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ABSTRACT 

 

 

 

ANALYSIS OF THREE BLOCK CIPHER BASED HASH FUNCTIONS: WHIRLPOOL, 

GRØSTL AND GRINDAHL 

 

 

 

 

Ismailova, Rita 

Ph.D., Department of Cryptography 

Supervisor : Assoc. Prof. Dr. Melek Diker Yücel 

 

 

 

September 2012, 77 pages 

 

 

The subject of this thesis is the study of cryptographic hash functions, which utilize block ciphers 

as underlying chain functions. It is mainly concerned with the analysis of the three hash 

algorithms, the Whirlpool, Grøstl and Grindahl. All these hash functions have underlying block 

ciphers that are modified versions of the Advance Encryption Standard and we investigate the 

behavior of these block ciphers under the integral attack. 

Statistical tests, such as the avalanche test and the collision test, are the regular tools for 

examining the hash function security. In this work, we inspect the statistical behavior the three 

hash functions and search for collisions. Although it is very difficult to obtain collisions for the 

actual algorithms, we find some collisions under slight modifications of the original 

constructions. The ease or difficulty of finding a collision for a modified version also shows the 

respective importance of the specific hash function branch, missing in the modified version. 

 

Keywords: Iterated Hash functions, Integral attack, Whirlpool, Grøstl, Grindahl 
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ÖZ 

 

 

 

 

BLOK ŞİFRE TABANLI ÖZET FONKSİYONLAR ANALİZİ: WHIRLPOOL, GRØSTL VE 

GRINDAHL 

 

 

 

 

Ismailova, Rita 

Doktora, Kriptografi Bölümü 

Tez Yöneticisi : Doç. Dr. Melek Diker Yücel 

 

 

 

Eylül 2012, 77 Sayfa 

 

 

Bu tez, zincirleme yapısının her zincirinde blok şifreleri kullanan kriptografik özet fonksiyonlar 

hakkındadır ve özünde üç özet fonksiyonuyla, Whirlpool, Grøstl ve Grindahl’un analizi ile 

ilgilidir. Bu üç özet fonksiyon, blok şifre olarak (Gelişmiş Şifreleme Standardı) AES’e benzeyen 

şifreler kullanır; ve tezde bu blok şifrelerin integral atağına karşı davranışları incelenmektedir.  

Çığ testi ve çarpışma testi gibi istatistiksel testler, özet fonksiyonlarının  güvenlik incelemesinde 

kullanılan olağan tekniklerdir. Bu çalışmada üç özet fonksiyonunun istatistiksel özellikleri 

incelenmiş ve çarpışmalar aranmıştır. Algoritmaların aslı için çarpışma bulmak çok zor olsa da, 

yapılarında ufak değişiklikler oluşturularak bazı çarpışmalar bulunmuştur. Değiştirilmiş herhangi 

bir yapı için çarpışma bulunmasındaki kolaylık veya zorluk, o yapıyı oluşturmak için özet 

fonksiyonun ana yapısından çıkarılan kolun önem derecesinin de bir göstergesidir. 

 

Anahtar Kelimeler: Yinelemeli özet fonksiyonlar, İntegral atağı, Whirlpool, Grøstl, Grindahl  
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CHAPTER 1 

 

1.INTRODUCTION 

 

 

In the modern world, where information is mainly stored on computers, it is essential to 

guarantee data integrity. Hash functions have many applications in the field of information 

security, in particular in digital signatures, message authentication codes (MAC) and other 

methods of information authentication. Besides, hash algorithms can be used for fingerprinting, 

to detect duplicate data, to uniquely identify files and checksums to discover accidental 

corruption of data. In digital signature applications, hash functions can be utilized to protect data 

from intentional alteration. Hash algorithms are many-to-one functions, so that finding the 

message from its hash (or digest) is not possible. Cryptographic hash functions are required to 

have two main properties, namely, they must be one-way, and collision resistant. Breaking a hash 

function means that one or both of those properties are not true.  

Starting from 2004, substantial advances have been made in the cryptanalysis of hash functions 

[40]. In 2005 a full version of SHA-1 has been reported broken in [92]. These achievements in 

cryptanalysis of hash functions stimulate cryptographic community to pay more attention to the 

analysis of the algorithms. 

One of the approaches for assessing hash function security are statistical tests, such as the 

avalanche test [35], [64] and the collision test [64], [88], [90].  

1.1. Cryptographic Hash Functions 

Hash functions, also known as message digests, are important cryptographic primitives.  The 

term hash function originates historically from computer science, where it denotes a function that 

compresses a string of arbitrary input to a string of fixed length. The name hash function has also 

been widely adopted for cryptographic hash functions or cryptographically strong compression 

functions. Cryptographic hash functions are algorithms h mapping bit strings of arbitrary finite 

length to strings of fixed length, say n bits. For a domain D and range R with  
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              and           ,  

the hash function is many-to-one; i.e., the pairs of inputs with identical output are unavoidable, 

which are called collisions. Indeed, restricting h to a domain of N-bit inputs    , if h were 

“random” in the sense that all outputs were essentially equiprobable, then about      inputs 

would map to each output, and two randomly chosen inputs would yield the same output with 

probability     .  

A small change in the input value can cause a major bit shift on the entire output string. A shift 

or change of 1 bit in the input message will prompt a shift of about half of the total bits in the 

resulting hashcode. This is called the avalanche effect. 

There are two main types of cryptographic hash functions, named Modification Detection Codes 

(MDC) and Message Authentication Codes (MAC). The difference between these two types is in 

the number of inputs [76]. Hash functions take as input a message to be hashed and some initial 

vector (IV). The IV can be fixed to some predefined value (in MDC), or can serve as a key to 

hash algorithm (in MAC). Therefore, in the literature MDC and MAC may be classified as 

unkeyed and keyed hash functions respectively: 

 Modification detection codes are used to check if the message has been altered (data 

integrity), they are a subclass of unkeyed hash functions. 

 Message authentication codes are used to prove the data origin (data authentication), and 

they involve a secret key. Classification of cryptographic hash functions done in [78] is given in 

Figure 1-1. 

The definition of a one-way function (OWF) was given first in the seminal paper by Diffie and 

Hellman [31]. R. Merkle later defined a one-way hash function (OWHF) as a function h 

satisfying the following conditions [66]: 

 The description of h must be publicly known and should not require any secret 

information for its operation (extension of Kerckhoffs’s principle). 

 The argument X can be of arbitrary length and the result h(X) has a fixed length of n bits. 

 Given h and X, the computation of h(X) must be “easy”. 

 The hash function must be one-way in the sense that given a Y in the image of h, it is 

“hard” to find a message X such that        and given X and      it is “hard” to find 

a message      such that           . 
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Figure 1-1 Classification of cryptographic hash functions 

This definition of OWFH differs from the one-way function (OWF) of [31] only by condition 2, 

i.e., OWHF operates with messages of arbitrary length, while OWF can take input messages of 

some predefined, fixed size.  

Security of a hash function means a high level of collision resistance. The first definition of 

collision resistance was given by Damgård [25]. Here we provide an informal definition given by 

B. Preneel [77]. A collision resistant hash function (CRHF) is a one-way hash function 

(OWHF) satisfying the following additional condition: 

5. The hash function must be collision resistant: this means that it is “hard” to find two distinct 

messages that hash to the same result. 

1.2. Hash Function Design Principles  

1.2.1. Iterated Hash Functions 

Almost all known hash functions are based on some internal function that processes each 

message block of a fixed size in a similar way. Such hash functions, for which message blocks 

are subjected to the same function successively, are called “iterated” [54].  

Iterated hash functions use the so-called linear hashing technique, which has t chains. The linear 

hash algorithm performs hashing by splitting a message in a deterministic order, i.e., at the first 

step it prepares the message for hashing by dividing it into blocks. The splits are performed in 
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linear order (chain 0 first, then chain 1, then 2, and so on), and a new split is performed when any 

chain overflows, i.e., in linear hashing, the number of chains increases linearly and is exactly as 

large as needed. 

According to [28], the operations of cryptographic hash algorithms can be divided into four 

distinct parts:   

 Preprocessing stage 

 Padding rule 

 Initial value (IV) 

 Compression function 

The preprocessing stage is optional and introduces additional redundancy in order to increase the 

strength of the hash function. It can consist of constant bits, repetition of some bits of the 

message or can be a more complex procedure. Drawback of adding redundancy is the 

deceleration of the hash function. 

The information is divided into t b-bit blocks    through   . If the total number of bits in a 

message is no multiple of the block length b, a padding procedure has to be specified to make it 

a multiple. Also, in the padding procedure, the Merkle-Damgård strengthening rule should be 

applied, which means that in padded bits the length of the original message should be encoded 

[26], [68].    

Also, every specification of a hash function should fix an initial value IV (or a small set of initial 

values), together with a motivation for the choice. If IV is generated pseudo-randomly, the 

algorithm should be described. If IV is not specified, it should be hard to produce collisions for 

any IV. In that case it is clearly necessary to add the length of the message at the end, in order to 

avoid trivial attacks, like omitting one or more blocks at the beginning of the message. 

The most important part of a hash function is the function f used in each chain. In this work, we 

are concentrated on three different constructions of hash functions; the first of which, Merkle-

Damgård construction, can then be defined as follows: 

     I   

                   ,                 

           

Here    is the n-bit intermediate variable (or chaining variable), IV is the Initial Value,     is the 

b-bit block obtained by segmenting the input message X, and t is the number of chains. The 
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abbreviation FF denotes a fed-forward combination that may contain the output      of the 

previous chain, or the message block   , or both.  

Wide-Pipe construction differs from the above description by the use of a second function 

   after the last chain: 

     I   

                    ,                 

               

The third construction that we use, Concatenate-Permute-Truncate construction (CPT), is 

quite similar to the Wide-Pipe construction, except for the lack of the FF path. Moreover,    

function is chosen as a Concatenate-Permute-Truncate operation until the last chain, where 

truncation is discarded.  

The relation between the bit lengths of the hash      and the message block    differs for these 

three constructions. The size of the hash output      

 equals the message block length for the Merkle-Damgård, 

 equals  one half of the message block length for the Wide-Pipe, and it 

 is larger than the message block length for the Concatenate-Permute-Truncate (CPT) 

constructions. 

For each of the above constructions, we have chosen and analyzed a specific hash function 

 the Whirlpool as an example for the Merkle-Damgård construction,  

 512-bit version of Grøstl as an example for the Wide-Pipe construction, and  

 512-bit version of Grindahl as an example for the CPT construction.  

All these hash algorithms utilize AES-based block ciphers; where Whirlpool and Grindahl-512 

use a single block cipher in each chain, and Grøstl uses two of them. These ciphers are named as 

W for Whirlpool, P for Grindahl and P & Q for Grøstl. 

Since Whirlpool has an invertible cipher as its internal function that uses a key scheduling 

algorithm, it is stated that more testing and research are needed to confirm its security [6]. As 

regards Grøstl [38], which is one of the five finalists of the SHA-3 competition; since the 

algorithm construction is highly complex and the underlying block ciphers use 14 rounds each, 

the cryptanalysis seems to be hard. Andreeva et al. show that Grøstl is indifferentiable from a 

random oracle, under the assumption that the underlying permutations P & Q are ideal [2]. 

However, the speed of hashing under this design decreases significantly. Unlike Grøstl, the 

design principle of Grindahl hash function [51] is light and the hashing speed is high. One may 
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conjecture that the security properties of the algorithm are therefore reduced; given that the 256 

bit version of the hash function was reported to be broken [75], and it is shown [52] that the 

organization of internal states can drastically reduce the complexity of collision search.  

1.2.2. Security of Iterated Hash Functions 

The underlying block cipher of a hash algorithm has two inputs (the plaintext and the key) and 

one output. These two inputs can be chosen as one of the four variables {      and         , 

or V}: where    is a message block,      is the chaining variable (output of the previous chain 

that connects two chains), and   is some constant vector. 

Hash algorithm constructions may also have an additional feed-forward path as mentioned in 

Section 1.2.1. Along with the choice of the underlying chain function, the choice of the feed- 

forward path, which determines the chaining mode of the hash function, has great influence on 

the security of the hash function. The inputs of the chaining function and the feed-forward path 

determines the scheme of the hash function. 

Since the two inputs of the cipher and the feed-forward path can all be chosen from the set of 

four variables {      and         , or some fixed value V}, one can talk about 64 possible 

schemes for the iterated hash functions [79], although some of these 64 schemes are trivial and 

not useful.  

Both Merkle-Damgård and Wide-Pipe constructions can be used in one of the nontrivial schemes 

among the 64 possible schemes [79]. One of the meaningful, but yet, not safe schemes is the 

Rabin scheme, where the message     is the plaintext and the chaining variable       is the key of 

the underlying cipher; and feed-forwarding is omitted (or, it can be considered as XOR’ing with 

the all zero constant vector). Although hash functions, built using this scheme are fast, they 

cannot be considered secure. In [14] it is shown that among the 64 schemes, only 12 can be 

considered secure.  

Some of the schemes are named after the designers, who proposed the specific scheme. In 

addition to the Rabin scheme mentioned above, there are other schemes called Miyaguchi-

Preneel scheme [77], Matyas-Meyer-Oseas scheme [59], and Davies-Meyer scheme [97], [29].  

The choice of the scheme for a hash function should be done taking into account the construction 

of the underlying block cipher and it should be resistant to the following general attacks:  

 direct attack,  

 permutation attack,  
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 forward attack,  

 backward attack  

 fixed point attack.  

Some of the attacks listed above use weaknesses of the schemes, while others exploit the 

weaknesses of the underlying block ciphers. For example, the backward attack is based on the 

fact that the underlying block ciphers are invertible, and the security of the scheme relies on the 

strength of the chaining mode. The fixed point attack is an attack that uses so called fixed points 

of the algorithm; which occur when the output at some point of the chain with the given chaining 

variable and the message block, is equal to the output at some other point with other inputs. If the 

feed-forward path is not chosen carefully, the hash function can become vulnerable to this class 

of attacks.  

Although all three hash functions analyzed in this work are built using iterated principle; only 

two of them, Whirlpool and Grøstl, are to be described in terms of the schemes they exploit. The 

CPT construction does not use any feed-forward path, but concatenate and truncate operations, 

since the XOR operation, used in feed-forwarding is not always secure (however, the 

construction still can be considered as the Rabin scheme). 

The other type of attacks exploit the weaknesses of the underlying chain function of the 

algorithm. The integral cryptanalysis can be an example of this type of attacks. In [50], 

nonrandom properties of the substitution-permutation (SP) networks was shown, which can be 

used to attack the Square cipher. The name of the integral cryptanalysis came from the idea of 

the attack, where the propagation of sums (or integrals) of specific collection of the plaintexts are 

considered. The integrals have some interesting properties, and it was shown that after 3 rounds 

of the encryption one could predict the values of these sums. Using this knowledge, the 4-round 

integral cryptanalysis for Square, Rijndael and W ciphers can be briefly described as follows: to 

attack 4 rounds of the cipher one predicts the value of a single key byte at a time; and counting 

backward, checks, if the 3
rd

 round outputs corresponding to 256 chosen plaintexts sum up to 

zero. 

1.3. Contribution of the Thesis 

In this thesis, we try to find collisions for block cipher based hash functions, Whirlpool, Grøstl 

and Grindahl, by means of known attacks. Our choice of these hash functions is due to the 

internal functions used in each chain, which are all modified versions of the AES. All three hash 

algorithms utilize an iterated principle; however, they are built using dissimilar constructions; the 
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Merkle-Damgård construction of Whirlpool, the Wide-Pipe construction of Grøstl, and the 

Concatenate-Permute-Truncate (CPT) construction of Grindahl. 

We compute the integral structures for the underlying block ciphers W for Whirlpool, P for 

Grindahl, P & Q for Grøstl; and perform backward cryptanalysis of the overall constructions. In 

order to find the integral structures to be used for the integral attack, a set of experiments is 

carried out and patterns of cipher round outputs are investigated for the chosen plaintexts, which 

have all passive bytes except a single active byte that spans the whole field. At round outputs, the 

frequencies, with which elements occur at a particular position, and the number of high 

frequencies in the collection of all possible sets of integrals are studied. The ways to construct 

the integral structures for the selected algorithms are carried out, as well as the occurrence rates 

of each frequency, which are tabulated for each hash function. Also, the effects of core 

operations on the states of the ciphers are examined to determine the operations leading to the 

systematic integral characteristics. 

In hash function constructions, an adversary has the full knowledge of initial vectors and round 

constants used as cipher keys, at least for the first chain of a given hash function; since the initial 

vectors, IV, of the algorithms are fixed and not secret. Also, since the block ciphers, which are 

invertible by definition, are used as underlying chain functions, one can always proceed 

backward, if the schemes (determined by the inputs of the chaining function and the feed-forward 

path) are not chosen carefully. In order to examine the collision resistances of Merkle-Damgård, 

Wide-Pipe and CPT constructions, we try to find collisions by backward analysis. In these 

analyses we mainly make use of the fixed points in the pre-last chain of the hash functions, and 

proceed in backward direction, aiming to obtain the IV, defined by the algorithm design.  

We study three schemes of the Merkle-Damgård construction on the example of Whirlpool hash 

function. Three different schemes with different choices of cipher inputs and feed-forward paths 

are considered, for which we find some collisions and some pseudo-collisions (called ‘pseudo’ 

since they correspond to different IV’s). Collisions that we obtain show that the chosen three 

schemes are not secure; however, they don’t necessarily indicate a vulnerability for the original 

Whirlpool, whose feed-forward path includes modulo 2 sum of the input and output of the 

previous chain. The collisions that we find simply highlight the importance of the absent feed-

back branches of the chosen three schemes; with respect to the original (Miyaguchi-Preneel) 

scheme of Whirlpool.  

As for the Wide-Pipe construction, we attain fixed points on the modified version of Grøstl; 

obtain pseudo-collisions with the respective I ’s and show the impossibility of building the 

backward attack on the original version of the algorithm. The results of this part show that some 
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schemes under Wide-Pipe construction are more secure than the same schemes under Merkle-

Damgård construction. 

Along with the Concatenate Permute Truncate (CPT) construction, the Grindahl hash function 

uses Merkle-Damgård strengthening. The backward analysis on the original version of Grindahl 

and the role of Merkle-Damgård strengthening in this construction are shown. As a result of the 

backward analysis, we obtain pseudo-collisions for the Grindahl hash function.  

The thesis is organized in the following way:  

Chapter 2 starts by the general description of the three different constructions for the iterated 

hash functions based on block ciphers: Merkle-Damgård, Wide-Pipe and Concatenate Permute 

Truncate (CPT). Then, the structures of the chosen algorithms, namely, Whirlpool, Grøstl and 

Grindahl that utilize these constructions, are presented. A brief chronology of the attacks on 

hashing algorithms, and the interrelation among proposed attacks is discussed. 

In Chapter 3, round output integrals for the block ciphers of Whirlpool and 512 bit versions of 

Grøstl and Grindahl are constructed, frequencies of occurrence of field elements are counted, and 

the applicability of the integral attack on these ciphers is discussed. Also, the effects of core 

operations on the cipher states are investigated. 

Chapter 4 is devoted to the search for collisions. It starts with the review of a seminal paper [79] 

on the evaluation of attacks on 64 schemes. We then present our 3-round, 3-chain collisions or 

pseudo-collisions for the Merkle-Damgård, Wide-Pipe constructions and 3-chain pseudo-

collisions for the Concatenate Permute Truncate construction.  

Chapter 5 summarizes our conclusions and gives directions for future work.  
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CHAPTER 2 

 

2.AES BASED HASH FUNCTIONS AND ATTACKS ON THE 

ALGORITHMS 

 

 

Block ciphers are ideal candidates for underlying chain functions in iterative hash algorithms. 

However, even a cryptographically strong block cipher may exhibit weaknesses that may not be 

significant unless the cipher is used in a hash algorithm. Since the AES (Advanced Encryption 

Standard) has been carefully analyzed and the cryptographic world is closely familiar with the 

underlying cipher, Rijndael; it is not surprising that modified versions of Rijndael are widely 

used as chain functions in the design of hash algorithms. The modifications are mostly aimed at 

increasing the input size, since a larger block size is desirable for reasons of both efficiency and 

security of hashing.  

In this chapter, we are going to give the general description of AES based hash functions, which 

are analyzed in the thesis. The choice of the following three algorithms is made due to their 

dissimilar constructions. As an example for Merkle-Damgård construction, we have chosen the 

Whirlpool hash algorithm, secondly, Grøstl hash function is a wide-pipe construction where the 

size of the internal state is twice the size of the output and thirdly, Grindahl family of hash 

functions exploits the so called Concatenate-Permute-Truncate (CPT) design [51].  Below, we 

first summarize the three different constructions in Section 2.1 and then continue with the 

explanations of the Whirlpool, Grøstl and Grindahl hash functions in sections 2.1.2, 2.1.3 and 

2.1.4 respectively. In section 2.2, we compare the AES-based block ciphers used in these three 

hash functions with the AES. Finally, we give the history of hash function proposals, as well as 

the brief chronology of attacks on hashing algorithms, and we present the interrelation of 

proposed attacks in Section 2.3. 
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2.1. Iterated Hash Functions 

2.1.1. Three Constructions for Iterated Hash Functions 

In hash functions that use the iterative principle of hashing, the internal chain function f is the 

most important part. However, iterated hash functions differ not only by the design of the 

internal function f, but also by the overall construction of the algorithm. In this work, we 

consider three different constructions corresponding to three hash functions. 

The Merkle-Damgård structure ([26], [69]) was the one of the first proposals for constructing 

hash functions. The Wide-Pipe construction [58] is similar to Merkle-Damgård, but the message 

is processed through two internal functions. In the Concatenate-Permute-Truncate (CPT) 

construction [51], the main idea is to use concatenate-truncate operations. Also, the relation 

between the bit lengths of the hash      and the message block    differs for these three 

constructions. The size of each message block     

 equals the length of the hash      for the Merkle-Damgård, 

 equals twice the length of the hash for the Wide-Pipe, and it  

 is smaller than the length of the hash for the Concatenate-Permute-Truncate (CPT) 

constructions. 

Let us describe these design principles in more details.  

Merkle-Damgård Construction  

Ivan Damgård [26] and Ralph Merkle [69]  in two independent works published in Crypto'89 

showed that if the IV of a hash algorithm is fixed, and padding rule with encoded message length 

is added to the end of the message; then, if one-way chain function f is collision resistant, so is 

the hash function constructed using it. Lai and Massey called it the Merkle-Damgård 

strengthening [54] and the design approach is commonly called Merkle-Damgård design.  

In general, given a message         , one computes the message digest as follows: 

INPUT: a message                OUTPUT: the message digest              
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Expand a message:            ; 

     MD strengthening: last block    takes the length     in bits; 

Set      ; 

for (i = 1; i ≤ t; i++) 

  { 

                                                    

  } 

Set         

Here, FF is a fed-forward bit sequence, which may contain         , or both. Unfortunately, this 

construction has several undesirable properties: 

 Finding a second preimage for long messages is always much more efficient than brute force 

attack. 

 If a collision is found, multi-collisions (many messages mapping to the same hash value) can 

be found with only a little more effort.  

 "Herding attack" [45], also known as the chosen-target-forced-prefix (CTFP) attack, shows 

that an attacker can put together some prefix as part of the original preimage corresponding to 

the committed value     .  

 "Extension attack", also called "message extension" or "padding" attack, is based on the fact, 

that given the hash h(X) of an unknown input X, and length(X), one is able to compute 

h(X||pad(X)||X') for any X', where pad is the padding function of the hash. Since the h(X) and 

length(X) are known, the new blocks can be added and new padding can be attached. That is, 

it is possible to find hashes of inputs related to X even though X remains unknown.  

Wide-Pipe Construction  

In 2005, Lucks proposed the idea to preserve the internal state of the hash function twice as big 

as the hash, so that finding a collision on the internal state by means of brute-force attack is 

unacceptable - Wide-Pipe Hash [58]. Using this fact, Lucks showed that the second preimage 

attack may not be faster than exhaustive search. The main disadvantage of this method is its large 

memory requirement. Nevertheless, this strategy is very successful, and it has been used by many 

hash functions, which proceeded the second round of the SHA-3 competition, namely Blue 

Midnight Wish, [7], Fugue, Grøstl [38], JH, SIMD and Skein. 

The idea of Wide-Pipe construction can be described as follows: 

INPUT: a message         ,   OUTPUT: the message digest              
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Expand a message:            ; 

Set      ; 

for (i = 1; i ≤ t; i++) 

  { 

                                                       , w>m 

  } 

Set                                       

Concatenate-Permute-Truncate (CPT) Construction  

This construction was first named in [51]  by referring to the proposal of Snefru hash function 

[69]. The original idea that has been developed in the Snefru proposal is to use a different design 

method for the chain function, which is not based on traditional adaptation of a block cipher. The 

principle behind CPT construction can be described as follows: 

Expand a message:            ; 

Set      ; 

for (i = 1; i ≤ t; i++) 

  { 

                          
                  

                         
             

                             
           

} 

Set                                   

where       is a permutation, and truncation is discarding all but t least significant bits of a 

string [51]. Unlike the previous constructions, where the message (itself, or after being XORed 

with the previous chain output) plays the role of plaintext in the underlying cipher; in CPT 

construction, the message is inserted to the chain function by concatenating the input block to a 

truncated internal state. There have been early attacks against Snefru [12] improved in [9] as well 

as for Grindhal [75]. 

2.1.2. Whirlpool Hash Function 

Designed by Vincent Rijmen and Paulo S.L.M.Barreto, the Whirlpool hash function was 

endorsed by NESSIE project [6]. Whirlpool is an iterated hash function, based on Miyaguchi-
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Preneel scheme. As an underlying function, it uses a modified version of AES, the symmetric 

key block cipher W.  

Whirlpool (Figure 2-1) creates a 512 bit message digest from a message of length divisible by 

512 and less than     . Padding bits are arranged as a single 1 followed by necessary number of 

0’s. The length of the original message is enclosed in the last 256 bits of a padded message. 

The initial value of the hash,    is set to all 0’s, and it becomes the cipher key for the first 

encryption by the W cipher. Being XORed with the previous cipher key and plaintext, ciphertext 

becomes the cipher key for the next block. The message digest is the 512-bit output of the last 

block:                       . 

 

Figure 2-1 Structure of the Whirlpool hash function 

W is a round cipher with 10 rounds (Figure 2-2). Block size and key sizes are both 512 bits (64 

bytes). Encryption in W is similar to that of AES; i.e., each round contains the SubBytes, 

ShiftColumn, MixRow and AddRoundKey operations. If the state of the cipher is viewed as an 

8×8 matrix of 64 bytes, an input state A is converted to the output state B.  

SubBytes transformation,  , provides the confusion effect and it is performed on a single byte at 

a time: 

                               

The entries of the s-box, S, can also be calculated in     generated by the irreducible polynomial 

      . 

ShiftColumn,  , and MixRow,  , transformations are some permutations to provide diffusion. 

ShiftColumn is similar to the ShiftRow transformation in AES: 
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Figure 2-2 Whirlpool cipher W 

For the MixRow transformation defined by the circulant MDS matrix C, Whirlpool uses the 

polynomial              , (i.e., 0x11D) as the modulus.  

                   

AddRoundKey transformation   is performed byte by byte. Instead of using a new key 

expansion algorithm, W employs a copy of the encryption algorithm with round constants to 

generate the round keys (Figure 2-2). Each round constant RC is an 8×8 matrix, where only the 

first row has nonzero entries. 

2.1.3. Grøstl Hash Function 

Grøstl is proposed as a candidate to a SHA-3 competition [38]. It is a byte-oriented iterated hash 

function, which is based on components of the AES and uses an SP-network. Grøstl’s underlying 

function is built from two fixed, large permutations.  

Grøstl is a so-called wide-pipe construction where the size of the internal state is twice as large as 

the size of the output.  



 16 

The padding of an N-bit message in Grøstl starts by appending the bit 1, then      

          bits of 0 are added. The last 64 bits are for the binary representation of the number 

             , which represents the number of message blocks in a padded message. 

To be hashed, a message is processed block by block through two permutations, Q and P: 

                         

where    is a message block and    is a chaining variable (Figure 2-3). 

 

Figure 2-3 Structure of the Grøstl hash function 

Initial vectors are predefined for each version of Grøstl, and for 512 bit adaptation it is equal to 

00 … 00 02 00. Functions Q and P use the same structure as Rijndael, but they use round 

constants instead of keys. Q and P only differ in the description of round constants. The states of 

Q and P are much bigger than those of AES, so some operations are redefined.  

Message blocks are mapped to a state matrix in the similar way as in Rijndael. The state matrix is 

8×16. Number of rounds in both Q and P are equal to 14. Each round consists of four 

transformations, namely, MixBytes, ShiftBytes, SubByte, and AddConstant operations: 

                            . 

No key scheduling is used in the algorithm but a constant matrix.  

MixBytes operation,  , is defined by left-multiplication with the circulant MDS matrix C via 

irreducible polynomial              , (i.e., 0x11B) as the modulus. 

ShiftBytes moves all bytes by predefined number of positions. Let   be a vector showing the 

number of positions to be shifted at each row. For Grøstl-512 this vector is 
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SubBytes transformation,  , uses the same S-box as in Rijndael and operates one byte at a time. 

AddRoundConstant,  , is simply defined by XORing a constant matrix D to a state matrix, i.e., 

        . This is the operation, in which permutations P and Q differ, i.e., they have 

dissimilar round constants. For P the constant in round i has the value       , and for Q it is 

         , while other elements of constant matrices are equal to 0. 

The output transformation Ω is the truncation of 512 bits of         .  

2.1.4. Grindahl Hash Function 

While Whirlpool hash function is based on Merkle-Damgård construction, Grindahl family of 

hash functions exploits the Concatenate-Permute-Truncate (CPT) design [51]. In this section we 

give a description of the 512-bit version of the algorithm.  

Grindahl-512 creates a 512 bit message digest from a message of length at most 64(2
64
−1) bits. 

This is due to the padding rule of the hash function, which is arranged as a single 1 followed by 

necessary number of 0’s and last 64 bits enclose the number of message blocks (of 64 bits) in a 

padded message. 

The initial state of the hash,    is set to all zero string of length equal to 96 bytes, and being 

concatenated with the message block of 8 bytes, it becomes an input to the permutation function 

     . The output of the function is then truncated, so that the state becomes 96 bytes again. For 

the last iteration, the truncation is omitted. Finally, eight blank rounds are applied, and the output 

of the hash function is truncation of last 512 bits, i.e.,                 (Figure 2-4) 

 

Figure 2-4 Structure of the Grindahl-512 hash function 

The permutation       is defined as                           . 
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Again, we consider the extended state of the permutation function as an 8×13 matrix of 104 

bytes, an input state A is converted to the output state B. 

MixColumns. This transformation is defined as in the Rijndael specifications, but since the state 

is 8×13 matrix, the MDS matrix is redefined. 

ShiftRows. This transformation cyclically shifts bytes a number of positions along each row. The 

vector   for Grindahl-512 is 

                    

SubBytes. The non-linear part of the permutation, exactly defined as the SubBytes function of 

Rijndael. 

AddConstant. Instead of AddRoundKey transformation, Grindahl also uses a constant. This 

function is simply defined by XORing a constant matrix D to a state matrix, i.e.,         , 

and element          , where 01 is the byte-wise hexadecimal value of 1. 

2.2. Comparison of the Block Ciphers of the Three Hash Functions 

with the AES 

Each hash function described in this chapter uses a cipher based on the AES as its chain function, 

which is proved to be resistant to attacks and expected to be a strong base for hash functions. 

However, block cipher based hash functions can be subject to attacks applicable to block ciphers 

[78]. For example, although there are some important differences between differential attacks on 

block ciphers and differential attacks on hash functions, basically the same techniques and 

reasoning apply. Both attacks require that a differential characteristic is found that has a 

sufficiently large probability.  

It was shown in [24] that there are some nonrandom properties of the AES under integral 

cryptanalysis. As all three hash functions use some version of Rijndael as an underlying chain 

function, they may inherit this weakness. We examine some attacks on the underlying ciphers in 

Chapter 3. 

Since Whirlpool has not been extensively studied or tested and uses an invertible cipher as its 

underlying chain function, more testing and research are needed to confirm its security [6].  

  

 



 19 

Table 2-1 Comparison of block cipher W of Whirlpool, P and Q of Grøstl, P of Grindahl and AES 

 W of 

Whirlpool 

P and Q of 

Grøstl  

P of Grindahl AES 

Construction 

principle 

Merkle-

Damgård 

Wide-Pipe Concatenate-

Permute-Truncate 

- 

Block size (bits)  512 1024 832 128 

Key size (bits)  512 - - 128, 192, or 256 

State  matrix 8×8 8×16 8×13 4×4 

Matrix 

orientation 

Input is mapped 

row-wise 

Input is mapped 

column-wise 

Input is mapped 

column-wise 

Input is mapped 

column-wise 

Number of 

rounds 

10 14 1 10, 12, or 14 

Key expansion  W round 

function 

- - dedicated 

expansion 

algorithm 

Origin of round 

constants 

Successive 

entries of the S-

box 

For P       , 

for Q      

    , 

        , 

Other entries are 

0 

elements 2
i
 of 

GF(2
8
) 

 

GF(2
8
) 

polynomial 

x
8
 + x

4
 + x

3
 + 

x
2
 + 1 (011D) 

x
8
 + x

4
 + x

3
 + x + 

1 (011B) 

x
8
 + x

4
 + x

3
 + x + 

1 (011B) 

x
8
 + x

4
 + x

3
 + x 

+ 1 (011B) 

Origin of S-box  recursive 

structure 

multiplicative 

inverse in 

GF(2
8
) plus 

affine 

transformation 

multiplicative 

inverse in 

GF(2
8
) plus affine 

transformation 

multiplicative 

inverse in 

GF(2
8
) plus 

affine 

transformation 

Diffusion layer  right 

multiplication 

by 8x8 

circulant MDS 

matrix  

(1,1,4,1,8,5,2,9)  

- mix rows 

left multiplication 

by 8x8 

circulant MDS 

matrix  

(2,2,3,4,5,3,5,7) 

- mix columns 

left multiplication 

by 8x8 

circulant MDS 

matrix  

 (2,c,6,8,1,4,1,1)  

- mix columns 

left multiplication 

by 4x4 

circulant MDS 

matrix  

(2, 3, 1, 1)  

- mix columns 

Permutation  shift columns, 

shift vector is 

[0,1,2,3,4,5,6,7] 

shift rows 

shift vector is 

[0,1,2,3,4,5,6,11] 

shift rows 

shift vector is 

[1,2,3,4,5,6,7,8] 

shift rows 

shift vector is 

[0,1,2,3] 

As regards Grøstl, it is one of the five finalists of the SHA-3 competition. The best known attack 

on Grøstl uses truncated differences and it is applied to 3 rounds of the algorithm [87]. Since the 
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algorithm construction is highly complex and the underlying block ciphers use 14 rounds each, it 

makes cryptanalysis hard. However, the speed of hashing under this design decreases 

significantly. In Chapter 4 we show the possibility of a fixed point attack to Wide-Pipe 

construction with semi-free IV. 

Unlike Grøstl, the design principle of Grindahl [51] hash function is light and hashing speed is 

high. The 256 version of Grindahl hash function has already been reported broken by means of 

truncated differences in [75].  

In Table 2-1, we present a comparison of the Rijndael cipher with the underlying ciphers of the 

considered hash algorithms. 

2.3. Hash Function Cryptanalysis 

2.3.1. Brief History of Hash Function Proposals 

Primary hash functions were intended to be used in password protection schemes, and, in fact, 

they did not compress. One of the first practical hash algorithms [80] was proposed in 1974 and 

was based on polynomials over finite fields. In the same journal, Evans, Kantrowitz and Weiss 

described a hashing method based on a block cipher [34].  

The role of hash functions increased with the development of public key cryptosystems, which 

provided a method for obtaining digital signatures. Rabin introduced the idea of applying a hash 

function to the message before signing, for increased performance and security [81]. Later, some 

constructions that utilize block ciphers as underlying functions were described [59], which are 

still in use today. Based on this work, IBM developed the MDC-2 construction [71], which 

produces a 2n-bit hash function using an n-bit block cipher.  

The first dedicated publicly known hash algorithm was proposed in 1988 by Rivest, and was 

called MD2 in [43], [56].  

The works of Damgård [26] and Merkle [69] independently described construction methods that 

strengthen hash functions. Based on the work of Merkle and Damgård, another design, an MD4 

algorithm by Rivest [83], [84], [86] was proposed. Due to weaknesses found in the MD4, it was 

superseded by MD5 [85].  
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Table 2-2 Standard hash algorithm proposals 

Hash functions  Authors  

MDC-2  Meyer, Schilling, 1988  

MD-2  Rivest, 1988  

MD-4  Rivest, 1990  

MD-5  Rivest, 1992  

SHA-0  NIST, 1993 

SHA-1  NIST, 1995  

RIPEMD  H. Dobbertin, A. Bosselaers and B. Preneel, 1996  

Whirlpool V. Rijmen and P.S.L.M.Barreto. 2000 

SHA3 competition finalists 

 BLAKE 

 Grøstl 

 JH 

 Keccak 

 Skein 

2008 

Jean-Philippe Aumasson 

Lars R. Knudsen 

Hongjun Wu 

The Keccak Team 

Bruce Schneier 

In 1993, the U.S. National Institute of Standards and Technology (NIST) developed the Secure 

Hash Standard (SHA) [72] on the basis of MD4 and MD5. Two years later, NIST revised the 

hash standard [73]. The new algorithm was called SHA-1, and the first version is often named 

SHA-0. MD5 and SHA-1 were very popular hash functions, and they are still in widespread use. 

The year 2005 was a breaking point in the cryptanalysis of hash functions, and it appeared that 

with the growth of computational power, the existing hash standards were not secure. Therefore 

NIST announced a competition for a new secure hash algorithm standard.  

2.3.2. Chronology of Attacks on Hash Functions 

Attacks on hash functions are aimed at finding collisions. The most consequential way to 

construct collisions is the use of slight modifications of classical differential cryptanalysis on 

block ciphers together with some specific methods.  

The first weaknesses in MD4 were published in 1991 [15], where the possibility to construct a 

differential pattern for the last two rounds of the hash function was shown. MD5 was partly 

cryptanalysed in 1993 [16]. [8] first introduced a differential cryptanalysis with respect to 

modular addition and the attack was applied to MD5. The first collision in MD4 was found by 

Dobbertin in 1996 [32], [33] by describing the hash function as a large system of nonlinear 

http://ehash.iaik.tugraz.at/wiki/BLAKE
http://ehash.iaik.tugraz.at/wiki/Groestl
http://ehash.iaik.tugraz.at/wiki/JH
http://ehash.iaik.tugraz.at/wiki/Keccak
http://ehash.iaik.tugraz.at/wiki/Skein
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equations. He developed a method of applying constraints on the system such that it became 

possible to solve.  

In 1998 Chabaud and Joux proposed a method, which exploit difference patterns in cryptanalysis 

of SHA-0 [20]. However, the runtime of the algorithm was too high to be carried out in practice. 

In 1999 Dean [30] showed in his Ph.D. thesis that fixed points of the compression function can 

be transformed into a long message second preimage attack on the Merkle-Damgård functions. 

In 2002 Knudsen described an integral distinguisher for AES-like permutations [49]. 

The substantial progress in the cryptanalysis of hash functions started in 2004 with the 

improvement of Chabaud-Joux attack by Biham and Chen. They presented a new cryptanalytic 

method, in which they look at “the neutral bit” in the difference propagation. This method was 

called the neutral bit technique [10] and first was applied to find near-collisions of SHA-0. The 

same year Joux, Carribault, Jalby and Lemuet generalized Chabaud-Joux attack for iterated hash 

functions and applied the neutral bit technique to the full SHA-0 [41]. They obtained a practical 

collision by combining 4 differential patterns (colliding messages were 4 blocks each). All these 

attacks use XOR difference patterns. Also, the multi-collision attack of Joux [40] was developed 

using the technique combining neutral bit technique and Chabaud-Joux attack. The method was 

called a multi-block technique, and it exploits modular differences, that is, differences with 

respect to integer addition usually modulo 2
n
, rather than XOR-difference.   

 Chabaud-Joux attack 

 The neutral bit technique [10] 

 Joux, Carribault, Jalby and Lemuet attack 

In 2005 [91] applied a multi-block technique to MD4 and RIPEMD, using chosen message 

preimage attack, where they describe a method to derive a set of the sufficient conditions on the 

chaining values to ensure the differential path to hold in iterated hash functions. Then, the first 

collision attack on the full MD5 hash function was described [93]. The attack is based on three-

step approach: find a proper differential path, obtain a set of sufficient conditions for the 

differential path to hold, and modify the message words to satisfy these conditions in the first 

round, thus, increase the probability of collisions. This method was called Message Modification 

Technique. A practical collision attack on SHA-0 was published later the same year [94], and so 

was the first collision attack on SHA-1 [92], [95], [98].  

Besides, improved collision attacks on MD4 and SHA-0 and for reduced round SHA-1 have been 

proposed [11], using the original multi-block technique. At the same time, Rijmen and Oswald 

reported an attack based on improvement of Chabaud-Joux cryptanalysis technique [82]. 
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Preimage-style attacks on Merkle-Damgård strengthening by Kelsey et al. [46] was introduced 

the same year of 2005 and allowed to construct multi-collisions more efficient than the Joux 

attack. The technique used by Kelsey applied the multi-collision ideas of Joux to Dean’s attack, 

and eliminated the need for finding fixed points in the compression function by expandable 

messages - patterns for producing messages of varying length, which all collide on the 

intermediate hash result immediately after processing the message.  The method was further 

modified in [45] in the “Nostradamus attack” or “Herding attack” which makes it possible to 

commit to a hash value h and then to find a message that hashes to h with any desired prefix. For 

their attack, they have introduced the “diamond” structure which is reminiscent of a binary tree.  

Further, in 2006, the message modification method by Wang et al, especially its application to 

SHA-1, has then been studied by several authors, e.g. in [61], [19]. In March 2006, Black and 

Cochran combined the existing improvements on the Wang et al.’s attack such that colliding 

two-block message pairs could be generated in an average of 11 minutes on commodity PC 

hardware [13]. Vastimil Klima released a paper in which he introduced a new technique he called 

“tunneling" which reduced the search time necessary to find an MD5 collision to about 31 

seconds on commodity hardware [48].  

2007 came up with new modifications of Wang’s attack in [18], [62], and a boomerang attack by 

Joux and Peyrin [42], which is based again on neutral bits tool and the tunneling technique.   

In FSE 2007, a potential attack method was pointed out by an anonymous reviewer: the attacker 

does not look at the actual values of differences inserted in the bytes of the internal state, but only 

checks if there is a difference or not. This approach was called truncated-differences. 

The improvement on herding attack was presented in 2008 by [2], which can be considered as 

more flexible technique to build expandable messages, by choosing a prefix of the appropriate 

length and connecting it to the collision tree in the original Nostradamus attack.  

As a response to all these attacks, and in particular the attacks on MD5 and SHA-1, NIST 

updated its suite of secure hash functions with the so-called SHA-2 family [74], but these hash 

functions were developed on the same principles as MD4, MD5, and SHA-1. It was then decided 

to initiate a public competition to develop a new set of hash functions, to be named SHA-3, to 

expand the existing Secure Hash Standard [74].  

2009 started with new cryptanalytic methods on SHA-3 candidates. At FSE 2009, Mendel et al. 

proposed a new technique – the rebound attack, for the analysis of hash functions [63]. The idea 

of the attack is based on truncated differences. The attack is divided into inbound and outbound 

phases. In the inbound phase, degrees of freedom are used, such that in the outbound phase 
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several rounds can be bypassed in both forward and backward directions. The attack was applied 

on round-reduced Whirlpool for up to 7.5 and Grøstl for up 6 rounds. Later this year a 

distinguishing attack was proposed on the full underlying block cipher of Whirlpool by 

improving upon the rebound attack and integral attack in several ways [55].  

The same year, the complexity of collision search on SHA-1 was reduced to 2
52 

[60].  

In 2010, further improvement of the rebound attacks for AES-like permutations was presented 

[37]. The idea is to view two consecutive rounds of an AES-like permutation as the application 

of a so-called Super-Sbox (Super-Sbox attack). The same year, improved single key attack on 

AES was proposed, based on a new attack, biclique attack, put forward in [53]. The attack was 

also modified for block ciphers and was used in the attack on AES [17]. 

Also, [1] generalize the herding attack by Kelsey and Kohno in 2011. 

The sketch of the main attacks is given in Table 2-3. Besides, our contribution as a diagram of 

the chronology and interrelations among the known attacks on hash algorithms is depicted in 

Figure 2-5.  

Table 2-3 Attacks on hash functions 

Hash  

function 
Author Type Complexity Year 

MD4 

 

Dobbertin  

Wang et. Al 

Collision 

Collision 

2
22

 

2
8
 

1996 

2005 

MD5 dan Boer & Bosselaers 

Dobbertin 

Wang et. Al 

Pseudo-collision  

Free-start  

Collision 

2
16

 

2
34 

2
39

 

1993 

1996 

2005 

SHA-0 Chabaud & Joux 

Biham & Chen 

Biham et. al 

Wang et. Al 

Collision (differential patterns) 

Near-collision (neutral bit technique) 

Collision 

Collision 

2
61

 (theory) 

2
40

 

2
51

 

2
39

 

1998 

2004 

2005 

2005 

SHA-1 Biham et. Al 

Biham et. al 

Wang et. al 

Wang et. Al 

Collision (40 rounds) 

Collision (58 rounds) 

Collision (58 rounds) 

Collision  

 

2
75

 (theory) 

2
33

 

2
63

 (theory) 

2005 

2005 

2005 

2005 

RIPEMD Wang et. Al Collision  2005 
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Figure 2-5 Chronology and interrelation of attacks on hash functions 
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2.3.3. Description of Some Well Known Attacks 

General Description of the Integral Attack 

Designers of the dedicated attack to Square cipher used the idea of integral cryptanalysis, without 

naming it [24]. Later, Knudsen called this technique “integral cryptanalysis” for the first time 

[50]. The technique considers a collection of 256 texts, each having 64 bytes, where 63 bytes are 

passive, and one byte spans all different 256 values of    . It is discussed in [50], that after two 

rounds of encryption, the texts take all possible 256 values in each of the 64 bytes; and after three 

rounds of encryption, the sum of the 256 bytes in each position is zero. It is also shown that this 

weakness can be used to attack four rounds of Rijndael (or Square, Crypton ciphers) with small 

complexity. The attack with one active byte was called the 1
st
 order integral cryptanalysis, and it 

was shown that it can be extended to 6 rounds by means of higher order integrals, where more 

than one byte span the field. 

According to [49], W cipher also reveals the same behavior. So, at each output position, after the 

second round of W, each element of the field     occurs once over the collection of 256 input 

texts. Similarly, the sum of all 256 third round output texts will give zeros at each of 64 

positions. 

The attack is extended in [49] to five rounds by using the sum of bytes in the same position at the 

third round output, by means of the r
th

 order integral (i.e., there are r active bytes in the extended 

attack). They guess one key byte in the fifth round and four bytes in the fourth round at a time. 

Also, it is shown that the attack can be further extended to six rounds using the same sums.  

General Description of the Rebound Attack 

In the rebound attack, the internal cipher of the hash function is considered [63]. The cipher is 

regarded as the combination of three sub-ciphers, an inner part, as well as forward and backward 

paths. The result of the attack is the fixed point, obtained within one chain of the hash function.  

Thus, the attack consist of two outbound and one inbound phase.  

 

Figure 2-6 A schematic view of the rebound attack 
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For example, a single round of the W block cipher used in Whirlpool consists of the operations 

           , where AK denotes Add Round Key,  MR – Mix Row, SC – Shift Column, 

and SB – SubBytes operations. Four successive rounds of W can then be expressed in terms of 

sub-ciphers as   

                        

where  

                   

                   

                             

In the attack, so called truncated differences are used, where the actual value of the difference is 

not considered and bytes are either active (i.e., the difference is not zero), or passive (meaning, 

the bytes cancel each other).The rebound attack consists of four steps: 

Inbound phase 

Step 1: the attack starts with 8-byte truncated differences of the diagonal form at the MixRows 

layer of round 2 and 3, and propagates forward and backward to the S-box layer of round 3. 

Step 2: connect the input and output of the S-boxes of round 3 to form the three middle states 

       of the trail, that is, we have 8 truncated after and before MixRows operation at 

round 2 and 3, respectively, and when propagated forward and backward, at the SubBytes layer 

of round 3 we have 64 truncated differences.  

Outbound phase 

Step 3: then one should extend the trail in both forward and backward directions to obtain the 

trail            through MixRows in a probabilistic way. These truncated differences 

are achieved due to structure of the operation ShiftColumn and MixRows.  

Step 4: link the beginning and the end of the trail using the feed-forward of the hash function 

(which is XOR of the output of the previous and present chains). 

If the differences in the first and last step are identical, they cancel each other through the feed-

forward. The result is a collision of the round-reduced compression function of Whirlpool [63].   
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Figure 2-7 A schematic view of the attack on 4 rounds of the Whirlpool with round key inputs and 

feed-forward (reproduced from [63]). 

 

General Description of the Distinguishing Attack  

Lamberger et al. proposed improvements of the rebound attack in [65]. The new cryptanalysis 

was given the name of the distingushing attack, and it extends the rebound attack to 5.5 rounds in 

inbound phase and 7.5 rounds in outbound phase.  

The main idea of the distinguishing cryptanalysis is to use two inbound phases instead of one, 

used in the rebound attack. The inbound phase of the rebound attack is considered as the meet-in-

the-middle step, and it is applied at the rounds 1-2 and 4-5 of the hash function’s underlying 

cipher.  

 

Figure 2-8 The inbound phase of the distinguishing attack 

There are 8 active bytes at the beginning and end of the first part of the inbound phase, which are 

turned into 64 active bytes at the middle. The idea to match them is the same as in the rebound 
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attack. The second part of the inbound phase takes place between rounds 2 and 4. It is done by 

choosing the appropriate subkeys in the AddRoundKey operation. The authors suggest solving 

the following equation in order to connect 8 active bytes at round 4 output state    of the cipher, 

defines by the first part of the inbound phase: 

                          
                       

                     

                     

where    are round constants, used in key scheduling algorithm of the W cipher and   
   stands 

for the state of the cipher at the SubBytes operation of round 2. For the choice of   
   there are 

2
64

 candidates, and so is for   . Besides, the subkeys   ,    and    can be any of 2
512

 vectors, 

thus, authors expect to find 2
64 

solutions of the equation above.  

The outbound phase of the attack is the same as in the rebound cryptanalysis, i.e., it obtains the 

trail            through MixRows in a probabilistic way by extending the trail in both 

forward and backward directions. Then one links the beginning and the end of the trail using the 

feed-forward of the hash function. 

General Description of the Super-Sbox Attack 

The further improvement of the rebound cryptanalysis was given in [37] and called the Super-

Sbox attack. The Super-Sbox attack is based on the work of Daemen and Rijmen [21], [22] and 

[23], where they present the super s-box view of the two rounds of AES. In the internal state of 

the cipher, two rounds of the encryption are: 

                           . 

The attack exploits the fact that when dealing with truncated differences, only the MixColumns 

operation does not behave deterministically, since the AddKey and SubBytes operations do not 

impact the value of differences and ShiftRows operation just shifts arrays of these differences.  

Here, we give the notation, adopted for the W cipher of the Whirlpool hash function, where the 

operation    (MixColumns) is rewritten as    (MixRows) and    instead of    (which stand 
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for ShiftColumns and ShiftRows, respectively). Also, the places are interchanged in the design of 

the W cipher, so, two rounds are rewritten in the following way: 

                        

If one interchanged the place of and, this will not affect the encryption process, so, it is possible 

to rewrite rounds in the following way: 

                        

The middle part 

                     

can be viewed as a row-wise application of the Super-sbox. Thus, the considered two rounds 

become 

                     

The attack consists of two parts, which are called “controlled rounds” and, accordingly, 

“uncontrolled rounds”. 

  

Figure 2-9 Systematic view of the Super-Sbox attack 

Cryptanalysis starts with 8 bytes truncated difference, which spread to the whole cipher state 

after one round. Since the ShiftColumns does not affect the truncated differences, after this 

operation one has specified difference mask           for r tuples input of the Super-sbox 

layer, where r is the number of columns. Then, for all the       pairs of input differences    one 
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should precompute Super-sboxes forward starting from the     position. Here, c is the is the 

number of bits in the truncated difference bytes (which is usually 8). The output differences are 

stored in the tables    . Applying the same reasoning, at the end of round 4 one goes backward 

and pre-computes the difference masks              for r tuples input of the Super-sbox layer 

backward at      and stores the differences in the table    . If all the differences present in    are 

also present in    , one can enumerate input difference   at     leading to an output difference 

masks    at     .  

The uncontrolled rounds path is fulfilled probabilistically, since the operations (mostly SubBytes 

and MixRows) followed after the controlled rounds do not allow to manage the cipher behavior. 

Author say that the path in uncontrolled rounds can be fulfilled with propability about          at 

round 1 and round 5. 
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CHAPTER 3 

 

3.INTEGRAL STRUCTURES FOR UNDERLYING ENCRYPTION 

ALGORITHM OF HASH FUNCTIONS 

 

 

Despite the fact that AES has passed many cryptographic tests, in [50], it has been observed that 

ciphers exploiting substitution permutation networks (SPN’s) demonstrate some nonrandom 

properties, which make them vulnerable to integral cryptanalysis. The hash functions Whirlpool 

[6] and ECHO [7] that are based on AES, reveal similar nonrandom behavior. Integral 

cryptanalysis is adapted to Whirlpool’s underlying cipher W in [49], where it is observed that the 

cipher with number of rounds reduced from ten to six possesses systematic characteristics. Also, 

the same behavior was observed in the 256 bit version of the SHA-3 candidate Grøstl [38].  

In this chapter, we construct integrals for AES based hash functions, namely, Whirlpool, Grøstl 

and Grindahl. For the special plaintexts having all passive bytes except a single active byte, 

whose value spans the whole field, a set of experiments is carried out and patterns of round 

outputs of the ciphers used in Whirlpool and in the 512 bit versions of the Grøstl and Grindahl 

hash functions, are investigated. First, at each round output, we study the frequency, with which 

elements occur at a particular position in the collection of 256 plaintexts with one active byte (1
st
 

order integrals). In the second set of experiments, we count the number of high frequencies in the 

collection of all possible sets of 1
st
 order integrals. The difficulty of constructing integral 

structures on the 512 bit versions of the Grøstl and Grindahl arises from the fact that both 

algorithms utilize non-square state matrices, while the integral attack is applied on square state 

matrices, such as the state matrix of W cipher of Whirlpool. In sections 3.2, 3.3 and 3.4 we give 

the analysis of constructed integrals for the chosen hash algorithms; calculate the occurrence rate 

of each frequency and summarize the results in tables. In Section 3.5 we examine the effect of 

core operations on the states of the ciphers, in order to determine the operations leading to the 

systematic integral characteristics. Section 3.6 summarizes the conclusions related to this 

chapter.  
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3.1. Definitions 

The integral cryptanalysis is proposed by Knudsen as a dedicated attack to Square cipher [24] 

and considers the propagation of sums of (many) values which are called the integrals. This 

section encloses definitions and description of the 1
st
 order integrals adapted in [49] to Whirlpool 

hash function. The integrals are designed for the underlying block cipher W of the Whirlpool 

algorithm. We construct the same structures for 3 rounds of Grøstl and for 3 chains of Grindahl 

hash functions. We propose the notation below to simplify understanding of the integrals. 

The definitions given in this section are adapted to the 512 bit state cipher (8×8 bytes) of the 

Whirlpool hash algorithm’s W cipher. We start by redefining the double indices of each byte in 

the input states A and output states B of the cipher W to single indices  

     

     

   
       

       
     

   
       

   , 

such that all input and output states can be expressed as 1×64 vectors. 

We consider a collection of 256 texts, each having 64 bytes, where a byte is an element of    . 

Each text defined in [24] differs from others in one byte and has equal values in all other bytes. 

63 bytes with similar values are called passive bytes, and the byte, which spans all different 

values of     in the collection of 256 texts, is an active byte. 

We define    as the specific 64 byte input of the W cipher, which has an active byte of value 

             at position j, and 0’s at all other positions, 

                        . 

Since each byte of the output state denoted by    depends on the whole input state           

        ,    can also be expressed using the notation          , whenever needed.  

For example, if the active byte is at position 0, we have 

                                       . 

The integral attack considers a collection of 256 plaintexts, which span all byte values       at 

position j and zero values at the remaining 63 positions. We collect the outputs of these 256 

plaintexts in rows of a 256×64 matrix   : 
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The sum of bytes in a particular position is called an integral in [50]. In our notation it 

corresponds to the column sum              
. An integral is named with respect to the position 

j of its active input byte as the j
th

 integral. Since one can choose 64 different positions    

       for the active input byte, and for each j, columns of    define 64 integrals at output 

locations         , there are 64×64 integrals in total.   

 Let     
   

 denote column vectors of   ,  

   

              

   
                  

       
   

     
   

      
    

 . 

So, according to this notation, we can define the integrals in the following way: at each output 

position, after the second round of W, each element of the field     occurs once over the 

collection of 256 input texts. Similarly, the sum of all 256 third round output texts will give zeros 

at each of 64 positions; i.e., applying our notation to Knudsen’s results [49] for W,  

a) Round 2 outputs        satisfy   

                         , 

 i.e., each element of     appears once in the set     
   

. 

b) Round 3 outputs        satisfy   

                 
  , 

i.e., although elements of     can be repeated and (a) is not satisfied, the sum of elements in the 

column     
   

                   is still equal to 0.  

Using this nonrandom property, the 4-round integral cryptanalysis for Square, Rijndael and W 

ciphers can be described as follows: since the integrals are known after 3 rounds of encryption, 

one can attack 4 rounds of the cipher by predicting the value of a single key byte at a time, going 

backward from the 4
th
 round, and checking if all of the 256 outputs after round 3 sum up to zero.  
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3.2. Whirlpool 

In this section, we give round statistics of W cipher under the integrals, by analyzing the 

frequencies, with which elements occur in the round outputs of W cipher.  At each round output, 

we study the frequency, with which elements occur at a particular position in the collection of 

256 plaintexts. The aim is to detect a pattern, if any, in the statistical behavior of outputs. 

We design a set of experiments in which the j’th position of the input state is activated. Over the 

256 input texts with an active byte at the j’th position, we count the frequency of occurrence of 

    elements at each output position k. We define        as the frequency, with which an 

element       occurs in the vector     
   

. Since the experiment is over the 256 input texts, the 

frequency         varies in the interval,             .  

The data used for this analysis is the round outputs of W, when the passive input bytes are 0’s, 

i.e., 

                   , 

where      . We first fix the position of the active byte j and count the frequencies        

with which an element   occurs at position k as    spans the field    ; that is, we count the 

number of  ’s in the set     
   

. Then we repeat the same procedure for all         , changing 

the active byte position. 

In Figure 3-1, we illustrate the frequencies        with which elements       occur in     
   

 at 

the third round outputs.  

 

Figure 3-1 Frequencies of the elements in the outputs of round 3 at position k=0 as α=0,…,255 
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Figure 3-1 shows that in the set     
   

 83 elements occur once, 43 elements occur twice, and 15, 4, 

2, 1 elements occur with frequencies 3, 4, 5, 6 respectively. The remaining 108 elements of the 

field do not appear in the set. The observation of the remaining positions     
   

 for          of 

round 3 outputs gives results in approximately the same range. Although elements of     

appearing in the set do not create any obvious pattern, their sum              
 still equals 0 at 

the third round output for all k.  

Our next aim is to examine if any pattern, which would lead to a weakness, exists. Therefore, we 

count the number      of high frequencies in     
   

 considering the collection of all sets, 

           and         . 

Algorithm 1 Compute frequencies with which an element occurs in the given set 

INPUT: Round outputs      
   

                             of W cipher 

OUTPUT: Frequencies     with which an element   occurs at position k as    spans the field    .  

for j = 0,…,63     // run through all 64 integral structures  

{ 

 for k = 0,…,63    // run for all 64 bytes of the Whirlpool’s state  

 { 

  for alfa = 0,…,255  // run for all 256 texts 

   if                          

 } 

} 

The output of the Algorithm 1 is given in Table 3-1 and shows the number of frequencies 

         over 64 possible active input positions, 256 possible active byte values and 64 output 

positions. Hence, the total number of elements examined in the analysis is over (256 field 

elements) × (64 active byte positions) × (64 output byte positions) =1048576=2
20

, i.e.,   

              . The algorithm counts the frequencies        in each vector     
   

, and 

outputs the total number      of the frequencies at a specific value         , without making 

any distinction among different values of  , over all possible 64×64 vectors for          

        . 

Since each element       occurs once at the output of round 2,        in each     
   

 vector; 

hence, the second column of Table 3-1 shows the total number 1048576 of elements within the 

data set. Frequencies of the third round outputs show that the elements are now repeated, and 
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there are 8 elements (that may be different or the same) occurring 8 times and 1 element 

occurring 9 times. 

Table 3-1 The number of occurrences of frequencies, fjk in W cipher 

       round2 round3 round4 round5 round6 round7 round8 round9 

0 0 384651 385236 390973 385309 391091 385215 384912 

1 1048576 387138 386173 392632 385935 392550 385970 386775 

2  193208 193225 196295 193585 196298 193524 193040 

3  63785 64261 65062 64004 64877 64356 64090 

4  16049 15948 16209 15971 16266 15766 16029 

5  3087 3119 3136 3152 3260 3135 3129 

6  580 526 550 538 528 525 529 

7  69 80 90 70 71 79 61 

8  8 6 12 11 17 6 10 

9  1 1 0 1 2  1 

10   1 1     

From the histogram in Figure 3-2, we can see that the probability that a certain value occurs once 

or never in the vector     
   

 is much higher than it occurs 10 times. This is true for all 10 rounds of 

the W cipher. For the collection of 256 plaintexts with all passive bytes being 0, we can see some 

values of        appearing in the vector 10 times at the outputs of round 4 and round 5. For 

instance, at the output of round 4, this most frequent element is             , and it can be 

seen in the vector     
    

. That is, in the collection of 256 plaintexts with an active input byte at 

position j=3, we have found ten different values of the active byte (namely, 

                                          ) that yield a 4
th

 round output byte value 

     at the output position, k=49.  

Figure 3-3 is sketched only for the purpose of demonstrating the invisible part of Figure 3-2, by 

using a different vertical scale. 
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Figure 3-2 The number of occurrences of frequencies,     (notice that for      , vertical resolution is not 

sufficient for the demonstration of     ) 

 

 

Figure 3-3 The number of occurrences of frequencies for      . 
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would tell us if there is a pattern that could be used in building more powerfull integral structures 

0 

50000 

100000 

150000 

200000 

250000 

300000 

350000 

400000 

450000 

0 1 2 3 4 5 6 7 8 9 10 

round3 

round4 

round5 

round6 

round7 

round8 

round9 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

7 8 9 10 

round3 

round4 

round5 

round6 

round7 

round8 

round9 



 39 

of the 1
st
 order, i.e., we would like to see if the integrals can be constructed for a smaller 

collection of plaintexts. So, we are looking for such       ’s, where          for some     . 

Such       ’s are found for      and       for     , and           . In Table 3-2 

prepared for the matching position k=14 at the third round output, input positions j and values of 

active input bytes at these positions are given. 

Table 3-2 Active bytes that yield the elements of frequency 8 at the same position of the 3rd round output 

Output byte 

position k 

Active input byte 

position j 

Value of the 

output byte (β) 
Values of the active input byte ( ) 

14 28 35 18, 30, 34, 104, 119, 157, 159, 190 

14 35 27 3, 43, 78, 87, 117, 119, 153, 251 

Further analysis employing     tools is needed to find the relation among these values. 

3.3. Grøstl  

Since the P and Q ciphers of Grøstl are also derived from the AES, their behavior is similar to W 

of the Whirlpool hash function. In the Grøstl hash function, the message blocks are mapped 

column wise, to the 8×16 bytes, non-square state matrices of the ciphers P and   as in Rijndael. 

Since the states occupy 128 bytes, the matrix    defined in Section 3.1 is 128×256 bytes.   

The data that we use for the frequency analysis in case of Grøstl hash function is the round 

outputs of P and   ciphers. Plaintexts are                   , where   spans    , and 0≤ 

j ≤ 127 due to the state matrix size, thus there are 128    matrices of size 128×256. We first fix 

the position of the active byte j and count the frequencies        with which an element   occurs 

at position k as   spans the field    ; that is, we count the number        of  ’s in the set     
   

. 

Then we compute the corresponding integral and repeat the same procedure for 0≤ j, k ≤ 127. So, 

frequencies are counted over (256 field elements) × (128 active byte positions) × (128 output 

byte positions) =2
22

 cases; whereas 2
14 

integrals are found. 

In Figure 3-4, it is seen that although round 3 output bytes at each position sum up to zero, 

elements of     
   

 after round 2 do not span the elements of     in all positions. Such behavior of 

the matrix    is due to the non-square structure of the state matrices, which is 8×16 for both Q 

and P: the MixBytes operation affects 8 bytes of the state matrix at each round, which is 

followed by the ShiftBytes operation spreading these bytes into 8 columns, thus, 8 other columns 

remain unmodified.  
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Figure 3-4 Frequencies of the elements in the P and Q ciphers outputs of round 3 at position k=0 as α=0,…,255 

The maximal occurrence of elements in the set     
   

 is 6 for the Q cipher and 7 for the P cipher. 

The range stays the same in the remaining positions     
   

 for           of round 3 outputs. 

Again, elements of     appearing in the set do not create an obvious pattern, yet, their sum 

             
 equals 0 at the third round output for all k and thus, allowing 4-round integral 

cryptanalysis to be applied.  

Our next aim is to examine if any pattern, which would lead to a weakness, exists. Therefore, we 

count the number      of high frequencies in     
   

 considering the collection of all sets, 

                   . In Table 3-3, it is seen that at the output of round 2 for both 

ciphers, out of 2
22

, there are 2088960 cases that a field element is not observed, 2097152 cases 

that an element appears once and 8192 cases that an element occurs 256 times. Last row shows 

that the round 3 integrals at each output position are equal to zero, but round 2 integrals are not.  

It may be easier to understand what Table 3-3 means, by normalizing the given frequencies 

with possible number of 128×128 input-output byte positions as in Table 3-4. 

Table 3-4 shows that for fixed input-output positions, the k’th output byte of round 2 (i.e.,     
   

 

elements corresponding to 256 different plaintexts with active byte at position j); either spans all 

field elements (hence their frequencies are 1), or it remains constant (so the corresponding field 

element has frequency 256), whereas other elements never show up (hence their frequencies are 

0). So, in half of the 2
22

 cases, all field elements occur once as the value of the active byte spans 

   ; and in the other half, the output byte always takes the same value and no other field element 

can be observed. 
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Table 3-3 Number of occurrences of frequencies        of field elements   at the round outputs of P and   

ciphers of Grøstl-512 

       

Occurrence rate of        

Round 2 Round 3 

  P   P 

0 2088960 2088960 1541399 1541845 

1 2097152 2097152 1543429 1543554 

2 0 0 774137 773609 

3 0 0 256687 256072 

4 0 0 63553 63835 

5 0 0 12652 12713 

6 0 0 2109 2365 

7 0 0 297 268 

8 0 0 35 42 

9 0 0 5 1 

10 0 0 1 0 

… … … … … 

256 8192 8192 0 0 

All 2
14

 

integrals 
Sum up to 0 Sum up to 0 Sum up to 0 Sum up to 0 

 

Table 3-4 Average number of occurrences of frequencies        for fixed input-output byte positions 

       
Round 2 Round 3 

  P   P 

0 127.5 127.5 94.08 94.11 

1 128 128 94.20 94.21 

2 0 0 47.25 47.22 

3 0 0 15.67 15.63 

4 0 0 3.88 3.90 

5 0 0 0.77 0.78 

6 0 0 0.13 0.14 

7 0 0 0.02 0.02 

8 0 0 0 0 

9 0 0 0 0 

… … … … … 

256 0.5 0.5 0 0 

Sum of average  

occurrences 
256 256 256 256 



 42 

So, the elements of     
   

 after round 2 (or 3) do not span the elements of     in all positions (if 

they did, only the frequency 1 would occur 256 times in  

Table 3-4). This is due to the non-square structure of the 8×16 state matrices of P and  : 

MixColumn operation affects only the 8 state bytes (in the column of the j
th

 active byte) at each 

round. This is followed by the ShiftRow operation spreading these bytes into 8 columns, thus, the 

remaining 8 columns would be unmodified. In [39] the explanation of such frequency behavior is 

given for the W cipher of the Whirlpool hash function.  

Frequencies of the 3
rd

 round outputs in Table 3-3 show that the elements are now repeated more 

than once. There are five elements (that may be different or the same) occurring 9 times in P; and 

one element, occurring 10 (or 9) times, in P (or  ). The maximal occurrence of elements in the 

set     
   

 is 7 for the   cipher and 6 for the   cipher. The range stays the same in the remaining 

positions     
   

 for           of round 3 outputs. Elements of     appearing in the set do not 

create an obvious pattern, yet, the integrals (i.e., sum              
) are equal to 0 at the third 

round output for all k and j; thus, allowing integral cryptanalysis to be applied.   

Next, we search for output byte positions, where the field elements appear with high frequencies. 

Whenever the frequencies of field elements at a certain output position k are high, it may be 

possible to find highly probable input state differences yielding 0 output difference at this 

specific k. In Table 3-5, the active input bytes yielding the same output at position k=34 of the 

third round output of P, are given with corresponding active byte positions. Notice that multiple 

active byte values        = [135 (10000111)2, 144 (10010000)2] or [168 (10101000)2, 191 

(10111111)2] yield the same input difference of 23 (00010111)2, that enhances the differential 

probability that the output difference                      is equal to 0. 

Table 3-5 Active bytes that yield the elements of frequency 8 at the same position of the 3rd round output of the 

P cipher 

 

Output byte 

position k 
Active input 

byte position j 
Value of the 

output byte (β) 
Values of the active input byte ( ) 

34 18 112 30, 135, 144, 149, 155, 168, 181, 191 

34 35 1 1, 8, 30, 75, 96, 189, 192, 241 

 

3.4. Grindahl  

The difficulty in building the integral structures for the Grindahl hash function lies in the 

construction of the algorithm, since there is only one round of the cipher at each iteration, and 
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after each iteration the message blocks are overwritten in the first column of the state matrix. 

Also, as in the case of Grøstl hash function, the non-square state of the P cipher prevents the 

occurrence of the field elements regularly with frequency 1, after chain 2. 

In Grindahl, the message blocks are mapped to the 8×13 state matrix of the P cipher. There is 

one round of P at each iteration, consisting of the four transformations (MixColumn, ShiftRow, 

SubByte, and AddConstant). 

Integral cryptanalysis looks at the outputs of rounds 2 and 3, and uses feed-forward of the cipher 

to achieve the fixed points, but in Grindahl the permutation P has one round only, and the first 

column of the state is updated by the new message block, which has not been affected by the 

operations applied before. Also, there is no feed-forwarding in the CPT constructing. It could be 

possible to avoid unmodified bytes from having an effect on the integrals, if it were possible to 

shift the new message bytes to the last 5 columns of the state which were not previously affected 

by the ShiftRow operation. However, all injected new message bytes are spread to the 8 columns 

of the state matrix affected by the active bytes; therefore, the chance of building integral 

structures is decreased.  

The second way to be able to implement the integral structures, is to choose the second and third 

8-byte blocks of messages to follow the pattern of the outputs of each iteration. That is, the 

injected new message bytes are chosen exactly the same as the first 8 bytes of the chain outputs. 

Notice that this kind of message injection is equivalent to using the P cipher for 3 rounds, since 

the same message blocks are first truncated and then concatenated.  

In Table 3-6, the occurrence rates of frequencies        are calculated for such a situation, over 

(256 field elements) × (8 active byte positions) × (8×13 output byte positions) = 212992 cases; 

and (8×8×13=) 832
 
integrals are found for each input-output position. The integrals found for 

chain 1 and chain 2, follow two patterns; either all field elements occur once (      = 1 for all 

    ), or a single field element occurs 256 times and remaining elements never occur (      = 

256 for one element and          for 255 elements). Both of these patterns yield zero 

integrals. To be precise, pattern 1 occurs in the outputs of chain 1 in (256 field elements) × (8 

active byte positions) × (8 bytes affected by MixColumn and ShiftRow) = 16384 cases; whereas 

pattern 2 is  separated as (8 active byte positions) × (7 × 13 unmodified bytes) = 768 cases for 

      = 256, and 768 × 255 = 195840 cases for         . Since the single column affected by 

active byte at chain 1 is spread to 8 columns, pattern 1 occurs in chain 2 outputs in 16384 × 8 = 

131072 cases. Although in outputs of chain 3, there is no obvious pattern; our experimental 

results with the plaintexts chosen as                   , show that all 832 integrals sum 

up to 0. 
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Table 3-6 Number of occurrences of frequencies,     in 3 chains of Grindahl hash function 

       
Occurrence rate of        

Chain 1 Chain 2 Chain 3 

0 195840 81600 78303 

1 16384 131072 78393 

2 0 0 39226 

3 0 0 13076 

4 0 0 3202 

5 0 0 655 

6 0 0 123 

7 0 0 14 

… … … … 

256 768 320 0 

All 832 integrals Sum up to 0 Sum up to 0 Sum up to 0 

Table 3-7 shows that when the input-output positions are fixed, the k
th
 output byte of chain 2 

spans all field elements (hence their frequencies are 1) in more than half cases (to be precise, in 

64 out of 104 output byte positions). For the remaining cases, the byte value does not change (so, 

the corresponding field element has the frequency 256), so other field elements do not appear 

(thus their frequencies are 0). So, for Grindahl, the same patterns seen in the analysis of Grøstl 

hash function are observed. The elements of     
   

 after chain 2 follow the integral cryptanalysis 

scenario in 64 positions out of 104.  After chain 3, bytes do not span the elements of    , yet, 

integrals              
 are equal to 0 at all output positions.  

Table 3-7 Number of occurrences of frequencies,      in 3 chains of Grindahl hash function 

       Chain 1 Chain 2 Chain 3 

0 235.38 98.08 94.11 

1 19.69 157.54 94.22 

2 0 0 47.15 

3 0 0 15.72 

4 0 0 3.85 

5 0 0 0.79 

6 0 0 0.15 

7 0 0 0.02 

… … … … 

256 0.92 0.38 0.00 

Sum of av.  

occurrences 
256 256 256 
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The frequencies of 3 chain outputs show the same behavior as in the P and   ciphers of the 

Grøstl hash function and are due to non-square structure of the state matrix. The results of the 

analysis show that Grindahl reveal non-random behaior, nevertheless, since blocks of the 

message are chosen so that they follow the pattern defined by the outputs of the previous chains, 

further investigations are not expected to give any valuable results.    

3.5. Role of Cipher Operations in the Integral Attack for Whirlpool 

In this section, we examine the effect of core operations of underlying AES based functions on 

the states of the cipher. Our aim is to understand the structure of the nonrandom behavior and 

investigate which of the operations lead to the systematic integral characteristics mentioned 

above. Experiments are accomplished on the W cipher of the Whirlpool hash function. 

Role of the Passive Byte 

In the tests above the value of the passive bytes are equal to zero. Here, we change the value of 

the passive bytes. In Table 3-8 we can see the results obtained when the passive bytes are 17’s 

and 255’s. As in the case of all zero passive bytes, round 2 outputs run all over the field    . The 

frequencies at round 3 up to round 9 outputs remain in the same range as in the case of zero 

passive bytes. 

Table 3-8 The maximal frequencies with which an output value occurs when passive bytes are different 

Value of passive byte 
Round 

2 3 4 5 6 7 8 9 

0 1 9 10 10 9 9 8 9 

17 1 9 8 9 9 10 9 8 

255 1 10 9 9 10 8 8 9 

Role of the Chaining Mode 

Whirlpool hash function uses Miyagichi-Preneel scheme, where a message is divided into blocks 

of length 512 bits and encrypted using all zero initial value as a key at the first chain. Being 

XORed with the previous cipher key and plaintext, ciphertext becomes the cipher key for the 

next block.  

Since the key expansion is very similar to encryption, except for AddRoundKey operation, we 

repeat what we have done in case of plaintexts for different keys to examine their effect on the 

integrals. Hence, we change the original scheme of Whirlpool hash function to Matyas-Meyer-

Oseas scheme, i.e., switch the roles of key and message in the W cipher. Thus, the collection of 

256 texts becomes a key used to encrypt a single all zero plaintext. 
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The resulting integrals show the same effect, i.e., as the active input byte α runs all over the field 

   , each byte of the second round output also runs over the field    , and the integral at each 

position of round 3 output equals zero. This can be explained by the structure of the key 

expansion algorithm of the W cipher, which is the copy of the encryption algorithm itself with 

the only difference at AddRoundKey operation, where constant keys derived from the s-box of 

the cipher are used.  

Besides, we detect the similar frequency behavior with the original case at round 3 outputs. 

Matches of positions k, where the frequency of a certain value is equal to 8, are found, i.e., 

      ’s, where          for some     . Such       ’s are found for      and       for 

    . Results are given in Table 3-9.  

Table 3-9 Active bytes that yield the elements of frequency 8 at the same position of the 3rd round output when 

the role of key and message is switched 

Output byte 

position k 

Active input 

byte position j 

Value of the 

output byte (β) 
Values of the active input byte ( ) 

40 13 215 41, 50, 53, 67, 97, 101, 162, 243 

40 63 37 95, 128, 149, 184, 202, 224, 234, 254 

Role of the SubByte Operation 

At this step, we study the effect of the s-box on the integral structures. We replace the original s-

box with that of AES. The result demonstrates that although the obtained values at given 

positions are different, the structure observed in the case of original s-box of W still holds. 

Similar situation can be monitored when we skip SubByte operation. It can be explained by the 

bijective structure of s-boxes. The mapping is one-to-one, which allows the structure of the input 

to be kept unchanged. The relationship between values obtained in these three cases considering 

the role of SubByte operation is of interest as the next step of the analysis. 

Role of the MixRow Operation 

MixRow layer of W uses the MDS matrix C that provides optimal diffusion. Input state of the 

MixRow is updated by 

                 , 

thus, every output byte after   transformation is a linear combination of eight input bytes. So, the 

operation transforms the row with the single active byte into a row of all active bytes. 
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When this operation is eliminated, we have a single position at the second round output, where 

all     elements are spanned. This position is the one, where the active byte of the plaintext is 

brought by ShiftColumn operation. For example, when the active byte of input is at position 

    , we observe the value running all over the field     at position      after round 2, and 

     after round 3. The values at all other positions are the same in the collection of 256 

output texts and their values are defined by other operations of W.  

Role of the ShiftColumn Operation 

The permutation layer makes each column of the state shift downwards circularly, except the first 

column. The shift operation moves a single byte from one row to another. Since MixRow 

operation results in a whole row containing active bytes, ShiftColumn operation distributes these 

bytes to all columns. After the ShiftColumn operation of the second round, we have one active 

byte at each column of the cipher state. MixRow operation of the second round converts each 

row with a single active byte into a complete row of active bytes. The result of the test shows that 

ShiftColumn operation has a great effect on the systematic integral characteristics. If the 

operation is eliminated, round 2 output values of vector      
   

 do not span the field    . 

Moreover, for all  ’s, which are not at the same row with the active byte of the input, vectors 

    
   

 consist of all equal elements.  

Role of the AddRoundKey Operation 

As described in section 2.1.2, 10 rounds of W cipher consist of 4 core operations used 10 times. 

At the beginning, a message is XORed with a cipher key, then the round operations start.  

Instead of using all zero vector as the cipher key, we change the initial key vector in order to 

obtain plaintexts, which do not have the same bytes at all passive positions, but still we do have 

one byte running all over the field     as an active one. We observe that systematic integral 

characteristics of the second and third round outputs remain the same. Although the key used in 

the study is totally random, it does not hamper the integral structures because of key expansion 

algorithm, used in W. The key and plaintexts have only one byte difference as they enter cipher 

rounds. They pass through similar operations with the only difference at AddRoundKey 

transformation  , where the key is XORed with round constant, which consists of all zero entries 

except for the first row. As the result of previous operations of round 1, one has active bytes in 

the first row at each of 256 texts, and, after being XORed with the key, the texts in the collection 

still have a complete row of active bytes (and 0’s at all other positions); so, conditions for 

integral cryptanalysis hold, i.e., if 
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is a vector of active bytes, then  

          
   

   

      

 
        

     

again gives a vector of active bytes. Here    is a key byte at position 0. 

As the next step, we eliminate AddKey operation before rounds. When the key is random, we can 

observe the situation above with the only difference that round 1 outputs may not have 0’s at 

rows with non-active bytes. In the case of all zero key, elimination of AddKey operation does not 

make sense since the cipher key is simply XORed with a message. 

After that, we try to exclude the AddRoundKey operation, which also does not affect the 

scenario; i.e., the integral cryptanalysis is still applicable. 

3.6. Conclusion 

In this chapter we considered 1
st
 order integral structures in 3 rounds of Whirlpool and Grøstl 

hash functions. Since the Grindahl hash function consists of only one-round P permutation, we 

have built the integral structures for 3 chains of the hash function, considering them as 3 rounds 

with messages specified for the cryptanalysis. In the integral structures defined by the integral 

cryptanalysis, we have investigated patterns at the round outputs of the underlying block ciphers. 

The occurrence rate of each frequency have been found and tabulated. Also, we have found the 

values and positions of active bytes yielding high-frequency byte values at the output. Although 

our results do not testify any weakness of ciphers used in the considered hash algorithms, it is 

quite possible that they can be adapted to other cryptanalytical techniques, such as the rebound 

attack on W [63]. We have then given the explanation of how the non-square states of the ciphers 

used in Grostl-512 and Grindahl change the scenario of forming the integral structures for these 

ciphers; but nevertheless, we have observed that construction of integrals to be used in an 

integral attack is still possible (i.e., the output byte values corresponding to 256 inputs with 256 

different field elements at a specific active byte position still sum up to zero).  

More specifically, for Grostl-512, we have seen that although round 3 output bytes at each 

position sum up to zero, elements of     
   

 after round 2 do not span the elements of     in all 

positions. Such behavior of the matrix    is due to the non-square structure of the state matrices, 
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which is 8×16 for both Q and P: the MixBytes operation affects 8 bytes of the state matrix at 

each round, which is followed by the ShiftBytes operation spreading these bytes into 8 columns, 

thus, 8 other columns remain unmodified.  

For Grindahl, the integrals found for chain 1 and chain 2, follow two patterns; either all field 

elements occur once (      = 1 for all     ), or a single field element occurs 256 times and 

remaining elements never occur (      = 256 for one element and          for 255 elements). 

Both of these patterns yield zero integrals. 

In addition, we try to inquire into a question of the cipher operations’ individual effects on 

integral structures. Since the roles of operations are carefully examined, we believe that the 

obtained systematic integral characteristics can be used to enhance the integral attack.   
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CHAPTER 4 

 

4.ANALYSIS OF HASH ALGORITHMS CONSTRUCTIONS 

 

 

In this chapter, we try to find some collisions for three chains of the Merkle-Damgård, Wide-

Pipe and Concatenate-Permute-Truncate constructions. First, we consider the Whirlpool 

algorithm in three different Merkle-Damgård schemes, corresponding to different choices of the 

feed-forward path, that we call Scheme 1 (with no feed-forward path), Scheme 2 (with the feed-

forward path        ) and Scheme 3 (with       , and by swapping the roles of    and 

    , where    is the key and      is the plaintext of the W cipher). All these schemes yield 

modified forms of the original Whirlpool algorithm that uses             of the Miyaguchi-

Preneel scheme. 

Secondly, we consider the example of Grøstl for the Wide-Pipe construction and apply the same 

schemes, Scheme 1 and Scheme 2. Although Scheme 1 is a modified form of Grøstl, Scheme 2 

can be considered as the original Grøstl hash function. 

With regard to the Concatenate-Permute-Truncate construction, we attempt to find a collision for 

three chains of Grindahl only in Scheme 1, which is the original scheme for Grindahl. 

In Merkle-Damgård Construction an adversary has a full knowledge of a cipher key, at least for 

the first chain of a hash function, since the initial vectors (IV) of the algorithms are fixed and not 

secret. In Section 4.1, we examine Scheme 1, Scheme 2 and Scheme 3 for Merkle-Damgård 

construction, using three rounds of the cipher W and the inverse cipher W
-1

 of Whirlpool hash 

function, as an example. 

In Section 4.2, for the Wide-Pipe construction, we try to find fixed points on modified version of 

Grøstl (Scheme 1) and show impossibility of building the backward attack on the original version 

of the algorithm (Scheme 2) using three rounds of the ciphers P & Q.  
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As for the Concatenate Permute Truncate (CPT) construction; the backward analysis on the 

original version of the Grindahl (Scheme 1) and the role of Merkle-Damgård strengthening in 

this construction are discussed in Section 4.3. Section 4.4 concludes the chapter.  

4.1. Definitions 

As mentioned previously, the Merkle-Damgård hash function h with chain (or round) function f 

can be defined as follows: 

   I   

                 ,                 

         

Here    are the n-bit intermediate variables (or chaining variables),    are the n-bit message 

blocks, the final hash is denoted by      and IV is the Initial Value. This also corresponds to the 

description of a finite state machine with initial state IV, input     and the next state function f. 

Also, a feed-forward operation can be defined in a chaining mode. 

Thereby, there are two inputs of the chain function. These two inputs can be one of the 

followings: the message block   , the chaining variable     , XOR of the message block and the 

chaining variable         or some constant vector  . The two inputs of the chaining function 

and the feed-forward path can all be chosen from the 4-element set defined above and this choice 

determines the scheme of the hash function. Both Merkle-Damgård and Wide-Pipe constructions 

can be used in any of 4
3
=64 possible schemes [79]. However, within these 64 schemes, some are 

trivial and, thus, not useful. One of the meaningful, but yet, not safe schemes is the Rabin 

scheme, where the message is a plaintext of the underlying cipher, the chaining variable is a key, 

and feed-forwarding is omitted (or, it can be considered as XORing with the all zero constant 

vector). Although hash functions that are built using this scheme are fast, they cannot be 

considered secure.  

In Table 4-1 that we reproduce from [79], the attacks that can be applied to a particular scheme 

are listed, where D stands for a direct attack, P is a permutation attack, F is a forward attack, B is 

a backward attack and FP is a fixed point attack. The superscripts are used to count the number 

of a particular scheme and accordingly name it, the symbol “√” means that the scheme can be 

considered secure, while “-” means that the scheme is trivially weak or not applicable. Only four 

schemes indicated by check marks (schemes 3,10, 30 and 38) are considered to be safe, others 

are marked with different attacks D, P, F, B or FP; however, no proof or prescribed allegations 

were given about the applicability of these attacks. Later, it was proven in a black-box model that 

in addition to the four schemes indicated as secure in Table 4-1, there are eight more secure 
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schemes [14]. So, one can say that 12 schemes can be considered to be secure among these 64 

schemes. 

Table 4-1 Attacks on 64 different schemes (reproduced from [79]) 

Choice of 

feed-forward 

path 

Choice of the 

key 

Choice of plaintext 

                  

     

     

        

  

- 

D
1
 

B
2
 

- 

B
13
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B
14 
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25
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D
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√
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√
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B
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D
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B
23

 

D
24

 

FP
37

 

√
38

 

F
39

 

F
40

 

P
46

 

D
47

 

F
48

 

D
49

 

 

Some of the schemes in Table 4-1 are named as: 

c) (1)  Rabin Scheme, where    is the plaintext of the underlying cipher and      is a key, with 

no feed-forward path 

d) (3)  Matyas-Meyer-Oseas Scheme, where    is the plaintext of the underlying cipher and 

     is a key, the feed-forward path is       

e) (10) Miyaguchi-Preneel Scheme (that Whirlpool uses), where    is the plaintext of the 

underlying cipher and      is a key, the feed-forward path is           

f) (19) Davies-Meyer Scheme, where      is the plaintext of the underlying cipher and    is a 

key, the feed-forward path is          

Weaknesses of the schemes or of the underlying chain function can lead to certain types of 

attacks. Backward attacks are based on the fact that the underlying block ciphers are reversible, 

and the security scheme is mostly based on the strength of chaining mode. The fixed point attack 
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is an attack that uses the so called fixed points of the algorithm, i.e., when the output at some 

point of the chain, with the given chaining variable and the message block, is equal to the output 

at some other point with another input, i.e.,  

         for      

or, if we speak of fixed point within one chain, 

                        

For the hash function to be resistant to this class of attacks, the feed-forward path, as well as the 

inputs of the underlying block ciphers, should be chosen carefully. 

When the feed-forward path FF is defined, we denote the output of a function f by   . Thus, the 

general model of a hash function can be descibed as 

                     I   

                              ,                 

                         ,  

                         

Although all three hash functions, analyzed in this work, are built using the iterated principle, 

only two of them, Whirlpool and Grøstl, can be described in terms of the schemes they exploit. 

The CPT construction does not use any feed-forward path, since the XOR operation used in feed-

forwarding is conjectured to be not always secure.  

4.2. Backward Attack on Modified Forms of Whirlpool Hash 

Function 

4.2.1. Schemes Under Backward Analysis 

In Merkle-Damgård Construction an adversary has a full knowledge of a cipher key, at least for 

the first chain of a hash function, since the IV of the algorithms are fixed and not secret.  

We examine some of the schemes, using the W cipher of Whirlpool hash function, as an 

example. As all operations of the W cipher are invertible, a message processed with the same key 

gives the same output, i.e. the mapping is 1:1, which allows the use of the inverse cipher W
-1

. 

Below we will consider three different modes corresponding to different choice of feed-forward 

path, that we call Scheme 1 (with no feed-forward path), Scheme 2 (with the feed-forward path 
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       ) and Scheme 3 (with        , and by using     as the key and      as the plaintext 

of the W cipher). 

Backward Analysis of Scheme 1  

Again, we denote the 512 bit input of the W cipher by   , where i represents the chain number of 

the Whirlpool hash function, and the output of the W cipher by   . 

Our aim is to find a second preimage for a given hash value. We consider 3 rounds of the W 

cipher. First, we calculate a message digest for some fixed message. Let this message be all zero 

1024 bit string. That means that we deal with three chains of the Whirlpool hash functions, first 

two chains being the message itself and the third is padding along with 256 bits showing the 

length of the original message (Figure 4-1). 

The difficulty of calculating the reverse hash function at this point is the XOR operation before 

feeding the cipher of each chain to the next one as a key. We skip this operation. Let    be our 

message digest. We use W
-1

         cipher to calculate the block     of the message   . The key 

   (i.e. output of the first chain) is chosen arbitrarily. Now using the ciphertext    and all zero 

initial vector of the Whirlpool cipher, we calculate a message    . The message               

gives the same message digest as the message x (Figure 4-1).  

 

Figure 4-1. Scheme 1 for Merkle-Damgård construction 

The scheme analyzed in this section is known as the Rabin scheme. Thus, we obtain a collision 

for the Whirlpool hash algorithm used in Rabin scheme. However, when we calculate the hash 

value for the message   , it differs from the one of the message X due to the padding rule applied 

to    (i.e.    proceeds through 3 chains of Whirlpool hash function); i.e., the scheme can be 

cyrptanalyzed by omitting one of the Merkle-Damgård strengthening rules and the resulting 

collision is a pseudo- collision.  
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Backward Analysis of Scheme 2 

We start with the backward analysis of the scheme given in Figure 4-2. In this scheme, we only 

consider three chains, which are sufficient to construct multi-collisions. First, we run the hash 

function in the forward direction and calculate a hash value for some fixed message. Let us 

denote the output of the forward calculated message digest as      , where    is the message.  

 

Figure 4-2 Scheme 2 for Merkle-Damgård construction 

In order the hash function to be secure, Merkle and Damgård proposed that messages be padded 

with a padding that encodes the length of the original message. This is called length padding or 

Merkle–Damgård strengthening. Whirlpool hash function uses this strengthening along with a 

fixed initial vector. To construct a collision, we fix the input to the last chain, coming from the 

previous chain of the hash function. By fixing the value of   , we maintain the last chain of the 

hash algorithm, thus, the padding rule is not violated. Then we propagate in the backward 

direction, starting from   . We can assign the value of    arbitrarily and calculate       

  . Now, at the second chain, we have both inputs for W
-1

, so we can calculate the value    of 

the message. For the first chain we use the all zero vector as a cipher key (i.e., the fixed IV 

proposed by the design of the Whirlpool hash algorithm) and the value          as a 

ciphertext. Since the value of    can be any of      vectors of length 512, we can construct a 

large number of multi-collisions. Below, the messages with the same hash value after the third 

chain are given: 

    0000000000000000000000000000000000000000000000000000000000000000 

   CDDDFCD58AB8F5DC72DAC1AB49B5A6A2C4955A92BBEC1133429C496D8488DEC597

D1771EEC4C489AF91CC190767A117EC7E261491C4EABA35CE40BE59E7 

   EDCC3473FDBEF8F8DBD8649F3CF3F4ABD8A5ADE3375025EADE13318EA2C340DD8D5

5482561CAF2BAC5FC1CC6E3CFD9D016B52DABA25E85DB77BAE06972FC 
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   BC89D36E7583EFF1FDB6FB3FAE2FFB63A77FB1FEF1C4BF56CB1F8B8B41A3F5EC54C2A

18AC653D87FDCD3D432D64C66FA8A3BE9C0B73D649E7CE06A1A 

   452A37A99E13BC4F8D28425816AFE7885542DE3F31E740A91FFCDB6AA139B2EFCC9F

D94F38795E0386FF0381C82876B2AFC61C69C64738DCB61437FD6FB4BC 

   27C42D71DBE55C8BFECB96965113335C969C86A5D2A4CEF70428AAA249EC04B982D

693D507BB918A31CAE49390FAD81CAB991510D761FBACA28E2E4CC57CA 

The message digest      is 

BCA02AAC1C92FA4AEB68EFA4B863510C52E988F12534C74FA6E883D27B9959C8F212D4CB

2CB915D0E59E7EC84F3E7125BF842DCF2D7ADA1EB3D687329CB 

Thus, we construct the multi-collision for scheme 2 and obtained 6 messages having the same 

hash output. The Merkle-Damgård strengthening is not violated and the IV remains the same as 

in the original design of the Whirlpool hash algorithm; hence, we find non-pseudo collisions. The 

scheme cryptanalyzed in this subsection is a version having a feed-forward path,     . In the 

original design of the Whirlpool hash function, this path is        . In the backward analysis 

of the original version, the value of the plaintext    is unknown and in the backward analysis it is 

calculated employing the values of       (used as a key) and the ciphertext   . This makes 

finding collisions with the original design very hard. 

Backward Analysis of Scheme 3  

Our next analysis is of the scheme given in a Figure 4-3. In this scheme, we consider again three 

chains. In this scheme, the feed-forward path uses the message blocks instead of the output of the 

previous chain, and the role of the plaintext and the cipher key are interchanged. Since the key 

scheduling in a W cipher is independent on the encryption process, we can use a backward 

analysis in the Scheme 3.  

The method of finding collisions is the same as in the previous section, i.e., we fix the value   , 

the output of the second chain of the hash function. Then we go backward starting from the value 

  . The value of the second chain message    we choose arbitrarily. After XORing the message 

block    with   , we run W
-1        and obtain the input for the first chain. 
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Figure 4-3 Scheme 3 for Merkle-Damgård construction 

The problem here is that the IV of the first chain is the output of W
-1       ; i.e., we cannot 

predict its value a priori, so, finding collisions for the fixed values of IV is hard. Nevertheless, 

for the scheme 3, we obtain a set of multi-collisions for different messages with corresponding 

I ’s. The colliding messages with the respective I ’s are given below: 

   00000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000 

   8000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000 

with I ’s, respectively:  

    0000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000 

    A8B819A5B44FF071A4F3132691C13FEA03B145A2C16231EC54D62268D886E07BCB

E2B2248174F983444B1A5D0841A0CE06642ECA4B34B64868F6F478CE04790A 

Give the same message digest      : 

12DADA46D8E886AD2FB80C82D72310599E5920F29CE29A574B7F0F490FA6F62CD6687

C70ABCDA9DDF75083B90C2746D7470D2F6A22C8E5DDF3B47A3CB0D754A5 
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4.3. Backward Attack on Modified Forms of Grøstl Hash Function   

Wide-Pipe construction uses two different chain functions. In the case of Grøstl hash function, a 

message is processed through two ciphers, P and Q, in parallel, and the last chain utilizes only 

the cipher P together with truncation. Within the chains, the message block    is encrypted by the 

Q cipher, while the P cipher encrypts           . The chain output is defined as        

                       

Backward Analysis of Scheme 1  

To construct a fixed point in the Wide-Pipe construction, i.e., to obtain              ,  we 

need to fix value of      .  If we try to find the output of the chain             

                     , we need                    . Both P and Q do not use 

cipher keys but they use constants, which we do not have control over. Besides, the inputs of the 

ciphers P and Q, on their turn, both depend on the input message   , over which we do not have 

any control. That is, for P and Q to be equal, we need to find an input of the P cipher    

        leading us to some predefined output, which can be considered as breaking the 14 round 

P cipher. Thus, finding fixed points for Grøstl hash function with keeping the algorithm’s 

original IV seems to be equivalent to the breaking the underlying block cipher.   

 

Figure 4-4. The chain function f’of the Grøstl hash algorithm. 

Let us consider the 3 chain message, including the padding. In the analysis, we use 3-round 

encryption of P and Q, although the analysis can be applied to 14 rounds as well. If we omit the 

XOR operation of the feed-forwarding, the same issue occurs. The output of the chain       

would become                          .  
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We start the backward analysis at the second chain output point      . First, we calculate the 

hash value of the message  . Then, we go backward from the value of   . The inputs of the 

inverse ciphers P and Q take a single input, and since there is no key scheduling, the same input 

   would give us the same output       . However, there is an XOR operation, which defines 

the inputs of the inverse ciphers P
-1

 and Q
-1

. Let us denote the inputs of the P
-1

 and Q
-1 

by    and 

  , respectively, thus,         . We are going to make use of this XOR operation defined 

within the chain function and obtain two different ciphertexts     and     such that           . 

By calculating the inverse ciphers, we obtain two different messages   and   , yielding to the 

same hash value H,  with two I ’s.  So, again we obtain pseudo-collisions. 

Figure 4-5 Scheme 1 for Wide-Pipe construction  

The colliding messages with the respective I ’s are given below: 

   00000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000 

   EC4D0B6B7109159E8ABDE1275D25A67C9E08B9F43381DEC9E08B9F43381DE23884

16E145A6962388416E145A6960B1E53D3894330B1E53D389433DD806A81BD8B4454DD80

6A81BD8B4454223266D4C47A1F7223266D4C47A1F75688E97850EBB4E05688E97850EBB

4E0EC48B1C351BA67F2EC48B1C351BA67F2ECE043BD47B4F2E8E043BD47B4F2C988E5

814CEB6759C988E5814CEB676723B16A6D50BA91DE23B16A6D50BA5ADE080678511019

608067851D2196DD32E9C3B738A63DD32E9C37538A632288B1B6434543542288B1124345

43545648D09FE18944F75648DE9FE18944F7EC48B16D38BA1E0ECAB8B16D38BA1E0EA0

3B145A2C16231EC54D62268 
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with I ’s, respectively:  

    0000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000 

    67F714C5C911F14CC1CB15B9A6A7DC551EA8F8237FB3D698A0E7632CE3E830EC1

3ABA7B7DCFDCD495CB783F5875D9FDBA01BFF6CEC8B5B7C2B82DEA4D5798CCBCE5

5C26181FCEF67894A7AC47343AA4F4454E4C642D3BAC998F96E6AFAE2DAD2B874B3C

2CABAFA1867A26BDB480AFF53C39B6A7829457503A8AE62B9AB8A5FEF 

Give the same message digest      : 

98A0E7632CE3E83098A0E7632CE3E830495CB783F5875D9495CB783F5875D95B7C2B82D

EA4D5795B7C2B82DEA4D579CEF67894A7AC47CEF67894A7AC472D3BAC  

Backward Analysis of Scheme 2  

To construct a collision on the original scheme, which we denote as Scheme 2 for Wide-Pipe 

construction, we again fix the input to the last chain of the chain function   , coming from the 

previous chain of the hash function, which contains the bits, defined by padding rule. Thus, by 

fixing the value of   , we maintain the last chain of the hash algorithm, thus, the padding rule is 

not violated. Also, by this we prevent the changes in the function     of the Grøstl. Then we 

propagate in the backward direction, starting from   . We can assign the value of    arbitrarily 

and calculate     in two ways: either            or, by setting      , choose         

   .  

The steps of the inverse calculation are: 

            

             

                      

But the value of     depends on the next chain of the hash function:  
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Although it seems that there is more freedom we could use in the analysis due to feed-forward, 

unlike in Whirlpool, we cannot use feed-forward in the backward analysis of the Grøstl. The 

value of     should be defined a priori, therefore, we cannot achieve the predefined value at the 

output of the P. Thus, finding fixed points for Grøstl hash function while keeping the algorithm’s 

original IV seems to be equivalent to the breaking the underlying block cipher P.    

 

Figure 4-6 Scheme 2 for Wide-Pipe construction 

Notice that Scheme 2 is the same scheme for the Wide-Pipe and Merkle-Damgård constructions, 

both take the plaintext input of the underlying chain function as the incoming message block and 

use a feed-forward path         . Interestingly, finding collisions in Scheme 2 is not possible 

for Grøstl, while we are able to locate colliding messages with the original IV for the Whirlpool 

hash algorithm. Thus, this scheme, used in the Wipe-Pipe appears to be more secure. 

The other way to look at the inputs of the underlying chain function is taking the message blocks 

as the key of the cipher, and the chaining variable as the message. In [5], there was given an new 

observation of the chain function of Grøstl as a cipher with P permutation being the encryption 

algorithm and Q being the key scheduling, which turns Scheme 2 into Davies-Meyer scheme, 

which is proven to be secure.  

4.4. Backward Attack on Modified Forms of Grindahl Hash 

Function 

Along with Concatenate Permute Truncate (CPT) construction, the Grindahl hash function uses 

Merkle-Damgård strengthening. In the backward analysis, the construction of the hash function 

allows inserting part of the message block in the truncation step, giving the cryptanalyzer the 

freedom of controlling the inputs of the function.  
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Figure 4-7 One chain of the Grindahl hash function 

Truncation operation of the Grindahl cuts off the first 64 bits of the P permutation output of the 

algorithm. In the backward analysis, we are going to use this 64 bits (8 bytes) to construct 

collisions. First, we calculate the message digest for the given message  . As in the analysis of 

the Merkle-Damgård and Wide-Pipe constructions, we start the backward assembly of the 

colliding message by fixing the value    of the second chain output. Thus, we preserve the 

padding rule and also the blank rounds of the Grindahl, where we do not have control over the 

hashing process. Remember, that the chain function of Grindahl is defined as follows: 

                                       
                  

                                             
             

                                        
           

Before and after the P
-1

 inverse permutation, there is the truncation and concatenation, whose 

places should be exchanged in the backward analysis. The truncated 8 byte block of the P 

permutation is    . So, first, we truncate the input of the P
-1

 inverse permutation with the 8 byte 

block      : 

                          

                                

            
               

Thus, with a different concatenated 8-byte block, we obtain another message   , hashing to the 

same value H. Messages such as: 

   0101010101010101 

   0A61BA11EDB55B68 

with I ’s, respectively:  
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    0000000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000 

    44DD1DC940A4014D3C77B4CD2E54BCF83DD7DB392904A4F987BDF8FE4D3B4FC

A30180ED5FEB47F1E49CA3D43534FDC8F22D584B510766F3560F6D451C69300670CECE

A6FB9C519C2122C660B96A1E2D92CB92892B8845EC6D980865391AF3912 

Give the same message digest: 

     17C1A65FD87ED42BDADA46D8E886AD2FB80C82D72310599E5920F29CE29A574

B7F0F490FA6F62CD6687C70ABCDA9DDF75083B90C2746D7470D2F6A22C8E5DDF3 

Besides the pseudo-collisions obtained above, since the P permutation of the Grindahl hash 

function consists of only one round of the AES modification, we also try to obtain collisions with 

the same I ’s. However, if we take a close look at the permutation structure, we can see that the 

bytes we truncate before processing the state by P cipher, are located at the first row. 

MixColumn operation leaves the bytes on the same row, but the picture changes after the 

ShiftRows operation, and the inserted bytes now are on 8 columns of the cipher state matrix, and 

none of them is a part of the first row, which is truncated to become the message block   
 . 

Indeed, all the changes brought by          are in the I ’s.  

99  124  99  99  99  99  99  99  99  99  99  99  99  

99  99  124 99  99  99  99  99  99  99  99  99  99  

99  99  99  124  99  99  99  99  99  99  99  99  99  

99  99  99  99  124  99  99  99  99  99  99  99  99  

99  99  99  99  99  124  99  99  99  99  99  99  99  

99  99  99  99  99  99  124  99  99  99  99  99  99  

99  99  99  99  99  99  99  124  99  99  99  99  99  

99  99  99  99  99  99  99  124  124  99  99  99  99  

Figure 4-8 Positions of the inserted 8-byte block after ShiftRow 

4.5. Conclusion  

For the hash functions constructed using iterated structure, the alteration of the messages due to 

fixed points can become a major threat to the security of the algorithms. In Whirlpool, Grøstl and 

Grindahl, the underlying block ciphers are invertible, and this makes them more vulnerable to the 

attack, since mapping is 1:1. In this section, three chains of the modified forms of Whirlpool, 

Grøstl and Grindahl are cryptanalyzed in the backward direction, exploiting this vulnerability. 
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Since the given examples of the cryptanalysis are conducted on the modified versions, found 

collisions or pseudo-collisions cannot be considered as a real threat to the original versions of the 

hash functions. Rather, they should be understood as indicators of the importance of the missing 

feed-forward paths as compared to those of the more secure schemes. 

Backward Analysis of Whirlpool 

We consider the Whirlpool algorithm in three different Merkle-Damgård construction modes, 

corresponding to different choices of the feed-forward path, that we call Scheme 1 (with no feed-

forward path), Scheme 2 (with the feed-forward path        ) and Scheme 3 (with       , 

and by using     as the key and      as the plaintext of the W cipher). 

 We obtain a pseudo-collision for the version of Whirlpool hash algorithm used in Scheme 1, 

where the feed-forward paths are removed. We call it a a pseudo-collision since Scheme 1 

omits one of the Merkle-Damgård strengthening rules, which requires the IV of the algorithm 

to be fixed (in case of the Whirlpool hash function, IV is chosen as the all zero vector).  

 We construct multi-collisions for Scheme 2 and give 6 messages having the same hash output 

as an example of multi-collisions. The Merkle-Damgård strengthening is not violated and the 

IV remains the same as in the original design of the Whirlpool hash algorithm. 

 For Scheme 3, we obtain a set of a pseudo-multi-collisions for different messages with 

corresponding I ’s.  

Backward Analysis of Grøstl 

We consider the Grøstl algorithm in two different Wide-Pipe construction modes, corresponding 

to different choices of the feed-forward path, that we call Scheme 1 (with no feed-forward path), 

and Scheme 2 (with the feed-forward path        ) as in the case of Whirlpool. 

 We obtain two different ciphertexts     and     such that           . By calculating the 

inverse ciphers, we obtain two different messages   and   , yielding to the same hash value 

H. Since two I ’s are found, we obtain a pseudo-collison.  

 For Scheme 2, we show that obtaining a collision by using backward analysis can be 

equivalent to breaking the underlying block cipher P. Notice that the chaining mode used in 

the original version of the Grøstl hash function can be considered as the Matyas-Meyer-Oseas 

scheme, where the feed-forward sequence is the message block (with       ), or it can also 

be considered as our Scheme 2 (with the feed-forward path        ). Since there is no key 

used in the underlying block ciphers of Grøstl, both     and        can be considered as the 

plaintext, hence they are interchangeable.  
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Backward Analysis of Grindahl 

While preserving the Merkle-Damgård padding rule, we obtain two messages      and their 

I ’s , hashing to the same value H. With different concatenated  -byte blocks, we give the 

messages   and    with related I ’s; hence we obtain pseudo-collisons. 

Showing the construction steps of the fixed points for CPT structure, we also demonstrate how to 

find real collisions with the same I ’s.   
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CHAPTER 5 

 

5.CONCLUSION 

 

 

In this work, we mainly aim at finding practical collisions for block cipher based hash functions, 

Whirlpool, Grøstl and Grindahl, by means of some attacks on the underlying block cipher as well 

as the backward cryptanalysis of the overall hash algorithm. All the hash functions that we 

choose utilize modified versions of the AES as their chain functions and an iterated principle. 

However, they are built using dissimilar constructions: the Merkle-Damgård construction for the 

Whirlpool hash function, the Wide-Pipe construction for the Grøstl hash function, and the 

Concatenate-Permute-Truncate (CPT) construction for the Grindahl hash function. 

We start by giving a comparison of the Rijndael with the underlying block ciphers, W for 

Whirlpool, P & Q for Grøstl and P for Grindahl, of the considered hash algorithms. We 

chronologically classify the known attacks on hash algorithms and highlight the interrelation 

between these cryptanalytic methods. 

In order to analyze the integral structures to be exploited by the integral cryptanalysis, 

corresponding to the chosen plaintexts as defined by Knudsen, which have all passive bytes 

except a single active byte that spans the whole field; we carry out a set of experiments and 

investigate the patterns of round outputs of the underlying block ciphers W, P & Q and P. In 

order to understand how integrals sum up to zero, we conduct a set of experiments. First, we 

calculate the frequencies, with which elements occur at a particular position in each integral for a 

fixed active byte position. The same frequency analysis of integral structures is done for all 

possible sets of active bytes in each position.  

In order to see the diffusion flow in the integral structures, and to understand if the integrals can 

be constructed for a smaller collection of plaintexts; we find all the elements in integrals with 

high frequencies, their positions, as well as the value and position of the corresponding active 

bytes. We tabulate these frequencies for each of the hash functions 
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To understand the nonrandom behavior of the cipher and to investigate which of the operations 

lead to the systematic integral characteristics, we show the effect of core operations of underlying 

AES based functions on the 1
st
, 2

nd
 and 3

rd
 round output states of the overall cipher. 

In hash function constructions, an adversary has the full knowledge of initial vectors and round 

constants used as cipher keys, at least for the first chain of a given hash function, since the initial 

vectors, IV, of the algorithms are fixed and not secret. Besides, for the algorithms constructed 

using an iterated structure, the alteration of the messages due to fixed points can become a major 

threat to the security of the algorithms. In Whirlpool, Grøstl and Grindahl, the underlying block 

ciphers are invertible, and this is believed to make them vulnerable to the attacks.  

We examine some schemes of the Merkle-Damgård construction, which are modified versions of 

the Whirlpool hash function, to analyze the overall algorithm for collision resistance. We 

consider three different Merkle-Damgård construction modes, corresponding to different choice 

of feed-forward paths, that we call Scheme 1 (with no feed- forward path), Scheme 2 (with the 

feed-forward path        ) and Scheme 3 (with       , and by using     as the key and 

     as the plaintext of the W cipher). For Scheme 1, we obtain pseudo-collisions by omitting 

one of the Merkle-Damgård strengthening rules, which requires the IV of the algorithm to be 

fixed. For Scheme 2 we construct multi-collisions and, as an example, we give 6 messages 

having the same hash output. The Merkle-Damgård strengthening is not violated and the IV 

remains the same as in the original design of the Whirlpool hash algorithm. For Scheme 3, we 

obtain a set of pseudo multi-collisions for different messages with corresponding I ’s.  

As for the Wide-Pipe construction, we attain fixed points on the modified version of Grøstl; 

obtain collisions with the respective I ’s and show the impossibility of building the backward 

attack on the original version of the algorithm. When Grøstl hash function is used in Scheme 1, 

making use of this XOR operation defined within the chain function of the Grøstl, we obtain two 

different ciphertexts     and     such that           . By calculating the inverse cipher outputs, 

we obtain two different messages   and   , yielding to the same hash value H,  with two I ’s; so 

we obtain pseudo-collisions again.  

For Scheme 2, we show that obtaining a collision by using backward analysis is equivalent to the 

breaking the underlying block cipher P. This result also shows that Scheme 2, when used in 

Wide-Pipe construction, is more secure than Merkle-Damgård construction.  

With regard to the Concatenate Permute Truncate (CPT) construction, the backward analysis on 

the original version of Grindahl and the role of Merkle-Damgård strengthening in this 

construction are shown. We obtain two messages      and their I ’s , hashing to the same 
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value H. With different concatenated 8-byte blocks, we give the messages   and    with related 

I ’s, indicating pseudo-collisions. Showing the steps of constructing the fixed points for CPT 

construction, we also demonstrate how to find real collisions with the same I ’s.   

As future work, we believe that the statistics of the chosen hash functions that we study can be 

exploited in rebound attack, as well as in the distinguishing attack and Super-Sbox attacks, 

retrieved from the rebound cryptanalysis; or for finding multi-collisions in herding attacks. More 

precisely, the most expensive part of the rebound attack, inbound phase, where the truncated 

differences should be linked, can be done more efficiently by making use of the non-randomness, 

studied in the integrals. Among the 49 non-trivial schemes of the iterated hash functions obtained 

by different choices of the cipher inputs and the feed-forward path, we analyze only 3 schemes 

for the Merkle-Damgård construction and 2 for the Wide-Pipe. In the literature, there are few 

works that consider the confirmation or rejection of the security of a scheme, except 

for the black-box proof of the security of 12 schemes by Black, et al. in 2002. The proof is given 

with the assumption that the underlying chain functions are ideal, collision resistant functions, 

and no influence of chain functions' weaknesses are included into the cryptanalysis 

of schemes. Thus, this field of study has also importance as a future work.    
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APPENDIX A 

 

A. STATISTICAL ANALYSIS OF BLOCK CIPHER BASED HASH 

FUNCTIONS 

 

 

 

In this appendix, statistical properties of the three hash functions, the Whirlpool, Grøstl and 

Grindahl, are studied in terms of the weight and distance of message digests in section A.1. The 

analysis of correlations between messages and message digests are given in section A.2. Also, in 

this section there is analysis of correlation between inputs and round outputs of underlying block 

cipher of hash algorithms. Since P permutation of Grindahl hash function consists of one round 

only, the tests are done for W of Whirlpool and P and Q of Grøstl hash functions. 

Section A.3 is about the analysis of the Whirlpool hash function. Since Grøstl and Grindahl use 

the s-box of AES, which satisfies the criteria of avalanche, strict avalanche and bit independence 

within very small values of relative absolute errors [44], in section A.3.1 the  s-box of the 

Whirlpool hash function is analyzed and compared with those of AES finalists. Besides, since 

there are several schemes proposed under Merkle-Damgård constructions, in this section 

statistical analysis of the Whirlpool hash function under different hashing modes and use of two 

different s-boxes are presented. 

A.1. Statistical Analysis of Weights and Distances   

The Hamming weight of a vector f, denoted by      , is the number of ones in the vector. If f 

and g are functions on   , then                is called the Hamming distance between f 

and g. Since the message digest length is 512 bits for all three hash functions, the expected 

weights of the outputs are about 256 under the assumption of random distribution, which should 

be satisfied for a hash algorithm with good diffusion properties.  

The choices of the test vectors are made according to the message block inputs for each of the 

hash algorithms. Since the length of the input message is different for the three hash functions 

considered at this work (512 bits for Whirlpool, 1024 bits for Grøstl and 64 bits for Grindahl), the 
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general data used in the statistical analysis was adapted for every case as shown in Table A-1. In 

this section, we only give the details of the weight distributions for the Whirlpool hash function 

and then, summarize our similar results for all three hash functions in Figure A-5.  

Table A-1 Size and element weights of the input data sets used for the statistical analysis 

Whirpool Grøstl Grindahl 

Set size  Weight Set size  Weight Set size  Weight 

512 1 (or 511) 1024 1 (or 1023) 64 1 (or 63) 

1536 2 (or 510)  2054 2 (or 1022)  704 2 (or 62)  

2048 3 (or 509) 26573 3 (or 1021) 2240 3 (or 61) 

 

93350 

Random with 

Min=160 

Av=230 

Max= 390 

 

64806 

Random with 

Min=256 

Av=461 

Max= 516 

 

100,000 

Random with 

Min=16 

Av=29 

Max= 43 

The Whirlpool hash algorithm works for 2 chains (i.e., the message is segmented into two 

blocks) for any 512-bit message; the first chain input is the message itself and the second chain 

input is the length of the message padded to 512 bits.  

First, we find the weight distribution of Whirlpool hashes corresponding to the weight-1 inputs. 

We observe that the Whirlpool hash function produces almost randomly distributed digests, with 

mean weight of 256 bits, as expected from a random set of 512-bit vectors. However, these 

weights are somewhat concentrated around the mean value (minimum weight is 213 and the 

maximum is 288 bits). The histogram in Figure A-1 shows the weight distribution of message 

digests for weight-1 inputs.  

When we use weight-511 inputs instead of weight-1 inputs, the mean, maximum and thep 

minimum values of the message hashes become 256, 300, and 228 respectively. 
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Figure A-1 Weight histogram of the Whirlpool hash function for 512 weight-1 inputs. 

We have then found the weights of the message digests corresponding to 93350 random 

messages. The observed average weight of the hashed values is 256, minimal and maximal 

weights are 206 and 303, respectively. Results show that there is no meaningful weight 

difference between the hashed values of weight-1 or random messages. The histogram of output 

weights, when the inputs are random vectors, is given in Figure A-2. 

 

Figure A-2  Weight histogram of the Whirlpool hash function for 93350 random inputs. 

weight_wt1

300280260240220200

F
re

q
u

e
n

c
y

100

80

60

40

20

0

Histogram

Mean =255.59

Std. Dev. =10.946


N =512

weight_random

320300280260240220200

F
re

q
u

e
n

c
y

2,500

2,000

1,500

1,000

500

0

Histogram

Mean =256

Std. Dev. =11.289


N =65,535



 81 

The average, minimal and maximal weights of message digests for input vectors of different 

weights are shown in Figure A-3. As one can see, the mean weight is about 256, the minimum 

weight is not less than 200 (lower bound of 206 is obtained when 93350 random messages are 

hashed) and maximum is about 300 (303 in the case of random messages hashed values). 

 

Figure A-3 Maximal, minimal and average weights of message digests for the Whirlpool hash function 

Next, we analyze the Hamming distances between the obtained hashed values. Our input data 

consists of 512 weight-1 vectors           ,  and all 0 vector v. The distance between 

vectors   and v is 1, and we would like to see the distance range between message digests 

corresponding to those messages. The histogram below shows that distance between message 

digests of vectors    and that of all-0 vector lie between 210 and 290 bits. 

 

Figure A-4 Distances between the hashes of 512 weight1 vectors and the all-zero vector for the Whirlpool hash 

function. 
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Despite the difference in the size of input messages, results of the weight analysis obtained for 

the 512-bit message digests of the Grøstl and Grindahl hash functions are in the same range with 

Whirlpool as can be observed in Figure A-5.  

 

Figure A-5 Average message digest weights for the Whirlpool, Grøstl and Grindahl hash functions 

A.2. Statistical Analysis of Correlation  

In this section the correlation analysis is conducted. The correlation between message and their 

message digests of all three hash functions are analyzed in section A.2.1. Correlations between 

successive round outputs and between input and round outputs are given in sections A.2.2. and 

A.2.3. for W cipher of Whirlpool and P and Q permutations of Grøstl, respectively. For the 

Grindahl hash function we omit this analysis, since it consists of only one single round. 

A.2.1 Correlation Between Message and Message Digests of the Hash 

Functions 

Let f and g be two n-bit vectors in Vn. Relation between the correlation      and the Hamming 

distance        is given by               . 

 Normalized Correlation between f and g can be obtained by  

      
    

 
 

 

 
                 

    
  

We have analyzed the normalized correlation between weight-1 inputs and corresponding 

message digests. According to the result, after all 10 rounds Whirlpool shows good correlation 

properties. 
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Table A-2 Statistics of correlation for the Whirlpool hash function 

  N Minimum Maximum Mean Std. Deviation 

correlation_single_1_messages 
512 -0.128 0.16 0.001 0.042 

Valid N (listwise) 512         

Among observed 512 weigth-1 messages and their message digests, the maximal normalized 

correlation magnitude is at 0.16, and average is close to zero, as it is expected for a 

cryptographically strong hash functions.  

For weight-511messages maximal normalized correlation is 0.175, average is again close to zero 

– 0.036. 

To observe correlation behavior under equal conditions for the hash functions, the test is 

performed using the data set including 93350 random strings of length 512 bits. For Whirlpool 

and Grøstl hash algorithms, the hashed values are obtained after two chains due to padding rules, 

while for Grindahl it takes 8 chains of hashing the message blocks, plus one chain for padding. 

Figure A-6 displays the average correlation magnitude between message and its message digest. 

The values are taken by absolute value. Although we see that maximal correlation is high 

enough, we can conclude that correlations are not high in general as average values are small. 

 

Figure A-6 Normalized correlation magnitudes (average and maximum values) between messages and message 

digests 
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A.2.2 Correlation Between Round Outputs of the W Cipher 

Although the initial values are fixed in the design of all three hash functions, in Whirlpool hash 

function there is a key generation algorithm, which depends on chain outputs. That is, the key of 

W cipher is not always all zero vector. In this section we analyze the correlation within the W 

cipher when cipher key is all 0, all 1 and in a random case. 

Correlation between Successive Round Outputs with Different Keys 

In this test we also used weight 1 vectors of length 512. As an input of this test takes round 

outputs of Whirlpool algorithm and gives us correlation between them. Although in the previous 

test we have seen good results for correlation properties, the analysis of correlation between 

intermediate values, that is outputs of each round, do not pass the test for the first round. 

Correlation is very high between inputs and round-1 outputs, achieving 0.89 (maximum). 

Normalized correlations between round outputs are given in Table A-3. 

Table A-3 Statistics of intermediate values normalized correlation 

  N Minimum Maximum Mean Std. Deviation 

round1_correlation 512 0.67188 0.89453 0.75822 0.03827 

round2_correlation 512 -0.13281 0.12891 -0.00203 0.04398 

round3_correlation 512 -0.12500 0.11719 -0.00291 0.04361 

round4_correlation 512 -0.16406 0.12500 0.00170 0.04573 

round5_correlation 512 -0.12891 0.13672 0.00188 0.04443 

round6_correlation 512 -0.12109 0.12500 -0.00051 0.04525 

round7_correlation 512 -0.12891 0.17969 -0.00098 0.04235 

round8_correlation 512 -0.13672 0.12109 -0.00092 0.04467 

round9_correlation 512 -0.15234 0.10938 0.00074 0.04371 

round10_correlation 512 -0.14063 0.13281 -0.00002 0.04461 

Valid N (listwise) 512         

Such behavior of correlation between inputs and round-1 outputs can be explained by the 

AddCipherKey operation in W cipher. This operation is applied to the state matrix before rounds 

start. Then both message and key are proceeded trough the same operations (since the key 

expansion of the W cipher is a copy of encryption algorithm itself with the only difference at 

AddRounKey operation, where round constants are used in key management). Remembering that 

round constants are matrices with nonzero entries only on the first row, we see that a message 

and the round key differ on that single row.  So, it turns out that at AddRoundKey operation all 

changes are annulled, but the first row. Therefore the result is the high correlation. 
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Figure A-7 Maximal normalized correlations between intermediate values 

When the original key (i.e., all-0 initial vector) of Whirlpool Hash Function is used, we see high 

correlation between inputs and round-1 outputs. Normalized maximal correlation between round-

1 and round-2 outputs is 0.12, and it remains the same between all following successive round 

outputs. 

 

Figure A-8 Normalized correlation between successive round outputs over 512 inputs of weight 1 for all-0 key 

We have tried to change the hash function’s key to see if it affects the result. With all-1 key we 

observed the same result as in case of original key. Again, correlation between inputs and round-

1 outputs is high and it diminishes between round 1 and round 2 and following rounds. 
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Figure A-9 Normalized correlation between successive round outputs over 512 inputs of weight 1 for all-1 key 

With a totally random key, we still observe the same result (Figure A-10). So, we can conclude 

that changing the Whirlpool’s key does not affect the strength of the hash function. 

 

Figure A-10 Normalized correlation between successive round outputs over 512 inputs of weight 1 for a random 

key 

Correlation between Input and Round Outputs with Different Keys 

The previous test has been repeated for the analysis of correlation between input and round 

outputs. In this test we also used weight 1 vectors of length 512 as input of the Whirlpool hash 

function. Three different key were used, namely, the original key of the hash function (all-0 key), 

the all-1 key and random key. Result of this test also showed that changing Whirlpool’s key has 

no effect on the diffusion properties of the hash function, with maximal normalized correlation at 

0.18, 0.19 and 0.14 for all-0, all-1 and a random key, respectively. In Figure A-11 we give 
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normalized correlations between inputs and round-2 outputs only, since the range remains the 

same for the correlation between inputs and round outputs up to round-10. 

 

Figure A-11 Normalized correlation between inputs and round-2 outputs over 512 inputs of weight 1 different 

keys 

A.2.3 Correlation Between Round Outputs of Grøstl Permutations P 

and Q 

The chain function of the Grøstl hash algorithm exploits two identical ciphers P and Q with the 

only difference in round constants, which play the role of cipher key in AddRoundKey 

(AddRoundConstant) operation. In this section we examine the correlation properties within 14 

rounds of P and Q permutations. 

Correlation between Successive Round Outputs of P and Q Permutations 

In this test we used weight 10000 vectors of length 512 and processed them though both 

permutations P and Q. Unlike W cipher of the Whirlpool hash function, P and Q of Grøstl show 

good correlation properties starting from the first round. That can be explained by the fact, that 

there are no key addition operations before rounds in these permutations. Maximal normalized 

correlation is almost twice lower for both P and Q compared to W (0.17 in W compared to 0.08 

in P and Q). 

In the rest, correlation behavior of permutation P and Q are much similar to that of W cipher of 

the Whirlpool hash function. In Figure A-12 and Figure A-13 the test results are given for the 

first 512 vectors (out of 10000) from the data set. 
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Figure A-12 Normalized correlation between successive round outputs of permutation P over 512 random inputs 

 

Figure A-13 Normalized correlation between successive round outputs of permutation Q over 512 random inputs 

The aim of the next test is analysis of correlations between round outputs of permutations P and 

Q, since, to produce a next chain input, outputs of these permutations are XORed, therefore, the 

correlation between them is supposed to be low. As it was expected, correlation is high between 

round-1 outputs, since the only operation, responsible for difference, is the AddRoundConstant, 

which changes only one byte so far, and the MixBytes operation changes one column of the state 

(i.e., 8 bytes out of 128). 

As an input to the round-2 we have the states, which differ from each other 8 bytes, one at each 

row (and exactly at the half of all columns). AddRoundConstant operation makes it 9 bytes, but 

still there are 8 columns (out of 16) with no difference, which results in the states of permutation 

with normalized correlation about 0.5 after the second round (Figure A-14). 

However, after the 3
rd

 round there is a good diffusion, and a low correlation between states of 

permutations P and Q. 
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Figure A-14 Normalized correlation between round outputs of permutations P and Q over 512 random inputs 

Correlation between Input and Round Outputs of P and Q Permutations 

Since there is no key used in Grøstl hash function, this test includes the analysis of the original 

design over 10000 random vectors.  

 

Figure A-15 Normalized correlation between input and round outputs of permutation P over 512 random inputs 

 

Figure A-16 Normalized correlation between input and round outputs of permutation Q over 512 random inputs 
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Maximal normalized correlation magnitude between inputs and round outputs are at 0.109 and 

0.113 for P and Q, respectively, which is twice as low as for W of the Whirlpool algorithm. 

Averages are at 0.0006 for P and  0.0002 for Q. In Figure A-15 and Figure A-16 we give 

normalized correlations between inputs and round-2 outputs for these permutations. Input-rounds 

correlations remain the same for the other 14 round. 

A.3. Whirlpool with Different Chaining Schemes with Original S-

Box and AES S-Box 

A.3.1 Comparison with the S-Boxes of Serpent and AES  

The polynomial used in the design of the Whirlpool cipher is        over GF(2
4
). Three 

miniboxes are used, namely E, E
-1

 and R, where E
-1

 is the inverse of E box. 

We have analyzed LAT and XOR tables of the Whirlpool cipher in terms of 

 Nonlinearities of the s-boxes 

 Differential uniformities of the s-boxes 

 XOR table elements corresponding to input and output difference vectors of weight 1 

The absolute value of maximal elements in the LATs of all three s-boxes equals to 4, so, the 

nonlinearity of all of them is             . 

Analysis of the XOR tables shows that mini-S-boxes of the Whirlpool has differential uniformity 

equal to 4, meaning each differential characteristic has a probability of at most 1/4, and a one bit 

input difference will not result in one bit output difference. Thus, the probability that the  

 S(x) + S(x + i)= j  can be at most 4/16=1/4.  

Besides, in all three s-boxes, the XOR(i,j) is not all zero for i, j – with the weight 1, i.e., on the 

intersection of i and j, with          and         there are elements different from zero. 

This implies that Whirlpool’s mini s-boxes do not satisfy SAC, that is, there is bias when flipping 

one input bit, which allows applying differential cryptanalysis. If Whirlpool’s mini s-boxes are 

compared with the s-boxes of the Serpent cipher, we see that Serpent’s s-boxes show better 

properties.  

When the whole s-box of Whirlpool cipher is analyzed, the LAT and XOR tables show the 

following properties. The absolute value of maximal element in the LAT appears to be 28, so, the 

nonlinearity is                , which is less than that of the Rijndael.  
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Table A-4 Comparison of the Whirlpool block cipher W and Serpent's s-boxes 

 Whirlpool Serpent 

Maximal element in LAT 4 4 

Nonlinearity of the S-box  4 4 

Differential Uniformity of the S-box 4 4 

Weight-1 elements of the XOR  table No Yes 

Analysis of the XOR table shows that the s-box of the Whirlpool has differential uniformity 

equal to 8 and, given one bit difference between two inputs, the difference between the 

corresponding outputs can also be one bit. In Table A-5 there is comparison of the s-boxes of the 

Whirlpool cipher W and the AES. 

Table A-5 Comparison between the s-boxes of the Whirlpool block cipher W and the AES 

 Whirlpool Cipher W AES 

Origin of the S-box recursive structure multiplicative inverse in 

GF(2
8
) plus affine 

transformation 

Maximal element in LAT 

table 

28 16 

Nonlinearity of the S-box 100 112 

Differential Uniformity of the 

S-box 

8 4 

A.3.2 Statistical Analysis of Weights 

To see statistical behavior of message digests’ weights when Whirlpool cipher is used in different 

chaining modes and with AES s-box, we used several data sets. As in case of the original scheme 

(Miyaguchi-Preneel Scheme), expected weights of outputs are about 256. As a test vectors we 

have taken inputs of size 512 (the hash algorithm works for 2 chains for any 512-bit input). The 

list of data used for statistical analysis is the same as we used in the analysis of original scheme 

(Table A-1), with the only difference at the number of random vectors (10000 random vectors of 

length 512 with average, minimal and maximal weights 231, 169 and 256, respectively). Table 

A-6 shows the general statistical behavior of message digests weights for a given data set.  

According to result of statistical analysis, there is no significant difference between the test value 

and the observed mean in weights of message digests. For all schemes we can observe that the 

average weight is about 256. In Matyas-Meyer-Oseas sheme we see the maximal standard 

deviation, where minimum and maximum of weight deviate from the mean to 50 and 45 

respectively, which is 5 units greater than this of the original scheme. 
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Table A-6 Statistics of weights for different schemes 

 Input random 

Devies Meyer 

Scheme 

Matyas Meyer 

Oseas Scheme Rabin Scheme Original Scheme 

N          Valid 10000 10000 10000 10000 10000 

Missing 0 0 0 0 0 

Mean 231.44 255.93 256.23 255.75 256.00 

Median 232.00 256.00 256.00 256.00 256.00 

Std. Deviation 9.495 11.310 11.265 11.281 11.230 

Minimum 169 214 206 214 206 

Maximum 265 297 301 295 294 

Figure A-17 also shows average, minimal and maximal weights of message digests when 

different schemes are used; the mean weight is about 256, the minimum weight is not less than 

200 (lower bound of 206 is obtained when random messages are hashed using Matyas-Meyer-

Oseas scheme and the original one) and maximum is about 300 (301 in the case of Matyas-

Meyer-Oseas scheme). 

The analysis in section A.3.1. shows that parameters of W cipher’s s-boxes are inferior to those 

of AES finalists. For this reason, our next test is W cipher with AES’s s-box and analysis of 

statistical behavior of hash function’s outputs for different chaining modes. 

 

Table A-7 Statistics of weights for different schemes with AES’s s-box 

 Input random 

Davies Meyer 

Scheme AES 

Matyas Meyer 

Oseas Scheme  

AES 

Rabin Scheme 

AES 

Original Scheme 

AES 

N            Valid 10000 10000 10000 10000 10000 

Missing 0 0 0 0 0 

Mean 231.44 256.21 256.03 255.95 255.91 

Median 232.00 256.00 256.00 256.00 256.00 

Std. Deviation 9.495 11.349 11.338 11.264 11.394 

Minimum 169 211 216 209 208 

Maximum 265 302 295 298 300 

In this testing we again use as input 10000 random vectors of length 512. According to result of 

statistical analysis, average weight is 256, which is equal to the expected value. We can see that 

original scheme with AES’s s-box gives greater deviations than it gives with the original s-box. 

The histograms in Figure A-18 show the frequencies of message digests’ weights for different 

schemes, when the original s-box is substituted with those of AES.  



 93 

 

Figure A-17 Frequency of weights of MD's for the different schemes with the original s-box 

 

 

Figure A-18 Frequency of weights of MD's for the different schemes with s-box of AES 

From the analysis above we can see that that maximal weight distribution is obtained when 

Davies-Meyer chaining mode is used with the original Whirlpool’s s-box. However, average 

weights are almost the same for all chaining modes. 

 

 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

2
0

6
 

2
1

1
 

2
1

6
 

2
2

1
 

2
2

6
 

2
3

1
 

2
3

6
 

2
4

1
 

2
4

6
 

2
5

1
 

2
5

6
 

2
6

1
 

2
6

6
 

2
7

1
 

2
7

6
 

2
8

1
 

2
8

6
 

2
9

1
 

2
9

6
 

3
0

1
 

Fr
e

q
u

e
n

cy
 

 

Devies-Meyer 

Matyas-Meyer-Oseas 

Rabin 

Original 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

2
0

6
 

2
1

1
 

2
1

6
 

2
2

1
 

2
2

6
 

2
3

1
 

2
3

6
 

2
4

1
 

2
4

6
 

2
5

1
 

2
5

6
 

2
6

1
 

2
6

6
 

2
7

1
 

2
7

6
 

2
8

1
 

2
8

6
 

2
9

1
 

2
9

6
 

3
0

1
 

Fr
e

q
u

e
n

cy
 

 

Devies-Meyer 

Matyas-Meyer-Oseas 

Rabin 

Original 



 94 

A.3.3 Statistical Analysis of Correlations between Message and 

Message Digests of the Whirlpool Hash Function 

We have analyzed correlation between input data and corresponding message digest using 10000 

random vectors as our sample data.  

Table A-8 Statistics of normalized correlations between message and message digest for different schemes 

 

Davies Meyer 

Scheme 

Matyas Meyer 

Oseas Scheme Rabin Scheme Original Scheme 

  N Valid 10000 10000 10000 10000 

 Missing 0 0 0 0 

Mean 0.00051 0.00111 0.00002 -0.00008 

Median 0 0 0 0 

Std. Deviation 0.04389 0.04457 0.04397 0.04420 

Minimum -0.15625 -0.17188 -0.16406 -0.16797 

Maximum 0.18359 0.16016 0.17188 0.16406 

According to the result, after all 10 rounds the Whirlpool hash function shows good correlation 

properties with all schemes used. Maximal normalized correlation magnitude is observed when 

Whirlpool cipher is used in Davies-Meyer chaining mode and equals 0.18, while in the case of 

original scheme it is 0.16. 

Next, we give the statistical analysis of correlation for different schemes with the original s-box 

substituted by AES’s s-box. 

Table A-9 Statistics for normalized correlation between message and message digest for different schemes with 

AES’s s-box 

 

Davies Meyer 

Scheme AES 

Matyas Meyer Oseas 

Scheme AES 

Rabin Scheme 

AES 

Original scheme 

AES 

N Valid 10000 10000 10000 10000 

 Missing 0 0 0 0 

Mean -0.00053 -0.00008 0.00016 0.00033 

Median 0 0 0 0 

Std. Deviation 0.04463 0.04459 0.04396 0.04386 

Minimum -0.16406 -0.16406 -0.17969 -0.18359 

Maximum 0.20313 0.16406 0.16406 0.17578 

Again, after all 10 rounds Whirlpool shows good correlation properties with all schemes used. 

Maximal normalized correlation magnitude is observed when W cipher is used in Davies-Meyer 

chaining mode and equals 0.2, while in the case of original scheme it is 0.183. Note that in 
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Davies-Meyer scheme we observed maximal correlation magnitude when the original s-box was 

used (maximal was 0.18). 

In terms of correlation the best result is obtained when Matyas-Meyer-Oseas scheme is used with 

AES’s s-box with maximal normalized correlation magnitude at 0.164, while the original scheme 

with original s-box shows maximal normalized correlation magnitude equal to 0.168. 

Nevertheless, the best average correlation magnitude is obtained the original scheme is used with 

AES’s s-box. 

 

Figure A-19 Maximal correlation magnitudes between message and message digests 

 

 

Figure A-20 Average correlation magnitudes between message and message digests 
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A.4. Conclusion 

In this section statistical behavior of hash functions are analyzed. Although three different 

hashing techniques are considered, the weight and correlation in all these cases show high 

characteristics. However, in the analysis of weights it can be of interest the fact that outputs of 

one chain have weight distribution close to average value. As block ciphers are to map 1:1, and a 

fixed initial vectors are used, this range is due to hash functions’ construction.  

Besides, correlation between input and round-1 output appears to be high in W cipher of 

Whirlpool hash function. Although W is a modified version of Rijndael, the same behavior is  

monitored neither in P and Q permutations of the Grøstl hash function, nor in P cipher of 

Grindahl algorithm, which consists of just one round. Also, we study weight and correlation 

distributions of different schemes in Merkle-Damgård construction.  

W cipher takes two inputs of 512 bits and outputs the ciphertext of the same length. As a last 

check, we examine how the outputs of the W cipher and Whirlpool hashes diffuse, we compute 

the weights and distances among all cipher outputs and among all Whirlpool hash values. We 

also compute the correlations between cipher outputs and messages and the correlations between 

hash values and messages. The results are given in Table A-10. 

Table A-10 Statistics of the W cipher 

Input weight 
Output weight Distances between outputs Maximum correlations 

with the inputs 

W Hash W Hash W Hash 

1 

(512 vectors) 
227-289 213-288 208-306 205-303 64 84 

2 

(1530 vectors) 
221-292 220-294 201-313 201-296 76 72 

As can be seen from Table A-, the maximum correlation between Whirlpool hash outputs and 

weight-1 inputs is slightly more than the maximum correlation between weight-1 inputs and W 

cipher outputs.  
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APPENDIX B 

 

B. 16-BIT VERSION OF WHIRLPOOL HASH FUNCTION 

 

 

The aim of implementing a 16-bit version of Whirlpool hash function is to find colliding 

messages easily, since the small size of the hash function allows a brute force attack. We also 

describe a backward attack on the 16-bit version. Our intention is to use this information to 

analyze the original 512-bit version of the Whirlpool hash function. 

B.1. Implementation 

The following version of Whirlpool hash function takes an input of arbitrary length and outputs a 

hash of 16 bit length.  The design of W has a 16-bit string as input and output.  

In our implementation of 16 bit Whirlpool hash function, we use the same chaining mode as in 

the original one. The padding is again 1 bit, followed by necessary number of 0’s. The binary 

representation of the length of original message is in last 8 bits of padding. 

The initial value of    is set to all 0, blocks of cipher key and plaintext for W cipher are of 16 bit 

length.    is the cipher key for the first encryption by W cipher. Being XORed with the previous 

cipher key and plaintext, ciphertext becomes the cipher key for the next block. The message 

digest is an 16-bit output of the last block. 

We try to keep the design of block cipher W used in the hash function close to the one of the 

original cipher. The input and output states are 2×2 matrices: 

 
    

    
         

    

    
      where       GF            . 

Changes have been made in SubByte and MixColumn operations, since the size of input is set to 

16 bits. The MixColumn operation exploits an MDS matrix 



 98 

   
  
  

  

with irreducible polynomial        (0x19). 

As an s-box we use the first 4×4 s-box of Serpent block cipher (Figure B-1).  

 00x 01 x 02 x 03 x 

00 x 3 x 8 x F x 1 x 

10 x A x 6 x 5 x B x 

20 x E x D x 4 x 2 x 

30 x 7 x 0 x 9 x C x 

Figure B-1  S-box used in the design 

 

B.2. Test of Collisions 

General Analysis 

The number of possible hash values in 16 bit version of Whirlpool hash function is          . 

For our analysis we use a data set consisting of all possible 16 bit tuples. With the padding rule 

used in Whirlpool hash functions, these messages give us a hash values after 2 chains of W 

cipher. The average weight of hash values is 8. 

The analysis of correlation shows a message and its digest having the same value, that is, the 

message  

 
  
  

  

maps to itself. Besides, the message 

 
  
  

  

maps to its complement vector. This behavior is not monitored at the original design of 

Whirlpool hash function. Although mapping in W cipher is 1:1, there is an XOR operation after 

each chain, which leads, in some cases, to a collision after one chain of Whirlpool hash function.  
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Analysis of Collisions 

The aim of the test is to find the number of collision. The first data set consists of all possible 16 

bit tuples, meaning there are             input messages. The percent of colliding messages 

appeared to be equal to %0.003061. Further analysis shows that the weight of messages does not 

affect the percent of collisions, and it stays almost at the same range for messages of length 4 up 

to 8.  

As our next step we check the structure of messages. The state of the message where diagonal 

bytes are fixed is analyzed. The choice of bytes at positions    and    is based on the previous 

analysis, since the most number of collisions is monitored with the values of these bytes being 

     and     . Two other bytes spin the field GF    , i.e.    GF  
   for       .  

0    

   5 

Figure B-2. Diagonal structure of an input 

The number of colliding pairs with bytes, fixed to these values. is 4, which give us %0.012255 of 

collisions (compared to %0.003061 in general case). However, the further analysis of the 

messages with the same structure shows the percent of collisions close to general pattern (see 

Table B-1). 

Table B-1 The number of collisions 

input data set number of collisions % of collisions 

full 65536 65736 0.003061 

Of weight 4 2517 102 0.003221 

Of weight 5 6885 726 0.003064 

Of weight 6 14893 3461 0.003121 

Of weight 7 26333 10783 0.003110 

Of weight 8 39303 28825 0.003732 

Diagonal_0_5 256 4 0.012255 

Diagonal_0_* 4096 22 0.004213 
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B.3. Analysis of Whirlpool Hash Function in Backward Direction  

We denote the input of W cipher by   , where i represents the chain of Whirlpool hash function, 

i.e.    is the input to the first W cipher, and by    the output of W cipher. We start by calculating 

a message digest for the all zero message. The previous analysis shows that a collision can be 

found even for one chain of Whirlpool hash function. Using this knowledge, we construct a one 

chain-collision. In Figure B-3 Output of W cipher for all zero input, the output of 10-round W 

cipher is given. 

 

 

 0 0 

0 0 

 

Now, we try to construct another message which gives the same hash value after one chain and 

XOR operation of Whirlpool hash function. Since the key of the cipher is fixed to all zero vector 

and the key scheduling algorithm is independent on the message, the only possibility to construct 

the same output of the hash function’s first chain is to find message, which gives the same result 

after XOR operation. Going backward from the output, the message, which meets this 

requirement, is found (see Figure B-4 Backward search of the second preimage)  

 

  9 1 

7 2 

 

 

Since the input to the second chain is the same, this gives us a full collision after two chains. 

  

10 10 

  13 2 

3 11 

 10 0 

10 10 

 13 2 

Input Output 

Figure B-3 Output of W cipher for all zero input 

Input Output of W Output of one chain 

Figure B-4 Backward search of the second preimage 
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