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ABSTRACT

OPTION PRICING WITH FRACTIONAL BROWNIAN MOTION

Inkaya, Alper
M.S., Department of Financial Mathematics
Supervisor . Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

September 2011, 97 pages

Traditional financial modeling is based on semimartingale processes with atgtemd in-
dependent increments. However, empirical investigations on financialdatanot always
support these assumptions. This contradiction showed that there is éoneetd stochastic
models. Fractional Brownian motion {Bm) was proposed as one of these models by Benoit
Mandelbrot.FBmis the only continuous Gaussian process with dependent increments: Corr
lation between increments ofBmchanges according to its self-similarity paramédef his
property offBmhelps to capture the correlation dynamics of the data and consequently obtain
better forecast results. But for valuestbtlifferent than 12, fBmis not a semimartingale and
classical 16 formula does not in that case. This gives rise to need for using the wdige n
theory to construct integrals with respectfBm and obtain fractional & formulas. In this
thesis, the representationf@mand its fundamental properties are examined. Construction of
Wick-1t6-Skorohod (VIS and fractionaMWISintegrals are investigated. Arbltype formula

and Girsanov type theorems are stated. The financial applicatidBsnafre mentioned and
the Black&Scholes price of a European call option on an asset whichusnasisto follow a
geometricfBmis derived. The statistical aspectsfBimare investigated. Estimators for the

self-similarity parameteH and simulation methods édBmare summarized. Using thHgS

iv



methodology of Hurst, the estimations of the paramkterre obtained and these values are
used to evaluate the fractional Black&Scholes prices of a Europeanptahavith different
maturities. Afterwards, these values are compared to Black&Scholes ptiegame option

to demonstrate theflect of long-range dependence on the option prices. Also, estimations
of H at different time scales are obtained to investigate the multiscaling in financial data. An

outlook of the future work is given.

Keywords: fractional Brownian motion, long-range dependence, opti@ing, Hurst param-

eter, self-similarity
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KESIRLI BROWN HAREKETI ILE OPSYON FIYATLAMASI

Inkaya, Alper
Y uksek Lisans, Finansal MatematiloBmi
Tez Yoneticisi : Doc. Dr. Azize Hayfavi
Ortak Tez Yoneticisi : Yar. Dog. Dr.Yeliz Yolcu Okur

Eylul 2011, 97 sayfa

Geleneksel finansal modellemejnasiz durgan semimartingaldisecleriizerine kurulmustur.
Ancak, finansal veriizerinde yapilan calismalar ldmkabulleri her zaman desteklememistir.
Bu durum, yeni finansal modellere olan ihtiyaci ortaya koymustur. KeBidivn hareketi
(kBh) Benoit Mandelbrot tarafindan bu yeni modellerden biri olabalerilmistir. KBh'nin
artimlari arasindaki korelasyon, kendine benzerlik paramedttesn dejerine gre dajisir.
KBh, H’nin 1/2'den kiyuk dejerleri icin uzun-énemli balilhk gosterir. Budzellik verinin
korelasyon dinamiklerinin yakalanmasinda kullanilabilmektedsddre daha iydpngdri sonuclari
elde edilmektedir. Bu tezd&Bhnin temsili ve temelozellikleri incelenmistir. KBh'ye gore
Wick-1t6-Skorohod WIS ve kesirli WIS integrallerinin yapilandiriimasi arastiriimistir. Bu
integraller icin 16 tarzi formuller ve Girsanov tarzi teoremler ifade edilmistir. Finansal uygu-
lamalarddBmkullanimidzetlenmis ve Avrupa tipi alim opsiyonu i¢in kesirli Black&Scholes
fiyati elde edilmistirKBh'nin istatistikselozellikleri incelenmistir. Kendine-benzerlik parame-
tresiH icin tahmin yontemleri vekBhigin simiilasyon yntemleridzetlenmistir.R/S yontemi
uygulanmis ve elde edildth tahmin derleri Avrupa tipi alim opsiyonunun kesirli Black&Scholes
fiyatinin elde edilmesinde kullaniimistir. Daha sonra elde edilen bu fiyatlar Bladk&lSs

fiyatlari ile karsilastirilarak opsiyon fiyatlarinda uzuaneém bglilik etkisi gosterilmistir.
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Ayrica farkli zamarlgekleri icinH parametresi tahminleri elde edilmis ve finansal verinin

cokludlceklenme intimaline dignilmistir. Gelecekteki calismalar icin bir bakis acisi verilmistir.

Anahtar Kelimeler: kesirli Brown hareketi, uzurbrem ballik, opsiyon fiyatlama, Hurst

parametresi, kendine benzerlik
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CHAPTER 1

Introduction

Applying methods of physics to financial markets is a well-established panasiigce the
work of Bachelier [1] and the proof of Einstein [16] on the distribution abBnian mo-
tion. For more than a hundred years, whenever there is a financia¢ubtiat is really
hard to explain or model, a very sophisticated method of physics is choseadapted to
financial modeling. Recently, quantum theory and chaos theory hawadne attention of
financial analysts. Turbulence phenomena has been used to modelymaraics, and hence
the fractals has been shown to exist in the financial markets [27]. A Figcta rough or
fragmented geometric shape that can be split into parts, each of whichléagatapprox-
imately) a reduced-size copy of the whole”, by Benoit Mandelbrot's wd&8]. Fractals
are best known with their self-similarity property. When you look at a fitaetadifferent
scales, you see smaller shapes that is similar to what you saw at a lafgerT$da is called
self-similarity. After the fractals widely known, many natural phenomenzableas shown to
exhibit self-similarity. Trees, galaxies, lungs, brain, etc. all shown te lzaself-similarity
index which characterizes the behavior of the process. When statisticadistigated, self-
similarity shows itself in the sense of finite dimensional distributions. Most oftthehastic
processes used in financial modeling are self-similar in the sense thatahesate variance
self-similarly, for diferent time scales. For example, the most widely known stochastic pro-
cess, Brownian motion i% self-similar, that is, generating a variance proportional to square
root of the time it has been observed. Sharing the same property withldratterefore,

stochastic processes can be regarded as fractals, as shownbgddandelbrot [32].

Onthe other hand, a hydrogeologist named Edwin Hurst, showed in hisadttite Nile River
[25] that the cycle of floods and dryness exhibits a specific type of@hahich has not been

considered then. His work suggested fiadent covariance structure than that of Brownian



motion. After this work, Mandelbrot tried to use this behavior to model findnizita, and
the fractional Brownian motion {Bm) has been defined [29]. The self-similarity parameter
was called the name of the hydrologist Hurst. The most important propef@nofs the
variability of its self-similarity parametekl. According to the value of this parameté8m
exhibits positive or negative correlation between increments, corrdsppto ‘persistent’ and
‘antipersistent’ cases respectively. This parameter is used to captuwrertbiation dynamics

of the process to be modeled.Hf = % fBmbecomes the standard Brownian motion. When

persistentfBmis said to exhibit long-range dependence.

It is a well known empirical fact in financial markets that the correlation betwincrements
do not decay at a rate of a Markov process. Some analysts argudbtehadise in the data
generated this correlation structure and filtering may help to overcome thcully. But
filtering may also cause some information of the data to be ignorefBraavould be used
to model this characteristic of the market data. However, ungas a tool is not as easy
as the standard Brownian motion. Especially, for financial economics sitafconsidered
as a proper tool because it is not a semimartingale when % therefore it is possible
to generate arbitrage in a fractional Brownian market. Classigalpe formulas does not
work because of its interesting variational properties. It is stationarjtdiricrements are
not independent and therefore it is not @y process, but it is Gaussian and its distribution
is characterized only by its first and second moments. This m@mmashe only continuous
Gaussian process with long-range dependence and the only altetoginaperly model the

dependence between observations.

After almost a decaddBm had drawn the attention of the time series analysts. Granger
[20] and Hosking [23] defined the discrete analog of tBm as the fractionally integrated
ARMA, ARFIMA or FARIMA processes. ARFIMA processes captuths slow decay rate

of correlations between increments with only one additional parametefhe fractionally
integrated process was constructed upon the integrated process®&i Adefined by Box

and Jenkins [5]. In their setting, an integer, is the number offtkrencing needed to obtain

a stationary process from a non-stationary process. For fractiontdigrated serieg] can

be noninteger, and this is termed as the fraction@incing. ARFIMA models gave better
forecast results especially in the long-term. Many researchers foenevidlence of long-
range dependence in foreign exchange markets [9], commodity pricgsaj@d electricity

prices [43].



In order to uséBmin financial modeling, one must define ad lype formula and a risk-
neutral measure, as done in the Brownian motion case. These contribauttomsade mainly
by @ksendal and Hu in [34] and [24], Elliott and Van der Hoek [17] &lmiros and Valkeila
[32]. In this work, we mainly follow their approximations to price an option incfranal
Brownian markets. To mathematically defiidam, some dificult mathematical concepts such
as the Gaussian white noise theory, fractional calculus are needed. Vilaiglculus is
used to obtain further results. But in this thesis, we will not use Malliavin dad¢iso the
definitions and formulas are results of fractional calculus used in thesauhite noise
theory [22]. Using the fractional white noise calculus, the price of a peaa call option is

presented.

From a statistical point of view, the long-range dependence propertt isasy to estimate,
especially in the time domain, because it is defined as an asymptotic behavioneanulst

find a cutdt point in estimation procedure. Long computational time needed for precision.
An intuitive estimator of long-range dependence, and also the first othe Rescaled Range
statistic of Hurst. Hurst’s discovery of the long-range dependence igstitl as a basic tool to
obtain a first idea about the long-range dependence characterisficarfess. Another useful
tool is spectral analysis. In the spectral domain, the long-range depeadan be detected
by investigating the behavior of the spectral density for the zero fregqueraponents. This

is the main reason why fast Fourier transform is widely used for estimbtiagd simulating

fBmpaths.

In Chapter 2, we give the definition @m and its properties which are basically the long-

range dependence, self-similarity, and patfedentiability.

In Chapter 3, basic tools of white noise analysis that is used in construdtit®noand
the definition of integrals with respect fBm as defined by @ksendal and Biagini in [34]
summarized. We present thé tiype formula for the Wick-Ito-Skoroho®\(IS integral. Then
we will mention briefly about the fractional white noise theory and Skorahtagjrability as
used in the definition of fractionaVISintegrals in [24]. Then the pathwise integrals with
respect tdBmis defined and & formula for forward pathwise integral are given. The question

of arbitrage is addressed and examples of arbitrage portfolios aenpeds

In Chapter 4, some of the financial applications udiBm are mentioned. A modification

of the Black&Scholes formula to thBBm case is given where the mainfiirence is the



assumption that the underlying asset follows a geometric fractional Browmidion, that is:
dS(t) = uS(t)dt + oS(t)dBH (1),
whereB"(t) is afBm

In Chapter 5, the statistical characteristicsBrhand ARFIMA processes, the discrete analog
of fBm, are given and its characteristics are presented. Also, how thesethastics can be
used in estimation and simulation are summarized. Two of the estimation procegkeries
odogram and FS analysis are applied to Dow Jones Industrial Average Index andegeh
rate series and results are used to demonstratefiibet ®f long-range dependence on the

option prices.

In Chapter 6, we give a brief conclusion and outlook of our study.



CHAPTER 2

Fractional Brownian motion and its properties

2.1 Definition and Properties

We begin with the definition and basic properties of the fractional Browniatiom¢Bm).
Some of these propertiesfidir from the properties of the standard Brownian motion and this
situation makes it harder to use it as a tool in financial mathematics. The diodhtegral

(moving average) representation is first provided by Mandelbrot amdNéss [29].
Definition 2.1.1 Let H be a constant belonging €6, 1). A fractional Brownian motionfBm)
BH = (B" ())t=0 with Hurst index H is a centered Gaussian process with covariance function

E[BH(t)BH)(9)] = %(tz'* + &7 — 1t = $PENB™ (1))] (2.1)

ForH = 1, thefBmis a standard Brownian motion as can be seen by leHirg3
1 ,
E[BY2(9BY*(0)] = 5(t+ s [t - §) = min(t, 9).

A standardBm B has the following properties:

1. BH(0) = 0 andE[BM)(1)] = 0 a.s. for allt > 0.

2. B" has homogeneous increments, iR (t + s) — B)(s) has the same law @ (t)

forst> 0.
3. B is Gaussian witlE[(B" (t))?] = t?1 for all H € (0, 1) andt > 0.

4. B has continuous trajectories.
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time

Figure 2.1: Simulated path é8mwith H = 0.3

As known, the distribution of a Gaussian process is determined by its measoaeaidance
structure. Since we know thEBmis Gaussian, its mean and the specific covariance structure

determines a unique Gaussian process.

The dependence between the increments fBra may bring to one’s mind the questions
about stationarity ofBm In order to see the stationarity, it is enough to carry out a simple

calculation:

E[((B"(t + h) — B"(h))(B"(s+ h) — B"(h)))] E[B"(t + h)B"(s+ h)] — E[B"(t + h)B" (h)]

~E[B"(s+ h)B"(s+ h)] + E[(B" (h))?]
= SIEH R+ (s - - 5 -

((t +h)?™ 4+ h?H — 2H)

~((s+h)?H + 12 — M) 4 2n?HE[(BH (1))]
= 2@ - $POEIER )]

2
= E[B"()B" ()],

with s,t,h > 0. Hence we obtain thaBl(t + h) — B (h)] = [B"(t)] in distribution. ThefBm
has stationary increments which are not independent. According to @dritaakov,fBmis

a self-similar Gaussian process but notevy. process because it does not have independent

6



increments [11].

2.1.1 Stochastic integral representation

This representation dBm gives it the namdractional because of the notion of fractional
calculus used in the stochastic integral. In [29] it is proved Bift) defined as follows is a

fBmwith Hurst indexH € (0, 1):

B0 = o) [ (-9 - -9 )deee 2.2)
0 1 1 +oo _1 _1
= ([ (-9 -objme + [ (-9 - (91 oy
_80 1 1 t 1
= ) [ (-9 -9 hdeg + [ (-9 Ham), (2.3)
where

Hyqn211/2 0 H-1/2 H-1/2\2 1 1
C(H) = E[(B"(1))] [I (t-9 - (-9 ) ds+ ﬁ]

and &), = maxx, 0}. According to this definition, we can obtain the variancéBrh, using

the I isometry :

E[(B"())’]

oHZEL [ (-9 - (9B
o2l [ (-9 - (-9 as

2 _aH-3 [ oH-3y2
o? [ 1(t-9 - (-9 Hras

Hence, by the change variables tu, we obtain

c<H>2? fR (-0 -~ )2du

HE[(B"(1))].

oH? [ (- u - (e

The kernel in 2.2 is obtained by using fractional calculus. For preliminggrnmation on
fractional calculus, we refer to Appendix. Using the stochastic integgalesentation, one

can show that the variance tBm satisfies (2.1):

EIBM® - B9 = C(H)E| fR (-0 - (-0l — (s—ul " - (0! P 1dB)

o] [ 1t-u

- (s- 0Py



by the change of variables= u + s, we obtain

- C(HY? fR [(t—s—u)F - o Hpzau

Then by change of variablés- sv = u’,

oIt - 8" Y Lt VAN it ST _qeH Wi zH3
o= [1a-v - o rav- o = - [ - - o e

it — s E[(B"(1))7].

In the beginning the terf&[(B"(1))?] seems a bit unnecessary. From self-similarity property,
one may think thaE[(B"(1))] = 1?1 = 1. However, the self-similarity does not imply
anything on the variance of the process. Let us consider that we gotestrafBm B (t)

with a variance Ofo'zéH = 10. This only magnifies the variance of the process, but now the
variance ofB" (1) will not be equal to 1, but instead it will equal to 10. From self-similarity
we knowBH(t) = t"BH(1) so the variance of the process will always depend on the variance
of B(1). Keeping this in mind, under the assumpt®f(1) = 1, one obtains the following

covariance function for atandard fBm

E[B7(OBH (9] = [P + 7~ t - 5

Although the representation (2.2) is the most used one, it is not uniquesHhbign in [40]

that
f [a((t — %12 — ()P Y2) 4t — P2 - (Y2 d (k)

is afBmup to a constant.

2.1.2 The representation of fBm over a finite interval

The stochastic integral, or moving average, representatitBmfs based on the integration
over the whole real line. By the following approach in [32JBan can be represented over a

finite interval using the kernédy(t, s) in:

B (t) := fo t Ku(t,9)dB(s), t>0. (2.4)

Here,



1. ForH > 1/2:

° KH(t, S) =Cq gl/2-H fst lu-— SIH—3/2uH—1/2du

wherecy = [H(2H - 1)/8(2 — 2H,H — 1/2)]*? andt > s.
2. ForH < 1/2:

o Kis= by[(4)H12(t - 9H-2/2 (H _ %)Sl/Z—H fst(u _ S)H—1/2uH—3/2du)]

with by = [2H/((1 - 2H)B(1 - 2H, H + 1/2))]¥2 andt > s,

wherep(-,-) denotes the Beta function. For the proof, see [32]. Again, theceof the

parameteH can be seen on the kernels.

2.1.3 Long-range dependence

The mostimportant property @mis the ability to change its covariance structure depending
on the parametdd. ForH = 1/2, B"(t) is a standard Brownian motion , which is a process
with independent increments. But fAr# 1/2, the increments dBmare not independent. In
order to see this, we compute the covariance betvgggh+ h) — B (t) andB" (s+h) — B (s)

with s+ h < tandt — s= nhis

E[(B"(t + h) - B"(t))(B"(s+ h) - B"(9))] %[(t —s+h)? +(t-s-—h? -2t -9

= SI+ D + (- D - 2h),

so we have
2H

h
E[(B"(t + h) - B"(®)(B"(s+ h) - B"(9)] = —l(n+ 17 + (n— 12 - 2n?),
As can be seenfBm has positively correlated increments whien> 1/2 and negatively
correlated increments whefh < 1/2. These correspond to the cases known as the ‘persis-
tence’ and ‘antipersistence’ cases respectively. Many naturabphema are shown to exhibit
'persistence’, that is, having positive correlation between incremeriis property can be

interpreted as some kind of feedback occuring in the process.

Long-range dependence can be very useful in empirical studiespiidperty can be used to
capture the long-term behavior of stock markets. Long-range depeadest realized in the
correlation structure and the spectral density of the process. In thisrseeve present the

definition based on correlations, in [3].
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Figure 2.2: Simulated path é8mwith H = 0.7

Definition 2.1.2 A stationary process Xexhibits long-range dependence (or long memory)

if the autocovariance function(n) := cou Xk, Xk.+n) satisfies
P _y (2.5)

for some constant c ande (0, 1).

In the presence of long-range dependence, the dependencem&weandX, decays slowly

asnincreases and
(2.6)

ip(n) = 0o,
n=1

We can show that thiBmexhibits long-range dependence using its covariance function. The

covariance between increments is,
E[(B"(t+ h) - B (1))(B"(s+ h) - B"(9))]

p(n) =
h2H
= Sln+ 1% + (n- 1)1 - 2n?1].
Using the expansions
C1)x2
Q1+X*=1+ax+ w +
afa — 1)x2 ~

1-X)*=1-ax
( ) axX+ >

10



we obtain

1 2HEH-1)1 L1, 2HEH-11

=1+2H- 1+-2
) TR T 2 e n 2 n?
n*" 1 _ on-2
= - (2H(@H - 1) = " 2(H(2H - 1),

So, the definition of long-range dependence hold$Barwith ¢ = H(2H - 1) anda = 2—2H.
We obtain

1. ForH > 1/2, 3%, pr(n) = oo,

2. ForH < 1/2, 3%, lon(n)| < oo.

The finiteness property for the sum of correlations does not explainatinelation function
of fBm WhenH < 1/2, the correlations alternate in sign and in the limit they sum up to a

constant. This situation leads to the mean-reverting propeffrofvhenH < 1/2.

2.1.4 Self-similarity

The term ‘self-similar’ was basically used for defining a fractal. Until relye this term
was not used in statistics. But later, fractal processes have beetousedlel many natural
phenomena such as the organization of cells, metal surfaces, lightenlkeg,satc. and so
'self-similarity’ has become a well known term. For stochastic processés difined in
the finite dimensional distributions sense. There is a set of self-similar ggesaised in
modeling. In fact, in statistical terms, a process must be self-similar to be asdy &
modeling. Self-similar processes are invariant under scaling of time ar.spanother
widely used set of processes consiststable processes:-stable processes also can exhibit
both persistence and ‘antipersistence’. When a stationary proceffsssrstar with indexH
and isa-stable, then the existence of moments limits the valuesaridH. For O< « < 2,
He (0,1/a)if @ < 1andH € (0,1] if @ > 1. For a giverH, there is a single Gaussi&hself-
similar process and that fBm Standard Brownian motion is the case with= 2, se¢40].
There is also an important relation between the statistical fractal dimensioprotess and

its self-similarity parameter.

Definition 2.1.3 The real-valued process(, t > 0 is self-similar with index H> O if for all

a > Othe finite-dimensional distributions of2t), t > 0 are identical to the finite-dimensional
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distributions of & X(t),t > 0; i.e., if for any d> 1,t3, t5, ....,tg > O and any a> 0,

(X(atr), X(ab), . .., X(aty)) =% (@ X(ty), a"X(tp), . . ., a" X(ty)). (2.7)

The quantityD = 1/H is called thestatistical fractal dimension of Xwhich is one of the
basic connections between fractals and statistics. Standard Brownian risdtoa % self-
similar. Using the stochastic integral representatiofiBohfi it can be shown thaBmis H
self-similar. Denoting the kernel in (2.2) g5 ((t - 95 % - (~u)""?) = In(t, u), we can

write

H . _ AH-1/2 -1
B(my_j;ﬂmumam_a ‘&MGﬁ.md&%

using the substitution = ua™?, we obtain

H-1/2 _ qH-1/2.1/2
a fR Int,v)dBlav) = a a L [n(t, v)dB(V)
a'B" (1),

where the last equality follows from t@self-similarity of Brownian motion.

It is also possible to see the self-similarity by using the covariance functitBnof

E[B"(at;)B"(at,)] = %[(atl)ZH + (atp)? — Jaty — at?|*"]
a?t 2H 2H 2)2H
= Sl + (@) - - ]
= a'E[B"(t)B"(tp)].

In distribution function, self-similarity can also be seen:

Fi(¥) P(B(t) < X)

P"BH(1) < x)

Fl(%)-

Therefore, once we know the distribution of a self-similar process oeeutiit interval, it is

possible to obtain the distribution of the process over the whole real line.

There is a strong relation between the self-similarity parantétand the Hlder exponent.
It was Mandelbrot’s work that tied these two exponents togethéidet continuity offBm
is needed to have a continuous version of it by the Kolmogorov-Chentsareim. The

following theorem in [14] gives the &lder continuity property ofBm

12



Theorem 2.1.4 Let H € (0, 1). ThefBm BY admits a version whose sample paths are almost

surely Holder continuous of order strictly less than H.

The Holder continuity offBmfollows from
E[IB"(t) - B"(9)1] = Calt - 97,

wherea > 0 andC, is a constant. For the proof of theorem we refer to [14].

2.1.5 Path diferentiability

One needs stochastic calculus to define an integral with respiitand this is because the

fBmsample path is not fierentiable. The following lemma in [29] states this property.

Lemma2.1.5Let H € (0,1). ThefBm sample path B(:) is not djferentiable. For every

B"()-B"(to)

to € [0, o) limsup_,o| =

| = co with probability one.

Proof. We basically follow the proof in [29]. Let us assume tB4t(0) = 0. Then define the
random variable
B (t) - BM(t
Ry = 0= B
-1l

that represents the incremental ratioBhf. Using the self-similarity property d8m, we can

see that
(t- "B (1) g
(t—to)

where2 denotes the equality in distribution. If we define the event

Rt 2 (t—to)"1(B"(1)),

H
A(t, w) := sup IBZ(S) >d,
O<sst S

then, for sequencé|ny decreasing to zero, we ha#ét,, w) 2 A(th+1, w) and

B (tn)

A(th, w) 2 (| t,

|>d) 2 (1B™(1) > tt"d)

from the self-similarity offBm Consider the sequendg = t — tg > 0 going to zero as
to — t. And since the probability of the last term tends to Inas oo, B (t) does not have

differentiable sample paths. |
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2.1.6 FBmwith H # % is not a semimartingale

In financial mathematics, the most important property which is required foyaeps in order
to use it to model the price process of a financial asset is tehbitld notgenerate arbitrage.
Arbitrage infBm markets will be defined in chapters that follow. In general, the tem
lunch, that is, a portfolio of assets that has no intrinsic value at the beginningasndositive
value at a distinct future time with positive probability, is used to define arlatréigs known
that if the underlying price process is modeled by using a semimartingale, timerarsitrage
opportunities in the market. But it is shown in [38] tHiBinis not a semimartingale. In order
to see it, we begin with the definition of a semimartingale. By Theorem 9 in [3&fyev

semi-martingale is a decomposable process such that
S(t) = S(0) + M(t) + A(t),

where M(0) = A(0) = 0, M is a locally square integrable martingale, afvds a right-
continuous process with left limitsdlag) with paths of finite variation. The fact tH@mis

not a semi-martingale unless= 1/2 is proved by using the-variation ofB".

Let (X(t))teo,1] be a stochastic process and consider a partitier0 =to <ty <... <ty =T.

Put
n
Sp(Xm) = D IX () = X, IP.
i=1
Thep-variation ofX over the interval [0,T] is defined as
Vp(X, [0, T]) := supSp(X, 7)

wherern is the partition defined above. The indexmfariation of a process is defined as

[(X,[0,T]) :=inf{p > 0;Vp(X,[0, T]) < oo}.
Now let us define, fop > 0,
n . .
B B T R LAY
Yop=n ;m (5) - B—".
Using the self-similarity property we obtain,

n
Yop £ Yap =17t > |BY() - B - 1)P
i=1

and by Ergodic theorem (see [38] for references),

Yop=n"t > 1B(0) - B - 1P
i=1
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converges t&[|B" (1)|P] in L asn tends to infinity. Using these equalities, it follows that

Vn, p

C i i-1
;BH(H)— B (—=)P

Yig nIBA(i) - B(i — 1)]P
nPH '

(1>

So, whenpH > 1, Vy, , — 0 in probability and
whenpH < 1, Vy,p — oo in probability. Therefore, we can see that:

1(B",[0,T]) = %

If B (t) were a semimartingale, it would have a Doob-Meyer decomposition. THzepno

is that, this decomposition consists of a continuous local martingale and a finigtiom
process, but thBBmhas zero variation iH > 1/2 and infinite variation iH < 1/2. This con-
tradicts the usual assumptions of a semimartingale and thef8fmie not a semi-martingale.
This non-semimartingale property t8m makes it dificult to define an integral with respect

to it. Classical Ib type integration is well-defined for semi-martingales. As a consequence,
we need dierent approaches for the construction of stochastic integrals withatasd&m

In the next chapter, we will summarize some of these integral definitions.
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CHAPTER 3

Integration with respect to fBm

As we saw,fBmis not a semimartingale and it has zero quadratic variation Wwhen 1/2

and infinite quadratic variation wheth < 1/2. So the definition of stochastic integrals with
respect tdBmcan not be defined with the quadratic variation of tldeiitegral for Brownian
motion. In general, we will review two approximations: The first approximadiefines the
integral in thewhite noise spacand the second in a pathwise sense. Although they have
different results, both approximations give better resultdffor 1/2. We begin with some

preliminary knowledge of therhite noise spacand its specific tools.

3.1 WIS integral with respect to fBm with 0< H < 1

The Gaussian white noise theory was first introduced by Hida \22&(Wick-1td6-Skorohod)
integral is defined in the white noise analysis framework and using soma@tVenathemat-
ical concepts such as thWick calculusit is possible to obtain andtformula and Girsanov
theorem fofBm We follow the approximation for the definition of WIS integral with respect

to fBmin [34].

3.1.1 The White noise probability measure

The White noise theory is a very useful tool for the analysis of Gausaiaghom variables.
The Gaussian property €m made it attractive to analyZ8min this setting. The special
case Brownian motion is defined in a natural way using the White noise plibpaieasure.

The definition of this measure is as follows:

16



Definition 3.1.1 Let S(R) denote the Schwartz space of rapidly decreasing smooth functions
onR, and letQ := S'(R) be its dual, usually called thepace of tempered distributioniset

PP be the probability measure on the Botelalgebra# := B(S'(R)) defined by the property
that

1
[ expt < 0. f 2)dP) = exp( = 511 @)

where i= V-1 and< w, f >= w(f) is the action ofv € Q = S'(R) on f € S(R).

The measur is called thewhite noise probability measurdts existence follows from the
Bochner-Minlos theorem. In (3.1), by expanding both sides to Tayloeseand using the
properties of the characteristic functign,, ;> of < w, f >, which is¢ admits the Taylor

expansion:
o (i)
pl<w,f>) = > TE(<w, >4+ ot
4 Kl

1+ (i)E(< w, f>) —tZ%E(< w, £>2) 4.,

with t = 1 we obtain

El<w, f>]=0 VfeSR).

As can be seen in from the Taylor expansion of the characteristic funttiere is a useful

isometry property of thevhite noise probability measure

El<w, f >?] = ||f||EZ(R) Vf e S(R).

The expectation of a functiols with respect to this measure is defined by

E[F(w)] = jg; F(w)dP(w).

Based on these definitions, the random variable, f > is defined for arbitraryf € L(R) as
alimitin L3(R) :

<w, f>=1lm <w,f>, limitin  L2(R),

n—oo
wheref, € S(R) is a sequence converging foe L?(R). Hence, one can exterdw, f > for
w e S'(R) f e LAR). We defineB(t) by taking f = Ijoy(-) and the idea that any function

f € L?(R) can be approximated using step functions. Indeed,
B(t) := B(t,w) =< w, lpy(") >
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is well-defined as an element bf(P) for all t € R, where

1, if 0<s<t,
log(d =4 -1, if t<s<O,

0, otherwise

This definition shows us th&i(t) is Gaussian withE[< w, ljo,y >] = 0andE[< w, ljpy >2] =
1, i.e, a standard normal variable. In order to obtain a continuous vesiB(t), we need

the well-known theorem of Kolmogorov and Chentsov:

Theorem 3.1.2 Suppose that a process=XX(t); 0 <t < T on a probability spacéQ, F, P)

satisfies the condition
EIX(t) - X(9)|* <Clt— g4, 0<st<T,

for some positive constantsg and C. Then there exists a continuous modification=

{X{t);0 < t < T} of X, which is locally Hlder continuous with exponent, for every

v € (0,8/a), i.e.,

X(t, w) = X
Plo: sup XE-Xs0)
O<t—s<h(w) |t - SP/

<8l=1 stel0,T].

where l{w) is an a.s. positive random variable adds an appropriate constant.

So by Kolmogorov-Chantsov theorem, the prod8@$ has a continuous version, which will
be denoted byB(t). Brownian motionB(t) is defined as a natural element of the Gaussian

white noise space. Its covariance function can be computed by

min{|tq], [to]}, if t1,t2 > 0,
E[B(t1)B(t2)] = VER |[o,t1]|[o,t2](3)d5={

0, otherwise
In this context, integral of an arbitrarfy € L?(R) with respect to Brownian motion can be
defined as follows:

<w, f>= f f(t)dB(t), for all deterministicf € L2(R),
R

with E[< w, f >] = 0 andE[< w, f >?] = ||f||fZ(R) is the well-known 16 isometry.

As we mentioned his name, let us give two theorems that is of fundamentalsitgcier
defining the integral with respect 8m The following theorem is known as th&iener-
Itd chaos expansion theoremHirst we give the definition of thigerated Itd integralof a

symmetric function.
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Let L2(R") be the set of all symmetric deterministic functiohs L2(R"). If f € L2(R"), the

iterated 10 integral of fis defined by

f f(t)dBE"(t)
Rn

th 153
n!fR[£ [ ft. . t)dBD]B) . . dB(ty)].

[Se] —00

In(f)

Theorem 3.1.3Let F € L%(P). Then there exists a unique sequentg,’ , of functions

f, € L2(R") such that

Flw) = i In(fn),
n=0

where the convergence is irf(P) and lo(fp) := E[F]. Moreover, there is the following

isometry

E[F?] = ) nlllfoliZ -
n=0

Example 3.1.4 Now let us find the chaos expansion of Brownian moti¢th. BVe know that

B(t) € L?(P), and it has the representation

i
B(1) fo 1[0, 1(9dB(9)

11(f2).

Therefore, we have, & Ijpg and f, = 0forn> 1.
In addition to Theorem 3.1.3, th&fiener-1td chaos expansion theoremidlof fundamental
importance for defining thEkorohod integrabf a random variable in thehite noise space

In order to be able to give the second chaos expansion theorem, wintdafene some of the

most basic elements used. For detailed proofs and information, we re@t]to [
Let {¢k}y_, be the Hermite functions defined as
En(¥) = 7 Y4(n - 1)) Y2h,_1(V2x)e X2 forn=1,2, ...

where

n
(%) = (—1)”eX2/2(f—w(eX2/2) forn=12.. .
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are the Hermite polynomials. Using the definition, it is easy to compute the Hermitegoly
mials

ho(X) =1, hi(X)=%x hy=x>-1,

ha(X) = X3 —3x, ha(X) =x*-6x2+3,....

The generating function of Hermite polynomials is given by

X =t
expx — E) = nZ:;) Ehn(x), Vi, x € R.

Thené& € S(R) and for their upper bound, the following relation is known. There exist
constantsC and? such that

a9 < { CrHE =240

ce’x if x| >2+/n

The{én},, constitutes an orthonormal basis foi(R), see [34] for references. Instead of the
iterated Itd integralsthe second chaos expansion theorem is based drdhmaite functions
and their products. The order of tHermite functionso be used is stated by multi-indices=
(a1, ap,...) offinite length; it has finite non-zero elememsvherea; € Ng = {0, 1,2, ...} for
alli. Let 7 be the set of all multi-indices = (a1, a2, ...) of finite lengthl(a) = maxi; a; #

0}. With ! = a1las! ... antand|a| = a1 + ... + an, He(w) is defined by

Ho(w) = hy, (< w, &1 >)Ng, (< w, €2 >) .. Ny, (< w, &n >).

Thus, as an example

h2(< w,&1 >)h0(< w,&2 >)h3(< w,&3 >)hl(< w, &4 >)

H031)(w)

= (<w &> -1 w &> -3<w,é>) <w,és >,

sincehp(X) =1, Mm(X)=x, hy=x>-1 hg(x) = x3 - 3x. If we denote the unit vectors
of L2(R) by ¢® = (0,0,...,0,1) with 1 on thekth entry, and O otherwise, wheke= 1,2, . . ..
Using these unit vectors, we obtain a useful equality for our computations:

Haw(w) = hi(<w,é>)

<w,é>= fR E(OAB),

which corresponds to thehaos expansioaf < w, & > in terms of multiple 16 integrals. The

main result obtained bydtgives thechaos expansioaf H, (w) :

How) = [ 680 (0aBRI00,
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where® denotes symmetrized tensor product. See [34] and [24] for details.

Theorem 3.1.5Let F € L?(P). Then there exists a unique famity,a € J of constants

C, € R such that

F(w) = Z ¢ = aHy(w) with convergence in  4(P);

aed

furthermore, there is the following isometry

E[F? = ) cZal.

aed

Let us find the chaos expansion of Brownian motk(ity) for somety € R in the sense of

iterated Itd integrals We can write

B(t) = fR 0 (9B(S).

We know thaté’s constitute a basis fdr?(R). When we expand in Fourier series we obtain

f Z(l[o,to],-_’Ek)Lz(R)fk(S)dW(S),
Ri=1

where the inner product dfo1,; andéy is

(o] € L2(r) L I0.t0] (Uék(U)du

to
&(uydu.
0
So we see that the expansionBity) is
[Se] tO
Bto) = Y- [ &ty [ agaws).
k=1 0 R
wherec,, = foto &(uyduandH «(w) = &(s)dW(s). We see that
B(t) = ) CeHo0 (@)
k=1

holds for 1-dimensional Brownian motion. Another way to see this is conegi&(t) as

< w,lpy >, the action ofw on f:

BU) = <wlpg()>=<w, ) (lor &izmék() >
k=1

I(i:;fotfk(s)ds< w, & >
évfot.fk(s)dsl—!s(k).
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This expansion shows us that, when regarded as aBfgp,R — (S)*, B(t) is differentiable
with respect td and the resulting process is called thibite noise which, indeed, gives its

name to this theoretical framework. The white noise process, deW(@dhas the expansion

W(t) = d% B(t) = > &(®H,w. (3.2)
k=1

The white noise process plays an important role in the definition of the Sédriolegral.
After giving the definition of this integral, we will see how it is possible to obtairita type
formula using the Wick-fi-Skorohod integral with respecttBm Skorohod integral, can be
seen as an extension of thé ibtegral to the integrands that may not be adapted. But to define
this integral, there is another necessary concept of the white noise thirelyick product
After we define thaNick product we will be able to compute stochastic integrals using the

chaos expansion of functions.

Definition 3.1.6 (Wick Produc}
If Fi(w) = Xaeq cg)Ha(w); i = 1,2 are two elements f5)* we define theiWick product
(F1 0 F2)(w) by

(FroF2)@) = ) e Haup(@) = 3 ( 3 cPc)H, (). (33)

a,ped veg a+p=y

For calculations of th&Vick productof two functions, we remark some useful properties of

H.(w) which are needed:

H.oH ) (w), ifi#]

Hei e (W) =
H2,() -1, ifi=]

There are some advantages of using\ifiek calculuswhen dealing with square integrable

random variables ([17],[34]). We summarize some of these advantadekoavs:

1. If Fis deterministic, thefr ¢ G = F - G.

2. If f € L?(R) is deterministic, then

fR f(t)dB(t) <w.f>= Y (F a)zm < w.bic>

k=1

Z( f, &idL2@)Hew (w).
=]

22



3. If g(t) € L%(R) is deterministic, then

2 (0@ ) H 40 (@)

i,j=1

[ fR F(dBO)] - | fR OB — (F. ghys.

[ fR F(dB®)] o [ fR o()dB()]

Another property ofVick productwhich is used to compute the values of stochastic integrals

is that when|f|; = 1, < w, f >*"=hp(< w, f >)

As we will see Skorohodntegral with respect ttBmmakes it possible to compute the values

of stochastic integrals with respectfdm Let us give the definition o8korohodntegral.

Definition 3.1.7 Let gt,w), w € Q, te[0,T], be a stochastic process that is assumed to
be (tw)-measurable, that is,(f w) is F-measurable for all & [0, T] and Hg(t, w)] < o
¥t € [0, T]. Then we can find the chaos expansion of the random variable g(t, ) and

obtain the functionspf(ts, to, . . ., ty) such that
ot w) = Y In(fae()-
k=1
These functions depend only on the parameter t, then we write

fn,t(t].’ t2’ ey tn) = fn(tl, t2’ ceey tn, t)

now the symmetrization of fdenotedf, is a function of i- 1 variables {, to, . . ., t, t is given

by, with .1 =t

for(te to, ... ty) =

n+ l[fn(tl,tz,...,tn) + fn(tl,tz,...,tn,t) + ...

fn,t(tl, t2, e ,tn+l, tI) +...,

where the sum is over the permutatian®f the indiceq1,...,n + 1) which interchange the
last component with one of the others and leave the rest in place. Novkanegh8d integral

of g can be defined by

5@ = [ 6t a)oBO = ) (D)
n=0

The relation between the Skorohod integral andWiek productis given by the following

equality for Skorohod integrable functiolét, w):
f Y(t, w)dB(t) = f Y(t, w) o W(t)dt.
R R
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Using this relation, let us compute the following stochastic integral as an exaEguliéer in
this chapter, we obtained expansions of bBft) andW(t). Using these chaos expansions,

we will demonstrate the computation of tidck productof B(t) andW(t) [17]:

Example 3.1.8

B(t) o W(t)

. t
iJZ::l[fi(t) fo &(wdUuH, 0.0 (w)

o t t
i;l[fk(t)He(”(w) fo £j(U)duH, o (w) — &(1) fo &j(u)dul

o t
BOW() - D &(t) fo &(uydu
i=1

As we mentioned before, it is possible obtain the results of stochastic integrde type
Jy BOB() as follows:

T T
f B(t)dB(t) f B(t) o W(t)dt
0 0

(o)

Z[fOT &(t) fot &j(wdudiH, o, .0

ij=1

= % i[]j gi(u)duj; E(u)dulHo 0

ij=1

1<, (7 1oy (7
= SN[, a3 [ aaa?

ij=1

1 1
= ZB(M)?-=T
5B(M" - 5T,

where we used the Perseval’s identity
2@ &) = 0,
|

to obtain X2, [ ' &(udu® = T.

3.1.2 Operator M

The naméfractional comes from the notion of fractional calculus used in the definition of
fBm Intuitively, fBm can be thought as fractionally integrated Brownian motion. Fractional
differentiation and integration is widely used in physics, especially in turbuldresopmena.
At first sight, there no direct connection between fractional integrati@hleng-range de-

pendence or the specific covariance structuriBof but as we will see, when used together,
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notions from fractional calculus and white noise theory can provide atavayild this con-
nection. Now we will see how this connection has been established via thatapk!. In
fractional calculus notions, M operator is the fractional integral opecdtordera = H — %

so it is the main reason of the name ‘fractional’ Brownian motion.

Definition 3.1.9 Let0 < H < 1. The operator M= My is defined on functions ¢ S(R) by

MT(y) = Y21 (y), (3.4)

where ye R and
fly) = f &Y (x)dx (3.5)
R

denotes the Fourier transform of g.

Equivalently, for every & H < 1 the operatoM can be defined as

d

M) = —ax x(H - 1/2) 1/2)

f (t - x)It— x"=32¢(t)dt, (3.6)

wheref € S(R) and

Ch = 2I(H - %)cos[%(H _ %)]_l[F(ZH + 1) sin(IHY] Y2

with I'(-) denoting the classical Gamma function. Fot &1 < 1/2 we have

Mf(x) = Ci fR Tx=9- 194

|t|3/2 H
ForH =1/2
Mf(x) = £(X)

For 1/2 < H < 1 we have
f(t)
Mf(x)=C dt.
() an X2

The operatoM extends from th&chwartz space ®) to the space

L2 = {(f:R — R(deterministi} : [y|“2" f(y) € L3(R)}

(f:R > R:Mf(X) e LAR)}

{(f iR > R:|[flly < oo},

where

Il = [IMfl 2R)-
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Then we are in a new spatép defined byM operator operated ohe L2(R). The elements
of the spacd';ﬁ are fractionally integrated functions of tBehwartz spacerlhe inner product
and norm in this space are also defined usingvheperator. The inner product in this space
is(f,gn = (Mf,Mg)_2). One of the problems is thehﬁ'(R) is not closed with respect to
the inner product (see [34] for references). In particular, the atdidunctionlg () belongs

to LZ (R) for fixedt € R. We write
Mio,q(x) := MIO, t](x),

andif f,g € L[R) N LZR, then

<fM\g>L2(R)>L2(R)
fR Y2 H Fy)a)dy = (T, Gage

(Mf, Q)L 2(g).

(f, M@) 2R,

Using the properties dfl operator there are several ways of computihlyapj, which is of

practical importance in defining tHiBn
d b
MLa.bJ09 = -5 [ (-t X132t @.7)
dx J,

using the change of variablds=t — x, we get

b—

R TR
= ﬁ — [(x=b)lb = x""%2 — (x— a)la— x"~%?]
[[(2H + 1) singrH)]Y/2 b-x a-x
2I'(H + 1/2) cosfr/2(H + 1/2)][|b— x|3/2-H " ja— x3/2-H ]

andMf e L2(R) for this choice off. By using 3.4 and Perceval’s Theorem, we have, for

O<H<1,

2 1 AT R Q12
fR[M[a,b](x)] dx 2HfR[M[a,b](s)] ds

1 —ibs _ 4-ias2
_ _f|s|1—2H|e f | ds
21T Jr El

= (b-a)’", (3.8)
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where the following relation is used

[e—ibs _ e—ias]

a9 =

We refer to [34] and [17] for the proof and details.

SinceM[s t] = M[0,t] — M[O, g] for s < t, and using the following equation,

(M[O, 8)® + (M[O, 1)) — (M[s, t])*

M0, ]M[0, g = 5

we have

[ MI0. gm0, Soget= (P + 167 - - 7). 39
R

which holds for arbitrarys,t € R since [,[M[a, b](X)]dx = (b - 8)?'. So we see that the
operatorM is defined in such a way to obtain the specific covariance structdBnofWhen
indicator function is used instead bf, one would obtain the covariance of a standard Brown-
ian motion. But using th& operator, for a specific value bf, one can obtain the dependence
between increments of the resulting procdBsy In the white noise spacéBmis defined in

an analog way of Brownian motion. We can see the opeit@the only diference between

these definitions. Foft € R, define
B™(t) := B"(t, ) :=< w, M[0,1](-) >,

where< w, f >= w(f) is the action ofv € Q = S'(R) on f € S(R). Since the measure used
in definition offBmis the white noise measurB!(t) is GaussianB”(0) = E[B"(t)] = 0 a.s.

forallt € R, and by using (3.9) we see that

E[B"t)B" ()] = fR MO, t](X)M[0, s](X)dx

%(mz“ + 192 — 1t — g21).

Therefore, the continuous version 8 (t), B-(t) is afBm as defined in Chapter 1.

Integral with respect téeBmin the white noise space was defined by following an approxima-
tion similar to that of standard Brownian motion. As usual, we begin with the stegifuns.

Let f(X) = Zjajlyy; ;,,) be a step function, then by the definitions above and linearity, we can
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write
<w,Mf> = >aj<w Mt tja] > (3.10)
,-
= > a(B"(t.1) - BM()
,-

= f f(t)dB™ (). (3.11)
R

A Gaussian random variable is characterized by its first two moments. Tim dhig.charac-
terization forf]R f(t)dB" (1), the I isometry for this random variable must be defined. This
can be done by using thélisometry for Brownian motion case and the definition of the norm
in L2 (R):

| < w,Mf >l 2p) = [IM Tl 2Ry = IfllH-

Comparing to the definition ofdtintegral in the white noise space:
<w,f>= f f(t)dB(t) for all deterministid € R,
R

we see that
<w,Mf>=ff(t)dBHszf(t)dB(t), f e LZ(R).
R R

It is surprising to see the integral at the beginning forming into the last terrtpantegral
with respect to Brownian motioB(t)! The amazing properties of the operator M makes it
possible to compute the integral of a function with respect tBrawith an arbitraryH by
only operating the operatdfl on the function under consideration. We will use this result in

the following subsections.

SinceMf e L(R) for all f € S(R), using the isometryM : S'(R) — S'(R) satisfies the

following relation:

<Mw, f >=<w,Mf >, feS[R) for P-ae weQ=S(R).

We saw that the operatd/ is defined based oh € S(R), then this last equality is hard to
give meaning at first sight because there is no explicit interpretation ¢étiveM w, where

w € Q = S'(R). The isometry property states that these two random variables areiequal
the mean-square sense. We know thati\theperator is in fact the fractional integration

operator of orderr = H — % and this gives us the idea of the notionfizctionally integrated
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white noise, or as an analog to tfigmcase, thdractional white noise. This interpretation is
true indeed, and to obtain a fractional Black& Scholes formulafré&ional white noise
calculus is used. But the terfractional white noise is used in the sense of a probability

measure, not in the sense of the prodesstional white noise defined in the next subsection.

Now let us define

a() = M%), k=12..., (3.12)

theneq? , are orthonormal i.Z (R) and the closed linear spanief};> , containsL? (R) (see

[34]). And keep in mind thaMex(X) = &(X).

3.1.3 WIS integral

So far, we presented the definitions of Brownian motion #m in the white noise space.
We proceed with the definition of Skorohod integral. To decide if a functiogkisrohod
integrable, the following function spaces, tHala space (S) of stochastic test functi@msl
Hida spaceg(S)* of stochastic distributionare used. We briefly give the definitions of these

spaces. For details, see [22].

Definition 3.1.10 1. TheHida space $) of stochastic test functioris defined to be all

¥ € L2(P), whose expansion

lﬁ(w) = Z a(zH(ya
acd
satisfies
WIE = ) @al@N) <00 Vk=12,...,
aeg
where(2N)” = (2.1)2(2.2)2...2m)"™, if y = (y1,...,Ym) € J.

2. TheHida space$)* of stochastic distributionis defined to be the set of formal expan-

sions

G(w) = ) baHa(w),
acg
such that

IGIIg := Z bZal(2N)™ < oo for some o< co.
aed
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Definition 3.1.11 Suppose that ZR — (S)*, is a given function with the property that
.9y e L'R.dY, Vg e(S),
thenf]R Z(t)dt is defined to be the unigue elemen{®¥* such that
([ 20dt0r = [ @.0d weo)

If the last equality holds, then(8 is said to be dt- integrable in(S)*.

If a function isdt — integrablein (S)*, we can define Skorohod integral of it with respect to
an element of $)*. SinceB"(t) is an element of$)* [34], we the Skorohod integral of a

function with respect téBmis given as follows:

Definition 3.1.12 (WIS) integral
If a function Yt, w) is dt — integrable in(S*, then we say that Y is Wick 1td Skorohatl1S)
integrable and define it#/IS integral with respect to B(t) by

fv@wm§wy=fvmomem
R R

The fractional analog of the white noise procdsactional white noisgrocess is defined in
these spaces using the operatbr These definitions are in the sense of finite dimensional

distributions and in this sensi&m B(t) is differentiable with respect to

Example 3.1.13Let H,(w) be as defined before aréld are the unit vectors denoted by
s®=(0,...,1,0,0)

with only the kth entry being and all the others are 0, k 0,1,.... Now let us find the
chaos expansion of"gt) in a similar approach that we have followed when we computed the

chaos expansion of(B. As we expect, the onlyffirence is the operator M, operating on the
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indicator function:

B (1)

< w, M[0,1](.) >=< Mw, ljo () >

= <M, ) (Ijpg, aned) >
k=1

= < Mo, Z<M[O’t]’ MQ(>L2(R)Q(() >
k=1

= Z<M[Ost]"§:k>L2(R) < Mo, & >

k=1

= Z(l[o,t], Mé) L2y < w, Me&¢ >
k=1
& t

= Z f Mé&i(S)d sH.0 (w).
k=10

The key element in definition diVISintegral, as seen, is tHeactional white noise W(t).
Again in a similar approach that took us to the expansion of white N&igg we use the

expansion oB(t) and take its derivative with respectttn (S)*:

wH ) = Z MéH 0 (w)
k=1

since
dB(t)

A = WH(t), in (S)".

As we mentioned before, in the constructionfiaictional white noise in this settingyl has
operated orfk(s) € S(R), not onw € Q. Since the expansion dfactional white noise is
known, it is possible to compute the WIS integral of a functiore La(]R), with respect
to fBm B'(t). As done in the standard Brownian motion ca#égck calculusis used in this

computation:

f(t) o WH(Dd N f d K
fR (t) o WH(t)dt k;[ fR (M)A H,0 ()

(o)

Z(f, Méid2H 00 (w)

k=1

D AME, &0 H o) = f Mf o W(t)dt
k=1 R

f M f (H)d B(t).
R
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When it comes to the definition of this stochastic integral over a finite time interdadator

function, as expected, appears to be solving the problem:

.
f f(t, w)dB™(t) := f f ()1 © WH(t)dt.
0 R

Using theWick calculus in §)*, we can compute the Skorohod integﬁl BH(t)dB"(t) as

follows:

T T dBH(t)
H H _ Ht) o WH — "BH (1) o
fo B (t)dB™ () = fo B (t) o W (t)dt f 0'BH(t) dt

dt
= SIBHOIZI] = S(BY(T)? = (< w. M0, T] 5)*
= J1(< . MO, T] > - (M[0, T1, M[0, T]z0)

= %(BH(T))Z - %HM[O, Tl oy = %(BH(T))z B %TZH’

This result shows us that the stochastic integral has expectation zdrotrescase of b
integral for standard Brownian motion. This property is coined with the natfonartingale
for stochastic integrals. Then, in the white noise universe, this stochastigahbehaves like
a martingale. Generally speaking, when we Wiek calculus in §)*, we can deal witiBm

in a similar fashion to that is used in the standard Brownian motion case.
As we mentionedSkorohodintegral is an extension of thedlintegral. Now let us give the

definition of the 16 exponential taVISintegral.

Example 3.1.14 TheWIS (Wick) exponential

TheWick exponential is defined as
o 1
exp’ F = Z HFO”.
n=0 "
In general we have ([24]),

o 1 2
exp[< w, Mf >] = exp( < w,Mf > ~5lIM f||L2(R)). (3.13)

When we take the expectation of tiMick exponential, we see that

Elexp( < w,Mf > —%HM f||fz(]R))] = E[exp( < w,Mf > J]exp( - %HM f||f2(R))

exp(%nlvl FIi22(zy) €xp( - %IIM fIZ2(z)

= 1,
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which is an analogous property to stochastic exponential procesWyittkeexponential has

constant expectation.

TheWISanalog of the stochastic exponential is &S exponential and using its properties
andWick calculusn (S)*, itis possible to solve fractional SDEs. Let us consider the fractional

stochastic dterential equation
dX(t) = a()X(0)dt + BE)X(t)dB (1), t>0, (3.14)
which is the diterential form of

X(t) = X(0) + fot a(s)X(s)ds+ j:ﬁ(S)X(S)d B (s),

wherea(:), B(-) are locally bounded deterministic functions.Using the definitiofraxftional

white noisen (S)*, we can write this equation as dl@rential equation in)*:

ax()

T QX () + FOXO o W)

X(t) o [a(t) + BOWH )],

When all the products are considered to be inWiek sense, this equation is theffdirential
equation for the exponential. The solution of this equation is obtained usiMitkecalculus
[34]:
t t
X(t) = X(0) o exp’( f a(9)ds+ f B(9dB(9), (3.15)
0 0
where

t
| 8608 ® = [ p9oa(nE (.
Using theWick exponential, our solution can be written as:

t t
X0 = X(O)0 exp(| AOIES+ [ a(9ds—; [ Malp(9Noa(@)7ds, (316

whereMjs is the operatoM acting on the variable. If X(0) = xis deterministic, the solution

of the fractional SDE becomes

_ ! H ! _ 1— 2
X() = xexp([ AOUBH 9+ [ a(9ds- 5 [ (MBSI0.0(S) A9
Furthermore if3(s) = B, a(s) = a are constants, we obtain

X(t) = xexp@B"(t) + at — %ﬁthH).
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Now we present the dttype formula fofBm TheWISexponential, plays an important part

in obtaining this formula.

Theorem 3.1.15Let H € (0, 1). Assume that(k, X) : RxR — R belongs to %(R xR), and
assume that the random variableg, B (t)), Ot ‘Z—L(s, BH(9)ds andfot ‘;27;(5, BH(9))s?"1ds
all belong to [?(P). Then

tof tof t o2
f(t,B"(t)) = £(0,0 —(s,BHO)d f— BH©)dB" Hf— BH(9)s?Hd
B0 = 0.0+ [ TL(s B Odsr [ (s BB 9+H [ (s B(9) Tds
Proof. We follow the approximation in [34] for the proof ofdtformula.
Leta € R be a constant, and Igt: R — R be a deterministic function. Define

g(t, x) = explx + (1)),
and put
Y(t) = g(t, x).
Using theWISexponential, we can writ¥(t) as:

exp@B" (1)) exp@(t))
expo(aBH () + %athH) exp@(t)).

Y(0)

Using theWickcalculus in §)*, we have the following equality for the terﬁ;\Y(t):

%Y(t) expo(eB" + %athH) o (@WH (1) + He2t?" 1) expB(t))

+exp (@B() + S0’ expBO)S (1)

Y()B + Y(t) o (@WH (1)) + Y(H)He2t?H 2,

Hence,

Y(t) = Y(0) + fo tY(s)ﬂ'(s)ds+ j; tY(s)adBH(s)+H j; tY(s)aZSZH‘lds

If we write this last equations in terms gft, x), we see,

t t t 12
o(t. BY(1)) = 9(0.0)+ fo D(s 8 (9)ds fo (s 8" (9B (9+H fo £ J(s BH(9)s s

which is the fractional & formula. [ ]
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For a function in the form of , there exists a sequenét, x) of linear combinations df(t, x),
since it is shown in [34] that the linear combinationgy@f x) is dense in$)*. Therefore we

can write

O Py, O

of
fo(t,X) — f(t, X), a0 t,x) — E(t, X), X (t,x) — a_x(t’ X)

ando? fu(t, X)/ox — 621 (t, X)/0x2, pointwise dominatedly as— co. Using these arguments,

we define
t t
WtB'®) = 600+ [ SheBieiss [ TrsBi(9)E(
A H H-1
+H v (s B"(9)stds

Taking the limit inL2(P) (and also in §)*), we obtain

t t
(BMO) = 0.0+ [ Ga Bt im [ ZnisBi(9)E(s

621,
+H f v (s, B"(9)s"tds
0

Using the continuity o6 — dfa(s, BH(3))/dxin (S)*, we can write

t t
fo %_t(& B"(9)dB"(9) = fo (?9_11(& B"(9) o W(9)ds

which converges to

j: %(a B(s)) o WH(s)ds
in (S)* asn —» oo. Comparing these limit arguments we obtain the fractior@afdrmula.
This proof is in the Hida distribution spac8)(. The only diference between tHeactional
Itd formula and the & formula is the form of the quadratic variation term. Other than this, the
general proof of b formula holds. To obtain this term, let us recall the relation between the

L2(R) and Lﬁ(]R{), i.e, Iflln = IMfll 2. Letus use this equality to compute the quadratic

Z(t) = fotyds+ j:adBH(s),

whereu and o are constants, for convenience. Using the operltowe can obtain the

variation of the process

quadratic variation oZ(t) as

dZ)(s) = d(Myolpgw)?
d(c?$") = 2H?sH1ds

which is two times the quadratic variation term in firectional Itd formula.
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3.2 Fractional White noise calculus forfBm with H > 1/2

In this section, we will summarize how théhite noise theoris modified to obtain the proper
tools for pricing an option whose price dynamics is modeled by a geonfietcitonal Brow-
nian motion. The idea of fractional white noisgrobability measure was mentioned before.
Now we will see how this idea is modeled using thkite noise analysimainly in [24] and
[34]. The definition of the stochastic integral is again in the sense of a limiteoRiemann

sums.

We saw that one way to construct an integral with respetBois using fractional calculus
by the operatoM and then defining the integral in thélSsense. Now we will see that there
is another way of defining an integral with respediBm A new kernels(s, t) was introduced

for this purpose.

Proof. Let us define, for fixed/ 2 < H < 1,
#(s,t) = H2H — 1)|s—t*" 2, steR.
The functiong(, -) is defined in a specific manner that

t t
f; j; #(u, v)dudv= t?H, (3.17)

and fors,t > 0,
t S
f f #(u, v)dudv= %(sZH +t2H —t— g2, (3.18)
0 JO

Let us give a proof of these equalities which are essential for the defimfithefractional

white noise There are three cases to considgs:< t, ii)s = t, iii)s < t. Suppose thas # t.

Then
t S t S
ffgb(u,v)dudv: H(2H—1)ff|u—v|2H‘2dud\4
0 Jo 0 Jo

t S S S
f f lu—-vi*"2dudv= f f lu —vi*"2dudv
0 Jo o Jo

t S I r
f f lu - vi*"?dudv f f lu—vi*"?dudv
0 Jo o Jo
I I
2f f lu - v2H?dudy
0 Jv

where

If s=t=r,then

36



where we can write the last equality singéu,Vv) is unchanged under the transformation

(u,v) = (v, u). In using the change of variables= u— v = dw = du, we obtain

r I r I
f f lu—vi*"2dudv f f (u-v)?"-2dudv
0 Jv 0 Jv

' r_v\NZH—Zd d 1 ' 2H—1d
j(;j; WV_ZH—lj(;(r_V) v,

changing variables ab=r — v = dA = —dv, we have

2H -1 Jo 2H(2H - 1)

Furthermore, for the second part of the integral

t S S t
f f lu — vi2H=2dudv f f lu - vi2H=2dudy
0 JO 0 S

S t
ff(u—v)ZH‘zdud\g if t>s
0 5
Let n=u-v, then

s pt-u
f f )72H_2dT]dU
0 Js-u

_ 2H1 1fs[(t—u)2""1—(s—u)ZH‘l]du
-1Jo

_ 1 S ety [Tre n2H-1

= 2H—1[f0 (t-u) du fo(s u) du]

= —2H(2E - 1)[tZH —(t-9% - M.

Hence, when > s,

fot fos¢(u,v)dudv= %[s?“ +t21 — (t-92M].

Sinceg(u, v) is unchanged under the map ¢) — (v, u),

t S
f f o(uv)dudv= S[2" + 1 |t — 52,
0 JoO 2

for anys,t > 0. |

The functiong(s, t) takes the place of the operatdrin this setting. Using(s, t), an isometry
and a new function space is defined as follows: $@R) denote theschwartz spacas before.

If the following holds forf € S(R)

115 Z=L]ﬂ;f(s)f(t)¢(s,t)dsdt< 00,

then it is said thaf € L3(R). If f,g € L3(R), the inner product in this space is defined by
o= [ [ H9ae(s asd
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then Lg(]R), the completion ofS(R), becomes a separable Hilbert space. ILgtR) denote
the subspace of deterministic functiond §(R). An isometry fromL3(R) to L*(R) is defined

by the following lemma which is proved in [14]:

Lemma 3.2.1 Let
1H-1125 ) = ¢,y f (t— w321 (), (3.19)
u

where

CH =

H2H - 1)I(¢ - H)
I'(H - Hr@-2H)’

andT" denotes the gamma function. Thél'¥? is an isometry from £(R) to L(R).

The fractional white noise measuyias we will see, is the fractional analog of tlhite noise
measurelt is defined by using the tools and definitions of the white noise calculuse®d
the basic definitions are as follows. For detailed information and proofsefeeto [14]. In
this setting, the usual construction of tivbite noise spaceas used. SAG(R) denotes the
Schwartz spacef rapidly decreasing functions dd andQ = S'(R), the space of tempered
distributions, is the dual &&(R). Now the mapf — exp(—%|f|§) is positive definite oI8(R).

By the Bochner-Minlos theorem, there exists a probability megsuom Q such that

1
| exptw. Didste) = expe51)

for f € S(R). (w, f) is a Gaussian random variable with the first two moments given as

follows

E/J¢[<'a f>] = 0,

and
Ey[¢. £ = 5.

Now, under this measure, we can defineflBin a more natural way by
B (t) = B"(t, ) = (w, loa()),

where the indicator function is the same that we defined in the white noise seétsone
see, this measure is tli@ctional analog of the white noise probability measure. As long as
we use this measure, we do not need any operator operating on the inflicaton I (-).

Again, by Kolmogorov-Chentsov theorei (t) has a continuous version denotedB(t),
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which is a standaréBm under the measuye;. We denote the natural filtration & (t) by

FH and endow® with this filtration.

Forf e L2H (R), the integral with respect f@mcan be defined in the usual way by considering

simple integrands first. Let us define

fnlt) = D &)
and set
| e - 2 () - Bl

Defining the integral, as in the classical case, as the limit of these sums with

im fm=f (3.20)

m—oo
in L(R), we have

Hey _ i H
fRf(t)dB (t)_rmofRfmdB (V).

The limit exists inL2(u,) because of the isometry

EC [ tnOdB* ) = 1l

Now we can, by approximatin§ with step functions, write

(w, T) = fR f()dB(t, w). (3.21)

The exponential function is of practical use in this setting as in the classicadtégral ap-
proximation. LetLP(us) = LP denote the space of all random variables Q@ — R such
that

IFliLogey) = ENFIPIYP < co.

The exponential functional : L% (R) — L(uy) is defined as

e(f):

exp( fR a0 - 5 fR fR 19 f(M0(s Hdsd

exp( [ FOdB M- 115

If fe Lﬁ(R), thee(f) € LP(uy) for eachp > 1. If we denote the linear span of the exponen-

tials byy, that is,

n
x={D ae(f):neNaceR, fce L3R) for kell,...,nj}
k=1
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is a dense set dfz(;1¢), for the proof we refer to [24] and [31]. In order to define tractional
chaos expansion theorenme needs an orthonormal basid g{R). This basis is defined in

[24] by the following equation:

en(u) = (172 1) (),

where the,(X) are the Hermite functions. THiectional Wiener-1td chaos expansion theorem
is stated in terms of the orthonormal bai@g " , of Lg(R). Let 9 = (Ny)s denote the set of

all finite multi-indicesa = (a4, ..., @), whereNg = NU {0}. If @ = (a1, ...,a) € J, we write
Ha(@) := hay (@, 1)) .. hap (@, €m).
In particular, ife® := (0,...,0,1,0,...,0) denotes théh unit vector, we get
Heo (@) = hi((w, ) = (w,8)

Now let us give thdractional Wiener-1td chaos expansion theorem

Theorem 3.2.2Let Fe L2(,u¢). Then there exist constants € R, « € J, such that

F(@) = ) caHa(w),

aeg

where the convergence holds iﬁ(p¢). Moreover,

2 _ 102
IFIZ, = > a2,
aeg

wherea! = a1!...an! ifa = (ag,...,@) € TJ.

When computing the chaos expansion in terms of the Hermite functions, theprothrct
(f,e)n gives us the cdécients of the chaos expansion. Using the definition of the inner

product inLé(R), one can see

<f,a>=fRfRf(u)a(vm(u,v)dudv.

Therefore, we have the expansion

f f(s)dB(s) = Z(fﬁ)H H.o (w), f € LA(R).
R i1

Taking f = I, we obtainfBm,

o t 00
B (1) = Zl [ fo ( f 80 ()
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Thefractional white noisgrocessV" (t) is obtained by using the filerentiability of B (t) in

the fractional Hida test function and distribution spaces defined by thevialip

Definition 3.2.3 1. The fractional Hida test function space: Defi{®4 to be the set of
all Y(w) = Ygeq aH(w) € L?(uy) such that

”lﬁllek = Z a!af,(ZN)"“ < 00 keN,
acd
where

@y =[]y’ i y=0n....vmed.
j

2. The fractional Hida distribution space: Defili8);, to be the set of all formal expan-

sions

Gw) = ) bsHj(w),
BT
such that
IIGIIZH,_q = Zﬁ!bf;(ZN)‘qB < o0 for some e N.
BeT

For the proofs, details on these spaces and the topologies, we refdi.to [2

We saw that the white noise process plays a fundamental role in the defirfitfdtfsantegral.
This holds also for the fraction&VISintegral. In the fractional Hida distribution space, the

fractional white noise at timeis defined by:

(o8]

Wi =3 fR & (V)o(t VAV, ().

i=1
ThefBmis differentiable with respect tan (S);, andWH (t) is integrable in $);,- Infact, for

0 < s<t, we have,
t 0 t
fo WH(s)ds:;{ fo [ fR & (V)¢ (u, v)dv]duH, o (w) = BH(1).

Therefore we can write

d . *
i Bi®) =wWH®) in  (S).

Using thefractional white noise procesthefractional WIS integratan be defined using the
Wick product Suppose we can approximate the random varidfifewith the step functions

F; using the partition Gt <t, < ... <tpp =t

Z(t) = Y Fil@)lpu.(), where  Fie(S);
i=1
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then we can approximate the stochastic integral with respdBnti@s

f t Z(s)dB™(9) i Fi(w) o (B (tisr — B (1))
0 =1

_ iFi(w)o( WM (9ds
i=1 i

fi

n tig & .
Z;[Fi(w)o( ft ]; fR e(V)¢(s v)dVH,]ds

n

é[jt‘twl[lzi(a))02»&6](V)¢(S,V)dv)ﬂg(j)]ds

Z ft " E () o WH(9ds

Furthermore, when the mesh size of the partition goes to zero, the last texarges to
t . .
|, Z(9dB(s) in (S);;.

As we have seen so far, tiractional WiSandWISintegrals are constructed in a very similar
manner. Now let us look at the solution of a geometric fractional Brownian mdtidhis

setting:

dX(t) = uX(t)dt+ o X(©)dB™ (t)
with X(0) = x > 0, u ando are constants. As before, this equation can be writte8)j) as

dz—it) = uX(t) + oX(t) o WH(t) = (u + cWH (1)) o X(t).

UsingWick calculusthe solution can be shown to be

t
X(t) = xexp’ (ut + o f wWH(s)ds),
0
which is theWick exponential

Itis shown in [34] that
exp’((w, 1)) =e(f)  forall  fel4(R).
Using this definition, we can write
xexp’ (ut + o B () X(t) = xexp(o-BM (t) + ut — %athH).
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Under thefractional white noise measurg, we have

E,, [X(®)] xexp(ut — %o-thH)EW [exp(E?B" (1))]

1 1
xexp(ut — Eo-ZtZH) exp(éo-ZtZH)

xexp(ut),

where we used the definition of tifractional white noise measute compute the expectation

on the right-hand side.

The main advantage of definifi@min the fractional white noise space is tipgasimartingale
property offBmin this setting. In order to show this important property, first, the fractional
version of iterated & integrals and thefractional(or quasi)-conditionaéxpectation are de-

fined in the following pair of spaces. For details, see [24] and [31]:

Definition 3.2.4 1. Let ke N. Consider the function

s = [ ey,
n=0

with f, € [2(R"), where[2(R") is the set of functions(ky, .. ., X) which are symmetric

with respect to its n variables and satisfla‘s’,liz(Rn) = (f, f)Li(Rn) < o0. Itis said that
4

¥ belongs to the spad&)k = (G)«(uy), if

W), = > MU alZy ey €7 < 0,
n=0

then(G) is defined as N
(G) = (G) () = [ |Cluy)-
k=1

2. Let ge N. The function F with the formal expansion

_OO Hy\®
F—;)fRnfnd(B (1),

where f € Iié(R). It is said that F belongs to the spa@®)_q = (G)_q(u) if

(o)

Gl = D, Ml ol (R)e " < co.
n=0

Then(G)* is defined by
)" = (G) () = | J(©)-qlu),
geN

Equipped with the proper topologie%)* is the dual ofG).

43



Thefractional(or quasijconditional expectation of a function is defined on these spaces.

Definition 3.2.5 LetF= Y7, fRn fa(s)d(B™)®. Thequasi-conditional expectatiasf F with
respect toF? = B(BM(s), s < 1) is defined by

E(6] = E[GF = ) [ au(Olossca(9dB(9)
n=o VR
The following lemma in [31] gives the properties of Wick product ungleastexpectation.

Lemma3.2.6 1. Let Fe (G)*, then we have thdf[F] € (G)*.
2. Let EG € (G)*, then we have thd[F ¢ G] = E{[F] ¢ E{[G].

3. Let Fe L?(uy), then we hav&[F] = F & F is F}' - measurable.

In the first chapter, we saw thEBmis not a semimartingale. This property makes the use of
fBmin financial modeling and defining integrals with respect tofiiclilt. But, the fractional
white noise probability measune; is constructed in such a way th@|S integrals with
respect tdBmarequasimartingales under this measure. The definitiomuésimartingale

is as follows

Definition 3.2.7 An 7" - adapted stochastic process(fyw) is a quasi-martingalé M (t) e
(G)* for all t and E{[M(t)] = M(s) forall t > s.

The following lemma in [24] states that, when considered as an element @fattte@nal
white noise spacdBmis aquasimartingale. This property is of fundamental importance for

financial applications oiBm

Lemma3.2.8 1. B'(t)is a quasi-martingale

2. Let fe L3(R), then theWick exponential
t
1
240 = X (.o D) = exp( | F(9ABH(S) - 3z )
is a quasi-martingale.
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3. Let fe L;’z and M(t) := fot f(s, w)dB™(s). Then Mt) is a quasi-martingale.

Using this lemma, the following theorem states tfuasimartingale property of a functional
of fBm Basically, this theorem is of fundamental importance to price an option itidred
Brownian markets since the price of an option is defined as a functiédBrofat a distant

stopping timeT.
~ 2
Theorem 3.2.9 For every0 < t < T and € C we haveE[e!B"(N] = g!B"O+5 T
Proof. We know from Lemma 3.2.8 that ttlick exponentialk aquasimartingale. Th&\Vick
exponentials the solution of
dX(t) = AX(0)dB"(t), X(0) = 1.
Using thequastmartingale property oX(t), we can write
E[X(T)] = X(0),
whereX(t) = expABH(t) - L;tZH. Therefore we have
= H 2 _on H A on
Ei[expAB™(T) — ET ] = expaABT(t) - Et ,
where we see that
- 12
Ei[expAB™(T)] = expaBH(t) + E(T2H — 2.
[ |
The increments dBmare Gaussian and the next theorem in [31] gives the distribution of the

incrementBH(T) — BM(t).

Theorem 3.2.10Let f be a function that F(B"(T))] < «. Then, for every t< T the
following holds

| (x=B)?

1
Vo o 2o

B f(B™(T))] = fR )f(x)dx (3.22)

Proof. Let f denote the Fourier transform 6f
f(n) = f e 1§ (x)dx
R
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Thenf is the inverse Fourier transform o6f

F(x) = % fR &0 £ () dly.
Then we have
f(BM) = 5 fR &= M1 f()cy
Now, if we take thequasiconditional expectation of(B™(T)), we obtain
Bl [, ]
- % fR £ [7E"0) flppcy
_ % jﬂ; B O- T2 £

= g(B"(1)

E[f(B"(T))]

2
and the last functiorg, is the inverse Fourier transform of the product between(T"-*)

~ 2
andf. One of these functione,‘%(TZH‘tZH), looks familiar. In fact, it is the Fourier transform,
or the characteristic function, of Gaussian distribution with mean zero aimhea 2" —

t2H). If we denote the density of this function as
2

Nry = ! exp( - X—)
T V2r(T2H — 2H) P 2(T2H — t2H)

and, the Fourier transform of this functionmg (), we see the following holds:

oB*(0) = 5= [ & Onerto) e

Using the fact that the Fourier transform of a convolution is the produttteoFourier trans-
form of the two functions, and the functigrbeing the inverse Fourier transform of the prod-

uct between two Fourier transforms, it follows tlggis the convolution ofy t andf, i.e.,

o(B" (1) f ner(B(H) - y) f(y)dy
R

1 (B (1) - )2

fR 27(T2H — 2H) eXp( h w)f(Y)dy
_pH 2

of - M)f(y)dy,

1
jl; mex( 2(T2H — t2H)

where the last line of the equation comes from the symmetry property of @ausstribution

and completes the proof. Let us give the result of this theorem vihens. Let A € B(R).

Then
H (4112
RO

1
o o 2o
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B As we saw, these useful results can be obtaineBiorwhen regarded
as an element of the white noise space. But when one defines pathwisalsweith respect
to fBm its quadratic variational property is lost. We will see some of these pathwviesgriths

and correspondingdtformula in the next section.

3.3 Pathwise integrals with respect tdBm with H > 1/2

As for the standard Brownian motion case, pathwise integrals with respfirtis defined

by taking the limit of Riemann sums of the type:

D HW)IB" (1) - B (),

i=1
where O=t; <ty < ... <ty = T is a partition of [QT]. Using this approximation to the
stochastic integral, three types of pathwise integrals has been defined em[889]. The

following definition in [34] summarizes these definitions:
Definition 3.3.1 Let H € (0, 1) and (yt)ic[o,1] b€ a process with integrable trajectories. Then

1. The symmetric integral of y with respect td B defined as
1 T
lim —f V(9)[B"(s+ €) — B (s—¢)]ds
e—0 2€ 0
2. The forward integral of y with respect td'Bs defined as
1 T
lim —f y(9)[B"(s+ €) - B'(9)]ds
e—0 € 0
3. The backward integral is defined as

]
im * fo YO[B (s &) - BY(9]ds

whenever the limit exists in probability.

WhenH = % the symmetric integral is a generalization of the Stratonovich integral for the
standard Brownian motion, and the forward integral extends thatégral. So we mainly

deal with the forward integral with respect BBm Using the definition of the symmetric
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integral, one can obtain

T H _pH({e_
”mf BH(S)B (s+¢€)—-B"(s G)dS:
e—0 0 2€

= lim i(fT BH(9BH (s + e)ds— fT_E BH(s)B (s + €)d9
0 _

e—0 2¢€ €

= lim i(fT B"(9)B"(s+ €)ds— fT B"(s)B" (s + €)d9)
0 T

e—0 2¢ —e

I RTPENY S TN
= S(BM)?- 3B ),

which does not have constant expectation, and therefore, is not a gadetinwherH < 1/2,
the infinite quadratic variation dBmmakes it dificult to define these integrals. For the rest

of the section, we assunte¢ > 1/2.

Using the forward integral definition, a simple calculation yields:

N N
E[ Y BY@&)(B" (6.0 - BY@)] = ) [E(B"®)B" (t.2)) - E(B" (1))
i=1 1

N

= ) [%[(tnl)ZH - )]

i=1
12H

= =t
2

which is not constant, shows that the forward integral is not a martingale.

Using the forward integral, several authors have obtairetyfie formulas. We will mention
three of them. The first formula is obtained in [19]. The well knolaylor series is used in

order to obtain the formula.

Theorem 3.3.2 Let

dX(t) = u(t)dt + cdB" (1)

and X(0) = x be the fractional forward process. Suppose €%(R) and put Xt) = f(t, X(t)).
The following holds

dy(t) = %(t, X()dt + g—i(t, X()dX(t).
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Proof. Approximating the pathwise integral by the limit of the sums on the partition

O=th<t1<...<ty=t,

Y(®) - Y(0)

DY) - Y(©)]
j

of of
Zj] 5 (L XG)at; + Zj: 5 XE)AX()

2
+53 T G XD + 3 o(at)?) + o(a(X(t)))
] ]

tj+1
> %(tpx(tj))mj + ZJ: ft] g—;(tj,X(tj))AX(tj)

i

2f
+% Z %(tj, X(t))a(X()))? + Z o((atj)?) + o((A(X(t)))),
j j

B taking the limit as the mesh of the partition goes to zero, and
using the fact thatBmhas zero quadratic variation wheh> 1/2, we obtain the & formula

for the pathwise forward integral.

In [41], Shiryaev, using another version of Taylor's expansion thiedfact that thdBm has
zero quadratic variation wheid > 1/2, obtains the same formula with a similar apporach.

He uses Taylor’'s theorem with remainder.

Theorem 3.3.3If the (n+ 1)th derivative of f is continuous on an interval containing ¢ and X,
and if Py(X) is theTaylor polynomial of degree n for about the poingxc, then the remainder

R.(X) = f(X) — Pn(X) in Taylor'sformula can be given by

RiX) = f = PO Dt

where {1 denotes thén + 1)th derivative of f.

Writing explicitly, the theorem states that,

F(X)=F(y)+f(Y)(X—Y)+j; fu(x-udu.

Since the quadratic variation 8m vanishes whemd > 1/2, a function offBmacts like a

deterministic function in this formulation. Let us consider a sequéiite tMW(m), m> 1,
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n>1,fort"(m) (0=t"M(1)<tM(2),..), we have

F(B"(t)) - F(B"(0))

DUIFET (At (m+ 1)) - FB"(t AtV (m))]

Z f(BM(t AtV (m+ 1)B™(t A tO(m+ 1)) - B (t A tMV(m)))
+RO(t),

where

B (tAt™ (mi+1)) )
R(t) = f £ (Bt At"V(m+ 1)) - u)du
. JBH (At (m)

and f is the first derivative ofF. Then we expand the functida to Taylor's formula with

X = B{*M(n)(ml) andy = B"(t A t)(m+ 1)), and obtain

FBHtAtVm+ 1)) - FBTtAtPm)) = fB"¢tAtVm)B A tO(m+1))
~B"(t AtV (m))) +

B (tAt™ (m+1)) )
f £ (W)(BM(t AtV (m+ 1)) - u)du
BH (tAtM (m))

with P(supbsust|f'(BH(u))| < o0) = 1 from the bounded quadratic variation property of

f’(B"), and forH € (3,1)
P - lim > Bt AtP(m+ 1)) - BY(t At (m)P = 0,
m

to obtain an upper bound f&"(t). If we take thesupremunof the derivative form of the

remainder, we can use the limit above to obtain

O<u<t

IRV (1) < % sup | (B (U))| Z 1B (t AtV (m+ 1)) — B (t A tV(m))? ST 0.

This is the same formula derived before, usingTaglor's series, taking the limit in probabil-
ity of the pathwise integral of a function 88m, we see that it has no quadratic variation part
to complicate things. Taking the limit as the mash of the partifiBigoing to zero, summing
both sizes on m, and with — lim,, 3, f (B (t AtV (m)))(B" (t AtV (m+ 1)) - B (t AtV (m)))

existing, we obtain the étformula, forH > %
P~ lim D FE(EAt(m+ 1) - FB" (At () =
m

P~ lim Z f(B™(t A tO(m))(B (t AtV (m+ 1)) — B (t AtV (m)))
m
B (tAt™ (mi+-1)) )
+ f ' (U)B"t AtV (m+ 1)) - u)du
BH (tAtM(m))

= F(B"(1) - F(B"(0)) = fot f(B" (U))dB" (u).
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The stochastic integral is well-defined at least for functigns (g(u)) of the typeg(u) =
g(B" (W), with [J g(u)dS,(u) = J, gu)udu+ [ g(u)dB" (u). We can write this B type for-

mula in the dfferential form as

dF(t, BT (1)) = 0:F(t, B™ (t))dt + 9F (t, B (t))d B (¢).
Example 3.3.4 Let us consider the function(y = et+B"0 and apply the b formula for
pathwise integration model.

dY(t) — d(eut+BH(t)) =’ue(.tt+BH(t)dt+ eut+BH(t)dBH(t)

(udt + dB™ (1) Y ().

Using this market model anddtype formula, it can be shown that it is possible to generate

arbitrage in a market model wifBm

Another 1D type formula was obtained by Dai and Hayde in [12]. Their formula permgs th
integrands to be stochastic processes but requires a number of rasrmiche integrands.
For detailed information see [12]. Under these restrictions, they proegdahthe following

type of processes, theiditype formula holds. Consider the process
t t
XO =X+ [ a(sw)ds+ | b(s o)dB (o)
then the following holds;
YO = YO+ [ 2 e x(9) + ats ) 2 (s X(Nds+ f b(s o) 22 (s X(9ABH(9
or in differential form
aY() = [ 22 (. X(O) + als @) 4 XOdt+ bt ) 7 (¢ XO)IB ),

whereU(t, x) : [0,T] x R — R is a two variable function with uniformly continuous partial
derivatives??, & a d%xg and all partial derivatives are I?(P). As we have seen before in

other formulas, there is no quadratic variation term in their formula too.

For a stochastic étierential equation driven by 8Bmto have a unique solution, there are
some conditions as in the standard Brownian motion case. The following theorfl2]
states these conditions:

Theorem 3.3.5 Let f(s, X) and g(s) be Borel functions such that
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1. g:[0,0) - R is bounded,
2. [f(sX)| < K|x + K,

3. [f(sX) - f(sy)l <K[x-yl,

where K is a positive constant. Then the stochasffewintial equation

dX(t)

X(to)

f(t, X(t))dt + g(s)dB"(s)

A(w)

has a unique solution whose paths are continuous. AnddgfXit)) = uX(t) and ds) =

o X(t),whereo andu are constants, the solution is
X(t) = Aexp(u(t - to) + o(B" (1) - B"(t0))),

where t> tg and Aw) is a positive random variable such thatAfw)|? < co.

In order to see this, we apply thélformula to SDE and defin8(t) = exp(X(t)). Then we

have

ds(t) uexp(X(t))dt + o exp(X(t))dB (t)

uS(t)dt + oS(t)dBH(1).

Their proof is based on the same arguments as the other dwydée formulas are based
on. As we have seen, using the pathwise integration approximation, onabtain an 16
type formula with no quadratic variation term. But for pricing an option, tbefdrmula is
not alone enough. In the following section, we will obtain the pricing formafaah option

whose price process is assumed to follow a fractional SDE.
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CHAPTER 4

Option pricing using fBm

Stochastic processes are used in financial modeling for more than eedwyedrs. The work
of Bachelier [1] was the first attempt to use Brownian motion for financialeting. But

after 1973, when Black&Scholes published their work on option pricing@l derived their
famous formula, using probability theory in finance has moved to a new lavétid thesis,
we focus on the derivation of a Black&Scholes formula for the price of epean option

where the underlying asset is assumed to follow a geometric fractionainBaownotion.

An option gives its holder the right, but not the obligation, to buy or sell gageamount
of a financial asset, by a certain date, for a certain strike price. Therava sides of this
transaction. One party is the buyer of the option and the second party isritee @ the

option. An option is specified by the following quantities:

the type of the option: call option is the option to buy and the put option is the option

to sell;

the underlying asset: a stock, a bond, a currency, etc.;

the amount of the underlying asset to be purchased or sold;

the expiration date: aAmericanoption can be exercised at any time until maturity,

while aEuropeanoption can only be exercised at maturity;

the exercise price which is the price for the transaction if the option is erércis

The price of the option is called thgemium Therefore, to price an option means to compute

thepremium Let us have a look at the case of a European call option on a stock withityatu
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dateT and strike priceK. If we denote the price of the stock &tby S(T), the buyer of the
option makes a profit of§(T) — K) by exercising the option since fsée buys the stock for

K which indeed has a pricg(T). Therefore, the value of the call at maturity is given by

max(S(T) — K), 0).

How much value does this option have at 0? This question was answered by Black&Scholes,
whereS(t) was assumed to follow a geometric Brownian motion. In the following section,
we will see the computation of this value when the underlying asset is assurfabbwoa

geometric fractional Brownian motion.

4.1 Financial applications offBm

Using a process which is not a semi-martingale for financial modeling caosesproblems
to be solved. The specific constructionfBmin the white noise space makes the real world
financial interpretations of the integrals with respect to fiticlilt. Another dificulty is the
possibility of arbitrage in the fractional markets. These problems are vetsat the moment
but there are theoretical results of usiBgnin finance. In the next subsection we will show
how the fractional Black&Scholes price of a European call option wasirsdaand give

arbitrage examples in the fractional markets.

4.1.1 The fractional Black&Scholes formula

We mainly follow [17], [24] and [31] for the derivation of the fractionaladBk&Scholes for-
mula. We begin with the definition of the risk-neutral measure under whichisitewhted
asset prices are martingales which means that the stock price procesatgera riskless

return equal to bank deposit rate

In the case ofBm defining a risk-neutral measure is not trivial. The followiimgctional
version of the Girsanov theorem in [24] gives the definition of the Radibodym derivative

process in théractional white noise space
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4.1.1.1 Fractional Girsanov theorem

Theorem 4.1.1Let T > 0 andy be a continuous function witbupp c [0, T]. Let K be a
function withsupK c [0, T] and such that,

(K, Dy = Hrew, ¥feSR), suppfc[0,T],

f K(9)¢(s t)ds=y(1),0<t < T.
R
Define a probability measuye;,, on thec-algebra7 ' generated by B(s);0 < s< T by

dug
dug

1
= exp’ (—(w, K)) = exp((w, K) + IIK]ln),

thenB"(t) = B (t) + fotysds 0 <t < T is a fractional Brownian motion unde;_,.

As we saw, the fractional analog of the geometric Brownian motion, the geiorfragtional
Brownian motion is obtained by using the white noise analysis concepts. Afsactenal
Itd formula is derived and a fractional Radon-Nikodym derivative gssds defined. There
are the basic tools one needs to compute the Black&Scholes price of an optilbowing
basically the approaches in [31] and [24], we give the price of a EBaogall option. We re-
mark that wherH > 1/2, thefractional WISintegral and th&VISintegral definitions coincide
and the 16 formula for thewISintegral holds. Furthermore, the spekfﬁ]R) of deterministic

functions also coincide [34].

Let B"(t), 0 <t < T, be alBmon a probability spacey, 7, P), and let7 M (t) be a filtration

for thisfBm. Let us consider a fractional SDE which is the stock price process
dS(t) = uS(t)dt + o-S(t)d B (1), O<t<T. (4.1)

where the dferential is in theWick sense. We know that the solution of this equation can
be obtained by applying thediformula forW|S integrals. We first change measure to risk-
neutral measure to be able to compute the price of the option. Using the fedddadon-
Nikodym derivative process:

G — ol [ o9dB'(9 - Siate, )
with

f o9#(s ds= ="
R g
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then, undei?’, the new process

~ -Tr
BH(t) = £t + B(0),
g

is afBm We use this neviBBmto write the price process under the risk-neutral meaBure
dS(t) = rS(t)dt+ oS(t)dB (), 0<t<T,

wherer is the risk-free rate and we are now in the risk-neutral world. Let u$yapp It0
formula to solve this equation. TakirfdS(t)) = In(S(t)), which is a function of only5(t) and
applying the 16 formula yields

t1 to1
In(S(t)) In(S(0)) + ) %dS(s)—H fo SZ—(S)d[S,S](s)
1

t {
IN(S(0)) + fo (rds+ odB(s) - H fo 25°

In(S(0)) + (rt — %0'2'[2"' + 0B (0)).

?S¥(9)s?"ds

Therefore, we can write
S(t) = S(0) exp(rt — %athH +oBH(1)).
Furthermore, we can applydlformula to obtain
S(T) = S(t) exp(r(T - 1) - %GZ(TZH —t?) + o(B™(T) - B (1)), (4.2)
which we will use to compute the price of a European option at

Now we present théactional Black-Scholes formulas given in [17] , [31]. The formula
looks the same as the classical Black&Scholes formula but there is a slitgredce in the

borders of the integration of the standard normal distribution denoteld &gdd,.

Theorem 4.1.2 The price of a European call option with strike price K and maturity T at
time t is equal to:

C(t, S(t)) = S(N(dy) — Ke"TIN(dy), (4.3)

where r is the risk-free interest rate and dnd ¢ are given by
g IN(S(t)/K) +r(T —t) + 252(T2H - t2)
o o NTE R

and
IN(S(t)/K) +r(T —t) — 253(T2H — 21
G dy - o2 - MEO/K) +r(T 1) - 3o*( )
o VT2H _t2H
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Proof. The fundamental theorems of asset pricing state that, under the riskelmeetisure,
discounted asset prices are martingales [42]). As we kifBm, is not a martingale but a

guastmartingale and we will use this property to obtain the price of an option. Wevdas

C(t, S(t)) Efe (™Y max(6S(T) - K), 0)]

Ede" TIS(T)isrysk)] — Ke T YE[lisr)-k)]-
For this expectation to have a value greater than 0, the following should hold
0'2 ~
S(T)>K=InS+rT - 7T2H +BY(T) > InK
so let us denote

In(K/S) - T + 22T

o

*_

H =

Then, we see that the following holds:
BH(T) > ds.

Using (3.24) we obtain

Exlsmy>k)] Ed[l g (T)>d*}]

3 f c (x— BH(1)? - BTO)
B ‘/ZJT(TZH —{2H) P 2(T2H —t2H)
1

= a_8H exp(——)dz

B8H -5

\/m 1
= — exp(——)dz

f \2n
= N(dy),
Where% is a standard normal variable and we see that the last line holds when we write

the equations that defirté andd, explicitly:

In(S/K)- rT+" TH

B -dy B - ()
T VT e
oBH(t) - In(K/S) + 1T — <12 I(S(t)/K) + r(T - t) - 2021
) o T ST o N |

where we obtain the following equality f&(t)

2
IN(S®) = InS + rt - %tZH + o BH (D),
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which is true forS(t) and therefore the equation holds.

Now we can move to the second part to compﬁt{S(T)l{s(T)>K}]. If we write

o T _f)_ g2 (T2H _¢2Hy, BH(T_
Efe r(T t)s(t)er(T t)- % (T2H2H) 1o BH(T t)I{S(T)>K}],

we can use this to write this conditional expectation in the integral form Siigds 7 (t)

measurable and we know the distributionB5f(T — t). We have

g2 roH_gH Ao, 1 2 1
saxf g T (Tt VT2t A——Eﬁdz=sax[ e 2 dy,
—oo \Von —c0

where N y
_ BT -BA(t)
T VTR

is a standard normal random variable and
y=z+oVyT2H -1,

Now let us investigate the borders of the integr&(T() — K).. is positive if and only if

IN(S(t)/K) + (T —t) — Z(T2H - 12H)
S(M>Ke Vv >z

sinced; = dp + o VT2H —t2H andy = z+ o VT2H — t2H we have

dy
s [ e ay=SON().
which gives us the price of a European call optioh at [ |

The key element in computing the fractional Black&Scholes price of an optiestisiating
the Hurst exponenid. We will summarize most widely used procedures for estimating

the following chapter.

4.1.2 WIS portfolios

UsingWick calculus in finance has been questioned and it is shown that it is possihiigdcto b
portfolios that can generate arbitrage. The approximation of @ksendata in [34] is not
easy to apply nor interpret. They adopt the perspective of quantumamieshwhere the ‘eye
of the beholder’ canféect the observations, to financial markets. One of tifigcdities of

their approximation comes into sight when one tried to build a numerical algorithin Dhe
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test functionsa key element in their modeling, are in the form of Radon-Nikodym devizati
process, but to obtain the price of the asset, theywisk calculus We assume a market with
one risk-free asset and a risky asSgft) andS;(t), respectively. The price dynamics of these

assets are given as
dSo(t) = rSo(t)dt, Sp(0) = 1, (bankaccount

and

dS(t) = uSt)dt+ oSH)dB (1), SO)= x>0, (stock

wherer,u,o # 0 andx > 0 are constants and the stochastic integral with respeBt ts
in the WISsense. We know that the solution of this SDE is a geometric fractional Brawnia
motion, namely,

1
S(t) = xexpEBH (t) + ut — éaZtZH), t>0.

In their adaptation of quantum mechanical point of vi8{t) does not represent the observed
stock price at timd. Instead, it represents the total firm value that is not, and probably can
not, be observed directly, but changes according fi@dint market observers. | think this
point of view also holds for the real world. If there were really one sfuige that has been
agreed upon, then which motive would drive the price processes aateqorice dynamics?

In my opinion, if it was the case with the financial markets, then there wouldbmancial

markets at all. In th&V/ISsense, this idea is modeled as follows:

First, we begin with regardin@(t, w) as a stochastic distribution i, as an element of
(S)*. Then, the observed stock price, denotedf(iyis obtained applying(t,.) € (S)" to a
stochastic test functionr € (S). Here,S(t) denotes the generalized stock price. Following

this interpretation, we see

S(t) := (S(t, ), ¥(.)) = (S(t), ¥

where(S(t), ¥) denotes the action of a stochastic distributBih -) € (S)* on a stochastic test
function,y(:) € (S). In this setting, stochastic test functions of the type/aire called the

market observersThey are assumed to be in the form dVick exponential:

Ww) = expl( fR h(t)dB" ()

exp( f h(t)dBH(t)—%nhna) for some he LZ(R).
R
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The set of all linear combinations of sugtis dense in bothg) and §)* and moreover they

have a very specific property: they are normalized in the sense

Elexp’( L h)dB ()] =1, Vhe L(R).

The definition of the portfolio value process is also defined by it calculus. We are still

in the stochastic test functions space éB)dstochastic distribution spade)*, the portfolio
process is defined as in the case of the stock price process. So, ihmetodirectly observe
the prices of a stock at tintadirectly, then we can not observe the value of a portfolio directly,
neither. We need the definition ofgeneralized portfolio A generalized portfolias defined

to be the adapted process
0(t) = 0(t, w) = (Bo(t, w), 61(t, w)), (t,w) €[0,T] x Q,

such tha#(t, ) is measurable with respect 8]0, T] ® F, whereB[0, T] is the Borelo-
algebra generated LB (s)}s-0, anddo(t) is the fraction of wealth invested in the bank ac-
count andi(t) is the fraction of wealth invested in the stock. In this setting, portfolio poces
is defined to be a function of both time amda random variable depends on not only the real-
ized path but takes into consideration all of the states that can be gergyaitedprobabilistic

elementw.

The perspective that led frogeneralized stock pric observed stock pricalso applied
to the generalized portfoligprocess. Holding in mind that we defined the actolaserved
price at timet asS(t) = (S(t,.), (), then the actuabbservechumber of stocks held in our

portfolio process is given by
6(t) = (6(t, ), Y ().

According to this definition, the actuabserved wealtleld in the risky asset at denoted

U(t), is defined by

U(t) = 6t)S(t) = (Ot ), w(INS(D), ¥).

Thegeneralized total wealth procesq)is also defined by using th&ickproduct. ThaNick

product reduces to ordinary product for deterministic functions, shave

U(t,-) = 6(t, ) o S(t, -) = fo(t)So(t) + 6(t) o S(1).

60



If we consider a partition of an interval of time,[D], tx, and consider a discrete time market

model then thgeneralized portfolio wealtht ty will be
o) = 0(tx, w), where tx <t <tyg1,
and the change in thgeneralized wealth procesetweeny andty. 1 is
AU(ty) = 0(t) © AS(ty).

If we take the sum of the two sides over k and take the limit as the mash of the pagtigs

to zero, we obtain the continuous time equation ofgbeeralized wealth processhich is

T

U(T) = U(0) + fo ! o(t) o dS(t) = U(0) + fo o(t)dS(1).

Writing the equations fod S(t) anddSy(t) the self-financing property is obtained

T

U(T) = U(0) + fo ' FOo(t)Sedlt + fo L6(t) o S(t)dt + fo ! a6(t) o S(t)dB™ ().

Definition 4.1.3 A generalized portfoli@(t) in theWIS model is calledVIS self-financingf
duf(t) = 6(t)dS(t),

or, explicitly,
t t
U = U%(0) + fo 6o(9dSo(9) + fo B(9dS(S).

where the integral with respect to the stock prices procgssiS a WIS integral, under the
assumption that the two integrals exist. A generalized portfolio is called WI&sithhe if it

is WIS self-financing an€(s) ¢« S(s) is Skorohod integrable.

In order to see the self-financing property, we will use the risk-nemtedsure which is
defined by the Girsanov theorem fildm There are several approaches to obtain a Girsanov
type formula forfBm This one is obtained for & H < 1 in [17] as an adaptation of the

classical Girsanov theorem.
Let us consider the SDE of a risky asset S(t),
dS(t) = uS(t)dt + =S(t)dBH (1),

where the drift ternu is interpreted as the riskless rate of return on this asset antfesatfit

from the riskless deposit rate From a financial mathematical point of view, the classical
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Girsanov theorem provides a useful tool to find equivalent measustdam a specific pro-
cess which neutralizes the risk of an underlying asset generating a tieatiis diferent than

the riskless deposit rate Theorem uses the Radon-Nikodym derivative process to change
the measure in the following way:

Let P andP be two equivalent measures in the sense that they have the same negligible se

then Radon-Nikodym density is defined by

dp 1.2
&~ e fR VCLE ORI}

then, the Girsanov theorem states that the proBé&gslefined by

t
B(t) := B(t) - fo w(9ds

is a standard Brownian motion und®r Now we remember the definition émin terms of
Brownian motion and try to obtain a standdBinunder this new measui® If we define the

proces"
B (t) := f M[O, t](s)dB(s),
R
then it is a standartBmunderP. We can see that

B (t) = B(t) - f M[O, t](s)y(s)ds
R

In order to obtain a specific drift value, the riskless rate of retimour case, we must solve

the following equation:

S(t) S(0) + fo t uS(s)ds+ fo t oS(s)dB (s

t t
S(0) + f rS(s)ds+ f oS(s)dB(s),
0 0
where we obtain
t t t
f,uS(s)ds:er(s)ds+crf S(s)My(s)ds
0 0 0
If we write this equation in the ffierential form

£S()dt = rSR)dt + o S(OMy(t)dt,

finally we see that

My(t) = ‘%rt.

It is shown in [17], using the following property of the operakdr
M0, t] = My_y[0, 1],
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it is possible to see the explicit form ¢ft):

o = DIT - H2H 4 2y
Y(t) = 20T (3/2 — H) cosfr/2(1/2 - H)]’

then,B"(t) defined by

~ —-r
BH(t) = "Tt + B (1),

is a standard fractional Brownian motion und&t. When we write the self-financing condi-
tion under the new measuf&' by using the newBm B (t) instead ofB" (t), as done in the
standard Brownian motion case, our SDE becomes

t

uft) = U%0) + fo t réo(s)So(s)ds+ fo t ro(s) o S(s)ds+ fo a6(s) o S(s)dB ()
and, in diferential form,
dU’(t) = rep(t)So(t)dt + ra(t) o S(t)dt + o6(t) o S(t)dB™ (t).
Now we can compute the discounted wealth process as follows:

de"ul) = —re"tufdt+ et dVe(D)

—re "(4(t) o S(t))dt + e (rhg(t)So(t)dt + ro(t) o §(t)dt + oa(t) o S(t)dBH (1))

e " oo(t) o S(t)dBH (1).

Finally, we give the definition of strong arbitrage in tW8Smarket:

Definition 4.1.4 AWIS admissible portfoli@(t) is called astrong arbitrag# the generalized

total wealth process(t) satisfies

u?0) =0,
u%T) e L")  and
uT)y>0 as,

PHUYT) > 0) > 0,

Taking the expectation with respect to risk-neutral meaBtireve see that
eTE[U(T)] = U%(0),
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S0 we see that there is no strong arbitrage.

Although in [34], it is stated that the/ISmodel being free oftrong arbitrages not in conflict

with fBmnot being a martingale, according to [4], arbitrage is possible in fractioaakets
because th&Vick product is used in the definition of the portfolio value process. But, there
is something that leads to the opposition of using Wiek product for the definition of a
portfolio value process. After the/ick product being applied, thgeneralized total wealth
processbecomes a function only of time; because Wk product takes all the possible
realizations to consideration,that is, it can not be calculated pathwisely. cAssequence,
one must take into consideration all the states of nature in order to be ablenfutethe
value ofgeneralized total wealth process$ a specific timé. This leads to some unwanted
situations such as a portfolio consisting of a positive amount of stocksdhaviagative value,

as shown in [4].

4.1.3 Arbitrage in fBm models

One of the most important concepts in financial economics is arbitrageallwoeld terms, it
means that there are more than one price for the same financial asset.nbhigisresting for
practitioners since this is the basic motivation for the financial corporatidmsfiaunded. But

in financial mathematics, the existence of arbitrage in a model makes it imposdileiférie a
so-called equilibrium price of the ass@mis one of these models that causes arbitrage and
therefore it is forbidden until there is a solution to this problem. Bjork and Hud#stigates

the definitions of self-financing and arbitrage portfolios in detail in [4]eyargued that the
self-financing condition is a fundamental concept in financial economatsidpends on the
stochastic integral concept used to construct it. It is stressed thatirepkae 10 integral
with Wick integral is not a proper way of defining a new self-financingditbon, and may

result in ‘nonsense’.

It is also shown that when replacing thé Kelf-financing condition with Wick self-financing
condition, may cause some serious problems, even breaking trading laveeeThis they

consider a market consisting of
dS(t) = S(t) o dWH (t)
and a bank account with zero interest rate,i.e.,R(t)f we consider a portfolio value process
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V associated with the portfolib = (hg, h1), then we have
dV(t) = ho(R() + MS(t) = ho(t) + h1()S()
with ordinary products and let us recall théck self-financing condition
dVI'(t) = ho(t)dR(t) + hy(t)S(t) o dWH (t)
since in this settingr(t) = 1, we see that

dV(t) = hy(t)S(t) o dWH (¢).

Let us consider two stopping timégs < t;. The portfolio that is constructed with ordinary

product satisfies
V(t1) — V(to) = h(to)(S(ta) — S(to))-

and the Wick based portfolio satisfies

1
V(t1) - V(to) = | h(to)S(u) o AW (u).

to

As we mentioned before, Wick product is a product between randoiables, therefore

§ h(to)S(u) o dWH (u)

to

does not in general coincide with

{1
h(to) ft S(u) o dWH (u)

causing the Wick self-financing condition tdl@ir from the standard self-financing condition.
They also construct simple a portfolio strategy which is self-financing intdredard sense
but not in the Wick sense. A portfolio strategy with initial capitab- 0. Putting all the
money in the bank account ait= 0 and holding it there until = 1 where the rate is equal
to zero, resulting in no change in our wealth. Thent at1, buy% shares with all your
money,whereS(1) is the price of the risky assetat 1, and hold this position unttl = 2.
Then the value of this portfolio d&t= 2 is

c

V@)= 5

S(2).

Since, by construction, this portfolio is self-financing, i.e. no capital ddafewithdrawn
betweent = 0 andt = 2, the definition of Wick self-financing must include this strategy.
Then it is shown that

CS(1)¢C+L h'(u)S(u) « dWH(u),

65



whereh(t) = l0,25(t) andh'(t) = %l(m]- Taking expectation, we see that
t
E(x + f hi(u)S(u) « dWH(u)) = c,
0

whereas

c

Esm

S(2))

92H 124
XE(expW"(2) - ) exp(-W" (1) + —)
= cexp(- %(ZZH — 1)E(expW™(2) - WH(1))
= cexp(- %(22H - 1))xexp(%|2 ~ 1)

= cexp(l-2?""1 # ¢,

whenH # % As we see, the expectation is equat tmly whenH = % the standard Brownian
motion case. Although these results are discouraging, there are some mpaitas that
should be taken into consideration before deciding whethefBhes a suitable model for
finance or not. One of them is the transaction costs. In real world, thetesasaction costs
unlike the theoretical world. In [21], it is shown that geometBonmodel is free of arbitrage
under transaction costs, of any magnitude. The other point is transaction Atte®ugh
high-frequency trading is becoming more popular as time goes on, consitiaaling is still
impossible. In [8], arbitrage is excluded by introducing a minimal amount of kimed that

must lie between two consecutive transactions.

Since these work show that it is possible to exclude arbitrage feimmodels by some
realistic assumptions, it looks possible to build a proper model in financial maticsmsing
fBm Future work may solve these problems &#dhmay then replace the standard Brownian

motion in financial mathematics.

66



CHAPTER 5

Estimation and Simulation

5.1 Statistical aspects of théBm

The main motivation behind usif@min modeling is to use its flexible covariance structure

to capture the covariance structure of the data. This can only be dorstitmatng the Hurst
exponentH. The Hurst exponent can be estimated using the statistical propertiegahat a
specific tofBm SincefBmis a special case among Gaussain random variables, we can use the
modification of the basic results to obtain an estimate of the self-similarity parahhetest

us begin with the usual assumptions and results used in the statistical theergf @em is

. The variance of the sample mean is equal to the variance of one olisardavided by the
sample sizethat is,

var(X) = o?nt, (5.1)

whereX, ..., X, are observations with common meas: E(X;), o® =var[X;] = E[(X — x)?]

andX = n! Y.L, Xi. This result can only be obtained under assumptions numbered below:
1. The population meap = E[X;] and the population varianae? = E[X;] exists and
finite.
2. X1,..., Xn are uncorrelated, that is
p(i,j)=0
fori # j, where

(. J)

o2

P, j) =
is the autocorrelation betweef) andX;j, and
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¥(i, ) = B[ — ) (Xj - p]

is the autocovariance betwe#nandX;. The first assumption seems to be required for being
able to use Gaussian distributions in statistics and depend on the distributtbiofih. But

the second assumption, in the caséBrf, does not hold because of its long-memory property,
although it is a Gaussian process with finite first tvo moments. One of the questiose

is what happens when the second assumption does not hold? Will the sshien@ions be
affected? As we will see, when this assumption does not hold, the decay thtewafriance

of the sample mean changes.

For X to be meaningfulE[X;] =  is assumed to be constant. The varianck efn-! Yty Xi

is equal to

varX] =2 3 y(i. ) = %% " pli. )

i,j=1 i,j=1
and if the correlations far# j sum up to zero, then

IRBIEDW(NEDWS
i=1

ij=1 ij=1

and (0.1) holds sincg(i,i) = 1. But if

n
> ol D) 0,
i=1
then we have

var(X) = n20? an p(, ) = n2o?(n + Zp(i, )
i1

i#]

a?n (1 + valp)),

wherevn(p) is the non-zero correction term and the first assumption does not HoBUBas

the number of observatiomsgoes to infinity,

Y(p) = lim va(o) = fim 0t > (i, §)

i#]

exists and greater thafil. Then we asymptotically have
var(X) ~ o?n 1 + v(p)] = o?n (o).

wherec(p) is constant. This relation is first realized by Edwin Hurst in [25] and tlese sl

estimation techniques has been developed based on this relation.
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5.2 Estimation ofH

As we have seen, long term behavior of a process can be modef&arbyThere are dfer-
ent estimation technigues that can be used to estimate the parainéfée begin with the
estimation ofH under the assumption that the data under consideration is a sample path of a

fBm

5.2.1 TheR/S statistic

The Nile River has been a great inspiration for people since the earl; agpecially its
floods. It has a characteristic long-term behavior which we know dédiree ‘persistent’.
Long periods of floods were followed by long periods of drought. Oner@sting thing is
that there is reasonably reliable historical data ranging from 622 A.D. &4 22D. There
were long periods of which the maximal level tended to stay high and on the lodnel
long periods of low levels, but the overall series look stationary. Thhaeacteristics has
drawn the attention of Edwin Hurst, who was a hydrologist, when he wagttgifind a way
to regularize the flow of the Nile River. He has done a statistical discowemsnipirically
generating a biased sequence of random draws, using playcapms®we want to calculate
the capacity of a reservoir of the ideal capacity for the time intetvah{k), assuming the
time is discrete and there is no storage losses. The ideal capacity is defif@lbas: the
outflow is uniform, at time+k the reservoir is as full as it was at tirhand the reservoir never
overflows. WherX; denote the inflow at timeandY; = Zijzl X; is the cumulative inflow up

to time j, the ideal capacity can be shown to be equal to

i
R(t,k) = ggi@lf[Ym =Y - R(Yt+k -l

) i
- CEQ([YM -Yt— R(Yt+k -Y)l,

R(t, k) is called the adjusted range. It is standardized to be able to study thetmepenich

are independent of the scale. The scaldfodentS(t, k) is given by

t+k
S(t, k) = Jk‘l Z (X = Xew),

i=t+1

69



whereXg = k2 21K | X, SA(t,K) is equal to*zt times the sample variance ¥f, 1, . . . , Xc.k.

Then, the ratio
R(t, k)
S(t, k)

is therescaled adjusted rang® R/Sstatistic. When Hurst plotted the logarithm of this statistic

R/S =

against several values kfhe observed that for large valueskopfog R/S was scattered around

a straight line with slope that is grater thénln probabilistic terminology,

log E[R/S] ~ a+ Hlogk, with H> %
The slope exceeding was in contradiction with the assumption that the underlying process
was Markov with independent increments. Since Ri& statistic is based on cumulative
sums and sample variance, it should satisfy the basic statistical results usextiéting,
which we argued in the beginning of this subsection, dndould be close tc%. At first, this
looked like a special case for the Nile River, but after Hurst's disggveany natural records
has been shown to act in a similar way to the Nile River, Wt statistic for somed > %
and this situation has began to be known asHhest effect. fBmwas built by Mandelbrot in
order to model th&lursteffect, or the Noahféect in Mandelbrot’s terms. FOBm, it is known
as the ‘persistence’ case. Mandelbrot appliedRf® analysis to financial time series such as
interest rates, commodity prices and stock market data and found evioepersistence, or
long-memory in series. He thought this was the evidence of arbitrage in thethas now
is the case fofBm Let us denot&) = Q(t, k) = R(t, k)/S(t, k) then the following theorem in

[30] can explain whyQ(t, k) is useful in terms of detecting the long-range dependence:

Theorem 5.2.1 Let % be such that Xis ergodic andtz ;1 Xs converges weakly to Brow-

nian motion as t tends to infinity. Then, askoo,
kK2Q -4,

where/ is a nondegenerate random variable.

Let us assume the central limit theorem holds for the pro&gsdhen it can be seen that
since theR/S statisticQ is obtained by subtracting the weighted average from the cumulative
sum and then scaling with the sample variance times a conkt%(@tshould converge to a
well-defined random variable, a Gaussian for instance. For long-mepnacgsses, the slope

of the plot of logR/S) versus logk, expected to béd > 1/2, for sufficiently large lag.
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Mandelbrot states that the asymptotic behavior of Ri§ remains unfiected even in the
case ofa-stable processes with infinite variance. The algorithm ofRh® method can be

summarized as follows:

1. CalculateQ for a suficient number of dierent values of andk.
2. Plot logQ against log.

3. Estimate the regression ¢beients. Then, the estimate Bif is the slope cocient of

the regression.

In terms of application, there arise somdidilties like: How to decide the value &fthat
the asymptotic behavior of the process starts? Is there a bias in the estinkelsfinear
regression the proper tool for this estimation? These problems mak@&duldito use and
interpret theR/S statistic. However, th&/S statistic is useful in getting a first idea about the

dependence structure of the data.

5.2.2 The Correlogram

The correlogram is a standard method in time series analysis. It is basddttmgpthe

correlations against the ldgwhere
s =20

¥(0)
is the sample correlations. When one draws two horizontal lines at the ke2gkén, corre-
lations outside this lines are considered significant @b Cevel, since this is the confidence
interval for sample correlations as a limit case [36]. But this is the case thkesample under
consideration is uncorrelated. If this is not the case, the significanceNewtd differ from
the uncorrelated level. A more suitable method can be obtained by takin thehogaf both
sides to linearize the relationship betwdeandp(k) as the limit case. For a long-memory
process, we have seen that the decay rate of correlatid®8i$ (k?4-1) ask — oo. This
property is used to estimaté by plotting log|p(k)| against lock and using, again, linear re-
gression. When the asymptotic decay of the correlations is hyperbolidppheecodificient is
close to H — 2. The correlogram method does not give meaningful results wisesmall or
whenH is close to%. One can also use the asymptotic decay rate of partial correl&tiong,

to estimateH and this method would also have the sanf&dlilties in application terms.
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5.2.3 Variance Plot method

The third term we will mention is again based on the logarithmic plots, but usdbeano
property of long-range dependent processes. As we have seeof the implications of the
long-memory can be seen by looking at the variance of the sample mean thi@oram 2.2
in [3], we have

var(Xn) ~ cré=2,

wherec > 0 is a constant. Using this relation, the following method is defined:

1. Letkbe aninteger with X k < n/2 and a stficient number of sub-samplgsof length

k, calculate the sub-sample meafigk), X2(k), . . ., X, (k) and the overall mean

Ik N
X(K) =" Xi(K).
j=1

J

2. For eaclk, calculate the sub-sample varians2€):
o B
$(K) = (k=17 D (X)) = X(K)).
k=1
3. Plots?(k) against loc.

This method also has the saméidulties and drawbacks as the first two methods mentioned.

Again, we use the slope of the plot to obtain an estimatiod .of

5.2.4 Absolute moments method

This method is a generalization of the variance plot method. The basic ideaitis,aging

the self-similarity property ofBm See [15] for references. The quantity
= _
ABsy = - DUIX™ - xop
i=0

forn=1,2,.... From the asymptotic behavior of the variance, the following relation can be

shown to be satisfied fdBm

EX™ - E[X™M" ~ cM™1

— rnn(H—l)CMH—l
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for bigmasM — oo, andc is an appropriate constant. These relations are not fully proven to
hold. But it is known thaE[ABsy] is proportional tom"-1) [15]. This method is generally

used withn = 1, and whem = 2, it is the same method with variance plot method.

5.2.5 Variance of the regression residuals

This method has been proposed by Peng in [35]. Method based on ditigirsample into

blocks of sizenand then linearly regress the series on atifie gi. After the residuals

km+i—1

eik = Z X; —o*+ B4,

j=km
are obtained, their variance is computed for each block. The averalis shmple variance

over all blocks are plotted versug again, on a log-log scale. When linear regression is used,

the slope cogéicient is equal to B.

5.2.6 Periodogram method

This method is based on the idea of detecting long-range dependencergterfcy domain.
The estimation procedure begin with computing the periodogram of the sarhdeshbwn
in [18] that the periodogram is an unbiased estimator of the spectral delsitpdogram is

defined by
N-1
1= > (i) expja),

-(N-1)
wherey{j) is the sample autocovariance computed as
N-jl-1

Xk = X)Kicajt = X)-
k=0

- 1
)’(J)=N

It is shown in [22] that

1 N-1 . )
1(2) = N| > (%= X) exp(ka)|
k=0

The periodogram is symmetric around zero, as the spectral density ispeftoelogram is

asymptotically an unbiased estimator of the spectral deséidy[5], that is,
lim E[1(2)] = s(4)
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We compute the periodogram of the sample to investigate the behavior of tiieasgensity
near the origin. Then we can use the relation:
() ~ el (11— 0),
which can be written as
logs(1) ~ logcs + (1 — 2H) log|Al.
Thel(2) is usually calculated at the Fourier frequencies
Ak’n:_, k:].,...,n*,

wheren® is the integer part off(— 1)/2, to obtain an estimate &f. For processes that do not
exhibit long-range dependence, the periodogram ordinates at Finegeiencies are expo-
nentially independent random variables with megfs), . .., S(Ax) [3]. Then the following

relation holds approximately
log 1 (Axn) = logcs + (1 — 2H) log Ak n + l0g 7,

whereny are independent standard exponential random variables,Bflitlg ] = -C =

—-0.577215 .., whereC is the Euler constant [3]. If we define

Yk = logl(An), X« =10gAkn, Bo=logcs—C, p1=1-2H
and the error terms as
& = logn + C,
then we can write
Yk = Bo + B1Xk + &
Geweke-Porter-Hudak suggested applying a least squares fegnessedure to estimate
in [18]. Their method is based on the following relation
1-p1
2

Although this method is computationallyfective, there are some drawbacks of the method.

H =

First of all, the desired behavior of the spectral density, proportionalit*t8' can be de-
tected only around a small neighborhood of frequency zero and thissnitakere dificult

for the method to capture the asymptotically defined notion of long-memory. Fatjesee

3. Another way for estimatin$ is to use the discrete time analogfBht Fractionally inte-
grated ARMA models. Using these processes, it is possible to construchomaxikelihood
estimation procedures to estimate We will give the definition and basic properties of these

models in the following subsection.
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5.3 Fractionally Integrated ARMA Models

The classical ARMA models are based on the stationarity assumption of ike.shkr [5],
integrated time series models are introduced to model nonstationary time saigesolels
later used to construct fractionally integrated time series models, which is tretdisime
analog offBm In the continuous setting, the derivative of fien, the fractional white noise
process\VH(t) is defined to be the%(— H)th fractional derivative of the white nois&/(t).
Using this definition, the discrete time analogudd{t) andWH (t) is defined in the following
way. First we remark that the discrete-time analogue of Brownian motion isutttom walk

procesqy;}, defined by
vy = (1- Byt = a,

whereB is the backshift operator defined By = y;—1 and{a;} are independent identically
distributed random variables with zero mean and unit variance. The ffifstehce ofly;} is

the discrete time white noise procdsg. In time-series modeling, the procdygg is said to

be an integrated process of orakr The operator (+ B) is called the dierence operator.
Since integrated processes is used to construct the discrete-time anBlayvofan motion
and white noise processes, we can proceed by using fractional iindegi@obtain a discrete
analogue ofBm Based on the definition aV"(t), discrete time analog of this process is
defined to be the%(—H)th fractional diterence of the discrete-time white noise. The fractional
difference operatov? defined by the binomial series:

(o)

n 1 1
vi=@1-B)= ng(k)(_B)k =1-dB- Ed(l—d)BZ— éd(l—d)(Z—d)B3—...,

When we writed = H — % the discrete-time analogue W (t) is the procesy; = v %,
fractionally integrated (summed) discrete-time white nois&®y; = a fractionally difer-
enced discrete-time Brownian motiofx;} is called an ARIMA(Ogl,0) process, an extension

of ARIMA processes to noninteger

5.3.1 The fractional ARIMA(O,d,0) process

This process is formally defined in [23] as the discrete-time stochasticgsiygewhich may

be represented as

Vd)’t = a,
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where the{ag} is i.i.d. with mean zero and, = 1 for convenience. The following theorem

gives the basic properties of this process

Theorem 5.3.1 1. Whend< 1/2 (H < 1), {y;} is a stationary process and has the infinite

moving-average representation
Yt = 0(B)a; = Z Ok,
k=0
where

g dded). . (k-1+d) (k+d- 1)
K= ki T K(d-1)!

as k— oo, O ~ kd-1/(d - 1)!.

2. When &> -1/2 (H > 0),y; is invertible and has the infinite autoregressive representa-
tion

n(B)y = Zﬂ'kYt—k = a,
k=0

where

C—d(1-d)...(k-1-d) (k-d-1)
= ki " K(=d-1)!
as k— oo, ~ k91/(-=d - 1)L

3. The spectral density of is

1
s(1) = (2 smé/l)‘zo' for O<w<n and g1)~1asf— 0.

4. The covariance function ¢y} is

_ _ (-DK(=2d)!
and the correlation function dfy} is
—d) —1)!
_ Cd)i(k+d-1) for k=0,+1,...,

Pk =Yk/v0 = - Dik—d)

Cdd+1)...(k=1+d) )
AEd-de-d). k-d O K=hEe

The first autocovariance and autocorrelation age= (-2d)!/[(-d)!]? andp1 = d/(1-

d). And as k— oo
LD eaa
(d-1)! ’

Pk
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5. The partial correlations ofyare

Pk = d/(k—d).

The ¢k codTicients from the infinite moving-average representation can easily be abtaine
using the diference operator (2 B)~¢ instead of9(L), i.e.,y; = (1 — L)% and using the
binomial expansion of the fractionalftirence operatof;, (1) and we obtairdy. In this
case, with—d instead ofd, the diference operator becomes an integration operator and it
shows us that the proce8g} is indeed fractionally integrated white noise. Analogously, to

obtaingy codficients, we write the infinite autoregressive representatidw jpés
L)y = (1- L)% = a (5.2)

and see that when the ARIMA@D) processy;} is fractionally diferenced, the resulting
process is white noise procesg). According to Theorem 5.2.2, the ARIMA@Q) process
{yt} is both stationary and invertible whers < d < 3. If dis in this interval we see that
0 < H < 1, and the ARIMA(Og,0) model coincides with thEBBm Now let us investigate the
relation between two parametetandH. We know thatd = H - % sod is positive when
H > 1/2, and the dference operator (L)% indeed works as a flerence operator. However,
whenH < 1/2,d is negative and the fierence operator becomes an integration operator, and
to obtain the white noise proce&s}, we fractionally integrate the ARIMA(@,0) process
{yi}. One of the things that draws our attention is the hyperbolic decay rateaofdr, being
different from the exponential decay rate of an ARMA process. As thedhestated, it is
also possible to identify long-range dependence in the frequency domadimevbehavior of
the spectral density @¥:} at low frequencies. If & d < 1/2, {y;} is a process with long-range

dependence as we expected it to be sin@&<1H < 1.

In the frequency domain, it is also possible to detect long-range depemty looking at the
spectral density of the process at low frequencies. The spectrsitylef{y;} is concentrated

at low frequencies, is a decreasing function of frequency and goefrtidy as the frequency
goes to zero, but still integrable at zero. This fact may help in undeisgmchy the word
‘persistence’ is used sometimes instead of long-range dependencg2 ¥ H < 1, the
persistent behavior dBmcan be seen by the process being dominated by the low-frequency
components, therefore causing the process to seem more deterministiceacmhigisting of

waves with greater periods. Recall that, in this case, the quadratic variditiba fBm goes
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to zero, may be seen as another reason for its persistent behavigkRTH& (0, d,0) process
has a diferent behavior when% <d<0(0 < H < 1/2). It exhibits short-memory, or
‘antipersistence’, in Mandelbrot’s terminology. The correlations antigdarorrelations are

all negative, except, of cours@) = 1, and decay hyperbolically to zero as it is the general case
for ARIMA(0O,d,0) processes. Again, thisftBrence in behavior reflects on the behavior of the
spectral density of the process. Unlike the case ©f0, the spectral density is dominated by
high-frequency components, the spectral dergity is an increasing function of frequengy
and vanishes at = 0. As we see, the result of the domination of high-frequency component
is the mean-reverting behavior of the ARIMA@)) process, and thim This situation is
usually interpreted as acting ‘more chaotic’, or ‘wild’ but the definition of ‘exghaotic’ is

not explicit enough. Nonetheless, one can see that the statistical fuaoihsion offBm

is inversely related with the parametdrand this can be a way of interpreting this chaotic
behavior. As mentioned, one of the characteristic of a fractionally intej@tecess is the
hyperbolic decay rate of the correlations. The correlations of an ARM#)(process decays
exponentially. But the hyperbolic decay rate does not give us a clugt dfe value of the
parameterd because the decay rate of the partial correlatioris iswhich is independent

of d. But the behavior of the partial linear regressionfioints are used to distinguish
between dierent values ofl. The Durbin-Levinson method [5] can be used to obtain these
codficients. Let us consider a fractionally integrated model is approximated Hirghevo

lags of the series. Then the best linear prediction of the next obsersaitidine mean square

sense, is

Y3 = my1 + maYo.

If we consider this model as an AR(2) model fitted to an AR(3) model, then welatain the
partial correlation caicients recursively using the Durbin-Levinson method since we know
the correlationg(k). The partial linear regression diieients¢y; for 1 < j < k is obtained

by this method is

_ (}\(G-d-1)i(k-d-j)!
ha= _(J) (-d - 1)!(k - d)!

asj,k — oo with j/k — 0 we have

Gk ~ =0 /(=d - 1)\,
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5.3.2 The fractional ARIMA( p, d, ) process

The ARIMA(0,d,0) process may be helpful in modeling of long-range dependence but time-
series generally have more a few more characteristics to be considezadwi try to model.

In order to preserve the hyperbolic decay of the correlation functiantibnal diference op-
erator is applied to ARMA processes. The resulting process doesvetdmmany parame-
ters and seem to have enough parameters to model the ARMA models with slaalyirde

correlations. Let us recall the definition of an ARM#AQ) procesx:}:

Definition 5.3.2 The ARMA(p,q) proceds;} is defined as

$(B)x = 6(B)a, (5.3)
where
¢(B) = 1 - ¢1B— ¢2B% — ... — ¢BP,
0(B) = 1- 01B—6,B% — ... — 6BP.

Then the ARFIMAQ, d, ) process is formally defined in [23] as the stochastic protgss

that can be represented as

o(L) v¥y; = 0(B)a.

Using this process, it is possible to model both short-range and long-amelation struc-
tures. The ARMA part of the process can be used to model short-singgure, while the
parameted is chosen so that the long-range behavior of a series can be cap@nedof
the dificulties of working with ARFIMA(p,d,q) models is that the AR and MA representa
tion weights are complicated functions of the hypergeometric function. lari@jternative
method for calculation of these autocorrelations were provided as:

q P

Yk = kZ bj Zl@nc(k— P—Ji¥n)
—q n=

where

Clk—p— i) = l//ip Z dlﬂqyli—p—j—m + Z ¢E7’Iﬁ—p—j+n
m=0 n=1
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andy” is the autocovariance at lagof an ARFIMA(0d,0) process. The, andyj are given
by:

p p
b= v | [@-vi-wd | |wx—vm)]. fork=12....p
1

mzk
a-lil
Wi =) Ot
i=0

The equation that defines the ARFIMA@, ) process can be interpreted in several ways.

For instance, let us write
(1- L)% = %,

wherey; is an ARMA process defined by

¥t = o(L)0(L)a,

which can be interpreted as, after pasgwgthrough the fractional dierence operator (infi-

nite linear filter) (1- L)9, one obtains an ARMA process. And we can write,

yi = (L) '0(B)Y;,
wherey; is an ARIMA(0d,0) process defined by

yi = (1-1) .

The dfect of parameted, can be seen directly in behavior of the spectral density function
of an ARFIMA(p, d,q) process. To see thidfect, we must compute the spectral density
function of {y;}, by using the spectral density function of an ARMA(Q) process. Let us
denote the spectral density of the ARMAQ) procesgy:} by
aalf(EM)?

S0 = SHsne
Since the proces§:) is obtained from the procesg) by applying the linear filter (& B),
we can use this relation in [22] to compute the spectral density of the progessin the
representation

1- L)% =y
we can writee instead ofL and use the result of Priestley in [36] to obtain the spectral
density of{y;}:
s(1) = [1- 1.
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Using the equalityl — €1 = 25in(%/1) [3], we take the limit as frequency goes to zero to
obtain the behavior of the spectral density around zero. Becaugsgditn(2 sin(%/l)) =1,
this behavior is can be seen in the following equality:

a6y
2rl¢(1)P

s/(1) 172 = sy(0)1a17.

Thus, whend > 0, the spectral density goes to infinity around zero frequency. Thig-cor
sponds to the cadd > 1/2 for thefBm So the long-range dependence can be seen in the
behavior of the spectral density dominated by low frequency compondést$or thefBm,

the ARFIMA(p, d, q) model is easier to work with when long-range dependence exists, i.e.,
whend > 0. The following is an alternative definition of long-range dependensedan the

spectral densities:

Definition 5.3.3 Let{y;} be a stationary process for which the following holds: There exists

a real numbep € (0, 1) and a constant£> 0 such that
lim s(0)/[cdal™”] = 1.

Then{y;} is called a stationary process with long-memory or long-range depasden

The following theorem in [3] gives an equivalent definition of long-rardgependence for

stationary processes:

Theorem 5.3.4 1. Suppose the following holds holds Witk & = 2-2H < 1and G, > 0,

. n
im 20 _ g
n—oco cpn—d

then the spectral density s exists and
lim s(3)/[cs(H)AI*"] = 1,

where

Cs = o2n 1, ['(2H — 1) singr — 7H),
ando? =var(y,).

2. Suppose the long-range dependence property holdydonith0 < 8 =2H - 1 < 1.
Then
Jim p(R)/[c k2] = 1
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Ky

where ¢ = %, and

Nl

g

¢y = 2¢csl'(2 - 2H) sin(rH — %n).

One may use these asymptotic equalities to obtain explicit formulas for the cmesiand
correlations. Agk| — oo,

a?6(L)?

YR~ e

I'(1 — 2d) sin(rd)

and for the correlations
ZIUC (1 - 2d) singr) k22
p(k) ~ 22 .
[ s(a)da

One of the problems that may arise is that the data to be modeled by an ARFbdégsrhas
a greater order of integration, i.el > 1. In this case, as we have seen, the ARFIMA process
is not stationary. This problem may be solved easily djedencing series until we obtain

d<1/2.

The reason for the fractional integration and the long-range depeadws been widely
guestioned. One of the explanations made is the aggregation of indep&f{&h processes

causing the fractional behavior by Granger in [20].

5.3.3 Maximum-likelihood method

Maximum likelihood method is probably the most reliable estimation proceduret bas
drawbacks. The maximum likelihood function of a fractionally integratedgsesds dificult
to derive and requires long computational time. Sifimis Gaussian, the joint distribution

of a sampleX = (X1, X, ..., %) can be shown to be equal to
106, 6°) = (2m) Bz(e) 2e 2 =),
wherex = (X1, X2, . . ., Xn) € R" [3]. Then the log-likelihood function is

Ln(x; 6°) log h(x; 6°)

n 1 o Lo
EIoan—élog|Z(9)|—§xZ X.

The MLE of €° is obtained by maximizing the log-likelihood function with respect to pa-

rameter vecto. Under mild regularity conditions, this maximization can be shown to be
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equivalent to solving the following equations
L.(x;6) = 0.

The asymptotic distribution @fthen can be derived using the Taylor expansiob ofFor de-
tails, see[3]. Sowell derives the exact formulation of the maximum likelihaadtfon in [44].
Another approach would be using the conditional distributior,ajiven xp_1, Xn-2, . . ., X3 t0

decompose the likelihood function as

1(X) = li(xp)l2(X2lX1) . . . In(Xnl X1, . . ., Xn-1),

wherel(xj[x1, . .., Xj-1) are one dimensional Gaussian densities which are fully characterized
by its mean and variance. Since we use the time series modeling point of viewetg;

can be obtained by the best linear predictioxpgivenxy, ..., Xj_1,
j-1
Hj = E[XjIXg, ..., Xj-1] = X = Zﬁj—lvsxj—s’

s=1

where the cofficientsp;_y s are the partial linear regression ¢ideients and can be obtained
by the Durbin-Levinson algorithm [5]. The variancel pis equal to the expected mean square
error of X

of = E[(Xj — puj)?Xa. . ... Xjal.

MLE methods are reliable butfiiicult to implement in terms of computational time.

5.3.4 Whittle’s approximate maximum likelihood function

using the spectral properties of the process, an approximate MLE medisdeekn proposed
by Whittle in [46]. In general, the estimation methods which used to estithadee based
on Fourier transform techniques as shown in [44]. This is becausdtdw ef the fractional
differencing parameter can be seen on the behavior of the spectral ddnigy process
and there is correspondence between the spectral density and themoanatrix of the
process. Whittle’s estimator uses this correspondence to approximatevireanoe matrix

and its inverse. The idea is using the equality,
lim 1Io IZn(0)| = 1 fﬂ log s(1; 6)dA
noco N g n - 27_[ _ﬂ g ’ s

to obtain the approximation Id8,(6)| ~ n(2r)~* f_fr' log s(1; 6)dA. Itis shown in [6] that the

following approximation holds. Let us define thex n matrix A by
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where its elements are defined by

a(j-1)=(@2n)" f é“ Ddy,

then the matridXA is asymptotically inverse of the covariance maijxas shown in [3]. The
Whittle estimator is easier to implement when discretized. The eleméptsl) are approxi-

mated by

elk/ljm

&(k) = (Zﬂ)ZZ T =

where
Ajm= —mj (j=1,...,m"),

and m* denotes the integer part ofn(— 1)/2. Then the estimation of parameters can be

obtained by minimizing

m’ I "
Lw (o) = —[Zlog(ﬂ,m,e) Zf(%m L)znf]

If, in addition, one represents the parameter vect@r-a%61, ) such that

S(4; 0) = 615(4; 6%)

with the following condition holds

f log s(4; 6%)dA = 0,

whered* = (1,7), then minimizing the Whittle likelihood amounts to minimizih@ m)s (1 m; 6%)

with respect to;. For details, see [6].

5.4 Simulation offBm

5.4.1 Durbin-Levinson Method

This method is also known as the Hosking method and is an algorithm to simulateastation
Gaussian processes in general. The idea behind this algorithm is to obleildV&iker esti-
mates of a AR + 1) process using the parameters of ARfrocess fitted to the same time
series. The partial autocorrelation function can therefore be apprtedmAssume we have

Xo, X1, ..., Xn, the first n observations of a process, Durbin-Levinson method geseta 1
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using these past observations. ietenote the autocovariance function of a zero-mean series,
i.e.

v(K) = E[XnXnsk], for kn=0,1,....

Since we can magnify the variance of the process as we like, we assumewfdt has unit

.....

the (W + 1)-column vector ag(n)k = y(k+ 1), k=0,...,n. The o+ 1) x (n + 1)-matrix
vector or postmultiplying this matrix with a row vector transposes the vectorgUkese we

can write
1 gy ]:{ rm F(n)g(n)]
o ) ) e Fm 1

where the prime denotes the vector transpose. The maanasc(n) T(n)~1(Xn. .. X1 Xo)'

F(n+1):{

and the variance is2 = 1 — ¢(n) T(n)"*c(n). The method generates the next estimates of the

variance and the mean recursively using the recursion

2 _ 2 (n+2)-m)
n+l1 — 2
On

g

with 7, = d(n) F(n)c(n) = c(n) F(n)d(n) andd(n) = I'(n)~1c(n). A recursion ford(n + 1) is

also obtained

A1) - ( A goF (md(n) ]

én
with ¢, = % Recursion starts withg = y(1)Xo, 05 = 1 - ¥(1)? andto = y(1)%. A

sample offBmis obtained by computing the cumulative sums.

5.4.2 Cholesky method

As expected, Cholesky method is based on the Cholesky decomposition afviéigance
matrix. When a matrix is symmetric positive definite, the Cholesky method can deisst
we write

[(n) = M(N)M(n),

whereM(n) is an fi+ 1) x (n+ 1) lower triangular matrix, that is, the () element ofM(n) is
zero forj > i. The elements oM(n) can be computed since the eleménf)(of M(n)M(n)’

andT'(n) should be equal fof < i becauseM(n) is lower triangular, but then they will be
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equal because of the symmetryli¢h), and this means
i
Y- =) mamg, =i
k=0
If i = j =0, we obtain the variance &$0) = mgo. If i = 1, we have the two equations

y(1) = Momoo,  ¥(0) = ME, + e,

to determinam g andmy . Since we can computé(n + 1) from M(n) by adding a row and

enough zeros to keep it lower triangular we can determine the row that wadalilby

y(n+1)
rrh " = -
+1,0 Moo
1 -
"hij=ﬁ;%ﬂn+1—j)—§;nhuxmm) (0<j=<n),
1) k=0

n
rrﬁ+1,n+l = 7(0) - Z rrﬁ+l,k'
k=0

The Cholesky method requires the positive definitenedqf+ 1) to obtain a real matrix

M(n+1). If we denote by5(n) = (Sj)i=o....n @n (1+1)-column vector of i.i.d. standard normal

variables. The idea behind the method is simulaiig) = M(n)S(n) recursively. Since for

everyn > 0 X(n) has the covariance matrix
CovMM(n)S(n)) = M(nN)CovS(n))M(n) = M(nN)M(n)" = I'(n)

and zero mean, the simulated process has the characteristics we vidint: 1f) is computed,

Xn+1 Can be computed by
n+1

Xns1l = Z Mh 1.k Vk.
k=0

The Cholesky method is slower than the Durbin-Levinson method, althougirjniaiple,

they both compute the matriM(n).

5.4.3 Davies and Harte method

The method is proposed by Davies and Harte in [13] to simulate a stationassi@autime

series of length n with autocovariancg®), y(1)...,y(n—1). Itis described as follows:

1. Define
o k- 1)
K= on_2
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fork =1,...,2n-2, and the finite Fourier transforfp of the sequencg(0), y(1), ..., y(n—
2),y(n=1),y(n-2),...,¥(2).

n-1 2n-2
fic= )y -0 B y(an—j-1)el-D
=1 j=n

fork=1,...,2n - 2. To move to next step, it must be verified that- 0.

2. Simulate two independent series of zero mean normal random vardgblés= 1,...,n

andhj, j=2,...,n-1,suchthat
var(d;) = var(d,) = 2,

and fork # 1, n,
var(dy) = var(y) = 1

andh; = h, = 0.
3. Define the complex random variablgsas
Z = d¢ + ihy, (k=1,...,n),

and

Zx = Oon_k — ihon—o, (k= n+ 1,...,2n—2).
4.t=1,...,n,

5. Define

2n-2
1 .
X = Y\ fkel(t_l)/lka.

In order to obtain a specific Gaussian process, for instiBrreone must use the covariance
function offBm There are also simulation methods fBmwhich are based on its represen-

tations. For detailed information on simulation methods, see [15].

5.5 Application

We appliedR/S analysis and periodogram methods to estimate the Hurst parameter of Dow
Jones Industrial Average (DJIA) index, Turkish L/Rallar, EurgDollar, and Turkish LirgEuro
exchange rate data. The data is obtained from the FOREX platform of Mit®. bAlthough
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Figure 5.1: DJIA index between 07.09.2005-01.09.2011

periodogram method gave values very close.5 theR/S analysis estimated higher values

of H.

In theWISmodel, one of the dierences from the classicablintegral setting is the variance

of the stock return replaced by the variance of the firm value procegshB replacement is

not easy to do in real world terms since the firm value process can ndiseeved for small
time intervals. There are flierent methods to compute the value of a firm and tHigence
may also lead to dierent prices. Leaving the solutions of these problems to future work, we
compute the price of a European call option on DJIA using the varianceeaddhy return
series in our computation to see thdfelience between the fractional Black&Scholes and

classical Black&Scholes prices.

A statistic for testing the long-memory hypothesis was proposed by Lo in [BGE test is
called themodified I&. For details on this test, see [26] and [45]. The estimated valukls of

andmodified B values are given below:

The mean of the daily return series is very close to zero. There is noeaqtfeend in the
series and this in favour of our statistical modelling methodology. In the pcesef trends,

estimators of long-memory may be biased towards accepting the long-mematy bsis.

The estimatedd value of the daily return series of DJIA is greater thg@,1so we can use
the theoretical results aVISand fractionaWISmodels and evaluate the price of an option

written on DJIA.
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Figure 5.2: Daily return series of DJIA

[Mean | Median ____Std Deviation | Estimated H

0.00005386 0.0003857 0.2134 0.59247

Figure 5.3: Descriptive statistics of DJIA daily return series
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Figure 5.4: Histogram of the daily return series
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USD/TRY 0.58241 0.5763 0.58135

1.0734 1.4394 1.2038
EUR/TRY 0.56129 0.60888 0.58393

1.4077 1.2548 0.9835
EUR/USD 0.59202 0.59899 0.6038

1.0860 1.133 1.0837

Figure 5.5: Estimate# values and modifie®/S

fBs Price 16.1574 22.1823 24.6968

Bs Price 16.4656 21.6710 24.5639

Figure 5.6: Comparison of prices

Themodified S statistic of Lo [26] rejects the long-memory hypothesis for all cases but this
does not surprise us because it is shown in [45] that this statistic is biagatitorejecting
the long-memory hypotheses. But in some cases, it gives values that itheesccepting

value and this gives some idea about the existence of long-memory in our data

Using these estimated valuestdf we computed the fractional Black&Scholes price to com-
pare to the Black&Scholes price for the same option. The results are sumdharitee

following table. We followed the methodology in [48].

As we can see, thefiierence between fBS and BS prices are very small. This is because the
estimated values df are close to &. But even this small dierence may be of importance in

the case of multiple transactions. Thigeet ofH on the option prices may be used to decide
whether an option is overpriced or underpriced. But in order to ptppeice an option, one
needs better and unbiased estimatorki ofOne of the possible future works may be on this

topic.

90



CHAPTER 6

Conclusion and Outlook

In this thesis fractional Brownian motion as a model in finance has been considered. We
began with the definition and propertiesfBim We basically explain the self-similarity, sta-
tionarity and long-range dependence propertiefBof and conclude the first chapter with
the non-semimartingale property Bmwith H # 1/2. This property makes defining an
integral with respect téBm more dificult than the standard Brownian motion case. Then,
in the second chapter, we summarizefiedent approximations to defining the integral with
respect tdBm In the WIS setting, we showed how amltype formula and the fractional
analog of Girsanov theorem is derived and then we use thi®itula to obtain the price of

a European call option using the Black&Scholes approach to option pri€iisgdvantages
and question of arbitrage when usifigmin financial applications is addressed and arbitrage
examples are given. We continued with the time series models that has thalgedepen-
dence property ofBm, ARFIMA models. Some estimation methods f8@mand ARFIMA
models are presented. The most widely used estimation procedures s$tigctses RS anal-
ysis, correlogram and linear regression in the frequency domain lesrereviewed. Some

of the simulation methods to generate a sampl&ofare briefly mentioned. To illustrate the
effect of long memory on the option prices, we appliR(E analysis to DJIA index and ex-
change rate series afi@irent time scales to see the self-similarity characteristics of the series.
Then, using the estimated value we compared the standard Black&Schotsstpriactional
Black&Scholes prices for flierent maturities. When we estimated the Hurst parani&tere

saw that it varies over flierent time scales. This characteristic of the financial data has been
considered by Mandelbrot and his students Calvet and Fisher and itdeduéifractal model

for financial data [7]. The future work may be on relating the multifractal eh@ehd white

noise analysis notions to obtain a proper tool for pricing an option in thédred markets.
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There are also other possible ways to characterize the long-rangeddepe property dBm
such as implementing information theoretical concepts and notions of finawcabmics
for modeling the financial markets usifi§min a more realistic manner. In addition to these,
consistent and robust estimatorstbimust be developed. The asymptotic definition of long-
range dependence makes ifidult to estimatedH in a finite sample and unless this problem is
solved,fBmcan not be used more actively. A Bayesian approach to ‘multifractal whigen

model’ may be used to solve these problems.
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APPENDIX A

Basic fractional calculus notions

As we mentioned in the introductiolyISand fractionaWISintegrals with respect teBm
are defined by using fractional calculus in the white noise theory. TheatmpéV is indeed
the fractional integration operator and the isometry fnojﬁR) to L2(R) is again defined by
the fractional integration operatd>'_f"1/2. In this appendix, we briefly summarize the basic

notions of fractional calculus by following [47].

A.1 Fractional calculus on a finite interval

Definition A.1.1 Let f be a deterministic real-valued function that belongs¥@lb), where
(a, b) is a finite interval ofR. Thefractional Riemann Liouville integrals of order> 0 are

determined at almost everyex(a, b) and defined as the

1. Left-sided version:
1

|g+f(X) = m

X
[ =ty
a
2. Right-handed version:
1 (P 1
I“_fx::—f - X)* - f(y)d
b F(X) @ x(y ) f(y)dy
wherel'(\) denotes the Gamma function. As we see from this definitibit/2lis the
fractional Riemann Liouville integralf order H— 1. For @ = n € N one obtains the

n— order integrals

X Xn-1 X2
I2+f(x)=f f f f(x)dxdxo...dx,
a a a
b b b
I{)‘_f(x):f f f f(x)dxdXo ... dX,.
X I X2
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Definition A.1.2 For a < 1, thefractional Liouville derivativas defined as

d

DZ, f := &lal;af
and
(o2 . d —
D f = &@_ f,

if the right-hand sides are well-defined (or determined).

For any f € L1(a, b) one obtains

DI f=f  DIIZf=ft.

a+ a+

For details, see [47].

A.2 Fractional calculus on the whole real line

The left- and right-sided fractional integral and derivative operatorsfoior a € (0, 1)

are defined as follows (see [34] for references)

Definition A.2.1 Leta € (0,1). The fractional integrals{§ and I* of a functiong on

the whole real line are defined, respectively, by

19109:= oz [ -y oy xe R,

and
1

19f(x) := @)

fxm(x -y tf(y)dy, xeR.
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