be an integrated process of orderd. The operator (1− B) is called the difference operator.

Since integrated processes is used to construct the discrete-time analog ofBrownian motion

and white noise processes, we can proceed by using fractional integration to obtain a discrete

analogue offBm. Based on the definition ofWH(t), discrete time analog of this process is

defined to be the (12−H)th fractional difference of the discrete-time white noise. The fractional

difference operator▽d defined by the binomial series:

▽d = (1− B)d =

∞∑

k=0

(
n
k

)
(−B)k = 1− dB− 1

2
d(1− d)B2 − 1

6
d(1− d)(2− d)B3 − . . . ,

When we writed = H − 1
2, the discrete-time analogue ofWH(t) is the processyt = ▽−dat,

fractionally integrated (summed) discrete-time white noise or▽dyt = at fractionally differ-

enced discrete-time Brownian motion.{xt} is called an ARIMA(0,d,0) process, an extension

of ARIMA processes to nonintegerd.

5.3.1 The fractional ARIMA(0,d,0) process

This process is formally defined in [23] as the discrete-time stochastic process{yt} which may

be represented as

▽dyt = at,
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where the{at} is i.i.d. with mean zero andσa = 1 for convenience. The following theorem

gives the basic properties of this process

Theorem 5.3.1 1. When d< 1/2 (H < 1), {yt} is a stationary process and has the infinite

moving-average representation

yt = θ(B)at =

∞∑

k=0

θkat−k,

where

θk =
d(1+ d) . . . (k− 1+ d)

k!
=

(k+ d − 1)!
k!(d − 1)!

as k→ ∞, θk ∼ kd−1/(d − 1)!.

2. When d> −1/2 (H > 0),yt is invertible and has the infinite autoregressive representa-

tion

π(B)yt =

∞∑

k=0

πkyt−k = at,

where

πk =
−d(1− d) . . . (k− 1− d)

k!
=

(k− d − 1)!
k!(−d − 1)!

as k→ ∞,πk ∼ k−d−1/(−d − 1)!.

3. The spectral density of yt is

s(λ) = (2 sin
1
2
λ)−2d for 0 < ω ≤ π and s(λ) ∼ λ−2das f→ 0.

4. The covariance function of{yt} is

γk = E(ytyt−k) =
(−1)k(−2d)!

(k− d)!(−k− d)!

and the correlation function of{yt} is

ρk = γk/γ0 =
(−d)!(k+ d − 1)!
(d − 1)!(k− d)!

, for k = 0,±1, . . . ,

ρk =
d(d + 1) . . . (k− 1+ d)

(1− d)(2− d) . . . (k− d)
, for k = 1,2, . . . ,

The first autocovariance and autocorrelation areγ0 = (−2d)!/[(−d)!]2 andρ1 = d/(1−

d). And as k→ ∞

ρk ∼
(−d)!

(d − 1)!
k2d−1.
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5. The partial correlations of yt are

φkk = d/(k− d).

Theθk coefficients from the infinite moving-average representation can easily be obtained by

using the difference operator (1− B)−d instead ofθ(L), i.e., yt = (1 − L)−dat and using the

binomial expansion of the fractional difference operator
∑∞

k=0

(−d
k

)
and we obtainθk. In this

case, with−d instead ofd, the difference operator becomes an integration operator and it

shows us that the process{yt} is indeed fractionally integrated white noise. Analogously, to

obtainθk coefficients, we write the infinite autoregressive representation of{yt} as

π(L)yt = (1− L)dyt = at (5.2)

and see that when the ARIMA(0,d,0) process{yt} is fractionally differenced, the resulting

process is white noise process{at}. According to Theorem 5.2.2, the ARIMA(0,d,0) process

{yt} is both stationary and invertible when−1
2 < d < 1

2. If d is in this interval we see that

0 < H < 1, and the ARIMA(0,d,0) model coincides with thefBm. Now let us investigate the

relation between two parametersdandH. We know thatd = H − 1
2, sod is positive when

H > 1/2, and the difference operator (1−L)d indeed works as a difference operator. However,

whenH < 1/2, d is negative and the difference operator becomes an integration operator, and

to obtain the white noise process{at}, we fractionally integrate the ARIMA(0,d,0) process

{yt}. One of the things that draws our attention is the hyperbolic decay rate ofθk andπk being

different from the exponential decay rate of an ARMA process. As the theorem stated, it is

also possible to identify long-range dependence in the frequency domain via the behavior of

the spectral density of{yt} at low frequencies. If 0< d < 1/2 , {yt} is a process with long-range

dependence as we expected it to be since 1/2 < H < 1.

In the frequency domain, it is also possible to detect long-range dependence by looking at the

spectral density of the process at low frequencies. The spectral density of {yt} is concentrated

at low frequencies, is a decreasing function of frequency and goes toinfinity as the frequency

goes to zero, but still integrable at zero. This fact may help in understanding why the word

‘persistence’ is used sometimes instead of long-range dependence. If 1/2 < H < 1, the

persistent behavior offBmcan be seen by the process being dominated by the low-frequency

components, therefore causing the process to seem more deterministic and like consisting of

waves with greater periods. Recall that, in this case, the quadratic variationof the fBmgoes
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to zero, may be seen as another reason for its persistent behavior. TheARIMA(0,d,0) process

has a different behavior when−1
2 < d < 0 (0 < H < 1/2). It exhibits short-memory, or

‘antipersistence’, in Mandelbrot’s terminology. The correlations and partial correlations are

all negative, except, of course,ρ0 = 1, and decay hyperbolically to zero as it is the general case

for ARIMA(0,d,0) processes. Again, this difference in behavior reflects on the behavior of the

spectral density of the process. Unlike the case ofd > 0, the spectral density is dominated by

high-frequency components, the spectral densitys(λ) is an increasing function of frequencyλ

and vanishes atλ = 0. As we see, the result of the domination of high-frequency component

is the mean-reverting behavior of the ARIMA(0,d,0) process, and thefBm. This situation is

usually interpreted as acting ‘more chaotic’, or ‘wild’ but the definition of ‘more chaotic’ is

not explicit enough. Nonetheless, one can see that the statistical fractaldimension offBm

is inversely related with the parameterH and this can be a way of interpreting this chaotic

behavior. As mentioned, one of the characteristic of a fractionally integrated process is the

hyperbolic decay rate of the correlations. The correlations of an ARMA(p,q) process decays

exponentially. But the hyperbolic decay rate does not give us a clue about the value of the

parameterd because the decay rate of the partial correlations isk−1 which is independent

of d. But the behavior of the partial linear regression coefficients are used to distinguish

between different values ofd. The Durbin-Levinson method [5] can be used to obtain these

coefficients. Let us consider a fractionally integrated model is approximated by thefirst two

lags of the series. Then the best linear prediction of the next observations, in the mean square

sense, is

ŷ3 = π1y1 + π2y2.

If we consider this model as an AR(2) model fitted to an AR(3) model, then we can obtain the

partial correlation coefficients recursively using the Durbin-Levinson method since we know

the correlationsρ(k). The partial linear regression coefficientsφk j for 1 ≤ j ≤ k is obtained

by this method is

φk j = −
(
k
j

)
( j − d − 1)!(k− d − j)!

(−d − 1)!(k− d)!

as j, k→ ∞ with j/k→ 0 we have

φ jk ∼ − j−d−1/(−d − 1)!.
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5.3.2 The fractional ARIMA( p,d,q) process

The ARIMA(0,d,0) process may be helpful in modeling of long-range dependence but time-

series generally have more a few more characteristics to be considered when one try to model.

In order to preserve the hyperbolic decay of the correlation function, fractional difference op-

erator is applied to ARMA processes. The resulting process does not have too many parame-

ters and seem to have enough parameters to model the ARMA models with slowly decaying

correlations. Let us recall the definition of an ARMA(p,q) process{xt}:

Definition 5.3.2 The ARMA(p,q) process{xt} is defined as

φ(B)xt = θ(B)at, (5.3)

where

φ(B) = 1− φ1B− φ2B2 − . . . − φpBp,

θ(B) = 1− θ1B− θ2B2 − . . . − θpBp.

Then the ARFIMA(p,d,q) process is formally defined in [23] as the stochastic process{yt}

that can be represented as

φ(L) ▽d yt = θ(B)at.

Using this process, it is possible to model both short-range and long-range correlation struc-

tures. The ARMA part of the process can be used to model short-rangestructure, while the

parameterd is chosen so that the long-range behavior of a series can be captured.One of

the difficulties of working with ARFIMA(p,d,q) models is that the AR and MA representa-

tion weights are complicated functions of the hypergeometric function. In 10,an alternative

method for calculation of these autocorrelations were provided as:

γk =

q∑

k=−q

b j

p∑

n=1

θnC(k− p− j;ψn),

where

C(k− p− j;ψk) = ψ
2p
k

∞∑

m=0

ψm
k γ
∗
k−p− j−m+

∞∑

n=1

ψn
kγ
∗
k−p− j+n
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andγ∗ is the autocovariance at lagk of an ARFIMA(0,d,0) process. Thebk andψ j are given

by:

bk =
[
ψk

p∏

1

(1− ψi − ψk)
p∏

m,k

(ψk − ψm)
]
, fork = 1,2, . . . , p

ψ j =

q−| j|∑

i=0

θiθi+| j|.

The equation that defines the ARFIMA(p,d,q) process can be interpreted in several ways.

For instance, let us write

(1− L)dyt = ỹt,

whereỹt is an ARMA process defined by

ỹt = φ(L)−1θ(L)at,

which can be interpreted as, after passing{yt} through the fractional difference operator (infi-

nite linear filter) (1− L)d, one obtains an ARMA process. And we can write,

yt = φ(L)−1θ(B)y∗t ,

wherey∗t is an ARIMA(0,d,0) process defined by

y∗t = (1− L)−dat.

The effect of parameterd, can be seen directly in behavior of the spectral density function

of an ARFIMA(p,d,q) process. To see this effect, we must compute the spectral density

function of {yt}, by using the spectral density function of an ARMA(p,q) process. Let us

denote the spectral density of the ARMA(p,q) process{ỹt} by

sỹ(λ) =
σa|θ(eiλ)|2
2π|φ(eiλ)|2

.

Since the process{ỹt} is obtained from the process{yt} by applying the linear filter (1− B)d,

we can use this relation in [22] to compute the spectral density of the process{yt} . In the

representation

(1− L)−dỹt = yt,

we can writeeiλ instead ofL and use the result of Priestley in [36] to obtain the spectral

density of{yt}:

sy(λ) = |1− eiλ|−2dsỹt .
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Using the equality|1 − eiλ| = 2 sin(12λ) [3], we take the limit as frequency goes to zero to

obtain the behavior of the spectral density around zero. Because limλ→0 λ
−1(2 sin(12λ)) = 1,

this behavior is can be seen in the following equality:

sy(λ) ∼
σ2|θ(1)|2
2π|φ(1)|2

|λ|−2d = sỹ(0)|λ|−2d.

Thus, whend > 0, the spectral density goes to infinity around zero frequency. This corre-

sponds to the caseH > 1/2 for the fBm. So the long-range dependence can be seen in the

behavior of the spectral density dominated by low frequency components.As for the fBm,

the ARFIMA(p,d,q) model is easier to work with when long-range dependence exists, i.e.,

whend > 0. The following is an alternative definition of long-range dependence based on the

spectral densities:

Definition 5.3.3 Let {yt} be a stationary process for which the following holds: There exists

a real numberβ ∈ (0,1) and a constant cs > 0 such that

lim
λ→0

s(λ)/[cs|λ|−β] = 1.

Then{yt} is called a stationary process with long-memory or long-range dependence.

The following theorem in [3] gives an equivalent definition of long-range dependence for

stationary processes:

Theorem 5.3.4 1. Suppose the following holds holds with0 < α = 2−2H < 1 and cn > 0,

lim
n→∞

ρ(n)
cρn−α

= 1,

then the spectral density s exists and

lim
λ→0

s(λ)/[cs(H)|λ|1−2H] = 1,

where

cs = σ
2π−1cρΓ(2H − 1) sin(π − πH),

andσ2 =var(yt).

2. Suppose the long-range dependence property holds for{yt} with 0 < β = 2H − 1 < 1.

Then

lim
k→∞
ρ(k)/[cρk

2H−2] = 1
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where cρ =
cγ
σ2 , and

cγ = 2csΓ(2− 2H) sin(πH − 1
2
π).

One may use these asymptotic equalities to obtain explicit formulas for the covariances and

correlations. As|k| → ∞,

γ(k) ∼ σ
2|θ(1)|2
π|φ(1)|2

Γ(1− 2d) sin(πd)

and for the correlations

ρ(k) ∼
σ2|θ(1)|2
π|φ(1)|2 Γ(1− 2d) sin(πd)|k|2d−1

∫ π
−π s(λ)dλ

.

One of the problems that may arise is that the data to be modeled by an ARFIMA process has

a greater order of integration, i.e.,d > 1. In this case, as we have seen, the ARFIMA process

is not stationary. This problem may be solved easily by differencing series until we obtain

d < 1/2.

The reason for the fractional integration and the long-range dependence has been widely

questioned. One of the explanations made is the aggregation of independent AR(1) processes

causing the fractional behavior by Granger in [20].

5.3.3 Maximum-likelihood method

Maximum likelihood method is probably the most reliable estimation procedure, butit has

drawbacks. The maximum likelihood function of a fractionally integrated process is difficult

to derive and requires long computational time. SincefBm is Gaussian, the joint distribution

of a sampleX = (X1,X2, . . . ,Xn)
′
can be shown to be equal to

l(x; θo) = (2π)−
n
2 |Σ(θo)|− 1

2 e−
1
2 x
′
Σ−1(θo)x,

wherex = (x1, x2, . . . , xn) ∈ Rn [3]. Then the log-likelihood function is

Ln(x; θo) = logh(x; θo)

=
n
2

log 2π − 1
2

log |Σ(θo)| − 1
2

x
′
Σ−1x.

The MLE of θo is obtained by maximizing the log-likelihood function with respect to pa-

rameter vectorθ. Under mild regularity conditions, this maximization can be shown to be
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equivalent to solving the following equations

L
′
n(x; θ̂) = 0.

The asymptotic distribution of̂θ then can be derived using the Taylor expansion ofL
′
n. For de-

tails, see[3]. Sowell derives the exact formulation of the maximum likelihood function in [44].

Another approach would be using the conditional distribution ofxn givenxn−1, xn−2, . . . , x1 to

decompose the likelihood function as

l(x) = l1(x1)l2(x2|x1) . . . ln(xn|x1, . . . , xn−1),

wherel j(x j |x1, . . . , x j−1) are one dimensional Gaussian densities which are fully characterized

by its mean and variance. Since we use the time series modeling point of view, themeanµ j

can be obtained by the best linear prediction ofx j givenx1, . . . , x j−1,

µ j = E[X j |X1, . . . ,X j−1] = X̂ j =

j−1∑

s=1

β j−1,sX j−s,

where the coefficientsβ j−1,s are the partial linear regression coefficients and can be obtained

by the Durbin-Levinson algorithm [5]. The variance ofl j is equal to the expected mean square

error of X̂ j

σ2
j = E[(X̂ j − µ j)

2|X1, . . . ,X j−1].

MLE methods are reliable but difficult to implement in terms of computational time.

5.3.4 Whittle’s approximate maximum likelihood function

using the spectral properties of the process, an approximate MLE method has been proposed

by Whittle in [46]. In general, the estimation methods which used to estimated, are based

on Fourier transform techniques as shown in [44]. This is because the effect of the fractional

differencing parameter can be seen on the behavior of the spectral density of the process

and there is correspondence between the spectral density and the covariance matrix of the

process. Whittle’s estimator uses this correspondence to approximate the covariance matrix

and its inverse. The idea is using the equality,

lim
n→∞

1
n

log |Σn(θ)| = 1
2π

∫ π

−π
log s(λ; θ)dλ,

to obtain the approximation log|Σn(θ)| ≈ n(2π)−1
∫ pi

−π log s(λ; θ)dλ. It is shown in [6] that the

following approximation holds. Let us define then× n matrix A by

A(θ) = [α( j − l)] j,l=1,...,n,
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where its elements are defined by

α( j − l) = (2π)−2
∫ π

−π

1
s(λ; θ)

ei( j−l)λdλ,

then the matrixA is asymptotically inverse of the covariance matrixΣn as shown in [3]. The

Whittle estimator is easier to implement when discretized. The elementsα( j − l) are approxi-

mated by

α̂(k) = 2
1

(2π)2

m∑

j=1

1
f (λ j,m)

eikλ j,m
2π
m
,

where

λ j,m =
2π j
m

( j = 1, . . . ,m∗),

and m∗ denotes the integer part of (m − 1)/2. Then the estimation of parameters can be

obtained by minimizing

L̂W(θ) = 2
1
2π

[
m∗∑

j=1

log(λ j,m; θ)
2π
m

m∗∑

j=1

I (λ j,m)

f (λ j,m; θ)
2π
m

].

If, in addition, one represents the parameter vector asθ = (θ1, η) such that

s(λ; θ) = θ1s(λ; θ∗)

with the following condition holds

∫ π

−π
log s(λ; θ∗)dλ = 0,

whereθ∗ = (1, η), then minimizing the Whittle likelihood amounts to minimizingI (λ j,m)s−1(λ j,m; θ∗)

with respect toη. For details, see [6].

5.4 Simulation of fBm

5.4.1 Durbin-Levinson Method

This method is also known as the Hosking method and is an algorithm to simulate stationary

Gaussian processes in general. The idea behind this algorithm is to obtain Yule-Walker esti-

mates of a AR(p+ 1) process using the parameters of AR(p) process fitted to the same time

series. The partial autocorrelation function can therefore be approximated. Assume we have

X0,X1, . . . ,Xn, the first n observations of a process, Durbin-Levinson method generatesXn+1
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using these past observations. Letγ denote the autocovariance function of a zero-mean series,

i.e.

γ(k) = E[XnXn+k], for k,n = 0,1, . . . .

Since we can magnify the variance of the process as we like, we assume, for now, it has unit

variance;γ(0) = σ2 = 1. Let Γ(n) = [γ(i − j)] i, j=0,...,n be the covariance matrix and define

the (n + 1)-column vector asg(n)k = γ(k + 1), k = 0, . . . ,n. The (n + 1) × (n + 1)-matrix

T(n) = [I i=n− j ] i, j=0,...,n is defined in such a way that premultiplying this matrix with a column

vector or postmultiplying this matrix with a row vector transposes the vector. Using these we

can write

Γ(n+ 1) =


1 g(n)

′

g(n) Γ(n)

 =


Γ(n) F(n)g(n)

g(n)
′
F(n) 1



where the prime denotes the vector transpose. The mean isµn = c(n)
′
Γ(n)−1(Xn . . .X1X0)

′

and the variance isσ2
n = 1− c(n)

′
Γ(n)−1c(n). The method generates the next estimates of the

variance and the mean recursively using the recursion

σ2
n+1 = σ

2 − (γ(n+ 2)− τn)2

σ2
n

with τn = d(n)
′
F(n)c(n) = c(n)

′
F(n)d(n) andd(n) = Γ(n)−1c(n). A recursion ford(n + 1) is

also obtained

d(n+ 1) =


d(n) φnF(n)d(n)

φn



with φn =
γ(n+2)−τn
σ2

n
. Recursion starts withµ0 = γ(1)X0, σ2

0 = 1 − γ(1)2 andτ0 = γ(1)2. A

sample offBm is obtained by computing the cumulative sums.

5.4.2 Cholesky method

As expected, Cholesky method is based on the Cholesky decomposition of thecovariance

matrix. When a matrix is symmetric positive definite, the Cholesky method can be used. First

we write

Γ(n) = M(n)M(n),

whereM(n) is an (n+ 1)× (n+ 1) lower triangular matrix, that is, the (i, j) element ofM(n) is

zero for j > i. The elements ofM(n) can be computed since the element (i, j) of M(n)M(n)
′

andΓ(n) should be equal forj ≤ i becauseM(n) is lower triangular, but then they will be
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equal because of the symmetry ofΓ(n), and this means

γ(i − j) =
j∑

k=0

mikmjk, j ≤ i.

If i = j = 0, we obtain the variance asγ(0) = m2
00. If i = 1, we have the two equations

γ(1) = m10m00, γ(0) = m2
10+m2

11

to determinem10 andm11. Since we can computeM(n+ 1) from M(n) by adding a row and

enough zeros to keep it lower triangular we can determine the row that we willadd by

mn+1,0 =
γ(n+ 1)

m00
,

mn+1, j =
1

mj j

(
γ(n+ 1− j) −

j−l∑

k=0

mn+1,kmjk
)

(0 < j ≤ n),

m2
n+1,n+1 = γ(0)−

n∑

k=0

m2
n+1,k.

The Cholesky method requires the positive definiteness ofΓ(n + 1) to obtain a real matrix

M(n+1). If we denote byS(n) = (Si)i=0,...,n an (n+1)-column vector of i.i.d. standard normal

variables. The idea behind the method is simulatingX(n) = M(n)S(n) recursively. Since for

everyn ≥ 0 X(n) has the covariance matrix

Cov
(
M(n)S(n)

)
= M(n)Cov

(
S(n)
)
M(n)

′
= M(n)M(n)

′
= Γ(n)

and zero mean, the simulated process has the characteristics we want. IfL(n+1) is computed,

Xn+1 can be computed by

Xn+1 =

n+1∑

k=0

mn+1,kVk.

The Cholesky method is slower than the Durbin-Levinson method, although, inprinciple,

they both compute the matrixM(n).

5.4.3 Davies and Harte method

The method is proposed by Davies and Harte in [13] to simulate a stationary Gaussian time

series of length n with autocovariancesγ(0), γ(1) . . . , γ(n− 1). It is described as follows:

1. Define

λk =
2π(k− 1)

2n− 2
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for k = 1, . . . ,2n−2, and the finite Fourier transformfk of the sequenceγ(0), γ(1), . . . , γ(n−

2), γ(n− 1), γ(n− 2), . . . , γ(1).

fk =
n−1∑

j=1

γ( j − 1)ei( j−1)λk +

2n−2∑

j=n

γ(2n− j − 1)ei( j−1)λk

for k = 1, . . . ,2n− 2. To move to next step, it must be verified thatfk > 0.

2. Simulate two independent series of zero mean normal random variablesdi , i = 1, . . . ,n

andh j , j = 2, . . . ,n− 1, such that

var(d1) = var(dn) = 2,

and fork , 1,n,

var(dk) = var(hk) = 1

andh1 = hn = 0.

3. Define the complex random variableszk as

zk = dk + ihk, (k = 1, . . . ,n),

and

zk = d2n−k − ih2n−2, (k = n+ 1, . . . ,2n− 2).

4. t = 1, . . . ,n,

5. Define

Xt =
1

2
√

n− 1

2n−2∑

k=1

√
fke

i(t−1)λkzk.

In order to obtain a specific Gaussian process, for instancefBm, one must use the covariance

function of fBm. There are also simulation methods forfBmwhich are based on its represen-

tations. For detailed information on simulation methods, see [15].

5.5 Application

We appliedR/S analysis and periodogram methods to estimate the Hurst parameter of Dow

Jones Industrial Average (DJIA) index, Turkish Lira/Dollar, Euro/Dollar, and Turkish Lira/Euro

exchange rate data. The data is obtained from the FOREX platform of MIG bank. Although
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Figure 5.1: DJIA index between 07.09.2005-01.09.2011

periodogram method gave values very close to 0.5, theR/S analysis estimated higher values

of H.

In theWISmodel, one of the differences from the classical Itô integral setting is the variance

of the stock return replaced by the variance of the firm value process. But this replacement is

not easy to do in real world terms since the firm value process can not be observed for small

time intervals. There are different methods to compute the value of a firm and this difference

may also lead to different prices. Leaving the solutions of these problems to future work, we

compute the price of a European call option on DJIA using the variance of the daily return

series in our computation to see the difference between the fractional Black&Scholes and

classical Black&Scholes prices.

A statistic for testing the long-memory hypothesis was proposed by Lo in [26].This test is

called themodified R/S. For details on this test, see [26] and [45]. The estimated values ofH

andmodified R/Svalues are given below:

The mean of the daily return series is very close to zero. There is no apparent trend in the

series and this in favour of our statistical modelling methodology. In the presence of trends,

estimators of long-memory may be biased towards accepting the long-memory hypothesis.

The estimatedH value of the daily return series of DJIA is greater than 1/2, so we can use

the theoretical results ofWISand fractionalWISmodels and evaluate the price of an option

written on DJIA.
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Figure 5.2: Daily return series of DJIA

Figure 5.3: Descriptive statistics of DJIA daily return series
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Figure 5.4: Histogram of the daily return series
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Figure 5.5: EstimatedH values and modifiedR/S

Figure 5.6: Comparison of prices

Themodified R/Sstatistic of Lo [26] rejects the long-memory hypothesis for all cases but this

does not surprise us because it is shown in [45] that this statistic is biased towards rejecting

the long-memory hypotheses. But in some cases, it gives values that is near the accepting

value and this gives some idea about the existence of long-memory in our data.

Using these estimated values ofH, we computed the fractional Black&Scholes price to com-

pare to the Black&Scholes price for the same option. The results are summarized in the

following table. We followed the methodology in [48].

As we can see, the difference between fBS and BS prices are very small. This is because the

estimated values ofH are close to 0.5. But even this small difference may be of importance in

the case of multiple transactions. The effect ofH on the option prices may be used to decide

whether an option is overpriced or underpriced. But in order to properly price an option, one

needs better and unbiased estimators ofH. One of the possible future works may be on this

topic.
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CHAPTER 6

Conclusion and Outlook

In this thesis,fractional Brownian motion as a model in finance has been considered. We

began with the definition and properties offBm. We basically explain the self-similarity, sta-

tionarity and long-range dependence properties offBm and conclude the first chapter with

the non-semimartingale property offBm with H , 1/2. This property makes defining an

integral with respect tofBm more difficult than the standard Brownian motion case. Then,

in the second chapter, we summarized different approximations to defining the integral with

respect tofBm. In the WISsetting, we showed how an Itô type formula and the fractional

analog of Girsanov theorem is derived and then we use this Itô formula to obtain the price of

a European call option using the Black&Scholes approach to option pricing.Disadvantages

and question of arbitrage when usingfBm in financial applications is addressed and arbitrage

examples are given. We continued with the time series models that has the long-range depen-

dence property offBm, ARFIMA models. Some estimation methods forfBmand ARFIMA

models are presented. The most widely used estimation procedures such asHurst’s R/S anal-

ysis, correlogram and linear regression in the frequency domain have been reviewed. Some

of the simulation methods to generate a sample offBmare briefly mentioned. To illustrate the

effect of long memory on the option prices, we appliedR/S analysis to DJIA index and ex-

change rate series at different time scales to see the self-similarity characteristics of the series.

Then, using the estimated value we compared the standard Black&Scholes prices to fractional

Black&Scholes prices for different maturities. When we estimated the Hurst parameterH, we

saw that it varies over different time scales. This characteristic of the financial data has been

considered by Mandelbrot and his students Calvet and Fisher and it led toa multifractal model

for financial data [7]. The future work may be on relating the multifractal model and white

noise analysis notions to obtain a proper tool for pricing an option in the fractional markets.
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There are also other possible ways to characterize the long-range dependence property offBm

such as implementing information theoretical concepts and notions of financialeconomics

for modeling the financial markets usingfBm in a more realistic manner. In addition to these,

consistent and robust estimators ofH must be developed. The asymptotic definition of long-

range dependence makes it difficult to estimateH in a finite sample and unless this problem is

solved,fBmcan not be used more actively. A Bayesian approach to ‘multifractal white noise

model’ may be used to solve these problems.
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APPENDIX A

Basic fractional calculus notions

As we mentioned in the introduction,WISand fractionalWIS integrals with respect tofBm

are defined by using fractional calculus in the white noise theory. The operator M is indeed

the fractional integration operator and the isometry fromL2
φ(R) to L2(R) is again defined by

the fractional integration operatorI H−1/2
− . In this appendix, we briefly summarize the basic

notions of fractional calculus by following [47].

A.1 Fractional calculus on a finite interval

Definition A.1.1 Let f be a deterministic real-valued function that belongs to L1(a,b), where

(a,b) is a finite interval ofR. Thefractional Riemann Liouville integrals of orderα > 0 are

determined at almost every x∈ (a,b) and defined as the

1. Left-sided version:

Iαa+ f (x) :=
1
Γ(α)

∫ x

a
(x− y)α−1 f (y)dy.

2. Right-handed version:

Iαb− f (x) :=
1
Γ(α)

∫ b

x
(y− x)α−1 f (y)dy

whereΓ(·) denotes the Gamma function. As we see from this definition, IH−1/2
− is the

fractional Riemann Liouville integralof order H− 1
2. For α = n ∈ N one obtains the

n− order integrals

In
a+ f (x) =

∫ x

a

∫ xn−1

a
. . .

∫ x2

a
f (x1)dx1dx2 . . .dxn

and

In
b− f (x) =

∫ b

x

∫ b

xn−1

. . .

∫ b

x2

f (x1)dx1dx2 . . .dxn.
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Definition A.1.2 For α < 1, thefractional Liouville derivativeis defined as

Dαa+ f :=
d
dx

I1−α
a+ f

and

Dαb− f :=
d
dx

I1−α
b− f ,

if the right-hand sides are well-defined (or determined).

For any f ∈ L1(a,b) one obtains

Dαa+Iαa+ f = f , Dαb−Iαb− f = f .

For details, see [47].

A.2 Fractional calculus on the whole real line

The left- and right-sided fractional integral and derivative operators onR for α ∈ (0,1)

are defined as follows (see [34] for references)

Definition A.2.1 Let α ∈ (0,1). The fractional integrals Iα+ and Iα− of a functionφ on

the whole real line are defined, respectively, by

Iα+ f (x) :=
1
Γ(α)

∫ x

−∞
(x− y)α−1 f (y)dy, x ∈ R,

and

Iα− f (x) :=
1
Γ(α)

∫ ∞

x
(x− y)α−1 f (y)dy, x ∈ R.
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