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ABSTRACT

EXISTENCE PROBLEM OF ALMOST P-ARY PERFECT AND NEARLY PERFECT
SEQUENCES

Yıldırım, Cemal Cengiz

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

Co-Supervisor : Dr. Oğuz Yayla

September 2012, 43 pages

Almost p-ary perfect and nearly perfect sequences are equivalent to certain relative difference

sets and direct product difference sets, respectively. This feature enables Chee, Tan and Zhou

to determine the existence status of those sequences by using the tools of Design Theory. In

particular, they determined the existence status of almost p-ary perfect and nearly perfect se-

quences of period n+1 for n ≤ 100, except some open cases in [6]. In this thesis, we obtained

a set of Diophantine equations in integers while observing relative difference sets, and proved

nonexistence of almost p-ary perfect sequences of period n + 1 for n ∈ {50, 76, 94, 99, 100}.

Also, we observed that it was possible to extend Diophantine equations that we used for rel-

ative difference sets to the direct product difference sets, thereby proved the nonexistence of

almost p-ary nearly perfect sequences of type II of period n + 1 for p = 2, p = 3 and p = 5 at

certain values of n. As a result, we answered two questions posed by Chee, Tan and Zhou in

[6].

Keywords: almost p-ary perfect sequence, almost p-ary nearly perfect sequence, relative
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ÖZ

YAKLAŞIK P-ARY MÜKEMMEL VE MÜKEMMELE YAKIN DİZİLERİN
VAROLABİLİRLİK PROBLEMİ

Yıldırım, Cemal Cengiz

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ortak Tez Yöneticisi : Dr. Oğuz Yayla

Eylül 2012, 43 sayfa

Yaklaşık p-ary mükemmel ve mükemmele yakın diziler ile sırasıyla nispi fark kümeleri ve

doğrudan çarpım fark kümeleri arasında denklik vardır. Bu özellik, Chee, Tan ve Zou’ nun söz

konusu dizilerin varolabilirlik durumlarını Dizayn Teorisinin yöntemlerini kullanarak tespit

etmelerine imkan vermiştir. Spesifik olarak onlar, [6]’da n ≤ 100 için, periyodu n + 1 olan

yaklaşık p-ary mükemmel ve mükemmele yakın dizilerin var olup olmadığını bazı n değerleri

hariç tespit etmişlerdir. Bu tezde, biz nispi fark kümelerini incelerken, tamsayılar üzerine

bir grup Diophantine denklem elde ettik ve n ∈ {50, 76, 94, 99, 100} için periyodu n + 1 olan

yaklaşık p-ary mükemmel dizilerin mevcut olmadığını ispatladık. Aynı zamanda, nispi fark

kümeleri için kullandığımız Diophantine denklemlerini doğrudan çarpım fark kümeleri için

de uyarlayarak kullanabileceğimizi gözlemledik ve bu yolla, p = 2, p = 3 ve p = 5 için,

periyodu n + 1 olan yaklaşık p-ary mükemmele yakın tip II dizilerin belirli n değerleri için

mevcut olmadığını ispatladık. Sonuç olarak, Chee, Tan ve Zou tarafından [6]’da sorulan iki

soruya cevap verdik.
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Anahtar Kelimeler: yaklaşık p-ary mükemmel dizi, yaklaşık p-ary mükemmele yakın dizi,

nispi fark kümesi, doğrudan çarpım fark kümesi
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Correlation property of a periodic sequence is of great importance when it comes into consid-

eration for engineering applications. According to ([1]), ([2]) and references therein, periodic

sequences having good correlation property are widely used in various areas such as telecom-

munications and radar applications. For instance, Golomb sets light to possible areas where

such sequences are likely to be used in [3]. Also in [1], it is given a simplified practical

application of perfect binary sequences.

This motivates the search for new methods to construct periodic sequences with good correla-

tion property. By the term “good correlation”, it is meant that the autocorrelation coefficients

of a periodic sequence are two-valued. More precisely, let a = (a0, a1, . . . , an) be an m-ary

or an almost m-ary sequence of period n + 1. For 0 ≤ t ≤ n, the value of the autocorrelation

function Ca(t) at t is defined by

Ca(t) =

n∑
i=0

aiai+t,

where ai+t is the complex conjugate of ai+t. Note that Ca(t) ∈ C. The value Ca(t) is called

the autocorrelation coefficient of a at t. For t ∈ Z, let t1 be the integer 0 ≤ t1 ≤ n such that

t ≡ t1 mod (n + 1). Then, one can extends the autocorrelation function to the values on Z

via Ca(t) = Ca(t1). The autocorrelation function of m-ary or an almost m-ary sequence a of

period n + 1 is two-valued if Ca(t) is equal to a constant γ for all 1 ≤ t ≤ n, i.e. all coefficients

except the coefficient at t = 0. Ca(t) is also called in-phase autocorrelation coefficient when

t ≡ 0 mod (n + 1), and out-of-phase for the other values of t. Furthermore, if γ = 0, then the

corresponding sequence is called perfect, and if γ = |1|, then it is called nearly perfect.
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In this study, the sequences which we are dealing with are m-ary and almost m-ary se-

quences. So that, it might be useful to remember the definition of those sequences. Let

a = (a0, a1, . . . , an) be sequence of period n + 1 with entries a0, a1, . . . , an ∈ C, the field of

complex numbers. Let m ≥ 2 be an integer and ζm be a primitive m-th root of 1 in C. Let 〈ζm〉

be the multiplicative subgroup of C∗ generated by ζm. If the entries of a are in the subgroup

of 〈ζm〉, then a is called an m-ary sequence. If a0 = 0 and the rest of the entries a1, a2, . . . , an

of a are in the subgroup 〈ζm〉, then a is called an almost m-ary sequence.

The existence problem of such sequences has gained more attention over the past twenty

years. Therefore, significant number of existence and non-existence results has been found.

The first article seems to initiate this term is due to Wolfmann ([4]) which contains results on

existence of almost perfect autocorrelation sequences. Subsequently, Pott and Bradley ([5])

answered two open cases posed in ([4]) and showed that almost perfect autocorrelation se-

quences are equivalent to certain cyclic divisible difference sets. In particular, for m = 2, i.e.,

perfect and almost perfect binary periodic sequences, Jungnickel and Pott ([1]) summarized

previous results and showed that perfect binary periodic sequences are equivalent to certain

cyclic difference sets. For m = p where p is an odd prime, i.e., p-ary perfect and nearly

perfect sequences, Ma and Ng ([2]) obtained the existence and non-existence results, except

some open cases. Recently, Chee-Tan-Zhou ([6]) studied almost p-ary perfect and nearly

perfect sequences. They determined the existence status of almost p-ary perfect and nearly

perfect sequences of period n + 1 for 3 ≤ n ≤ 100 and posed two questions. In this thesis, we

tried to answer those questions. Both of the questions are quoted here respectively:

Question 1.1.1 (Question 1 in [6]) Is there an almost p-ary perfect sequence of period n + 1

for each case n = 50, 76, 77, 94, 99, 100, where p is an odd prime with p|(n − 1)?

Question 1.1.2 (Question 2 in [6]) Do almost p-ary nearly perfect sequence of type II with

period n+1 exist?

In both ([2]) and ([6]), the authors showed that existence problem of (almost) p-ary perfect

and nearly perfect sequences are equivalent to existence problem of certain relative difference

sets and direct product difference sets, respectively. One of the methods used in ([6]) to find

existence status of such sequences is an application of multiplier theorem which is regarded

as a main instrument of Design Theory on constructing difference sets.
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It is worth here to define difference sets and shortly explain how multiplier theorem is used

to construct difference sets. Let G be a group of order v in which the identity element is {0}.

Let k and λ be positive integers such that 2 ≤ k < v. Let D be a k-subset of G. If the multiset

[a − b : a, b ∈ D, a , b] contains every element in G\{0} exactly λ times, then D is called a

(v,k,λ)-difference set. Let m be an integer such that

mD = {ma : a ∈ D} = D + g

for some g ∈ G, then m is a multiplier of D. The definition of multiplier hints the usage

of multiplier theorem as a method while determining the existence status of difference sets.

More precisely, since m is a multiplier of D, let Λ be the set of orbits of G under the action

x→ mx. Then, ∃Υ ⊆ Λ such that

D + h =
⊔
A∈Υ

A,

for some h ∈ G according to definitions above. This means that D + h is fixed by multiplier

m, i.e., m(D + h) = D + h (see [7]). Since D is a difference set, D + h is also a difference set.

Therefore, it is possible to decide whether there exists a difference set of any finite group G

by checking possible subsets of orbit set formed by the multiplication of group elements with

multiplier. The term “possible subsets” means the union of orbits whose cardinality is equal

to the cardinality of difference set. The concept of multiplier theorem does not change when

it is used to determine the existence status of relative difference sets. However, the problem

arises, when the number of possible subsets gets larger. For instance, in remark 1 of ([6]), the

authors gave an example in which the number of possible subsets is ≈ 275 and concluded that

it was not doable to check all those possible sets. Hence, they posed Question 1.1.1.

In this thesis, we initially gave some background on almost p-ary perfect and nearly per-

fect sequences and their relation with relative difference sets and direct product difference

sets. In Chapter 2, we focused on Question 1.1.1. We obtained a set of Diophantine equa-

tions in integers and also reduced the number of possible combinations of orbits forming

a candidate relative difference set. In some cases we immediately proved the nonexistence

as a consequence of the inconsistency of the obtained Diophantine equations. In the other

cases we drastically reduced the number of possible combinations of orbits forming a candi-

date relative difference set so that the reduced size enabled us to check them via a computer.

As a consequence, nonexistence of almost p-ary perfect sequences (PS) of period n + 1 for

n ∈ {50, 76, 94, 99, 100} was proved.

3



In Chapter 3, we directed our attention to the second question (Question 1.1.2) which is

related with almost p-ary nearly perfect sequences (NPS) of type II. We observed that it was

possible to extend Diophantine equations that we used for relative difference sets to the direct

product difference sets. Thus, we obtained a set of Diophantine equations in integers, and we

proved the nonexistence of almost p-ary nearly perfect sequences of type II of period n + 1 as

a consequence of the inconsistency of the obtained Diophantine equations for p = 2, p = 3

and p = 5 at certain values of n.

1.2 Preliminaries

In this section, we will briefly introduce relative difference sets and direct product difference

sets. We will also show that they are equivalent to p-ary perfect and nearly perfect sequences

respectively.

1.2.1 Relative Difference Sets

Let G be an abelian group of size mn. Let N be a subgroup of G with |N | = n. A subset R of G

is called an (m, n, k, λ) relative difference set (RDS) in G relative to N if both of the followings

hold:

(i.) |R| = k,

(ii.) all elements of G not in N can be represented exactly λ times in the form r1 − r2, where

r1, r2 ∈ R with r1 , r2.

A systematic treatment of relative difference sets are due to Elliott and Butson [8]. There are

good references like [1, 9, 10] for further background and applications of relative difference

sets. The following known result is crucial (see [6, Theorem 1]). Let Zm denote the (additively

written) cyclic group of order m.

Theorem 1.2.1 Let p be a prime, n ≥ 2 be an integer, and a = (a0, a1, . . . , an) be an almost

p-ary sequence of period n + 1. Let G and N be the groups

G = Zn+1 × Zp and N = {0} × Zp.
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For a primitive p-th root of 1, ζp ∈ C, let bi be the integer in {0, 1, 2, . . . , p − 1} such that

ai = ζbi
p for 1 ≤ i ≤ n. Let 1 ≤ h ≤ n + 1 and 1 ≤ g ≤ p − 1 be integers with gcd(h, n + 1) = 1

and gcd(g, p) = 1. Let R be the subset of G defined as

R = {(ih, big) ∈ Zn+1 × Zp : 1 ≤ i ≤ n}.

Then a is an almost p-ary perfect sequence of period n+1 if and only if R is an (n+1, p, n, n−1
p )-

RDS in G relative to N. In particular, p should divide n − 1.

1.2.2 Direct Product Difference Sets

Let G = H × N, where the order of H and N are m and n. A subset R of G is called an

(m, n, k, λ1, λ2, µ) direct product difference set (DPDS) in G relative to H and N if both of the

following statements hold:

(i.) |R| = k,

(ii.) Differences r1 − r2, r1, r2 ∈ R with r1 , r2 represent

– all non identity elements of H × {0N} exactly λ1 times,

– all non identity elements of {0H} × N exactly λ2 times,

– all non identity elements of H\{0H} × N\{0N} exactly µ times.

Direct Product Difference Sets were first defined in [11], but studied only the case λ1 = 0, λ2 =

0. General definition of direct product difference sets was given in [2]. The following known

result is crucial (see [6, Theorem 6]).

Theorem 1.2.2 Let p be a prime, n ≥ 2 be an integer, and a = (a0, a1, . . . , an) be an almost

p-ary sequence of period n + 1. Let H = Zn+1 and N = Zp be the (additively written) cyclic

groups of order n + 1 and p. Let G be the group defined as G = Zn+1 × Zp. We choose a

primitive p-th root of 1, ζp ∈ C. For 1 ≤ i ≤ n let bi be the integer in {0, 1, 2, . . . , p − 1} such

that ai = ζbi
p . Let 1 ≤ h ≤ n + 1 and 1 ≤ g ≤ p − 1 be integers with gcd(h, n + 1) = 1 and

gcd(g, p) = 1. Let R be the subset of G defined as

R = {(ih, big) ∈ Zn+1 × Zp : 1 ≤ i ≤ n}.

Then

5



(i.) a is an almost p-ary NPS of type I if and only if R is an (n + 1, p, n, n
p − 1, 0, n

p )-DPDS

in G relative to H and N. In particular, p should divide n.

(ii.) a is an almost p-ary NPS of type II if and only if R is an (n+1, p, n, n−2
p +1, 0, n−2

p )-DPDS

in G relative to H and N. In particular, p should divide n − 2.

From 1.2.2, one can see that there exists two types of almost p-ary nearly perfect sequence

(NPS), namely almost p-ary NPS of type I and almost p-ary NPS of type II. According to

definitions given at the beginning of this chapter, out-of-phase autocorrelation coefficients of

almost p-ary NPS are all either 1 or −1. So that almost p-ary NPS is type I if all out-of-phase

autocorrelation coefficients are −1, and type II otherwise.

6



CHAPTER 2

NONEXISTENCE OF CERTAIN ALMOST p-ARY PERFECT

SEQUENCES

In this chapter, we give an answer to Question 1.1.1 for n = 50, 76, 94, 99, 100. Our method

is based on the approach of [6] in using relative difference sets.

2.1 Background

An important method for the existence and the nonexistence of certain relative difference sets

in G relative to N uses the notion of multiplier. For an integer t, let R(t) denote the subset

R(t) = {tr : r ∈ R} ⊂ G. Assume that gcd(t, |G|) = 1. We call that t is a multiplier of R if there

exists g ∈ G such that

R(t) = R + g = {r + g : r ∈ R} ⊂ G.

In fact if k2 , λmn, then we have a nice situation (see [9], see also [6] page 406, Result 6).

Theorem 2.1.1 Let R be an (m, n, k, λ)-RDS with k2 , λmn. Let t be a multiplier of R. Then

there exists at least one translate (R + g) of R such that (R + g)(t) = R + g.

Theorem 2.1.1 gives a nice method for the existence and nonexistence of certain relative

difference sets that we recall here (see [6] page 406). Assume that R is an (m, n, k, λ)-RDS in

G relative to N, k2 , λmn and t is a multiplier of R. Let Ω be the set of orbits of G under the

action x → tx. As R(t) = R without loss of generality (see Theorem 2.1.1), we see that there

exists a collection Φ of orbits (i.e. a subset Φ ⊆ Ω) such that

R =
⊔
A∈Φ

A,

7



where A is an orbit in Φ. This gives strict conditions on the existence and nonexistence of

relative difference sets (see Example 2.3.1 and, for example, Proposition 2.3.2 below).

Here we note that relative difference sets in Theorem 1.2.1 have parameters (n + 1, p, n, n−1
p )

and hence the condition k2 , λmn in Theorem 2.1.1 becomes n2 , n−1
p (n + 1)p = n2 − 1,

which is satisfied trivially.

Finally we also recall a useful method for finding multipliers for the class relative difference

sets that we consider (see [6, Theorem 4]).

Theorem 2.1.2 Let p be a prime and n ≥ 2 be an integer. Let G and N be the groups in

Theorem 1.2.1. Assume that there exists an (n + 1, p, n, n−1
p )-RDS in G relative to N. Let

n = pu1
1 pu2

2 . . . pul
l be the prime factorization of n in Z. Let ξ be the primitive (n + 1)p-th root

of 1 in C. For 1 ≤ i ≤ l, let σi ∈ Gal(Q(ξ)/Q) defined as σi(ξ) = ξpi . Assume also that

ϕ ∈ (∩l
i=1〈σi〉) \ {1}. Let α be an integer such that ϕ(ξ) = ξα. Then α is a multiplier of R.

2.2 The Method

In this section we give some tools that we use in Section 2.3. We begin with the next propo-

sition.

Proposition 2.2.1 Let R be an (n+1, p, n, n−1
p )-RDS in G = Zn+1×Zp relative to N = {0}×Zp.

Let R have si many elements having i in the second component for i = 0, 1, 2, . . . , p − 1. Then
p−1∑
j=0

s2
j =

n(n + p − 1)
p

and
p−1∑
j=0

s js j−i =
n(n − 1)

p
for each i = 1, 2, . . . , d(p − 1)/2e, where

subscripts are computed modulo p.

Proof. Let ϕ be the map from G = Zn+1 ×Zp to Zp sending (a, i) to i. Let V be the multiset

consisting of the images (counting multiplicities) of ϕ restricted to R. By reordering on V we

have

V = {∗ 0, 0, . . . , 0︸      ︷︷      ︸
s0

, 1, 1, . . . , 1︸      ︷︷      ︸
s1

, 2, 2, . . . , 2︸      ︷︷      ︸
s2

, . . . , p − 1, p − 1, . . . , p − 1︸                       ︷︷                       ︸
sp−1

∗}.

In other words,

s0 = |{(b, i) ∈ R : i = 0}|, . . . , sp−1 = |{(b, i) ∈ R : i = p − 1}|.

8



Then it is clear that

s0 + s1 . . . + sp−1 = |R| = n. (2.1)

For 0 ≤ i ≤ p− 1, let Ti be the subset of G\N defined as Ti = {(a, e) ∈ G\N : e = i}. It is clear

that Ti = {(a, i) : a ∈ Zn+1\{0}} and hence

|Ti| = n + 1 − 1 = n. (2.2)

Moreover, let Ti be the subset of R × R defined as

Ti = {(β1, β2) ∈ R × R : β1 , β2 and ϕ(β1 − β2) = i}.

As R is an (n + 1, p, n, n−1
p )-RDS, for the cardinality |Ti| of Ti, using (2.2), we obtain that

|Ti| =
n − 1

p
|Ti| =

(n − 1)n
p

. (2.3)

For 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ p − 1, let Ti, j be the subset of Ti defined as

Ti, j = {(β1, β2) ∈ Ti : ϕ(β1) = j}.

Then we have

|Ti| =

p−1∑
j=0

|Ti, j|. (2.4)

Next we determine Ti, j for 0 ≤ i, j ≤ p − 1 and i , 0. Note that (β1, β2) ∈ Ti, j if and only if

β1 ∈ R, ϕ(β1) = j and β2 ∈ R, ϕ(β2) = j − i. Here, β1 , β2 automatically as i , 0. Recall that

|{β1 ∈ R : ϕ(β1) = j}| = s j and |{β2 ∈ R : ϕ(β2) = j − i}| = s j−i,

where we define the subscript j − i modulo p. Therefore using (2.3) and (2.4) we conclude

that

(n − 1)n
p

=

p−1∑
j=0

s js j−i. (2.5)

Note that it is enough to consider the subset of equations in (2.5) corresponding to 1 ≤ i ≤⌈
p−1

2

⌉
since each equation in (2.5) with

⌈
p−1

2

⌉
< i ≤ p − 1 is the same as an equation in (2.5)

with 1 ≤ i ≤
⌈

p−1
2

⌉
.

Finally, we determine T0, j for 0 ≤ j ≤ p − 1. Note that (β1, β2) ∈ T0, j if and only if β1 ∈ R,

ϕ(β1) = j and β2 ∈ R, ϕ(β2) = j and β1 , β2. Hence, we get that |T0, j| = s j(s j − 1) for

0 ≤ j ≤ p − 1. Then using (2.1), (2.3) and (2.4) we conclude that

(n − 1)n
p

=

p−1∑
j=0

s j(s j − 1) =

p−1∑
j=0

(s2
j − s j) =

p−1∑
j=0

s2
j −

p−1∑
j=0

s j =

p−1∑
j=0

s2
j − n,

9



and hence

p−1∑
j=0

s2
j =

(n − 1)n
p

+ n =
n(n + p − 1)

p
.

�

The following simple observation is also useful in our proofs in Section 2.3.

Proposition 2.2.2 Let R be an (n + 1, p, n, n − 1/p)-RDS in G = Zn+1 × Zp relative to N =

{0} × Zp. Assume that t is a multiplier of R such that R(t) = R. Let Ω be the set of orbits of the

action x → tx given by the multiplier t. Let Φ be a collection of orbits forming R, that is Φ

subset of Ω and

R =
⊔
A∈Φ

A.

If B is an orbit in Ω such that there exist two distinct elements (b, i1) in B and (b, i2) in B with

the same first components, then B is not in Φ.

Proof. Assume the contrary. Then (b, i1) − (b, i2) = (0, i1 − i2) ∈ G\N, which is a contra-

diction. �

2.3 Results

We start with a simple example illustrating the method.

Example 2.3.1 There exists (5,3,4,1)-RDS in G = Z5 × Z3 relative to {0} × Z3.

Proof. By Theorem 2.1.2, t = 2 is a multiplier. The orbits of G under the action x→ 2x are

{(0, 0)}, {(0, 1), (0, 2)}, {(1, 0), (2, 0), (4, 0), (3, 0)}, {(1, 1),(2, 2), (4, 1),(3, 2)}, {(1, 2), (2, 1), (4, 2), (3, 1)}.

Let s0, s1 and s2 denote the number of elements in R whose second components are 0, 1 and

2, respectively. Using Proposition 2.2.1 we have

s2
0 + s2

1 + s2
2 = 8 and s0s1 + s0s2 + s1s2 = 4. (2.6)

We also have s0 + s1 + s2 = 4. We look for a collection Φ of orbits of G satisfying (2.6). The

only candidates are the three orbits of length 4. The orbit {(1, 0), (2, 0), (4, 0), (3, 0)} does not

10



satisfy (2.6). Both of the remaining two orbits of length 4 satisfy (2.6) as s0 = 0, s1 = s2 = 2.

In fact by checking the differences we observe that both of the remaining two orbits of length

4 are (5,3,4,1)-RDS in G relative to {0} × Z3. �

In the remaining of this section we present results that fill unknown entries of Table 2 in [6].

We first prove the next proposition in detail.

Proposition 2.3.2 There does not exist almost 3-ary PS with period 101.

Proof. We prove by contradiction. Assume that there exists such an almost 3-ary PS with

period 101. Using Theorem 1.2.1 we obtain an (101, 3, 100, 99/3)-RDS R in Z101×Z3 relative

to {0} × Z3. By Theorem 2.1.2 we obtain that t = 16 is a multiplier of R. Indeed let ζ be a

primitive 303-th root of 1 in C. We have 100 = 2252 and ζ16 = (ζ2)8 and ζ16 = (ζ5)185. We

tabulate the orbits of the action x → 16x in G in Table A.1 in Appendix. There are three

orbits of length 1 and 12 orbits of length 25 in Table A.1. Moreover, using Theorem 2.1.1,

we assume without loss of generality that there exists a subset Φ of the orbits in Table A.1

satisfying

R =
⊔
A∈Φ

A.

As |R| = 100, it is clear from the lengths and the numbers of the orbits in Table A.1 that Φ

consists of 4 distinct orbits of length 25.

As in Proposition 2.2.1, let s0, s1 and s2 denote the number of elements in R with the second

component 0,1 and 2 respectively. Using Proposition 2.2.1 we obtain that

s2
0 + s2

1 + s2
2 = 100(100 + 3 − 1)/3 = 3400. (2.7)

Moreover in each orbit B of Ω, the second component is the same, which follows from the

fact that 16 ≡ 1 mod 3. As Φ consists of orbits of length 25 we conclude that s0, s1 and s2

are divisible by 25. Let s0 = 25s′0, s1 = 25s′1, s2 = 25s′2. Then, by (2.7) we obtain that

(s′0)2 + (s′1)2 + (s′2)2 = 3400/625, which is not an integer. This completes the proof. �

Proposition 2.3.3 There does not exist almost 7-ary PS with period 51.

Proof. Similar to Proposition 2.3.2, we prove by contradiction. Assume that there exists

such an almost 7-ary PS with period 51. Using Theorem 1.2.1 we obtain an

11



(51, 7, 50, 49/7)-RDS R in Z51 × Z7 relative to {0} × Z7. By Theorem 2.1.2 we obtain that

t = 4 is a multiplier of R. We tabulate the orbits of the action x → 4x in G in Table A.2 in

Appendix. There are 3 orbits of length 1, 6 orbits of length 3, 12 orbits of length 4 and 24

orbits of length 12. As in Proposition 2.3.2, R is formed by a certain collection Φ of these

orbits. By Proposition 2.2.2, since the orbits of length 3 and 12 consist of elements whose

first component are same, so these orbits can not be included in Φ. Then we are left by or-

bits whose elements have 0 in the second component. Now by Proposition 2.2.1, we have

s2
0 = 400 and s0 = 50, which is inconsistent. Therefore, there does not exist any (51,7,50,7)-

RDS in G relative to {0} × Z7. �

Proposition 2.3.4 There does not exist almost 31-ary PS with period 95.

Proof. Assume that there exists such an almost 31-ary PS with period 95. Using Theorem

1.2.1 we obtain an (95, 31, 94, 93/31)-RDS R in Z95 × Z31 relative to {0} × Z31. By Theorem

2.1.2 we obtain that t = 4 is a multiplier of R. We tabulate the orbits of the action x → 4x

in G in Table A.3 in Appendix. There are one orbit of length 1, 2 orbits of length 2, 6 orbits

of length 5, 2 orbits of length 9, 12 orbits of length 10, 4 orbits of length 18, 12 orbits of

length 45 and 24 orbits of length 90. Let R be formed by the collection Φ of these orbits.

By Proposition 2.2.2, since orbits of length 5, 10, 45 and 90 consist of elements whose first

component is same, so they are not in Φ. Then we are left by orbits whose elements have 0 in

the second component. Now by Proposition 2.2.1, we obtain s2
0 = 376 and s0 = 94, which is

inconsistent. This completes the proof. �

Proposition 2.3.5 There does not exist almost 7-ary PS with period 100.

Proof. Assume that there exists such an almost 7-ary PS with period 100. Using Theorem

1.2.1 we obtain an (100, 7, 99, 98/7)-RDS R in Z100 × Z7 relative to {0} × Z7. By Theorem

2.1.2 we obtain that t = 81 is a multiplier of R. We tabulate the orbits of the action x → 81x

in G in Table A.4 in Appendix. There are 20 orbits of length 1, 40 orbits of length 3, 32 orbits

of length 15 and 16 orbits of length 5. Let R be formed by the collection Φ of these orbits. By

Proposition 2.2.2, since orbits of length 3 and 15 consist of elements whose first component

are same, so they are not in Φ. Then we are left by orbits whose elements have 0 in the second

component. Now by Proposition 2.2.1, we get s2
0 = 1485 and s0 = 99, which is inconsistent.

This completes the proof. �
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Proposition 2.3.6 There does not exist almost 3-ary PS with period 77.

Proof. By Theorem 1.2.1, it is equivalent to prove that there does not exist (77,3,76,25)-

RDS in G = Z77 × Z3 relative to {0} × Z3. Assume there exists a (77,3,76,25)-RDS in G, say

R. It can be checked that 4 is a multiplier of R by Theorem 2.1.2. We compute 27 orbits of

G under the group automorphism x → 4x. There are 3 orbits of length 1, 6 orbits of length

3, 6 orbits of length 5 and 12 orbits of length 15. We know that R is a subset in the set of the

orbits, Ω. We have |R| = 76. According to Table A.5, there are some possible subsets of Ω

of total cardinality 76. However, by Proposition 2.2.2, one can not include two orbits having

same first components. Therefore, a subset of cardinality 76 can only consist of orbits having

length 15,15,15,15,5,5,3,3. For such a combination, we have 38 distinct subsets.

Let s0, s1 and s2 be numbers as defined in Proposition 2.2.1, then we have two new constraints

on the set R:

s2
0 + s2

1 + s2
2 = 1976,

s1s0 + s2s1 + s0s2 = 1900.

The solution set of the above system is {(20, 26, 30), (20, 30, 26), (26, 20, 30), (26, 30, 20),

(30, 20, 26), (30, 26, 20)}. Now, we calculate the number of possible subsets of Ω having

number of 0s,1s, and 2s as given in the solution set. For instance, let us calculate number of

possible subsets having (s0, s1, s2) = (20, 26, 30). We have already observed that in our case

possible orbit combination can only consist of orbits of length 15,15,15,15,5,5,3,3 with each

of them has distinct first components. Now, under this observations, one can choose 20 many

0s by selecting orbits of length 15 and 5, which can be done in 8 different ways. Next, one

can choose 26 many 1s by selecting orbits of length 15,5,3,3 from the remaining sets, which

can be done in 3 different ways. And finally, 30 many 2s can be chosen uniquely. Therefore,

one can choose 24 distinct possible sets of R satisfying (s0, s1, s2) = (20, 26, 30). Similarly,

24 distinct possible sets can be selected for the other solutions. Thus, we have totally 144

different possible sets satisfying the constraints. Finally, we checked by computer that none

of 144 possible sets of R is an RDS. This completes the proof. �

Proposition 2.3.7 There does not exist almost 11-ary PS with period 101.
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Proof. We will show that there does not exist (101,11,100,9)-RDS in G = Z101 × Z11 rel-

ative to Z11 as in the previous propositions. Assume there exists a (101,11,100,9)-RDS in G,

say R. It can be checked that 5 is a multiplier of R by Theorem 2.1.2. We compute 47 orbits

of G under the group automorphism x→ 5x. There are 1 orbit of length 1, 44 orbits of length

25 and 2 orbits of length 5. We know that R is a subset of the set of the orbits, hence there are

247 distinct subsets. We have |R| = 100. Therefore, a subset of length 100 can only consist

of orbits having length 25. However, by Proposition 2.2.2, one can not include two orbits

having same first components. And, as Z101\{0} has 100 elements, set of orbits of length 25

can be divided in to 4 subsets which have first components from the same set, denote these

subsets as Ω1,Ω2,Ω3 and Ω4. This is also seen in Table A.6. This reduces the number of

possible subsets to the 114 ≈ 214. Furthermore, each Ωi can be divided in to 3 subsets, say

Φi1,Φi2,Φi3, i = 1, 2, 3, 4. These subsets are formed as Φi1 consists of elements having 0 as a

second component, Φi2 consists of elements having {2, 6, 10, 7, 8} as second component, and

Φi3 consists of elements having {1, 5, 4, 9, 3} as second component. Let k1, k2, k3 be the num-

ber of orbits in R from the sets {Φ11,Φ21,Φ31,Φ41}, {Φ12,Φ22,Φ32,Φ42}, {Φ13,Φ23,Φ33,Φ43},

respectively. Then,

k1 + k2 + k3 = 4. (2.8)

By Proposition 2.2.1, we have the following equality

s2
0 + s2

1 + . . . + s2
10 = 1000,

where si is defined as in Proposition 2.2.1, i = 0, 1, . . . , 10. In this case, second components

of elements in the sets Φ12,Φ22,Φ32,Φ42,Φ13,Φ23,Φ33 and Φ43 repeats five times, and we

have 25 times 0s as a second component in each element of Φ11,Φ21,Φ31 and Φ41. Then, we

have

(25k1)2 + 5(5k2)2 + 5(5k3)2 = 1000

which reduces to

5k2
1 + k2

2 + k2
3 = 40. (2.9)

Equations (2.8) and (2.9) has a unique solution {(0, 2, 2)}.

Subsets of orbits satisfying (k1, k2, k3) = (0, 2, 2) can be chosen as follows. k1 = 2 sets can be

chosen among sets Ω1,Ω2,Ω3 and Ω4 as

 4

2

. And, k2 = 2 sets can be chosen among the
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remaining sets uniquely. Then, for a chosen ki = 2 sets as Ωi1 ,Ωi2 , we have 5 distinct possible

sets in each Φili for each ki, i = 1, 2 and l = 1, 2. Therefore, number of subsets becomes 4

2

 · 5 · 5 · 5 · 5 = 6 · 54 = 3750.

Finally, we checked by computer that none of the possible 3750 subsets of the orbits is an

RDS. This completes the proof. �
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CHAPTER 3

NONEXISTENCE OF ALMOST p-ARY NEARLY PERFECT

SEQUENCES OF TYPE II

In this chapter we give an answer to Question 1.1.2 for p = 2, p = 3 and p = 5 at certain

values of n. In other words, we prove non-existence of NPS of type II for p = 2, p = 3 and

p = 5 with period n + 1 for certain values of n. Our method is based on the approach of [6]

in using direct product difference sets (see Theorem 1.2.2). We use extra arguments that we

obtain by extending Proposition 2.2.1 to the direct product difference sets, which is stated as

Proposition 3.1.1 of Section 3.1 below. We combine Theorem 1.2.2 and Proposition 3.1.1 in

Corollary 3.1.2. Using this corollary we obtain a set of Diophantine equations in integers, and

we prove the nonexistence as a consequence of the inconsistency of the obtained Diophantine

equations for p = 2, p = 3 and p = 5 at certain values of n (see Theorem 3.2.1, Theorem

3.3.1, Theorem 3.3.4, Theorem 3.4.1, and Theorem 3.4.4).

We prove our results answering Question 1.1.2 for p = 2, p = 3 and p = 5 in Section 3.2,

Section 3.3 and Section 3.4, respectively. Theorem 1.2.2 gives a way showing existence and

nonexistence of nearly perfect sequences in terms of direct product difference sets. We will

use this method in Section 3.2, Section 3.3 and Section 3.4 to show nonexistence of NPS of

type II for some values of n when p = 2, p = 3 and p = 5, respectively.

3.1 Direct Product Difference Sets

In this section we obtain a system of equations for direct product difference sets. We state this

property in the next proposition.
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Proposition 3.1.1 Let R be an (m1,m2, k, λ1, λ2, µ)-DPDS in G = Zm1 × Zm2 relative to H =

Zm1 and N = Zm2 . Let R have s j many elements having j in the second component for

j = 0, 1, 2, . . . ,m2 − 1. Then
m2−1∑

j=0

s2
j = (m1 − 1)λ1 + k and

m2−1∑
j=0

s js j−i = (m1 − 1)µ + λ2 for

each i = 1, 2, . . . , d(m2 − 1)/2e, where subscripts are computed modulo m2.

Proof. Let ϕ be the map from G = Zm1 ×Zm2 to Zm2 sending (a, i) to i. Let V be the multiset

consisting of the images (counting multiplicities) of ϕ restricted to R. By reordering on V we

have

V = {∗ 0, 0, . . . , 0︸      ︷︷      ︸
s0

, 1, 1, . . . , 1︸      ︷︷      ︸
s1

, 2, 2, . . . , 2︸      ︷︷      ︸
s2

, . . . ,m2 − 1,m2 − 1, . . . ,m2 − 1︸                            ︷︷                            ︸
sm2−1

∗}.

In other words,

s0 = |{(b, i) ∈ R : i = 0}|, . . . , sm2−1 = |{(b, i) ∈ R : i = m2 − 1}|.

Then it is clear that

s0 + s1 . . . + sm2−1 = |R| = k. (3.1)

For 1 ≤ i ≤ m2−1, let Ti be the subset of G\(H∪N) defined as Ti = {(a, e) ∈ G\(H∪N) : e = i}.

And, we define an other set Vi as Vi = {(0, i) ∈ N}. It is clear that Ti = {(a, i) : a ∈ Zm1\{0}}

and hence

|Ti| = m1 − 1. (3.2)

Moreover, let Ti be the subset of R × R defined as

Ti = {(β1, β2) ∈ R × R : β1 , β2 and ϕ(β1 − β2) = i}.

As R is an (m1,m2, k, λ1, λ2, µ)-DPDS, each element of Vi occurs in Ti exactly λ2 times. Then,

for the cardinality |Ti| of Ti, using (3.2), we obtain that

|Ti| = µ|Ti| + λ2 = µ(m1 − 1) + λ2. (3.3)

Similarly, for the cardinality |T0| of T0, we obtain that

|T0| = λ1|T0| = λ1(m1 − 1). (3.4)

For 1 ≤ i ≤ m2 − 1 and 0 ≤ j ≤ m2 − 1, let Ti, j be the subset of Ti defined as

Ti, j = {(β1, β2) ∈ Ti : ϕ(β1) = j}.
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Then we have

|Ti| =

m2−1∑
j=0

|Ti, j|. (3.5)

Next we determine Ti, j for 0 ≤ i, j ≤ m2 − 1 and i , 0. Note that (β1, β2) ∈ Ti, j if and only if

β1 ∈ R, ϕ(β1) = j and β2 ∈ R, ϕ(β2) = j − i. Here, β1 , β2 automatically as i , 0. Recall that

|{β1 ∈ R : ϕ(β1) = j}| = s j and |{β2 ∈ R : ϕ(β2) = j − i}| = s j−i,

where we define the subscript j − i modulo m2. Therefore using (3.3) and (3.5) we conclude

that

(m1 − 1)µ + λ2 =

m2−1∑
j=0

s js j−i. (3.6)

Note that it is enough to consider the subset of equations in (3.6) corresponding to 1 ≤ i ≤⌈
m2−1

2

⌉
since each equation in (3.6) with

⌈
m2−1

2

⌉
< i ≤ m2 − 1 is the same as an equation in

(3.6) with 1 ≤ i ≤
⌈

m2−1
2

⌉
.

Finally, we determine T0, j for 0 ≤ j ≤ m2 − 1. Note that (β1, β2) ∈ T0, j if and only if β1 ∈ R,

ϕ(β1) = j and β2 ∈ R, ϕ(β2) = j and β1 , β2. Hence, we get that for 0 ≤ j ≤ m2 − 1

|T0, j| = s j(s j − 1).

Then using (3.1), (3.4) and (3.5) we conclude that

(m1 − 1)λ1 =

m2−1∑
j=0

s j(s j − 1) =

m2−1∑
j=0

(s2
j − s j) =

m2−1∑
j=0

s2
j −

m2−1∑
j=0

s j =

m2−1∑
j=0

s2
j − k,

and hence

m2−1∑
j=0

s2
j = (m1 − 1)λ1 + k.

�

Proposition 3.1.1 together with Theorem 1.2.2 imply a nice property of nearly perfect se-

quences.

Corollary 3.1.2 Let p, n,G, a and R be defined as in Theorem 1.2.2. Let R have s j many

elements having j in the second component for j = 0, 1, 2, . . . , p − 1. Then
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(i.) If a is an almost p-ary NPS of type I, then following equalities hold

p−1∑
j=0

s js j−i =
n2

p
for each i = 0, 1, 2, . . . , d(p − 1)/2e . (3.7)

(ii.) If a is an almost p-ary NPS of type II, then following equalities hold

p−1∑
j=0

s2
j =

n(n − 2)
p

+ 2n (3.8)

and

p−1∑
j=0

s js j−i =
n(n − 2)

p
for each i = 1, 2, . . . , d(p − 1)/2e . (3.9)

Let p be a prime number and n ∈ Z+ be divisible by p. We note that a tuple

(s0, s1, s2, . . . , sp−1) such that s j = n
p is a solution to the system of equations given in (3.7).

However, there are some integers n such that system of equations given in (3.8) and (3.9) does

not have a solution. This directly implies the nonexistence of almost p-ary NPS of type II with

period n + 1. Hence, in the remaining sections we will study the nonexistence of almost p-ary

NPS of type II for some periods n + 1.

3.2 Nonexistence of certain almost binary NPS of type II

In this section we will show that almost binary NPS of type II with period n + 1 does not exist

if n/2 is not a square integer.

Theorem 3.2.1 Let n be an even positive integer such that n/2 is non-square. Then, there do

not exist almost binary nearly perfect sequence of type II with period n + 1.

Proof. Assume that there exists an almost binary nearly perfect sequence of type II with

period n + 1 where n/2 is not a square. Then, by Corollary 3.1.2(ii) we have equalities (3.8)

and (3.9) for p = 2 as follows

s0 + s1 = n

s2
0 + s2

1 =
n2 + 2n

2

(3.10)
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for some nonnegative integers s0 and s1. By substituting s0 = n − s1 into second equality of

(3.10) we obtain that

s2
1 − ns1 +

n2 − 2n
4

= 0. (3.11)

Discriminant of (3.11) is 2n. Therefore, (3.11) has a solution over integers when 2n is a

square. However, this contradicts the condition that n/2 is not a square. �

3.3 Nonexistence of certain almost 3-ary NPS of type II

In this section we will show that almost p-ary NPS of type II with period n + 1 does not exist

for certain values of n for p = 3.

Theorem 3.3.1 Let n be a positive integer such that n ≡ 5 · 22m−2 mod 3 · 22m−1 for some

m ∈ Z+. Then, there do not exist almost 3-ary nearly perfect sequence of type II with period

n + 1.

In order to prove above theorem we state following two lemmas.

Lemma 3.3.2 Let p = 2 and let s0, s1 and s2 be nonnegative integers satisfying

pm | s0 + s1 + s2 (3.12)

p2m−1 | s0s1 + s0s2 + s1s2 (3.13)

for some integer m ≥ 1. Then pm | s j for all j = 0, 1, 2, and so p2m | s0s1 + s0s2 + s1s2.

Proof. We prove by induction on integer m. We first show that it holds for m = 1. As

the sum s0 + s1 + s2 is an even integer, either only one of s0, s1, s2 is even or all of s0, s1, s2

are even. If the former case holds, then s0s1 + s0s2 + s1s2 becomes an odd integer, which

contradicts to (3.13). Assume that it holds for for the case m = i for some integer i ≥ 2. Now,

let us consider the case m = i + 1. Let the following statements hold

2i+1 | s0 + s1 + s2

22(i+1)−1 | s0s1 + s0s2 + s1s2.
(3.14)
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Then, by induction step we have

2i | s j for all j = 0, 1, 2.

Let s j = 2ik j for some integer k j and j = 0, 1, 2. Then, (3.14) reduces to

2 | k0 + k1 + k2

2 | k0k1 + k0k2 + k1k2.

By the first step of the induction, we have 2 | k j for all j = 0, 1, 2. Hence, we observe the

required result 2i+1 | s j for all j = 0, 1, 2. Therefore we complete the proof. �

Lemma 3.3.3 Let n be an integer satisfying n ≡ 5 · 22m−2 mod 3 · 22m−1 for some m ∈ Z+.

Then the system of equations in variables s0, s1, s2

s0 + s1 + s2 = n

s0s1 + s0s2 + s1s2 =
n(n − 2)

3

(3.15)

has no solution over Z+ ∪ {0}.

Proof. We prove by contradiction. Assume that s0, s1, s2 is a solution to (3.15). Let

n = 3 · 22m−1k + 5 · 22m−2 for some nonnegative integer k.

First of all consider the case m = 1. In this case, n = 6k + 5. Hence, n is an odd integer. Since

sum of s0, s1 and s2 is an odd integer, either only one of them is odd or all of them are odd.

We will show that both of these cases are not possible. Suppose that only one of s0, s1 and s2

is an odd integer. Without loss of generality, let s0 be odd and others be even. Then the sum

s0s1 + s0s2 + s1s2

becomes even. This contradicts to the second equality of (3.15), whose right hand side is an

odd integer for an odd n.

Next suppose that all of s0, s1 and s2 are odd integers. Let they satisfy

s0 = 6k0 + 2a0 + 1

s1 = 6k1 + 2a1 + 1

s2 = 6k2 + 2a2 + 1

for some nonnegative integers k0, k1, k2 and a0, a1, a2.
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Now, we check both sides of the equality

s0s1 + s0s2 + s1s2 =
n(n − 2)

3

modulo 4. We substitute s j for j = 0, 1, 2 into left hand side of the equation. We obtain that

s0s1 + s0s2 + s1s2 = 36(k0k2 + k1k0 + k2k1)

+6(k0(2a2 + 1) + k0(2a1 + 1)

+k1(2a0 + 1) + k1(2a2 + 1)

+k2(2a1 + 1) + k2(2a0 + 1))

+4a0a2 + 2a0 + 2a2 + 1 + 4a1a0 + 2a1 + 2a0 + 1

+4a2a1 + 2a2 + 2a1 + 1

= 36(k0k2 + k1k0 + k2k1)

+12(k0(a2 + a1 + 1) + k1(a0 + a2 + 1)

+k2(a1 + a0 + 1))

+4(a0a2 + a0a1 + a1a2 + a0 + a2 + a1) + 3

On the other hand, we have

n(n − 2)
3

= (6k + 5)(2k + 1) = 12k2 + 16k + 5

However, both sides of the above equation are not equal to each other modulo 4. This shows

that the case that all of s0, s1 and s2 are odd integers is also not possible. Therefore, we

complete the proof of the case m = 1.

Next, we consider the case m ≥ 2. As n = 3 · 22m−1k + 5 · 22m−2 is divisible by 22m−2, we also

have

n(n − 2)
3

=
(3 · 22m−1k + 5 · 22m−2)(3 · 22m−1k + 5 · 22m−2 − 2)

3

=
2(3 · 22m−1k + 5 · 22m−2)(3 · 22m−2k + 5 · 22m−3 − 1)

3

is divisible by 22m−1, but not divisible by 22m. Then, by Lemma 3.3.2 we obtain that 22m must

divide s0s1 + s0s2 + s1s2. On the other hand, this contradicts to the condition that n(n−2)
3 is not

divisible by 22m. Therefore we complete the proof. �
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Proof of Theorem 3.3.1 Assume that there exist an almost 3-ary nearly perfect sequence of

type II with period n + 1 where n ≡ 5 · 22m−2 mod 3 · 22m−1 for some m ∈ Z+. Then, by

Corollary 3.1.2(ii) we have equalities (3.8) and (3.9). However, by Lemma 3.3.3 we know

that these equalities have no solution over Z+ ∪ {0}, which is a contradiction. �

It is easy to observe that Lemma 3.3.2 is also valid for any p ≡ 2 mod 3 (see Lemma 3.3.5

below), and so we also have the following nonexistence result.

Theorem 3.3.4 Let p > 3 be a prime number such that p ≡ 2 mod 3. Let n be an integer such

that n ≡ p2m−1 mod 3 · p2m for some m ∈ Z+. Then, there do not exist almost 3-ary nearly

perfect sequence of type II with period n + 1.

The proof of this theorem is very similar to the proof of Theorem 3.3.1. To do that, we

first need to state and prove similar results. Then proof of Theorem 3.3.4 will be a direct

consequence of these results.

Lemma 3.3.5 Let p > 3 be a prime number such that p ≡ 2 mod 3, and let s0, s1 and s2 be

nonnegative integers satisfying

pm | s0 + s1 + s2 (3.16)

p2m−1 | s0s1 + s0s2 + s1s2 (3.17)

for some integer m ≥ 1. Then pm | s j for all j = 0, 1, 2, and so p2m | s0s1 + s0s2 + s1s2.

Proof. We first show that it holds for m = 1, then it will follow by induction. As the sum

s0 + s1 + s2 is divisible by p, we have three cases

(i.) Only one of s0, s1, s2 is equivalent to 0 modulo p,

(ii.) None of s0, s1, s2 is equivalent to 0 modulo p, or

(iii.) All of s0, s1, s2 are equivalent to 0 modulo p.

If the first case holds, then s0s1 + s0s2 + s1s2 would equal to a nonzero integer modulo p,

which contradicts to (3.17).
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Now, we will observe that case (ii.) is also not possible. Assume it holds, then we have

s2 ≡ −(s0 + s1) mod p. Substitute this into (3.17), and obtain the equivalence

s2
0 + s0s1 + s2

1 ≡ 0 mod p. (3.18)

As p - s1, (3.18) is a quadratic equivalence

(
s0

s1
)2 +

s0

s1
+ 1 ≡ 0 mod p. (3.19)

Discriminant of (3.19) equals to -3, which is not quadratic residue modulo p for p ≡ 2 mod 3

and p > 3. Hence, (3.19) has no solution, and so case (ii.) is not possible.

Therefore, only case (iii.) is possible. This proves the first case m=1 of the induction.

Assume that it holds for the case m = i for some integer i ≥ 2. Now, let us consider the case

m = i + 1. Let the following statements hold

pi+1 | s0 + s1 + s2

p2(i+1)−1 | s0s1 + s0s2 + s1s2.
(3.20)

Then, by induction step we have

pi | s j for all j = 0, 1, 2.

Let s j = pik j for some integer k j and j = 0, 1, 2. Then, (3.20) reduces to

p | k0 + k1 + k2

p | k0k1 + k0k2 + k1k2.

By the first step of the induction, we have p | k j for all j = 0, 1, 2. Hence, we observe the

required result pi+1 | s j for all j = 0, 1, 2. Therefore we complete the proof. �

Lemma 3.3.6 Let p > 3 be a prime number such that p ≡ 2 mod 3. Let n be an integer

satisfying n ≡ p2m−1 mod 3 · p2m for some m ∈ Z+. Then the system of equations in variables

s0, s1, s2

s0 + s1 + s2 = n

s0s1 + s0s2 + s1s2 =
n(n − 2)

3

(3.21)

has no solution over Z+ ∪ {0}.
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Proof. We prove by contradiction. Assume that s0, s1, s2 is a solution to (3.21). Let

n = 3 · p2mk + p2m−1 for some nonnegative integer k. As n is divisible by p2m−1, we also have

n(n − 2)
3

=
(3 · p2mk + p2m−1)(3 · p2mk + p2m−1 − 2)

3

is divisible by p2m−1, but not divisible by p2m. However, Lemma 3.3.5 implies that p2m must

divide s0s1 + s0s2 + s1s2. This contradicts to the condition that n(n−2)
3 is not divisible by p2m.

Therefore we complete the proof. �

We now list values of n ≤ 1000 for which 3-ary NPS of type II with period n+1 is not existing

in Table A.7. Each n value presented in the table satisfies either Theorem 3.3.1 or Theorem

3.3.4, which is also indicated in the Existence column. We list values upto n ≤ 1000 to show

the coverage of Theorems 3.3.1 and 3.3.4 explicitly. Existence status in the remaining values

of n are not known.

3.4 Nonexistence of certain almost 5-ary NPS of type II

In this section we present analogue results of those we obtained in the 3-ary case. Here we

will deal with the nonexistence of almost 5-ary NPS type II.

Theorem 3.4.1 Let n be an integer satisfying one of the following congruences

(i.) n ≡ 7 · 24m−4 mod 5 · 24m−3

(ii.) n ≡ 3 · 24m−2 mod 5 · 24m−1

for some integer m ≥ 1. Then, there do not exist almost 5-ary nearly perfect sequence of type

II with period n + 1.

We prove two lemmas useful in proving the above theorem.

Lemma 3.4.2 Let p = 2 and let s0, s1, s2, s3 and s4 be positive integers satisfying each of the

following

pm | s0 + s1 + s2 + s3 + s4 (3.22)

p2m−1 | s0s4 + s1s0 + s2s1 + s3s2 + s4s3 (3.23)

p2m−1 | s0s3 + s1s4 + s2s0 + s3s1 + s4s2 (3.24)
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for some m ≥ 1. Then pm | s j for all j = 0, 1, 2, 3, 4 and so p2m | s0s4 + s1s0 + s2s1 + s3s2 + s4s3

and p2m | s0s3 + s1s4 + s2s0 + s3s1 + s4s2.

Proof. We prove by induction on integer m. First, consider the case m = 1. As sum of

s0, s1, s2, s3, s4 is an even integer, one of the following cases to be satisfied:

(i.) Only one of s0, s1, s2, s3, s4 is even.

(ii.) Three of s0, s1, s2, s3, s4 are even.

(iii.) All of s0, s1, s2, s3, s4 are even.

First case forces s0s4 + s1s0 + s2s1 + s3s2 + s4s3 to be an odd integer, which is a contradiction

to (3.23). Similarly, second case makes either s0s4 + s1s0 + s2s1 + s3s2 + s4s3 or s0s3 + s1s4 +

s2s0 + s3s1 + s4s2 an odd integer, which is a contradiction to (3.23) or (3.24), respectively.

Therefore, only the third case can be valid. This proves the case m = 1.

Assume that it holds for the case m = i for some integer i ≥ 2. Now, let us consider the case

m = i + 1. Let the following hold

2i+1 | s0 + s1 + s2 + s3 + s4,

22(i+1)−1 | s0s4 + s1s0 + s2s1 + s3s2 + s4s3,

22(i+1)−1 | s0s3 + s1s4 + s2s0 + s3s1 + s4s2.

(3.25)

Then, by induction step we have

2i | s j for all j = 0, 1, 2, 3, 4.

Let s j = 2ik j for some integer k j and j = 0, 1, 2, 3, 4. Then, (3.25) reduces to

2 | k0 + k1 + k2 + k3 + k4,

2 | k0k4 + k1k0 + k2k1 + k3k2 + k4k3,

2 | k0k3 + k1k4 + k2k0 + k3k1 + k4k2.

(3.26)

By the first step of the induction, we have 2 | k j for all j = 0, 1, 2, 3, 4. Hence, we observe the

required result 2i+1 | s j for all j = 0, 1, 2, 3, 4. Therefore we complete the proof. �

Lemma 3.4.3 Let n be an integer satisfying one of the following
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(i.) n ≡ 7 · 24m−4 mod 5 · 24m−3

(ii.) n ≡ 3 · 24m−2 mod 5 · 24m−1

for some integer m ≥ 1. Then the system of equations in variables s0, s1, s2, s3, s4

s0 + s1 + s2 + s3 + s4 = n

s0s4 + s1s0 + s2s1 + s3s2 + s4s3 =
n(n − 2)

5
s0s3 + s1s4 + s2s0 + s3s1 + s4s2 =

n(n − 2)
5

(3.27)

has no solution over Z+ ∪ {0}.

Proof.

(i.) We will prove by contradiction. Assume that (s0, s1, s2, s3, s4) is a solution to (3.27).

Let n satisfy n = 5 · 24m−3k + 7 · 24m−4 for some nonnegative integer k.

We will first deal with the case m = 1. In this case n = 10k + 7 is an odd integer,

and so integers on the right hand side of the each equalities of (3.27) are odd. So, left

hand sides are also odd integers. By this observation and first equality of (3.27), we say

that number of odd integer s j ∈ {s0, s1, . . . , s4} is an odd integer. In fact, none of them

can be an even integer. Because otherwise left hand sides of second or third equation

becomes even. Hence, all of {s0, s1, . . . , s4} are odd integers. Let they satisfy

s0 = 10k0 + 2a0 + 1

s1 = 10k1 + 2a1 + 1
...

s4 = 10k4 + 2a4 + 1

for some nonnegative integers k0, k1, . . . , k4 and a0, a1, . . . , a4. Now, we check both

sides of the equality

s0s4 + s1s0 + s2s1 + s3s2 + s4s3 =
n(n − 2)

5
(3.28)

modulo 4. We substitute s j for j = 1, 2, . . . , 4 into left hand side of the equation. We
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obtain that∑4
j=0 s js j−1 = 100(k0k4 + k1k0 + . . . + k4k3)

+10(k0(2a4 + 1) + k0(2a1 + 1) + . . .

+k4(2a3 + 1) + k4(2a0 + 1))

+4a0a4 + 2a0 + 2a4 + 1 + . . .

+4a4a3 + 2a4 + 2a3 + 1

= 100(k0k4 + k1k0 + . . . + k4k3)

+20(k0(a1 + a4 + 1) + . . . + k4(a0 + a3 + 1))

+4(a0a4 + . . . + a4a3 + a0 + . . . + a4) + 5

On the other hand, we have

n(n − 2)
5

= (10k + 7)(2k + 1) = 20k2 + 24pk + 7

We observed that both sides of equation (3.28) modulo 4 are not equal to each other,

which is a contradiction. Therefore, this completes the proof of case m = 1.

Next, we consider the case m ≥ 2. As n = 5 · 24m−3k + 7 · 24m−4 is divisible by 22(2m−2),

we also have

n(n − 2)
5

=
(5 · 24m−3k + 7 · 24m−4)(5 · 24m−3k + 7 · 24m−4 − 2)

5

=
2(5 · 24m−3k + 7 · 24m−4)(5 · 24m−4k + 7 · 24m−3 − 1)

5

is divisible by 22(2m−2)+1 = 22(2m−1)−1, but not divisible by 22(2m−1). Then, by Lemma

3.4.2 we obtain that 22(2m−1) must divide s0s4 + s1s0 + s2s1 + s3s2 + s4s3. On the other

hand, this contradicts to the condition that n(n−2)
5 is not divisible by 22(2m−1). Therefore

we complete the proof of (i).

(ii.) Assume that integers s0, s1, s2, s3, s4 ∈ Z
+ satisfy (3.27). Let n = 5 · 24m−1k + 3 · 24m−2

for some nonnegative integer k. In this case n is divisible by 22(2m−1). And, it is easy to

see that

n(n − 2)
5

=
(5 · 24m−1k + 3 · 24m−2)(5 · 24m−1k + 3 · 24m−2 − 2)

5

=
2(5 · 24m−1k + 3 · 24m−2)(5 · 24m−2k + 3 · 24m−3 − 1)

5
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is divisible by 22(2m−1)+1 = 22(2m)−1, but not by 24m. On the other hand, we know that

24m must divide s0s4+s1s0+s2s1+s3s2+s4s3 by Lemma 3.4.2, which is a contradiction.

Therefore we complete the proof of (ii).

�

Proof of Theorem 3.4.1 Similar to proof of Theorem 3.3.1, Lemma 3.4.3 and Corollary

3.1.2(ii) directly imply the result. �

Next, we extend Theorem 3.4.1 for general primes.

Theorem 3.4.4 Let p , 5 be an odd prime number such that p . 1 mod 5. Let n be an integer

such that n ≡ 2 mod 5 and n ≡ p2m−1 mod p2m for some integer m ≥ 1. Then, there do not

exist almost 5-ary nearly perfect sequence of type II with period n + 1.

Proof of Theorem 3.4.4 is very similar to proof of Theorem 3.4.1, and it is direct consequence

of Lemma 3.4.5 and Lemma 3.4.6.

Lemma 3.4.5 Let p , 5 be an odd prime number such that p . 1 mod 5, and let s0, s1, s2, s3

and s4 be positive integers satisfying each of the following statements

pm | s0 + s1 + s2 + s3 + s4 (3.29)

p2m−1 | s0s4 + s1s0 + s2s1 + s3s2 + s4s3 (3.30)

p2m−1 | s0s3 + s1s4 + s2s0 + s3s1 + s4s2 (3.31)

for some m ≥ 1. Then pm | s j for all j = 0, 1, 2, 3, 4 and so p2m | s0s4 + s1s0 + s2s1 + s3s2 + s4s3

and p2m | s0s3 + s1s4 + s2s0 + s3s1 + s4s2.

Proof. We prove by induction on integer m. First, consider the case m = 1. We consider all

the following cases:

(i.) Only one of s0, s1, s2, s3, s4 is not divisible by p.

(ii.) Only two of s0, s1, s2, s3, s4 are not divisible by p.

(iii.) Only three of s0, s1, s2, s3, s4 are not divisible by p.
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(iv.) Only four of s0, s1, s2, s3, s4 are not divisible by p.

(v.) None of s0, s1, s2, s3, s4 is divisible by p.

(vi.) All of s0, s1, s2, s3, s4 are divisible by p.

We will show that first five cases are not possible under the assumptions of the lemma. To

begin with, first case contradicts to (3.29). Next, we consider the second case. If elements

divisible by p are consecutive, this case contradicts to (3.31), otherwise contradicts to (3.30).

Similarly, for the third case, if elements divisible by p are consecutive, this case contradicts

to (3.31), otherwise contradicts to (3.30).

Now, we need much effort to show that fourth case is also not possible. WLOG let only s4 is

divisible by p. Then, (3.29) implies that

s0 ≡ −(s1 + s2 + s3) mod p. (3.32)

By substituting (3.32) into equations (3.30) and (3.31) we obtain the equivalences

s2
1 + s1s3 − s2s3 ≡ 0 mod p

s2
3 + 2s2s3 + s2

2 + s1s2 ≡ 0 mod p.
(3.33)

The system (3.33) has resultant

s4
1 − s3

1s2 + s2
1s2

2 − s1s3
2 + s4

2 (3.34)

with respect to s3. If one divides (3.34) by nonzero s4
2 then, it reduces to

(
s1

s2
)4 − (

s1

s2
)3 + (

s1

s2
)2 − (

s1

s2
) + 1. (3.35)

Now, consider the polynomial

f (x) = x4 − x3 + x2 − x + 1, (3.36)

It’s splitting field is cyclotomic field of 5-th root of unity as p , 5. The law of decomposition

in cyclotomic field of degree 5 tells us that f splits completely modulo p if and only if p ≡ 1

mod 5 (see [12, Proposition 10.3]). However, this is not covered by the assumption of the

lemma. Therefore, f is not solvable modulo p if p . 1 mod 5. This implies that fourth case is

not possible.
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Next, we will show that fifth case is not possible. Now, we have following system of equations

s0 + s1 + s2 + s3 + s4 ≡ 0 mod p

s0s4 + s1s0 + s2s1 + s3s2 + s4s3 ≡ 0 mod p

s0s3 + s1s4 + s2s0 + s3s1 + s4s2 ≡ 0 mod p,

(3.37)

and none of s0, s1, s2, s3, s4 is divisible by p. We multiply first equation of (3.37) by s−1
0 and

the others by (s−1
0 )2, and we apply the substitutions

b1 = s1s−1
0 , b2 = s2s−1

0 , b3 = s3s−1
0 , b4 = s4s−1

0

to them. Then, we observe the equalities

1 + b1 + b2 + b3 + b4 ≡ 0 mod p

b4 + b1 + b2b1 + b3b2 + b4b3 ≡ 0 mod p

b3 + b1b4 + b2 + b3b1 + b4b2 ≡ 0 mod p

(3.38)

Then, we further substitute b1 ≡ −(1 + b2 + b3 + b4), that we obtain from first equality, to last

two equations and then we have:

b2
2 + 2b2 + 1 + b3 + b2b4 − b3b4 ≡ 0 mod p

b2
3 + 2b3b4 + b2

4 + b4 − b2 + b2b3 ≡ 0 mod p
(3.39)

The system (3.39) has resultant of

b4
3 + (2 − b2)b3

3 + (b2
2 + b2 + 4)b2

3 + (−b3
2 + b2

2 + 3b2 + 3)b3 (3.40)

+ (b4
2 + 2b3

2 + 4b2
2 + 3b2 + 1)

with respect to b4. Define equation (3.40) as a quartic polynomial

f (x) = x4 + (2 − b2)x3 + (b2
2 + b2 + 4)x2 + (−b3

2 + b2
2 + 3b2 + 3)x

+ b4
2 + 2b3

2 + 4b2
2 + 3b2 + 1

Polynomial f has the following 4 roots

x1,2 =
2 − b2 −

√
5b2 ± (3 +

√
5 + 2b2)

√
(−5 +

√
5)/2

−4

x3,4 =
−2 + b2 −

√
5b2 ± (−3 +

√
5 − 2b2)

√
(−5 −

√
5)/2

4

Hence, polynomial f splits modulo p if and only if 5 and (−5 ±
√

5)/2 are quadratic residues

modulo p. To begin with, we note that p , 5 is an odd prime number. Then, 5 is quadratic
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residue modulo p for values p ≡ ±1 mod 5. And, it can be easily checked that
√

(−5 ±
√

5)/2

lie in cyclotomic field of degree 5. For instance,
√

(−5 −
√

5)/2 = ζ3
5 − ζ

4
5 , where ζ5 is fifth

root of 1. Therefore, (−5 ±
√

5)/2 are quadratic residues modulo p if and only if p ≡ 1 mod

5 by the law of decomposition in cyclotomic field of degree 5 (see [12, Proposition 10.3]).

However, such values of p are not covered by the assumption of the lemma. Hence, fifth case

is also not possible. This completes the proof of initial step of induction.

Assume that it holds for for the case m = i for some integer i ≥ 2. Now, let us consider the

case m = i + 1. Let the following hold

pi+1 | s0 + s1 + s2 + s3 + s4,

p2(i+1)−1 | s0s4 + s1s0 + s2s1 + s3s2 + s4s3,

p2(i+1)−1 | s0s3 + s1s4 + s2s0 + s3s1 + s4s2.

(3.41)

Then, by induction step we have

pi | s j for all j = 0, 1, 2, 3, 4.

Let s j = pik j for some integer k j and j = 0, 1, 2, 3, 4. Then, (3.41) reduces to

p | k0 + k1 + k2 + k3 + k4,

p | k0k4 + k1k0 + k2k1 + k3k2 + k4k3,

p | k0k3 + k1k4 + k2k0 + k3k1 + k4k2.

(3.42)

By the first step of the induction, we have p | k j for all j = 0, 1, 2, 3, 4. Hence, we observe the

required result pi+1 | s j for all j = 0, 1, 2, 3, 4. Therefore we complete the proof. �

Lemma 3.4.6 Let p , 5 be an odd prime number such that p . 1 mod 5. Let n be an integer

such that n ≡ 2 mod 5 and n ≡ p2m−1 mod p2m for some integer m ≥ 1. Then the system of

equations in variables s0, s1, s2, s3, s4

s0 + s1 + s2 + s3 + s4 = n

s0s4 + s1s0 + s2s1 + s3s2 + s4s3 =
n(n − 2)

5
s0s3 + s1s4 + s2s0 + s3s1 + s4s2 =

n(n − 2)
5

(3.43)

has no solution over Z+ ∪ {0}.

Proof. Assume that s0, s1, s2, s3, s4 is a solution to (3.43). Let n = p2mk + p2m−1 for some

nonnegative integer k. As n is divisible by p2m−1, we also have

n(n − 2)
5

=
(p2mk + p2m−1)(p2mk + p2m−1 − 2)

5
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is divisible by p2m−1, but not divisible by p2m. However, Lemma 3.4.5 implies that p2m |

s0s4 + s1s0 + s2s1 + s3s2 + s4s3. This contradicts to the condition that n(n−2)
5 is not divisible

by p2m. Therefore we complete the proof. �

We list values of n for which 5-ary NPS of type II with period n + 1 is not existing in Table

A.8. Each n value presented in the table satisfies either Theorem 3.4.1 or Theorem 3.4.4,

which is also indicated in the Existence column. We list values upto n ≤ 1000 to show the

coverage of Theorems 3.4.1 and 3.4.4 explicitly. Existence status in the remaining values of

n are not known.

Remark 3.4.7 Further extension of Lemma 3.4.3 and Lemma 3.4.6 for almost q-ary se-

quences q ≥ 7 is not possible. For instance, consider the case q = 7 and n = 9. In this

case (s0, s1, s2, s3, s4, s5, s6) = (3, 3, 0, 3, 0, 0, 0) is a solution to equations (3.8) and (3.9).

Similarly, (0, 0, 4, 0, 4, 4, 4) and (1, 1, 2, 6, 6, 1, 6) are solutions for n = 16 and n = 23, respec-

tively. And similar examples also exist for q > 7.
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CHAPTER 4

CONCLUSIONS

Although we partially answered the questions posed in ([6]), there are still several open cases.

For instance, our method couldn’t overcome the existence problem of almost p-ary perfect

sequence of period n + 1 for n = 77. Another point drawing attention in the existence results

of ([6]) is that almost p-ary perfect sequences are rarely exists. Ma and Ng have also a

similar remark in ([2]) for the existence of p-ary perfect and nearly perfect sequences and

they concluded that it might be possible to have more existence results if we study m-ary

sequences for composite m.

From application point of view, though perfect binary sequences have already been utilized on

various fields for fifty years (see chapter 1 of [3]), p-ary perfect and nearly perfect sequences

appear to be a relatively new subject for engineers. So that it might be a productive research

to find out how to apply those sequences in practice. During this study, we have submitted

two articles, one has already been published as [13], the other is still under review.
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APPENDIX A

TABLES

Table A.1: Orbits of G = Z101 × Z3 under x→ 16x

{ (0, 0) } { (0, 1) } { (0, 2) }
{ (88, 0), (84, 0), (5, 0), (24, 0), (19, 0), (92, 0), (58, 0), (79, 0), (25, 0), (68, 0), (52, 0), (81, 0),
(36, 0), (1, 0), (54, 0), (87, 0), (97, 0), (37, 0), (56, 0), (80, 0), (31, 0), (71, 0), (16, 0), (95, 0), (78, 0) }
{ (88, 1), (84, 1), (5, 1), (24, 1), (19, 1), (92, 1), (58, 1), (79, 1), (25, 1), (68, 1), (52, 1), (81, 1),
(36, 1), (1, 1), (54, 1), (87, 1), (97, 1), (37, 1), (56, 1), (80, 1), (31, 1), (71, 1), (16, 1), (95, 1), (78, 1) }
{ (88, 2), (84, 2), (5, 2), (24, 2), (19, 2), (92, 2), (58, 2), (79, 2), (25, 2), (68, 2), (52, 2), (81, 2),
(36, 2), (1, 2), (54, 2), (87, 2), (97, 2), (37, 2), (56, 2), (80, 2), (31, 2), (71, 2), (16, 2), (95, 2), (78, 2) }
{ (89, 0), (73, 0), (2, 0), (55, 0), (74, 0), (3, 0), (93, 0), (32, 0), (38, 0), (61, 0), (11, 0), (83, 0),
(7, 0), (15, 0), (72, 0), (75, 0), (48, 0), (10, 0), (67, 0), (35, 0), (57, 0), (50, 0), (41, 0), (59, 0), (62, 0) }
{ (89, 1), (73, 1), (2, 1), (55, 1), (74, 1), (3, 1), (93, 1), (32, 1), (38, 1), (61, 1), (11, 1), (83, 1),
(7, 1), (15, 1), (72, 1), (75, 1), (48, 1), (10, 1), (67, 1), (35, 1), (57, 1), (50, 1), (41, 1), (59, 1), (62, 1) }
{ (89, 2), (73, 2), (2, 2), (55, 2), (74, 2), (3, 2), (93, 2), (32, 2), (38, 2), (61, 2), (11, 2), (83, 2),
(7, 2), (15, 2), (72, 2), (75, 2), (48, 2), (10, 2), (67, 2), (35, 2), (57, 2), (50, 2), (41, 2), (59, 2), (62, 2) }
{ (14, 0), (20, 0), (17, 0), (6, 0), (77, 0), (100, 0), (82, 0), (64, 0), (45, 0), (70, 0), (43, 0), (65, 0),
(13, 0), (4, 0), (9, 0), (21, 0), (49, 0), (85, 0), (23, 0), (30, 0), (76, 0), (47, 0), (22, 0), (33, 0), (96, 0) }
{ (14, 1), (20, 1), (17, 1), (6, 1), (77, 1), (100, 1), (82, 1), (64, 1), (45, 1), (70, 1), (43, 1), (65, 1),
(13, 1), (4, 1), (9, 1), (21, 1), (49, 1), (85, 1), (23, 1), (30, 1), (76, 1), (47, 1), (22, 1), (33, 1), (96, 1) }
{ (14, 2), (20, 2), (17, 2), (6, 2), (77, 2), (100, 2), (82, 2), (64, 2), (45, 2), (70, 2), (43, 2), (65, 2),
(13, 2), (4, 2), (9, 2), (21, 2), (49, 2), (85, 2), (23, 2), (30, 2), (76, 2), (47, 2), (22, 2), (33, 2), (96, 2) }
{ (18, 0), (86, 0), (66, 0), (46, 0), (53, 0), (8, 0), (90, 0), (12, 0), (29, 0), (63, 0), (34, 0), (94, 0),
(44, 0), (98, 0), (99, 0), (26, 0), (28, 0), (69, 0), (42, 0), (39, 0), (27, 0), (51, 0), (60, 0), (40, 0), (91, 0) }
{ (18, 1), (86, 1), (66, 1), (46, 1), (53, 1), (8, 1), (90, 1), (12, 1), (29, 1), (63, 1), (34, 1), (94, 1),
(44, 1), (98, 1), (99, 1), (26, 1), (28, 1), (69, 1), (42, 1), (39, 1), (27, 1), (51, 1), (60, 1), (40, 1), (91, 1) }
{ (18, 2), (86, 2), (66, 2), (46, 2), (53, 2), (8, 2), (90, 2), (12, 2), (29, 2), (63, 2), (34, 2), (94, 2),
(44, 2), (98, 2), (99, 2), (26, 2), (28, 2), (69, 2), (42, 2), (39, 2), (27, 2), (51, 2), (60, 2), (40, 2), (91, 2) }
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Table A.2: Orbits of G = Z51 × Z7 under x→ 4x

{ (0, 0) } { (34, 0) } { (17, 0) }
{ (34, 5), (34, 6), (34, 3) } { (34, 1), (34, 4), (34, 2) } { (17, 2), (17, 4), (17, 1) }
{ (17, 6), (17, 3), (17, 5) } { (0, 6), (0, 5), (0, 3) } { (0, 1), (0, 2), (0, 4) }
{ (43, 0), (19, 0), (49, 0), (25, 0) } { (23, 0), (44, 0), (41, 0), (11, 0) }
{ (48, 0), (12, 0), (39, 0), (3, 0) } { (35, 0), (38, 0), (50, 0), (47, 0) }
{ (37, 0), (22, 0), (31, 0), (46, 0) } { (21, 0), (30, 0), (33, 0), (18, 0) }
{ (27, 0), (45, 0), (6, 0), (24, 0) } { (10, 0), (7, 0), (40, 0), (28, 0) }
{ (9, 0), (36, 0), (42, 0), (15, 0) } { (13, 0), (1, 0), (4, 0), (16, 0) }
{ (20, 0), (5, 0), (14, 0), (29, 0) } { (2, 0), (32, 0), (26, 0), (8, 0) }
{ (44, 5), (41, 3), (11, 3), (44, 3), (41, 5), (41, 6), (23, 3), (11, 6), (23, 5), (11, 5), (23, 6), (44, 6) }
{ (23, 2), (44, 1), (11, 4), (23, 1), (41, 2), (44, 4), (23, 4), (41, 1), (11, 1), (44, 2), (41, 4), (11, 2) }
{ (26, 4), (32, 2), (2, 2), (26, 2), (26, 1), (32, 4), (32, 1), (8, 2), (2, 1), (2, 4), (8, 4), (8, 1) }
{ (33, 2), (30, 2), (33, 1), (33, 4), (18, 1), (30, 1), (18, 4), (21, 1), (21, 4), (30, 4), (21, 2), (18, 2) }
{ (36, 1), (9, 2), (36, 2), (42, 2), (9, 4), (15, 4), (15, 2), (42, 4), (42, 1), (9, 1), (36, 4), (15, 1) }
{ (50, 6), (38, 3), (50, 5), (47, 3), (47, 6), (50, 3), (35, 5), (38, 6), (35, 3), (47, 5), (35, 6), (38, 5) }
{ (30, 3), (18, 5), (30, 6), (21, 3), (33, 6), (33, 5), (18, 3), (21, 6), (18, 6), (30, 5), (21, 5), (33, 3) }
{ (42, 3), (36, 6), (42, 5), (15, 6), (9, 5), (36, 3), (15, 3), (15, 5), (36, 5), (42, 6), (9, 3), (9, 6) }
{ (3, 3), (3, 5), (48, 5), (39, 3), (39, 6), (3, 6), (48, 6), (12, 5), (48, 3), (39, 5), (12, 6), (12, 3) }
{ (40, 4), (28, 4), (40, 1), (40, 2), (28, 1), (10, 2), (28, 2), (7, 2), (10, 4), (7, 1), (10, 1), (7, 4) }
{ (1, 6), (4, 5), (4, 3), (13, 3), (1, 5), (13, 6), (13, 5), (16, 6), (4, 6), (16, 3), (16, 5), (1, 3) }
{ (5, 5), (29, 6), (20, 5), (14, 3), (20, 3), (29, 5), (5, 3), (29, 3), (20, 6), (5, 6), (14, 6), (14, 5) }
{ (43, 4), (43, 2), (49, 4), (19, 2), (25, 4), (43, 1), (49, 2), (25, 2), (49, 1), (19, 1), (25, 1), (19, 4) }
{ (27, 6), (45, 5), (27, 3), (24, 3), (45, 3), (27, 5), (24, 5), (6, 3), (45, 6), (6, 6), (6, 5), (24, 6) }
{ (26, 3), (26, 5), (32, 3), (8, 5), (32, 6), (2, 5), (8, 3), (32, 5), (8, 6), (26, 6), (2, 3), (2, 6) }
{ (31, 3), (37, 6), (22, 6), (22, 3), (31, 6), (31, 5), (46, 3), (37, 5), (22, 5), (37, 3), (46, 5), (46, 6) }
{ (50, 4), (35, 4), (47, 4), (50, 2), (35, 2), (50, 1), (38, 2), (47, 2), (38, 4), (47, 1), (38, 1), (35, 1) }
{ (46, 2), (37, 4), (31, 2), (31, 1), (22, 1), (46, 4), (37, 2), (22, 4), (37, 1), (22, 2), (31, 4), (46, 1) }
{ (45, 1), (45, 2), (27, 2), (24, 4), (6, 2), (24, 2), (6, 1), (27, 4), (27, 1), (45, 4), (24, 1), (6, 4) }
{ (48, 2), (48, 4), (12, 4), (3, 1), (39, 1), (48, 1), (3, 2), (12, 1), (39, 4), (12, 2), (3, 4), (39, 2) }
{ (13, 2), (1, 2), (16, 4), (16, 2), (1, 1), (4, 4), (1, 4), (4, 1), (13, 4), (16, 1), (13, 1), (4, 2) }
{ (28, 5), (10, 6), (40, 6), (10, 3), (28, 6), (40, 3), (40, 5), (28, 3), (10, 5), (7, 5), (7, 6), (7, 3) }
{ (14, 4), (20, 4), (20, 2), (29, 1), (20, 1), (29, 2), (5, 2), (14, 2), (5, 1), (14, 1), (5, 4), (29, 4) }
{ (49, 3), (25, 5), (43, 6), (43, 5), (19, 3), (19, 5), (19, 6), (25, 3), (43, 3), (49, 5), (25, 6), (49, 6) }
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Table A.3: Orbits of G = Z95 × Z31 under x→ 4x

{(0,0)}
{ (76, 0), (19, 0) }
{ (38, 0), (57, 0) }
{ (0, 23), (0, 27), (0, 30), (0, 15), (0, 29) }
{ (0, 2), (0, 1), (0, 16), (0, 4), (0, 8) }
{ (0, 22), (0, 11), (0, 13), (0, 26), (0, 21) }
{ (0, 28), (0, 19), (0, 14), (0, 7), (0, 25) }
{ (0, 18), (0, 5), (0, 10), (0, 20), (0, 9) }
{ (0, 6), (0, 24), (0, 12), (0, 17), (0, 3) }
{ (25, 0), (35, 0), (30, 0), (55, 0), (45, 0), (85, 0), (20, 0), (80, 0), (5, 0) }
{ (15, 0), (10, 0), (40, 0), (50, 0), (60, 0), (90, 0), (70, 0), (65, 0), (75, 0) }
{ (57, 2), (38, 2), (57, 1), (38, 8), (38, 4), (38, 16), (38, 1), (57, 4), (57, 8), (57, 16) }
{ (76, 2), (19, 8), (76, 16), (76, 1), (19, 2), (19, 16), (19, 1), (76, 4), (76, 8), (19, 4) }
{ (19, 11), (19, 21), (76, 21), (19, 22), (19, 26), (76, 22), (19, 13), (76, 11), (76, 26), (76, 13) }
{ (19, 27), (19, 29), (19, 30), (19, 15), (76, 23), (76, 30), (76, 15), (76, 27), (76, 29), (19, 23) }
{ (38, 20), (38, 9), (57, 5), (57, 20), (38, 5), (57, 9), (38, 18), (38, 10), (57, 18), (57, 10) }
{ (76, 7), (76, 28), (76, 19), (19, 7), (76, 25), (19, 25), (19, 14), (19, 19), (19, 28), (76, 14) }
. . .
{ (66, 0), (24, 0), (61, 0), (1, 0), (6, 0), (36, 0), (64, 0), (9, 0), (4, 0),(44, 0), (11, 0), (49, 0),
(81, 0), (26, 0), (16, 0), (39, 0), (54,0), (74, 0) }
{ (62, 0), (93, 0), (82, 0), (43, 0), (92, 0), (63, 0), (58, 0), (68, 0), (83, 0), (7, 0), (77, 0), (17, 0),
(23, 0), (28, 0), (42, 0), (47, 0),(87, 0), (73, 0) }
{ (18, 0), (53, 0), (8, 0), (12, 0), (32, 0), (67, 0), (33, 0), (72, 0), (37, 0), (48, 0), (22, 0), (78, 0),
(2, 0), (88, 0), (3, 0), (52, 0), (27,0), (13, 0) }
{ (86, 0), (46, 0), (41, 0), (59, 0), (29, 0), (84, 0), (14, 0), (94, 0), (34, 0), (71, 0), (79, 0), (89, 0),
(69, 0), (56, 0), (21, 0), (31, 0),(51, 0), (91, 0) }
{ (25, 17), (85, 12), (5, 6), (45, 17), (55, 17), (30, 24), (5, 17), (85, 17), (25, 6), (20, 3), (85, 6), (35, 24),
(5, 24), (45, 24), (5, 3), (35,12), (25, 24), (30, 17), (30, 12), (5, 12), (80, 3), (45, 3),(55, 24), (80, 17),
(55, 12), (80, 6), (80, 12), (55, 3), (80, 24), (20, 17), (85, 24), (85, 3), (25, 3), (35, 17), (20, 24), (25, 12),
(30, 6), (55, 6), (45, 6), (30, 3), (35, 6), (35, 3), (20, 6), (20, 12), (45, 12) }
. . .
{ (48, 29), (22, 15), (88, 15), (72, 27), (37, 29), (32, 27), (53, 30), (18, 15), (72, 15), (22, 23),(8, 27),
(13, 30), (33, 27), (18, 27), (8,15), (18, 30), (8, 23), (88, 27), (22, 29), (27, 27), (52, 23), (33, 23), (52, 15),
(22, 30), (78, 29), (72, 23), (88, 23), (37, 30), (18, 29), (2,30), (48, 15), (78, 27), (12, 29), (12, 27), (2, 23),
(27, 30), (33, 30), (13, 23), (37, 27), (32, 15), (67, 27), (3, 23), (3, 29), (37, 23), (53,23), (53, 15), (88, 30),
(52, 27), (33, 29), (78, 23), (33, 15), (12, 15), (48, 30), (12, 23), (27, 15), (22, 27), (2, 15), (8, 29), (3, 30),
(67,30), (27, 29), (48, 23), (13, 29), (52, 29), (67, 15), (48, 27), (88, 29), (53, 27), (67, 23), (13, 15),(32, 23),
(3, 15), (52, 30), (78, 30), (32,30), (2, 27), (12, 30), (18, 23), (78, 15), (27, 23), (3, 27), (32, 29), (72, 30),
(13, 27), (8, 30), (2, 29), (72, 29), (53, 29), (67, 29), (37, 15)}
. . .
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Table A.4: Orbits of G = Z100 × Z7 under x→ 81x

{ (65, 0) } { (75, 0) } { (45, 0) } { (85, 0) } { (30, 0) } { (35, 0) } { (60, 0) }
{ (10, 0) } { (50, 0) } { (5, 0) } { (80, 0) } { (70, 0) } { (55, 0) } { (25, 0) }
{ (0, 0) } { (20, 0) } { (15, 0) } { (95, 0) } { (90, 0) } { (40, 0) }
{ (65, 3), (65, 6), (65, 5) } { (25, 4), (25, 1), (25, 2) } { (45, 1), (45, 4), (45, 2) }
{ (85, 4), (85, 1), (85, 2) } { (80, 2), (80, 1), (80, 4) } { (50, 6), (50, 5), (50, 3) }
{ (0, 2), (0, 1), (0, 4) } { (35, 4), (35, 2), (35, 1) } { (90, 5), (90, 6), (90, 3) }
{ (55, 5), (55, 6), (55, 3) } { (75, 5), (75, 6), (75, 3) } { (95, 6), (95, 5), (95, 3) }
{ (15, 6), (15, 5), (15, 3) } { (70, 5), (70, 3), (70, 6) }
{ (15, 2), (15, 1), (15, 4) } { (25, 6), (25, 5), (25, 3) }
{ (5, 6), (5, 5), (5, 3) } { (5, 1), (5, 2), (5, 4) } { (75, 4), (75, 2), (75, 1) }
{ (85, 3), (85, 6), (85, 5) } { (90, 1), (90, 2), (90, 4) } { (60, 2), (60, 4), (60, 1) }
{ (20, 3), (20, 5), (20, 6) } { (65, 1), (65, 4), (65, 2) } { (40, 3), (40, 6), (40, 5) }
{ (30, 1), (30, 4), (30, 2) } { (10, 1), (10, 4), (10, 2) } { (45, 5), (45, 6), (45, 3) }
{ (0, 6), (0, 5), (0, 3) } { (35, 3), (35, 5), (35, 6) } { (60, 6), (60, 3), (60, 5) }
{ (80, 3), (80, 6), (80, 5) } { (30, 3), (30, 5), (30, 6) } { (50, 2), (50, 4), (50, 1) }
{ (10, 6), (10, 3), (10, 5) } { (20, 4), (20, 2), (20, 1) } { (95, 4), (95, 2), (95, 1) }
{ (70, 1), (70, 4), (70, 2) } { (40, 4), (40, 1), (40, 2) } { (55, 1), (55, 2), (55, 4) }
{ (36, 0), (96, 0), (76, 0), (16, 0), (56, 0) } { (78, 0), (58, 0), (38, 0), (98, 0), (18, 0) }
{ (23, 0), (43, 0), (83, 0), (63, 0), (3, 0) } { (71, 0), (91, 0), (31, 0), (51, 0), (11, 0) }
{ (93, 0), (13, 0), (53, 0), (73, 0), (33, 0) } { (42, 0), (2, 0), (22, 0), (62, 0), (82, 0) }
{ (94, 0), (34, 0), (14, 0), (54, 0), (74, 0) } { (4, 0), (84, 0), (44, 0), (64, 0), (24, 0) }
{ (37, 0), (57, 0), (17, 0), (97, 0), (77, 0) } { (68, 0), (48, 0), (8, 0), (88, 0), (28, 0) }
{ (1, 0), (21, 0), (41, 0), (61, 0), (81, 0) } { (79, 0), (19, 0), (99, 0), (39, 0), (59, 0) }
{ (9, 0), (89, 0), (69, 0), (49, 0), (29, 0) } { (87, 0), (7, 0), (27, 0), (47, 0), (67, 0) }
{ (66, 0), (86, 0), (26, 0), (6, 0), (46, 0) } { (12, 0), (32, 0), (72, 0), (92, 0), (52, 0) }
{ (91, 6), (31, 6), (91, 5), (11, 6), (31, 3), (51, 3), (51, 5), (11, 3),
(51, 6), (11, 5), (31, 5), (71, 3), (91, 3), (71, 5), (71, 6) }
{ (14, 3), (94, 6), (14, 5), (74, 3), (54, 3), (94, 3), (34, 6), (54, 6),
(34, 3), (74, 6), (14, 6), (54, 5), (94, 5), (74, 5), (34, 5) }
{ (23, 5), (43, 6), (43, 5), (23, 6), (3, 3), (63, 3), (23, 3), (63, 5),
(3, 5), (3, 6), (83, 3), (63, 6), (83, 5), (43, 3), (83, 6) }
{ (9, 2), (49, 4), (89, 4), (69, 2), (9, 4), (69, 1), (29, 1), (29, 2),
(89, 1), (49, 2), (69, 4), (89, 2), (49, 1), (9, 1), (29, 4) }
{ (44, 3), (4, 5), (4, 3), (64, 6), (44, 5), (84, 6), (64, 3), (24, 5),
(64, 5), (24, 3), (84, 5), (24, 6), (4, 6), (84, 3), (44, 6) }
. . .
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Table A.5: Orbits of G = Z77 × Z3 under x→ 4x

{ (0, 0) },
{ (0, 1) },
{ (0, 2) },
{ (22, 0), (44, 0), (11, 0) },
{ (22, 1), (44, 1), (11, 1) },
{ (22, 2), (44, 2), (11, 2) },
{ (66, 0), (55, 0), (33, 0) },
{ (66, 1), (55, 1), (33, 1) },
{ (66, 2), (55, 2), (33, 2) },
{ (7, 0), (63, 0), (21, 0), (28, 0), (35, 0) },
{ (7, 1), (63, 1), (21, 1), (28, 1), (35, 1) },
{ (7, 2), (63, 2), (21, 2), (28, 2), (35, 2) },
{ (14, 0), (49, 0), (70, 0), (56, 0), (42, 0) },
{ (14, 1), (49, 1), (70, 1), (56, 1), (42, 1) },
{ (14, 2), (49, 2), (70, 2), (56, 2), (42, 2) },
{ (17, 0), (68, 0), (24, 0), (62, 0), (54, 0), (61, 0), (19, 0), (13, 0),
(41, 0), (6, 0), (52, 0), (76, 0), (40, 0), (10, 0), (73, 0) },
{ (17, 1), (68, 1), (24, 1), (62, 1), (54, 1), (61, 1), (19, 1), (13, 1),
(41, 1), (6, 1), (52, 1), (76, 1), (40, 1), (10, 1), (73, 1) },
{ (17, 2), (68, 2), (24, 2), (62, 2), (54, 2), (61, 2), (19, 2), (13, 2),
(41, 2), (6, 2), (52, 2), (76, 2), (40, 2), (10, 2), (73, 2) },
{ (64, 0), (9, 0), (15, 0), (4, 0), (23, 0), (16, 0), (58, 0), (25, 0),
(60, 0), (37, 0), (1, 0), (71, 0), (53, 0), (36, 0), (67, 0) },
{ (64, 1), (9, 1), (15, 1), (4, 1), (23, 1), (16, 1), (58, 1), (25, 1),
(60, 1), (37, 1), (1, 1), (71, 1), (53, 1), (36, 1), (67, 1) },
{ (64, 2), (9, 2), (15, 2), (4, 2), (23, 2), (16, 2), (58, 2), (25, 2),
(60, 2), (37, 2), (1, 2), (71, 2), (53, 2), (36, 2), (67, 2) },
{ (48, 0), (45, 0), (31, 0), (27, 0), (69, 0), (26, 0), (20, 0), (38, 0),
(5, 0), (47, 0), (75, 0), (3, 0), (34, 0), (12, 0), (59, 0) },
{ (48, 1), (45, 1), (31, 1), (27, 1), (69, 1), (26, 1), (20, 1), (38, 1),
(5, 1), (47, 1), (75, 1), (3, 1), (34, 1), (12, 1), (59, 1) },
{ (48, 2), (45, 2), (31, 2), (27, 2), (69, 2), (26, 2), (20, 2), (38, 2),
(5, 2), (47, 2), (75, 2), (3, 2), (34, 2), (12, 2), (59, 2) },
{ (18, 0), (43, 0), (46, 0), (8, 0), (65, 0), (29, 0), (32, 0), (72, 0),
(2, 0), (50, 0), (39, 0), (74, 0), (30, 0), (51, 0), (57, 0) },
{ (18, 1), (43, 1), (46, 1), (8, 1), (65, 1), (29, 1), (32, 1), (72, 1),
(2, 1), (50, 1), (39, 1), (74, 1), (30, 1), (51, 1), (57, 1) },
{ (18, 2), (43, 2), (46, 2), (8, 2), (65, 2), (29, 2), (32, 2), (72, 2),
(2, 2), (50, 2), (39, 2), (74, 2), (30, 2), (51, 2), (57, 2) },

40



Table A.6: Orbits of G = Z101 × Z11 under x→ 5x

{ (0, 0)}
{ (0, 2), (0, 6), (0, 10), (0, 7), (0, 8) }
{ (0, 1), (0, 5), (0, 4), (0, 9), (0, 3) }
{ (40, 4), (8, 3), (66, 3), (39, 1), (86, 3), (28, 9), (51, 5), (12, 9), (53, 3), (27, 4), (94, 5), (90, 3),
(29, 9), (42, 5), (18, 5), (63, 4),(91, 1), (98, 5), (60, 1), (46, 4), (44, 1), (69, 1), (26, 4), (34, 9), (99, 9) }
{ (16, 1), (68, 3), (24, 3), (1, 9), (80, 5), (95, 9), (56, 3), (58, 3), (87, 9), (71, 1), (81, 4), (5, 1),
(19, 4), (92, 5), (84, 9), (36, 9), (79,1), (97, 3), (78, 4), (54, 5), (37, 4), (52, 5), (88, 4), (31, 1), (25, 5) }
{ (12, 6), (26, 10), (63, 10), (66, 2), (60, 8), (40, 10), (69, 8), (46, 10), (34, 6), (51, 7), (28, 6), (53, 2),
(39, 8), (91, 8), (8, 2), (27,10), (99, 6), (44, 8), (90, 2), (94, 7), (29, 6), (98, 7), (86, 2), (42, 7), (18, 7) }
{ (36, 5), (16, 3), (31, 3), (19, 1), (92, 4), (52, 4), (79, 3), (25, 4), (88, 1), (54, 4), (58, 9), (68, 9),
(95, 5), (56, 9), (81, 1), (71, 3),(78, 1), (97, 9), (84, 5), (37, 1), (1, 5), (5, 3), (24, 9), (80, 4), (87, 5) }
{ (54, 1), (24, 5), (25, 1), (80, 1), (56, 5), (52, 1), (16, 9), (97, 5), (19, 3), (79, 9), (71, 9), (31, 9),
(78, 3), (84, 4), (81, 3), (5, 9),(92, 1), (36, 4), (88, 3), (95, 4), (1, 4), (37, 3), (58, 5), (68, 5), (87, 4) }
{ (100, 6), (6, 6), (85, 8), (64, 10), (82, 10), (21, 7), (76, 7), (9, 7), (23, 10), (47, 7), (65, 6), (33, 2),
(43, 2), (45, 2), (30, 8), (17, 6),(96, 8), (70, 8), (49, 7), (14, 6), (13, 10), (20, 10), (22, 8), (4, 2), (77, 2) }
{ (28, 10), (99, 10), (18, 8), (8, 7), (34, 10), (51, 8), (86, 7), (63, 2), (12, 10), (90, 7), (42, 8), (39, 6),
(40, 2), (91, 6), (66, 7), (44, 6),(27, 2), (98, 8), (26, 2), (46, 2), (69, 6), (29, 10), (94, 8), (60, 6), (53, 7) }
{ (88, 0), (84, 0), (5, 0), (24, 0), (19, 0), (92, 0), (58, 0), (79, 0), (25, 0), (68, 0), (52, 0), (81, 0),
(36, 0), (1, 0), (54, 0), (87, 0), (97,0), (37, 0), (56, 0), (31, 0), (80, 0), (71, 0), (16, 0), (95, 0), (78, 0) }
{ (31, 10), (37, 7), (79, 10), (58, 8), (5, 10), (92, 6), (87, 2), (54, 6), (97, 8), (78, 7), (36, 2), (95, 2),
(56, 8), (81, 7), (80, 6), (16, 10),(68, 8), (19, 7), (52, 6), (88, 7), (25, 6), (84, 2), (24, 8), (1, 2), (71, 10) }
{ (1, 1), (79, 5), (52, 3), (58, 4), (68, 4), (37, 9), (95, 1), (71, 5), (24, 4), (97, 4), (16, 5), (88, 9),
(36, 1), (5, 5), (56, 4), (78, 9), (19,9), (54, 3), (31, 5), (84, 1), (25, 3), (92, 3), (87, 1), (80, 3), (81, 9) }
{ (60, 3), (8, 9), (26, 1), (66, 9), (98, 4), (12, 5), (18, 4), (63, 1), (53, 9), (51, 4), (91, 3), (34, 5),
(40, 1), (46, 1), (69, 3), (94, 4),(86, 9), (42, 4), (29, 5), (44, 3), (28, 5), (90, 9), (99, 5), (39, 3), (27, 1) }
{ (28, 3), (12, 3), (51, 9), (98, 9), (44, 4), (39, 4), (29, 3), (8, 1), (60, 4), (42, 9), (26, 5), (63, 5),
(66, 1), (90, 1), (18, 9), (91, 4),(34, 3), (46, 5), (69, 4), (99, 3), (53, 1), (40, 5), (86, 1), (94, 9), (27, 5) }
{ (13, 6), (76, 2), (23, 6), (4, 10), (82, 6), (85, 7), (9, 2), (77, 10), (65, 8), (100, 8), (45, 10), (70, 7),
(14, 8), (22, 7), (33, 10), (96, 7),(20, 6), (47, 2), (6, 8), (43, 10), (49, 2), (21, 2), (64, 6), (17, 8), (30, 7) }
{ (45, 4), (9, 3), (77, 4), (4, 4), (64, 9), (23, 9), (96, 5), (22, 5), (65, 1), (20, 9), (43, 4), (100, 1),
(17, 1), (33, 4), (85, 5), (47, 3),(13, 9), (14, 1), (76, 3), (82, 9), (6, 1), (21, 3), (49, 3), (70, 5), (30, 5) }
{ (89, 2), (83, 6), (74, 7), (73, 2), (32, 10), (11, 8), (3, 6), (75, 7), (61, 7), (2, 2), (57, 10), (15, 8),
(67, 2), (10, 10), (35, 8), (50, 6),(59, 6), (62, 10), (72, 2), (38, 7), (93, 8), (41, 10), (48, 8), (7, 6), (55, 7) }
{ (28, 2), (40, 7), (90, 8), (94, 6), (46, 7), (69, 10), (99, 2), (42, 6), (63, 7), (27, 7), (66, 8), (91, 10),
(86, 8), (98, 6), (26, 7), (60, 10),(39, 10), (53, 8), (51, 6), (34, 2), (29, 2), (44, 10), (12, 2), (8, 8), (18, 6) }
. . .
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Table A.7: Nonexistence of almost 3-ary NPS of type II with period n (n ≤ 1000)

n Existence
20, 35, 44, 65, 68, 77, 92, 95, 116, 119, 140, 143, 161,
164, 176, 185, 188, 203, 209, 212, 215, 221, 236, 245,
260, 272,275, 284, 287, 299, 308, 320, 323, 329, 332,
335, 341, 356, 365, 368, 371, 377, 395, 404, 407, 413,
425, 428, 437, 452, 464, 473, 476, 485, 497, 500, 515,
524, 527, 533, 539, 545, 548, 551, 560, 572, 575, 581, not exist by
596, 611, 620, 623, 629, 635, 644, 656, 665, 668, 671, Theorem 3.3.1
689, 692, 695, 704, 707, 713, 716, 725, 731, 740, 749,
752, 764, 767, 779, 785, 788, 791, 803, 812, 815, 833,
836, 845, 848, 851, 860, 869, 875, 893, 899, 908, 917,
923, 932, 935, 944, 956, 959, 965, 989, 995
5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 80, 83, 89, 101,
107, 113, 125, 131, 137, 149, 155, 167, 173, 179, 191,
197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 305,
311, 317, 347, 353, 359, 380, 383, 389, 401, 419, 431, not exist by
443, 449, 455, 461, 467, 479, 491, 503, 509, 521, 557,
563, 569, 587, 593, 599, 605, 617, 641, 647, 653, 659, Theorem 3.3.1
677, 683, 701, 719, 737, 743, 755, 761, 773, 797, 809, and
821, 827, 839, 857, 863, 881, 884, 887, 905, 911, 929, Theorem 3.3.4
941, 947, 953, 971, 977, 980, 983
230, 374, 530, 680, 830 not exist by Theorem 3.3.4

Table A.8: Nonexistence of almost 5-ary NPS of type II with period n (n ≤ 1000)

n Existence
7, 12, 27, 37, 52, 57, 67, 77, 87, 92, 97, 112, 117, 127,
132, 147, 157, 172, 177, 187, 192, 207, 212, 217, 237,
247, 252, 267, 272, 277, 287, 292, 297, 307, 327, 332,
337, 357, 367, 372, 377, 387, 397, 407, 412, 417, 427,
432, 437, 447, 452, 457, 477, 487, 492, 507, 517, 527, not exist
532, 537, 547, 567, 572, 577, 592, 597, 607, 612, 627, by Theorem 3.4.1
637, 652, 657, 667, 687, 692, 697, 707, 717, 727, 732,
737, 747, 752, 757, 767, 772, 777, 787, 807, 812, 817,
832, 837, 847, 852, 867, 877, 892, 897, 907, 912, 917,
927, 932, 937, 957, 967, 972, 987, 997
17, 47, 107, 137, 167, 197, 227, 257, 317, 347, 467, not exist by
497, 557, 587, 617, 647, 677, 797, 827, 857, 887, 947, Theorem 3.4.1
977 and Theorem 3.4.4
23, 29, 53, 56, 59, 83, 89, 113, 149, 173, 179, 182, 203,
233, 239, 263, 269, 293, 350, 353, 359, 380, 383, 389,
419, 443, 449, 479, 503, 509, 563, 569, 593, 599, 644, not exist
653, 659, 683, 689, 719, 743, 773, 791, 809, 839, 863, by Theorem 3.4.4
884, 929, 938, 53, 983
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