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ABSTRACT

PORTFOLIO INSURANCE STRATEGIES

Güleroğlu, Çiğdem

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

September 2012, 72 pages

The selection of investment strategies and managing investment funds via employing portfolio

insurance methods play an important role in asset liability management. Insurance strategies

are designed to limit downside risk of portfolio while allowing some participation in potential

gain of upside markets. In this thesis, we provide an extensive overview and investigation,

particularly on the two most prominent portfolio insurance strategies: the Constant Proportion

Portfolio Insurance (CPPI) and the Option-Based Portfolio Insurance (OBPI).

The aim of the thesis is to examine, analyze and compare the portfolio insurance strategies in

terms of their performances at maturity, via some of their statistical and dynamical properties,

and of their optimality over the maximization of expected utility criterion.

This thesis presents the financial market model in continuous-time containing no arbitrage

opportunies, the CPPI and OBPI strategies with definitions and properties, and the analysis

of these strategies in terms of comparing their performances at maturity, of their statistical

properties and of their dynamical behaviour and sensitivities to the key parameters during the

investment period as well as at the terminal date, with both formulations and simulations.

Therefore, we investigate and compare optimal portfolio strategies which maximize the ex-
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pected utility criterion. As a contribution on the optimality results existing in the literature,

an extended study is provided by proving the existence and uniqueness of the appropriate

number of shares invested in the unconstrained allocation in a wider interval.

Keywords: Portfolio insurance strategies: CPPI and OBPI, portfolio optimization, Merton

optimization problem, financial market model in continuous-time, CRRA utility function.
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ÖZ

PORTFÖY SİGORTA STRATEJİLERİ

Güleroğlu, Çiğdem

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Eylül 2012, 72 sayfa

Portföy sigorta metodları kullanılarak yatırım stratejilerinin seçimi ve yatırım sermayelerinin

yönetimi, aktif-pasif yönetimi alanında önemli bir rol oynamaktadır. Portföy sigorta strate-

jileri, düşen piyasalarda portföyün zarar riskini sınırlarken, yükselen piyasalardaki kazanç

potansiyelinden de yararlanmaya olanak sağlayacak biçimde dizayn edilmiştir. Bu tezde,

portföy sigorta stratejilerine, özellikle de en önemli ve göze çarpan iki yöntem olan Sabit

Oranlı Portföy Sigortası (SOPS) ve Opsiyon Tabanlı Portföy Sigortası (OTPS) stratejilerine

kapsamlı bir genel bakış ve inceleme sunulmaktadır.

Bu tezin amacı, portföy sigorta stratejilerini, bazı istatistiksel ve dinamik özellikleri yolu ile

vade sonundaki performansları açısından, ve beklenen fayda kriteri üzerinden optimallikleri

açısından incelemek, analiz etmek ve karşılaştırmaktır.

Bu tezde sürekli zamanda arbitraj olanağı içermeyen finansal market modeli, tanım ve özellikleri

ile SOPS ve OTPS stratejileri, ve hem vade sonunda hem de vade boyunca bu stratejilerin

performanslarının, istatistiksel özellik ve dinamik davranışlarının, ve kilit parametrelerinin

değişimine olan duyarlılıklarının formülasyon ve simülasyon yoluyla incelenmesi ve karşılaştırılması

sunulmaktadır. Ayrıca, beklenen fayda kriteri maksimizasyonu yolu ile optimal portföy strate-
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jileri de incelenmiş ve karşılaştırılmıştır. Optimallik sonuçları konusunda var olan literature

katkı olarak, kısıtsız (sigortalanmamış) tahsisata yatırılan uygun sayıda payın daha geniş bir

aralıkta varlık ve tekliğinin ispatlanmasını içeren genişletilmiş bir çalışma sunulmuştur.

Anahtar Kelimeler: Portföy sigorta stratejileri: SOPS ve OTPS, portföy optimizasyonu, Mer-

ton optimizasyon problemi, sürekli zamanda finansal market modeli, sabit nispi riskten kaçınma

fayda fonksiyonu.
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to TÜBİTAK for supporting me by the Yurtiçi Yüksek Lisans Bursu (National Masters Degree

Scholarship) which I have been receiving during my graduate study.

Special thanks to my friends for the will power and appreciations.

Finally, I would like to express my gratefulness to my family, especially to my mother, for the

endless support, care, help, encouragement, patience and love that I receieved from. Without

her, this work would not be completed.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Asset liability management (ALM) is one of the most prominent branches of financial math-

ematics which provides the decision making techniques to achieve a coordination between

assets and liabilities. The selection of investment strategies and managing investment funds

via employing portfolio insurance methods play an important role in ALM.

Among various investment strategies, the portfolio insurance strategies are designed to give

the investor the ability to limit downside risk by insuring a predefined floor; at the same

time, they allow to get some benefit from upside potential in case of rising markets. The

portfolio can make a heavy loss if the market experiences sharp downturns. To avoid such a

loss, a portfolio manager may need to insure a specified value for the portfolio, which results

in the sacrifice of gains, since the guarantee component causes a reduction in the expected

utility. Particularly, in falling markets, portfolio insurance methods enable to recover a given

percentage of initial capital at the end of the investment period.

Portfolio insurance strategies are preferred by the investors who desire for insurance against

not only the sudden falls in markets, but also general down trends. In recent history of fi-

nancial markets, especially in early 2000s, the examples of these kinds of movements are

common, such as the default of Lehman Brother’s and dot.com bubble collapse (see [31],

[49] and [50] for details). Consequently, portfolio insurance strategies have an increasing

popularity among the investors who wants to ensure some predefined amount (or percentage)

of their initial investment capital at the end of the investment period, in case of an unexpected

downside market behaviour. There are many other quite different reasons to explain the de-
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mand for the insurance strategies such as regulatory sanctions, bank and insurance policies

and legal constraints which require a guaranteed minimum performance at the end of the

investment horizon.

The variety of portfolio insurance models is wide. However, this study focuses on the two

most prominents and effective strategies, the Constant Proportion Portfolio Insurance (CPPI)

and the Option Based Portfolio Insurance (OBPI).

1.2 Related Literature

The CPPI approach has first been introduced by Perold (1986) [67] and improved by Perold

and Sharpe (1988) [66] for fixed-income instruments, and by Black and Jones (1987) [16] for

equity instruments. The CPPI method uses a simplified strategy to allocate assets dynamically

over the investment period. The investor starts by setting a floor equal to the lowest acceptable

value of the portfolio. Then, the cushion is computed as the difference between the portfolio

value and the floor. The amount allocated to the risky asset is determined by multiplying the

cushion by a predetermined multiple, and is called as the exposure. The remaining funds are

invested in the risk-free asset. The floor and the multiple are functions of the investor’s risk

tolerance and are exogenous to the model.

The OBPI approach, which has been introduced by Leland and Rubinstein (1976) [52], con-

sists of a portfolio invested in a risky asset S covered by a put option written on it. Thus,

the portfolio value will always be greater than the strike K of the put, so that the method

guarantees a fixed amount K at the terminal date.

The comparison between two popular and important portfolio insurance strategeis, CPPI and

OBPI, has been performed by several authors in the literature, since the question of which

insurance strategy is more preferable to the other one is of interest for both practitioners and

researchers. Black and Rouhani (1989) [18] compared CPPI with OBPI in terms of their

payoffs and of both expected and actual volatilities when the put option has to be synthesized.

Zhu and Kavee (1988) [81] performed a Monte Carlo simulation to compare some statistical

properties of the payoffs of two methods CPPI and OBPI. Furthermore, Bertrand and Prigent

(2005) [13], and Zagst and Kraus (2011) [79] compared OBPI and CPPI in terms of their

stochastic dominance. Bertrand and Prigent (2005) [13] concludes that there is no strong
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or weak stochastic dominance between two strategies in case of modelling stock prices with

geometric Brownian motion, but there may be dominance between two strategies in a mean-

variance sense, depending on the CPPI multiplier. The extension of their study is done by

Zagst and Kraus (2011) [79] with consideration of second-order and third-order stochastic

dominance.

Related to the optimization of the portfolio insurance strategies, the literature provides an ex-

tensive research. Generally, practitioners should have a good understanding of the separation

principle. In modern portfolio theory, the two fund separation princible was introduced by

Markowitz (1959) [56] and extended by Merton (1971, 1973) [58, 59], which implies that the

optimal asset allocation is obtained by using two basic funds: a combination of risky assets

and one risky-free asset. The CPPI strategy is an application of this two fund separation prin-

cible which allocates the assets held in portfolio by rebalancing them between risky assets

and risk-free asset. On the other hand, further studies have extended this two fund separation

princible to three fund by adding a third fund which is a derivative written on the portfolio of

risky assets. The OBPI strategy can be considered as an example of this three fund separa-

tion princible. El Karoui, Jeanblanc and Lacoste (2005) [34] investigated the optimal OBPI

strategy when the optimal unconstrained portfolio is covered by a put option that achieves a

predetermined guarantee. Balder and Mahayni (2009) [54] cite the following works that study

CPPI and OBPI as the optimal solution of a utility maximization problem: Cox and Huang

(1989) [28], Brennan and Schwartz (1989) [22], Grossman and Villa (1989) [39], Black and

Perold (1992) [17], Grossman and Zou (1993, 1996) [40, 41], Cvitanic and Karatzas (1996,

1999) [43, 44], Browne (1999) [23], Basak (1995, 2002) [9, 10] and El Karoui, Jeanblanc and

Lacoste (2005) [34]. Among these, we will be reviewing El Karoui, Jeanblanc and Lacoste

(2005) [34] and Balder and Mahayni (2009) [54] in Section 4.2 and 4.3, and extend one of

the results in El Karoui, Jeanblanc and Lacoste (2005) [34], which is explained further in the

next section.

On the other hand, if the risky asset price follows a geometric Brownian motion, theoretically,

the portfolio value can never reach or go under the floor value. However, in reality, jumps

may occur in market prices which causes the risk that the portfolio value goes under the floor

at the terminal date. Bertrand and Prigent (2002) [14] and Cont and Tankov (2009) [76] study

on the effects of jumps in asset prices on the insured portfolio. Moreover, Cont and Tankov

(2009) [76] examine gap risk, the risk of violating the floor, and determine its loss distribution
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in the context of a jump diffusion model which allows to measure and manage the gap risk.

1.3 Contribution and Outline

This thesis brings together comparisons of CPPI and OBPI conducted by the following papers:

Bertrand and Prigent (2005) [13], El Karoui, Jeanblanc and Lacoste (2005) [34] and Balder

and Mahayni (2009) [54]. Except for the contributions we have listed below, the mathematical

results and notations in this thesis related to CPPI and OBPI are contained in these works.

One of the contributions of this thesis is our extension of Proposition 2.1 of El Karoui, Jean-

blanc and Lacoste (2005) [34]. This extension consists of the following: The existence and

uniqueness of the appropriate number of shares invested in the risky asset is proven in El

Karoui, Jeanblanc and Lacoste (2005) [34] via assuming that the initial values of the asset

price S 0 and of the initial investment V0 are normalized to 1. Here, in this study, we extend

their work to any values of S 0 and V0, as a contribution. This extension is given as Proposition

4.1 of Section 4.2 of this thesis. Our second contribution is as follows: Bertrand and Prigent

(2005) [13] compares CPPI and OBPI by considering the OBPI method based on a call option

and by determining the CPPI multiple under the assumption of equality of portfolio returns,

whereas the analysis of Section 3.5 considers the OBPI strategy with a put option and CPPI

strategy with various multiplier values.

This study is organized as follows:

In Chapter 2, we review the financial market model in a Black-Scholes model which is already

presented by Karatzas and Shreve (1998) [46], Dana and Jeanblanc (2007) [29], Rockafellar

(1970) [69], Merton (1971) [58], and Touzi and Tankov [78]. Throughout this chapter, we

carefully examine the model setup and matematically analyse market properties by provid-

ing some further steps and details of the arguments and ideas used in the referred sources.

We represent the portfolio and wealth processes in terms of this market model and explain

the concept of self-financing portfolios, admissible portfolios and no-arbitrage condition in a

continuous-time framework. Therefore, we carefully review that the market described in this

chapter contains no arbitrage opportunities. Furthermore, we reintroduce the portfolio opti-

mization problem that maximizes the expected utility with no constraints. This unconstrained

problem is first presented by Merton (1971) [58], and known as the Merton Portfolio Opti-
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mization Problem. We review the optimal solution of this problem by martingale approach

by supplying some further steps of the existing arguments in the literature. Moreover, we

perform the solution of the problem by considering the utiliy function as a Constant Relative

Risk Aversion (CRRA) utility function, as an example.

In Chapter 3, we describe, analyze and compare two standard portfolio insurance methods

CPPI and OBPI. Both strategies ensure a predefined level of insurances, while the CPPI strat-

egy is dynamically rebalancing allocations between a risky asset and a risk free asset, the

OBPI strategy does the same with a put option written on the risky asset. Within the concept

of this chapter, we aim to make comparisons between CPPI and OBPI methods in terms of

their statistical and dynamic properties. We examine the performances of two strategies at

the terminal date and determine the important parameters of both strategies. Furthermore, we

numerically compute and compare their expected portfolio values and variances at the termi-

nal date, and examine their behaviour due to the changes in their key parameters. Moreover,

the dynamic properties of two strategies are also examined in the Black-Scholes framework.

Thoughout this chapter, we provide a study by focusing on several articles existing in the re-

lated literature. For the market model, definitions of two strategies and derivations of portfolio

values, expectations and variances, the outline is complied from Black and Jones (1987) [16],

Leland and Rubinstein (1976) [52], Bertrand and Prigent (2005) [13] and Zagst and Kraus

[79].

Chapter 4 includes a careful and detailed study of two important articles El Karoui, Jeanblanc

and Lacoste (2005) [34], and Balder and Mahayni (2009) [54]. First, we focus on the opti-

mality of the OBPI strategy specified by a particular underlying and a particular put option

on this underlying. The optimality of OBPI strategy has already been studied and proven by

the work of El Karoui, Jeanblanc and Lacoste (2005) [34] by considering an OBPI strategy

written on the optimal solution of the Merton problem, which is presented in Chapter 2. In

other words, their work considers the unconstrained allocation of OBPI strategy as the so-

lution of the portfolio optimization problem with no constraints. For the optimality of such

an OBPI strategy, first, the existence and uniqueness of the appropriate number of shares in-

vested in the unconstrained allocation must be proven. It is shown by El Karoui, Jeanblanc

and Lacoste (2005) [34] via assuming the initial values of the asset price S 0 and of the initial

investment V0 are equal to 1. Here, in this study, we extend their work to any values of S 0 and

V0 as a contribution. This is the only contribution that occurs in Proposition 4.1. After that,
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we present the optimality results and their proofs, which are already published in El Karoui,

Jeanblanc and Lacoste (2005) [34], by providing further details of the ideas and arguments

used in this paper. Second, we review the derivations of the optimal solutions of the CPPI and

OBPI strategies by using a benchmark strategy, the constant mix (CM) strategy, in order to

compare their optimal solutions. This idea is presented by Balder and Mahayni (2009) [54],

and the comparison of the optimal solutions is performed. In this study, we provide a detailed

exposition on their derivation and comparison. Finally, we perform a numerical example on

the optimal solutions of three strategies CM, CPPI and OBPI, and we get the same graph, to

replicate their results.

In Chapter 5, we briefly review the concept of utility loss of portfolio insurance strategies that

is caused by the guarantee component and represent the comparison of the loss rates which is

made in Balder and Mahayni (2009) [54].

Finally, we conclude the thesis with Chapter 6, including a short outlook to possible future

studies.
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CHAPTER 2

FINANCIAL MARKETS, PORTFOLIO PROCESSES AND

PORTFOLIO OPTIMIZATION

2.1 Introduction

This chapter reviews in details the Black-Scholes model presented in Karatzas and Shreve

(1998) [46], Dana and Jeanblanc (2007) [29], Rockafellar (1970) [69], Merton (1971) [58],

and Touzi and Tankov [78]. Furthermore, we review the portfolio optimization problem that

maximizes the expected utility with no constraints. This unconstrained problem is first pre-

sented by Merton (1971) [58], and known as the Merton Portfolio Optimization Problem. We

review again in detail, the optimal solution of this problem by martingale approach. More-

over, we perform the solution of the problem by considering the utiliy function as a Constant

Relative Risk Aversion (CRRA) utility function, as an example.

Throughout this chapter, we use some basic tools from probability theory and stochastic calcu-

lus (such as stochastic processes, continuous-time martingales, Brownian motion, Itô formula,

etc.). The definitions and properties of these concepts can be found in Karatzas and Shreve

(1991) [45], Shreve (2004) [74], Lamberton and Lapeyre (1996) [48]. Unless otherwise noted,

the notation of this chapter is adapted from the works cited above.

2.2 Financial Markets in Continuous Time

In this section, we review the financial market in a continuous time basis and the evolution of

assets included in this market. All the information given in this section is taken from Dana

and Jeanblanc (2007) [29] and Karatzas and Shreve (1998) [46].
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Let us consider an investor who wants to optimize his investment in a finite horizon T . Let

(Ω,F ,P) be a complete probability space providing a standard Brownian motion (Wt)0≤t≤T ∈

RN and let F = {Ft, 0 ≤ t ≤ T } denotes the completed canonical (natural) filtration of Wt. One

considers a market with N risky assets S i and one risk free asset B. The value of the risky

asset i evolves according to

dS i
t = S i

t(µidt + σidWt) ∀t ∈ [0,T ] (i = 1, 2, ...,N), (2.1)

while the value of risk free asset evolves according to

dBt = rBtdt, B0 = 1,

where r ∈ R+ is the deterministic interest rate function, µ ∈ RN is the drift of the risky asset

price, and (σi)1≤i≤N = (σi, j)1≤i, j≤N is the vector in RN , where σ is the volatility of the risky

asset which is a N × N matrix supposed by us to be invertable.

Related to the coefficients of the above equations, we assume that

∫ T

0
r(u)du < ∞,

and ∫ T

0
(|µ(t)|2 + |σ(t)|2)dt < ∞,

in order for the coefficients and the stochastic integrals to be well defined.

Let us introduce θ as the vector of market prices of risk, it is also called the risk premium, for

each asset is given by

θ = σ−1(µ − r1N), (2.2)

where 1N := (1, 1, ..., 1)T ∈ RN . Then, by using the risk premium in (2.2), the dynamics of

the risky assets in (2.1) becomes

dS i
t = S i

t(rdt + σi(θdt + dWt)) ∀t ∈ [0,T ] (i = 1, 2, ...,N). (2.3)
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It follows from Cameron Martin Change of Measure Theorem (see [78, Section 6.4, page

100]) that

WQt = Wt + θt (0 ≤ t ≤ T )

is a Brownian motion under the equivalent martingale measure Q = ZTP on FT , where

ZT = e−θ
>WT−

‖θ‖22T
2 (2.4)

is the density of the martingale measure. Here, > represents the vector transpose and ‖ · ‖2

represents the Euclidean norm.

Then the dynamics of the risky assets in (2.3) becomes

dS i
t = S i

t(rdt + σidWQt ) ∀t ∈ [0,T ] (i = 1, 2, ...,N). (2.5)

In the following two sections, we reintroduce and investigate the concepts of portfolio pro-

cesses, self-financing portfolios, wealth processes, admissible portfolios and no-arbitrage con-

dition. The content reviews the definitions and explanations given in Karatzas and Shreve

(1998) [46], Dana and Jeanblanc (2007) [29] and Touzi and Tankov [78], and provides some

further steps of the arguments.

2.3 Portfolio and Wealth Processes

A portfolio strategy is an F-adapted process π = {πt, 0 ≤ t ≤ T } with values in RN .

While considering the portfolio processes, we shall assume that the strategies are self-financing.

A strategy is self financing if there is no money injection or withdraw during the investment

period (0,T ). In other words, the new portfolio must be financed only by selling the assets

that are already held in the portfolio.

Let π be the portfolio strategy such that (πt)0≤t≤T = (H0
t ,Ht)0≤t≤T , where (H0

t )0≤t≤T and

(Ht)0≤t≤T are the processes of the quantities of risk-free asset and risky assets, respectively,
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that are held in the portfolio at time t in a frictionless market with trading in continuous time.

Then, the value of portfolio is

Vt(π) = H0
t Bt + HtS t.

The portfolio strategy is self financing, if

dVt(π) = H0
t dBt + HtdS t.

Therefore, πi
t represents the amount invested in the risky asset S i

t at time t with 1 ≤ i ≤ N, and

(Xt)0≤t≤T denotes the wealth process for the portfolio strategy π. Since, the amount invested

in the risky asset is πi
t, the amount invested in the risk free asset is Xt −

∑N
i=1 π

i
t. Then, the

wealth process Xt is given as

Xt =

N∑
i=1

πi
t

S i
t
S i

t +
Xt −

∑N
i=1 π

i
t

Bt
Bt.

Under the self-financing condition, the dynamics of the wealth process is given by

dXt =

N∑
i=1

πi
t

S i
t
dS i

t +
Xt −

∑N
i=1 π

i
t

Bt
dBt.

By inserting the dynamics of the risky assets in terms of the equivalent martingale measure

and of the risk free asset, it becomes

dXt =

N∑
i=1

πi
t(rdt + σidWQt ) + (Xt −

N∑
i=1

πi
t)rdt.

Let (X̃t)0≤t≤T be the discounted wealth process

X̃t =
Xt

Bt
.

Then, by applying Itô formula to the discounted wealth process, we get
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d(Xte−rt) = Xtd(e−rt) + e−rtdXt

= −re−rtXtdt + e−rt
N∑

i=1

πi
t(rdt + σidWQt ) + re−rtXtdt − e−rt

N∑
i=1

πi
trdt

= e−rt
N∑

i=1

πi
tσ

idWQt .

Thus, the dynamics of the discounted wealth process can be found as

dX̃t =

N∑
i=1

π̃i
tσ

idWQt ,

where π̃ is the discounted portfolio strategy.

Consequently, we can see that the discounted wealth is a local martingale under the equiva-

lent martingale measure Q, since the drift term disappears (for example, see, Rutrowski and

Musiela (2011) [71] Martingale Methods in Financial Modelling).

Let Xx,π
t denotes the value of the portfolio at time t, for the pair (x, π), where x is the initial

wealth and π is the portfolio strategy.

However, we still need a further technical condition on π. The following result from stochas-

tic integration is taken from Touzi and Tankov [78] and is stated for the measurability of the

portfolio strategy π.

Theorem 2.1 [78, Theorem 7.18, page 110] Let W be a standard one dimensional Brownian

motion. For T > 0, and ξ ∈ L0(T ), there exists a progressively measurable process π satisfying

ξ =

∫ T

0
πtdWt and

∫ T

0
|πt|

2dt < ∞ P − a.s..
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2.4 Admissible Portfolios and No-arbitrage

Let A the set of all admissible strategies. A portfolio strategy is said to be admissible if the

corresponding stochastic integral exists and if there exist a constant C such that

Xx,π
t ≥ C (t ∈ [0,T ]).

Now, we reintroduce the no-arbitrage condition in the continuous-time framework according

to the definition in Touzi and Tankov [78]. We say that the financial market contains no

arbitrage opportunities if for any admissible portfolio process π ∈ A,

X0,π
T ≥ 0 P − a.s. implies X0,π

T = 0 P − a.s..

The purpose of this section is to show that the financial market described above contains no

arbitrage opportunities. Our first observation is that Q is a risk-neutral measure, or an equiva-

lent martingale measure, for the price process S . In other words, the discounted price process

{S̃ t = S t/Bt, 0 ≤ t ≤ T } is a Q-martingale. We next observe that X̃x,π
t , the discounted wealth

process with initial wealth x and the portfolio strategy π, is a Q-local martingale for every

(x, π) ∈ R × A. Then, we notice that it is bounded from below by a constant, since the corre-

sponding portfolio strategy is admissible. Now, we review the following lemma and its proof

which are given Touzi and Tankov [78], by supplying some further steps.

Lemma 2.1 [78, Lemma 7.8, 111] If a local martingale M = (Mt)0≤t≤T is bounded from below

by some constant m, i.e., Mt ≥ m, for all t, then M is a supermartingale, i.e., E(Mt|Fs) ≤ Ms

∀ 0 ≤ s ≤ t ≤ T .

Proof: We know from definition of the local martingale, an F-adapted process M = (Mt)t>0

is a local martingale, if there exists a sequence of stopping times (Tn)n≥0, which is called

a localizing sequence, such that Tn → ∞ a.s. as n → ∞, and the stopped process MTn =

(Mt∧Tn)t>0 is a martingale for every n ≥ 0.

Let (Tn)n∈N0 be a localizing sequence of stopping times for the local martingale M, then
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Tn → ∞ a.s., and (Mt∧Tn)0≤t≤T is a martingale for every n ≥ 0. Then,

E(Mt∧Tn |Fu) = Mu∧Tn (0 ≤ u ≤ t ≤ T ),

for every fixed n. As n goes to infinity, by the lower bound on M, we can use Fatou’s lemma,

and we deduce that

E(Mt|Fu) ≤ Mu (0 ≤ u ≤ t ≤ T ),

which is the required inequality.

Hence, it follows from Lemma 3.1 that the discounted value of the portfolio X̃x,π
t is a Q-

supermartingale for every (x, π) ∈ R ×A.

The supermartingale property plays an important role in both no-arbitrage condition and so-

lution to the optimization problem with martingale approach which are stated in later sections

(see Theorem 2.2 and Section 2.5). The first consequence of the supermartingale property

concerns the no-arbitrage condition in the continuous-time financial market. We give the fol-

lowing theorem from Touzi and Tankov [78].

Theorem 2.2 [78, Theorem 7.19, 112] The continuous-time financial market described above

contains no arbitrage opportunities.

Proof: For π ∈ A, the corresponding wealth process is X0,π
t is a Q-supermartingale and,

equivalently, the corresponding discounted wealth process X̃0,π
t is a Q-supermartingale.

For π ∈ A, the corresponding discounted wealth process X̃0,π
t is a Q-supermartingale. Then,

EQ(X̃0,π
T ) ≤ 0. We recall thatQ is equivalent to P and B0 is strictly positive. Then, this inequal-

ity shows that, whenever X0,π
T ≥ 0 P-a.s. or, equivalently, X̃0,π

T ≥ 0 Q-a.s., we have X̃0,π
T = 0

Q-a.s. and, therefore, X0,π
T = 0 P-a.s., which corresponds to the no-arbitrage condition.

The second consequence of the supermartingale property leads us to describe the budget con-

straint for admissible portfolios and, consequently, it helps us to solve the portfolio optimiza-
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tion problem with no constraints. This result is described in details in the next section.

2.5 The Merton Portfolio Optimization Problem

In this section, we review the problem of an investor who has access to the financial market

with one risk free and N risky assets, which is described earlier in this chapter, and wants

to optimize his consumption and investment strategy. This well-known problem is first intro-

duced by Merton (1971) [58] and has been used as an important mathematical tool in portfolio

theory. Here, in this section, we briefly review this problem by using the related literature,

particularly Karatzas and Shreve [46].

We represent the portfolio optimization problem without constraints, where the investor wants

to maximize his expected utility over all admissible portfolios (consequently, the integrals

exist and the wealth remains nonnegative):

maximize
π∈A

E[u(Xx,π
T )], (2.6)

where u is the utility function of the investor. A utility function is a concave, increasing

function u : [0,∞)→ R which measures the preferences of the investor by means of investing

in some securities. According to the explanations given in Karatzas and Shreve [46], investor

prefers the portfolio X at the terminal date to the portfolio Y if and only if E(u(X)) ≥ E(u(Y)).

The increasing property of the utility function represents that X is always preferred to Y if

X ≥ Y , while concavity implies that E(X) is always preferred to X via Jensen’s inequality.

More precisely, in this study, the utility function u also needs to be bijective to provide the

existence of its inverse function.

Let Ht = (H0
t ,H

1
t , ...,H

N
t )> denote the quantities of the assets that are held in the portfolio

and that the investor is allowed to consume continuously at the risk free rate ct, so that under

the self-financing condition, the value of the portfolio Xt satisfies

Xt =

N∑
i=0

Hi
tS

i
t = x +

N∑
i=0

∫ t

0
Hi

sdS i
s −

∫ t

0
csds.

We shall also impose the positivity constraint on the portfolio, Xt ≥ 0 ∀t ∈ [0,T ]. Then the
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optimization problem that is given in (2.6) can be stated as

maximize
H,r

E
[∫ T

0
e−ρtu(rt)dt + e−ρT u(XT )

]
,

where e−ρt is the discount factor. The first part of the functional,
∫ T

0 e−ρtu(ct)dt, represents the

expected utility from consumption and the second part, e−ρT u(XT ), represents the expected

utility from the terminal wealth. Throughout this study, we focus on the maximization of the

expected utility without considering consumption.

This stochastic optimization (stochastic control) problem has been known as the Merton Port-

folio Optimization Problem (the Merton Consumption / Investment Problem) since it was in-

troduced in Merton’s seminar paper [58]. There are several approaches for the solution of this

problem. In this study, we focus on the solution of the Merton problem by the so-called mar-

tingale approach. In the following two section, we first review the solution method with mar-

tingale approach. The notation and calculations are taken from Karatzas and Shreve (1998)

[46], Merton (1971, 1973) [58, 59], and Davis and Norman (1990) [30] by providing further

details of arguments. Second, we perform the solution of the problem by considering the

utiliy function as a Constant Relative Risk Aversion (CRRA) utility function, as an example.

2.5.1 The Martingale Approach

Let us consider the optimization problem given in (2.6), where u is the utility function of the

investor, Xx,π
T is the discounted wealth process with initial wealth x and the portfolio strategy

π, andA is the set of all strategies corresponding to admissible portfolios.

We remind from the previous section that the discounted value of the portfolio X̃x,π
t is a Q-

supermartingale for every (x, π) ∈ R × A, which means that the terminal discounted value of

the portfolio satisfies

EQ(X̃x,π
T ) ≤ x ∀π ∈ A.

This is equivalent to
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E(e−rT ZT Xx,π
T ) ≤ x ∀π ∈ A.

The above inequalities imply that every admissible portfolio satisfies the budget constraint.

This is another important consequence of the supermartingale property of the discounted

wealth process which is stated before. The budget constraint permits the interpretation that

the expected discounted terminal value of the portfolio under the risk neutral probability can

not exceed the initial invested capital.

We are looking for the optimal solution of the problem (2.6). Let XT be an FT measurable

random variable that satisfies the initial budget constraint. Thus, we can say that

{Xx,π
T , π ∈ A} ⊆ {XT , EQ(XT ) ≤ x}. (2.7)

We would like to show that these two sets are equal. Let X̃T be the discounted terminal wealth

such that X̃T = XT/BT . Therefore, since the discounted terminal value of the portfolio Xx,π
T for

initial wealth x and portfolio strategy π is a Q-martingale, then by Martingale Representation

Theorem (see [48, Theorem 4.2.4, page 91]), there exists a portfolio strategy ϕ such that

X̃x,π
T = EQ(X̃T ) +

∫ t

0
ϕsdWQs .

Therefore, since XT bounds the budget constraint, then EQ(X̃T ) = x. This means,

X̃x,π
T = x +

∫ t

0
ϕsdWQs .

By setting ϕ = πσ, i.e., by putting the portfolio process π to ϕσ−1, we can say that the sets in

(2.7) are equal.

Consequently, we can rewrite the optimization problem (2.6) in an equivalent form as
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maximize E[u(XT )]

subject to E(e−rT ZT XT ) ≤ x.
(2.8)

The problem above can be solved by the Lagrangian Method on Karush-Kuhn-Tucker Nec-

essary Optimality Conditions which provide a strategy for finding the local maxima, local

minima and saddle points of an objective function subject to some equality and inequality

constraints, under constraint qualifications (see, for example, Nash, Sofer and Griva [63]).

The following computation is taken from Rockafellar (1970) [69]. The Lagrangian of this

problem is

E[u(XT ) − y(e−rT ZT XT − x)].

The Fenchel transform of the utility function u, which is a strictly concave and increasing

function (see Section 3.5) is given as

F(y) = sup
x∈R

(u(x) − xy),

with the maximizer of F(y) being given by

x∗ = (u′)−1(y) := I(y). (2.9)

The strict concavity of u implies that the optimizer is unique.

For information and details on Fenchel transformation, we refer to Rockafellar (1970) [69]

and Fenchel (1953) [38].

Then, the optimal solution of the problem (2.8), consequently of (2.6), corresponding to initial

wealth x and the portfolio strategy π, is

X∗T = I(ye−rT ZT ), (2.10)

where the Lagrangian multiplier y is found from the condition
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E[e−rT ZT I(ye−rT ZT )] = x,

since the optimal solution of the problem X∗T bounds the budget constraint.

We notice that X∗T , given in (2.10), is the optimal solution to the problem (2.6) for a general

class of utility functions. Now, we give an example by the CRRA utility function for the

solution of the maximization problem without constraints.

2.5.2 Optimal Solution to the Merton Problem for CRRA Utility Function

The CRRA utility function is defined as

u(x) =
x1−γ

1 − γ
,

for all x ∈ R+, with γ ∈ (0, 1), where u ∈ C2 and it is strictly increasing and concave, i.e.,

u′ > 0 and u′′ < 0.

In the case of CRRA utility,

x∗ = (u′)−1(y) := I(y) = y−
1
γ ,

and the Fenchel transform of u is

F(y) = sup
x

(u(x) − xy) =
γ

1 − γ
y
γ−1
γ .

Thus, the candidate optimal solution is given by

X∗T = I(ye−rT ZT ) = (ye−rT ZT )−
1
γ . (2.11)
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Since the optimal solution in (2.11) bounds the budget constraint E(e−rT ZT X∗T ) = x, it follows

that

E(e−rT ZT (ye−rT ZT )−
1
γ ) = x. (2.12)

Then, by rearranging (2.12), we have

E(erT ( 1−γ
γ )y−

1
γ Z

γ−1
γ

T ) = x,

which also implies

y−
1
γ E(Z

γ−1
γ

T ) = xerT ( γ−1
γ ). (2.13)

Finally, from (2.13), we get

y−
1
γ =

xerT ( γ−1
γ )

E(Z
γ−1
γ

T )
. (2.14)

By inserting (2.14) into the optimal solution X∗T in (2.10), it becomes

X∗T = xerT Z
− 1
γ

T

E(Z
γ−1
γ

T )
.

From the density of the martingale measure ZT , is given in (2.4), we can calculate the com-

ponents Z
− 1
γ

T and E(Z
γ−1
γ

T ) of the optimal solution X∗T .

Finally, the optimal solution of the maximization problem in the case of CRRA utility be-

comes

X∗T = xerT
(
e
θ>WT
γ +

2γ−1
2γ2 ‖θ‖

2
2T

)
.

Thus, it is clear that the optimal solution X∗T of the maximization problem without constraints

is linear with respect to the initial wealth x for CRRA utility case. Hence, it can be referred

as to
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X∗T = xST ,

where the process S represents an arbitrary allocation of the risky assets that is available in

the market.
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CHAPTER 3

PORTFOLIO INSURANCE STRATEGIES

3.1 Introduction

Among various investment strategies, the portfolio insurance strategies are designed to give

the investor the ability to limit downside risk by insuring a given floor while allowing partic-

ipation in upside potential in the market. The portfolio can make a heavy loss if the market

experiences sharp downturns. To avoid such a loss, a portfolio manager may need to insure

a predetermined value for the portfolio, which results in the sacrifice of potential gains, since

the guarantee component causes a reduction in the expected utility. Particularly, in falling

markets, portfolio insurance methods allow investors to recover a given percentage of their

initial investment at maturity.

In this chapter, we review several articles Black and Jones (1987) [16], Leland and Rubinstein

(1976), Bertrand and Prigent (2005) [13] [52] and Zagst and Kraus [79] to bring together

explanation and comparison of CPPI and OBPI, and compute the various statistics of two

methods. We particularly review the study of Bertrand and Prigent (2005) [13], in which the

comparison of CPPI and OBPI has been performed in terms of their statistical and dynamic

properties, by considering the OBPI method based on a call option and by determining the

CPPI multiple under the assumption of equality of portfolio returns. We make a similar

comparison by considering the OBPI strategy with a put option and CPPI strategy with various

multiplier values. We examine the performances of two strategies at the terminal date and

investigate the important parameters of both strategies. Furthermore, we numerically compute

and compare their expected portfolio values and variances at the terminal date, and examine

their behaviour due to the changes in their key parameters. Moreover, the dynamic properties

21



of two strategies are also analyzed in the Black-Scholes framework.

Thoughout this chapter, for the development of our study, we use some standard tools from

finance theory (such as financial derivatives, bullish and bearish market trends, Black-Scholes

option pricing formula, etc.) and stochastic calculus (such as Brownian motion, stochastic

differential equations, etc.). For the definitions and properties of these well-known concepts,

we refer to Chance and Brooks (2007) [26], and Shreve (2004) [74], Lamberton and Lapeyre

(1996) [48], respectively.

We note that, in this chapter, we consider the basic structure of OBPI strategy which consists

of one risky asset and one put option, in order to make the comparisons possible and the sim-

ilations easier, which will be improved and discussed in the later chapter. Both European and

American options are available for this concept, however, we restrict ourselves to European

options because of the same reasons, which provide a guarantee only at the terminal date.

3.2 Financial Market Model

To define and compare the two portfolio strategies, we reintroduce the financial market con-

ditions as a natural first step.

Let us consider a classic Black-Scholes model where the portfolio manager is assumed to

invest in two basic assets which are traded continuously in the time during the investment

period [0,T ]. The first of the two assets is a risk-free asset, like a money market account or

zero coupon bond, and is denoted by B. The value of the riskless asset B evolves according to

dBt = rBtdt, (3.1)

where r is the deterministic interest rate and the initial value B0 > 0. The second asset,

denoted by S , is a risky asset, such as a stock or a stock portfolio. The dynamics of the

market value of the risky asset is given by the classic diffusion process

dS t = S t(µdt + σdWt), (3.2)

where (Wt)0≤t≤T is a standard Brownian Motion process and the initial value S 0 > 0. There-
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fore, µ > r > 0 and σ > 0 are constants that represent the drift and volatility of the asset price

S , respectively.

We note that the assumption µ > r is understandable by observing that a typical risk averse

investor is characterized by a strictly concave and strictly increasing utility function u. Hence,

if µ < r, there would be no reason for a rational investor to invest in stocks rather than a risk

free asset, since at any time t ∈ [0,T ] it holds

E[u(S 0ert)] = u(S 0ert) ≥ u(S 0eµt) ≥ u(E[S t]) ≥ E[u(S t)].

Then, by applying Itô formula to risky asset dynamics, the solution can be found as

S t = S 0e(µ−σ
2

2 )t+σWt (t ∈ [0,T ]). (3.3)

We remark that Equation (3.3) is a well known solution of the stochastic differential equation

(3.2) under Itô interpretation. We refer to Shreve (2004) [74], and Lamberton and Lapeyre

(1996) [48] for information on stock price modelling with Geometric Brownian Motion.

Thus, the log returns of the risky asset are normally distributed according to

ln
(

S t

S 0

)
∼ N

(
(µ −

1
2
σ2)t, σ2t

)
. (3.4)

Within the context of this study, we assume the market to be complete, arbitrage free and

frictionless. We also assume that the investment strategies are self-financing. We recall that

a strategy is self financing if there is no money injection or withdraw during the invesment

period (0,T ). Therefore, all dividends and coupons are assumed to be reinvested in such a

way that the portfolio remains self-financing.

Furthermore, following Black and Scholes (1973) [19], we assume ideal conditions in the

market for stocks and options. When the options are considered, we restrict ourselves to

European options that can only be exercised on a predetermined date.
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In the following, we give the definitions and basic properties of two portfolio strategies the

CPPI and the OBPI, respectively. The content of the following two sections are complied

from Black and Jones (1987) [16], Leland and Rubinstein (1976) [52], Bertrand and Prigent

(2005) [13] and Zagst and Kraus [79]. We give the definitions and do calculations according

to these sources by supplying further steps and explanations of the arguments.

3.3 Constant Proportion Portfolio Insurance (CPPI)

The CPPI strategy is introduced by Perold (1986) [67] and improved by Perold and Sharpe

(1988) [66] for fixed-income instruments, and by Black and Jones (1987) [16] for equity

instruments. The CPPI method uses a simplified strategy to allocate assets dynamically over

the investment period. The investor starts by setting a floor equal to the lowest acceptable

value of the portfolio. Then, the cushion is computed as the difference between the portfolio

value and the floor. The amount allocated to the risky asset is determined by multiplying the

cushion by a predetermined multiple, and is called as the exposure. The remaining funds are

invested in the risk free asset. The floor and the multiple are functions of the investor’s risk

tolerance and are exogenous to the model.

More precisely, the CPPI method consists of managing a dynamical portfolio so that its ter-

minal value VCPPI
T at the end of the investment horizon T lies almost surely above a predeter-

mined floor value FT .

The floor value, i.e., the guarantee, is determined by the investor at the beginning of the

investment period, given as a percentage αT ≥ 0 of the initial investment VCPPI
0 . The terminal

value of the guarantee, the so-called floor, is given by

FT = αT VCPPI
0 .

We note that, in the absence of any arbitrage opportunities, it is impossible to find an invest-

ment that returns more than the risk-free rate of return r with no risk and, thus, the maximum

guaranteed portfolio value at time T is limited by

αT ≤ erT .
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Let (Ft)0≤t≤T denote the time t value of the floor with respect to a given guarantee FT , in

order to define its dynamics over the investment period [0,T ]. The value of the floor gives the

dynamical insured amount and it is assumed to evolve according to

dFt = Ftrdt, dαt = αtrdt,

where

Ft = αtVCPPI
0 and αt = αT e−r(T−t). (3.5)

Obviously, the initial floor F0 is less than the initial portfolio value VCPPI
0 .

The cushion at time zero is defined by the difference between the portfolio value, and the

given guarantee VCPPI
0 − F0 is denoted by C0. Its value Ct at any time t in [0,T ] is given by

Ct = VCPPI
t − Ft. (3.6)

The exposure, which is denoted by Et, is the total amount invested in the risky assets. The

standard CPPI method consists of letting

Et = mCt, (3.7)

where m is a constant called the multiple. Now, the basic idea of the CPPI approach consists

of investing a constant proportion m of the cushion Ct in the risky assets. This is the reason

that the strategy is named as Constant Proportion Portfolio Insurance.

The remaining part of the portfolio VCPPI
t − Et is invested in the riskless asset.

Thus, the value of the self financing CPPI portfolio at time t ∈ [0,T ] is given by

dVCPPI
t = (VCPPI

t − Et)
dBt

Bt
+ Et

dS t

S t
. (3.8)

Then by the formula of exposure, given in (3.7), and by inserting the dynamics of the risk-free

asset (3.1) and the risky asset (3.2), Equation (3.8) becomes
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dVCPPI
t = (VCPPI

t − mCt)rdt + mCt(µdt + σdWt).

By the formulas of the dynamic floor (3.5) and of the cushion (3.6), we have

dVCPPI
t = (VCPPI

t − m(VCPPI
t − αtVCPPI

0 ))rdt + mCt(µdt + σdWt)

= (VCPPI
t (1 − m) + mαtVCPPI

0 )rdt + mCt(µdt + σdWt). (3.9)

Hence, by (3.6), the stochastic dynamics of the cushion Ct satisfies

dCt = d(VCPPI
t − αtVCPPI

0 ) = dVCPPI
t − VCPPI

0 dαt. (3.10)

Now, we insert the dynamics of the portfolio value which is found in (3.9) into the stochastic

dynamics of the cushion Ct in (3.10). Then we get

dCt = (VCPPI
t (1 − m) + mαtVCPPI

0 )rdt + mCt(µdt + σdWt) − VCPPI
0 αtrdt

= ((VCPPI
t − VCPPI

0 αt)(1 − m))rdt + mCt(µdt + σdWt)

= Ct(1 − m)rdt + mCt(µdt + σdWt).

This leads to

dCt

Ct
= [mµ + r(1 − m)]dt + mσdWt.

By applying Itô Formula, it can be deduced that

ln Ct − ln C0 = m(ln S t − ln S 0) + (1 − m)(r + m
σ2

2
)t. (3.11)

Thus,

Ct = C0

(
S t

S 0

)m

e(1−m)(r+mσ2
2 )t.
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Substituting the lognormal distribution for the risky asset S t, given in (3.4), we can deduce

for the form (3.11) that the cushion is lognormally distributed with

ln
(

Ct

C0

)
∼ N

(
(r + m(µ − r) −

1
2

m2σ2)t,m2σ2t
)
. (3.12)

Finally, by inserting the value of the floor and the value of cushion into VCPPI
t = Ft + Ct, we

find the value of the CPPI portfolio at time t ∈ [0,T ] as

VCPPI
t = αT e−r(T−t)VCPPI

0 + C0

(
S t

S 0

)m

e(1−m)(r+mσ2
2 )t

= αT e−r(T−t)VCPPI
0 + βtS m

t

= Ft + βtS m
t ,

where

βt =
C0

S m
0

e(1−m)(r+mσ2
2 )t, (3.13)

and

Ct = βtS m
t .

Formula (3.13) was first proved by Black and Perold (1992) [17], then extended by different

authors for different cases. With respect to the derivation of the formula, we refer to Bertrand

and Prigent (2005) [13] and Zagst and Kraus [79].

Hence, it is clear that the CPPI method is parameterized by the level of insurance αT and the

multiplier m. Both of these parameters are initially determined according to investor’s risk

preferences. Since the exposure to risky assets is Et = mCt, m represents the level of risk

taken by the investor. If 0 < m < 1, the payoff function of CPPI, which is the terminal value

of the CPPI portfolio, is concave with respect to the risky asset values, which means that the

investor is risk averse. Also in the case that m ≥ 1, the payoff function is convex.
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Before we continue with the OBPI strategy, we conclude this section with the determination

of the expected value as well as the variance of the value of the CPPI portfolio VCPPI
T at the

end of the investment horizon T .

For the derivation of the expected value (mean) and the variance, we especially need the

probability distribution of the cushion Ct which is given in (3.12). We also recall that the

mean and variance of a lognormally distributed random variable X, with ln X ∼ N(µ, σ2), are

given by

E(X) = eµ+σ2
2 ,

Var(X) = e2µ+σ2
(eσ

2
− 1). (3.14)

On the other hand, the terminal value of the CPPI portfolio is given by

VCPPI
T = αT VCPPI

0 + C0

(
S T

S 0

)m

e(1−m)(r+mσ2
2 )T = αT VCPPI

0 + CT .

Thus, the expected terminal value of the CPPI portfolio can be obtained as

E(VCPPI
T ) = E(αT VCPPI

0 + CT ) = αT VCPPI
0 + E(CT ).

Then, by (3.12) and (3.14), we have

E(VCPPI
T ) = αT VCPPI

0 + eln C0+(r+m(µ−r)− 1
2 m2σ2)T+ m2σ2T

2

= αT VCPPI
0 + C0e(r+m(µ−r))T .

On the other hand, the variance of the terminal value of the CPPI portfolio can be found as

Var(VCPPI
T ) = Var(αT VCPPI

0 + CT )

= Var(CT ).

Again, by using (3.12) and (3.14), we obtain
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Var(VCPPI
T ) = e2(ln C0+(r+m(µ−r)− 1

2 m2σ2)T+ m2σ2T
2 )(em2σ2T − 1)

= C2
0e2((r+m(µ−r))T )(em2σ2T − 1),

where

C0 = VCPPI
0 (1 − αT e−rT ).

At this point, we leave the comments and implementations on the expectation and variance to

the later section where the comparisons between the two portfolio insurance strategies CPPI

and OBPI are made. Now, we go on with the description of OBPI strategy.

3.4 Option-Based Portfolio Insurance (OBPI)

The OBPI strategy, which was introduced by Leland and Rubinstein (1976) [52], consists of a

portfolio invested in a risky asset S covered by a put option written on it. Thus, the portfolio

value will always be greater than the strike K of the put, so that the method guarantees a fixed

amount K at the terminal date. In other words, the guaranteed amount FT is equal to the strike

price K of the put.

In contrast to the CPPI strategy, the OBPI strategy is a static investment strategy, i.e., no

rebalancing of the portfolio occurs during the investment period (0,T ).

In this section, we consider the OBPI strategy as a put-based portfolio insurance strategy

which guarantees a minimum terminal portfolio value of

VOBPI
T = αT VOBPI

0 ,

for a portfolio consisting of one shares of the risky asset S , by purchasing one shares of

European put option written on S with maturity T and strike K. We assume that the put

option is financed at the risk-free interest rate r at t = 0.

Thus, the portfolio value of the put-based strategy at terminal date, VOBPI
T , is given by

VOBPI
T = S T + (K − S T )+,
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which is also equal to K + (S T − K)+ due to the put/call parity. This relation shows that the

insured amount at maturity is the exercise price K. It also implies that the initial value of the

investment is equal to

VOBPI
0 = S 0 + P(0, S ,K).

We note that, normally, it is more accurate to consider the OBPI portfolio as a combination

of λ shares of the initial investment in the risky asset and a put written on this underlying.

Here, we have assumed that λ is equal to one. In fact, it is not a natural way to determine the

initial investment V0 for a fixed value λ = 1. It is more consistent to search for an appropriate

λ satisfying the no-arbitrage condition, for a fixed value of the initial investment V0. Here,

we choose to consider the OBPI strategy in a basic framework without loss of generality, for

simplification of simulations and comparisons. However, we refer to the next section where

the structure of the OBPI strategy is discussed in details.

One can also consider the value of the OBPI portfolio at any time t in the period [0,T ] as

VOBPI
t = S t + P(t, S t,K),

which is also equal to Ke−r(T−t) + C(t, S t,K) due to the put/call parity; here, P(t, S t,K) and

C(t, S t,K) are the Black-Scholes values of the European put and call given by the formulas

C(t, S t,K) = N(d1)S t − N(d2)Ke−r(T−t),

P(t, S t,K) = N(−d2)Ke−r(T−t) − N(−d1)S t, (3.15)

where

d1 =
ln( S t

K ) + (r + 1
2σ

2)(T − t)

σ
√

T − t
,

d2 = d1 −
√

T − t,

and N(·) is the cumulative distribution function of the standard normal distribution. We

note that, for all dates t before T , the portfolio value is always above the deterministic level
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Ke−r(T−t).

Consequently, the strike price K of the put option, which represents the guaranteed level at

the terminal date, and which consequently depends on the desired level of insurance αT and

V0, represents the only parameter of the OBPI method.

Similar to the CPPI portfolio, we finally try to determine the expectation and variance of the

terminal value of the OBPI portfolio VOBPI
T . First, we obtain the terminal value of the OBPI

strategy as

VOBPI
T = S T + P(T, S T ,K).

For the derivation of the expectation and variance of the OBPI strategy, we directly reintro-

duce the findings in the article of Zagst and Kraus [79] without any contribution. In their

study, they first recall the following definition which is used to obtain the expectation and

variance of the OBPI strategy.

Definition 3.1 [79, Definition 1, page 8] Given the benchmark X and a randon variable Y , the

Lower Partial Moment LPMz and the Upper Partial Moment UPMz of Y with respect to X

and some z ∈ N0 are defined as

LPMz(Y, X) = E(max{X − Y, 0}z),

UPMz(Y, X) = E(max{Y − X, 0}z).

If we consider the random variable Y as an asset price S , and the corresponding benchmark

X, the lower partial moment LPM0 denotes the shortfall probability and LPM1 stands for the

expected value of the loss, in the case that the asset price falls below the benchmark. (The

shortfall probability is basically the probability that the return lies below a target amount at

the end of the investment period.) Vice versa, UPM0 represents the probability of outperfor-

mance and UPM1 the expected value of the profit when the asset price beats the benchmark X.

Based on this definition, the mean and variance of the OBPI strategy at maturity T is deter-

mined by Zagst and Kraus [79] as follows:
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E(VOBPI
T ) = UPM1(S T ,K) + αT VOBPI

0 ,

Var(VOBPI
T ) = UPM2(S T ,K) − UPM1(S T ,K)2;

We refer to the related article for the proof.

Now, after defining two different portfolio strategies, namely, the CPPI and the OBPI, we

continue with the comparison of these two methods in terms of their statistical and dynamical

properties.

3.5 Comparison Between Standard CPPI and OBPI

The comparison between two prominent portfolio insurance strategeis, CPPI and OBPI, has

been performed by several authors in the literature, since the question of which insurance

strategy is more preferable to the other one is of interest for both practitioners and researchers.

Thoughout this section, while comparing two methods, we particularly examine the study

Bertrand and Prigent (2005) [13] in which they investigate and compare two methods by their

statistical and dynamical properties. In their study, they consider the OBPI strategy consists of

a risky asset and a call option, and compare two methods by means of the equality of expected

returns, quantiles, and hedge parameters. Here, in this thesis, we consider the OBPI strategy

with a risky asset and a put option written on the same risky asset. We analyze and compare

two methods in terms of their performances at maturity, sensitivities to important parameters

and dynamical behaviour.

As it has been previously mentioned while the CPPI method is parameterized by the propor-

tion of the initial amount αT (or by the guarantee FT itself) and by the multiple m, the OBPI

method has just one parameter, the strike K.

According to the method used in Bertrand and Prigent (2005) [13], to compare two methods,

first, one should consider the same initial investment for both methods. Thus, the initial

portfolio values VCPPI
0 and VOBPI

0 are assumed to be equal to

V0 := VCPPI
0 = VOBPI

0 = S 0 + P(0, S 0,K).

32



Secondly, the two strategies are supposed to provide the same guarantee αT , at the end of the

investment period T , expressed as proportion of the initial investment V0:

Ft = αtV0 and FT = K,

where Ft = e−r(T−t)FT , (t ∈ [0,T ]). Thus,

K = αter(T−t)V0.

We note that these two conditions do not impose any constraint on the multiplier m. Hence,

this leads us to consider the CPPI strategies for various values of the multiplier m.

To compare the two strategies, we examine their performances at maturity. The analysis of

the payoff functions, i.e., the values of the two portfolios at the terminal date as a function of

risky asset values, gives a first insight.

3.5.1 Comparison of the Payoff Functions

As stated before, the value of the CPPI portfolio strategy at the terminal date, the so-called

payoff function of the CPPI, is given by

VCPPI
T = αT V0 + C0

(
S T

S 0

)m

e(1−m)(r+mσ2
2 )T ,

while the payoff function of the OBPI strategy, i.e., the value of the OBPI portfolio at maturity,

is given by

VOBPI
T = S T + P(T, S T ,K).

Let us start with looking at the behaviour of the payoff functions of both strategies. However,

one must take account of the probabilities of the market behaviour, for example bullish or

bearish market, in order to compare the methods. The terms bull market and bear market

describe upward and downward market trends, respectively. As a mathematical definition, the
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market is said to be bullish when S T ≥ E(S T ). Vice versa, the market is bearish when the

prices at time T are less than or equal to their expected values, E(S T ) ≥ S T .

Example 3.1 A simple numerical example is illustrated with the following values of the finan-

cial market: µ=7.5%, σ=8% and r=3.5% (µ > r > 0). In this market, the two portfolio strate-

gies are set up assuming T = 5 years, S 0=80, K=80, αT =0.90 and V0 = S 0 + P(0, S 0,K) =

81.15. The value of CPPI strategy is calculated for different values of multiplier m = 2, 4, 6, 8.

Under no-arbitrage assumption, the upper bound of the level of insurance αT ≤ erT is equal

to 1.1912 for the given values of this example.

Figure 3.1 illustrates the payoff functions, i.e., the terminal values of CPPI and OBPI portfolio

strategies as functions of S in the Black-Scholes framework.

Figure 3.1: CPPI and OBPI portfolio values at maturity.

We also illustrate Figure 3.2 to be able to see the graph with closer details for small terminal

risky asset price S T .

We notice that as m increases, for the CPPI method, the portfolio value function becomes
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Figure 3.2: CPPI and OBPI portfolio values at maturity.

more convex. Since m represents the level of exposure to risky asset, as m increases, the

investor’s tolerance to risk also increases, which makes the payoff function more convex, too.

On the other hand, for each value of the multiplier m, the payoffs of the CPPI and the OBPI

strategy intersect at least once. We can only compare the terminal portfolio values according

to the expected terminal risky asset price E(S T ) which is equal to 100.27. For example, when

S T ≥ E(S T ), i.e., the market is bullish, we can see from Figure 3.1 and Figure 3.2 that the

OBPI strategy dominates the CPPI strategy with multiplier m = 2, but it is dominated by the

CPPI strategy with multipliers m = 4, 6, 8. The converse comparisons can be made for the

bearish market as well, however, we see that neither of the two payoff functions is greater than

the other for all terminal values of the risky asset. Thus, in terms of the payoff functions, it

does not seem possible to make a general comparison between two methods. One can prefer

one to another only under some specified parameter and variable considerations.
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3.5.2 Comparison of the Expectations and Variances

In Bertrand and Prigent (2005) [13], the comparison of the expectatiton, variance, skewness

and kurtosis of the terminal portfolio values of CPPI and OBPI strategies, is done by obtaining

a multiplier value m∗ under equality of expected returns. In this subsection, we perform the

comparison of expectations and variances at maturity (without considering the value of m∗)

for different values of the multiplier m and level of insurance αT .

In the following numerical example, we examine the two portfolio strategies CPPI and OBPI

in terms of their statistical properties, for example, their expectations and variances.

Example 3.2 We calculate the expectations and the variances of our two strategies CPPI and

OBPI at the terminal date T due to the parameter set given in Example 3.1. We again consider

the CPPI strategy for different values of multiplier, m = 2, 4, 6, 8. Therefore, we perform the

calculation for two different values of insurance level, αT = 0.90 and αT = 1.050, in order to

understand the effect of the change of desired level of insurance on the expected values and

variances of our two portfolio strategies. Table 3.1 shows the numerical results for the desired

level of insurance αT = 0.90.

Table 3.1: Expectations and variances for the desired level of insurance αT = 0.90.

Expectation Variance
OBPI 126.5785 37.4250

CPPI, m=2 138.7102 24.6376
CPPI, m=4 162.4223 217.9744
CPPI, m=6 185.7115 853.9417
CPPI, m=8 202.4067 2080.1003

We observe, as the multiple m increases, the expected terminal value of the CPPI strategy

E(VCPPI
T ) increases. However, its variance Var(VCPPI

T ) increases dramatically at the same

time. This is because the multiple m represents the level of exposure to risky assets; in other

words, it represents the investor’s risk tolerance. While m increases, investment becomes

more risky.

Furthermore, these numerical results also justify the formulations (which are given in Sections

3.3 and 3.4) of the expected returns and the variances of the terminal values of two portfolio

36



strategies.

Table 3.2: Expectations and variances for the desired level of insurance αT = 1.050.

Expectation Variance
OBPI 124.7979 35.4607

CPPI, m=2 128.7872 6.0335
CPPI, m=4 140.6223 53.8142
CPPI, m=6 152.4274 212.5394
CPPI, m=8 161.1215 521.8999

Table 3.2 shows the results for an increased level of insurance up to αT = 1.050. For CPPI

strategy, the expected terminal value again increases with the increasing values of the multiple

m, while the variance of the terminal value increases. Also, we notice that an increase in the

level of insurance αT significantly reduces the investment risk, i.e., the variance of the portfo-

lio value at the terminal date Var(VCPPI
T ). However, the expected portfolio value E(VCPPI

T ) is

decreasing at the same time. Infact, increasing the guaranteed amount means investing less in

the risky assets and more in the risk free asset, causes a decrease both in the expected terminal

value and the variance. Therefore, in the case of OBPI strategy, an increase in the level of

insurance αT or, correspondingly, in the strike K, results in a lower expected terminal value

of the OBPI strategy E(VOBPI
T ). At the same time, the variance of the terminal value of the

OBPI strategy Var(VOBPI
T ) decreases as the guarantee increases.

3.5.3 Comparison of the Greeks

Now, we aim to analyze the hedge parameters, in other words, the greeks, of both portfolio

strategies: the CPPI and the OBPI. This kind of analysis is also performed in Bertrand and

Prigent (2005) [13] by considering the OBPI method with a call option. In our study, we ob-

tain the hedge parameters of OBPI strategy with a put option. In terms of portfolio insurance,

the greeks are the quantities representing the sensitivities of the value of the portfolio to a

change of the parameter on which the value of the portfolio depends.

Before defining and examining the greeks of two portfolios CPPI and OBPI, we recall the

values of these portfolios at any time t during the investment period [0,T ], as in follows:
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The time t value of the CPPI portfolio is given as

VCPPI
t = αT e−r(T−t)VCPPI

0 + βtS m
t , (3.16)

where βt is defined in (3.13).

Therefore, the value of the OBPI portfolio at time t is defined as

VOBPI
t = S t + P(t, S t,K), (3.17)

where P(t, S t,K) is the Black-Scholes put option price given in (3.15).

Thus, we can evaluate the greeks of the portfolios with the derivatives of Equation (3.16) and

Equation (3.17) with respect to the corresponding parameters.

3.5.3.1 The Delta

The delta measures the change in portfolio value over the small changes in asset price. For

the OBPI strategy, the delta of the OBPI portfolio is given as

∆OBPI
t =

∂VOBPI
t

∂S t
= N(d1).

The delta of the CPPI strategy is defined by

∆CPPI
t =

∂VCPPI
t

∂S t
= βtmS m−1

t ,

where βt is given in Equation (3.13).

Figure 3.3 shows the deltas of two insurance strategies as a function of the risky asset value.

We can observe that the delta of CPPI becomes more convex as the multiple m increases and

it can be greater than one. An increase in multiple m causes a significant increase in the

sensitivity of the CPPI method to the changes in risky asset prices. On the other hand, the

delta of OBPI also increases, but always stays below one. Moreover, for small values of the
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Figure 3.3: CPPI and OBPI deltas.

risky asset, the delta of the OBPI is greater than that of the CPPI. However, as the asset prices

increase, the delta of the OBPI stays below the deltas of the CPPI with m = 4, 6, 8.

3.5.3.2 The Gamma

The gamma measures the change in the portfolio value over larger changes in the asset price.

For larger changes, the delta does not accurately reflect the change in the portfolio value. For

this reason, this risk is measured by the gamma.

For the OBPI strategy, the gamma of the OBPI portfolio is given by

ΓOBPI
t =

∂2VOBPI
t

∂S 2
t

=
N(d1)

S tσ
√

T − t
.

The gamma of the CPPI portfolio is
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ΓCPPI
t =

∂2VCPPI
t

∂S 2
t

= βtm(m − 1)S m−2
t .

Figure 3.4 shows the gammas of the two strategies, the CPPI gamma with various m values

and the OBPI gamma, as functions of the risky asset value.

Figure 3.4: CPPI and OBPI gammas.

We remark that, not surprisingly, the gamma of the CPPI again becomes more convex as the

multiple m increases. The OBPI gamma is greater than the CPPI gamma for smaller stock

prices, but this is not always true for greater stock prices.

3.5.3.3 The Vega

The vega measures the changes in portfolio value over changes in volatility, i.e., it measures

the risk of gain or loss resulting from changes in volatility. It is known that the volatility

is the most critical variable in the Black-Scholes framework, because the values of portfolio

components are very sensitive to volatility.
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The vega of the OBPI portfolio is the vega of the put which is given by

VegaOBPI
t =

∂VOBPI
t

∂σ
= S tN(d2)

√
T − t.

For the CPPI portfolio, the vega is defined as

VegaCPPI
t =

∂VCPPI
t

∂σ
= ((m − m2)σt)VCPPI

t .

Thus, the sensitivity of the CPPI value with respect to the volatility is negative as m > 1.

Figure 3.5 shows the vegas of CPPI and OBPI strategies.

Figure 3.5: CPPI and OBPI vegas.
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We can see from the graph of Figure 3.5 that the behaviour of the vegas of two strategies are

very different. For CPPI portfolio, the vega is negative and it decreases as the multiple m

increases. However, the OBPI vega is always above zero.
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CHAPTER 4

OPTIMIZATION OF THE PORTFOLIO INSURANCE

STRATEGIES AND OPTIMAL PORTFOLIO SELECTION

4.1 Introduction

The Portfolio Optimization framework attempts to calculate the optimal asset allocations for

a portfolio that gives the highest return for the least risk.

In modern portfolio theory, the two fund separation princible was introduced by Markowitz

(1959) [56] and extended by Merton (1971, 1973) [58, 59], which implies that the optimal

asset allocation is obtained by using two basic funds: the first one is a combination of risky

assets and the second one is the risky-free asset. The CPPI strategy is an application of this

two fund separation princible which allocates the assets held in portfolio by rebalancing them

between risky assets and risk-free asset. On the other hand, further studies have extended

this two fund separation princible to three fund by adding a third fund which is a derivative

written on the portfolio of risky assets. The OBPI strategy can be considered as an example

of this three fund separation princible. As stated before in the previous chapter, we consider

the OBPI strategy with two funds, one is the risky assets and the other is an option, to make

the simulations and the comparisons easier. The first fund, the risky assets, can be considered

as an allocation of assets including both risky assets and a risk-free asset. Now, we focus on

an advanced OBPI method with three funds which is more challenging and commonly used

in practice.

To manage a portfolio insurance strategy, the investor should first choose the unconstrained

(uninsured) allocation based on his risk preferences without considering his desire of the

guarantee, then he should insure his portfolio by specifying a strategy which is called the
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insured allocation.

This chapter includes a careful and detailed study of two important articles El Karoui, Jean-

blanc and Lacoste (2005) [34], and Balder and Mahayni (2009) [54].

First, we focus on the optimality of the OBPI strategy specified by a particular underlying

and a particular put option on this underlying. The optimality of OBPI strategy has already

been studied and proven by the work of El Karoui, Jeanblanc and Lacoste (2005) [34] by

considering an OBPI strategy written on the optimal solution of the Merton problem, which is

presented in Chapter 2. In other words, their work considers the unconstrained allocation of

OBPI strategy as the solution of the portfolio optimization problem with no constraints. For

the optimality of such an OBPI strategy, first, the existence and uniqueness of the appropriate

number of shares invested in the unconstrained allocation must be proven. It is shown by El

Karoui, Jeanblanc and Lacoste (2005) [34] via assuming the initial values of the asset price S 0

and of the initial investment V0 are equal to 1. Here, in this study, we extend their work to any

values of S 0 and V0 as a contribution. This is the only contribution that occurs in Proposition

4.1. After that, we present the optimality results and their proofs, which are already published

in El Karoui, Jeanblanc and Lacoste (2005) [34], by providing further details of the ideas and

arguments used in this paper.

Second, we review the derivations of the optimal solutions of the CPPI and OBPI strategies by

using a benchmark strategy, the constant mix (CM) strategy, in order to compare their optimal

solutions. This idea is presented by Balder and Mahayni (2009) [54], and the comparison of

the optimal solutions is performed. In this study, we provide a detailed exposition on their

derivation and comparison. Finally, we perform a numerical example on the optimal solutions

of three strategies CM, CPPI and OBPI, and we get the same graphs, to replicate their results.

4.2 Optimal OBPI Strategy

The content of this section which is used to obtain the optimal OBPI strategy is taken from El

Karoui, Jeanblanc and Lacoste (2005) [34], and it includes a revision of their setup and results

with some minor contributions in Proposition 4.1 by proving the existence and uniqueness of

the appropriate number of shares without assuming the initial asset price S 0 and the initial

investment V0 are normalized at 1. We also use their notation to be consistent with the prior
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study. Therefore, in Proposition 4.2 and Proposition 4.3, we provide further details of the

arguments and ideas used in this paper while proving the optimality of OBPI strategy.

The OBPI strategy is designed as a portfolio insurance strategy to protect the portfolio value

at maturity by using a put option written on the same portfolio (the unconstrained allocation).

One considers the OBPI strategy as a combination of investing the λ shares of the initial

investment in the portfolio and investing the remaining part in a put option written on the

same portfolio.

Let St denote the time t value of the unconstrained optimal allocation where S0 ≥ 0. (We

notice that by S denotes the unconstrained allocation and by S the risky asset itself in the

market). Consequently, a number of λ shares (as a fraction of the initial investment) is invested

in the unconstrained allocation at time 0 evolves in the future following (λSt)t≥0. In order to

be precise, the market is assumed to be complete, arbitrage free and frictionless and (St)t≥0

follows a continous diffusion process. All dividends and coupons are assumed to be reinvested

in such a way that the allocation remains to be self financing.

For the optimization of the OBPI portfolio, we focus on the optimization problem in which

the investor wants to maximize his expected utility over all self-financing portfolios with the

values satisfying the European constraint.

Now, consider the OBPI strategy with a put option written on the optimal solution of the un-

constrained problem. In other words, as a first step, one needs to determine the unconstrained

(uninsured) allocation S of the OBPI strategy as the optimal solution of the unconstrained

problem described in the previous section; then, as a second step, one defines the insured

allocation to achieve the guarantee over the unconstrained portfolio. To define the insured

allocation, we use the European put option with underlying being the optimal unconstrained

portfolio with the strike being the guarantee itself. When it is mentioned that the protection is

European, which means that the guarantee holds only for the terminal date T , the European

option is used that the investor cannot exercise it before the terminal date.

We construct the OBPI portfolio as follows. We assume that λ shares of the unconstrained

allocation λS0 are invested at date 0, with the value at the terminal date as λST , and the

remaining part of the initial wealth, V0 − λS0, is used to purchase a put option written on the

same underlying λS t with strike K. We note that the strike price K is the guaranteed amount
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at the terminal date, i.e., K = FT . We also state that under no-arbitrage condition, the initial

value of the portfolio V0 must be greater than or equal to the time 0 value of the guarantee

Ke−rT = F0. If V0 = Ke−rT , the investor has to invest all his initial wealth in the risk-free

asset. Since we do not find this case necessary to investigate in the concept of this chapter, we

assume that V0 > Ke−rT .

The payoff of the put option at maturity is ΨT = max{K − λST , 0}. Thus, the payoff of the

OBPI strategy at maturity is given by

VT (λ) = λST + (K − λST )+ = sup{λST ,K}.

It is important to highlight that the value λ, the so-called leverage or gearing parameter of

the fund, must be determined at the initial date and has to satisfy the initial budget V0(λ) =

λS0 + PλS(0,T,K), where PλS(0,T,K) is the time 0 value of the European put option written

on λ units of the unconstrained allocation with maturity T and strike K. Thus, for a fixed

value of V0, an appropriate λ value needs to be determined in a way that it satisfies the initial

budget condition. The existence and uniqueness of such a λ in this context has been shown by

El Karoui, Jeanblanc and Lacoste (2005) [34] via assuming that the initial values of the asset

price S 0 and of the initial investment V0 are normalized to 1, in [34, Proposition 2.1, page

453]. Here, in this study, we extend their work to any values of S 0 and V0, as a contribution.

The proof remains the same except for some minor differences. We also provide all the steps

of the proof that appear in [34, Proposition 2.1, page 453]. For this purpose, we give the

following proposition.

Proposition 4.1 There exists a unique λ with 0 < λ < (V0/S0), such that

V0(λ) = λS0 + PλS(0,T,K).

Proof: The terminal value of the fund is VT (λ) = sup{λST ,K} is a non-decreasing function

with respect to λ ∈ R+ and valued in [K,+∞). Thus, for any λ′ < λ, it holds

VT (λ′) ≤ VT (λ)⇒ 0 ≤ VT (λ) − VT (λ′).
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The following equalities and inequalities are to be understood in the sense of being almost

surely.

If λST ≥ K and λ′ST ≥ K, then VT (λ) = λST and VT (λ′) = λ′ST . Thus, VT (λ) − VT (λ′) =

λST − λ
′ST .

If λST ≤ K and λ′ST ≤ K, then VT (λ) = K ≥ λST and VT (λ′) = K ≥ λ′ST . Thus,

VT (λ) − VT (λ′) = 0.

If λST ≥ K and λ′ST ≤ K, then VT (λ) = λST and VT (λ′) = K ≥ λ′ST . Thus, VT (λ) −

VT (λ′) ≤ λST − λ
′ST .

If λST ≤ K and λ′ST ≥ K, then this contradicts with the initial assumption of λ′ < λ.

Thus, in any case, we have

0 ≤ VT (λ) − VT (λ′) ≤ λST − λ
′ST = (λ − λ′)ST .

Then, by discounting, we get

ṼT (λ) − ṼT (λ′) ≤ (λ − λ′)S̃T .

Since, ṼT and S̃ T are martingales under the equivalent martingale measure, EQ(ṼT ) = V0 and

EQ(S̃T ) = S0. Thus, by taking the expectation under Q, we get

V0(λ) − V0(λ′) ≤ (λ − λ′)S0.

We can see that the initial value of the investment V0(λ) is a non-decreasing and Lipschitzian

function with respect to λ with a Lipschitz constant equal to S0. Since it is Lipschitz continu-

ous, we can use the Intermediate Value Theorem. Since we consider V0 as a function of λ, we

need to denote constantly by V0 = x as the initial value of the wealth.

Let λ ∈ I = (0, x/S0) and function V0 defined on the interval I, then the image set V0(I) is

also an interval which contains either (V0(0),V0(x/S0)) or (V0(x/S0),V0(0)). We know that

VT (λ) = sup{λST ,K} is valued in [K,+∞), therefore V0(λ) is valued in [Ke−rT ,+∞). On one
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hand, we know that Ke−rT < V0 = x, V0(0) < x since, when λ = 0, this means that the in-

vestor has no investment in the risky asset. On the other hand V0(x/S0) = x+PλS(0,T,K) > x.

Hence, there exists a unique λ ∈ (0, x/S0) which satisfies the initial budget condition, where

x is the initial value of the investment equal to V0.

Now, for the optimality of the OBPI portfolio strategy with European constraints, we present

the following maximization problem and its solution which is given in El Karoui, Jeanblanc

and Lacoste (2005) [34].

maximize E[u(VOBPI
T )]

subject to VT ≥ K,

V0 = x.

(4.1)

By V̂T we denote the optimal terminal strategy. If V̂T is optimal, for any VT , it satisfies the

first-order condition

E(u′(V̂T )(VT − V̂T )) = 0.

We give the following proposition for the optimality of the OBPI strategy due to the CRRA

utility by providing all the steps of the proof that appear in El Karoui, Jeanblanc and Lacoste

(2005) [34].

We recall that, in the case of CRRA utility function, since the optimal terminal value of the

unconstrained problem is linear with respect to the initial wealth, it justifies that we con-

struct the OPBI strategy by a put option written on the underlying λST . We remind that

u′(λST ) = λ−γu′(ST ) and V̂T = max{λST ,K} ≥ K, since these are used in the proof of the

below proposition.

Proposition 4.2 [34, Proposition 2.2, page 455] The put-based strategy written on the optimal

portfolio with no constraint solves the optimization problem with European constraint for

CRRA utility functions.

More precisely, if VT is the terminal value of a self-financing portfolio with initial wealth V0
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such that VT ≥ K a.s. and V̂T is the terminal value of the put-based strategy, then

E[u(V̂T )] ≥ E[u(VT )].

Proof: We would like to prove that E[u(VT ) − u(V̂T )] ≤ 0. Because of the concavity of the

utility function u, we can write that

u(VT ) − u(V̂T ) ≤ u′(V̂T )(VT − V̂T ). (4.2)

Since V̂T = max{λST ,K} ≥ K and u′(λST ) = λ−γu′(ST ), we can write u′(V̂T ) as

u′(V̂t) = u′(λST ) ∧ u′(K) = [λ−γu′(ST )] ∧ u′(K).

Therefore, since u′(V̂T ) ≥ u′(K) is equivalent to V̂T = K due to the constraint V̂T ≥ K, and

the decreasing property of u′, the right-hand side of Inequality (4.2) becomes

u′(V̂T )(VT − V̂T ) = [[λ−γu′(ST )] ∧ u′(K)](VT − V̂T )

= λ−γu′(ST )(VT − V̂T ) − [λ−γu′(ST ) − u′(K)]+(VT − K).

Then, by taking expectation, we get

E[u′(V̂T )(VT − V̂T )] = λ−γE[u′(ST )(VT − V̂T )] − E[[λ−γu′(ST ) − u′(K)]+(VT − K)].

On the other hand, we can write the first order condition in the form of

E(u′(ST )(VT − V̂T )) = E[u′(ST )(VT − V̂T )] + E[u′(ST )(V̂T − V̂T )] = 0.

From the constraint on the terminal wealth VT ≥ K, we obtain

−E([λ−γu′(ST ) − u′(K)]+(VT − K)) ≤ 0.
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Consequently, we get

E[u(VT ) − u(V̂T )] ≤ 0.

We remark that, the optimality of the OBPI strategy as a put-based strategy is proven where

the utility function is considered as CRRA utility. However, this optimality result is extended

into the general class of utility functions by El Karoui, Jeanblanc and Lacoste (2005) [34].

In order to do this, one should again consider the OBPI strategy with a put written on the

optimal solution of the unconstrained problem, but the linearity property with respect to the

initial wealth coming from the CRRA utility function may not be available anymore. Thus,

to construct the insured allocation of the OBPI strategy, the unconstrained allocation can be

considered as to be parameterized by y, rather than λ, as

ST (y) = (u′)−1(
HT

y
),

where HT = e−rtZT , ZT is the density of the martingale measure and y is the Lagrangian

multiplier which are presented in the previous sections.

Hence, the optimal terminal value of the put-based strategy can be considered as

V̂T = max{ST (y),K}.

We give the following proposition by providing all the steps of the proof that appear in El

Karoui, Jeanblanc and Lacoste (2005) [34].

Proposition 4.3 [34, Proposition 5.1, page 465] The put-based strategy written on the optimal

portfolio with no constraint solves the optimization problem with a European constraint for

any utility function.

Proof: The proof is similar to CRRA case, but we consider that the optimal solution of the

unconstrained problem as ST (y) = (u′)−1(HT/y), rather than λST , and the optimal terminal
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value of the put-based strategy as V̂T = max{ST (y),K} ≥ K, instead of V̂T = max{λST ,K}.

Then, the first-order condition takes the form of E(HT (VT − ST (y)) = 0.

Again, we would like to prove that E[u(VT )− u(V̂T )] ≤ 0. By concavity of the utility function

u,

u(VT ) − u(V̂T ) ≤ u′(V̂T )(VT − V̂T ). (4.3)

Since ST (y) = (u′)−1(HT/y), we have that u′(ST (y)) = y−1HT . Then, we can write u′(V̂T ) as

u′(V̂t) = u′(ST (y)) ∧ u′(K) = (y−1HT ) ∧ u′(K).

Then, as before, we have

u(VT ) − u(V̂T ) ≤ u′(V̂T )(VT − V̂T ) = [y−1HT ∧ u′(K)](VT − V̂T ).

The right-hand side of this last equation is equal to

y−1HT (VT − V̂T ) − [y−1HT − u′(K)]+(VT − K).

From the first-order condition, we obtain

E[HT (VT − V̂T )] = 0,

and from the terminal constraint VT ≥ K, we get

E[u(VT ) − u(V̂T )] = −E([u′(ST (y)) − u′(K)]+(VT − K)) ≤ 0.

Consequently, we receive the relation E(u(V̂T )) ≥ E(u(VT )).
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Hence, we see that the optimal solution of the problem with European constraint can be

achieved by the put-based strategy written on the optimal portfolio without any constraint and

for any utility function.

We would also like to state that, in this study, we focus on the optimality of the OBPI strategy

with European guarantee that the constraint is imposed on a terminal date. The case of the

American guarantee, which offers the same guarantee for any terminal date between 0 and T ,

is also interesting. The optimality of the OBPI portfolio with American guarantee is proven in

by El Karoui, Jeanblanc and Lacoste (2005) [34], where the American OBPI strategy is fully

described in a Black-Scholes environment as well as in the more general case of complete

markets.

4.3 Comparison of the Optimal Portfolio Insurance Strategies

In this section, we focus on another important paper published by Balder and Mahayni (2009)

[54], which presents the derivations of the optimal solutions of CPPI and OBPI strategies, in

terms of a benchmark strategy, the constant mix (CM) strategy. Their work provides a useful

framework in order to compare the optimal solutions of portfolio insurance strategies. As far

as we have examined, we can understand that the idea of using CM strategy as a benchmark

strategy enables to make comparisons between an uninsured portfolio strategy and an insured

portfolio strategy, since the CM strategy contains no guarantee component. On the other hand,

it also allows to compare our two portfolio strategies CPPI and OBPI.

Thoughout this section, we review and explain the setup included in Balder and Mahayni

(2009) [54], and we briefly introduce the results in this article. The notation and math display

are taken from this paper. Finally, we perform a numerical example based on the same setup

to replicate their results due to the behaviour of the optimal solutions of the strategies, CM,

CPPI and OBPI. Consequently, our graph agrees with their graph.

While constructing the optimization problems, we assume that all stochastic processes are

defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P). We consider two assets, a risky

asset and a risk-free asset. Therefore, we again assume the standard conventions related to

market modelling.
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Let (φt)0≤t≤T represent the investment strategy for the investment period [0,T ]. Here, (φt)0≤t≤T

denotes the proportion invested in the risky asset S , and φ denotes the portfolio weight, at time

t. Thus, the remaining (1 − φ) is the proportion invested in the riskless asset B.

The value portfolio at time t associated with the strategy φ, is usually denoted by Vφ
t (ω) for

any event ω ∈ Ω , however, we denote it by Vt(φ), to be proper and consistent with the

terminology of this chapter, which requires to determine the value processes for different

strategies. Since we consider that the strategies are self financing, the dynamics of the value

of portfolio is given by

dVt(φ) = Vt

(
φ

dS t

S t
+ (1 − φ)

dBt

Bt

)
= Vt((φ(µ − r) + r)dt + φσdWt),

where V0 = x.

For the portfolio insurance strategies, we consider the following portfolio optimization prob-

lem, in which Φ denotes the set of all self-financing strategies (we remind that it is denoted

byA in the previous section, with an emphasize on being an admissible set).

maximize
φ∈Φ

E[u(VT (φ))]

subject to dVt(φ) = Vt((φ(µ − r) + r)dt + φσdWt),

V0 = x,

(4.4)

where u (u ∈ C2) is the utility function which is strictly increasing and strictly concave.

We now examine the derivations of the optimal solutions of CM, CPPI and OBPI strategies,

according to the setup and steps used in Balder and Mahayni (2009) [54]. The following sub-

sections shortly reintroduces the derivations of the optimal solutions and reviews the results,

which are already computed and presented in the referred article.
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4.3.1 Optimality for the CM Strategy

The CM strategy is a dynamic strategy which maintains an exposure to stocks that is a constant

portfolio weight m. Whenever the values of assets change, the investor is required to rebalance

the portfolio to return to the desired portfolio weight m. Thus, the portfolio strategy class for

the CM strategy can be represented as

ΦCM = {φ ∈ Φ | φt = m,m ≥ 0} = R+,

while considering the optimization problem (4.4) as

maximize
φ∈ΦCM

E[u(VCM
T (φ))]

subject to dVCM
t (φ) = VCM

t ((m(µ − r) + r)dt + mσdWt),

VCM
0 = x,

where the utility function is CRRA utility u(VT ) = V1−γ
T /(1 − γ), γ ∈ (0, 1).

Since φ ∈ ΦCM, the portfolio value at the terminal date can be obtained as follows:

dVCM
t = VCM

t ((m(µ − r) + r)dt + mσdWt)

⇒ VCM
t = VCM

0 e(m(µ−r)+r− 1
2 m2σ2)t+mσWt

⇒ VCM
T = VCM

0 e(m(µ−r)+r− 1
2 m2σ2)T+mσWT . (4.5)

From the solution of the stochastic differential equation for the risky asset price dynamics,

which is given in (3.3), we can derive σWT as

σWT = ln
S T

S 0
− (µ −

1
2
σ2)T. (4.6)

By inserting (4.6) into (4.5), it follows that

VCM
T = VCM

0 e(m(µ−r)+r− 1
2 m2σ2)T+m(µ− 1

2σ
2)T

(
S T

S 0

)m

= f (VCM
0 ,m)S m

T ,
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where

f (x, y) = x
(

1
S 0

)y

e(1−y)(r+ 1
2 yσ2)T .

Then, the expected utility of the terminal value of the CM strategy is

E[u(VCM
T ] = E

 ( f (VCM
0 ,m)S m

T )1−γ

1 − γ


=

f (VCM
0 ,m)1−γ

1 − γ
E[S m(1−γ)

T ].

Since the expectation of a lognormally distributed random variable X, with ln X ∼ N(µ, σ2) is

given by

E(X) = eµ+σ2
2 ,

we can compute the expected utility of the terminal value of the CM portfolio, as

E[u(VCM
T ] =

V1−γ
0

1 − γ
e(1−γ)(m(µ−r)+r− 1

2γm2σ2)T .

Finally, by the strictly monotonical increasing of the exponential function, we can easily find

the maximizer of the expected utility of the terminal value as

argmaxmE[u(VCM
T ] =

µ − r
γσ2 =: m∗.

Thus, φCM = m∗ is the optimal portfolio strategy which gives the optimal solution of CM

strategy as

V̂CM
T = f (VCM

0 ,m∗)S m∗
T . (4.7)

4.3.2 Optimality for the CPPI Strategy

Now, by following the paths of Balder and Mahayni (2009) [54], we reintroduce the CPPI

strategy as a modified CM strategy. As it is already done in their extensive work, the optimal
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solution of the CPPI strategy can be determined in terms of the optimal solution of the CM

strategy, as in follows.

We recall that (Ft)0≤t≤T denotes the value of the guarantee, the so-called floor of the insurance

strategy, and (Ct)0≤t≤T denotes the cushion process that is defined as the difference between

the portfolio value and the given guarantee Ct = VCPPI
t − Ft.

We represent the portfolio strategy class for the CPPI strategy, in terms of the delta hedge of

an option payoff, as

ΦCPPI = {φ ∈ Φ | φt = m
Vt − e−r(T−t)FT

Vt
= m

Ct

Vt
,m ≥ 0}.

Let us note that for FT = 0, ΦCPPI = ΦCM. Hence, if we consider that the investor derives

utility from the cushion Ct, not from the portfolio value Vt, then the CPPI strategy is equivalent

to the CM strategy. In fact, if a constant proportion m is invested in the risky asset, then the

dynamics of the investment is given by

dCt = Ct((m(µ − r) + r)dt + mσdWt)

⇒ Ct = C0e(m(µ−r)+r− 1
2 m2σ2)t+mσWt

⇒ CT = C0e(m(µ−r)+r− 1
2 m2σ2)T+mσWT . (4.8)

Again, by inserting σWT given in (4.6) into (4.8), it follows that

CT = C0e(m(µ−r)+r− 1
2 m2σ2)T+m(µ− 1

2σ
2)T

(
S T

S 0

)m

= f (C0,m)S m
T .

Thus, the optimization problem for CPPI case is

maximize
φ∈ΦCPPI

E[u(CT (φ))]

subject to dCt = Ct((m(µ − r) + r)dt + mσdWt),

C0 = x.
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As well as the CM strategy, the maximizer of the expected utility of the CPPI cushion

E[u(CT )] turns out to be

argmaxmE[u(CT ] =
µ − r
γσ2 =: m∗.

Hence, the optimal solution of the problem above is found as

ĈT = f (C0,m∗)S m∗
T .

We remark that this solution is found by assuming that the investor derives utility from the

cushion Ct, not from the portfolio value Vt. Thus, by replacing Ct with VCPPI
t − Ft, we can

find the optimal solution for CPPI strategy as

V̂CPPI
T = f (V0 − e−rT FT ,m∗)S m∗

T + FT . (4.9)

On the other hand, the optimal strategy for CPPI case can be derived as

φCPPI =
m∗Ct

Vt
=

m∗(Vt − e−r(T−t)FT )
Vt

.

Hence, we notice that

φCPPI ≤ m∗ = φCM,

which means a reduction in the invested proportion of the CPPI strategy when we compare it

with the invested proportion of the CM strategy, and it causes a loss in expected utility coming

from the guarantee FT > 0.

4.3.3 Optimality for the OBPI Strategy

As we mentioned previously in this chapter, the optimality of OBPI strategy is proven by El

Karoui, Jeanblanc and Lacoste (2005) [34]. According to their optimal solution, the work of

Balder and Mahayni (2009) [54] introduces a new derivation of this optimal solution in terms
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of the optimal solution of CM strategy, by the help of the power call option pricing formula.

Here, we only give the final findings of their study in order to review the comparisons. Further

explanations and details of formulations can be found in Balder and Mahayni (2009) [54].

We recall that the OBPI strategy with a put option written on the optimal solution λST of

the problem with European constraint solves the optimization problem with the European

constraint VT ≥ K, where ST denotes the unconstrained allocation and K is the strike price

of the put option which also represents the guaranteed amount FT at time T . Furthermore,

we recall that S denotes the unconstrained allocation and S stands for the risky asset itself in

the market. Thus, we represent the function h ∈ C2 as a function of the risky asset such that

h(S T ) = λST which implies the optimal solution with respect to the unconstrained allocation

ST . Then, we consider the problem (4.4) as

maximize
φ∈ΦOBPI

E[u(VOBPI
T (φ))]

subject to VT ≥ FT ,

V0 = x,

where the portfolio strategy class ΦOBPI is represented, as

ΦOBPI =

{
φ ∈ Φ | φ =

∆tS t

Vt
,∆t =

∂

∂S t
EQ[e−r(T−t)(h(S T ) − FT )+|Ft],

(
∂Q

∂P

)
T

= e−
1
2 θ

2T−θWT

}
.

(4.10)

Then, the optimal solution V̂OBPI
T can be presented in the form of

V̂OBPI
T = max{h(S T ), FT } = h(S T ) + [FT − h(S T )]+ = FT + [h(S T ) − FT ]+.

We remind that, for the OBPI strategy, the initial wealth is invested within two parts: the

first part in the unconstrained allocation and the second part in the put option written on the

same allocation with strike K = FT , which represents the guarantee. If we assume that there

was no guarantee, i.e., FT = 0, all initial wealth would be invested in the unconstrained

allocation which reduces the constrained optimization problem to the unconstrained one, as

in the Merton case. Consequently, the optimal solution of the unconstrained problem can be
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represented as h(S T ) = f (Ṽ0,m∗)S m∗
T , where Ṽ0 is the reduced initial investment caused by

the guarantee component.

Hence, one can derive the optimal payoff of the OBPI strategy as

V̂OBPI
T = FT + [ f (Ṽ0,m∗)S m∗

T − FT ]+. (4.11)

By following the steps taken in Balder and Mahayni (2009) [54], the optimal solution of the

OBPI strategy in terms of the optimal solution of CM strategy can be expressed as

V̂OBPI
T =

Ṽ0

V0
V̂CM

T +

[
FT −

Ṽ0

V0
V̂CM

T

]+

. (4.12)

Furthermore, after calculations and formulations which are done in Balder and Mahayni

(2009) [54], the optimal portfolio weight for the OBPI strategy can be obtained as

φOBPI ≤ m∗ = φCM.

Similar to the CPPI strategy, the guarantee component, i.e., the terminal constraint VT ≥ FT ,

of the OBPI strategy gives rise to a reduction of the optimal unconstrained portfolio weight

m∗, when it is compared with the CM strategy.

4.3.4 Comparison of the Optimal Solutions

Finally, we summarize and review the optimality results of Balder and Mahayni (2009) [54].

The optimal terminal payoffs of the strategies CM, CPPI and OBPI are found as in follows:

V̂CM
T = f (V0,m∗)S m∗

T , (4.13)

V̂CPPI
T = FT + f (V0 − e−rT FT ,m∗)S m∗

T

= FT +
V0 − e−rT FT

V0
V̂CM

T , (4.14)
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V̂OBPI
T = FT +

[
f (Ṽ0,m∗)S m∗

T − FT
]+

=
Ṽ0

V0
V̂CM

T +

[
FT −

Ṽ0

V0
V̂CM

T

]+

. (4.15)

In the light of these findings, Balder and Mahayni (2009) [54] first observes the following

situations:

“The optimal terminal payoff of the CM strategy depends on the initial invest-

ment and the optimal investment proportion. Therefore, comparing the terminal

payoffs shows that both portfolio insurance strategies, CPPI and OBPI, result in

payoffs which consist of a fraction of the payoff of a constant mix strategy (which

is optimal for the unconstrained CRRA investor) and an additional term due to

the guarantee.”

Therefore, they conclude with the result which is stated as:

“The additional term provides an intuitive way to explain the main advantage

of the OBPI approach as compared to the CPPI approach. Intiuitively, it is clear

that the fraction of wealth which is put into the optimal unconstrained strategy

is linlked to the price of the guarantee, i.e., the fraction is less than one. In the

case of the CPPI approach, the additional term is simply the guarantee itself, i.e.,

the payoff of an adequate number of zero bonds. In contrast, the additional term

implied by the OBPI is a put option where the underlying is given by the fraction

of constant mix strategy and the strike is equal to the guarantee. Obviously,

the put is cheaper than the zero bonds. Therefore, an investor who follows the

OBPI approach puts a larger fraction of his wealth into the unconstrained optimal

portfolio than the investor who follows the CPPI approach.”

This means that the cost of the guarantee is cheaper for the OBPI strategy than the cost of the

guantee for the CPPI strategy when the investor desires the same level of guarantee.

According to the results of the optimal solutions of the strategies CM, CPPI and OBPI, pro-

vided by Balder and Mahayni (2009) [54], we perform a numerical example in order to justify

their findings and replicate their results.

60



Example 4.1 Figure 4.1 illustrates what happens with the optimal payoffs for a numerical

example with the parameter constellation as in follows: µ=7.5%, σ=8% and r=3.5% (µ >

r > 0). In this market, portfolio strategies are set up assuming T = 5 years, S 0=1, K=1, αT =1

and V0=1.

Figure 4.1: Optimal Payoffs of CM, CPPI and OBPI.

In Figure 4.1, we can see that the payoff of the CPPI strategy gives a smooth payoff, while the

OBPI payoff provides a nonsmooth one.

Therefore, we can also observe the relation among the intersection points of the optimal ter-

minal payoffs. This also justifies the results in Balder and Mahayni (2009) [54], in which the

order of the intersection points that occur among the optimal payoffs of the strategies CM,

CPPI and OBPI is given by

s(CM,OBPI) ≤ s(CM,CPPI) ≤ s(CPPI,OBPI),

where the terminal asset price S T is defined by s(i, j) such that V̂ i
T = V̂ j

T for all i, j ∈ {CM,

CPPI,OBPI} with i , j.
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CHAPTER 5

UTILITY LOSS OF

THE PORTFOLIO INSURANCE STRATEGIES

5.1 Introduction

In this chapter, we review an important concept of portfolio insurance strategies: the utility

loss. The concept of utility loss for insurance strategies depends on the following idea. As we

can see from the terminal values of portfolios in the previous chapter, if the investor decides

to insure his portfolio, at a fixed amount or a percentage of the initial wealth, against sharp

downside movements of the market, the expected utility will be reduced in comparison with

the uninsured portfolio. Consequently, limiting downside risk of portfolio to avoid large losses

in portfolio value results in the sacrifice of potential upside gains.

The aim of this chapter is to understand and briefly review the utility loss of insurance strate-

gies. For this purpose, throughout this chapter, we review the work of Balder and Mahayni

(2009) [54] on the utility loss of CPPI and OBPI strategies without any contribution.

In the following sections, we shortly reintroduce the loss rates of CPPI and OBPI strategies

caused by the guarantee component, and the comparison of these loss rates in terms of the

CRRA utility function and the CM (constant mix) strategy. All the information included in

this part of thesis is compiled from Balder and Mahayni (2009) [54].
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5.2 Utility Loss Caused by the Guarantees

The expected utility criterion is an important measure for the performance of the strategies

which can also be described by the concept of the certainty equivalent. According to Balder

and Mahayni (2009) [54], the certainty equivalent is a certain amount that the investor re-

ceives, which makes him indifferent between achieving this amount or using the strategy. The

notation, definitions and derivations below are taken from Balder and Mahayni (2009) [54] to

explain the certainity equivalents, loss rates and utilty losses of portfolio insurance strategies.

Let CET (φ) denote the time T value of the certainty equivalent of the strategy φ, and it is

defined by

u(CET (φ)) = E(u(VT (φ))),

where E represents the expectation taken under the real-word probability P.

Now, we reintroduce the determination of the certainty equivalents of the aforementioned

strategies by considering their payoffs given in the previous chapter. We recall that the payoffs

of the CM, CPPI and OBPI strategies are

VCM
T = f (VCM

0 ,m)S m
T ,

VCPPI
T = FT + f (V0 − e−rT FT ,m)S m

T ,

and

VOBPI
T = FT +

[
f (Ṽ0,m)S m

T − FT
]+
,

respectively. Again we consider the CM strategy as a benchmark strategy, to make compar-

isons both between insured and uninsured strategies and between the CPPI and the OBPI

strategies.

In the following, we represent the certainty equivalent of the CM strategy with invested pro-

portion m in the risky assets, and with respect to the CRRA utility function u(x) = x1−γ/(1−γ),

γ ∈ (0, 1).

Since it holds
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(CET (φCM))1−γ

1 − γ
= E

( ( f (V0,m)S m
T )1−γ

1 − γ

)
,

therefore,

CET (φCM) = E( f (V0,m)S m
T ).

We know that E(S n
T ) = S n

0e(nµ− 1
2 n(1−n)σ2)T . Thus, it follows

CET (φCM) = f (V0,m)S m
0 e(mµ− 1

2γσ
2m(1−m(1−γ)))T

= V0e(r+m(µ−r)− 1
2γσ

2m2)T .

Due to the above equation, we can obtain the certainty equivalent of the CPPI strategy, by

replacing the payoffs:

CET (φCPPI) = FT + (V0 − e−rT FT )e(r+m(µ−r)− 1
2γσ

2m2)T .

Thus, one can observe that the certainty equivalent of the CPPI strategy is lower than the

certainty equivalent of the CM strategy, which means that the certainty equivalent is lower for

an investor with insurance than an investor without.

Now, we reintroduce the loss rate which allows us to calculate the utility loss of an investment

which is done under a suboptimal strategy. Let lT,u(φ) denote the loss rate of the strategy φ

and the utility function u at maturity. It is defined by

lT,u(φ) =
1
T

ln
(CET (φ∗)

CET (φ)

)
, (5.1)

where CET (φ∗) denotes the certainty equivalent of the optimal strategy φ∗ =

(φ∗(t))0≤t≤T , and CET (φ) denotes one of the suboptimal strategies φ = (φ(t))0≤t≤T .

Based on Formula (5.1), it is straightforward to calculate the loss rates with respect to the

CRRA utility function and with the strategy parameter.
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Table 5.1: Loss rates with respect to CRRA utility.

Strategy φ Loss rate lT,u(φ)
φCM = m 1

2γσ
2(m∗ − m)2

φCPPI = m Vt−e−r(T−t)FT
Vt

1
(1−γ)T ln

(
E[( f (V0,m∗)S m∗

T )1−γ]
E[(FT + f (V0−e−rT FT ,m)S m

T )1−γ]

)
φOBPI =

4PO
(
t,S t;m,

FT
f (Ṽ0 ,m

∗)

)
S t

Vt

1
(1−γ)T ln

(
E[( f (V0,m∗)S m∗

T )1−γ]
E[(FT +[ f (Ṽ0,m)S m

T −FT ]+)1−γ]

)

The loss rates of the strategies are given in Table 5.1 which is directly compiled from Balder

and Mahayni (2009) [54].

According to Table 5.1, one can observe that for m = m∗, i.e., if the investor chooses the

optimal strategy for his investment, we can order the loss rates as follows:

lT,u(φCM) = 0 < lT,u(φOBPI) < lT,u(φCPPI).

Consequently, for m = m∗, the utility loss caused by the guarantee is less for the OPBI strategy

than the CPPI one. Thus, the CPPI investor, investing in the optimal strategy, is exposed to a

higher loss caused by the same level of guarantee in comparison with the OBPI investor.
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CHAPTER 6

CONCLUSION AND OUTLOOK

This thesis consists of a review of a several papers that explain and compare the portfolio

insurance strategies CPPI and OBPI.

First of all, we have reviewed the study of Bertrand and Prigent (2005) [13], in which the

comparison of CPPI and OBPI has been performed in terms of their statistical and dynamic

properties, by considering the OBPI method based on a call option and by determining the

CPPI multiple under the assumption of equality of portfolio returns. We have made a similar

comparison by considering the OBPI strategy with a put option and CPPI strategy with various

multiplier values. As this paper has found that the comparison with usual criteria such as

payoff functions, expectations and variances do not allow one to discriminate clearly between

two strategies. But still, one can make comparisons under some parameter specifications such

as the multiplier and level of insurance, also under some market assumptions such as bearish

or bullish market. Furthermore, we have investigated the effects of the changes in insured

amount and multiplier on the portfolio returns and risks, while providing the analyses of the

sensitivity parameters, i.e., greeks of two strategies.

Second, we have provided a detailed study of two important articles El Karoui, Jeanblanc

and Lacoste (2005) [34], and Balder and Mahayni (2009) [54]. One of the contributions of

this thesis is our extension of Proposition 2.1 of El Karoui, Jeanblanc and Lacoste (2005) [34]

(which is stated in the introduction). Therefore, we have reviewed Balder and Mahayni (2009)

[54], where the derivations of the optimal solutions of the CPPI and OBPI strategies by using

a benchmark strategy, the constant mix (CM) strategy, to compare their optimal solutions. We

have replicated their conclusions that the guarantee of the OBPI strategy is cheaper than the

price of the guarantee of the CPPI strategy. At last, we have performed a numerical example
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to see the behaviour of the optimal payoffs of CPPI and OBPI strategies to replicate their

results.

Finally, to the best of our understanding, a number of open problems could be referred as

future work. For example, the optimality of CPPI strategy could be investigated in more

details instead of deriving its optimality from the optimal solution of a different strategy. More

importantly, we have observed that both strategies CPPI and OBPI seem efficient theoretically,

however they have drawbacks that the investors have to face with in practical applications,

such as gap risk (the risk of violating the floor protection), caused by the continuous-time

trading assumpsions or by the presence of jumps in asset prices. Modelling and managing

gap risk is also an inportant concept that we introduce as a further study of this research.
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