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ABSTRACT

NEW APPROACHES TO DESIRABILITY FUNCTIONS
BY NONSMOOTH AND NONLINEAR OPTIMIZATION

Akteke-Öztürk, Başak

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

Co-Supervisor : Prof. Dr. Gülser Köksal

July 2010, 97 pages

Desirability Functions continue to attract attention of scientists and researchers working in

the area of multi-response optimization. There are many versions of such functions, differ-

ing mainly in formulations of individual and overall desirability functions. Derringer and

Suich’s desirability functions being used throughout this thesis are still the most preferred

ones in practice and many other versions are derived from these. On the other hand, they have

a drawback of containing nondifferentiable points and, hence, being nonsmooth. Current

approaches to their optimization, which are based on derivative-free search techniques and

modification of the functions by higher-degree polynomials, need to be diversified consid-

ering opportunities offered by modern nonlinear (global) optimization techniques and related

softwares. A first motivation of this work is to develop a new efficient solution strategy for the

maximization of overall desirability functions which comes out to be a nonsmooth composite

constrained optimization problem by nonsmooth optimization methods.

We observe that individual desirability functions used in practical computations are of min-

type, a subclass of continuous selection functions. To reveal the mechanism that gives rise to

a variation in the piecewise structure of desirability functions used in practice, we concentrate

on a component-wise and generically piecewise min-type functions and, later on, max-type

iv



functions. It is our second motivation to analyze the structural and topological properties of

desirability functions via piecewise max-type functions.

In this thesis, we introduce adjusted desirability functions based on a reformulation of the

individual desirability functions by a binary integer variable in order to deal with their piece-

wise definition. We define a constraint on the binary variable to obtain a continuous opti-

mization problem of a nonlinear objective function including nondifferentiable points with

the constraints of bounds for factors and responses. After describing the adjusted desirability

functions on two well-known problems from the literature, we implement modified subgra-

dient algorithm (MSG) in GAMS incorporating to CONOPT solver of GAMS software for

solving the corresponding optimization problems. Moreover, BARON solver of GAMS is

used to solve these optimization problems including adjusted desirability functions. Numer-

ical applications with BARON show that this is a more efficient alternative solution strategy

than the current desirability maximization approaches.

We apply negative logarithm to the desirability functions and consider the properties of the

resulting functions when they include more than one nondifferentiable point. With this ap-

proach we reveal the structure of the functions and employ the piecewise max-type functions

as generalized desirability functions (GDFs). We introduce a suitable finite partitioning pro-

cedure of the individual functions over their compact and connected interval that yield our

so-called GDFs. Hence, we construct GDFs with piecewise max-type functions which have

efficient structural and topological properties. We present the structural stability, optimality

and constraint qualification properties of GDFs using that of max-type functions.

As a by-product of our GDF study, we develop a new method called two-stage (bilevel) ap-

proach for multi-objective optimization problems, based on a separation of the parameters:

in y-space (optimization) and in x-space (representation). This approach is about calculating

the factor variables corresponding to the ideal solutions of each individual functions in y, and

then finding a set of compromised solutions in x by considering the convex hull of the ideal

factors. This is an early attempt of a new multi-objective optimization method. Our first re-

sults show that global optimum of the overall problem may not be an element of the set of

compromised solution.

The overall problem in both x and y is extended to a new refined (disjunctive) generalized

semi-infinite problem, herewith analyzing the stability and robustness properties of the ob-

jective function. In this course, we introduce the so-called robust optimization of desirability

functions for the cases when response models contain uncertainty. Throughout this thesis, we
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give several modifications and extensions of the optimization problem of overall desirability

functions.

Keywords: desirability functions, nonsmooth optimization, nonlinear programming, differen-

tial topology, multi-objective optimization
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ÖZ

ÇEKİCİLİK FONKSİYONLARINA PÜRÜZLÜ VE DOĞRUSAL OLMAYAN
OPTİMİZASYON YÖNTEMLERİ İLE YENİ YAKLAŞIMLAR

Akteke-Öztürk, Başak

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Ortak Tez Yöneticisi : Prof. Dr. Gülser Köksal

Temmuz 2010, 97 sayfa

Çekicilik fonksiyonları, çok yanıtlı optimizasyon alanında çalışan bilim adamları ve araştır-

macıların ilgisini çekmeye devam etmektedir. Tekil ve toplam çekicilik fonksiyonlarının farklı

formülasyonu ile elde edilmiş çok çeşitli çekicilik fonksiyonu vardır. Derringer ve Suich

tarafından geliştirilen ve bu tezde kullanılan fonksiyonlar hala pratikte en çok tercih edilen

ve farklı versiyonları türetilmiş fonksiyonlardır. Diğer taraftan bunlar türevlenemeyen nok-

talar içermektedir ve bu nedenle pürüzlü fonksiyonlardır. Bu fonksiyonların optimizasyonu

için türevsiz arama teknikleri ve türevlenemeyen noktalarını gidermek için o noktada yüksek

dereceli polinomlarla değiştirilmeleri gibi yaklaşımlar mevcuttur. Bu yaklaşımların modern

doğrusal olmayan optimizasyon teknikleri ve ilgili yazılımlarla çeşitlendirilmesi gerekmekte-

dir.

Bu tezin çıkış noktası pürüzlü birleşik kısıtlı bir optimizasyon problemi olan toplam çekicilik

fonksiyonunu en büyüklenmesi icin yeni etkili bir çözüm yolu geliştirmekir. İkinci önemli

nokta pratikte kullanılan fonksiyonların çeşitliliğine neden olan parçalı yapıyı açığa çıkarmak

tır. Bu amaçla min-tipi ve max-tipi fonksiyonlar üzerinde yoğunlaşılmıştır.

Bu tezde, tekil çekicilik fonksiyonlarının parçalı yapısının yarattığı zorluğu gidermek amacıyla,

problemin ikili bir tam sayı ile yeniden formüle edilmesine dayanan ayarlı çekicilik fonksiyon-
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ları tanıtılmıştır. Bu değişiklikler yapıldıktan sonra, doğrusal olmayan amaç fonksiyonu

türevlenemeyen noktalar içeren ve faktörlerin ve yanıtların sınırları ile, ikili değişkene ait

bir kısıt içeren sürekli bir optimizasyon problemi elde edilir. Ayarlı çekicilik fonksiyonlarını

iki çok bilinen örnek üzerinde açıklandıktan sonra, optimizasyon problemini çözmek icin

Değiştirilmiş Altgradyan Algoritması, GAMS ortamında yazılarak CONOPT çözücüyle bir-

likte kullanılmıştır. GAMS ortamının BARON çözücüsü de bu problemlerdeki ayarlı çekicilik

fonksiyonlarının optimizasyonu için çalıştırılmıştır. Bu iki örnek üzerinde BARON kul-

lanılarak yapılan uygulama ile bu yaklaşımın var olan çekicilik fonksiyonu maximizasyonu

yaklaşımlarımdan daha etkili bir alternatif çözüm yöntemi olduğu gösterilmiştir.

Toplam çekicilik fonksiyonlarının optimizasyon problemlerinin bazı değişik formülasyonları

gösterilmiş ve sonra sonlu bir ayrıştırma yöntemi geliştirilerek genelleştirilmiş çekicilik fonk-

siyonları elde edilmiştir. Bu fonksiyonları oluşturmada parçalı max-tipi fonksiyonlar kullanıl-

mış ve bunların bazı yapısal ve topolojik özellikleri tanımlanmıştır.

Bunlara ek olarak, çok yanıtlı optimizasyon problemleri için İki Aşamalı Yaklaşım yöntemi

önerilmiştir. Bu yöntem parametrelerin ayrıştırılması ile toplam problemin optimizasyon (y-

uzayında) ve temsil (x-uzayında) şeklinde ayrıştırılmasına dayanmaktadır. Toplam problem

genelleştirilmiş yarı-sonsuz bir problem haline getirilerek yanıtlı modellerindeki belirsizliğe

karşı sağlamlaştırılmıştır.

Anahtar Kelimeler: çekicilik fonksiyonları, pürüzlü optimizasyon, doğrusal olmayan pro-

gramlama, diferansiyel topoloji, çok amaçlı optimizasyon
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PREFACE

After dealing with nonsmoothness in some important data mining models, initially nonsmooth

optimization and later nonsmooth analysis became two of my major research interests. This

thesis is about our nonsmooth optimization facilities on a specific type of function from multi-

response optimization called as desirability functions.

When we observed that nonsmoothness was a challenging issue in desirability functions and

nonsmooth optimization had never been considered for maximizing these functions, this study

began. We considered to carry out an application with BARON, a global optimization solver

of GAMS for nonconvex and nonsmooth problems, which is shown to be very suitable for our

problems. By some inquiries, we understood that an application with modified subgradient

algorithm (MSG), a nonsmooth and nonconvex approach, could have been a good alternative

to our application with BARON and results would be explained in comparison. As a next step

to this application, we considered optimization of desirability functions including more than

one nondifferentiable functions by employing our adjusted desirability functions approach.

Another observation about desirability functions was their min-type character. This gave

born to the idea of analyzing a suitable abstract class of piecewise smooth functions that

would be considered as a generalization of desirability functions. This is shown to be possible

generically. As a by-product of this idea, based on this generalization process, we proposed a

new approach which yields a set of compromised solutions for multi-response problems.

With this study, we extend the theory of desirability functions with nonsmooth, nonlinear

and semi-infinite optimization. During this study, Morse theory, differential topology, robust

optimization and multi-objective optimization entered in our scope. There are interesting

future works with these topics to go beyond of our current study.
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CHAPTER 1

INTRODUCTION

Most industrial processes, products and systems have more than one quality response; they

are usually conflicting but should be optimized concurrently and concertedly. For quality im-

provement, optimal levels of product, process or system variables (input variables, or factors)

are searched which give the best synthesis of these responses (output variables). This problem

is known as a multi-response optimization problem. In quality terminology, decision variables

are called factors and dependent variables are called responses of the problem.

In fields other than quality, instead of the word response, different words such as property,

criteria, characteristic or objective are used to refer to the output variables. According to these

words, the problem of simultaneously optimizing the output variables is called multi-criteria

optimization (MCO), multi-objective optimization (MOO) or vector optimization problem. In

some scientific communities, special names were introduced, such as Tikhonov regularization

which have a similar meaning, too. All of these problems under different names and their

solution strategies have common properties and can be seen as special cases of each other.

Most commonly used approaches to solve the multi-response problems include response sur-

face methodology (RSM), Taguchi method, loss functions, Mahalanobis distance and desir-

ability functions [57, 70, 75, 77]. Each of these approaches has its own strengths and limita-

tions.

One of the main steps in multi-response optimization is experimental design [77], which is

commonly used to collect data for developing products and processes, robust to different

sources of variability. It is important to plan and conduct experiments to analyze the resulting

data in such a manner that valid and effective conclusions are obtained. In an experimental

design, the first step consists of defining the problem, then the factors together with their

ranges and specific levels, at which experiments runs will be made, are chosen. The next step

1



is the selection of the responses according to the information they provide. Finally, the choice

of an appropriate experimental design is made.

Throughout an experimental design, data are collected and the estimated response models

are obtained that relate the factors to the responses. The most common way of obtaining the

response models is regression by means of polynomial fitting or spline fitting. For the cases

where polynomial fitting is not capable of modeling the quantitative and qualitative responses,

artificial neural networks have became highly preferred, too.

By optimizing all response functions of a process or product simultaneously, we expect to find

the best trade-off within these responses. Here, a difficulty arises because as one response is

improved, it is often done at the expense of one or more other responses. This is the reason

for the definition of optimality in multi-response optimization being different from the one

used in a single-response case.

Another issue arising in computations during optimization of responses at the same time is

that each of them may have a different measurement scale. The so-called scalarization tech-

niques offer ways to handle different scales of responses by transforming them to scale-free

values and then converting multiple objectives into a single objective called the overall desir-

ability by an aggregation technique. Linear scalarization techniques are sum-based aggrega-

tions, in fact, usually convex combinations of different objectives [32]. Desirability functions

approach is a nonlinear scalarization technique converting a multi-objective problem into a

maximization problem with a single objective of the overall desirability which is the geomet-

rical mean of the individual desirability values of different objectives [25, 44].

In this thesis, although we deal with multi-response problems, multi-response optimization

is accepted as a multi-objective optimization and we combine notions from each of these

areas when necessary in our analyses and method developments. We are mainly interested in

revealing mathematical infrastructure of desirability functions to propose alternative methods

for their optimization.

Scalarization with desirability functions is based on the following idea: when one of the re-

sponses of an industrial process or product or a system with many responses is not in the

desired limits, then the overall response of the system is not desirable. In this thesis, we focus

on different aspects of optimization of desirability functions of Derringer and Suich’s [25]

type. The optimization problem of these functions is a constrained problem with bounds of

factors and responses. This optimization is a challenging task because of the fact that the over-
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all desirability function is a composite, nonsmooth and nonlinear function of a multiplicative

form.

The studies about finding optimal points of nonsmooth functions, explaining their founda-

tions and topological properties, have been noticeable in the area of nonsmooth optimization.

These functions are usually nonsmooth at some points, i.e., we do not have the gradient in-

formation of these functions at those points so that the gradient-based optimization methods

like steepest-descent methods, Newton methods, and so on, are not applicable for solving

the optimization problems including these functions. Some important classes of nonsmooth

functions such as (nondifferentiable) convex functions and Lipschitz continuous functions

have the concept of directional derivative, giving rise to the subgradient information as a

set-valued derivative replacing the gradient information [17, 86].

Nonsmooth optimization methods such as subgradient method and bundle methods are appli-

cable on these classes. When we do not have convexity and local Lipschitzness, there is a rich

theory of optimization of nonsmooth functions with very few assumptions [4, 6, 14, 48, 56,

78, 87]. In practical application, it becomes important to choose the most suitable method for

the optimization of functions lacking “nice” properties such as convexity and local Lipschitz-

ness.

1.1 Preliminaries

In this study, Rn represents the n-dimensional real Euclidean space with the usual inner (i.e.,

scalar) product < x, y >= xT y =
n∑

i=1
xiyi and the Euclidean norm ‖x‖2 =

√
(x, x) = (xT x)

1
2 ,

where “T” stands for transpose, x, y ∈ Rn where xi, yi ∈ R are the ith components of the

vectors x and y, respectively. We denote by 0m = (0, 0, . . . , 0)T and 1m = (1, 1, . . . , 1)T the

zero vector and the one vector, respectively, of some dimension m according to the context.

All the vectors are considered as column vectors. The space of continuously differentiable

real-valued functions will be represented by C1(O), while C2(O) will comprise the 2-times

continuously differentiable real-valued functions, and Ck(O) is the space of the k-times con-

tinuously differentiable real-valued functions f on O (k ≥ 1) with O ⊆ Rn being some given,

nonempty and open set.

We stay in Rn throughout our study mainly because many optimization problems in practice

are defined in Rn or can be approximated by a problem defined in Rn. Moreover, our functions

will be scalar-valued and our treatment will be with first- and second-order differentiability

3



notions. The vector-valued functions and differentiability notions of higher order makes the

problem more complicated and cannot be discussed in this framework.

1.2 Outline of the Thesis

This thesis is about dealing with nonsmoothness of desirability functions with nonsmooth

optimization approaches. We make necessary modifications in the desirability maximization

problem and apply suitable methods which consider the nondifferentiability in our functions.

We show all the details of our modifications and the efficiency of our approach on numerical

experiments.

Min-type character of the individual desirability functions which are being used in practical

applications and then max-type logarithmic individual functions are studied. We analyze

main topological properties, structural stability of our functions, optimality conditions and

constraint qualifications within an abstract class of piecewise smooth functions. This is a kind

of generalization process of the individual desirability functions and is shown to be possible

generically. Based on this process, we propose a new approach which results with a set of

compromised solutions for multi-response problems.

In Chapter 2, we present the necessary background information for our computational, struc-

tural and topological methods. We provide a reasoning for our interest in Derringer and

Suich’s desirability functions and their optimization with a mathematical point of view as

well as an overview of the current approaches to their optimization problems. There are

different research groups working on nonsmooth optimization, as a result, there are many the-

ories to handle the nonsmooth function classes and their problems. We have deeply studied

most of these theories and analyzed their problem solving potential related with our research,

rigorously discussed and tried to find the best methods and approaches for the applications

on desirability optimization problem. A summary of the existing nonsmooth optimization

approaches with the derivative tools on which they are based is given. This background in-

formation related with desirability functions and nonsmooth optimization is necessary for

Chapters 3 and 4.

In Chapter 3, we show that by taking the convex combination of the “sides” of an individual

desirability function, one can get rid of the piecewise formulation of the function. This is

done by a binary integer variable representing the activeness of the sides of the function and

we call an individual desirability function expressed like this an adjusted individual desirabil-
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ity functions. Then, we convert the formulation of the overall desirability maximization from

a 0−1 mixed-integer nonlinear problem to a continuous one by adding a constraint for the bi-

nary variable. The resulting problem with the constraints of bounds for factors and responses

together with the constraint for the binary variable is a nonlinear continuous optimization

problem with an objective function including nondifferentiable points. We demonstrate de-

tails of this approach on two classical multi-response problems taken from the literature: one

of which includes only two-sided desirability functions and the other includes both one-sided

and two-sided functions. We reformulate the overall desirability functions for both prob-

lems and solve the resulting optimization problems by BARON solver of GAMS and modified

subgradient algorithm (MSG) implemented in GAMS together with CONOPT solver. We

compare and discuss the results.

In Chapter 4, we analyze the weighted desirability functions using concepts and approaches of

nonsmooth optimization. Two techniques are proposed for preventing the responses from be-

ing undesirable. The first technique forms the basis for ε-individual desirability functions. By

employing this technique, we transform the multiplicative form of overall desirability func-

tions into an additive form by applying the natural logarithm and make some modifications

of the optimization problem of overall desirability functions. The second technique is about

locally cutting-off the undesirable points from the interval of a response by a ε − δ argument.

We show the advantage of the first and the disadvantage of the second method in transform-

ing our problem into an additive form for our further analysis. We write the optimization

problem of overall desirability function when individual desirability functions include a finite

number of nondifferentiable points as in adjusted desirability functions. By using the separa-

bility of this overall function together with the Chain Rule for nonsmooth Lipschitz functions,

we give a necessary optimality condition for the global optimal of the overall problem using

Clarke subdifferential for this new problem. Moreover, we analyze the Pareto-optimality of

the global solution of the weighted additive overall problem.

In Chapter 5, we propose and develop a finite partitioning procedure of the individual desir-

ability functions over their compact and connected interval which leads to the definition of

generalized desirability functions (GDFs). We call the negative logarithm of an individual

desirability function having a max-type structure and including a finite number of nondiffer-

entiable points as a generalized individual desirability function. By introducing continuous

selection functions into desirability functions and, especially, employing piecewise max-type
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functions, it is possible to describe some structural and topological properties of these general-

ized functions. Our aim with this generalization is to show the mechanism that gives rise to a

variation and extension in the structure of functions used in classical desirability approaches.

Moreover, we propose a new method called as two-stage (bilevel) approach for multi-response

optimization problems based on a separation of the parameters as y-space (optimization) and

x-space (representation). We obtain a set of compromised solution for multi-response prob-

lems with this method, however, globality is not guaranteed yet. This new method may be

seen as an early attempt of a future study

In Chapter 6, we consider the effects and scientific opportunities of employing semi-infinite

max-type functions on the structure of the generalized individual functions instead of the finite

max-type continuous selections. Furthermore, the overall problem in both x and y are shown

to be extended to a refined generalized semi-infinite problem, herewith analyzing the stability

and robustness properties of the objective function. In this context, we introduce the so-called

robust desirability functions for the cases when response models contain uncertainty, and we

study the structure of the response functions.

In Chapter 7, our conclusions and outlook to future works can be found. Further aspects of

Morse theory for piecewise max-type functions and a characterization of structural stability

of the optimization problem in the variable x may proceed. It will be interesting to analyze

the reformulated and extended desirability functions which we present throughout this thesis,

through a multi-objective optimization research.
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CHAPTER 2

A SURVEY OF DESIRABILITY FUNCTIONS AND

NONSMOOTH OPTIMIZATION

2.1 Desirability Functions Approach

Desirability functions approach is the general name used for methods of multi-response prob-

lems which assign a scale-free value to all responses in the problem by the so-called individual

desirability functions and then aggregate these values by taking their geometric mean to ob-

tain the overall desirability function yielding a single objective problem. This approach was

originally introduced by Harrington [44]. Then another version was developed by Derringer

and Suich [25] which has been the one widely used in the literature, although it has the draw-

back of containing nondifferentiable points. In that study, the overall desirability function,

namely, the geometric mean of linear individual desirability functions, is optimized by a uni-

variate search technique which does not use any derivative information of the function. Later,

a weighted case of these desirability functions was proposed by Derringer [25].

Castillo et al. [19] demonstrate a modified version of the Derringer and Suich’s desirability

functions for the linear case based on polynomial approximations of the individual desirability

functions at their nondifferentiable points. Then, the optimization problem of the overall

desirability function obtained from the geometric mean of the smoothed functions is solved

by a generalized reduced gradient (GRG) method.

Other than these conventional desirability function studies, there are also approaches based

on different formulations of desirability functions. The one introduced by Kim and Lin [59]

solves a maxmin problem of maximizing the minimum degree of satisfaction which is based

on an alternative formulation of the individual desirability functions. In the approach pro-

posed by Ch’ng et al. [16], an aggregation technique is used different than the geometric
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mean to compute the overall desirability function from the individual ones including no non-

differentiable points by a change of variables in the functions.

Jeong and Kim recently introduced interactive desirability functions approach in [49] which

takes into account the preference of the decision maker on the trade-offs among the responses

or on the shape, bound and target of a desirability function. The approach delivered in Khuri

and Conlon [58] is similar to desirability functions in the sense of transforming the problem

to look for a compromised optimum, which is called as the generalized distance approach.

The philosophy behind the desirability functions approach is that when one of the quality

characteristics of an industrial process or product with many characteristics is not in the de-

sired limits, then the overall quality of the industrial process or the product is not desirable. In

this section, we provide a mathematical point of view on desirability functions with a survey

of the current approaches to their optimization problem.

2.1.1 Desirability Functions of Derringer and Suich Type

In a multi-response optimization problem, a response Y(x) is a function Y : Rn → R of vec-

tor of controllable factors or independent variables x = (x1, x2, . . . , xn)T , where xi ∈ R (i =

1, 2, . . . , n). An individual desirability function d(Y(x)) scales a response into the interval

[0, 1], i.e., d : R → [0, 1]. This means that the function d becomes 0 for completely undesir-

able values of response, and it becomes 1 for totally desirable values of the response.

We notice that desirability functions are composite functions, and we denote desirability func-

tions by d as a function of y and dY as a function of x, according to the needs of the context:

dY (x) := d(Y(x)) = d(y), (2.1)

where y := Y(x) with y : R→ R and dY : Rn → [0, 1]. There are two types of them, one-sided

and two-sided ones [25]:

d(y) :=


0, if y ≤ l,

( y−l
u−l )

r, if l < y ≤ u,

1, if y > u,

(2.2)

d(y) :=



0, if y ≤ l,

( y−l
t−l )s1 , if l < y ≤ t,

( y−u
t−u )s2 , if t < y ≤ u,

0, if y > u.

(2.3)
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Here, l is the minimum and u is the maximum acceptable value of y, and t is the most desirable

value of y which could be selected anywhere between l and u. The value of r used in equation

(2.2) should be specified by the user. The larger the r is, the more desirable the y values closer

to u, and vice versa. s1 and s2 in equation (2.3) have a similar meaning.

There can be three different optimization goals for a response: maximization, minimization

or target value. If a response is maximum-is-the-best type, then its desirability is as in the first

graphic of Figure 2.1 and second graphic in the same figure shows desirability of target-is-

the-best type.

Figure 2.1: One-sided and Two-sided Individual Desirability Functions of Derringer and
Suich’s type

One of the main properties of these functions: they are flexible in the sense that the func-

tions can assume a variety of shapes [19, 25]. Although, the two-sided individual desirability

function in Figure 2.1 seem symmetric, asymmetric specifications are possible with these

functions as in Figure 2.2.

Figure 2.2: Asymmetric Individual Desirability Functions

We assume that there are m many responses in a multi-response optimization problem. After
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calculating the desirabilities of all responses by corresponding functions given in (2.2) and

(2.3), overall desirability D(y) : Rm → [0, 1] is calculated using the geometric mean [25]:

D(y) := (d1(y1) · d2(y2) · . . . · dm(ym))
1
m , (2.4)

where y := Y(x) and Y(·) := (Y1,Y2, . . . ,Ym)T (·). Here, it is obvious that D(y) will have a

value in [0, 1]. We denote the overall desirability as a function of x by DY : Rn → [0, 1] and

define it by DY (x) := D(Y(x)), i.e., DY (x) :=
(
dY

1 (x) · dY
2 (x) · . . . · dY

m(x)
) 1

m .

Employing geometric mean to compute the overall desirability from individual desirabilities

gives rise to the main property of desirability functions as an approach. If a desirability d of a

response y becomes 0 at a factor value x̄, the overall desirability becomes 0 at this x̄, indepen-

dently from the values of other individual desirabilities at that point. In this formulation of

desirability functions, possible correlations between the responses are not taken into account

and hence, it is assumed that the responses are independent of each other.

When the importance of individual desirability functions may differ in computing the overall

desirability functions, a weighting strategy is possible [26]:

D(y) :=

 m∏
j=1

d j(y j)w j


1

m∑
j=1

w j
. (2.5)

Weighted overall desirability has similar properties to the non-weighted one. Again, if one

of the responses is undesirable at a factor vector x̄, then the overall desirability is zero at that

point, i.e., D(Y(x̄)) = 0, without considering desirabilities of other responses at that point.

Its values again range between 0 and 1. These weights can be specified by a decision maker

next to the shapes of the curves of desirability functions. Obviously, when deciding about the

weights it would be better to take into account relative importance of the product, process and

system responses with respect to each other.

2.1.2 Optimization of Overall Desirability Function

The overall desirability function D(y) is a continuous function of the individual desirabilities

d j(y) from equation (2.4) and we see that each function d is continuous up to y from (2.2)

and (2.3). In this thesis, a response Y is assumed to be a continuous function of the vector

of factors, x. Therefore, the overall desirability function DY is a continuous function of the

factor vector x.

10



The optimization of overall desirability functions becomes a complicated task when there

are two-sided individual desirability functions in the problem. In the two-sided desirability

functions formulation (2.3), the target value is attained at a nondifferentiable point, and hence,

the function is not smooth at this point. It follows that a suitable single objective optimization

method shall be chosen to solve the optimization problem of maximizing the continuous but

nondifferentiable overall desirability function, i.e., we want D(y) as close to unity as possible.

To optimize the overall desirability function given in (2.4) involving two-sided desirabilities,

one way is to use the optimization techniques that do not employ the derivative information to

find the optimum. Another way is to modify the individual desirability functions by approx-

imation approaches to smooth them and then use the gradient-based methods. Herewith, the

problem takes the following form:

maximize D(Y(x))

subject to

i. bounds of the factors xi (i = 1, 2, . . . , n),

ii. bounds and targets of the responses Y j(x) ( j = 1, 2, . . . ,m),

(2.6)

Here, x = (x1, x2, . . . , xn)T is the vector of factors with the constraint set (a parallelepiped)

[lx,ux] :=
n
X

i=1
[lxi , uxi], (2.7)

where lxi is the lower limit and uxi is the upper limit of xi (i = 1, 2, . . . , n). First constraint

group of the problem (2.6), i.e., the bounds for the factors, are decided during the experimental

design, and hence, they are known during the optimization procedure. In computation, the

bounds for the factor levels are usually standardized to [−1, 1].

Second constraint group, i.e., bounds and targets of the responses Y = (Y1,Y2, . . . ,Ym)T , are

determined by the problem owners and experts. These bounds l j and u j for Y j(x) are in fact

functions of x, decided during experimental design, usually as 95 percent confidence interval.

In computations, nonnegativity constraints for the individual desirability functions are also

needed, which are in fact redundant for the algorithms to stop at values quite near to 0 from

below, are usually occurring in numerical calculations.

2.1.2.1 Direct Search Optimization Methods

As its name implies, a direct search method is used to look for the best solution through a

series of comparison of each trial solution with the current best one by looking at the function
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values. This name is firstly coined by Hooke and Jeeves [47] and their method is called

Hooke-Jeeves direct search method.

Although many advanced numerical optimization tools are developed, direct search methods

are still in use in practice. A first reason for this is that direct search methods have fairly good

convergence results. Secondly, they are usually successfully applicable to many complicated

nonlinear optimization problems where other methods usually fail. Thirdly, they are user-

friendly and easy to implement. Besides their simplicity, flexibility and reliability, they are

also robust. To get more information about direct search methods, a recent review paper [69]

may be consulted.

A common point of these methods is that they do not use the derivative information of the

function in the optimization process. The estimated responses Ŷ(x) ( j = 1, 2, . . . ,m) are

continuous functions of the factors x, the individual desirabilities d(Ŷ(x)) of the estimated

responses are also continuous functions of the factors x, and hence, the overall desirability

function D(Y(·)) is a continuous function of the factors x. Therefore, direct search methods

can be used to optimize the overall desirability over the domain of the factors.

In the study of Derringer and Suich [25], firstly, second degree polynomials are fitted by

regression to some data collected through experimentation to model the relations between the

responses and the factors. Then, the individual desirabilities of these responses and overall

desirability functions are calculated. For each set of factor levels, an overall desirability value

is obtained. After all factor levels are searched, an optimal point that maximizes the overall

desirability is found by a direct search method similar to that of Hooke and Jeeves [47].

2.1.2.2 Modified Desirability Functions

The idea in the modification approach is to smooth the two-sided desirability functions by

a local polynomial approximation at their nondifferentiable points and being able to use the

gradient based methods, which are widely available and more popular. Castillo et al. [19]

proposed a smoothing technique and showed for on the linear case (s1 = s2 = 1) of the

two-sided individual desirability functions to get rid of the nondifferentiable points. Then the

optimization of overall desirability function becomes a nonlinear optimization problem which

can be solved by a gradient based method.

The nondifferentiable point of a two-sided desirability function is at t where the optimal value

of the function is attained. The approximation function has to be a polynomial of degree 4 for

12



each response y (= y j) ( j = 1, 2, . . . ,m):

p(y) := A + By + Cy2 + Dy3 + Ey4 (2.8)

with 5 unknowns A, B,C,D and E, since it has to satisfy the following five conditions for each

j:

1. the desirability value of the approximating function at t has to be equal to the value of

the nondifferentiable desirability function at t;

2. the desirability value of the approximating function at t − δ has to be equal to the value

of the nondifferentiable desirability function at t − δ, where δ is the half size of a small

neighborhood around t;

3. the desirability value of the approximating function at t + δ has to be equal to the value

of the nondifferentiable desirability function at t + δ;

4. the derivative of the approximating function at t − δ has to be equal to the derivative of

the nondifferentiable desirability function at t − δ;

5. the derivative of the approximating function at t + δ has to be equal to the derivative of

the nondifferentiable desirability function at t + δ.

These five conditions are expressed as a system of 5 linearly independent equations with 5

unknowns, A, B,C,D and E for each j = 1, 2, . . . ,m. Therefore, generically, we have a unique

solution on this system.

Herewith, the approximated individual desirability function dappr(y) is defined by

dappr(y) :=



a + by, if l < y ≤ t − δ,

p(y), if t − δ < y ≤ t + δ,

c + dy, if t + δ < y ≤ u,

0, otherwise,

(2.9)

with coefficients a, b for the function on [l, t− δ) and coefficients c, d for the function (t + δ, u]

for the case of a single nondifferentiable point at t. Here, δ defines a small neighborhood

around the nondifferentiable point, the value of δ = (u − t)/50 is used in [19], and it is

reported that smaller values of δ did not effect the solution.

After modifying all individual desirability functions in this way to get rid of the nondiffer-

entiable points, the overall desirability function is computed with these modified, and hence,
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smoothed functions. Castillo et al. [19] used GRG2 [65] which is a generalized reduced

gradient method provided by Microsoft Excel to optimize the overall desirability function.

This approach is widely used in comparison with other approaches to desirability functions.

However, it is not an easy method to implement, especially, when the number of responses

increases. Many polynomial approximations and, hence, numerous calculations included in

this approach, which may lead to an inaccurate result for some inexperienced users.

2.1.2.3 Optimization Softwares for Desirability Functions

We mentioned of the two existing solution strategy being used for solving optimization prob-

lem (2.6) of desirability functions: direct search methods and modified desirability functions

approach. Most optimization softwares for desirability functions are working based on these

two approaches. It is common to find an optimization method for desirability functions under

the category of multi-response optimization techniques of a software package.

First implementation of a direct search algorithm for desirability functions is conducted by

Derringer and Suich with FORTRAN language [25]. A widely used software called Design-

Expert [21] has a module which is also based on direct search approach for desirability max-

imization. A recent software with direct search implementation, which uses Nelder-Mean

simplex method, is available under the name Package Desirability maintained by Max Kuhn

[63].

Modified desirability functions of Castillo et al. [19] is carried out in Excel Solver of Mi-

crosoft Office using a special generalized reduced gradient method, namely, GRG2 [65]. In

SAS Institute and MINITAB, there are design of experiments softwares which execute desir-

ability functions for multi-response optimization problems. Corresponding software of SAS

is called JMP [90]. The mentioned sofware in MINITAB is called Response Optimization

which employs a reduced gradient algorithm with multiple starting points for maximizing the

overall desirability function [76].

Many of these software have advanced graphing opportunities for the users of desirability

functions. It is also important to note that since most of these softwares we mention above

have commercial licenses, the details of the algorithms and specific optimization tricks in

their solution strategies are not wholly known.
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2.2 Nonsmooth Optimization

2.2.1 Introduction

Optimization of a smooth function f : O → R with O ⊆ Rn for which we have the gradient

information at all points of the domain of the function to find a descent direction that will

direct us to an optimal point, is a relatively easy task than the optimization of a nonsmooth

function. The fact that a nonsmooth function f : O → R (O ⊆ Rn) is not everywhere

differentiable in its domain makes it necessary to develop other tools than gradient-based

ones for its optimization [23].

Nonsmooth optimization bases on nonsmooth calculus (nonsmooth analysis) and is mainly

about the theories developed to locate the extremum points of nonsmooth functions. The

latter ones include a variety of classes of functions, having different analytical, structural and

topological properties. Initial studies in this area focus on convex functions which include

nondifferentiable points but have the convex directional derivatives at these points. This gives

rise to a convex set of subgradients, i.e., the subdifferential, as a set-valued derivative replacing

the gradient information [13, 82, 100, 79, 86].

If a function is nonconvex, then the subdifferential may be defined but it does not necessarily

become a convex set, and a calculus finally resulting in optimality conditions may not be

available. However, the differential theory for nonsmooth functions lacking convexity was

able to be developed by generalizations of the notions of convex optimization. Based on the

tools to handle the nondifferentiable points of a convex function, new approaches to treat the

Lipschitz functions, directionally differentiable functions, semismooth and semicontinuous

functions, and so on, have been developed. Hence, nonsmooth optimization has become a

separate field, and today it is extended to several different types of nonsmooth function classes

with different tools.

With the doctoral thesis of Clarke, a generalized subgradient called as Clarke subgradient and

a convex subdifferential called as Clarke subdifferential, which is the closed convex hull of all

limit points of the known gradients at points converging to the considered nondifferentiable

point, are presented for locally Lipschitz continuous functions [17]. Other subdifferentials

are suggested for locally Lipschitz continuous functions, such as Michel-Penot subdifferential

and Shor subdifferential [72, 73, 95].

There are many subdifferentials proposed for nonconvex functions, such as approximate sub-
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differentials of Ioffe [48], and weak subdifferentials based on supporting conic surfaces as

a generalization of supporting hyperplanes, proposed by Azimov and Gasimov [4]. Among

the subdifferentials for the set-valued nonconvex functions we can count the coderivatives of

Mordukhovich [78] and radial epiderivatives proposed by Gasimov [56].

For non-Lipschitz but lower semicontinuous functions, smooth local approximations from

below led to the concept of viscosity subdifferentials [14], proximal subdifferentials [87],

suitable directional limits led to Fréchet subdifferentials (equivalent to proximal subdifferen-

tials in reflexive Banach spaces) and Clarke’s subdifferential on Banach spaces are the most

common subdifferentials.

Another important class of functions are quasidifferentiable functions which have sublinear

and continuous directional derivatives giving rise to the notion of quasidifferential mainly

developed and studied by Demyanov, Rubinov, Pshenichnyi, Bagirov, and so on, [6, 22, 84].

Discrete gradients proposed by Bagirov [7] are used to approximate subgradients of a broad

class of nonsmooth functions.

These constructions we mention here are some of the tools that lead to an effective calculus

and optimality conditions for different general classes of nonsmooth functions, such as, (non-

differentiable) convex, Lipschitz continuous, lower semicontinuous, quasidifferentiable func-

tions, and, so on. Some of these classes include certain subclasses like semismooth functions

[74], semiconvex functions [74] or regular functions in Clarke’s sense [17] that are widely

studied in the nonsmooth optimization area. There are also studies on classes of generalized

derivative objects such as Warga’s derivate containers [103].

2.2.2 Some Classes of Nonsmooth Functions

In this subsection, we review definitions and properties of some nonsmooth function classes

which are necessary for this thesis, such as, convex, Lipschitz continuous, semismooth and

max-type functions. To study nonsmooth functions and presenting the tools for handling

the nonsmoothness, it is appropriate to use the extended-valued functions f : O → R with

R := [−∞,∞] = R∪{±∞} andO ⊆ Rn. Connected to this, the proper functions are introduced:

a function f : O→ R is said to be proper, if f (x) > −∞ for all x ∈ dom f , where

dom f := {x ∈ O | f (x) < ∞} (2.10)

is nonempty.
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2.2.2.1 Convex Functions

Let O ⊆ Rn, a nonempty convex set, be given. A function f : O→ R is called convex [86] on

O if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) (2.11)

for any x, y ∈ O and λ ∈ [0, 1]. The geometrical interpretation of a convex function says

that the values of a convex function at the values on the line segment λx + (1 − λ)y, i.e.,

f (λx + (1 − λ)y), are less than or equal to the height of the chord joining the points (x, f (x))

and (y, f (y)), i.e., λ f (x) + (1 − λ) f (y). In general, convex functions are quite important for

optimization theory because of the fact that every local minimum of a convex function is a

global minimum.

At a nondifferentiable point of a convex function the gradient does not exist, but we have a

set of generalized gradients, i.e., subgradients. A vector ξ ∈ Rn is called a subgradient of a

nonsmooth proper convex function f at a nondifferentiable point x ∈ dom f if it satisfies the

subgradient inequality, i.e.,

f (y) ≥ f (x)+ < ξ, y − x > . (2.12)

The set of all subgradients of a nonsmooth convex function f : O → R at a nondifferentiable

point x ∈ dom f is called the subdifferential of f at x, and is denoted by ∂ f (x):

∂ f (x) := {ξ ∈ Rn | f (y) ≥ f (x)+ < ξ, y − x > ∀y ∈ Rn}. (2.13)

If x is in the interior of dom f , then it is guaranteed that the subdifferential ∂ f (x) is nonempty,

convex, closed and bounded. For x in the relative interior of dom f , the subdifferential is

nonempty, convex and closed. In general, the set ∂ f (x) is only guaranteed to be closed if

x ∈ dom f , because it may be empty or unbounded (i.e., f is not subdifferentiable) at the

relative boundary points of dom f .

Although the gradient does not exist at a nondifferentiable point x of a nonsmooth convex

function, we have the one-sided directional derivative at this point. The subgradients at this

point can be characterized by means of this directional derivative:

f ′(x; v) = sup
ξ∈∂ f (x)

< ξ, v > . (2.14)

The directional derivative of a proper convex function is a proper lower semicontinuous sub-

linear function of its direction. As we already noted, if x is in the interior of dom f then the
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subdifferential ∂ f (x) is compact (closed and bounded) and, moreover, by this equality, the

directional derivative is finite. Thus, one can write the subdifferential in relation with the

directional derivative:

∂ f (x) = {ξ ∈ Rn | f ′(x; v) ≥< ξ, v > ∀v ∈ Rn}. (2.15)

The subdifferential admits every calculus rule like the sum rule and chain rule. This makes

it possible to study the optimality conditions of convex functions at their nonsmooth critical

points.

2.2.2.2 Lipschitz Continuous Functions

A function f : O→ R is said to satisfy Lipschitz condition [17] on O if for some nonnegative

scalar K, called the Lipschitz constant (or Lipschitz rank), one has

| f (y) − f (z)| ≤ K‖y − z‖2 (2.16)

for any y, z ∈ O. Also, f is said to be Lipschitz near x0 ∈ O if for some ε > 0, f satisfies a

Lipschitz condition within the relative ε-neighborhood B(x0, ε) ∩ O where B(x0, ε) := {x ∈

Rn | ‖x − x0‖2 < ε} of x0. Functions which satisfy the Lipschitz condition near a point x0 are

called locally Lipschitz or locally Lipschitzian, where K is called as the Lipschitz rank of f

at x0. For functions of a real variable, Lipschitzness means the existence a finite upper bound

for the gradient, this implies that the function is not “too step”.

These functions are differentiable almost everywhere meaning that the set of nondifferentiable

points has a measure of zero in Lebesgue sense (Rademacher’s Theorem) [85], i.e., their

gradient set ∇ f (x) is measurable in O. A function which is locally Lipschitz near a point may

neither be differentiable there nor admit directional derivatives in the classical sense. The

theory for optimizing the locally Lipschitz functions is worked out by Clarke [17] based on

his generalizations of directional derivative, subgradient and subdifferential. He called his

theory as nonsmooth optimization, and since then the theory has been named by this term

In his book [17], Clarke presents the theory and calculus of subgradients for locally Lipshitz

functions. He shows that the relation between Clarke subgradient and Clarke subdifferential

has a duality with the geometric notions of normal and tangent cones. Clarke directional

derivative f ′C(x; v) is a generalized directional derivative developed for Lipschitz functions.

Given f : O → R locally Lipschitzian, Clarke subdifferential ∂C f (x) of f at x ∈ O can be
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defined as

∂C f (x) := {ξ ∈ Rn | f ′C(x; v) ≥< ξ, v > ∀v ∈ Rn}. (2.17)

The set ∂C f (x) is nonempty, convex and compact for each x ∈ Rn. As set-valued map, ∂C f (x)

is locally bounded and has a closed graph; hence, it is upper-semicontinuous. Furthermore,

f ′C(x; v) is the support function of ∂C f (x). This is because closed convex sets are characterized

by their support function:

f ′C(x; v) = sup
ξ∈∂C f (x)

< ξ, v > . (2.18)

When it comes to calculate the Clarke subdifferentials numerically from the definitions we

wrote, this does not turn out to be a simple task. By using the idea that nondifferentiable

points of a locally Lipschitz function f forms a set of zero measure, Clarke suggests to define

the today so-called Clarke subdifferential as

∂C f (x̄) := co{ξ ∈ Rn | ξ = lim
k→∞
∇ f (xk), xk → x̄ (k → ∞), xk ∈ D (k ∈ N)}, (2.19)

where the notation “co” respresents the convex hull. Here, D ⊆ O is the set where the function

is differentiable.

Theorem 2.2.1. [17] Let f : O → R be locally Lipschitzian. The Mean Value Theorem for

Clarke subdifferentials ξ says, where x, y ∈ O [66]:

f (y) − f (x) =< ξ, y − x > . (2.20)

By using this Mean Value Theorem, the nonsmooth Sum and Chain Rules with respect to

Clarke subdifferential is elaborated in the following way:

Theorem 2.2.2. [17] Let F(·) = ( f1(·), f2(·), . . . , fm(·))T be a vector-valued function of the

variable x ∈ O, where each fi : O → R (i = 1, 2, . . . ,m) is locally Lipschitz. Let g : Rm → R

be locally Lipschitz. Then g ◦ F : O→ R is locally Lipschitz and for any x ∈ Rn one has

∂C(g◦F)(x) ⊆ co

 m∑
i=1

ξiµ
i | ξ = (ξ1, ξ2, . . . , ξm)T ∈ ∂Cg(F(x)), µi ∈ ∂C fi(x) (i = 1, 2, . . . ,m)

 .
(2.21)

Remark 2.2.3. In Theorem 2.2.2, if each fi (i = 1, 2, . . . ,m) and g are regular (we explain

below), and ∂Cg(F(x)) ⊆ R+, where R+ is the set of nonnegative numbers, then equality holds

in the above inclusion.
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2.2.2.3 Semismooth Functions

Some functions which are locally Lipschitz have a directional derivative, i.e., their Clarke

derivative f ′C(x; v) is equal to the directional derivative f ′(x; v); this means: f ′C(x; v) = f ′(x; v).

These functions are called regular. As we see in the theorems above, regularity is quite im-

portant in calculus of Clarke’s subdifferential to have the equality in the formulations.

The most important example of regular functions are semismooth functions which constitute

a quite wide class, containing also the piecewise smooth (or piecewise continuously differen-

tiable) functions. A function f : O→ R is called semismooth at x ∈ O if it is locally Lipschitz

at x and for direction v ∈ Rn, the following limit exists [7, 74]:

lim
ξ∈∂ f (x+αu)

u→ v
α→+0

< ξ,u > . (2.22)

Max-type and min-type functions are functions which are nondecreasing in some variables

and nonincreasing in the others. Their optimization problem involves maximinimization or

minimaximization rather than simple minimization or maximization:

minimize
x∈O

max
1≤i≤m

fi(x).
(2.23)

The max- and min-type function classes are so wide that often a certain max-type or min-type

form is chosen to study the differential properties. Let be given functions fi : O → R (i =

1, 2, . . . ,m). A common class of max-type functions is

f (x) = max { f1(x), f2(x), . . . , fm(x)}, (2.24)

defining a function f : O → R, where each fi (i = 1, 2, . . . ,m) is continuously differentiable.

Such a function is a regular locally Lipschitz function [17]. By using Theorem 2.2.2, we

calculate the Clarke subdifferential ∂C f (x):

∂C f (x) ⊆ co

 ⋃
i∈I0(x)

∂C fi(x)

 , (2.25)

where I0(x) := {i ∈ {1, 2, . . . ,m} | f (x) = fi(x)}. If each fi is regular, then equality holds in the

above inclusion.
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2.2.3 Methods for Nonsmooth Optimization Problems

From the application side, a nonsmooth method may work fine for some type of problem,

however, it is possible that it may fail for another type. This means that none of the methods

is good for all types of problems. The main groups of nonsmooth optimization methods

are subgradient methods [24, 96, 99, 111] and bundle methods [67, 68, 111]. They have

advantages and disadvantages according up to the specific properties optimization problem.

In practice, main disadvantage of both subgradient and bundle methods is related with finding

appropriate software. Existing ones are developed for immediate purposes of the researchers,

not targeting users with different needs. Hence, getting ready nonsmooth softwares for a

different problem is not usually a practical issue. Besides these methods, there are global

optimization, derivative free and nonlinear optimization techniques which are useful when

the objective function of the problem is nonsmooth [83, 93].

In this thesis, we use two methods for solving our desirability maximization problem as a

nonsmooth composite constrained problem. The first one (i) is called Modified Subgradient

Algorithm (MSG) [36], it is based on the duality framework obtained by sharp augmented La-

grangian; this method belongs to the category of subgradient methods. MSG is implemented

in General Algebraic Modeling System (GAMS) together with CONOPT [18, 92] which is a

provided solver within GAMS. CONOPT is based on the generalized reduced gradient (GRG)

approach.

The second method (ii) is Branch and Reduce Optimization Navigator (BARON) [8, 93, 91]

which is provided as a solver within GAMS and it is based on the branch and reduce approach.

BARON is an element of the category of global, nonlinear and nonsmooth methods. In this

background section, we give reviews of these two methods.

2.2.3.1 Modified Subgradient Algorithm (MSG)

For solving constrained optimization problems, one of the efficient ways is considering the

duality relations provided by the augmented Lagrangian framework introduced by Rockafel-

lar and Wets in [88]. Augmented Lagrangian is obtained by an augmentation of the classical

Lagrange function with a certain augmenting function. When this function is σ(z) := |z|, it is

called as the sharp augmented Lagrangian. MSG developed by Kasımbeyli [36] uses this idea

in solving a nonsmooth optimization problem. We give the details of MSG algorithm with

respect to the needs of our numerical examples in Chapter 3. Here, let us briefly introduce the
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dual problem by Sharp Augmented Lagrangian. Let us consider the nonlinear programming

problem

minimize f (x)

subject to x ∈ X,

h(x) = 0m,

(2.26)

where X is compact and the functions f : Rn → R and h : Rn → Rm are continuous. The

sharp augmented Lagrangian L : Rn×Rm×R+ → R associated with problem (2.26) is defined

by

L(x,u, c) := f (x) + c‖h(x)‖2 − uT h(x). (2.27)

Here, x ∈ Rn is the decision variable of the primal problem (2.26) and decision variables

for the dual problem are u ∈ Rm and the scalar c ∈ R+, where R+ is the set of nonnegative

numbers; ‖ · ‖2 is the Euclidean norm. The dual function H : Rm × R+ → R can be defined

as the minimum of the augmented Lagrangian which we introduced above with respect to the

dual parameters:

H(u, c) := min
x∈X

f (x) + c‖h(x)‖2 − uT h(x). (2.28)

The dual problem which is the maximization of the dual function is

maximize
(u,c)∈Rm×R+

H(u, c). (2.29)

This problem is typically a nonsmooth convex problem and hence, nonsmooth minimiza-

tion techniques can be used for solving it. For our case, the advantage of MSG over other

nonsmooth methods is that it has quite limited requirements: the objective and constraints

should be continuous, the set X of variables needs to be compact, and constraints should be of

equality type. Namely, we do not pose any differentiability and convexity conditions on the

objective and constraints functions in the dual formulation.

MSG uses an ε-subgradient search direction [96] in order to strictly improve the value of

the dual function H(u, c) and the sequence of dual function values is convergent. In contrast

with the penalty or multiplier methods, for improving the value of the dual function, one does

not need to take the “penalty like parameter”. We can be sure about the zero duality gap

if the objective and constraints functions of the corresponding problem are locally Lipschitz

continuous [36].

One drawback of this method is its strict dependence on parameter selection to find the op-

timal point. Main parameters, which should be initially put in the method, are the step-size
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parameter and an upper bound for the sharp augmented Lagrangian. These parameters are

usually decided by trial and error. For more information on zero duality gap, saddle point

properties and different step size formulations, we refer to [15, 36, 38, 55].

2.2.3.2 GAMS: BARON and CONOPT

The General Algebraic Modeling System (GAMS) is a high-level modeling system for math-

ematical programming and optimization. It consists of a language compiler and a stable

of integrated high-performance solvers. For solving a real-world problem, the data need to

be organized and corresponding codes have to be written; this transforms the data into the

form required by the solution procedures of mathematical programming. Eliminating errors

in these codes is not easy because these programs are available only to the ones who wrote

them. GAMS was developed to improve this situation by

• providing a high-level language for the compact representation of large and complex

models,

• allowing changes to be made in model specifications simply and safely,

• allowing unambiguous statements of algebraic relationships, and

• permitting model descriptions that are independent of solution algorithms.

The design of GAMS has incorporated ideas drawn from relational database theory and math-

ematical programming and has attempted to merge these ideas to suit the needs of strategic

modelers. Relational database theory provides a structured framework for developing gen-

eral data organization and transformation capabilities. Mathematical programming provides a

way of describing a problem and a variety of methods for solving it. All data transformations

are specified concisely and algebraically. This means that all data can be entered in their most

elementary form and that all transformations made in constructing the model and in reporting

are available for inspection. For the inputs, outputs and other details of a GAMS program we

refer to the documents provided in [34], also demo downloads can be found in this source.

In GAMS, there are many solution procedures, which are called models in our study and we

will be interested in three of these:

• NLP: for nonlinear programming,
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• DNLP: for nonlinear programming with discontinuous derivatives, and

• MINLP: for mixed integer nonlinear programming.

NLP procedures are defined as models in which all functions which appear with endogenous

arguments, i.e., arguments that depend on model variables, are smooth with smooth deriva-

tives. DNLP models can in addition use functions that are smooth but have discontinuous

derivatives. The solvers differ in the methods which they use, in whether they find a globally

optimal solution with proven optimality, in the size of models that they can handle, and in

the format of models which they accept. For NLP models, the default solver of GAMS is

CONOPT and for DNLP models the suitable solver is BARON.

The algorithm used in CONOPT is based on the GRG algorithm first suggested by Abadie

and Carpentier [2]. The actual implementation has many modifications to make it efficient

for large models and for models written in the GAMS language. Details on the algorithm

can be found in Drud [27, 28, 29, 30]. There are different versions of CONOPT in GAMS

implementing different algorithms, in our version, GAMS includes CONOPT3 implementing

a generalized reduced gradient method.

BARON is a computational system for solving mixed-integer nonlinear nonconvex optimiza-

tion problems to global optimality. BARON implements deterministic global optimization

algorithms of the branch-and-bound type that are guaranteed to provide global optima un-

der fairly general assumptions. While traditional NLP and MINLP algorithms converge only

under certain convexity assumptions, BARON provides global optima under fairly general as-

sumptions for DNLP models. These include the availability of finite lower and upper bounds

on the variables and their expressions in the NLP or MINLP to be solved.

BARON implements algorithms of the branch-and-bound type enhanced with a variety of

constraint propagation and duality techniques for reducing ranges of variables in the course

of the algorithm. BARON implements branch-and-bound algorithms involving convex relax-

ations of the original problem. Branching takes place not only on discrete variables, but also

on continuous ones which are nonlinearly involved. Users can specify branching priorities for

both discrete and continuous variables.
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CHAPTER 3

A COMPUTATIONAL APPROACH TO

DESIRABILITY FUNCTIONS BASED ON

NONLINEAR AND NONSMOOTH OPTIMIZATION

We present the current approaches to desirability maximization in Chapter 2: direct search

methods and modified desirability functions. As explained in that chapter, these methods

have some serious drawbacks related with computational time and ease of use. As an al-

ternative, we propose a new approach for the optimization of desirability functions: after

a reformulation of the individual desirability functions to deal with their piecewise defini-

tion, we employ nonsmooth optimization methods to solve the resulting overall desirability

function. For reformulation of individual functions, a binary variable is introduced into the

function as a coefficient showing the activeness of a “side”. Using this binary variable helps

us overcome the difficulty in expressing the piecewise definition. We call the reformulated

function as adjusted individual desirability functions.

Optimization of the overall desirability function calculated from the adjusted individual ones

becomes a 0 − 1 mixed-integer nonlinear optimization problem. This problem includes the

binary integer variables showing a side is active or inactive at a factor value and continuous

factor variables. The overall desirability function is a nonlinear mapping as the geometric

mean of the reformulated individual functions. Then, we convert this mixed-integer problem

to a continuous one by adding a constraint for the binary variable. The resulting continuous

problem is a nonlinear constrained optimization problem of an objective function including

nondifferentiable points together with the constraints of bounds for factors, responses and the

constraints of binary variables.

We describe our approach on two classical multi-response problems taken from the literature,
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one of which includes only two-sided linear desirability functions and the other includes both

one-sided and two-sided linear desirability functions. We have reformulated the overall de-

sirability functions for both problems and solved the resulting optimization problems by two

different nonsmooth methods. Firstly, the problems are defined as DNLP models and solved

with BARON solver of GAMS. Secondly, we implement MSG which is based on writing

the convex dual of the problem with the Sharp Augmented Lagrangian. We define the dual

problems as NLP and solve them with CONOPT solver of GAMS.

3.1 Adjusted Individual Desirability Functions

Adjusted desirability functions are obtained by a reformulation of the original ones. This

reformulation is best explained on two-sided individual desirability functions including one

nondifferentiable point [1]. These functions are made of two “sides” (in competition), one

of which becomes active depending on the response value of factor levels. Since for each

combination of factor levels, there exists a single response value, one side of a two-sided

individual function becomes active.

Let us assume that there are m many responses in a multi-response optimization problem,

we denote by p the number of responses having one-sided desirabilities and by m − p the

number of responses having two-sided desirability functions in a multi-response problem,

where 0 ≤ p < m. A two-sided individual desirability function d (= d j) with l (= l j), t (= t j),

u (= u j) and y (= y j = Y j(x)) for each j = 1, 2, . . . ,m − p can be written as:

d(y) =



0, if y ≤ l,

d1(y), if l ≤ y ≤ t,

d2(y), if t ≤ y ≤ u,

0, if y ≥ u.

(3.1)

Here,

d1(y) := (
y − l
t − l

)s1 and d2(y) := (
y − u
t − u

)s2 (3.2)

are the sides of the two-sided individual desirability function d(·) : İ → R where İ (= I j :=

[l j, u j]). For y in [l, t], the first function (side) d1(y) is active (on) and the second function

(side) d2(y) is inactive (off). For y in [t, u] this situation is reverse, i.e., d1(y) is inactive (off)

but d2(y) is active (on) where l < t < u. We note that at the target point t, we have d = d1 = d2.

Based on this discussion, we express each individual function d with a mixed-integer formu-

lation by taking a convex combination of sides d1 and d2, using the binary integer variable
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z (= z j) ( j = 1, 2, . . . ,m − p):

d(y, z) = zd1(y) + (1 − z)d2(y). (3.3)

Here, the binary coefficients z becomes 1 when d1(y) is active (on). Let us remember that we

denote desirability functions by d as a function of y and dY as a function of x, according to

the needs of the context:

dY (x) = d(y) = d(Y(x)), (3.4)

where dY (·) : X → [0, 1] with X = [lx,ux], in practice. When we are dealing with optimiza-

tion of the desirability functions, we write and use the functions based on factors x, but we

consider the functions in y-space when the shape of desirability functions or calculating their

values are being discussed.

By using equation (3.3), we write dY (x, z) = (zd1 + (1− z)d2)(Y(x)), which gives us dY (x, z) =

zd1(Y(x)) + (1 − z)d2(Y(x)). We define dY
1 (·) := d1(Y(·)) and dY

2 (·) := d2(Y(·)) and reach the

mixed-integer formulation in x of an individual desirability function:

dY (x, z) = zdY
1 (x) + (1 − z)dY

2 (x). (3.5)

Here, when z = 1, dY (x, z) = dY
1 (x) and, when z = 0, dY (x, z) = dY

2 (x), according to the

activeness of the sides as explained above.

3.1.1 Optimization of Adjusted Overall Desirability

By adjusted overall desirability function shown by DY (·) := D(Y(·)) we mean that all two-

sided individual desirability functions included in the problem are reformulated as above:

DY (x, z) :=

 p∏
j=1

dY
j (x)w j ·

m∏
j=p+1

dY
j (x, z j)w j


1

m∑
j=1

w j
, (3.6)

for x := (x1, x2, . . . , xn)T and z := (z1, z2, . . . , zp)T . The optimization problem of the reformu-

lated overall desirability function can be stated as follows:

maximize DY (x, z)

subject to

x ∈ [lx,ux] ,

0p ≤ dY(x) ≤ 1p,

0m−p ≤ dY(x, z) ≤ 1m−p,

h(z) = 0m−p.

(3.7)
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In our computations, the bounds [lx,ux] for the factor levels are standardized to [-1n, 1n].

Moreover, instead of the bound constraints [l j, u j] ( j = 1, 2, . . . ,m) of the responses, we

use the contraint of being between 0 and 1 for both one-sided individual desirability functions

dY(x) := (dY
1 (x), dY

2 (x), . . . , dY
p (x))T and two-sided individual desirability functions dY(x, z) :=

(dY
p+1(x, zp+1), dY

p+2(x, zp+2), . . . , dY
m(x, zm))T for coding purposes.

Remark 3.1.1. If we had used the bounds of the responses in our problem, then these con-

straints for the values of desirability functions would have become redundant. We note that

these two different constraints can be used interchangeably. �

The constraint h(z) = 0m−p is to ensure that the variable z (= z j) becomes binary for all

j = 1, 2, . . . , p:

h(z) := (h(z1), h(z2), . . . , h(zm−p))T where h(z) := (z − z2) (z ∈ R). (3.8)

For convenience of notation, we use the “dummy” notation 0 and 1 for the 0 and 1 vectors,

suppressing the dimensions, which we can easily understand from the context.

3.1.2 Two Problems

We use adjusted desirability function to reformulate two of the most common multi-response

problems in the literature: wire bonding process optimization problem [19] and tire-tread

compound problem [25, 49]. The first problem is described in Appendix (A) and the second

problem is presented in Appendix (B).

These problems are used to introduce and explain the methods of modified desirability func-

tions and direct search optimization for desirability functions.

Wire Bonding Process Optimization (Problem 1): There are 3 control factors, x1, x2, x3,

each of which is scaled to −1 and 1. Hence, x = (x1, x2, x3)T with x ∈ [-1, 1]. There are

six responses Y j(x) ( j = 1, 2, . . . , 6), all of which have two-sided linear desirabilities, and we

reformulate according to the formula given in (3.5).

The maximization of overall desirability for wire bonding process optimization looks as fol-
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lows:
maximize DY (x, z)

subject to

x ∈ [-1, 1] ,

0 ≤ dY (x, z) ≤ 1,

h(z) = 0,

(3.9)

where the objective function is

DY (x, z) =

6∏
j=1

(
z jdY

j,1(x) + (1 − z j)dY
j,2(x)

)
. (3.10)

The constraint functions are h(z) := (z1 − z2
1, z2 − z2

2, . . . , z6 − z2
6)T and

dY (x, z) := (dY
1 (x, z1), dY

2 (x, z2), . . . , dY
6 (x, z6))T . For the graphics of the individual desirability

functions of the problem and other details, see Appendix (A) and Figure (A.1).

Tire Tread Compound Optimization (Problem 2): Again, there are 3 control factors, x1, x2, x3,

each of which is between −1 and 1. Hence, x = (x1, x2, x3)T with x ∈ [-1, 1]. There are four

responses Y j(x): for j = 1, 2, responses have one-sided linear desirabilities, and for j = 3, 4,

responses have two-sided linear desirabilities. We reformulate individual desirabilities for

responses j = 3, 4 according to the formula given in (3.5).

Our present example is different from the first problem of wire bonding process optimization

since this one includes both one-sided and two-sided individual desirabilities. The maximiza-

tion of overall desirability for tire tread compound looks as follows:

maximize DY (x, z)

subject to

x ∈ [-1, 1] ,

0 ≤ dY (x, z) ≤ 1,

0 ≤ dY (x) ≤ 1,

h(z) = 0,

(3.11)

where the objective function is

DY (x, z) =

2∏
j=1

dY
j (x) ·

4∏
j=3

(
z jdY

j,1(x) + (1 − z j)dY
j,2(x

)
. (3.12)

Moreover, the constraint functions are h(z) := (z3−z2
3, z4−z2

4)T , dY (x, z) := (dY
3 (x, z3), dY

4 (x, z4))T

and dY (x) := (dY
1 (x), dY

2 (x))T . For the graphics of the individual desirability functions of the

problem and other details, see Appendix (B) and Figure (B.1).
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3.2 Numerical Experiments

3.2.1 Introduction

As we explain in Chapter 2, the conventional individual and overall desirability functions

are continuous functions of the factors x. Let us examine the continuity of the objective

mappings and constraints of problems (3.9) and (3.11). In view on the formula (3.6), we say

that the objective mappings are continuous functions of x and z. The constraints functions

dY(x, z) and dY(x) are the continuous maps of x and z from (3.3) together with (3.1). The

constraint function h(z) is a continuous map of z from (3.8). Hence, in both problems, we

have continuous objective and constraint functions.

Here, we explain the implementation of two nonsmooth optimization methods which we find

appropriate for the optimization of our problems. Further mathematical properties of our

problems are given Chapter 4. Our preference is based on the fact that they do not need

assumptions like smoothness and convexity and they do not calculate derivatives or subdiffer-

entials at every step to find the optimal point.

In the first method, the duals of problems (3.9) and (3.11) are constructed with respect to

the sharp augmented Lagrangian and MSG is implemented together with CONOPT/GAMS

for NLP models. With the second method, primal problems (3.9) and (3.11) are solved by

BARON/GAMS as DNLP models. We remember that these models are some solution proce-

dures of GAMS as explained in Chapter 2.

3.2.2 Implementation of MSG with GAMS solver of CONOPT

MSG is proposed by Gasimov [36] for solving the dual problems constructed with respect

to sharp augmented Lagrangian functions for primal problems including only equality con-

straints. MSG is convergent and capable of yielding a zero duality gap when the appropriate

parameter selection is done, without any assumption of convexity on the functions of the

problem which are all need to be continuous. The objectives of (3.9) and (3.11) are contin-

uous functions of x and z including points of nondifferentiability to which MSG becomes

successfully applied.

Since MSG requires equality constraints, we need to convert the box constraints of our prob-

lems (3.9) and (3.11), given as inequality constraints, into the equality ones. For this aim, one

can introduce slack variables which in fact increase the number of variables in the problem.
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Another way is to consider the max-type functions which cause constraint functions to be

nonsmooth. In application, we have preferred slack variables to keep the smoothness.

The dual problems obtained by the Sharp Augmented Lagrangian are solved by MSG as an

NLP model together with CONOPT. For both problems, the general sketch of the algorithm

is given, the sharp augmented Lagrangian is constructed, inequality constraints are converted

to equality ones and appropriate parameters are selected.

3.2.2.1 Dual for Problem 1

In this part, we turn the inequality constraints of problem (3.9) into equality constraints to

apply MSG. The vectorial constraint for the integers h(z) = 0 is already a system of equality

constraints. By introducing slack variables a j ≥ 0 and b j ≥ 0, we have the equality constraint

functions for all j = 1, 2, . . . , 6:

dc,a
j (·) := dY

j (·) − a j = 0 for 0 ≤ dY
j (·), and

dc,b
j (·) := dY

j (·) − 1 + b j = 0 for dY
j (·) ≤ 1.

(3.13)

Let us define

h(x, z) := (hT (z), (dc,a)T (x, z), (dc,b)T (x, z))T = 0 (3.14)

as the extended vector of equality constraints, where

dc,a(·) := (dc,a
j (·))T

j=1,2,...,6, and dc,b(·) := (dc,b
j (·))T

j=1,2,...,6. (3.15)

Remark 3.2.1. As we have noted, instead of using slack variables for convertion into equality

constraints, one can employ the max operator for 0 ≤ dY
j (·) and for dY

j (·) ≤ 1 ( j = 1, 2, . . . , 6),

respectively, as follows:

max {0,−dY
j (·)} = 0 and max {0, dY

j (·) − 1} = 0. (3.16)

�

The sharp augmented Lagrangian of (3.9) in vector notation is

L(x, z, c,u) := DY (x, z) + c‖h(x, z)‖2 − uT h(x, z). (3.17)
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Explicitly we can write this mapping L(x, z, c,u) by

L(x, z, c,u) :=
6∏

j=1

(
z jdY

j,1(x) + (1 − z j)dY
j,2(x)

)

+c

√√√√ 6∑
j=1

(
z j − z2

j

)
2

+

 6∑
j=1

(
dY

j (x, z j) − a j
)

2

+

 6∑
j=1

(
dY

j (x, z j) − 1 + b j
)

2

−u1

 6∑
j=1

(
z j − z2

j

) − u2

 6∑
j=1

(
dY

j (x, z j) − a j
) − u3

 6∑
j=1

(
dY

j (x, z j) − 1 + b j
) ,

(3.18)

where u := (u1, u2, u3)T with u1, u2, u3 ∈ R and c ∈ R being the Lagrange multipliers, and

L : R3 × R6 × R × R3 → R. The dual function is given by

H(u, c) := min
(x,z)∈R3×R6

L(x, z, c,u). (3.19)

Then, the dual problem of (3.9) having decision variables (u, c) with respect to the sharp

Augmented Lagrangian is

maximize
(u,c)∈R3×R+

H(u, c). (3.20)

3.2.2.2 Dual for Problem 2

In this part, we turn the inequality constraints of problem (3.11) into equality constraints

for applying MSG. The vectorial constraint for the integers h(z) = 0 is already a system of

equality constraints. By introducing slack variables a j ≥ 0 and b j ≥ 0, we have the equality

constraint functions for all j = 1, 2, 3, 4:

dc,a
j (·) := dY

j (·) − a j = 0 for 0 ≤ dY
j (·), and

dc,b
j (·) := dY

j (·) − 1 + b j = 0 for dY
j (·) ≤ 1 .

(3.21)

Let

h(x, z) := (hT (z), (dc,a)T (x, z), (dc,b)T (x, z), (dc,a)T (x), (dc,b)T (x))T = 0 (3.22)

be the extended vector of equality constraints, where

dc,a(·) := (dc,a
j (·)) j=1,2,3,4, and dc,b(·) := (dc,b

j (·)) j=1,2,3,4. (3.23)

Hence, the sharp augmented Lagrangian of (3.11) is

L(x, z, c,u) := −DY (x, z) + c‖h(x, z)‖2 − uT h(x, z). (3.24)
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In other words,

L(x, z, c,u) :=
2∏

j=1

dY
j (x) ·

4∏
j=3

(
z jdY

j,1(x) + (1 − z j)dY
j,2(x)

)
+c

√√√√ 2∑
j=1

(
dY

j (x) − a j
)

2

+

 2∑
j=1

(
dY

j (x) − 1 + b j
)

2

+

 4∑
j=3

(
z j − z2

j

)
2

+

 4∑
j=3

(
dY

j (x, z j) − a j
)

2

+

 4∑
j=3

(
dY

j (x, z j) − 1 + b j
)

2

−u1

 2∑
j=1

(
dY

j (x) − a j
) − u2

 2∑
j=1

(
dY

j (x) − 1 + b j
) − u3

 4∑
j=3

(
z j − z2

j

)
−u4

 4∑
j=3

(
dY

j (x, z j) − a j
) − u5

 4∑
j=3

(
dY

j (x, z j) − 1 + b j
) ,

(3.25)

where u := (u1, u2, u3, u4, u5)T with u1, u2, u3, u4, u5 ∈ R and c ∈ R are the Lagrange multipli-

ers, and L : R3 × R2 × R × R5 → R. The dual function is defined by

H(u, c) := min
(x,z)∈R3×R2

L(x, z, c,u). (3.26)

Then, the dual problem of (3.11) having the state variables (u, c) with respect to the sharp

Augmented Lagrangian is

maximize
(u,c)∈R5×R+

H(u, c). (3.27)

3.2.2.3 MSG Algorithm for Problems

We program the following algorithm in GAMS for solving our problems:

Step 1. Set k = 1 and choose initial values of dual parameters uk and ck, i.e., u0 and c0,

respectively.

Step 2. Solve

minimize
(x,z)

L(x, z, ck,uk)

subject to L(x, z, ck,uk) ≤ H̄.
(3.28)

Let (xk, zk) be the solution. If ‖h(xk, zk)‖2 = 0, then STOP.

Otherwise, go to Step 2.

Step 3. Set step size sk and update formulas for uk+1, ck+1

sk =
δ(α(H̄ − L(xk, zk, ck,uk)) + (c̄ − c)‖h(xk, zk))‖2

(α2 + (1 + α)2)‖h(xk, zk)‖22
, (3.29)

uk+1 := uk − αskh(xk, zk), (3.30)

ck+1 := ck + (1 + α)sk‖h(xk, zk)‖2. (3.31)

Set k = k + 1 and go to Step 2.
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For this algorithm, only initial values that have to be entered at the beginning of the program

are of dual parameters u and c, i.e., u0 and c0, respectively. There are fixed input parameters

choosen specific to the problem: α, δ and H̄. As seen in the algorithm, H̄ is an upper bound

for the sharp augmented Lagrangian L(x, z, ck,uk) and parameters α, δ are necessary for cal-

culating the step size parameters. Some restrictions for these parameters are δ ∈ (0, 2) and

α > 0.

The combination of parameters α, δ and H̄ is not unique, they are found by trial and error,

and, especially, learning. During implementation in GAMS, we suggest to define H̄ as an

upper bound for the sharp augmented Lagrangian L, not as an inequality constraint as in the

equation (3.28). This is because we do not want to break the rule in MSG, i.e., all inequal-

ity constraints have to turned in equality ones and then imported in the dual function via

augmented Lagrangians.

Anyway, using H̄ is very crucial for MSG algorithm to find the solution. In Table 3.1, we

present a set of appropriate parameters for our problems with 03 = (0, 0, 0)T :

Table 3.1: Values of MSG Parameters.

(u0, c0) α δ H̄

Problem 1 (03, 0) 1 2 63
Problem 2 (03, 0) 4 1.15 210

Remark 3.2.2. There are different formulations for step size sk suggested in the literature

[15, 37]. We note that in our problems these step sizes do not have a significant influence on

the computation time, and so on. They all work fine, and we found the global optima for both

problems. �

The minimization problem stated in Step 1 of MSG algorithm is a nonlinear optimization

problem. A suitable model, i.e., solution procedure of GAMS for this problem is NLP and its

related solver is CONOPT solver of GAMS.

Remark 3.2.3. The subproblem in Step 1 of MSG algorithm can be solved as an NLP model

by CONOPT solver of GAMS or as a MINLP model by DICOPT solver of GAMS. For

MINLP model, one needs to define the vector z not as a variable, but as a binary variable in

GAMS notation. With both models we arrive at the optimal solution and there is no superi-

ority between these models in our problems. In fact, when NLP model is used in a GAMS

programme, CONOPT is the default solver and when MINLP model is used DICOPT is the
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default solver. This means that an OPTION statement is not necessary for calling the solver,

just defining the model type in the SOLVE statement is enough:

SOLVE xz USING nlp MINIMIZING L

SOLVE xz USING minlp MINIMIZING L
(3.32)

3.2.3 DNLP Model with BARON

Optimization problems of two example problems are stated in (3.9) and (3.11). In these

problems, the first-order derivatives of the objective functions are discontinuous at nondiffer-

entiable points, occurring at target values of responses having two-sided desirability. For this

type of objectives, the best model type of GAMS is called DNLP, and the appropriate solver

for these models is BARON. BARON only needs the availability of finite lower and upper

bounds on the variables and no modifications in the constraints.

3.3 Results

All runs are conducted on a computer with Intel (R) Core (TM) 2 Duo CPU T 7300 @ 2.00

GHz processor. We present optimization results of three different problems: (i) wire bonding

process optimization problem (i.e., problem 1), (ii) a special case of wire bonding process

optimization problem with 3 responses, and (iii) tire tread compound problem (i.e., problem

2).

In Table 3.2, we present our results in comparison with the existing results from the literature

for problem 1. In Castillo et al.’s work [19], the optimal solutions for this problem are ob-

tained from a kind of generalized reduced gradient algorithm (GRG2) in Ms Excel Solver and

Hooke-Jeeves (HJ) univariate search. Moreover, in the study of Chang et al. [16], the same

problem is solved by a new approach as explained in the previous chapter.

We compare our results obtained from CONOPT solver applied on the dual problems of MSG

and from BARON solver applied on the primal problem with the ones of Castillo et al. and

Chang et al.. The optimal solution as indicated in Castillo et al. [19] is the only optimal one

in the region of interest. All of the points given in the table are basically the same solution

points because they give close desirability values, except that of Ch’ng in row 3.

In Table 3.3, we present results related with the special case of the wire bonding process

optimization problem with 3 responses models. Considering highly correlated responses
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y2, y3, y5 and y6 as a single response in wire bonding process optimization problem (prob-

lem 1), Castillo et al. [19] provide a new mutual model for all of these responses. The details

of these models are given in Appendix A. Since optimal response combination calculated by

the individual and overall desirability functions proposed by Ch’ng et al. [16] is not available

in their study corresponding row of Table 3.3 (i.e., in row 2) is includes missing values.

In Table 3.4, we present our results in comparison with the existing results from the literature

for problem 2. In Derringer and Suich’s (DS) work [25], the optimal points for this problem

are obtained by a search technique similar to the one of Hooke and Jeeves. Moreover, in

the study of Jeong and Kim (JK) [49], this same problem is solved by a new approach as

explained in Chapter 2. We compare our results obtained from CONOPT solver applied on

the dual problems of MSG and BARON solver applied on the primal problem with the ones

of Derringer and Suich and Jeong and Kim.

By looking at the overall desirability, we conclude that these results can be accepted as the

same solution, except that of JK in row 2.
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Table 3.2: Optimal solutions of the wire bonding problem.
Numbers in the first column: 1: GRG2, 2: HJ, 3: Ch’ng, 4: BARON, and 5: MSG+CONOPT.
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Table 3.3: Optimal solutions of the wire bonding problem with 3 responses.
Numbers in the first column: 1: GRG2, 2: Ch’ng, 3: BARON, and 4: MSG+CONOPT.
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Table 3.4: Optimal solutions of the tire tread compound problem.
Numbers in the first column: 1: DS, 2: JK, 3: BARON, and 4: MSG+CONOPT.
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3.4 Discussion and Conclusion

With this chapter, we suggest an alternative solution procedure for maximization of desirabil-

ity functions. It can be said that this approach is solely different from the current optimization

techniques. The efficiency of coding and implementing this new procedure is demonstrated

with numerical experiments. The two problems used in experiments are the “lab animals”

for testing almost all new desirability optimization approaches. Moreover, they contain both

one-sided and two-sided individual desirability functions arising in multi-response problems.

Main superiority of our procedure including two different strategies for the optimization stage

lies in its independence from properties of the problem like convexity and differentiability. Al-

though our first strategy which includes implementing MSG with CONOPT may need math-

ematical knowledge related with Sharp Augmented Lagrangians, the second strategy with

BARON yields a practical and efficient approach together with adjusted desirability functions.

We propose this second application with BARON as a strong alternative to the traditional

methods and softwares mentioned in Chapter 2 for desirability maximization. Let us summa-

rize our suggestion: (i) write the overall optimization problem of desirability functions based

on adjusted desirability functions in GAMS environment, (ii) solve the overall problem by

nonsmooth optimization methods, especially, BARON solver of GAMS.

Let us recall from Chapter 2, the original problem of desirability functions given in (2.6), to-

gether with overall desirability given in (2.4), and individual desirabilities introduced in (2.2)

and (2.3). A careful eye would observe that it is possible to obtain the convex formulation

of our two optimization problems from experiments by applying the negative logarithm to

the overall desirability. This would result with convex individual desirability functions which

are originally concave and the overall desirability function would be a convex combination of

individual ones. Eventually, the resulting problem would have been a convex composite nons-

mooth optimization, where nonsmoothness come from the nondifferentiable points occurring

in the target point of individual desirability functions. Then, one can solve this problem by a

software from convex optimization, without any assumption on differentiability.

We don’t suggest convex way. Firstly, for implementation of convex optimization softwares,

some tricks like introducing equality constraints into the problem and some reformulations of

the constraints would be needed. Secondly, convex approach would not work when individual

desirability functions are not concave as in the cases where superscripts s1 and s2 in the
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formulation of individual desirability (2.2) and (2.3) are greater than 1 or when there are more

than one nondifferentiable points in an individual desirability function.

Our approach including BARON safe for all of these cases. Moreover, besides having no

assumption on convexity and differentiability, one does not need to worry about the initial

point selection and reformulating constraints. This is a straightforward, easy to implement

and less computational method.
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CHAPTER 4

AN ANALYSIS OF WEIGHTED DESIRABILITY FUNCTIONS

BASED ON NONSMOOTH OPTIMIZATION

4.1 Introduction

In this chapter, we apply logarithm on desirability functions which result with an equivalent

additive (separable) optimization problem to the original overall desirability maximization.

By using theoretical opportunities of this new formulation, we analyze some aspects of desir-

ability functions like their nonsmooth characters and Pareto-optimality of the global solutions

of the overall problems. This will also be a preparation for the next chapter where we present

a general class of functions to explain the structure of desirability functions used in practice.

In applications, shape of an individual desirability function is chosen by decision maker who

decides the parameters such as bounds and targets of the responses, and so on. A one-sided

individual desirability function d(·) (= d j) : [l, u] → [0, 1] is either linear or nonlinear but

smooth and monotone on [l, u] (= I j = [l j, u j]) and a two-sided function d(·) : [l, u] → [0, 1]

is either piecewise linear or nonlinear but piecewise monotone and nonsmooth at its target

point.

One important property of the functions employed in practice for assessing desirability of a re-

sponse is that these functions are min-type functions containing at most one nondifferentiable

points. However, a decision maker can choose a two-sided desirability functions including

more than one nondifferentiable point according to the desired behavior of function around

its target point as mentioned in Castillo et al. [19]. Based on this idea, we improve the theory

of desirability functions accordingly. In this context, optimality properties of the optimization

problem including desirability functions with a finite number of nondiffferentiable points are

analyzed.
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In this chapter, we apply negative logarithm on weighted case of desirability functions which

result with an equivalent additive (separable) optimization problem to the original overall

desirability maximization. By using theoretical opportunities of this new formulation, we

analyze some aspects of desirability functions including a finite number of nondifferentiability

points related with their nonsmooth characters and Pareto-optimality of the global solutions

of the overall problems. Content of this chapter is also a preparation for Chapter 5 where we

elaborate max-type character of the negative logarithm applied GDFs by a general class of

functions ,i.e., continuous selection functions.

4.2 Weighted Desirability Functions

Weighted desirability functions make it possible to write the overall desirability from the

viewpoint of the response trade-offs. In practice, weights are assigned by decision makers

according to importance levels of different responses in the overall desirability.

The weighted overall desirability function is defined by:

D(Y(x)) =

 m∏
j=1

d j(Y(x))w j


1

m∑
j=1

w j
(4.1)

where Y = (Y1,Y2, . . . ,Ym)T is the vector of responses, x = (x1, x2, . . . , xn)T is the vector

of factors, m is the number of responses and w j ≥ 0 are the weights ( j = 1, 2, . . . ,m). The

function D is a continuous function of x, bounded by 0 from below and by 1 from above. We

remember that DY (x) = D(Y(x)) = D(y), where y = Y(x), and dY
j (x) = d j(Y j(x)) = d j(y),

where y j = Y j(x), and y = (y1, y2, . . . , ym)T ( j = 1, 2, . . . ,m).

The optimization problem of (4.1) can be defined by implicitly defining bound constraints as

follows:
maximize DY (x) =

(
dY

1 (x)
)w1
·
(
dY

2 (x)
)w2
· . . . ·

(
dY

m(x)
)wm

subject to x ∈ X ∩ IX ,
(4.2)

where the constraint of the problem is introduced and explained below.

Remark 4.2.1. We have assumed that w1 +w2 + . . .+wm = 1 without loss of generality given

for w j ≥ 0 not all zero at the same time ( j = 1, 2, . . . ,m). If all weights were zero at same

time, i.e., w j = 0 ( j = 1, 2, . . . ,m), then any y j ∈ R would become a solution of the problem

(4.2). We notice that any sum of weights, say ω1 + ω2 + . . . + ωm = r for some r > 0, can be

reduced to 1 by defining w j := ω j/r ( j = 1, 2, . . . ,m). �
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We have x ∈ X ⊂ Rn and xi ∈ Xi where X is the Cartesian product of regions Xi (i ∈ I =

1, 2, . . . , n):

X = X
i∈I
Xi (= X1 × X2 × . . . × Xn) . (4.3)

We remember that every response y j is desired in some interval I j = [l j, u j] ( j = 1, 2 . . . ,m).

Now, we define

IX :=
{
x ∈ Rn | Y j(x) ∈ I j ( j = 1, 2, . . . ,m)

}
=

m⋂
j=1

(
Y−1

(
[l j, u j]

))
. (4.4)

Here, IX is closed as it is the finite intersection of the closed sets Y−1
(
[l j, u j]

)
⊂ Rn. Similarly,

X is closed. As a result X
⋂
IX is compact and DY (x), the objective function of (4.2), is

continuous, a globally optimal point to the problem (4.2) always exists, but it may not be

unique.

4.3 Preventing from Undesirability

A two-sided desirability function d(Y(x)) becomes zero at the lower bound l and upper bound

u of the response Y j(x). To continue our analysis, we need to prevent the individual desirabil-

ities from vanishing and always have them satisfy d(Y(x)) > 0. This will be necessary when

we want to apply the logarithm to obtain the separable overall function in the next section and

save the overall desirability function from being undesirable.

We propose two suitable techniques for preventing two-sided desirability functions from un-

desirability: one based on cutting-off the interval around the corresponding point and the other

one based on perturbing the whole function directly by adding an arbitrarily small constant

ε > 0.

Cutting-off the interval of y (Technique 1): We introduce lower bounds δl > 0 and δu > 0

(arbitrarily small numbers) for Y(x)− l and u−Y(x), respectively. This can be interpreted as a

cutting-off of a piece of the interval of Y(x) at l of length δl and at u of length δu. By cutting-

off the half neighborhoods [l, l + δl) and (u− δu, u], which are mapped into the intervals [0, εl]

and [0, εu] (εl := d(l + δl) and εu := d(u − δu) are arbitrarily small numbers), respectively,

the function is prevented from entering these intervals and desirabilities never become zero as

shown in Figure 4.1.

The new desirability function will be defined on the interval [l + δl, u − δu] and we always

have d(Y(x)) > 0, whereas it will not be defined on the intervals [l, l + δl) and (u − δu, u].
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Figure 4.1: Cutting-off of individual desirability functions d j(y j) ( j = 1, 2, . . . ,m).

In the optimization problem (4.2), we suggest to add two more additional constraints that do

not affect the solution but ensure that the two-sided desirabilities never vanish, based on this

technique for all j = 1, 2, . . . ,m:

(Y(x) − l)2 ≥ (δl)2, and

(u − Y(x))2 ≥ (δu)2.
(4.5)

Shifting the desirability functions (Technique 2): We introduce ε-individual two-sided de-

sirability functions with dε(Y(x)) := (d + ε)(Y(x)), where ε := εY(x) > 0 (arbitrarily small

number) to be a lower bound for ε-individual desirabilities, dε(Y(x)) ≥ ε. This can be in-

terpreted as a shift in the function values from [0, 1] to [ε, 1 + ε]. Hence, at Y(x) = l and

Y(x) = u, we prevent desirability from being zero; there, it will be dε(Y(x)) = ε. At Y(x) = t,

the desirability will be dε(Y(x)) = 1 + ε as shown in Figure 4.2.

By doing this, we change the definition of the individual desirability functions with respect to

ε as follows:

dε(y) :=



ε, if y ≤ l,

( y−l
t−l )s1 + ε, if l < y ≤ t,

( y−u
t−u )s2 + ε, if t < y ≤ u,

ε, if y > u.

(4.6)

Remark 4.3.1. Our Techniques 1 and 2 are suitable for both linear and nonlinear versions

of individual desirability functions. The small numbers δl, δu, εl, εu and ε should be chosen

according to this shape of the desirability function near l and u. Moreover, we note that our
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Figure 4.2: Shifting individual desirability functions d j(y j) ( j = 1, 2, . . . ,m).

original problem is a maximization one whose optimal solution will not be affected by this

cutting-off and shifting.

4.4 Additive Overall Desirability Function

We apply negative logarithm to the objective function of (4.2) which is defined explicitly in

(4.1) and obtain an additive expression for the overall function F(Y(·)) := − log(D(Y(·))) with

respect to the individual desirabilities:

F(Y(·)) :=
m∑

j=1

w j f j(Y j(·)). (4.7)

Here, the functions f j will be the negative logarithm of the individual desirability functions

d j. However, since d j becomes zero at the lower and upper bound of a two-sided desirability

function, we can use techniques introduced in Section (4.3) to make sure that the logarithm is

always defined.

We can define function f (= f j) either on the interval (l, u) based on the Technique 1:

f (y) := − log(d(y)) f (Y(·)) = − log(d(Y(·))), (4.8)

or on the interval [l, u] based on the Technique 2:

f (y) := − log(dε(y)) f (Y(·)) = − log(dε(Y(·))), (4.9)

If we apply Technique 1 to individual desirability functions d, then their logarithm will always

be defined on the open interval (l, u) of y, where y j = Y j(x), for all j = 1, 2, . . . ,m.
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The functions f j are of the form f : (l, u)→ [0,M) with

M := max
{
Ml,Mu

}
, (4.10)

where Ml := − log(εl) = − log(d(l + δl)) and Mu := − log(εu) = − log(d(u − δu)) for positive

constants M (= M j), Ml (= Ml
j) and Mu (= Mu

j ).

The domain of f Y is [lx,ux] and it will be affected from this cutting-off process. If vectors

xl := Y−1 ({l}) and xu := Y−1 ({u}) (4.11)

are uniquely existing (in case of nonuniqueness, i.e., “∈”: chosen) in [lx,ux], then by cutting-

off the intervals around the bounds l and u of Y(x) will result in a cutting-off from the domain

of f Y around xl and xu, since Y(x) is a continuous function. This will deteriorate the com-

pactness and connectedness of the domain of f Y . If they are outside of [lx,ux] together with

their corresponding neighborhood, then there will be no change in the definition of f Y , i.e.,

f Y : [lx,ux]→ [0,M).

Because of this possible deterioration of compactness and connectedness, we choose shifting

strategy explained under Technique 2 for our further studies to have the logarithm always

be defined. In this case, there will not be a compactness and connectedness problem in the

domain of f Y and the function f will be defined everywhere on [l, u].

4.4.1 Optimization of Additive Overall Desirability Function

The functions obtained by the negative logarithm of desirability functions are again composite

functions, and we will denote them by f (= f j) as a function of y and f Y (= f Y
j ) as a function

of x, according to the needs of the context:

f Y (x) := f (y) = f (Y(x)), where y = Y(x). (4.12)

It is important to note that each f j(·) : I j → [0,M j) ( j = 1, 2, . . . ,m) is always positive and

have an underlying max-type structure on the interval I j based on their derivation from min-

type functions. All the observations we present in this chapter constitute a starting point for

the next chapter.

The additive (separable) overall desirability function given in (4.7) as the weighted sum of

individual f j(Y j(x)) ( j = 1, 2, . . . ,m):

FY (·) = F(Y(·)) = F(y), (4.13)
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where y = Y(x) = (Y1,Y2, . . . ,Ym)T (x), x = (x1, x2, . . . , xn)T with xi ∈ R (i = 1, 2, . . . , n),

Y j : Rn → R, f j : R→ R ( j = 1, 2, . . . ,m), F : Rm → R and FY : Rn → R.

The overall desirability function F(Y(x)) (or FY (x)), as can be seen in (4.7), is a linear aggre-

gation of the individual functions f (Y(·)) = − log(dε(Y(·))), i.e., the negative logarithm of the

ε-individual desirabilities.

Now, let us write the additive overall optimization problem with the objective function given

above in (4.7):

minimize
x

F(Y(x))

subject to x ∈ X,

Y j(x) ∈ I j ( j = 1, 2, . . . ,m).

(4.14)

Here, x ∈ X ⊂ Rn, where the parallelepiped X given in (4.3) is implicitly defined by a finite

number of inequality constraints and Y j(x) ∈ I j ⊆ R, where I j is an interval.

Remark 4.4.1. We note that this reformulation of the overall problem does not cause any

change in the global optimal solution, i.e., the solution of the original problem (4.2) and the

one of (4.14) are the same. However, we could not say the same thing for the solution if

F(Y(x)) would have been the weighted sum of the individual desirability functions d j(Y j(x)).

For a review of different reformulations similar to the desirability function optimization and

their solution characteristics, we refer to the study of Park and Kim [81]. �

4.4.2 A Finite Number of Nondifferentiable Points in Desirability Functions

Although in practice two-sided desirability functions include only one nondifferentiable points,

there can be more than 1 nondifferentiable point in a two-sided individual desirability func-

tion reflecting the desired behavior of function around its target point. In this subsection, we

analyze some differentiability properties of individual desirability functions when they are

allowed to include a finite number of nondifferentiable points and write the corresponding

overall optimization problem. To do this, we follow our idea of adjusted individual desirabil-

ity functions presented in Chapter 3. In Figure 4.3, an example of an individual desirability

function including more than one nondifferentiable point and its possible outcome with ap-

plying negative logarithm is shown.

When we look at its shape, we see that the desirability function shown in Figure 4.3 has a sim-

ilar tendency to target value as in s1 < 1 and s2 > 1 case of a two-sided individual desirability

function. Let us assume that there are κ j−1 (κ j ∈ R) ( j = 1, 2, . . . ,m) many nondifferentiable
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Figure 4.3: Individual desirability functions: d j(y j) ( j = 1, 2, . . . ,m) and f j(y j): after negative
logarithm applied.

points and hence, k j “pieces” in individual desirability functions of a multi-response opti-

mization problem. Here, we name the part of the function between any two nondifferenble

points by the word “piece”. We say this to prevent a possible confusion between the notions of

“piece” and “side” for individual desirability functions. In conventional desirability functions

including a single nondifferentiable point the meanings of these notions coincide, however

when we speak of a finite number of nondifferentiable points they have separate meanings as

we explain below.

In a two-sided individual desirability functions, a “side” is the part of the function between

lower and target values of the response where in between there can be a finite number of

nondifferentiable points. In Figure 4.3, functions have 2 sides but 4 pieces because of 3 non-

differentiable points. Hence, a “piece” is the part of the function lying between consecutive

nondifferentiable points. Since a unique response value corresponds to every combination of

factor levels, one ‘piece’ of the function will be active. When a piece of a individual Gde-

sirability function is active, remaining pieces are inactive. As a result of this side and piece

discussion, we can use the similar activeness argument for pieces also as we did for sides in

Chapter 3.

An individual desirability function f Y
j (= f Y

j (x, z j)) is a continuous function with respect to
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x including κ j − 1 many nondifferentiable points. This function can be expressed as fol-

lows for z j = (z j,1, z j,2, . . . , z j,κ j)
T with

κ j∑
κ=1

z j,κ = 1 ( j = 1, 2, . . . ,m) and z j,κ ∈ {0, 1} (κ =

1, 2, . . . , κ j; j = 1, 2, . . . ,m):

f Y
j (x, z j) =

κ j∑
κ=1

z j,κ f Y
j,κ(x) ( j = 1, 2, . . . ,m). (4.15)

Hence, the overall problem given in 4.14 turns into

minimize
m∑

j=1

w j

κ j∑
κ=1

z j,κ f Y
j,k(x)

subject to x ∈ [lx,ux],

f Y
j,κ(x) ≥ 0 (κ = 1, 2 . . . κ j; j = 1, 2, . . . ,m),
κ j∑
κ=1

z j,κ = 1 ( j = 1, 2, . . . ,m),

z j,κ ∈ {0, 1} (κ = 1, 2, . . . , κ j; j = 1, 2, . . . ,m).

(4.16)

This is a minimization of an additive objective function which is a convex combination of

nonconvex functions f Y
j (x, z j) with w j ≥ 0 ( j = 1, 2, . . . ,m) and

m∑
j=1

w j = 1. We note that

each functions f Y
j,κ is assumed to be a C2-function f Y

j,κ : Rn → R. Here, z j,κ is the indicator of

the active piece f Y
j,κ of f Y

j :

z j,κ =

 1, if f Y
j (x) = f Y

j,κ(x),

0, otherwise.
(4.17)

The constraint z j,κ ∈ {0, 1} can be equivalently stated as z j,κ − z2
j,κ = 0 as we used in Chapter 3

and z j = (z j,1, z j,2, . . . , z j,κ j)
T is a unit vector of length κ j. Problem (4.16) is a global optimiza-

tion problem of the nonconvex and nonsmooth objective function with possibly many local

minima and maxima. By using nonsmooth and nonconvex optimization we state the special

case of this problem with max-type functions:

minimize FY (x) (=
m∑

j=1

w j max
κ=1,2,...,κ j

f Y
j,κ(x))

subject to x ∈ [lx,ux],

FY (x) ≥ 0,

(4.18)

where x = (x1, x2, . . . , xm)T and the objective function is a convex combination of the max-

type functions f Y
j,κ j

.
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Here, our aim is to establish the link of the individual desirability functions to max-type

functions. By using this link, we propose a topological approach to a class of piecewise max-

type functions motivated by desirability functions including stability and further structural

insights, in fact, generic results presented in Chapter 5.

We complete this part by giving a necessary condition for the global optimal of the additive

overall problem (4.14) based on Clarke subdifferential. We write and evaluate the Clarke

subdifferential and the Clarke directional derivative [17] of the objective function of (4.14)

FY (x) =
m∑

j=1
w j( f j ◦Y j)(x) for the cases when f j is Lipschitz continuous and Y j is continuously

differentiable for all j = 1, 2, . . . ,m. We notice that f j may contain a finite number of non-

differentiable points as far as Lipschitzness is not deteriorated for Clarke subdifferential and

optimality condition to be valid.

Then, we use the Chain Rule and the Sum Rule at any corresponding point x ∈ Rn. Then, we

give a necessary optimality condition for the problem (4.14).

a. Clarke Subdifferential ∂ f Y (x) for f Y (x):

∂FY (x) = ∂C

 m∑
j=1

w j( f j ◦ Y j)(x)

 ⊆ m∑
j=1

w j∂C( f j ◦ Y j)(x) ⊆
m∑

j=1

w j∂ f j(Y j(x))∇Y j(x)

⊆ co
{

m∑
j=1

w jυ j∇Y j(x) | υ j ∈ ∂ f j(Y j(x)) ( j = 1, 2, . . . ,m)
}
,

(4.19)

where ∂ f j(Y j(x)) is the Clarke subdifferential of f j at Y j(x) ( j = 1, 2, . . . ,m).

b. Moreover, for the cases when f j : [l j, u j] → R is convex, the Clarke directional derivative

[17] of the composition ( f j ◦ Y j)′C(x; v j) exists for all x ∈ Rn, and all j = 1, 2, . . . ,m, v :=

(v1, v2, . . . , vn)T ∈ Rn and it satisfies

( f j ◦ Y j)′C(x; v j) ≤ f j(Y j(x) + ∇Y j(x)v j) − f j(Y j(x)). (4.20)

Then, the Clarke directional derivative ( f Y )′C(x; v) of f Y (x) :=
m∑

j=1
w j( f j ◦ Y j)(x) exists for all

x and v in Rn: m∑
j=1

w j( f j ◦ Y j)


′

C

(x; v j) ≤
m∑

j=1

w j( f j ◦ Y j)′C(x; v j) ≤
m∑

j=1

w j
[
f j(Y j(x) + ∇Y j(x)v j) − f j(Y j(x))

]
.

(4.21)

We define cl
y, cu

y , cl
x and cu

x encompassing the following coordinate functions, respectively:

(cl
y) j(x) := Y j(x) − l j, (cu

y) j(x) =: u j − Y j(x), (cl
x)i(x) := xi − lxi and (cu

x)i(x) =: uxi − xi for

all i = 1, 2, . . . , n, and j = 1, 2, . . . ,m.
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Let us suppose that x ∈ [lx,ux] is a solution of the overall problem (4.2), the functions

Y j, cl
y, cu

y , cl
x, and cu

x, are continuously differentiable, the functions f j ( j = 1, 2, . . . ,m) are

Lipschitz continuous and that Mangasarian Fromovitz constraint qualification (MFCQ) [51]

holds at x.

We know that then there exist Lagrange multiplier vectors µl,µu, τl, τu with components

µl
j, µ

u
j , τ

l
i, τ

u
i (i = 1, 2, . . . , n; j = 1, 2, . . . ,m), such that the following stationary condition

is satisfied at (x,µl,µu, τl, τu):

0 ∈
m∑

j=1

w j∂ f j(Y j(x))∇Y j(x) −
∑

j∈(J0)l
y(x)

µl
j∇(cl

y) j(x) −
∑

j∈(J0)u
y (x)

µu
j∇(cu

y) j(x)

−
∑

i∈(J0)l
x(x)

τl
i∇cl

x(x) −
∑

i∈(J0)u
x(x)

τu
i ∇cu

i (x),
(4.22)

together with the complementary conditions

µl
j(c

l
y) j(x) = 0 and µu

j(c
u
y) j(x) = 0,

τl
i(c

l
x)i(x) = 0 and τu

i (cl
x)i(x) = 0,

where i and j are active. Here, at some feasible x, (J0)l
y(x) is the set of the active indices

with Y j(x) = l j, so that ∇(cl
y) j(x) = ∇Y j(x), and (J0)u

y(x) is the set of the active indices with

Y j(x) = u j, so that ∇(cu
y) j(x) = −∇Y j(x). Moreover, (J0)l

x(x) is the set of active indices, with

(cl
x)i(x) = 0, and (J0)u

x(x) is the set of the active indices, with (cu
x)i(x) = 0. Hence, (4.22)

becomes

0 ∈
m∑

j=1

w j∂ f j(Y j(x))∇Y j(x) −
∑

j∈(J0)l
y(x)

µl
j∇Y j(x) +

∑
j∈(J0)u

y (x)

µu
j∇Y j(x). (4.23)

Remark 4.4.2. In the above formulations, the inclusions turn to equality if the functions are

Clarke regular [17]. Although we may have Clarke regularity in some cases of desirability

functions, calculating subgradients of the overall function, which is a weighted sum of indi-

vidual functions and a composite function, will not be an efficient strategy for optimization

of these functions. We can conclude that the calculation of the subgradients of the function

f Y (x) is a very difficult task, and therefore, the application of methods of nonsmooth opti-

mization requiring a subgradient evaluation at each iteration, including bundle method and its

variations [67], cannot be very effective. This is a validation of our selection of methods in

the previous chapter for our numerical experiments. �
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4.5 Desirability Functions as a Scalarization Method of Multi-Objective Prob-

lems

One way of solving a multi-objective optimization problem is to transform it into a single

objective problem by a suitable scalarization method [75]. There are linear and nonlinear

scalarization methods according to the aggregation strategy applied to combine the individ-

ual objectives. For a linear scalarization, it is possible to take the convex combination of the

different objectives and obtain a sum-based aggregation function. The desirability function

approach is in the category of a nonlinear scalarization method since geometric mean opera-

tion is used to aggregate the individual desirabilities. However, as we showed in the previous

section, desirability functions can be converted to a sum-based aggregation strategy by ap-

plying the natural logarithm. Then, the objective function becomes a convex combination of

the logarithm applied individual functions. Considering the relations between multi-response

optimization and multi-objective optimization, it can be said that these weights work in a way

that certain regions of the Pareto front could be preferred and worked on [98, 101] within

desirability functions approach.

Let us write the associated multi-objective optimization problem formulation for our problem

4.14:

minimize ( f1(Y1(x)), f2(Y2(x)), . . . , fm(Ym(x)))

subject to x ∈ [lx,ux],

Y j(x) ∈ [l j, u j] ( j = 1, 2, . . . ,m).

(4.24)

For the cases where a set of solutions {ȳ1, ȳ2, . . . , ȳτ} of multi-objective optimization problem

(4.24) is looked rather than for a single optimal solution, the so-called Pareto optimization

methods may be prefered. Within these methods, different solutions are compared by using the

notion of Pareto dominance, which is good for multi-objective comparisons and introduced

by Vilfredo Pareto [32]. Another important property for an optimal point ȳ from the set

of solutions of a multi-objective optimization problem is its being non-dominated or Pareto

optimal. This means that there is no other solution in the set which dominates it. We note that

these definitions are for the y-space. An optimal solution x̄ that satisfies ȳ = Y(ȳ) is called

efficent or Pareto optimal in factor space. The set of all non-dominated solutions is called the

Pareto front. We note that it is an important task in multi-objective optimization to identify

the Pareto front. A best solution from the Pareto front can be selected via some interactive

procedures with decision makers.
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Now, the feasible set F of (4.24) can be written in terms of the constraints given in (4.2):

F :=
{
x ∈ Rn | x ∈ X ∩ IX

}
. (4.25)

The set of Pareto-optimal solutions of (4.24) is denoted by P. For each vector of weights

w ∈ Rm, where w := (w1,w2, . . . ,wm)T , the solution set Sw of the scalar problem (4.14) is

Sw :=
{

x ∈ Rn | x ∈ [lx,ux],
m∑

j=1
w j f j(Y j(x)) = min

x̃∈F

m∑
j=1

w j f j(Y j(x̃))
}
. (4.26)

In a study of Jeyakumar [50], the relation between the Pareto-optimal set of convex composite

multi-objective problems and the feasible set of a weighted sum-based scalarization of that

problem is presented. In our case, we do not guarantee the convexity of individual functions

f j for example when they include more than one nondifferentiable points.

In [101], it is proven that the global solution obtained from the conventional desirability max-

imization without weights is a Pareto-optimal point. We present the similar theorem for the

global optimal of the weighted additive overall problem (4.14). This shows that the global

optimization of the additive overall functions result in an Pareto optimal point in factor space.

Theorem 4.5.1. A global optimal solution x̄ = (x̄1, x̄2, . . . , x̄m)T of problem (4.14) is Pareto-

optimal.

Proof. Assume that x̄ is not Pareto-optimal. Then there exists a point x∗ such that

fs(Ys(x∗)) < fs(Ys(x̄)),

for some s ∈ {1, 2, . . . ,m} and

fk(Yk(x∗)) ≤ fk(Yk(x̄)),

for k = 1, 2, . . . ,m (k , j). Herewith,

F(Y(x∗)) =

 m∑
j=1

w j f j(Y(x∗))

 < F(Y(x̄)) =

 m∑
j=1

w j f j(Y(x̄))

 . (4.27)

This is a contradiction to the assumption of x̄ minimizing F(·). Thus, x̄ must be Pareto-

optimal. �

54



CHAPTER 5

A NEW APPROACH TO DESIRABILITY FUNCTIONS:

GENERALIZED DESIRABILITY FUNCTIONS AND

TWO-STAGE (BILEVEL) METHOD

5.1 Introduction

In a desirability function approach, each response is scaled into same interval to have a unit-

less value, called its desirability, assigned by its individual desirability function. During this

process, determining the suitable desirability function for a response turns out to be a difficult

task for decision makers. We remember that there are three type of responses: (i) target-is-the

best responses, which need two-sided individual desirability functions, having lower bound,

target value and upper bound specifications, (ii) smaller-the-best and (iii) upper-the-best re-

sponses, which need a one-sided individual desirability function, with lower and upper bound

specifications. There are many functions suggested to be used as individual desirability func-

tions like Harrington’s, Derringer and Suich’s, etc. [25, 44]. As we mentioned before, when

Derringer and Suich’s desirability functions are meant, there is no nondifferentiable point in a

one-sided function, whereas a two-sided function contains at least one nondifferentiable point

which occurs at the target point.

We observe that the individual desirability functions used in practice (see for example [49,

59]) are simplistic elements of a special type, among the wide subclass of continuous selection

functions [3, 9, 51, 64], called min-type functions. Again, we have in mind Derringer and

Suich’s desirability functions, especially, the two-sided ones in our analysis throughout this

chapter. However, these results can easily be extended to other desirability functions. In the

previous chapter, we applied the negative logarithm to the overall desirability function which

was the geometric mean of ε-individual desirabilities defined for the two-sided desirability
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functions without loss of generality to overcome vanishing of these functions at the lower and

upper bounds. We remember that our individual functions after taking the negative logarithm,

f j ( j = 1, 2, . . . ,m), are always positive and have an underlying max-type continuous selection

structure, by definition as functions of y j = Y j(·) on the intervals I j.

5.2 Structural Configuration of Desirability Function

Additive separability of the objective function F(Y(x)) obtained in the previous chapter en-

ables us to consider each f (Y(x)) (= f j(Y j(x))) separately in exploring the qualitative insights

for this overall optimization problem. By introducing continuous selection functions into de-

sirability function approach, we aim to reveal the properties of the whole class of functions

that our individual f (y) ( f j(y)) is a member of, by its underlying max-type structure. This

situation leads to the definition of generalized desirability functions (GDFs). We call the neg-

ative logarithm of an individual desirability function as a generalized individual desirability

function and denote it with f g: f g(·) := f (Y(·)), where f (y) is a piecewise smooth function

containing any finite number of nondifferentiable points and Y is a smooth function of x. We

notice that like conventional individual desirability functions, generalized functions f g are

also nonsmooth composite functions [10, 109] for any j = 1, 2, . . . ,m:

f g = f ◦ Y.

Therefore, our functions f g are generalized in the sense that the conventional two-sided indi-

vidual desirability functions used in practice are a special case of them by including only one

nondifferentiable point and generalized individual desirability functions f g are again in the

category of two-sided individual desirability functions.

The overall function F(·) of the vector y = (y1, y2, . . . , ym)T , where y = Y(x) satisfies F(y) :=
m∑

j=1
w j f j(y j) for f j : I j → R ( j = 1, 2 . . . ,m). The intervals I j = [l j, u j] ( j = 1, 2 . . . ,m)

can be disjoint for all j, intersecting or even being the same for some or all j. We notice

that the graph of F in y can be connected or disconnected according to the positions of these

intervals; usually it is disconnected, and it can be connected only if all responses have the

same interval for all j. If we consider the optimization of F with respect to y, we have the

following constrained minimization:

minimize
y

F(y) = w1 f1(y1) + w2 f2(y2) + . . . + wm fm(ym)

subject to y j ∈ I j ( j = 1, 2, . . . ,m),
(5.1)
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where w1 + w2 + . . . + wm = 1 with w j ≥ 0 ( j = 1, 2, . . . ,m) representing the convex com-

binations of the individual desirability functions f . By the additive structure of the objective

function, the optimal (global) solution of this problem t will be a vector of the (global) opti-

mal solutions of f j(y), say t j ( j ∈ J): t := (t1, t2, . . . , tm)T , i.e., the vector of what we called the

target point before. This vector t is usually named as the ideal point of the overall problem

(4.14); it lies in the m-dimensional cube I ⊂ Rm:

I = X
j∈J
I j (= I1 × I2 × . . . × Im). (5.2)

In this formulation, we think each f as a max-type function of C2-differentiable functions

having a global minimum corresponding to the target point and many nondifferentiable points,

and hence, many “pieces”. However, instead of being max-type, we may assume that each f

has a piecewise max-type structure as shown in Figure 5.1 to consider a more generalized case,

(ideally but not necessarily) with a unique global minimum and with several local minima.

Figure 5.1: Example of a. piecewise min-type (red circle contains a min-type function) and b.
piecewise max-type functions.

In this study, we propose a procedure to obtain these piecewise max-type individual functions

f j ( j = 1, 2, . . . ,m) from the conventional individual desirability functions which include only

one nondifferentiable point: a suitable partitioning of the compact and connected interval I j
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into a finite number of subintervals, at each subinterval employing a max-type continuous

selection function composed of C2-differentiable functions. We present the structural and

topological properties of partitioned functions f , where such a subdivision into a family of

subintervals is guaranteed in some generic sense. In fact, the finiteness of our piecewise struc-

ture given by max-type functions can be guaranteed by the generic conditions which are called

transversality. Moreover, we will introduce generic conditions in the context of (structural)

stability. By focusing on the minimax problem of each f , we analyze the critical points of

f after partitioning and state the constraint qualifications by Morse theory. For this aim, we

consider the equivalent smooth problem by a reformulation of the minimax problem of our

max-type functions in higher dimension, i.e., R2 (or in Rn+1). We discuss the structural sta-

bility of the considered minimax problem via perturbation analysis. We consider the affects

of employing semi-infinite max-type functions on the structure of the generalized individual

desirability functions instead of the finite max-type continuous selections.

By different formulations of individual desirability functions, different structures like the ones

in [49, 59, 81] from Derringer and Suich’s, arise and make it possible to calculate the degree

of satisfaction or degree of regretfullness besides desirability. With our generalization, we

shed light on the mechanism that gives rise to a variation in the structure of functions used in

desirability approaches and we present a source of functions useful for the task of assigning a

suitable desirability function. Moreover, this kind of generalized individual functions with a

finite number of nondifferentiable points occurs in the approximation of a nonlinear conven-

tional desirability function with linear or affine functions as shown in Figure 5.2. Generalized

overall desirability function is applied as a name for any convex combination of the individual

ones where at least one of them is generalized.

5.3 A Finite Partitioning of Individual Desirability Functions

Using the assumption on the existence of a finite partitioning of the interval I j ( j = 1, 2, . . . ,m),

we will construct the generalized individual desirability function f j as a piecewise-smooth

function by employing max-type functions at each subinterval. The generic (topological)

justification of our assumption on piecewise structure in terms of transversality will also be

explained and made a bit algorithmical. Concerning the genericity of the max- and min-type

functions in the sense of composition and coordinate transformation we refer to [51, 52, 53].

In fact, for a suitable finite partitioning of the interval of the conventional individual desir-
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Figure 5.2: A conventional desirability function d j(y j) ( j = 1, 2, . . . ,m) including a finite
number of nondifferentiable points.

ability functions, we perform two steps. Let us first define the index sets that will be used

throughout this chapter:

• for the number of individual functions f j and intervals I j:

J = {1, 2 . . . ,m} with elements j ∈ J,

• for the number of subintervals of I j:

K j = {1, 2, . . . , κ j} with elements κ ∈ K j,

• for the number of function pieces at each subinterval κ:

Z j,κ = {1, 2, . . . , ζ j,κ} with elements ζ ∈ Z j,κ,

• for the total number of function pieces for each j:

Z j = {1, 2, . . . , ζ j} with elements ς ∈ Z j.

We choose a sufficiently large interval I j := [l j, u j] for the variable y j ∈ I j ( j ∈ J). We

partition this interval I j into κ j many subintervals, i.e., I j =
κ j⋃
κ=1
I j,κ, where I j,κ := [l j,κ, u j,κ]

is the interval with lower bound l j,κ and upper bound u j,κ (κ ∈ K j, j ∈ J). Furthermore,

we assume that neighboring subintervals have just boundary points in common: u j,κ = l j,κ−1

(κ ∈ K j \ {1}, j ∈ J). At each subintervals I j,κ, the function is called f j,κ, where

f j,κ := f j |I j,κ (κ ∈ K j, j ∈ J). (5.3)

By partitioning the interval I j into κ j subintervals, we are able to employ piecewise max-type

functions to structure generalized individual desirability function f j, piecewise consisting of

max-type functions f j,κ.
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A second partitioning is made for the interval I j,κ by a number of ζ j,κ subintervals, i.e., I j,κ =
ζ j,κ⋃
ζ=1
I
ζ
j,κ, where Iζj,κ := [lζj,κ, u

ζ
j,κ] is the interval with lower bound lζj,κ and upper bound uζj,κ (ζ ∈

Z j,κ, κ ∈ K j, j ∈ J). Here, uζj,κ = lζ−1
j,κ (ζ ∈ Z j,κ \ {1}, κ ∈ K j, j ∈ J). At each subinterval Iζj,κ, the

function is called f ζj,κ, where

f ζj,κ := f j,κ |Iζj,κ
(ζ ∈ Z j,κ, κ ∈ K j, j ∈ J). (5.4)

By this second partitioning at each subinterval I j,κ, we structure f j,κ as max-type functions

composed of C2-differentiable functions f ζj,κ as in Figure 5.3. We denote the total number of

functions f ζj,κ for each individual f j on I j by ζ j: ζ j :=
κ j∑
κ=1
ζ j,κ.

Figure 5.3: A piecewise max-type function obtained from our partitioning procedure.

After these two steps of partitioning, we arrive at the generalized desirability functions con-

sisting of the following functions:

• the C2-smooth functions f ζj,κ(·) : Iζj,κ → R (Iζj,κ ⊂ R) which we call generating desirabil-

ity functions,

• piecewise smooth f j,κ(·) : I j,κ → R (I j,κ ⊂ R) of ζ j,κ many f ζj,κ functions,

• piecewise max-type functions f j(·) : I j → R (I j ⊂ R) which we call generalized indi-

vidual desirability functions, composed of κ j many functions f j,κ,

• additive function F(·) : I → R, which we call generalized overall desirability function,

i.e., the weighted sum of the generalized individual desirability functions where I ⊂ Rm

is defined as in (5.2).

Remark 5.3.1. In this study, we consider all the functions f j, f j,κ and f ζj,κ (ζ ∈ Z j,κ, κ ∈ K j, j ∈

J) to be globally defined on R. Our various model functions were originally defined on
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wider open sets which include our considered intervals and parallelepipeds. They came from

regression, experimental design and global optimization with its critical manifolds. Then,

they have become restricted. We note that all the analysis, which we present in this chapter,

can be used for the conventional desirability functions and their optimization problems by

putting κ = 1 for one-sided individual desirability functions, κ = 2 for two-sided individual

desirability functions, and ζ j,κ = 1 for both cases. �

5.3.1 Optimization

The minimization of functions f j,κ in y for a fixed κ ∈ K j and for a fixed j ∈ J is a finitely

constrained nonsmooth minimax problem:

minimize
y

f j,κ(y)

subject to y ∈ I j,κ,
(5.5)

and, in other words,

minimize
y∈I j,κ

maximize
ζ∈Z j,κ

f ζj,κ(y). (5.6)

Let the solutions of (5.5) be called t j,κ (κ ∈ K j) for each j ∈ J. Now, the minimization of

generalized individual desirability functions f j(y) is a discrete optimization problem, actually,

an enumeration problem, over all κ, for each regarded j:

min
y∈I j

f j(y) := min{ f j,1(t j,1), f j,2(t j,2), . . . , f j,κ j(t j,κ j)} = min
κ∈K j

f j,κ(t j,κ). (5.7)

By solving these problems to find the minimum of f j(y) per given j ∈ J, we will obtain a set

of solutions, say t j, which are, in fact, t j := t j,κ̄ j at a certain κ̄ j ∈ K j. These solutions are the

target points as we discussed before. Hence, the vector t := (t1, t2, . . . , tm)T is the ideal point

of the overall problem (4.14) that lies in the m-dimensional cube I.

The piecewise smooth structure of the generalized individual desirability functions f j(·) to-

gether with the additive separability (also called: linearity) of the regarded generalized overall

desirability function F(·) enable us to be concerned about the local properties of the max-type

functions f j,κ(·) and their optimization problem (5.5), to achieve results and gain qualitative

insights into the full-dimensional problem (5.1) in y.

5.3.2 Structural and Topological Analysis

Our max-type function f j,κ can be constructed through a mechanism called continuous se-

lection from the generating functions f ζj,κ (ζ ∈ Z j,κ, κ ∈ K j, j ∈ J), which can be linear or
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nonlinear, convex or nonconvex but C2-differentiable, and hence, Lipschitz continuous. The

set of all continuous selections of C2-functions f ζj,κ may be represented by

CS( f 1
j,κ, f 2

j,κ, . . . , f ζ j,κ
j,κ ). (5.8)

For structuring max-type functions f j,κ, we apply the special type continuous selection, called

the max-type based on functions f ζj,κ:

f j,κ(y) := max
ζ∈Z j,κ

f ζj,κ(y), (5.9)

and its particular index set

(Z0) j,κ(y) := {ζ ∈ Z j,κ| f ζj,κ(y) = f j,κ(y)}, (5.10)

where y ∈ I j,κ, κ ∈ K j and j ∈ J. This finite set (Z0) j,κ(y) is called the active index set of f j,κ at

the point y. We have

f j,κ(y) = f ζy
j,κ(y), where ζy (= ζy, j,κ) ∈ (Z0) j,κ(y). (5.11)

Because of the finiteness and compactness of Z j,κ, the maximum is attained in (5.10), and

|(Z0) j,κ(y)| ≥ 1 for all y ∈ I j,κ.

These max-type functions f j,κ are nondifferentiable but Lipschitz continuous by Hager’s The-

orem [43] and they are almost everywhere differentiable in the sense of Lebesgue measure,

i.e., a set of Lebesgue-measure 0 by Rademacher’s Theorem [85]. Moreover, they are posi-

tive and bounded by 0 from below, piecewise smooth generically and not necessarily convex.

Although they may lack convexity, we can call the structure of them as convex-like since, via

a pathfollowing [41] along y, we select as active the function which has the biggest slope

(derivative).

Our entire piecewise max-type function f j is a piecewise continuous selection nonsmooth

function which may not be convex and Lipschitz continuous but again is almost everywhere

differentiable (in the sense of Lebesgue measure), since ζ j and κ j are finite for each j ∈ J.

Moreover, we can say the set of all nondifferentiable points of f j is a nowhere dense set.

We can represent the Clarke subdifferential at every point y ∈ I j,κ of f j,κ by

co {∇ f ζj,κ(y) | ζ ∈ (Z0) j,κ(y)}, (5.12)

where (Z0) j,κ(y) (κ ∈ K j, j ∈ J) is the active index set given in (5.10). Each function f j,κ is

directionally differentiable, and its directional derivative ( f j,κ)′(y; v) at a given point y ∈ R in
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the direction v ∈ R is a max-type continuous selection of the linear functions ( f ζj,κ)
′, i.e., the

first-order derivative of ( f ζj,κ) with respect to y:

( f j,κ)′(y; v) := max
ζ∈Z j,κ(y)

( f ζj,κ)
′(y)v. (5.13)

We can treat our piecewise max-type function f j as a 1-dimensional compact and connected

piecewise C2-smooth manifold, i.e., a creased manifold. Moreover, each max-type function

f j,κ can itself also be treated as a creased (piecewise) 1-dimensional manifold. More informa-

tion on connection to manifolds and differential topology can be found in studies of paramet-

ric optimization [40, 51, 52, 94]. Obviously, the active pieces of f j,κ, i.e., f ζj,κ, are C2-smooth

manifolds globally or, when restricted on intervals, with boundary (points).

Remark 5.3.2. We note that both the function f j and the intervals I j can also be treated as a 1-

dimensional creased manifolds. This is related with the fact that any connected 1-dimensional

piecewise manifold can be be written as a finite union of closed intervals. In particular, the

creases in I j meet exactly along the strata of dimension less than 1. Moreover, in constructing

the max-type functions f j,κ : R → R over the manifolds I j,κ, we used the fact that the active

functions f ζy
j,κ (ζy ∈ Z| j,κ(y)) are, generically, transversally intersecting at the point (y, f ζy

j,κ)

where the active function changes for the next ζ. For more information on transversality

theory, we refer to [51, 89, 107]. This means that the derivatives ( f ζj,κ)
′(y) of active functions

are affinely independent at any y ∈ I j,κ. Hence, the index set of active functions at any y ∈ I j,κ

will locally be constant. We can use this transversality for a finite (piecewise) partition of I j,κ

into subintervals Iζj,κ. This finite strucutre by pieces is topologically stable under arbitrarily

small perturbations. �

We show the effect of transversality on the structural stability in Figure 5.4. In (a), we see that

stability is protected with respect to the C2-small perturbations. In (b), an arbitrarily slight

perturbation causes an increase in the number of critical points and combinatorial change of

the piecewise structure deteriorates the stability.

From here to the end of this subsection, we continue with a simplification in our notation. To

this aim, let us for any fixed j ∈ J and fixed κ ∈ K := K j put f (·) := f j,κ(·), f ζ(·) := f ζj,κ(·),

l := l j,κ, u := u j,κ and Z := Z j,κ, preserving our basic smoothness structures and assumptions.

Nondifferentiability of the max-type functions f necessitates that we use a continuous local

coordinate transformation to understand their local behavior via the notion of nondegeneracy

of a critical point which is a generic property for continuous selection functions [51, 52, 53].
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Figure 5.4: (a) Strong and Structural Stability, (b) Instability; in the sense of critical points
and optimization theory (Morse theory).

We note that for a detailed background information for this section and especially background

for Morse theory we refer to the excellent book of Jongen et al. [51].

5.3.3 Critical Points and Constraint Qualifications

To analyze the critical points and state the constraint qualifications, we proceed with the

equivalent smooth problem of (5.5) obtained by a reformulation given in the higher dimension

of R2. In this subsection, at any κ and j, the max-type functions ( f j,κ(·)) = f (·) have the form:

f (y) := max
ζ∈Z

f ζ(y), (5.14)

and their active index sets are globally now, denoted by

Z0(y) := {ζ ∈ Z | f (y) = f ζ(y)} (y ∈ [l, u]). (5.15)

Remark 5.3.3. We recall that the functions f representing our max-type functions and the

functions f ζ are considered to be globally defined functions on R, i.e., y ∈ R, in this section.

However, we could also refer to some space Rp (p ∈ N) instead of R and define y ∈ Rp as

a higher-dimensional variable. We may diversify the dimension p j, for the different vectorial
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responses y j ∈ R
p j . In case of such kind of generalizations, our main results presented in this

subsection and in the following ones will still hold true. �

Now, the constraints of problem (5.5) are cl(y) ≥ 0 and cu(y) ≥ 0, where cl(y) := y − l and

cu(y) =: u − y. The feasible set M := M[c] is

M[c] = {y ∈ R | c(y) ≥ 0} (5.16)

with c(y) := (cl, cu)T (y), where c(y) = (c1(y), c2(y))T . Let us define the set of active indices

for our feasible set M: J0(y) := {  ∈ J | c (y) = 0} (y ∈ M), where J := {1, 2}. Hence, the

restricted f |M stands for the optimization problem (5.5).

We know that the max-type function f : R → R contains nondifferentiable points, where

the function is lacking of being C2-differentiable. However, by a reformulation of f and its

optimization problem given in (5.5) in the by 1 higher-dimensional space, i.e., R2, the problem

becomes C2-differentiable. We use a “ ˇ ” symbol over the notations of vectors, functions, etc.,

that are then defined in R2 in correspondence to our usual notations.

In R2, the equivalent optimization problem of (5.5) can be written as follows:

minimize
y̌

f̌ (y̌)

subject to č(y1) ≥ 0,
(5.17)

where y̌ := (y, y2)T = (y1, y2)T is our vector in R2 with y = (y1), and

f̌ (y̌) = f̌ (y, y2) := y2 (5.18)

is the corresponding height function minimized on the epigraph of f |M:

E( f |M) := {(y, y2) ∈ R2 | y ∈ M[c], f |M(y) ≤ y2}. (5.19)

The constraint function of (5.17) is č(y) := (cl, cu, y2 − f ζ)T (y) (ζ ∈ Z), where č(y) =

(č1(y), č2(y), č3(y))T . Now, the corresponding feasible set M̌ := M̌[č] := {y̌ ∈ R2 | c (y1) ≥

0 (  ∈ J), y2 − f ζ(y1) ≥ 0 (ζ ∈ Z)} can be written as:

M̌[č] := {y̌ ∈ R2 | č(y) ≥ 0}. (5.20)

We note that f̌ : R2 → R is a linear function and our max-type function f appears now as a

set of additional inequalities in M̌, i.e., č3(y) = y2 − f ζ(y). Here, instead of being concerned

with the optimization problem f |M, we consider the minimization of the height function f̌ on

the epigraph E( f |M) of f |M.
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For our further analysis, we need the regularity of M̌ ⊂ R2 regular [51, 52, 107]. This is

satisfied since the feasible M itself by definition fulfills this regularity condition of linear in-

dependence constraint qualification (LICQ), i.e., the following family of the gradient vectors:

(c′(y), 0)T (  ∈ (J0)(y)) and (−( f ζ)′(y), 1)T (ζ ∈ Z0(y)), (5.21)

are linearly independent at every point y̌ = (y, y2)T ∈ M̌ with y2 = f (y). For the regularity

of M̌ at the points y̌ with y2 , f (y), the feasible set M of the problem in R has to be regular

necessarily.

Definition 5.3.4. [51] An element ȳ ∈ M = M[c] is called a (nondegenerate) critical point

for the problem f |M, if (ȳ, f (ȳ)) is a (nondegenerate) critical point for the problem f̌ |M̌. �

Remark 5.3.5. We note that if ¯̌y := (ȳ, ȳ2)T = (ȳ1, ȳ2)T ∈ M̌ is a critical point for f̌ |M̌, then

necessarily we have ȳ2 = f (ȳ). �

Definition 5.3.6. [51] The Lagrange function L : R→ R of problem f |M is given by

L(y) :=
∑

ζ∈Z0(ȳ)

λζ f ζ(y) −
∑
∈J0(ȳ)

µ c (y), (5.22)

with the Lagrange multipliers µ  ∈ R (  ∈ J0(ȳ)) and λζ ∈ R (ζ ∈ Z0(ȳ)). �

Theorem 5.3.7. [51] We state a necessary optimality condition that ȳ ∈ M is a critical point

for f |M, i.e., there exist µ  ≥ 0 (  ∈ J0(ȳ)) and λζ ≥ 0 (ζ ∈ Z0(ȳ)) such that 0

1

 =
∑
∈J0(ȳ)

µ 

 c′(ȳ)

0

 +
∑

ζ∈Z0(ȳ)

λζ

 −( f ζ)′(ȳ)

1

 . (5.23)

Definition 5.3.8. [51] A critical point ȳ for f |M is called a Karush-Kuhn-Tucker point if

µ  ≥ 0 and λζ ≥ 0 (ζ ∈ Z0(ȳ),  ∈ J0(ȳ)). �

Definition 5.3.9. [51]A critical point ȳ for f |M is called a nondegenerate critical point (non-

degenerate Karush-Kuhn-Tucker), if and only if the following conditions hold (respectively):

(ND1): µ  , (>)0 and λζ , (>)0 (ζ ∈ Z0(ȳ),  ∈ J0(ȳ)),

(ND2): VT∇2L(ȳ)V is nonsingular, where L is the Lagrange function given in (5.22) and V is

a matrix whose columns form a basis for tangent space T ⊆ R, defined by

T :=
⋂

∈J0(ȳ)

ker c′(ȳ) ∩
⋂

ζ∈Z0(ȳ)

ker ( f ζ)′(ȳ).
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In order to obtain (ND1) and (ND2), we first write down the usual nondegeneracy conditions

at the critical point (ȳ, f (ȳ)) of the problem f̌ |M̌. We note that M̌ ⊂ R2. Then we take into

account that f̌ is a linear function and that the tangent space of
∑̌

at (ȳ, f (ȳ)) equals T × {0},

0 ∈ R, where
∑̌

is the stratum of M̌ through (ȳ, f (ȳ)).

The quadratic index at a nondegenerate critical point is defined as the (Morse) index, the

number of negative eigenvalues, of ∇2L(ȳ)|T . It is easily seen that ȳ ∈ M is a local minimum

for f |M if and only if (ȳ, f (ȳ)) is a local minimum for f̌ |M̌. Consequently, a nondegenerate

critical point ȳ for f |M is a local minimum for f |M if and only if in (ND1) and (ND2), we have

µ  > 0 and λζ > 0 (ζ ∈ Z0(ȳ),  ∈ J0(ȳ)) and VT∇2L(ȳ)V is positive definite (meaning that the

quadratic index is zero).

5.3.4 Structural Stability

We present the global structural stability properties for the nonsmooth minimax problem (5.5)

by perturbation analysis. We call this problem as P(F , c) in this subsection:

P(F , c) : minimize f on M[c], (5.24)

where F := ( f 1, f 2, . . . , f `)T , and the max-type objective function f (·) is:

f (y) = max
ζ∈Z

f ζ(y).

The feasible set is M[c] = {y ∈ R | c(y) ≥ 0}, with c(y) = (cl, cu)T (y), i.e., (c1(y), c2(y))T =

(cl(y), cu(y))T , where cl(y) = y − l and cu(y) = u − y, and “≥” is understood coordinatewise.

As we did before, again we assume that the defining functions of our problem (5.24), i.e.,

f ζ (ζ = 1, 2, . . . , `) and c  (  = 1, 2) are of class C2.

For the lower level set due to any functional value a ∈ R, we shall use the notation

La(F , c) := {y ∈ M[c] | f (y) ≤ a}. (5.25)

It is very natural that two optimization problems are topologically equivalent whenever glob-

ally all the descent flows in one problem are carried over into the corresponding descent flows

in the other one. By using this idea, we introduce the following concept which actually gives

an equivalance relation.

Definition 5.3.10. The optimization problems P(F 1, c1) and P(F 2, c2) with f 1(y) := max
ζ∈Z

f 1,ζ(y)

and f 2(y) := max
ζ∈Z

f 2,ζ(y) are equivalent if there exist continuous mappings ρ : R × R → R

and σ : R→ R with the properties P1, P2, and P3:

67



P1. For every t ∈ R, the mapping ρt : R → R is a homeomorphism from R onto itself,

where ρt(y) := ρ(t, y).

P2. The mapping σ is a homeomorphism from R onto itself and σ is monotonically increas-

ing.

P3. ρt[Lt(F 1, c1)] = Lσ(t)(F 2, c2) for all t ∈ R. �

Referring to the concept of equivalence, we give the condition on structural stability of an

optimization problem as follows:

Definition 5.3.11. The optimization problem P(F , c) is called structurally stable if there ex-

ists a C2
S -neighborhood O of (F , c) with the property that P(F , c) and P(F̃ , c̃), with f (y) :=

max
ζ∈Z

f ζ(y) and f̃ (y) := max
ζ∈Z

f̃ ζ(y), are equivalent for all (F̃ , c̃) ∈ O with F̃ := ( f̃ 1, f̃ 2, . . . , f̃ `)T .

�

The C2
S -topology for the product (C2(R,R))`+2 mentioned above is defined as the product

topology generated by the strong (or Whitney-) C2-topology C2
S on each factor C2(R,R) [46,

51]. A typical base-neighborhood of a function η ∈ C2(R,R) is the set η + Wε , where Wε is

defined as follows with the aid of a continuous ε : R→ R with ε(y) > 0 (y ∈ R):

Wε :=
{
ϑ ∈ C2(R,R) | |ϑ(y)| + |ϑ′(y)| < ε(y) ∀y ∈ R

}
. (5.26)

Since structural stability turns out to be a very natural concept, our next result emphasizes

again the importance of the constraint qualification of Mangasarian and Fromovitz [41, 51,

104, 105] on the one hand, and the concept of strong stability according to Kojima [61] on

the other hand.

Theorem 5.3.12. The optimization problem P(F , c) with compact feasible set M[c] is struc-

turally stable if and only if the following three conditions C1, C2 and C3 are satisfied:

C1. The Mangasarian-Fromovitz constraint qualification (MFCQ) is satisfied at every point

of M[c].

C2. Every Kuhn-Tucker point of P(F , c) is strongly stable in the sense of Kojima.

C3. Different Kuhn-Tucker points have different ( f−) values.
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Remark 5.3.13. Fortunately, the cl(y) and cu(y) of our problem (5.24) as being the linear

bound constraints for y are always linearly independent vectors satisfying LICQ, and hence,

MFCQ. �

Remark 5.3.14. We note that similar to our Remark 5.3.3, the structural stability analysis

presented here in y for the optimization problem (5.24) could be generalized to y j ∈ R
p j ( j =

1, 2, . . . ,m) and in the presence of M[h̄, ḡ] instead of M[ḡ] (= M[c]), h̄ representing finitely

many equality constraint functions. �

In Chapter 4, we reformulated the optimization problem of overall desirability functions,

defined as the geometric mean of the individual desirability functions. What this has yielded

is the additive overall function (4.7), which is the weighted sum of the individual functions

introduced as the negative logarithm of the individual desirability functions.

The additive separability structure of this objective function makes it possible to find an ap-

proximative, in fact, a compromised solution for the multi-objective optimization problem.

Let us remember that we represented individual desirability functions by f g(·) := f (Y(·)).

By defining y = Y(x) we wrote individual desirability functions f as a function of y and

showed that under which conditions they are members of a class of (finite) piecewise smooth

functions, namely, piecewise max-type functions.

5.4 A New Approach for Multi-objective Optimization: Two-Stage (Bilevel)

Method

If we consider the optimization problem (5.1) (in y only), its solution will be the ideal solution

t := (t1, t2, . . . , tm)T . We suggest as one of various approaches of this thesis: (i) First to find

the factor levels xt
j := ((xt

j)1, (xt
j)2, . . . , (xt

j)n)T ( j = 1, 2, . . . ,m) corresponding to the ideal

solutions t j, i.e., t j := Y j(xt
j) for each individual function f . (ii) Then to compute the convex

hull of these optimal solutions xt
j ( j = 1, 2, . . . ,m) and determine some compromised solution

x̄ := (x̄1, x̄2, . . . , x̄n)T which may not be the global one for the overall problem given in the

previous chapter but a close one.

In other words, we firstly solve a representation problem of searching for an m × n design

matrix

Xt := (xt
1, x

t
2, . . . , x

t
m)T (5.27)

by finding the zero of the system of Y(Xt) − t, where Y = (Y1,Y2, . . . ,Ym)T . Then we take
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the convex hull to obtain a compromised factor level x̄ := (x̄1, x̄2, . . . , x̄n)T , i.e., the solution

of ȳ := Y(x̄), where ȳ := (ȳ1, ȳ2, . . . , ȳm)T is a compromised solution in y-space. We call this

approach a two-stage method, because it is similar to the other bilevel approaches [20]: First,

we consider the optimization problem only in y as the lower level problem stated in previous

chapter; then, by introducing x into our analysis, we pass to the upper level of this problem,

which contains a representation problem.

Let us recall that per y j, we are in a compact interval I j = [l j, u j] ( j = 1, 2, . . . ,m), i.e.,

feasible sets of the lower level problem and the individual functions f j(y j) are continuous

and nonsmooth. By the following assumption, we may think that the space X ⊂ Rn of the

factor variable x is compact, in fact, of the Cartesian product form X = [lx,ux] =
n
X

i=1
Xi with

Xi := [lxi , uxi] (i = 1, 2, . . . , n) being compact intervals. In this case, X is a parallelepiped

and, hence, for each j = 1, 2, . . . ,m, the image Y j(X) is again an interval which can be defined

as our interval I j, i.e., Y j(X) := I. We introduce

Xappr := co{xt
1, x

t
2, . . . , x

t
m}, (5.28)

where the points xt
j ( j = 1, 2, . . . ,m) are solutions of the zero problems Y j(x) − t j = 0 ( j =

1, 2, . . . ,m) together with the vector-valued condition x ∈ X, which can be represented further

by 2n linear inequality constraints. Altogether, we arrive at 2n + m scalar-valued constraints.

We note that Xappr in convex, in fact, a polytope and, hence, because of the convexity of

X, it holds Xappr ⊆ X. Here, we have a discrete structure in the entire x-space, given by

the vertices of Xappr, and could further optimize (select) over the full polytope Xappr in that

space. The weights may, e.g., come from the exponents given in the conventional desirability

function. Indeed, we could choose x̄ =
m∑

j=1
w jxt

j. The main advantage of this coupling is that

we would get an optimizer in that polytope within the full dimensions of Rn. However, since

still the variables are treated in a separated way, this new approach is just an approximation to

our original problem. This approximation can be simplifying very much, because of the joint

dependence of all the y j = Y j(x) ( j = 1, 2, . . . ,m) on x and because of the nonlinearity and

nonconvexity of the function f j and Y j ( j = 1, 2, . . . ,m). It can be motivated by game theory

and introduces Xappr as a set of compromise solutions.

Another new opportunity is to further look for conditions to apply versions of the Intermediate

Value Theorem directly in the full dimensions of the vector variable y, rather than in each

dimension with the difficulty of selecting the suitable optimizer in the x-space then. In more

general terms, we may also speak of the Implicit Function Theorem. Here, the structure of

70



the functions Y j, e.g., the relations between the xi (i = 1, 2, . . . , n) and the y j ( j = 1, 2, . . . ,m),

is an important issue. We must have an (arcwise) connected domain of the vector-valued

function Y(x) (= (Y1(x),Y2(x), . . . ,Ym(x))T ) , which we equate with (ȳ1, ȳ2, . . . , ȳm)T , and

hence, of each of its components Y j(x) ( j = 1, 2, . . . ,m).

Let us summarize that this initial, pioneering and approximative approach has consisted of

a separate consideration of the components y j, combined with an enumeration (minimizing

in a set of finitely many indices) along the pieces in each of these components, of a possible

application of the Intermediate Value Theorem on the corresponding Y j(x) and, finally, of a

polytope and selection argument in Xappr, in order to find a compromise solution x̄ of the

given problem.

In any case, what can be done is:

i. We define a weighed sum of the components Y j(x), e.g., by the exponents that we can take

from the desirability function as the weights, and to apply the Intermediate Value Theorem

on corresponding real-valued function, then our zero problem of finding x = x̄ looks, e.g., as

follows:

(
m∑

j=1

w jY j)(x) =

m∑
j=1

w jȳ j. (5.29)

ii.We approach the system of 2n +m equations: Y j(x)− ȳ j = 0 ( j = 1, 2, . . . ,m) and x ∈ X, and

treat it with the help of the theory of Inverse Problems, e.g., by the Inverse Function Theorem

or the Implicit Function Theorem. We select

x̄ =

m∑
j=1

ŵ jxt
j (where ŵ j ≥ 0 ( j = 1, 2, . . . ,m) and

m∑
j=1

ŵ j = 1), (5.30)

e.g.,

x̄ =
m∑

j=1
w jxt

j, (where ŵ j = w j ( j = 1, 2, . . . ,m)) or, especially

x̄ = 1
m

m∑
j=1

xt
j, (where ŵ j = 1 for all ( j = 1, 2, . . . ,m)).

(5.31)

Remark 5.4.1. We note that global optimums of our problems from Chapter 3 are not in

the convex hull of the set of compromised solutions in both cases. As a future work, we will

use some well known metrics from the literature instead of the convex hull operation in our

two-stage method to increase the efficiency of the method. �
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CHAPTER 6

EXTENSIONS TO OPTIMIZATION OF GDFs

6.1 Introduction

In Chapter 5, we partitioned the interval of the individual logarithmic desirability function

f j(y) into finitely many subintervals and employed max-type functions at each subintervals

to obtain the generalized individual desirability functions. We considered the minimiza-

tion problem of the max-type function at each subinterval, a finitely constrained minimax

problem. In this chapter, we extend this idea by employing semi-infinite max-type func-

tions at each subinterval. By doing this, we have the theoretical advantage of using notions

of generalized semi-infinite programming (GSIP) [107, 105] and disjunctive optimization

[12, 39, 45, 51, 110] in our attempt of robustification the optimization problem of generalized

overall desirability functions. Robust case of this optimization is needed because regression

may be done under lack of knowledge about the underlying model and scenarios or there can

be noise in the data, and hence, the responses would be uncertain. We conclude this chapter

by a discussion on robustness in terms of critical point theory and its usage in [26].

6.2 Partitioning by Semi-infinite Max-type Functions

To obtain the generalized individual desirability functions, we partitioned the interval I j =

[l j, u j] of the individual logarithmic desirability function f j(y) into finitely many subintervals

κ, where at each pair ( j, κ) (κ ∈ K j, j ∈ J) the function f j,κ(y) is a creased manifold with

compact and connected parts of C2-smooth submanifolds f ζj,κ (i.e., graph ( f ζj,κ)), indexed by ζ

from a finite index set Z j,κ. Hence, the minimization problem (5.5) of the max-type functions

f j,κ(y) = max
ζ∈Z j,κ

f ζj,κ(y) for a fixed κ ∈ K j and for a fixed j ∈ J was considered as a finitely

constrained minimax problem for y ∈ I j,κ.
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Here, again for a given pair ( j, κ) (κ ∈ K j, j ∈ J), we regard the creased manifold with an

infinite (usually, uncountable) number of competitors ζ for the “max” over each subinterval κ:

f j,κ(y) := max
ζ∈Z j,κ

f j,κ(y, ζ). (6.1)

We note that based on all the functions f j,κ(·, ζ) (ζ ∈ Z j,κ), the entire function f j,κ(y) will be

a “more smooth” piecewise function. That smoothing is some kind of envelope effect of the

piecewise maximum with infinitely many (usually, a continuum of) pieces as in (6.1). The

optimization problem of this semi-infinite max-type objective function f j,κ is:

minimize
y

f j,κ(y)

subject to y ∈ I j,κ,
(6.2)

which is a general minimax problem with ζ ranging over an infinite compact set Z j,κ:

minimize
y∈I j,κ

maximize
ζ∈Z j,κ

f j,κ(y, ζ). (6.3)

We can describe the feasible set of this problem implicitly by finitely many constraints:

Z j,κ := M[h j,κ, g j,κ
] ⊆ R.

Let us underline that these index manifolds (with boundary) can also be placed in Rp j,κ (p j,κ ∈

N), i.e.,

Z j,κ := M[h j,κ, g j,κ
] ⊆ Rp j,κ .

Now, let solutions of (6.3) be called t j,κ (κ ∈ K j) for each j ∈ J. Similarly to the finite

case explained above, the minimization of f j(y) is a discrete optimization problem, actually,

an enumeration problem, over all κ, for each regarded j. By solving these problems to find

the global minimum of f j(y) per given j ∈ J, we will obtain a set of solutions, say t j ( j =

1, 2 . . . ,m), which are, in fact, t j := t j,κ̄ j for a certain κ̄ j ∈ K j. Hence, the solution of the full

dimensional problem ((5.1)) in the variable y is t := (t1, t2, . . . , tm)T .

6.3 Robustness in the Optimization of Desirability Functions

For the cases when the regression is done under lack of knowledge about the underlying model

and scenarios or if there is noise in the data, etc., the responses will be uncertain. In fact, it

is quite natural to think uncertainty together with the notion of response since a response is

an estimated value, i.e., the mean of several response values obtained during the experimental
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design. This uncertainty about parameters y j ∈ I j ( j = 1, 2, . . . ,m) can be represented by

allowing the inclusion y ∈ Y(x), rather than the equation y = Y(x), where y = (y1, y2, . . . , ym)T

and Y(x) = (Y1,Y2, . . . ,Ym)T (x). Hence, Y(x) becomes a set-valued x-dependent mapping for

y meaning that each Y j(x) ( j = 1, 2, . . . ,m) is allowed to be a multi-valued index set for y j

rather than a single-valued (vectorial) function.

To handle all these uncertainties in the responses, we introduce the robust (i.e., worst-case)

formulation of the inequality constraints giving rise in an equivalent form of our optimiza-

tion problem ((5.1)). This robust optimization of the generalized overall desirability function

F(y) =
∑
j=1

w j f j(y j) becomes a refined (disjunctive) generalized semi-infinite program (GSIP).

For more information on robust optimization, we refer to [11, 33] and for disjunctive opti-

mization to [12, 39, 45, 51, 110].

Remark 6.3.1. We define the function G(x) := inf{F(y) | y = Y(x) (x ∈ [lx,ux])}, which may

be considered as a special case of marginal function [51, 78]. �

The optimization problem of the generalized desirability functions depending on both x and

y can be written as follows:

minimize
x

F(y)

subject to y = Y(x) ∩ I,

x ∈ [lx,ux].

(6.4)

Now, we reformulate our optimization problem (6.4) with an uncertainty set of responses Y(x)

as the minimization of the height variable ϕ:

minimize
ϕ,x

ϕ

subject to F(y) ≤ ϕ ∀y ∈ Y(x) ∩ I,

x ∈ [lx,ux].

(6.5)

This problem can be refined componentwise by using the additive definition of F(y) and

referring to the termwise height vector ϕ := (ϕ1, ϕ2, . . . , ϕm)T as follows:

minimize
ϕ,x

ϕ1 + ϕ2 + . . . + ϕm

subject to f j(y) ≤ ϕ j ∀ y ∈ Y j(x) ∩ I j,

∀ j ∈ J,

x ∈ [lx,ux],

(6.6)

where f j(y) are the generalized individual desirability functions having a piecewise max-type
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structure. This problem is equivalent to

minimize
ϕ,x

ϕ1 + ϕ2 + . . . + ϕm

subject to min
κ∈K j

max
y∈Y j(x)∩I j,κ

f j,κ(y) ≤ ϕ j ∀ j ∈ J,

x ∈ [lx,ux].

(6.7)

Because of the min-terms, problem (6.7) can be represented as a nonsmooth GSIP problem.

Using the definition (6.1), we may write this nonsmooth GSIP program as a smooth GSIP

problem by a disjunctive, i.e., “∃” connected model component:

minimize
ϕ,x

ϕ1 + ϕ2 + . . . + ϕm

subject to f j,κ(y, ζ) ≤ ϕ j ∃ κ ∈ K j,

∀ y ∈ Y j(x) ∩ Iζj,κ,

∀ ζ ∈ Z j,κ,

∀ j ∈ J,

x ∈ [lx,ux].

(6.8)

We note that this problem (6.8) is equivalent to

minimize
x

∑
j∈J

minimize
κ∈K j

max
ζ∈Z j,κ

y∈Y j(x)∩Iζj,κ

f j,κ(y, ζ)

subject to x ∈ [lx,ux].

(6.9)

This means that up to the choice represented by κ, for all feasible y j ∈ Y j(x) and all feasible

ζ ∈ Z j,κ, the inequality constraints in (6.8) have to hold. By minimizing the max
y,ζ
f j,κ(y, ζ)

over x and ζ like this, we encounter the “worst-case” [62, 108], and hence, we perform robust

optimization as in (6.9). We are uncertain about the responses Y j(x), which is the case when

the vector of the y j lies in a set rather than being a vector. We can consider two cases for the

structure of the set Y(x) of uncertain response vectors:

Special Case: The Cartesian product of the sets of real numbers Y j(x): Y(x) :=
m
X
j=1

Y j(x),

where Y j(x) usually are intervals. Then, Y j(x) is a parallelepiped. In this special case, Y j(x) is

parallel to the coordinate axes.

General Case: Polyhedral or ellipsoidal (where we can take into account the correlations of

the Y j), or any other compact manifolds with a generalized boundary. We note that, e.g.,

ellipsoids can also be assigned to clusters of variables y j [62]. In this general case, Y j(x) does

not need to be, and typically is not, parallel to the coordinate axes.
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For closer discussion on configurations of such kinds of uncertain set and confidence regions,

we refer to [51, 62].

6.4 Robustness vs. Stability of the Desirability Functions

In the previous section, we robustify the overall desirability optimization problem when un-

certainty in responses is suspected. Also, we remember that, in the previous chapter, we

checked the stability conditions of generalized individual desirability functions by consid-

ering perturbations in factors. However, in [26], we find the usage of the robustness notion

having a rather opposite meaning to what we call strong stability (in the sense of Kojima [61])

or structural stability (in the sense of Jongen et al. [41, 51, 52]). In that study, by looking at

the steepness of figure of the overall desirability function with respect to the factor variables,

the robustness of the product is decided. When the figure of the overall desirability is more

flat the product is considered to be robust (see Figure 6.1 a.), when it is steep, then it is called

nonrobust (see Figure 6.1 b.).

Figure 6.1: Overall desirability of a a. robust and b. nonrobust product in terms of Derringer
[26].

However, in the sense of critical point theory, a rapid (steep) hill basically means stability. A

relatively flat hill is nonstable in terms of perturbations as seen in Figure (5.4) from Chapter

5 for our case of piecewise defined functions.
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CHAPTER 7

CONCLUSION

Desirability functions approach is one of the most common methods of multi-response opti-

mization. There are many different types of desirability functions used in practice; and opti-

mization of these functions continues to be an important research area. In this thesis, we deal

with many aspects of optimization of Derringer and Suich’s type desirability functions, we

both analyze the structure of the functions themselves and propose alternative solution strate-

gies to their optimization problem with nonsmooth and nonlinear optimization techniques.

Moreover, we introduce a new multi-objective optimization method motivated by desirability

functions.

Firstly, we show that the maximization of an overall desirability function is a nonsmooth

composite constrained optimization problem. By a reformulation of individual desirability

functions, we obtain adjusted individual and overall desirability functions. Optimization of

these functions is performed with two nonsmooth methods: (i) modified subgradient algo-

rithm together with CONOPT solver of GAMS, and (ii) BARON solver of GAMS. We show

that application of modified subgradient algorithm needs some mathematical background in

computing the dual problem with respect to sharp augmented Lagrangians; application to-

gether with BARON is a strong alternative to the existing desirability maximization methods.

Applied on two well-known examples, BARON finds the global optimal efficiently, and the

related solution processes turn out to be user-friendly and successful in terms of computation

time.

Secondly, we reveal that the mechanism behind desirability functions which give rise to a

variation and extension of the piecewise structure of the functions used in practice, can be

explained by an abstract class of functions, i.e., continuous selection functions and especially,

max-type functions. We show that, component-wise and generically, piecewise max-type
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functions have such structural and topological properties that enable us to characterize the

desirability functions and to scientifically establish our generalized desirability functions.

Thirdly, we propose a new solution strategy called the two-stage (bilevel) approach for multi-

objective optimization problems, based on a separation of the parameters: in y-space (opti-

mization) and in x-space (representation). It is possible to find a compromised solution to the

problem via this approach. For the optimization problem in the variable y, we characterized

its structural stability. The overall problem in both x and y is extended to a new refined (dis-

junctive) generalized semi-infinite problem, herewith analyzing the stability and robustness

properties of the objective function. In this course, we introduce the so-called robust opti-

mization of desirability functions for the cases where response models contain uncertainty.

For future studies, we suggest to apply smoothing techniques on the optimization of desir-

ability functions, especially, when the individual desirability functions include more than one

nondifferentiable point. Further aspects of Morse theory for piecewise max-type functions

and a characterization of structural stability of the optimization problem in the variable x may

proceed. It will be interesting to analyze the reformulated and extended desirability functions

which we present throughout this thesis, through a multi-objective optimization research. An-

other interesting study would be the relation between the functions of MARS, CMARS and

desirability functions.
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[1] Akteke-Öztürk, B., Köksal, G., and Weber, G.-W., Optimization of desirability func-
tions as a DNLP model by GAMS/BARON, Proceedings of PCO 2010 - 3rd Global
Conference on Power Control and Optimization, February 2-4, 2010, Gold Coast,
Queensland, Australia.

[2] Abadie, J., and Carpentier, J., Generalization of the Wolfe reduced gradient method
to the case of nonlinear constraints, in: Optimization, Fletcher, R., (eds.), Academic
Press, New York, 37-47, 1969.

[3] Agrachev, A. A., Pallaschke, D., and Scholtes, S., On Morse theory for piecewise
smooth functions, Journal of Dynamical and Control Systems, 3 (4), 449-469, 1997.

[4] Azimov, A. Y., and Gasimov, R. N., On weak conjugacy, weak subdifferentials and du-
ality with zero gap in nonconvex optimization, International Journal of Applied Math-
ematics, 1, 171-192, 1999.

[5] Bagirov, A. M., Minimization methods for one class of nonsmooth functions and cal-
culation of semiequilibrium prices. in: Eberhard, A., et al. (eds.), Progress in Opti-
mization: Contribution from Australasia (Dordrecht: Kluwer Academic Publishers),
147-175, 1999.

[6] Bagirov, A. M., A method for minimization of quasidifferentiable functions, Optimiza-
tion Methods and Software, 17 (1), 31-60, 2002.

[7] Bagirov, A. M., Continuous subdifferential approximations and their applications,
Journal of Mathematical Sciences, 115 (5), 2567-2609, 2003.

[8] BARON v.8.1.5 http://www.gams.com/dd/docs/solvers/baron.pdf, last visited: June
2010.

[9] Bartels, S. G., Kuntz, L., and Scholtes, S., Continuous selections of linear functions
and nonsmooth critical point theory, Nonlinear Analysis, Theory, Methods and Appli-
cations, 24 (3), 385-407, 1995.

[10] Ben-tal, A., and Zowe, J., Necessary and sufficient optimality conditions for a class of
nonsmooth minimization problems, Mathematical Programming, 24, 70-91, 1982.

[11] Ben-Tal, A., El-Ghaoui, L., and Nemirovski, A., Robust Optimization, Princeton Uni-
versity Press, 2009.

[12] Björkqvist, J., and Westerlund T., Solving disjunctive optimization problems using dis-
tributed methods, Proceeding of AIChE (The American Institute of Chemical Engi-
neers) 2000 Annual Meeting, Los Angeles, 2000

[13] Borwein, J. M., and Lewis, A.S., Convex Analysis and Nonlinear Optimization, CMS
Books in Mathematics, Springer-Verlag, New York, 2000.

79



[14] Borwein, J. M., Treiman, J. S., and Zhu, Q. J., Necessary conditions for constrained
optimization problems with semicontinuous and continuous data, CECM Research Re-
port 95-051, 1995, Transactions of the American Mathematical Society, 350, 2409-
2429, 1998.

[15] Burachik, R. S., Gasimov, R. N., Ismayilova, N. A., and Kaya, C. Y., On a modified
subgradient algorithm for dual problems via sharp augmented Lagrangian, Journal of
Global Optimization, 34 (1), 55-78, 2006.

[16] Ch’ng, C. K., Quah, S. H., and Low, H.C., A new approach for multiple-response
optimization, Quality Engineering, 17, 621-626, 2005.

[17] Clarke, F., Optimization and Nonsmooth Analysis, SIAM’s Classics in Applied Math-
ematics Series, 1983.

[18] CONOPT, http://www.gams.com/dd/docs/solvers/conopt.pdf, last visited: June 2010.

[19] Del Castillo, E., Montgomery, D. C., and McCarville, D. R., Modified desirability
functions for multiple response optimization, Journal of Quality Technology, 28 (3),
337-345, 1996.

[20] Dempe, S., Foundations of Bilevel Programming, Kluwer Academic Publishers, Dor-
drecht, 2002.

[21] Design Expert v8, http://www.statease.com/dx8descr.html, last visited: June 2010.

[22] Demyanov, V. F., and Rubinov, A. M., Quasidifferentiable Calculus, Optimization Soft-
ware, Publications Division, New York, 1986.

[23] Demyanov, V. F., The rise of nonsmooth analysis: its main tools, Cybernetics and
Systems Analysis, 38 (4), 527-547, 2002.

[24] Demyanov, V. F., Algorithm for some minimax problems, Journal of Computer and
System Sciences, 2, 342-380, 1968.

[25] Derringer, G., and Suich, R., Simultaneous optimization of several response variables,
Journal of Quality Technology, 12, 214-219, 1980.

[26] Derringer, G., A balancing act, Optimizing a products properties, Quality Progress, 27,
51-57, 1994.

[27] Drud, A. S., A GRG Code for large sparse dynamic nonlinear optimization problems,
Mathematical Programming, 31, 153-191, 1985.

[28] Drud, A. S., CONOPT - A large-scale GRG code, ORSA Journal on Computing 6,
207-216, 1992.

[29] Drud, A. S., CONOPT: A system for large scale nonlinear optimization, Tutorial
for CONOPT Subroutine Library, 16p, ARKI Consulting and Development A/S,
Bagsvaerd, Denmark, 1995.

[30] Drud, A. S., CONOPT: A system for large scale nonlinear optimization, Reference
Manual for CONOPT Subroutine Library, 69p, ARKI Consulting and Development
A/S, Bagsvaerd, Denmark, 1996.

80



[31] Dutta, J., Generalized derivatives and nonsmooth optimization, a finite dimensional
tour, TOP, 13 (2), 185-314, 2005.

[32] Ehrgott, M., Multicriteria Optimization, Springer, 2005.

[33] El-Ghaoui, L., and Lebret, H., Robust solutions to least-square problems to uncertain
data matrices, SIAM Journal of Matrix Analysis and Applications, 18, 1035-1064,
1997.

[34] GAMS v23.0.2, www.gams.com, last visited: June 2010.

[35] GANSO, http://www.ganso.com.au, last visited: June 2010.

[36] Gasimov, R. N., Augmented Lagrangian duality and nondifferentiable optimization
methods in nonconvex programming, Journal of Global Optimization, 24, 187-203,
2002.
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APPENDIX A

Wire Bonding Process Problem

A pre-molded plastic package with leads and silicon chips adhered on it, is taken into consid-

eration. The aim is to bond leads and silicon chips with wires. This bonding is performed at

elevated temperatures to obtain high quality bonds. The elevation of temperature is allowed

until the melting point of the plastic mold compound used in the package. We have a heater

that blows heated nitrogen on top of the package. We denote the position of leads with A and

the position of silicon chips with B on the plastic package. The package is passed under the

manifold by gradually increasing the temperature at positions A and B. After the units at A and

B exit the manifold, they are placed on the heater block where the wire bonding is performed.

This heater block applies heat from the back side of the package which helps to reduce the

amount of heat loss at the bonding positions. However, the temperatures at positions A and

B decrease after leaving the manifold. Because of this, the temperature is recorded at the

following times:

- at the beginning of the bonding process A and B,

- at the end of the bonding process A and B, and

- during the heating cycle for both positions A and B when it is maximal.

The variables which affect the temperature at the wire bond are:

- the N2 flow rate (x1),

- the N2 temperature (x2), and

- the heater block temperature (x3).

The goal is to find operating conditions that achieve optimal temperatures during actual wire

bonding while not exceeding the melting temperature of the plastic package. The responses

are

- the maximum temperature at position A: Y1(x),
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- beginning bond temperature at position A: Y2(x),

- finish bond temperature at position A: Y3(x),

- the maximum temperature at position B: Y4(x),

- beginning bond temperature at position B: Y5(x), and

- finish bond temperature at position B: Y6(x),

Corresponding bounds for the factors of this problem are given in Table A.1

Table A.1: Bounds for the factors of wire bonding problem [19].

lxi uxi

x1 40 120
x2 200 450
x3 150 350

The models for the responses are used as given in Castillo et al. [19]. Their upper, lower and

target values are given in Table A.2.

Table A.2: Desirability Parameters of the responses for the Wire Bonding Problem [19].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 185 190 195 0 1 0
y2 170 185 195 0 1 0
y3 170 185 195 0 1 0
y4 185 190 195 0 1 0
y5 170 185 195 0 1 0
y6 170 185 195 0 1 0

Ordinary least-squares estimation techniques were first applied to the data to develop models

for the factors. The models y j = Y j(x) ( j = 1, 2, . . . ,m) generated are as follows:

Y1(x) = 174.93 + 23.38x2 + 3.62x3 − 19.00x2x3,

Y2(x) = 141.00 + 6.00x1 + 21.02x2 + 14.12x3,

Y3(x) = 139.53 + 7.25x1 + 16.00x2 + 19.75x3,

Y4(x) = 154.00 + 10.10x1 + 30.60x2 + 6.30x3 − 11.20x2
1 + 11.30x1x2,

Y5(x) = 139.29 + 4.63x1 + 19.75x2 + 16.13x3 − 5.41x2
1 + 7.00x1x2,

Y6(x) = 146.86 + 4.87x1 + 15.62x2 + 27.00x3 − 3.98x2
1 + 4.75x1x2.

(A.1)
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Figure A.1: Individual desirability functions d j(y j) ( j = 1, 2, . . . , 6) with y j = Y j(x) of the
wire bonding process optimization problem.
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APPENDIX B

Tire Tread Compound Problem

In the development of a tire tread compound, a problem from rubber industry occurs. There

are three variables:

- Hydrated silica level (x1),

- Silane coupling level (x2), and

- Sulfur level (x3).

The goal is the attainment of the best balance among several different response variables:

- PICO Abrasion Index: Y1(x),

- 200 percent modulus: Y2(x),

- elongation at break: Y3(x), and

- elongation at hardness: Y4(x).

With a three-variable, rotatable, central composite design including six center points, the data

are generated and, then, second degree polynomials are fit to obtain the response models in

Derringer and Suich’s work [25]:

Y1(x) = 139.12 + 16.49x1 + 17.88x2 + 10.91x3 − 4.01x1x1 − 3.45x2x2

−1.57x3x3 + 5.13x1x2 + 7.13x1x3 + 7.88x2x3,

Y2(x) = 1261.11 + 268.15x1 + 246.5x2 + 139.48x3 − 83.55x1x1 − 124.79x2x2

+199.17x3x3 + 69.38x1x2 + 94.13x1x3 + 104.38x2x3,

Y3(x) = 400.38 − 99.67x1 − 31.4x2 − 73.92x3 + 7.93x1x1 + 17.31x2x2

+0.43x3x3 + 8.75x1x2 + 6.25x1x3 + 1.25x2x3,

Y4(x) = 68.91 − 1.41x1 + 4.32x2 + 1.63x3 + 1.56x1x1 + 0.06x2x2

−0.32x3x3 − 1.63x1x2 + 0.13x1x3 − 0.25x2x3.

(B.1)

The first two responses Y1(x) and Y2(x) are the upper-the-best type, i.e., they have one-sided

desirabilities, the last two responses, Y3(x) and Y4(x) are the target-is-the-best type, i.e., they

have two-sided desirabilities. For the lower, upper and target values, see Table B.1.
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Table B.1: Parameters of the responses for the Tire Tread Compound Problem [25].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 120 − 170 0 − 1
y2 1000 − 1300 0 − 1
y3 400 500 600 0 1 0
y4 60 67.5 75 0 1 0

Figure B.1: Individual desirability functions d j(y j) ( j = 1, 2, . . . , 4) with y j = Y j(x) of the tire
tread compound optimization problem.
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