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ABSTRACT

TWO STUDIES ON BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

Tunç, Vildan

M.Sc., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

July 2012, 48 pages

Backward stochastic differential equations appear in many areas of research including math-

ematical finance, nonlinear partial differential equations, financial economics and stochastic

control. The first existence and uniqueness result for nonlinear backward stochastic differ-

ential equations was given by Pardoux and Peng (Adapted solution of a backward stochastic

differential equation. System and Control Letters, 1990). They looked for an adapted pair

of processes {x(t), y(t); t ∈ [0, 1]} with values in Rd and Rd×k respectively, which solves an

equation of the form: x(t) +
∫ 1

t f (s, x(s), y(s)) ds +
∫ 1

t [g(s, x(s)) + y(s)] dWs = X. This

dissertation studies this paper in detail and provides all the steps of the proofs that appear in

this seminal paper. In addition, we review (Cvitanić and Karatzas, Hedging contingent claims

with constrained portfolios. The annals of applied probability, 1993). In this paper, Cvitanić

and Karatzas studied the following problem: the hedging of contingent claims with portfolios

constrained to take values in a given closed, convex set K. Processes intimately linked to

BSDEs naturally appear in the formulation of the constrained hedging problem. The analysis

of Cvitanić and Karatzas is based on a dual control problem. One of the contributions of

this thesis is an algorithm that numerically solves this control problem in the case of constant

volatility. The algorithm is based on discretization of time. The convergence proof is also
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provided.

Keywords: Backward stochastic differential equations, constrained replication, dual control

problem, mathematical finance
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ÖZ

GERİYE DOĞRU STOKASTİK DİFERANSİYEL DENKLEMLER ÜZERİNE İKİ
ÇALIŞMA

Tunç, Vildan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Temmuz 2012, 48 sayfa

Geriye doğru stokastik diferansiyel denklemler, finansal matematik, doğrusal olmayan kısmi

diferansiyel denklemler, finansal ekonomi ve stokastik kontrol alanları dahil olmak üzere

birçok uygulama ve teorik çalışmalarda yer almıştır. Doğrusal olmayan geriye doğru difer-

ansiyel denklemlerin çözümü ilk olarak Pardoux ve Peng (Adapted solution of a backward

stochastic differential equation. System and Control Letters, 1990) tarafından ortaya koyul-

muştur. Pardoux ve Peng, x(t) +
∫ 1

t f (s, x(s), y(s)) ds +
∫ 1

t [g(s, x(s)) + y(s)] dWs = X for-

mundaki denklemi çözen ve sırasıyla Rd ve Rd×k’da değer alan {x(t), y(t); t ∈ [0, 1]} sürecinin

varlığını ve tekliğini kanıtlamışlardır. Bu tez, bu makalede yer alan ispatların makalede be-

lirtilmeyen tüm adımlarını vermektedir. Bu makaleye ek olarak, Cvitanić ve Karatzas’ın

(Hedging contingent claims with constrained portfolios. The annals of applied probability,

1993) makalesi çalışılmıştır. Bu makalede, Cvitanić ve Karatzas, finansal ürünlerin kapalı ve

konveks K kümesinde değer alan portföyler kullanılarak replike edilmesi problemini analiz

etmişlerdir. Cvitanić ve Karatzas’ın incelemeleri dual kontrol problemine dayanmaktadır.

Bu tezin son katkısı, volatilite sabit alındığında dual kontrol sorusunu numerik olarak çözen

bir algoritma geliştirmesidir. Bu algoritma, zamanın kesikleştirilmesi (uzunluğu birbirine eş
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parçalara bölünmesi) ile elde edilmiştir. Algoritmanın elde ettiği sonucun asıl kontrol sorusu-

nun sonucuna yakınsadığı ispat edilmiştir.

Anahtar Kelimeler: Geriye doğru stokastik diferansiyel denklemler, portföy üzerinde kısıtlar

olduğunda replikasyon, dual kontrol sorusu, matematiksel finans
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CHAPTER 1

INTRODUCTION

Stochastic differential equations with equality constraints on the position of the process at

terminal time are called backward stochastic differential equations (BSDEs). This thesis con-

sists of a careful study of two important papers [14] (Pardoux and Peng, Adapted Solution of

a Backward Stochastic Differential Equation, 1990) and [5] (Cvitanić and Karatzas, Hedging

Congtingent Claims with Constrained Portfolios, 1993) in the BSDE literature and a numeri-

cal solution of an optimal control problem that arises in the latter.

Let us give a very brief and partial review of the history of BSDEs. To the best of our knowl-

edge linear BSDEs were first observed by Bismut [3] in 1973. BSDEs in this context arise

as a stochastic version of the adjoint equation in Pontryagin’s maximum principle. In 1990,

Pardoux and Peng [14] considered general BSDEs and gave the first existence and uniqueness

result for nonlinear BSDEs. They studied a BSDE of the type

dYt = − f (t,Yt,Zt)dt + ZtdWt; YT = ε,

where the coefficient f : [0,T ] × Rd × Rd×m → Rd (called generator) is uniformly Lipschitz

continuous in variable Y , Z and the terminal condition ε is square integrable. The unique

solution is a pair (Y,Z) = (Yt,Zt)0≤t≤T of square integrable F -adapted processes where F is

the complete σ - algebra generated by m-dimensional Brownian motion W on a probability

space (Ω,F , P). This paper will be studied in detail in Chapter 2.

Since the paper [14] of Pardoux and Peng, BSDEs have been extensively studied and used

in many applied and theoretical areas, particularly in mathematical finance. Based on the

theory of BSDEs, Peng [15] derived a general stochastic maximum principle with first and
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second order adjoint equations. In 1992, Pardoux and Peng [13] gave a generalization of

the Feynman Kac formula and showed that a probabilistic solution of a nonlinear partial

differential equations (PDEs) corresponds to the solution of the BSDE in Markovian case.

Moreover, Peng [16] also indicated the relationship between BSDEs and PDEs. In addition

to Pardoux and Peng, Duffie and Epstein [7] studied nonlinear BSDEs to give a stochastic

differential formulation of recursive utilities and their properties in the setting of Brownian

information.

A new type of BSDEs, namely Forward-Backward Stochastic Differential Equations (FBS-

DEs in short) was initiated by Antonelli [1]. FBSDEs were also investigated by Ma, Protter

and Yong [10] who established the ”Four Step Scheme” which is one of the first methods

to solve FBSDEs in a Markovian setting. This method is based on Ito’s rule to convert the

FBSDE system to the corresponding nonlinear PDE and then under some strong regularity

and growth conditions on the coefficients solve this PDE [6]. BSDEs with random jumps

were studied by Barles, Buckdahn and Pardoux [2] in 1997. They proved that a viscosity

solution of a system of parabolic integral-partial differential equations can be provided by the

solution of the BSDE. The paper [8] by El Karoui, Peng and Quenez suggests that option

pricing problems can be solved by using BSDEs and shows an outline how to apply BSDEs

in finance.

In 2000, Rogue and El Karoui [18] used BSDEs to solve the utility maximization problem.

Then, weak solutions of BSDEs were introduced and these solutions were used in the field

of FBSDEs. In 2008, Ma et al. [11] studied weak solutions of FBSDEs by using martingale

problem approach.

The existence and uniqueness of adapted processes that solve a second-order backward stochas-

tic differential equation (2BSDE) is studied by Cheridito, Soner, Touzi and Victoir in 2007

[4]. They suggested in the paper [4] that 2BSDE provides a probabilistic representation for

fully nonlinear PDEs and thus opens the door for Monte Carlo methods for high dimensional

fully nonlinear PDEs. In 2010, Soner, Touzi and Zhang [19] provided a complete theory of

exixtence and uniqueness for 2BSDEs.

BSDEs and backward stochastic differential inequalities (BSDI) also arise naturally in hedg-

ing problems in mathematical finance. To the best of our knowledge, one of the first papers

that observe this is [5] by Cvitanić and Karatzas, which was published in 1993. [5] studies the
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following problem: in a market driven by Brownian Motion where there are constraints on

admissible portfolios, expressed in terms of a convex set K , how to hedge a given financial

security that makes a payment at terminal time. The approach of [5] consists of the following

steps: 1) formulate the hedging problem as an optimization problem using BSDI; the resulting

optimization problem is nonstandard and therefore it is handled by 2) using convex analysis to

derive a standard stochastic optimal control problem that is dual to the original hedging prob-

lem. The paper then suggests the use of the HJB equation associated with the dual problem to

provide a solution to the original hedging problem. These and other ideas and methods that

appear in [5] we review in Chapter 4. In the same section, we suggest a different approach for

the solution of the dual control problem in the case when volatility and interest rate are con-

stant: namely, discretize time and obtain a discrete time stochastic optimal control problem

which can be solved by dynamic programming. We use this method to hedge a standard call

and put in the case when borrowing and lending interest rates differ.

The contents of Chapters 2 and 4 have already been outlined above. The stochastic calculus

used in [14] of Pardoux and Peng is the one that we are familiar with from books such as

Karatzas and Shreeve [9] and Oksendal [12]. However, the notation is different from that of

these books. In Chapter 3, we explain this notation in detail and derive formulas for quadratic

variations of several processes in terms of this notation. We have not come across these

formulas in standard textbooks on the subject and, therefore, found it worth recording them

here.
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CHAPTER 2

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

In this chapter, we introduce the theory of Backward Stochastic Differential Equations (BS-

DEs). The content of this chapter is already published in Pardoux and Peng [14]. We supple-

mented a detailed exposition of the ideas and arguments used in this article.

2.1 Preliminaries

The main result of this article is an existence and uniqueness result for an adapted pair

{x(t), y(t); t ∈ [0, 1]} which solves

x(t) +

∫ 1

t
f (s, x(s), y(s)) ds +

∫ 1

t
[ g(s, x(s)) + y(s) ] dW(s) = X, (2.1.1)

where

• {W(t), t ∈ [0, 1]} is a standard k-dimensional Wiener process defined on (Ω,F , P),

• {Ft, t ∈ [0, 1]} is its natural filtration (i.e., Ft = σ(Ws), 0 ≤ s ≤ t),

• X is a given F1 measurable d-dimensional random vector such that f : Ω× [0, 1]×Rd×

Rd×k → Rd,

• f is assumed to be P ⊗Bd ⊗Bd×k/Bd measurable where P denotes the σ-algebra of

Ft-progressively measurable subsets of Ω × [0, 1],

• f is uniformly Lipschitz with respect to both x and y.
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There are also some other notations that will be used throughout this chapter. They are as

follows:

• M2(0, 1;Rd) denotes the set of Rd-valued processes which are Ft-progressively mea-

surable and are square integrable over Ω× (0, 1) with respect to P× λ, where λ denotes

the Lebesgue measure over [0,1],

• M2(0, 1;Rd×k) denotes the set of Rd×k-valued processes which are Ft-progressively

measurable and are square integrable over Ω × (0, 1) with respect to P × λ,

• For x ∈ Rd, |x| denotes its Euclidean norm,

• An element y ∈ Rd×k is considered as a d × k matrix, where its Euclidean norm is given

by |y| =
√

Tr(yy∗) and (y, z) = Tr(yz∗).

2.2 Existence and Uniqueness of Solutions to BSDEs

Before we study equation (2.1.1), we first consider three simplified versions of that equation

in this section. There are two simplified ones in the article [14]. Before we study those, we

discuss the simplest possible BSDE.

Let X be FT -measurable random variable in L1(Ω,F1, P;Rd) such that E [|X|] < ∞ and

Mt = E [X|Ft]. It is obvious that Mt is a martingale.

”Martingale Representation Theorem” [9, page 182, thm 4.15] says that there exists Y such

that

Mt = E[X] +

∫ t

0
Ys dWs (2.2.1)

and

MT = E[X|FT ] = X. (2.2.2)

On the other hand,

MT = E[X] +

∫ T

0
Ys dWs. (2.2.3)

Combining equations (2.2.2) and (2.2.3), we get;

X = E[X] +

∫ T

0
Ys dWs. (2.2.4)
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Substituting (2.2.4) into (2.2.1);

Mt = X −
∫ T

0
Ys dWs +

∫ t

0
Ys dWs. (2.2.5)

By changing interval of the second integral, we get a negative one such that

Mt = X −
∫ T

0
Ys dWs −

∫ 0

t
Ys dWs. (2.2.6)

Using one of the basic properties of integral, the equation (2.2.6) is of the form

Mt = X −
∫ T

t
Ys dWs. (2.2.7)

The desired Backward Stochastic Differential Equation is

X = Mt +

∫ T

t
Ys dWs.

This result shows us that Backward Stochastic Differential Equations, even the simplest pos-

sible one, are generalizations of conditional expectation.

Now, we can turn back to the article [14].

Lemma 2.2.1 [14, Lemma 2.1, page 56] Given X ∈ L2(Ω,F1, P;Rd), f ∈ M2(0, 1; Rd) and

g ∈ M2(0, 1; Rd×k), there exists a unique pair (x, y) ∈ M2(0, 1; Rd)×M2(0, 1; Rd×k) such that

x(t) +

∫ 1

t
f (s) ds +

∫ 1

t
[ g(s) + y(s) ] dW(s) = X, 0 ≤ t ≤ 1. (2.2.8)

Proof. Define

x(t) = E

[
X −

∫ 1

t
f (s) ds |Ft

]
, 0 ≤ t ≤ 1 (2.2.9)

and

Ỹt = E

[
X −

∫ 1

0
f (s) ds |Ft

]
. (2.2.10)

From ”Martingale Representation Theorem” [9, page 182, thm 4.15] there exists ȳ ∈ M2(0, 1; Rd×k)

such that

Ỹt = x(0) +

∫ t

0
ȳ(s) dW(s), (2.2.11)

where y(t) = ȳ(t) − g(t).
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By substituting (2.2.9) into the original equation (2.2.8), we get;

E

[
X −

∫ 1

t
f (s) ds |Ft

]
+

∫ 1

t
f (s) ds +

∫ 1

t
ȳ(s) dW(s)︸            ︷︷            ︸

Ỹ1−Ỹt

. (2.2.12)

To show existence of the unique pair (x, y) that solves (2.2.8), it is enough to show that the

equation (2.2.12) is equal to X .

Using the linearity property of expectation and substituting the values of Ỹ1 and Ỹt into the

equation (2.2.12), we get

E [X |Ft] − E
[∫ 1

t
f (s) ds |Ft

]
+

∫ 1

t
f (s) ds + X −

∫ 1

0
f (s) ds − E

[
X −

∫ 1

0
f (s) ds |Ft

]
.

(2.2.13)

Again using the linearity property of expectation and the basic property of integral, we get;

E [X |Ft] − E
[∫ 1

t
f (s) ds |Ft

]
+

∫ 1

t
f (s) ds + X −

∫ t

0
f (s) ds −

∫ 1

t
f (s) ds − E [X |Ft]

+ E

[∫ t

0
f (s) ds |Ft

]
+ E

[∫ 1

t
f (s) ds |Ft

]
.

Since the terms, except ”X”, cancel each other, we ’ve shown that

E

[
X −

∫ 1

t
f (s) ds |Ft

]
+

∫ 1

t
f (s) ds +

∫ 1

t
ȳ(s) dW(s) = X.

As a result, there exists the pair (x, y) which solves (2.2.8). �

We conclude from this lemma that this simplified version is nothing but martingale represen-

tation theorem. We see that Backward Stochastic Differential Equations are generalizations

of conditional expectation.

Now, we consider the following equation:

x(t) +

∫ 1

t
f (s, y(s)) ds +

∫ 1

t
[g(s) + y(s)] dW(s) = X. (2.2.14)

Proposition 2.2.2 [14, Proposition 2.2, page 57] Let X ∈ L2(Ω,F1, P; Rd), g ∈ M2(0, 1; Rd×k)

and f : Ω × (0, 1) × Rd×k → Rd be a mapping satisfying:

• f : Ω × (0, 1) ×Rd×k → Rd is P ⊗Bd×k/Bd measurable (P denotes the σ-algebra of

progressively measurable subsets of Ω × (0, 1)),
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• f (· , 0) ∈ M2(0, 1; Rd),

• There exists c > 0 such that | f (t, y1) − f (t, y2)| ≤ c |y1 − y2| for any y1, y2 ∈ R
d×k,

• Whenever y ∈ M2(0, 1; Rd×k), f (· , y(·)) ∈ M2(0, 1; Rd).

Then, there exists a unique pair (x, y) ∈ M2(0, 1; Rd) × M2(0, 1; Rd×k) which satisfies (2.2.

14).

Proof. Uniqueness. Let (x1, y1) and (x2, y2) be two solutions such that

x1(t) = X −
∫ 1

t
f (s, y1(s)) ds −

∫ 1

t
[g(s) + y1(s)] dWs

and

x2(t) = X −
∫ 1

t
f (s, y2(s)) ds −

∫ 1

t
[g(s) + y2(s)] dWs.

It follows from Ito’s formula applied to |x1(s) − x2(s)|2 from s = t to s = 1. First of all,

x1(t) − x2(t) =

∫ 1

t

[
f (s, y2(s)) − f (s, y1(s))

]
ds +

∫ 1

t

[
y2(s) − y1(s)

]
dWs. (2.2.15)

Applying Ito formula to |x1(s) − x2(s)|2, we get

(x1 (1) − x2 (1))2 = (x1 (t) − x2 (t))2 +

∫ 1

t
2 (x1 (s) − x2 (s)) d (x1 − x2)s

+

∫ 1

t
d 〈x1 − x2〉s . (2.2.16)

Inserting values of d (x1 − x2)s and d 〈x1 − x2〉s and since x1 and x2 vanishes at point 1, equa-

tion (2.2.16) becomes;

0 = (x1 (t) − x2 (t))2 +

∫ 1

t
2 (x1 (s) − x2 (s))

[
f (s, y2(s)) − f (s, y1(s))

]
ds

+

∫ 1

t
2 (x1(s) − x2(s))

[
y2(s) − y1(s)

]
dWs +

∫ 1

t
(y2(s) − y1(s))2 ds.

Rearranging the terms, the above equation is as follows;

(x1 (t) − x2 (t))2 +

∫ 1

t
(y1(s) − y2(s))2 ds = −2

∫ 1

t
(x1 (s) − x2 (s))

[
f (s, y2(s)) − f (s, y1(s))

]
ds

− 2
∫ 1

t
(x1(s) − x2(s))

[
y2(s) − y1(s)

]
dWs.

8



Since y1 − y2 ∈ M2(0, 1; Rd×k), the stochastic integral of the above equation is P - integrable

and has zero expectation. Taking expectation of the remaining terms, we get

E
[
(x1 (t) − x2 (t))2

]
+

∫ 1

t
E

[
(y1(s) − y2(s))2

]
ds =

− 2
∫ 1

t
E

[
(x1 (s) − x2 (s))

[
f (s, y1(s)) − f (s, y2(s))

]]
ds. (2.2.17)

Remark 2.2.3 From general mathematical concepts, we know the following inequalities;

1. | 〈X,Y〉 | ≤ |X| |Y |,

2. E|XY | ≤
√
E|X|2

√
E|Y |2,

3.
∣∣∣∣ 2 ∫ 1

t f (s)g(s) ds
∣∣∣∣ ≤ ∫ 1

t f 2(s) ds +
∫ 1

t g2(s) ds.

Before studying equation (2.2.17), we first consider the following inequality:∣∣∣∣∣∣ −2E
∫ 1

t

[
f (s, y1(s)) − f (s, y2(s))

]
(x1 (s) − x2 (s)) ds

∣∣∣∣∣∣
≤ 2

∫ 1

t
E | f (s, y1(s)) − f (s, y2(s))| |x1(s) − x2(s)| ds

by Lipschitz continuity of f

≤ 2
∫ 1

t
E

[
c |y1(s) − y2(s)| |x1(s) − x2(s)|

]
ds,

by Cauchy-Schwarz Inequality

≤ 2
∫ 1

t

(
E

[
1
2
|y1(s) − y2(s)|2

]) 1
2 (
E

[
2c2 |x1(s) − x2(s)|2

]) 1
2 ds,

and by Remark 2.2.3 (3)

≤
1
2

∫ 1

t
E

[
|y1(s) − y2(s)|2

]
ds + 2c2

∫ 1

t
E

[
|x1(s) − x2(s)|2

]
ds.

From the above result, equation (2.2.17) becomes,

E
[
|x1 (t) − x2 (t)|2

]
+

∫ 1

t
E

[
|y1(s) − y2(s)|2

]
ds

≤
1
2

∫ 1

t
E

[
|y1(s) − y2(s)|2

]
ds + 2c2

∫ 1

t
E

[
|x1(s) − x2(s)|2

]
ds.

9



Taking the second integral to the left side of the above equation we get,

E
[
|x1 (t) − x2 (t)|2

]
+

1
2
E

∫ 1

t
|y1(s) − y2(s)|2 ds ≤ 2c2 E

∫ 1

t
|x1(s) − x2(s)|2 ds. (2.2.18)

Then,

E
[
|x1 (t) − x2 (t)|2

]
≤ 2c2 E

∫ 1

t
|x1(s) − x2(s)|2 ds. (2.2.19)

Remark 2.2.4 One of the results of Gronwall’s Inequality says that

f (t) ≤ K
∫ t

t0
f (s) ds⇒ f (t) = 0,

where f is continuous nonnegative function for t0 ≤ t and K is any nonnegative constant.

It follows from Gronwall’s Inequality applied to equation (2.2.19),

E
[
|x1 (t) − x2 (t)|2

]
= 0.

Expectation of a term is zero if the inside of this expectation is zero. Therefore,

|x1 (t) − x2 (t)|2 = 0.

From the above equation, it is obvious that

x1(t) = x2(t).

Now, letting x1(t) = x2(t) and using equation (2.2.18) we get,

1
2
E

∫ 1

t
|y1(s) − y2(s)|2 ds ≤ 0.

The above integral is less than or equal to zero if and only if y1(t) = y2(t). As a result,

(x1, y1) = (x2, y2).

We’ve completed the uniqueness part of the proof. Now, we can study the existence part.

Existence. Now, we define an approximating sequence by a kind of Picard iteration. Let

y0(t) = 0 and {(xn(t), yn(t)); 0 ≤ t ≤ 1}n≥1 be a sequence in M2(0, 1; Rd) × M2(0, 1; Rd×k)

10



defined recursively by

x1(t) +

∫ 1

t
f (s, y0(s)) ds +

∫ 1

t
[g(s) + y1(s)] dWs = X,

x2(t) +

∫ 1

t
f (s, y1(s)) ds +

∫ 1

t
[g(s) + y2(s)] dWs = X,

...

xn(t) +

∫ 1

t
f (s, yn−1(s)) ds +

∫ 1

t
[g(s) + yn(s)] dWs = X.

Using again Ito formula and the same inequalities as we did in uniqueness part with K = 2c2

we get

E
[
|xn+1(t) − xn(t)|2

]
+ E

∫ 1

t
|yn+1(s) − yn(s)|2ds

≤ K E
∫ 1

t
|xn+1(t) − xn(t)|2ds +

1
2
E

∫ 1

t
|yn(s) − yn−1(s)|2ds. (2.2.20)

Now, define

un(t) = E

∫ 1

t
|xn(s) − xn−1(s)|2 ds,

vn(t) = E

∫ 1

t
|yn(s) − yn−1(s)|2 ds,

for n ≥ 1 and [x0(t) = 0].

From the above definition, it is obvious that

un+1(t) = E

∫ 1

t
|xn+1(s) − xn(s)|2 ds. (2.2.21)

Equation (2.2.21) implies that

d
dt

(
un+1(t)eKt

)
=

d
dt

[(∫ 1

t
E|xn+1(s) − xn(s)|2 ds

)
eKt

]
(2.2.22)

= E|xn+1(t) − xn(t)|2 eKt + K eKt
(∫ 1

t
E|xn+1(s) − xn(s)|2 ds

)
. (2.2.23)
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Turning back to equation (2.2.20) and substituting values of vn(t), vn+1(t) and un+1(t) we get,

E
[
|xn+1(t) − xn(t)|2

]
+ E

∫ 1

t
|yn+1(s) − yn(s)|2ds︸                          ︷︷                          ︸

vn+1(t)

≤ K E
∫ 1

t
|xn+1(t) − xn(t)|2ds︸                          ︷︷                          ︸

un+1(t)

+
1
2
E

∫ 1

t
|yn(s) − yn−1(s)|2ds︸                          ︷︷                          ︸

vn(t)

(2.2.24)

∴ E
[
|xn+1(t) − xn(t)|2

]
+ vn+1(t) ≤ K un+1(t) +

1
2

vn(t). (2.2.25)

Multiplying both sides by eKt we get

eKtE
[
|xn+1(t) − xn(t)|2

]
+ eKtvn+1(t) ≤ KeKt un+1(t) +

1
2

eKtvn(t)

= −KeKt un+1(t) + eKtE
[
|xn+1(t) − xn(t)|2

]
+ eKtvn+1(t) ≤

1
2

eKtvn(t)

= −
d
dt

(
un+1(t)eKt

)
+ eKtvn+1(t) ≤

1
2

eKtvn(t).

Integrating from t to 1 we obtain,

−

∫ 1

t

(
d
dt

[
un+1(s)eKs

])
ds +

∫ 1

t
eKsvn+1(s) ds ≤

1
2

∫ 1

t
eKsvn(s) ds

= −
(
un+1(1)eK − un+1(t)eKt

)
+

∫ 1

t
eKsvn+1(s) ds ≤

1
2

∫ 1

t
eKsvn(s) ds,

where un+1(1) = 0

= un+1(t) +

∫ 1

t
eK(s−t)vn+1(s) ds ≤

1
2

∫ 1

t
eK(s−t)vn(s) ds.

It follows in particular that ∫ 1

0
eKsvn+1(s) ds ≤

1
2

∫ 1

0
eKsvn(s) ds,

and (
1
2

)n ∫ 1

0
eKsv1(s) ds ≤

(
1
2

)n

sups≤1|v1(t)|
∫ 1

0
eKs ds

≤

(
1
2

)n

sup|v1(t)| eK ,

where sup|v1(t)| = E
∫ 1

0 |y1(t)|2 dt.

Then, un+1(0) ≤
(

1
2

)n
c̄ eK , where c̄ = sup|v1(t)|.
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From equation (2.2.25),

vn+1(t) ≤ K un+1(t) +
1
2

vn(t),

vn+1(0) ≤ K un+1(0) +
1
2

vn(0),

vn+1(0) ≤ 2−nKc̄ eK u1(0) +
1
2

vn(0).

It follows immediately,

vn+1(0) ≤ 2−n
(
nc̄KeK + v1(0)

)
.

These imply

un = E

∫ 1

0
|xn(s) − xn−1(s)|2 ds = |xn − xn−1|2 ≤ 2−nc̄KeK < ∞, (2.2.26)

vn = E

∫ 1

0
|yn(s) − yn−1(s)|2 ds = |yn − yn−1|2 ≤ 2−nc̄KeK < ∞. (2.2.27)

Remember that
∑∞

n=1 ||x
n−xn−1||L2 < ∞ implies that xn is a Cauchy sequence. This, (2.2.26)

and (2.2.27) imply that xn and yn are Cauchy sequences in M2(0, 1;Rd) and M2(0, 1;Rd×k)

respectively and hence they must converge. The pair (x, y) defined by x � limn→∞ xn and

y � limn→∞ yn is the desired solution of the equation (2.2.14). �

We can now study the equation

x(t) +

∫ 1

t
f (s, x(s), y(s)) ds +

∫ 1

t

[
g(s, x(s)) + y(s)

]
dW(s) = X. (2.2.28)

Theorem 2.2.5 [14, Theorem 3.1, page 58] Given X ∈ L2(Ω,F1, P; Rd), f : Ω × (0, 1) ×

Rd × Rd×k → Rd and g : Ω × (0, 1) × Rd → Rd×k with the properties that

• f : Ω× (0, 1)×Rd ×Rd×k → Rd is P ⊗Bd ⊗Bdk/Bd measurable and g : Ω× (0, 1)×

Rd → Rd×k is P ⊗Bd/Bdk measurable,

• f (·, 0, 0) ∈ M2(0, 1; Rd), g(·, 0, 0) ∈ M2(0, 1; Rd×k),

• There exists c > 0 such that | f (t, x1, y1) − f (t, x2, y2)| ≤ c ( |x1 − x2| + |y1 − y2| )

∀ x, x1, x2 ∈ R
d, ∀ y, y1, y2 ∈ R

d×k,

• |g(t, x1) − g(t, x2)| ≤ c |x1 − x2|, ∀ x, x1, x2 ∈ R
d, ∀ y, y1, y2 ∈ R

d×k,

• Whenever x ∈ M2(0, 1; Rd), f (·, x(·), y(·)) ∈ M2(0, 1; Rd),
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• Whenever y ∈ M2(0, 1; Rd×k), g(·, x(·), y(·)) ∈ M2(0, 1; Rd×k).

Then, there exists a unique pair (x, y) ∈ M2(0, 1; Rd) × M2(0, 1; Rd×k) which solves equation

(2.2.28).

Proof. Again, we have two steps, namely existence and uniqueness, to show existence of

unique pair (x, y) which solves equation (2.2.28). We can start with uniqueness part.

Uniqueness. We follow the similar argument as that in Proposition (2.2.2). Let (x1, y1) and

(x2, y2) be two solutions in M2(0, 1; Rd) × M2(0, 1; Rd×k) such that

x1(t) = X −
∫ 1

t
f (s, x1(s), y1(s)) ds −

∫ 1

t

[
g(s, x1(s)) + y1(s)

]
dWs,

x2(t) = X −
∫ 1

t
f (s, x2(s), y2(s)) ds −

∫ 1

t

[
g(s, x2(s)) + y2(s)

]
dWs,

and

x1(t) − x2(t) = −

[∫ 1

t
( f (s, x1(s), y1(s)) − f (s, x2(s), y2(s))) ds

]
+

∫ 1

t
(g(s, x1(s)) − g(s, x2(s))) dWs +

∫ 1

t
(y1(s) − y2(s)) dWs.

We try to show that (x1, y1) = (x2, y2). By using Ito formula applied to |x1(t) − x2(t)|2 we get,

(x1(1) − x2(1))2 = (x1(t) − x2(t))2 +

∫ 1

t
2 (x1(s) − x2(s)) d(x1, x2)s +

∫ 1

t
d 〈x1, x2〉s ;

Hence, x1(t) and x2(t) vanish at point 0. Inserting values of d(x1, x2)s and d 〈x1, x2〉s into the

above equation we get,

0 = (x1(t) − x2(t))2 +

∫ 1

t
2 (x1(s) − x2(s))

[
f (s, x2(s), y2(s)) − f (s, x1(s), y1(s))

]
ds

+

∫ 1

t
2 (x1(s) − x2(s))

[
g(s, x2(s)) − g(s, x1(s))

]
dWs

+

∫ 1

t
2 (x1(s) − x2(s))

[
y2(s) − y1(s)

]
dWs

+

∫ 1

t

[
g(s, x2(s)) − g(s, x1(s))

]2 ds +

∫ 1

t
(y2(s) − y1(s))2 ds.
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Rearranging the terms;

(x1(t) − x2(t))2 +

∫ 1

t
(y1(s) − y2(s))2 ds =

− 2
∫ 1

t
(x1(s) − x2(s))

[
f (s, x1(s), y1(s)) − f (s, x2(s), y2(s))

]
ds

− 2
∫ 1

t
(x1(s) − x2(s))

[
g(s, x1(s)) − g(s, x2(s))

]
dWs

− 2
∫ 1

t
(x1(s) − x2(s))

[
y1(s) − y2(s)

]
dWs

−

∫ 1

t

[
g(s, x1(s)) − g(s, x2(s))

]2 ds.

Since y1 − y2 ∈ M2(0, 1; Rd×k), the above stochastic integral is P -integrable and has zero

expectation. So, taking expectation of the remaining terms we have,

E|x1(t) − x2(t)|2 + E

∫ 1

t
|y1(s) − y2(s)|2ds = (2.2.29)

− 2E
∫ 1

t

[
f (s, x1(s), y1(s)) − f (s, x2(s), y2(s))

]
(x1(s) − x2(s))ds (2.2.30)

− E

∫ 1

t

[
g(s, x1(s)) − g(s, x2(s))

]2 ds (2.2.31)

− 2E
∫ 1

t
(x1(s) − x2(s))

[
g(s, x1(s)) − g(s, x2(s))

]
ds. (2.2.32)

Now, we consider the right side of the above equation as follows:

|(2.2.30) + (2.2.31) + (2.2.32)|

≤ 2E
∫ 1

t
| f (s, x1(s), y1(s)) − f (s, x2(s), y2(s))| |(x1(s) − x2(s))| ds

+ 2E
∫ 1

t
|g(s, x1(s)) − g(s, x2(s))| |(x1(s) − x2(s)| ds

+ E

∫ 1

t
|g(s, x1(s)) − g(s, x2(s))|2 ds

≤ 2
∫ 1

t
E

[
c(|x1(s) − x2(s)| + |y1(s) − y2(s)|)|x1(s) − x2(s)|

]
ds

+ 2
∫ 1

t
E [c|x1(s) − x2(s)| |x1(s) − x2(s)|] ds

15



by Lipschitz continuity of f and g

+

∫ 1

t
E

[
c2|x1(s) − x2(s)|2

]
ds

≤ 2
∫ 1

t
E

[
c(|x1(s) − x2(s)|2

]
ds + 2

∫ 1

t
E

[
c|x1(s) − x2(s)||y1(s) − y2(s)|

]
ds

+ 2
∫ 1

t
E

[
c|x1(s) − x2(s)|2

]
ds

+

∫ 1

t
E

[
c2|x1(s) − x2(s)|2

]
ds

≤ c̄
∫ 1

t
E|x1(s) − x2(s)|2 ds + 2

∫ 1

t
E

[
c|x1(s) − x2(s)||y1(s) − y2(s)|

]
ds,

where c̄ = 4c + c2.

By Cauchy-Schwarz Inequality,

|(2.2.30) + (2.2.31) + (2.2.32)| ≤ c̄
∫ 1

t
E|x1(s) − x2(s)|2ds

+ 2
∫ 1

t

(
E

1
2
|y1(s) − y2(s)|2

)2 (
E2c2|x1(s) − x2(s)|2

)2
ds

≤ c̄
∫ 1

t
E|x1(s) − x2(s)|2ds +

1
2

∫ 1

t
E|y1(s) − y2(s)|2 ds

by Remark (2.2.3)(3)

+ 2c2
∫ 1

t
E|x1(s) − x2(s)|2 ds

≤ c̃E
∫ 1

t
|x1(s) − x2(s)|2 ds +

1
2

∫ 1

t
E|y1(s) − y2(s)|2 ds,

where c̃ = c̄ + 2c2.

Therefore, we have the following inequality:

E|x1(s) − x2(s)|2 + E

∫ 1

t
|y1(s) − y2(s)|2 ds

≤ c̃E
∫ 1

t
|x1(s) − x2(s)|2 ds +

1
2

∫ 1

t
E|y1(s) − y2(s)|2 ds.

Taking the last term to the left side of the equation we get,

E|x1(s) − x2(s)|2 +
1
2

∫ 1

t
E|y1(s) − y2(s)|2 ds ≤ c̃E

∫ 1

t
|x1(s) − x2(s)|2 ds. (2.2.33)
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As a result,

E|x1(s) − x2(s)|2 ≤ c̃E
∫ 1

t
|x1(s) − x2(s)|2 ds.

From Gronwall’s Inequality [Remark 2.2.4], |x1(t) − x2(t)| = 0. Therefore,

x1(t) = x2(t).

Letting x1(t) = x2(t) in the equation (2.2.33) we get

1
2

∫ 1

t
E|y1(s) − y2(s)|2 ds ≤ 0.

The above integral is less than or equal to zero if and only if y1(t) = y2(t). As a rsult,

(x1, y1) = (x2, y2)

We have completed the uniqueness part of the proof. Now, we can study the existence part.

Existence. Now, we define an approximating sequence using a Picard type iteration with the

help of Proposition 2.2.2. Let x0(t) = 0 and {xn(t), yn(t)}; 0 ≤ t ≤ 1}n≥1 be sequence in

M2(0, 1; Rd) × M2(0, 1; Rd×k) defined recursively by

X = xn(t)+
∫ 1

t
f (s, xn−1(s), yn(s)) ds+

∫ 1

t

[
g(s, xn−1(s)) + yn(s)

]
dWs, 0 ≤ t ≤ 1. (2.2.34)

With the same steps that in uniqueness part, namely from equation (2.2.33), we obtain,

E|xn+1(t) − xn(t)|2 +
1
2
E

∫ 1

t
|yn+1(s) − yn(s)|2 ds

≤ c
(
E

∫ 1

t
|xn+1(s) − xn(s)|2 ds + E

∫ 1

t
|xn(s) − xn−1(s)|2 ds

)
. (2.2.35)

Now, define

un(t) = E

∫ 1

t
|xn(s) − xn−1(s)|2 ds.

So,

un+1(t) = E

∫ 1

t
|xn+1(s) − xn(s)|2 ds.

Taking derivative of un+1(t) with respect to t we get

−
d
dt

un+1(t) = E|xn+1(t) − xn(t)|2.
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From equation (2.2.35), we have the following inequality,

E|xn+1(t) − xn(t)|2︸                ︷︷                ︸
− d

dt un+1(t)

≤ c

E
∫ 1

t
|xn+1(s) − xn(s)|2 ds︸                           ︷︷                           ︸

un+1(t)

+E

∫ 1

t
|xn(s) − xn−1(s)|2 ds︸                           ︷︷                           ︸

un(t)

 . (2.2.36)

Therefore,

−
d
dt

un+1(t) − c un+1(t) ≤ c un(t), where un+1(1) = 0. (2.2.37)

Multiplying both sides of the equation (2.2.37) by eKt we get,

−
d
dt

un+1(t) eKt − c un+1(t) eKt ≤ c un(t) eKt.

Now, integrating both sides from t to 1 we get,

−

∫ 1

t

[
d
ds

un+1(s) eKs
]

ds − c
∫ 1

t
un+1(s) eKs ds ≤ c

∫ 1

t
un(s) eKs ds

= −
(
un+1(1)eK − un+1(t) eKt

)
− c

∫ 1

t
un+1(s) eKs ds ≤ c

∫ 1

t
un(s) eKs ds,

where un+1(1) = 0.

Multiplying both sides by e−Kt we get,

un+1(t) − c
∫ 1

t
un+1(s) eK(s−t) ds ≤ c

∫ 1

t
un(s) eK(s−t) ds. (2.2.38)

From equation (2.2.38) we obtain,

un+1(t) ≤ c
∫ 1

t
un(s) eK(s−t) ds⇒ un+1(t) ≤ c

∫ 1

t
un(s) eKs ds

⇒ un+1(0) ≤ cn u1(0)
∫ 1

0
eK s ds

⇒ un+1(0) ≤

(
ceK

)n

n!
u1(0),

where

un = E

∫ 1

0
|xn(s) − xn−1(s)|2 ds

= |xn − xn−1|2

≤

(
ceK

)n

n!
.
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This, together with the equation (2.2.35), implies that {xn} is a Cauchy sequence in M2(0, 1;Rd)

and {yn} is a Cauchy sequence in M2(0, 1;Rd×k).

Then, from equation(2.2.34), {xn} converges also in L2(Ω; C(0, 1; Rd)). It then follows from

(2.2.34) that

x = lim
n→∞

xn

and

y = lim
n→∞

yn.

As a result, we obtain the pair (x, y) that solves the equation (2.2.28). �
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CHAPTER 3

VARIANTS OF THE ITO FORMULA

3.1 Introduction

While studying [14] we ended up needing the following derivations and formulas. We have

not come across these formulas anywhere in the prior literature and therefore found it worth

recording them here.

Let

W =



W1

W2
...

Wd


be a d dimensional Brownian motion.

Let

X =

∫
G(s) dW (3.1.1)

and

Y =

∫
F(s) dW, (3.1.2)

where

G(s) .
=

g1,1 g1,2 · · · g1,d

g2,1 g2,2 · · · g2,d

 , F(s) .
=

 f1,1 f1,2 · · · f1,d

f2,1 f2,2 · · · f2,d


X and Y are two dimensional processes. The first components of X and Y are as follows,

d∑
j=1

∫ t

0
g1, j dW j ,

d∑
j=1

∫ t

0
f1, j dW j .
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The second components of X and Y can be expressed with similar sums.

Define Z = X + Y . Suppose F : R2 → R is a smooth function. We would like to derive simple

expressions for the application of Ito’s formula to F(Z).

Let DF denote the gradient of F and HF the Hessian of F. For two processes A and B let

V(A, B) denote the matrix of cross variations of A and B. That is:

Vi, j =
[
Ai, B j

]

and

V =

[A1, B1] [A1, B2]

[B2, A1] [A2, B2]

 .
Here

[
Ai, B j

]
denotes the cross variation between the one dimensional processes Ai and B j.

Define

V(C) .
= V(C,C).

V(C) can be referred to as the variation matrix of the process C.

Let us now go back to the process F(Z). Ito’s formula in terms of V , HF and DF is

F(Zt) = F(Z0) +

∫ t

0
〈DF, dZ〉 +

1
2

∫ t

0
〈HF, dV(Z)〉 . (3.1.3)

〈a, b〉 denotes the inner product. If the arguments a and b are matrices, they are treated as

vectors and their inner product is computed in the usual way.

For example, 〈a1,1 a1,2

a2,1 a2,2

 ,
b1,1 b1,2

b2,1 b2,2


〉

=
∑
i, j

ai, jbi, j.

Remark 3.1.1 Note that

∑
i, j

ai, jbi, j =
∑

i

∑
j

ai, j(bt) j,i = tr(abt).

where t and tr denote the transpose and the trace operators. Therefore, another way to write

(3.1.3) is
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F(Zt) = F(Z0) +

∫ t

0
〈DF, dZ〉 +

1
2

∫ t

0
tr((HF)tdV(Z)) (3.1.4)

We will not be using this notation in what follows.

Our goal is to write (3.1.3) in terms of X and Y . For this purpose it enough to write V(Z) in

terms of V(X), V(Y) and V(X,Y).

Proposition 3.1.2 For the process X and Y given in (3.1.1) and (3.1.2)

DV
ds

(X,Y) = GFt.

Note that this immediately implies:

Proposition 3.1.3

V(Z) = V(X) + V(Y) + 2V(X,Y). (3.1.5)

Remark 3.1.4 Note that Proposition 3.1.3 is a generalization of the well known formula for

the one dimensional cross variation:

[X + Y, X + Y] = [X, X] + 2 [X,Y] + [Y,Y] . (3.1.6)

The key difference between this and (3.1.5) is that (3.1.6) is a scalar equation whereas (3.1.5)

is a matrix equation.

(3.1.5) allows us to rewrite (3.1.4) as

F(Zt) = F(Z0) +

∫ t

0
〈DF, dZ〉 +

1
2

∫ t

0
tr((HF)tdV(X))

+
1
2

∫ t

0
tr((HF)tdV(Y)) +

∫ t

0
tr((HF)tdV(X,Y)).

This fact is used in the proof of Theorem 3.1 in [14].
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CHAPTER 4

HEDGING CONTINGENT CLAIMS WITH CONSTRAINED

PORTFOLIOS

4.1 Introduction

Backward stochastic differential equations naturally come up in finance. In this section we

would like to review an instance of this phenomenon that is reported in [5]. In this intro-

ductory section we very briefly introduce the results in this paper. The following sections

will reintroduce the notation and review the results derived in the paper. Everything in the

following sections except for the last one are from [5].

Let (Ω,F ,P) be a probability space that supports a d dimensional Brownian motion W. Let

σ : Rd → Rd×d be a progressively measurable process with respect to Ft, the P augmentation

of the filtration F W
t � σ(W(s), s ≤ t). σσ′ is assumed to be strictly positive definite, i.e.,

〈σξ, σξ〉 ≥ ε||ξ||2 (4.1.1)

for some ε > 0. Let r : R→ R, and b : R→ Rd to be two progressively measurable processes.

b will be the appreciation rates of the stocks and r will be the instantaneous interest rate. σ, r

and b are all assumed to be uniformly bounded.

The market model used in [5] is the following standard continuous time model. We focus on

the finite time horizon [0,T ]. There are d risky assets whose prices are modeled with

P(t) � P(0) +

∫ t

0
P(s) · b(s)ds +

∫ t

0
P(s) · (σ(s)dW(s))

where · denotes pointwise multiplication. The price process P is d dimensional with com-

ponents Pi, i = 1, 2, 3, ...., d that satisfy Pi(0) > 0. In addition we have the riskless security
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whose price process is

P0(t) � e
∫ t

0 r(s)ds

The strict positive definiteness (4.1.1) of σ allows one to define

θ(t) � σ−1[b(t) − r(t)],

where we use the convention that a vector plus a constant means that the constant is added to

each of the components of the vector (as in matlab). The discount process is

γ0(t) �
1

P0(t)

4.1.1 Admissible portfolios

A portfolio invested in this market can be represented by an Rd valued Ft progressively

measurable process π. [5] also stipulates
∫ T

0 ||π(t)||2dt < ∞ almost surely.

A nonnegative, nondecreasing Ft progressively measurable process c with RCLL paths,

c(0) = 0 and c(T ) < ∞ almost surely is called a “consumption process.”

The wealth of an investor who uses the (π, c) pair for her investment and consumption will

have the following dynamics:

X(t) = X(0) +

∫ t

0
X(s) 〈π(s), (b(s)ds + σ(s)dW(s))〉 (4.1.2)

+

∫ t

0
X(s)(1 −

d∑
i=1

πi(s))ds − c(t)

Define

W0(t) � W(t) +

∫ t

0
θ(s)ds

(4.1.2) in terms of W0 is

X(t) = X(0) +

∫ t

0
X(s) (r(s)ds + 〈π(s), σ(s)dW0(s)〉) − c(t).

(π, c) is called admissible if Xx,π,c(t) ≥ 0 for all t ∈ [0,T ]. Admissibility of (π, c) will be

denoted with (π, c) ∈ A0(x).

Define

Z0(t) � exp
(
−

∫ t

0
〈θ(s), dW(s)〉 −

1
2

∫ t

0
||θ(s)||2ds

)
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and define the measure

P0(A) � E[Z0(T )1A].

W0 is a standard Brownian motion under P0.

A contingent claim in this market is an FT measurable random variable B that satisfies

0 < E0[γ0(T )B] < ∞.

Now suppose that we would like to replicate this contingent claim by investing in the market.

[5] assumes that there is the following restriction on this problem: the portfolio at any time

has to take values in the convex set K, i.e., we require that π(s, ω) ∈ K l ⊗ P almost surely. If

an admissible portfolio π satisfies this constraint, we will write π ∈ A ′
0 (x). We can represent

this problem as the following constrained control problem:

h(0) � inf{x ∈ (0,∞) : ∃(π, c) ∈ A ′(x) such that Xx,π,c(T ) ≥ B} (4.1.3)

Note that h can be thought of as the value function of this control problem. A natural question

is: what is the state of this control problem? Note that the given ”initial condition” is actually

the contingent claim B, h is a function of this ”final state.” The cost to be optimized is the

initial state x of the controlled process. Therefore, the state of this control problem evolves

backward in time. The chief accomplishment of [5] is to find an optimal control problem that

is dual to (4.1.3) that is in a completely standard form. By ”a standard form” we mean in

particular the following: 1) dynamics evolving forward in time 2) the cost to be optimized is

in the form of an accumulated running cost based on the chosen control and and a final cost.

A review of this development is in the following subsection.

An important remaining problem is the solution of the dual problem. Section 4.7 proposes a

simple algorithm that only discretizes time in the case of constant volatility and interest rate.

4.2 Preliminaries

Let M be a financial market that consists of one bond and (d) stocks. The prices of which are

as follows:

dP0(t) = P0(t) r(t) dt, P0(0) = 1 (4.2.1)
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and

dPi(t) = Pi(t)

bi(t) dt +

d∑
j=1

σi j(t) dW( j)(t)

 , Pi(0) = pi ∈ (0,∞), i = 1, . . . , d. (4.2.2)

Here;

• W = (W (1), . . . ,W (d))∗ is a standard Brownian Motion in Rd, defined on a complete

probability space (Ω,F ,P),

• The P-augmentation of the filtration F W
t = σ(W(s); 0 ≤ s ≤ t) generated by W shall

be denoted by Ft ,

• The process r(t)-scalar interest rate, b(t) = (b1(t), . . . , bd(t))∗-vector of appreciation

rates and σ(t) = {σi j(t)}1≤i, j≤d -volatility matrix are progressively measurable with

respect to {Ft} and bounded uniformly in (t,w) ∈ [0,T ] ×Ω.

We introduce also some more processes;

1. θ(t): market price of risk ≡ relative risk or sharpe ratio:

θ (t) � σ−1(t)[b(t) − r(t)].

2. The exponential martingale:

Z0(t) � exp
[
−

∫ t

0
θ∗(s) dW(s) −

1
2

∫ t

0
||θ(s)||2 ds

]
.

3. The discount process:

γ0(t) � exp
[
−

∫ t

0
r(s) ds

]
.

4.3 Portfolio, Consumption and Wealth Processes

In this section, we introduce some basic concepts and terms that are used throughout the

paper. We know that there are (d) stocks and one bond in the market M . Now, it is important

to decide for an investor at any time t ∈ [0,T ] that what proportion πi(t) of his wealth X(t) to

invest in the ith stock (1 ≤ i ≤ d) and what amount of money c(t + h) − c(t) ≥ 0 to withdraw
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for consumption during (t, t+h], h > 0. The amount X(t)[1−Σd
i=1πi(t)] is invested in the bond.

Therefore, the wealth process X(t) is as follows:

dX(t) =

d∑
i=1

πi(t) X(t)

bi(t) dt +

d∑
j=1

σi j(t) dW j(t)


+

1 − d∑
i=1

πi(t)

 X(t) r(t) dt − dc(t)

= r(t) X(t) dt − dc(t) + X(t) π∗(t) σ(t) dW0(t), X(0) = x > 0,

where

W0(t) � W(t) +

∫ t

0
θ(s) ds, 0 ≤ t ≤ T.

4.3.1 Definitions

1. Portfolio Process : An Rd-valued, {Ft}-progressively measurable process π = {π(t), 0 ≤

t ≤ T } with
∫ T

0 ||π(t)||2 dt < ∞ a.s..

2. Consumption Process : A nonnegative, nondecreasing, Ft-progressively measurable

process c = {c(t), 0 ≤ t ≤ T } with RCLL paths, c(0) = 0 and c(T ) < ∞ a.s..

3. Wealth Process : The solution X ≡ Xx,π,c corresponding to the portfolio-consumption

pair (π, c) and initial capital x ∈ (0,∞).

4. A portfolio-consumption process pair (π, c) is called admissible for the initial capital

x ∈ (0,∞), if the corresponding wealth process is always nonnegative. The set of

admissible pairs (π, c) is denoted by A0(x).

5. A contingent claim is a nonnegative, FT -measurable random variable B satisfying

0 < E0[γ0(T ) B] < ∞.

6. The hedging price of the corresponding contingent claim is defined by

u0 � in f {x > 0; ∃ (π, c) ∈ A0(x) s.t. Xx,π,c(T ) ≥ B a.s.}.
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4.4 Convex Sets and Constrained Portfolios

In this section, we fix a nonempty, closed, convex set K in Rd. For this convex set K,

δ(x) ≡ δ(x|K) � supπ∈K 〈−π, x〉 : Rd → R ∪ {+∞}. (4.4.1)

Here, δ is the ”support function” of the convex set −K. Note that if −K is interpreted to be

the set of subgradients of a function g at a point, δ is the best convex approximation of g at

that point. Furthermore,

K̃ � {x ∈ Rd; δ(x|K) < ∞}

= {x ∈ Rd; ∃ β ∈ R s.t. − π∗x ≤ β, ∀ π ∈ K}. (4.4.2)

K̃ is a convex cone (the barrier cone of −K) such that δ (· |K) is continuous on K̃ and bounded

from below on Rd:

δ(x|K) ≥ δ0, ∀ x ∈ Rd for some δ0 ∈ R.

We denote the set of admissible pairs (π, c) as A0. From now on, we replace the set of

admissible policies A0(x) with

A ′(x) � {(π, c) ∈ A0(x) ; π(t,w) ∈ K f or ` ⊗ P − a.e. (t,w)}.

In other words, A ′(x) is the set of admissible portfolios that also stay in the set K at all times.

Now, the class H is K̃ valued Ft progressively measurable processes ν : [0,T ] → K̃, that

satisfy

E

[∫ T

0
||ν(t)||2 dt +

∫ T

0
δ(ν(t)) dt

]
< ∞.

For each ν ∈H , we define a market as follows:

1. ν modifies the returns additively:

bν = b + ν + δ(ν).

This implies, in particular, θν(t) � θ(t) + σ−1(t) ν(t).

2. δ(ν) modifies the interest rate additively:

γν � exp
[
−

∫ t

0
[r(s) + δ(ν(s))] ds

]
,
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3. The Radon Nikodyn derivative:

Zν � exp
[
−

∫ t

0
〈θν(s), dWs〉 −

1
2
||θν(s)||2 ds

]
,

4. A new Brownian Motion:

Wν � W(t) +

∫ t

0
θν(s) ds.

5. The new measure:

dPν = ZνdP.

6. D ⊂H : the subset such that the exponential local martingale Zν(·) is a martingale for

ν ∈ D .

7. V(0) :

V(0) � supν∈D Eν
[
γν(T )B

]
< ∞.

A contingent claim B is K − hedgeable if it satisfies the above equation. Note that the

optimization is over D , not over H .

8. The dynamics of the price processes under Pν in terms of Wν:

dP = 〈P, [r(t) + δ(ν(t))dt + σdWν(t)]〉.

It is easy to show how this equation is driven. First of all, we know that

Wν(t) = W(t) +

∫ t

0
θν(s) ds.

Therefore,it is obvious that

dW(t) = dWν(t) − θν(t) dt.

The price of the instruments in the new market is

dP(t) = P(t) [{b(t) + ν(t) + δ(ν(t))} dt + σdWt] .

Inserting dW(t) into the above equation, we get

dP(t) = P(t) [{b(t) + ν(t) + δ(ν(t))} dt + σ(dWν(t) − θν(t) dt)] ,

where

θν(t) = σ−1[b(t) + ν(t) − r(t)].

After rearranging the equation by inserting the equivalence of θν(t) and canceling the

terms with opposite signs we get our result:

dP(t) = P(t)[{r(t) + δ(ν(t))}dt + σdWν(t)].

29



4.5 Hedging With Constrained Portfolios

In this section, we introduce the hedging price of a contingent claim B. The constraint in

portfolios is to take values in the set K. We see that the hedging price coincides with V(0) =

supν∈D Eν
[
γν(T )B

]
.

The hedging price with K-constraint portfolios of a contingent claim B is defined by

h(0) � in f {x ∈ (0,∞); ∃ (π, c) ∈ A ′(x), s.t. Xx,π,c(T ) ≥ B a.s.}. (4.5.1)

Let I denote the set of all {Ft}-stopping times τ with values on [0,T ] and by Iρ,σ the subset

of I consisting of stopping times τ s.t. ρ(w) ≤ τ(w) ≤ σ(w), ∀ w ∈ Ω, for any two ρ ∈ I ,

σ ∈ I such that ρ ≤ σ a.s. Now, let us consider that

V(τ) � ess supν∈D E
ν

[
Bγ0(T ) exp

{
−

∫ T

τ
δ(ν(s)) ds

}
|Fτ

]
. (4.5.2)

Definition 4.5.1 [17, Definition 2.1, page 3] Let f : D→ R be a measurable function defined

on a measurable set D of RN with respect to the Lebesgue measure µ, where 0 < µ(D) < +∞.

B is said to be an essential upper bound for f iff f (x) ≤ B for almost all x ∈ D, i.e.,

µ{x ∈ D : f (x) > B} = 0.

The least essential upper bound is called essential supremum of f .

ess sup f � inf{B : B is an essential upper bound for f }.

�

Proposition 4.5.2 [5, Proposition 6.2, page 662] For any contingent claim that satisfies (7),

the family of (4.5.2) of random variables {V(τ)}τ∈I satisfies the equation of dynamic pro-

gramming:

V(τ) = ess supν∈Dτ,θ
Eν

[
V(θ) exp

{
−

∫ θ

τ
δ(ν(u)) du

}
|Fτ

]
, ∀ θ ∈ Iτ,T . (4.5.3)

The definiton of V(τ) on given in (4.5.2) involves an unusual discounting:

V(τ) � ess supν∈D E
ν

[
Bγ0(T ) exp

{
−

∫ T

τ
δ(ν(s)) ds

}
|Fτ

]
.
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This is the same as

V(τ) = ess supν∈D E
ν

[
exp

(
−

∫ T

0
r(s) ds

)
B
γν(T )
γν(τ)

∣∣∣∣∣Fτ

]
= exp

(
−

∫ T

0
r(s) ds

)
esssupν∈D Eν

[
B
γν(T )
γν(τ)

∣∣∣∣∣Fτ

]
.

Thus, the discounting after time τ is made using the discount factor under ν measure, but the

discounting between 0 and τ is done using the original discount factor. The main reason for

this choice seems to be the simple dynamic programming equation that it leads to. In a DPE

we would like to relate future values to present values. Note that in this formulation of the

control problem at each time we are choosing a new market. To relate these markets to each

other we need a common currency; the currency is the value of money at the original market

at time 0.

Proposition 4.5.3 [5, Proposition 6.3, page 662] The process V = {V(t), Ft; 0 ≤ t ≤ T } of

the above proposition can be considered in its RCLL modification and for every ν ∈ D ,

Qν(t) � V(t) exp
(
−

∫ t

0
δ(ν(u)) du

)
, Ft; 0 ≤ t ≤ T. (4.5.4)

Here, Qν can be thought of as the value of V at time 0 in the market corresponding to ν

(the discount with respect to r is already included in the definition of V); so we only need to

discount with respect to the residual discount rate of this market.

Qν is a Pν supermartingale; let ψ∗ν be the process that is integrated with respect to Wν in Qν’s

stochastic integral representation. The optimal portfolio is defined in terms of ψ∗ν as follows:

π̂(t) =
exp

(∫ t
0 δ(ν(s)) ds

)
V(t)

ψνσ
−1(t).

Theorem 4.5.4 [5, Theorem 6.4, page 662] For an arbitrary contingent claim B

h(0) = V(0).

If V(0) < ∞, there exists a pair (π̂, ĉ) ∈ A ′(V(0)) such that

XV(0),π̂,ĉ(T ) = B, a.s..

Here, V is the value function of the dual maximization problem. h is the direct definition (the

value function of the primal problem.) Note that this theorem says that there is an optimal

solution to the primal problem.
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Proof. First, we show that h(0) ≤ V(0). We may assume that V(0) < ∞. From (4.5.4), the

martingale representation theorem and the Doob-Meyer decomposition theorem, we have for

every ν ∈ D :

Qν(t) = V(0) +

∫ t

0
ψ∗ν(s) dWν(s) − Aν(t), 0 ≤ t ≤ T, (4.5.5)

where ψ∗ν(·) is an Rd-valued {Ft}-progressively measurable and square-integrable process i.e.∫ ∞
−∞
|ψν(x)|2 dx < ∞ and Aν(·) is adapted with increasing RCLL paths and Aν(0) = Aν(T ) < ∞.

Now, we consider the positive, adapted RCLL process

X̂(t) �
V(t)
γ0(t)

=
Qν(t)
γν(t)

, 0 ≤ t ≤ T, ∀ ν ∈ D , (4.5.6)

with X̂(0) = V(0), X̂(T ) = B a.s. To show that h(0) ≤ V(0), we have to find a pair (π̂, ĉ) ∈

A ′(V(0)) such that X̂(·) = XV(0),π̂,ĉ(·). We have from (4.5.4) that

Qν(t) = V(t) exp
(
−

∫ t

0
δ(ν(s)) ds

)
. (4.5.7)

From this equation, for any µ ∈ D and ν ∈ D we have,

Qµ(t) = V(t) exp
(
−

∫ t

0
δ(µ(s)) ds

)
. (4.5.8)

From (4.5.7), it is obvious to see that

V(t) = Qν(t) exp
(∫ t

0
δ(ν(s)) ds

)
. (4.5.9)

Writing V(t) into the equation (4.5.8), we get

Qµ(t) = Qν(t) exp
(∫ t

0
{δ(ν(s)) − δ(µ(s))} ds

)
. (4.5.10)

Taking derivative of both sides, we have

dQµ(t) = dQν(t) exp
(∫ t

0
{δ(ν(s)) − δ(µ(s))} ds

)
+ Qν(t) {δ(ν(t)) − δ(µ(t)) } dt exp

(∫ t

0
{δ(ν(s)) − δ(µ(s))} ds

)
(4.5.11)

= exp
(∫ t

0
{δ(ν(s)) − δ(µ(s))} ds

)
×

[
Qν(t) {δ(ν(t)) − δ(µ(t))} dt + ψ∗ν(t)dWν(t) − dAν(t)

]
(4.5.12)

= exp
(∫ t

0
{δ(ν(s)) − δ(µ(s))} ds

)
×

[
X̂(t)γν(t) {δ(ν(t)) − δ(µ(t))} dt − dAν(t)

+ ψ∗ν(t)
(
dWµ(t) + σ−1(t)(ν(t) − µ(t)) dt

)]
. (4.5.13)
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We find dWν in terms of dWµ by using the following method;

Wν(t) = W(t) +

∫ t

0
θν(s) ds⇒ Wµ(t) = W(t) +

∫ t

0
θµ(s) ds

⇒ Wν(t) = Wµ(t) −
∫ t

0
θµ(s) ds +

∫ t

0
θν(s) ds

⇒ dWν(t) = dWµ(t) − θµ(t) dt︸  ︷︷  ︸
θ(t)dt+σ−1(t)µ(t)dt

+ θν(t) dt︸  ︷︷  ︸
θ(t)dt+σ−1(t)ν(t)dt

∴ dWν(t) = dWµ(t) + σ−1(t)[ν(t) − µ(t)] dt.

Comparing (4.5.13) with

dQµ(t) = ψ∗µ(t)dWµ(t) − dAµ(t),

we conclude that

ψ∗ν(t) exp
(∫ t

0
δ(ν(s)) ds

)
= ψ∗µ(t) exp

(∫ t

0
δ(µ(s)) ds

)
,

and, hence, that this expression is independent of ν ∈ D :

ψ∗ν(t) exp
(∫ t

0
δ(ν(s)) ds

)
= X̂(t) γ0(t) π̂∗(t)σ(t), ∀ 0 ≤ t ≤ T, ν ∈ D , (4.5.14)

for some adapted, Rd-valued, a.s. square-integrable process π̂.

Similarly, we conclude from (4.5.13) and (4.5.14) that

exp
(∫ t

0
δ(ν(s)) ds

)
dAν(t) − γ0(t)X̂(t)[δ(ν(t)) + π̂∗(t)ν(t)] dt

= exp
(∫ t

0
δ(µ(s)) ds

)
dAµ(t) − γ0(t)X̂(t)[δ(µ(t)) + π̂∗(t)µ(t)] dt,

this expression is also independent of ν ∈ D :

ĉ(t) �
∫ t

0
γ−1
ν (s)dAν(s) −

∫ t

0
X̂(s)[δ(ν(s)) + ν∗(s)π̂(s)] ds (4.5.15)

for every 0 ≤ t ≤ T, ν ∈ D . From (4.5.15) with ν ≡ 0 we obtain

ĉ(t) =

∫ t

0
γ−1

0 (s) dA0(s), 0 ≤ t ≤ T,

hence, ĉ(·) is an increasing, adapted, RCLL process with ĉ(0) = 0 and ĉ(T ) < ∞ a.s. Next, we

claim that

δ(ν(t,w)) + ν∗(t,w) π̂(t,w) ≥ 0, ` ⊗ P − a.e., (4.5.16)

33



holds for every ν ∈ D . To verify (4.5.16), notice that from (4.5.15) we obtain

Aν(t) =

∫ t

0
γν(s){dĉ(s) + X̂(s){δ(ν(s)) + ν∗(s)π̂(s)} ds}

≤ k
[
ĉ(t) +

∫ t

0
{δ(ν(s)) + ν∗(s)π̂(s)}X̂(s) ds

]
, 0 ≤ t ≤ T, ν ∈ D ,

for some k > 0. Fix ν ∈ D and define the set Ft � {w ∈ Ω; δ(ν(t,w)) + ν∗(t,w)π̂(t,w) < 0}

for every t ∈ [0,T ]. Let µ(t) � [ν(t)1Fc
t

+ nν(t)1Ft ](1 + ||ν(t)||)−1, n ∈ N. Then, µ ∈ D and,

assuming that (4.5.16) does not hold, we get for n large enough,

E
[
Aµ(T )

]
≤ E

[
kĉ(T ) + k

∫ T

0
(1 + ||ν(t)||)−1X̂(t)1Fc

t
× {δ(ν(t)) + ν∗(t)π̂(t)} dt

]
+ nE

[
k
∫ T

0
(1 + ||ν(t)||)−1X̂(t)1Ft {δ(ν(t)) + ν∗(t) p̂i(t)} dt

]
< 0,

a contradiction. Now we can put together (4.5.5)-(4.5.15) to deduce

d(γν(t)X̂(t)) = dQν(t) = ψ∗ν(t)dWν(t) − dAν(t)

= γν(t)[−dĉ(t) − X̂(t){δ(ν(t)) + ν∗(t)π̂(t)} dt (4.5.17)

+ X̂(t)π̂∗(t)σ(t)dWν(t)]

for any given ν ∈ D . As a consequence, the process

M̂ν(t) � γν(t)X̂(t) +

∫ t

0
γν(s) dĉ(s)

+

∫ t

0
γν(s)X̂(s)[δ(ν(s)) + ν∗(s)π̂(s)] ds (4.5.18)

= V(0) +

∫ t

0
γν(s)X̂(s)π̂∗(s)σ(s)dWν(s), 0 ≤ t ≤ T,

is a nonnegative, Pν-local martingale. In particular, for ν ≡ 0, (4.5.17) gives

d(γ0(t)X̂(t)) = −γ0(t)dĉ(t) + γ0(t)X̂(t)π̂∗(t)σ(t)dW0(t),

X̂(0) = V(0), X̂(T ) = B.

This shows X̂(·) ≡ XV(0),π̂,ĉ(·) and h(0) ≤ V(0) < ∞. It remains to show that h(0) ≥ V(0) to

complete the proof. We may assume h(0) < ∞, then there exists a number x ∈ (0,∞) such

that Xx,π,c(T ) ≥ B a.s. for some (π, c) ∈ A ′(x). Then, (4.5.17) holds and it follows from the
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supermartingale property that

x ≥ Eν
[
γν(T )Xx,π,c(T ) +

∫ T

0
γν(t) dc(t)

+

∫ T

0
γν(t)Xx,π,c(t){δ(ν(t)) + ν∗(t)π(t)} dt

]
(4.5.19)

≥ Eν[Bγν(T )],

∀ ν ∈ D . Therefore, x ≥ V(0) and thus h(0) ≥ V(0). As a result, we’ve shown that h(0) =

V(0). �

Definition 4.5.5 [5, Definition 6.5, page 665] K-hedgeable contingent claim B is K−attainable

if there exists a portfolio process πwith values in K such that (π, 0) ∈ A ′(V(0)) and XV(0),π,0(T ) =

B a.s. �

Theorem 4.5.6 [5, Theorem 6.6, page 666] For a given K-hedgeable contingent claim B and

any given λ ∈ D , the conditions{
Qλ(t) = V(t) exp

(
−

∫ t

0
δ(λ(u)) du

)
, Ft; 0 ≤ t ≤ T

}
is a Pλ − martingale, (4.5.20)

λ achieves the supremum in V(0) = supν∈DEν [Bγν(T )], (4.5.21){
B is K − attainable (by a port f olio π) and the corresponding γλ(·)XV(0),π,0(·) is a Pλ − martingale

}
(4.5.22)

are equivalent and imply

ĉ(t,w) = 0, δ(λ(t,w)) + λ∗(t,w)π̂(t,w) = 0, ` ⊗ P − a.e. (4.5.23)

for the pair (π̂, ĉ) ∈ A ′(V(0)) of Theorem 4.5.4

Theorem 4.5.7 [5, Theorem 6.7, page 666] Let B be a K-hedgeable contingent claim. Sup-

pose that for any ν ∈ D with δ(ν) + ν ∗ π̂ ≡ 0,

Qν(·) in (4.5.4) is o f class D[0,T ], under Pν. (4.5.24)

Then, for any given λ ∈ D , the conditions (4.5.20), (4.5.21) and (4.5.23) are equivalent, and

imply{
B is K − attainable (by a port f olio π) and the corresponding γ0(·)XV(0),π,0(·) is a P0 − martingale

}
(4.5.25)
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4.5.1 Examples [5, Examples, page 669]

1. (No short selling) K = [0,∞) with r, σ ≡ σ11 positive constants. Then K̃ = K, δ(x) = 0

for x ≥ 0, δ(x) = ∞ for x < 0. So, x + δ(x) = x ≥ 0 on K̃. Take B = ϕ(P1(T )), where

ϕ : R+ → [0,∞) is continuous, increasing, piecewise continuously differentiable and satisfies

ϕ(p) ≤ αp for some real α > 0. Then, we have V(0) < ∞. We know that

X(t) = ertV(t) = e−r(T−t)U(T − t, P1(t)), (4.5.26)

π̂(t) =
Q(T − t, P1(t))
U(T − t, P1(t))

= P1(t)
(∂/∂p)U(T − t, P1(t))

U(T − t, P1(t))
≥ 0, (4.5.27)

where

U(t, p) �
∫ ∞

−∞

ϕ
(
peσ(ξ+δt)

) e−ξ
2/2t

√
2πt

dξ, (4.5.28)

Q(t, p) �
∫ ∞

−∞

ψ(
(
peσ(ξ+δt)

) e−ξ
2/2t

√
2πt

dξ = p
∂

∂p
U(t, p) (4.5.29)

with δ = (r/σ) − (σ/2) and ψ(p) � pϕ′(p) ≥ 0.

As a result, this example is the case of the European call option ϕ(p) = (p− q)+ with exercise

price q > 0. Thus, the unconstrained hedging portfolio does not require short-selling and the

constraint K = [0,∞) makes no difference.

2. (No borrowing) Let K = (−∞, 1], then K̃ = (−∞, 0], δ(ν) = ν and consider the contingent

claim B = (P1(T ) − q)+. The process exp(
∫ t

0 ν(s) ds)γ0(t)P1(t) is a Pν-martingale, for every

ν ∈ D . Consequently,

V(t) ≤ ess supν∈Dexp
(
−

∫ t

0
ν(s) ds

)
Eν

[
exp

(∫ T

0
ν(s) ds

)
γ0(T )P1(T )|Ft

]
(4.5.30)

= γ0(t)P1(t), 0 ≤ t ≤ T.

On the other hand, by Jensen’s inequality,

V(t) ≥ ess supν∈D

{
exp

(
−

∫ t

0
ν(s) ds

)
Eν

[
exp

(∫ T

0
ν(s) ds

)
γ0(T )P1(T )|Ft

]
− Eν

[
exp

(∫ T

t
ν(s) ds

)
γ0(T )q|Ft

]}+

(4.5.31)

≥ ess supν∈Dd

{
γ0(t)P1(t) − exp

(∫ T

t
ν(s) ds

)
qEν[γ0(T )|Ft]

}+

= γ0(t)P1(t)
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for 0 ≤ t ≤ T . The inequalities (4.5.30) and (4.5.31) imply

V(t) =


γ0(t)P1(t), 0 ≤ t < T,

γ0(T )(P1(T ) − q)+, t = T,
(4.5.32)

or equivalently

dV(t) = γ0(t)P1(t)σ(t)dW0(t) − dA0(t), (4.5.33)

where

A0(t) =


0, 0 ≤ t < T,

γ0(T )[P1(T ) − (P1(T ) − q)+], t = T.
(4.5.34)

In particular, (4.5.33) implies X � V/γ0 ≡ XV(0),π̂,ĉ with

π̂ ≡ 1, ĉ(t) =

∫ t

0
γ−1

0 (s) dA0(s). (4.5.35)

In other words, in order to replicate B = (P1(T )− q)+ without borrowing, one has to invest all

the wealth in the stock, not consume before the expiration date T , and consume at time t = T

the amount

ĉ(T ) = P1(T ) − (P1(T ) − q)+ = min(P1(T ), q). (4.5.36)

This example resolves two questions that can be raised in the context of Theorem 4.5.4.

First, it shows the process V(·) is not, in general, a regular P0-supermartingale, for if it

were, A0(·) would be continuous. Second, it shows that, in general, the supremum of γν =

exp
[
−

∫ t
0 [r(s) + δ(ν(s))] ds

]
is not attained. Indeed, one has to let ν ≡ −∞ in order to achieve

equality in (4.5.31).

3. (Option with a ceiling on a stock that cannot be traded.) Let K = {x ∈ Rd; x1 = 0}, B =

(P1(T ) − q)+ ∧ L for some real q > 0, L > 0. Then, K̃ = {x ∈ Rd; x2 = x3 = · · · = xd = 0}

and δ ≡ 0 on K̃. Assume deterministic market coefficients. We want to verify

V(0) = γ0(T )L (4.5.37)

by first showing V(0) ≥ γ0(T )L and then providing the opposite inequality by constructing a

consumption process c such that the wealth process corresponding to the triple (γ0(T )L, 0, c)

satisfies X(T ) = B a.e.. We have

V(0) ≥ γ0(T )L ess supν∈Dd
Eν1{P1(T )−q>L}. (4.5.38)
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Define an Rd
+-valued process P̃(ν)(·) = {P̃νi (·)}di=1 by

dP̃(ν)
i (t) = P̃(ν)

i (t)[r(t) − νi(t)] dt (4.5.39)

+ P̃(ν)
i (t) Σd

j=1σi j(t) dW( j)
0 (t), P̃(ν)

i (0) = Pi(0),

for i = 1, . . . , d and ν ∈ Dd. We have

Eν1{P1(T )−q>L} = E01{P̃ν1(T )−q>L}. (4.5.40)

Letting ν→ −∞, (4.5.38)-(4.5.40) imply

V(0) ≥ γ0(T )L. (4.5.41)

Next, we define a consumption process c by

c(t) =


0, t < Tor t = T, P1(T ) − q > L,

L − (P1(T ) − q)+, t = T, P1(T ) − q ≤ L.
(4.5.42)

Then the wealth process X(·) associated with the policy (γ0(T )L, 0, c) is given by X(t) =

(γ0(T )/γ0(t))L for t < T and by

X(T ) = L − c(T ) = B (4.5.43)

for t = T . This implies V(0) ≥ γ0(T )L by Theorem 4.5.4. Consequently, the way to hedge a

bounded option on a stock that is not available for investment is to replicate the upper bound of

the option by investing in the bond only, and then to consume the difference at the expiration

date.

4.6 Numerical Solution of the Dual Problem

For the purposes of this section we will concentrate on the problem of replication when the

interest rate for borrowing and lending is different.

We make the following assumptions. There is only one risky security with constant volatility

σ. The interest rate for borrowing and lending are R and r respectively and both are assumed

to be constant. The security to be hedged is assumed to be of the form

B = φ(P(T ))
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for some positive measurable and finite function φ. Then as developed in [5, Example 9.5] the

hedging problem of (4.1.3) is equivalent to the following stochastic optimal control problem:

V(t, p) � sup
ν∈D
E

[
φ(P(T ))e−

∫ T
t ν(s)ds|P(t) = p

]
, (4.6.1)

where P satisfies

P(t) = P(0) +

∫ t

0
P(s)ν(s)ds +

∫ t

0
σP(s)dW(s) (4.6.2)

and D is the set of progressively measurable processes taking values in [r,R].

Remark 4.6.1 It is interesting to note that the state process of the dual problem is the price

process (which can be d dimensional) whereas the state process of the primal problem is

intimately related to the one dimensional wealth process. Therefore, in general, by going to

the dual problem we increase the dimension of the problem.

We begin by noting that Ito’s formula implies that the explicit solution of (4.6.2) is

P(t) = eY(t)

with

Y(t) = y +

∫ t

0
ν(s)ds −

1
2
σ2t + σW(t). (4.6.3)

Then, instead of P we can use Y as the state process and rewrite (4.6.1) as

V(t, y) � sup
ν∈D
E

[
φ(exp(Y(T ))e−

∫ T
t ν(s)ds|Y(t) = y

]
, (4.6.4)

with Y given in (4.6.3).

Our goal is to solve (4.6.4) by discretizing time and thereby obtaining a discrete time optimal

control problem.

For ease of notation let t = 0; (4.6.3) says that Y(0) = y a constant. Let n be the level of

discretization and let ∆n = T/2n be the size of the discrete time step at level n. Let Dn denote

the class of simple processes taking values in [r,R] that are piecewise constant on the intervals

[k, k + 1)∆n and define

Vn(0, y) � sup
ν∈Dn

Ey

[
φ(exp(Y(T ))e−

∫ T
t ν(s)ds

]
, (4.6.5)

where the subscript y denotes Y(0) = y. We would like to show

1. Vn(0, y) can be computed recursively using dynamic programming.

2. Vn(0, y)→ V(0, y).
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4.7 Solution of the Discretized Problem

Let us begin with the first. For ν ∈ Dn Y can be written as

Y(k∆n) = y +

k∑
j=0

νn( j)∆n −
1
2
σ2k∆n + σ

k∑
j=0

W(k∆n) −W((k − 1)∆n),

where νn( j) is an F j∆n measurable random variable taking values in [r,R]. Now we argue that

it is sufficient to consider νn( j) that depend only on {W(i∆n), i ≤ j}. Let Ṽn(0, y) denote the

sup in (4.6.4) over such ν. Because we are taking a sup over a smaller class we have

Ṽn(0, y) ≤ Vn(0, y).

To see that the opposite inequality, imagine that W is sampled as follows: first the W(i∆n)

are sampled and then the Brownian bridges that connect these values are sampled. Apriori,

the controls νn( j) that define the ν in (4.6.4) are a function of both the values W(i∆n) and

the Brownian bridges that connect them. Now, condition the expectation in (4.6.5) on the

Brownian bridges. The resulting conditional expectation (because the values of the Brownian

bridges are now fixed) is of the same form that occurs in the definition of Ṽn. Then the

conditioned expectation is less then Ṽn(0, y). This constant term that doesn’t depend on the

bridges comes out of the expectation and gives

Vn(0, y) ≤ Ṽn(0, y).

Combining the last inequalities we get

Vn(0, y) = Ṽ(n, y).

In this way we see that (4.6.5) is equivalent to the following finite step problem. Let {εn(k)} is

an iid sequence with common distribution N(0, 1). Let

F n
k � σ(εn(i), i ≤ k).

νn(k) ∈ F n
k .

Yn(k) = Yn(k − 1) + νn(k)∆n + σ
√

∆nε
n(k), Yn(0) = y.

Note that this problem is defined in terms of a finite iid sequence of random variables rather

than a Brownian motion. It is a standard discrete time finite optimal stopping problem. It is
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well known for these types of problems that the value function satisfies a dynamic program-

ming equation (DPE). In the present case this equation turns out to be

Vn(y, (k − 1)∆n) (4.7.1)

= sup
ν∈[r,R]

e−ν∆n
1
√

2π

∫
Vn

(
y +

(
ν −

1
2
σ2

)
∆n + σ

√
∆nx, k∆n

)
e−x2/2dx

along with the base case

Vn(y,T ) = φ(ey).

From the last DPE several facts are immediate. If φ(ey) is convex in y then so are all Vn(·,∆nk),

k = 0, 1, 2, 3, ..., 2n and in particular Vn are all differentiable, i.e., dVn
dy is well defined. Let us

assume that φ(ey) is convex. Then we can simply differentiate the function of ν on the right

side of (4.7.1) to compute the optimal ν. This derivative is

e−ν∆n∆n

(
E

[
V

(
y +

(
ν −

1
2
σ2

)
∆ + ε, k∆n

)]
− E

[
dV
dy

(
y +

(
ν −

1
2
σ2

)
∆ + ε, k∆n

)])
, (4.7.2)

where ε is N(0, σ2∆n). The optimal ν can be obtained by solving this equation. (4.7.2) also

suggests the following result.

Proposition 4.7.1 Define B(y) � φ(ey). If

B(y) ≥
dB
dy

(4.7.3)

for almost all y then the optimizer ν in (4.7.1) is always ν∗ = R.

Proof. We will prove by induction that

V(y, k∆n) ≥
dV
dy

(y, k∆n) (4.7.4)

for all k; as shown below, this will in particular establish the result of the proposition. For

k = 2n (4.7.4) is exactly the assumption (4.7.3). Let us now assume that (4.7.4) is true for k.

Then (4.7.2) implies that the right side of (4.7.1) is increasing in ν and thus it is maximized

for

ν∗ = R. (4.7.5)

Substituting this value in (4.7.1) gives

V(y, (k − 1)∆n) = e−R∆nE

[
V

(
y +

(
R −

1
2
σ2

)
∆n + ε, k∆n

)]
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where ε is N(0, σ2∆n). Now differentiating the right side of this display with respect to y gives

V(y, (k − 1)∆n) −
dV
dy

(y, (k − 1)∆n)

= e−R∆n∆n

(
E

[
V

(
y +

(
R −

1
2
σ2

)
∆ + ε, k∆n

)]
− E

[
dV
dy

(
y +

(
R −

1
2
σ2

)
∆ + ε, k∆n

)])
.

(4.7.4) again implies that this expression is greater than zero, which proves (4.7.4) for k − 1.

This completes the induction. (4.7.5) implies the statement of the theorem. �

Reversing the argument in the previous proposition gives

Proposition 4.7.2 Define B(y) � φ(ey). If

B(y) ≤
dB
dy

(4.7.6)

for almost all y then the optimizer ν in (4.7.1) is always ν∗ = r.

Example 4.7.3 Take φ(ey) = (ey − K)+. This choice corresponds to a call option with strike

K. This is clearly a convex function in y and it satisfies (4.7.6). Proposition 4.7.2 implies that

for call options the optimal ν always turns out to be r in the dual problem.

Remark 4.7.4 Our propositions 4.7.1 and 4.7.2 are similar to the argument on page 676 of

[5], which is based on the assumption

〈p,Dφ〉 ≥ φ(p).

The key difference is that φ is assumed to be a C1 function in [5] whereas our results need

differentiability only almost everywhere. For example, to the best of our understanding the

argument of [5, page 676] is not directly applicable to the call option treated in the previous

example.

4.7.1 Convergence of Vn to V

Now let us go back to (4.6.5) and (4.6.4) and prove
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Proposition 4.7.5 If

E
[
φ
(
ey+(R− 1

2σ
2)t+|WT |

)]
< ∞. (4.7.7)

then

lim
n→

Vn(t, y) = V(t, y). (4.7.8)

Remark 4.7.6 Note that (4.7.7) is satisfied by any function which has polynomial growth and

in particular by Lipschitz continuous functions.

Proof. We begin by noting that Dn ⊂ Dn+1. Therefore, the sup in the definition of Vn+1(t, y) is

over a larger set than the sup in the definition of Vn(t, y). This implies that Vn(t, y) is increasing

in n and therefore has to converge to a limit V̄(t, y). Similarly, D ⊃ Dn implies V(t, y) ≥

Vn(t, y). As a result of these one gets

lim
n→∞

Vn(t, y) = V̄(t, y) ≤ V(t, y). (4.7.9)

It remains to prove the reverse inequality. For this purpose fix an arbitrary control ν ∈ D . By

assumption ν is progressively measurable and bounded. [9, Lemma 2.4, page 132] says that

there is a sequence of piecewise constant controls νn such that νn ∈ Dn and

lim
n→∞
E

[∫ T

0
|νn(t) − ν(t)|2dt

]
= 0. (4.7.10)

The expected difference in using νn instead of ν in (4.6.4) is

Dn �

∣∣∣∣∣Ey

[
φ(exp(Yn(T ))e−

∫ T
t νn(s)ds

]
− Ey

[
φ(exp(Y(T ))e−

∫ T
t ν(s)ds

]∣∣∣∣∣ , (4.7.11)

where

Yn(t) = y +

∫ t

0
νn(s)ds −

1
2
σ2t + σW(t).

We would like to show that lim Dn = 0. To do so, let us take any subsequence Dnk of Dn.

(4.7.10) implies that nk has a further subindex {nk j} for which

ν
nk j → ν almost surely. (4.7.12)

This, the continuity of the exponential function and the boundedness of ν and νn imply that

e−
∫ T

t νn(s)ds converges to e−
∫ T

t ν(s)ds almost surely. (4.7.13)

Furthermore note that

max(|Yn(t)|, |Y(t)|) ≤ y + (R −
1
2
σ2)T + σWT .
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We will use (4.7.13) and (4.7.7) in the invocation of the dominated convergence theorem

below.

To continue our analysis, add and subtract

Ey

[
φ(exp(Yn(T ))e−

∫ T
t ν(s)ds

]
to (4.7.11) and get

Dnk j
≤ Ey

[∣∣∣∣∣φ(exp(Ynk j (T ))
(
e−

∫ T
t ν

nk j (s)ds − e−
∫ T

t ν(s)ds
)∣∣∣∣∣]

+ Ey

[
|φ(exp(Ynk j (T )) − φ(exp(Y(t))|e−

∫ T
t ν(s)ds

]
(4.7.12), (4.7.13), (4.7.7) and the dominated convergence theorem imply that Dn jk

converges

to 0. Because this process does not depend on the particular subsequence, we have that

lim
n

Dn = 0. (4.7.14)

(4.7.14) implies that for any ε > 0 we can find νn ∈ Dn such that

Ey

[
φ(exp(Y(T ))e−

∫ T
t ν(s)ds

]
≤ Ey

[
φ(exp(Yn(T ))e−

∫ T
t νn(s)ds

]
+ ε.

Note that the last expression is less than V̄(y, t) + ε. Taking the sup of the left side of the last

inequality over all ν ∈ D gives

V(y, t) ≤ V̄(y, t) + ε.

Because ε in the last display can be chosen arbitrarily small we have

V(y, t) ≤ V̄(y, t).

The last display and (4.7.9) imply (4.7.8).

�
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CHAPTER 5

CONCLUSION

This thesis consists of a careful study of two important papers in backward stochastic differen-

tial equations literature: [14, Pardoux and Peng, 1990] and [5, Cvitanić and Karatzas, 1993].

The main result of [14] is the existence and uniqueness for an adapted pair {x(t), y(t); t ∈

[0, 1]} which solves the equation:

x(t) +

∫ 1

t
f (s, x(s), y(s))ds +

∫ 1

t
[g(s, x(s)) + y(s)]dWs = X,

where

f : Ω × [0, 1] × Rd × Rd×k → Rd,

g : Ω × [0, 1] × Rd × Rd×k → Rd×k.

The details of all the steps of the proofs in the paper by Pardoux and Peng are provided in our

thesis.

In [5] Cvitanić and Karatzas studied the following problem: the hedging of contingent claims

with portfolios constrained to take values in a given closed, convex set. The analysis of

this paper is based on a dual control problem. We provide a numerical solution of the dual

problem when the volatility term is assumed to be constant. Let us now briefly compare the

approach taken in this thesis to the solution of the dual problem to the approach suggested

in [5, Example 9.5]. In the mentioned reference the authors suggest the following solution

method: solve the HJB equation associated with the stochastic optimal control problem. To

find the solution they invoke an existence and uniqueness result from the classical PDE theory.

Of course, to get a more concrete solution one can solve the PDE numerically and for this

there are many algorithms. In our approach, we directly discretize time and obtain a discrete

time finite step stochastic optimal control problem whose dynamic programming equation is
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an integral equation rather than a differential equation. Hence, its solution is much simpler

(in fact, it doesn’t need a solution, because it defines the solution recursively.) The drawback

of the argument presented above is the constancy assumptions on r and σ. Future work may

try to extend our approach to cases where these parameters are not necessarily constant.
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