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ABSTRACT

TEMPERATURE IN TURKEY AND TURKISH DAY AHEAD ELECTRICITY MARKET
PRICES: MODELING AND FORECASTING

Ünlü, Kamil Demirberk

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2012, 69 pages

One of the key steps of the liberalization of the Turkish electricity market has been the estab-

lishment of PMUM (Turkish day ahead electricity market). The aim of this study is to explore

the dynamics of electricity prices observed in this market and their relation with temperature

observed in Turkey. The electricity price process is studied as a univariate process and the

same process is studied along with temperature together as a two-dimensional process. We

give a fairly complete model of temperature. We observe that the electricity prices in Turkey

exhibit many of the features that similar prices exhibit in other world markets. In particular,

Turkish day ahead prices are seasonal; every year the price seems to follow a path similar

to the one years preceding it. To simplify our analysis we focus our study to a 35 day pe-

riod where every year the prices show a relatively simple behavior. We study the effects of

the fluctuations in temperature in this period on the fluctutations in the day ahead electricity

price.

Keywords: Turkish day ahead electricity market prices, temperature, autoregression, forecast-
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ÖZ

TÜRKİYE’DE HAVA SICAKLIĞI VE TÜRKİYE GÜN ÖNCESİ ELEKTRİK PİYASASI
FİYATLARI : MODELLEME VE TAHMİN

Ünlü, Kamil Demirberk

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2012, 69 sayfa

Türkiye elektrik marketinin özeleştirilmesindeki en önemli adımlardan biri 2009’da elektrik

borsasının (PMUM) çalışmaya başlamasıdır. Bu çalışmanın amacı bu borsada oluşan elek-

trik fiyatının dinamiklerini ve bu dinamiklerin sıcaklık ile ilişkisini “time series” modelleri

kullanarak incelemektir. Türkiye’deki elektrik fiyatları diğer elektrik piyasalarındaki bütün

özellikleri göstermektedir. Bunlardan en önemlisi fiyatların mevsimsel yani yıldan yıla ben-

zer şekillerde hareket etmesidir. Analizleri basitleştirmek için hemen hemen aynı özelliklere

sahip 35 günlük bir dönem üzerinde çalıştık ve bu dönemde sıcaklıklardaki dalgalanmaların

fiyattaki dalgalanmalar üzerindeki etkisini inceledik.

Anahtar Kelimeler: Türkiye gün öncesi elektrik piyasası fiyatları, hava sıcaklığı, otoregresif,

tahmin, modelleme
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CHAPTER 1

INTRODUCTION

The liberalization movement of electricity market started in 1982 in Chile. Similar devel-

opments in continental Europe and the U.S. followed soon afterward. Transition to the free

market model of the Turkish electricity market started in 2001 with the Electricity Market

Law no. 4628. Generation, wholesale, transmission and distribution activities were separated

and some of them were privatized. This transformed the Turkish electricity market into a com-

petitive one and with the increasing competition, on December 1, 2009 the Turkish day ahead

electricity market started its operations. Almost 20% of the electricity trade in Turkey takes

place in this market while the remaining is realized through bilateral contracts. Establishment

of the Turkish day ahead electricity market is a significant development because it allows the

forces of supply and demand to establish a fair and public price for electricity. Establishment

of this price is essential for the actors in the energy sector to make efficient decisions. One of

the key elements in the use of a price is to understand its dynamics. Because the market is so

new there are only a very small number of works that analyze the prices that are realized in

the Turkish day ahead electricity market. Currently we are only aware of [35], which uses a

continuous time framework.

In this thesis our aim is to explore the dynamics of the prices observed in the Turkish day

ahead electricity market. There are two levels of our work: 1) study the price process as a

univariate process, 2) study the same process and temperature as a two dimensional process.

The goal of the latter part is to understand to what extent temperature influences the day ahead

prices. Our approach to this modeling problem is explained in the following paragraph. We

have not been able to find publicly available models of temperature in Turkey. For this reason,

we have built a preliminary model of temperature dynamics in Turkey. Our approach to this

is also explained in the next paragraph.
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We are interested in two processes: temperature and electricity prices established at the day

ahead market in Ankara. Most of the temperature models that we have reviewed make use of

periodic functions to capture the cyclical behavior of temperature (see Chapter 4 for exam-

ples). It appears to us that such an approach often leads to complicated models with many

parameters. In this thesis, we propose a simple approach based on the following observation.

The temperature process alternates between two phases: a heating phase and a cooling phase.

We approximate both of these phases by a model of the form Λt + Xt, where Λt is an affine

function of time and Xt is a stationary process (see for definition of stationary [10, p.207-

208]). Conditioning on the heating and cooling phases, we see that very simple time series

models capture the random stationary part very well. These ideas are developed and tested in

detail in Chapter 4. Our analysis suggests that the length of the heating and cooling phases

are random. Therefore, a full model for temperature dynamics that is based on the idea above

would have to include random variables that represent these lengths. In this thesis, however,

we confine ourselves to the dynamics of the temperature process conditioned on a fixed phase

and leave the modeling of these lengths to future work.

We take a similar approach in modeling electricity prices. Upon examining the graphs of

the price process in Chapter 5, one immediately sees that the electricity prices also exhibit

cyclical behavior. However, this behavior is much more complicated than the dynamics of

the temperature process. After listing some very salient features of the prices process, we

have focused on a particular period (the time interval between February 2 and March 22)

where clearly the prices seem to follow a model of the form Ψt + Yt, where Ψ is, again, an

affine function of time and Y a stationary process. Once again, the length of this period and

its starting point seems to be random 1 and a full model of prices would have to include

random variables to model these “global” features. However, for the purposes of this thesis,

we limit ourselves to an analysis that conditions on this period where the price movement is

particularly simple. Once again, upon conditioning on this period, we see in Chapter 5, that

simple time-series models capture the dynamics of Yt remarkably well.

A primary aim of this thesis is to begin an analysis of the effect of temperature on electricity

prices. In our approach this effect can be studied in two levels: globally and locally. The

global variables in our temperature model are: slopes of the cooling and heating trends, the

1 More precisely: the interval (Feb 2 ; March 22) is not random; but the lengths and the starting point of the
periods in each year that exhibit the aforementioned trends are random
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length of the cooling and heating periods. The local variables are the fluctuations in the

temperature conditioned on the global variables. The global variables of our (incomplete)

price model are: the starting point of the price-decrease period (the period that includes the

February 2-March 22 interval specified above) and its length. A global analysis of the effect

of temperature on prices would look at the dependence between the global variables. This is

not simple and may require more data than what is currently available. Instead, in this thesis,

we limit ourselves to a local analysis. That is, we look at the following question: conditioning

on the global variables (i.e., fixing the values of the global variables) what is the relation

between fluctuations in temperature and the fluctuations in price? To condition on the global

variables we limit our analysis to the February-March period referred to above where all of

the global variables described above seem to be fixed. The answer to the question we have just

stated, according to our analysis, is that there is little relation between price and temperature

fluctuations, see Chapter 5.

The next chapter is about electricity markets. The first section of this chapter is about the

characteristics of an electricity market and electricity as a commodity. The second and the

third sections summarize the liberalization movements of electricity markets in the world and

the development of the Turkish electricity market. The last section gives information about

how day ahead electricity prices are formed in Turkey.

Chapter 3 is devoted to a review of the literature on modeling of energy prices. The first

section reviews AR and ARMA models. The second section summarizes ARIMA models in

the literature. The last section presents studies of ARIMA and ARIMAX.

Chapter 4 contains our analysis and modeling of temperature in Turkey. Its second section

presents several alternative models and ideas we have initially considered. The third section

presents the ideas based on conditioning that we have found most effective.

Chapter 5 is devoted to the modeling of the Turkish day ahead electricity market. In the

second section of this chapter we provide information about the price dynamics of the Turkish

electricity market. The last section presents the model and the ideas outlined above.

Chapter 6 includes conclusions and provides ideas and questions for future work.

3



CHAPTER 2

SPOT ELECTRICITY MARKETS

2.1 Electricity as a Commodity

Electricity, without doubt, is one of the most important building blocks of modern human life.

“It is easy to control, non-polluting at the location of its usage and convenient; it is used in

the application of heat, light and power ”[42, p.23]. It is a form of energy which is generated

from other energy sources such as coal, natural gas, oil, nuclear power etc. Electricity is a

fungible good which means that there is no difference in a unit of electricity, whether it is

generated in a hydroelectric power plant in Turkey or in a nuclear power plant in France. In

this respect, it is highly suitable for trading. Conduction of electricity (the ability to transfer

electricity through a medium) is bounded so it is very difficult and prohibitively expensive to

sell electricity physically, for example, to Germany which is generated in the U.S. This makes

a global market for electricity impractical (currently there is no such market) but for example

traders in the U.S can buy or sell financial derivatives of electricity from the German market

for speculation or hedging purposes. Lack of storability will be discussed in the next section.

Further characteristics of electricity as a commodity are summarized in Figure 2.1 which is

taken from [42, p.27].

2.1.1 Structure of Electricity Markets

Operations in the electricity markets can be divided into four main categories.

Generation Electricity is produced by the generation companies, it can be generated in two

different ways. First, by fuel fired power plants which burn coal, natural gas, oil and nuclear

4



Figure 2.1: Characteristics of electricity.

fuel. Second, by using renewable energy sources such as wind force, geothermal energy, solar

energy and gravitational force of water.

Wholesale Wholesale is the direct sale of electricity to eligible customers who are allowed

to make bilateral contracts with the suppliers. There can be another consumer type in the

market which is non-eligible consumers. These are not allowed to make bilateral contracts.

Also exportation and importation of electricity occurs in this stage.

Transmission Transmission is the process of transportation of electricity from power plants

to substations, through high-voltage electricity lines.

Distribution and Retail Retail and distribution is the sale of electricity and distribution of

electricity to end users.

Electricity markets can be structured in two different ways. The first one is “vertically inte-

grated” electricity markets in which generation, transmission and distribution are controlled

5



by the same state-owned company. The second one is deregulated electricity markets or liber-

alized electricity markets. In this type of markets, generation, distribution, and wholesale are

managed by different private companies but transmission is usually performed by the state-

owned company.

2.1.2 Characteristics of Electricity Markets

High volatility Price volatility is the variance of its returns per unit time. More volatile

a price, more fluctuations we expect it to exhibit in a short period of time. The most id-

iosyncratic feature of electricity markets is the high volatility of prices, which mainly stems

from the non-storability of electricity. Non-storability implies that demand and supply need

to match instantaneously. The ratio of percentage change in quantity demanded [supplied]

to the percentage change in price is called demand [supply] elasticity or elasticity in demand

[supply] [7, p.27]. It is defined as (∆Q/Q)/(∆P/P). If this ratio is less than 1, demand [sup-

ply] is said to be inelastic. Also when demand inelasticity is “combined with inelastic supply,

small changes in either the supply or demand for electricity can have huge effects on prices

and this is probably the main cause of a highly volatile market ”[12]. In the next example, we

compare the volatility of electricity prices with other commodities and financial products, the

difference seems to be clear:

• treasury bills and notes have volatility of less than 0.5%,

• stock indices have a moderate volatility of about 1-1.5%,

• commodities like crude oil or natural gas have volatility of 1.5-4%,

• very volatile stocks have volatility not exceeding 4%,

• electricity exhibits extreme volatility - up to 50%. [60, p.26]

Price spikes and mean reversion Prices spikes and mean reversion are the other features

of electricity markets. An unanticipated large and sudden change is called a price spike,

reversion of the price from this high level to its prior value is called mean reversion. Price

spikes are usually caused by demand shocks. For example, when quantity demanded increases

suddenly, power plants with high marginal costs such as oil-fired power plants will probably

6



enter into the system. Since the price of oil is higher than the other primary energy sources,

this will lead to a price jump. After the disappearance of the event that caused the price shock

the price is likely to move back to its normal level, that is, it means reverts.

A long term mean reversion also seem to be present in the electricity markets. The electricity

prices from one year to the next seem to be comparable (see Chapter 6 for an example of this

in the Turkish market). We think that a full explanation of this is still an area that requires

further work. However, we will not be addressing it in this thesis, for now let us mention the

following perspectives:

“These prices are mean-reverting because weather is a dominant factor which influences equi-

librium prices through changes in demand ”[1]. Also M. C̆ulı́k and J. Valecký define that:

“weather is cyclical factor and mean reversion process with the tendency to revert to mean

level (which can change in time), this affects electricity demand and therefore equilibrium

long-term price”[43].

Seasonal behavior The last feature is seasonality, that is, electricity prices behave period-

ically in parallel with the seasons. Demand is usually influenced by climate conditions like

temperature and amount of daylight. In hot summer days, people starts to run air conditions

or in winter number of daylight hours are declined so electricity is used for lighting applica-

tions. This factors increase the price of electricity in summer and winter but in spring and

fall the demand will be lower so the prices will be lower. Also it is well known that demand

for electricity is affected by the industrial activities, on holidays factories, banks, government

offices and firms do not work and this causes decrease in demand so the prices will be lower.

On the other hand, on weekdays electricity consumption is high so the prices will be higher.

One of the primary goals of this thesis is to study the relation between prices and climate at a

local level; see Chapter 6.

2.2 Liberalization of Electricity Markets

Liberalization is the process of splitting the vertically integrated monopoly structure in which

generation, transmission and distribution of electricity is managed by the same government

agency. The main motivation behind this idea is to introduce competition and transparency
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into the electricity sector. The hope is that increased competition and transparency (if success-

fully realized) would lead to improvement in both generation and transmission technologies.

After liberalization, prices would be determined by supply and demand rather than govern-

ment and this may cause more efficient prices for all participants in the market [60, p.1].

The timeline below shows the evolution of liberalization of electricity markets.

• 1982: The first country to try to liberalize the electricity sector is Chile. In 1982,

Chile started to split generation and distribution companies. Before this, prices were

determined according to a cost base formula. After the liberalization effort, the prices

were set according to a marginal cost system. Electricity trading started in order to

meet customer needs. A complete transformation to a deregulated market started with

a large scale privatization in 1986 [47].

• 1989: British electricity sector reform started in 1989 by the Electricity Act which

divided “The Central Electricity Generation Board”, the regulatory board which owned

all the generation and transmission in the whole of England and Wales, into four public

limited companies in 1990. In 1995, competition was introduced by the foundation

of the “Electricity Pool,” a wholesale market for electricity. The wholesale market for

England and Wales operated until 2005, and later Scotland joined as well [14] [60, p.1].

• 1991: British market reform was followed by Nordic countries, between 1991 and

2000. The Nordic market integrates electricity markets Denmark, Finland, Norway and

Sweden into a single market [23].

• 1992: After the Nordic market, the U.S. electricity reform started in 1992 with the “En-

ergy Policy Act”, and continued with the idea of splitting transmission and generation

systems in California in 1994. By 2003 almost 45% of electricity generation plants

were owned by private investors [40, p.38].

• 1996: New Zealand reformed its electricity sector and launched a deregulated electric-

ity market, “The New Zealand Electricity Market (NZEM),” in 1996 [60, p.22].

• 1998:

– Australian National Electricity Market (NEM) was founded in 1998 and at the

end of 2002 all customers were able to choose their own retail suppliers [16].
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– Electricity Act 1998 became valid in Netherlands which was designed to increase

competition in its electricity market while maintaining efficiency and security on

supply and demand side. In 1999, the “Amsterdam Power Exchange” (APX), the

day ahead spot market, was founded. “European Energy Derivatives Exchange”

(Endex) founded in 2003 is an OTC-market for trading standardized contracts of

different maturities. ENDEX merged with APX in 2009 and the liberalization was

completed [8] [25].

– The liberalization of German electricity market, largest electricity producer in

Europe, started in 1998. One year later customers had the right to choose their

own retailer. This ended the local monopoly supply which lasted more than 100

years and German wholesale prices fell by 60% [36].

– Spanish electricity reform was started in 1998. The main stated goal was to in-

crease liquidity and trust on wholesale electricity market which would increase the

efficiency of prices. The Spanish market is organized as: the day ahead market,

several intraday market and ancillary market [11].

2.3 Historical Development of Turkish Electricity Market

2.3.1 Era of Private Companies

The first power plant was established in London in 1882 and “the first power plant in Turkey

was put into operation in Tarsus in 1902 with 2 kW installed power capacity which was a

dynamo connected to the water mill, after eleven years later the first big scaled power plant

was established in İstanbul in 1913 ”[46] [62]. In her work Zeytinli says that at the time

of the foundation of the Republic of Turkey in 1923, there were 38 power plants and all of

them were own by private corporations. Between 1923-1930, Turkey tried to liberalize the

economy where it allowed foreign joint stock companies operations [22]. In 1926, “the first

Turkish electricity company, Kayseri ve Civari Elektrik Turk Elektrik, Inc., was established

“[3]. Until 1935 electricity market in Turkey was formed by private investors. According

to the TEİAŞ report, Etibank, the Mineral Research and Exploration Institution (MTA) and

Electrical Works Survey Administration (EİEİ) were established in 1935 and later the Bank

of Provinces and State Hydraulic Works (DSİ) were established [62]. These developments
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in state institutions of Turkey, accelerated the state investments on power plants. In 1948,

some power plants ere put into service by government. By the begging of 1930s there was

a common belief in all over the world that ownership of electricity sector by government

would be beneficial [19]. Following this idea, nationalization of Turkish electricity industry

was completed by 1944 [19]. When we come to early 1950s, we see government and private

sector entities together involved in the construction and operation of power plants. Entities

such as Çukurova Electric Co. and Kepez Electric Co. were founded in these years. They were

founded to solve the electricity needs of Adana and Antalya provinces [62]. The Ministry of

Energy and Natural Resources (MENR) was established in 1963 [19] to regulate the Turkish

electricity policy, The period between the years 1913 and 1970 is the Era of Private Sector.

2.3.2 The TEK Era

The period between 1970 and 1984 can be referred to as “the TEK era.” Turkish Electric-

ity Authority (TEK) was established in 1970 as a state-owned company which controls the

country’s electricity industry. Hepbasli states [3]:

“All generation assets were passed to TEK except the ones that belong to Cukurova
Elektrik T.A.S. and Kepez ve Antalya Havalisi Elektrik Santralleri T.A.S... The
transmission and distribution business, which was managed by the municipals,
were left to the local governments.”

An important event during the TEK era was the instability in the electricity system caused by

the worldwide energy crisis in the 1970s. Large foreign dependence on the primary resources

used by thermal power plants in Turkey had a major role in this problem [62].

In 1982 by Law No. 2705 transmission and distribution facilities’ ownership were also trans-

ferred to TEK [52]. Until 1984, private entities did not activity involve in this electricity

market.

2.3.3 Era of TEK and Private Companies

“In 1984 Law no. 3096, named as Respecting Authorization to Institutions other than the TEK

for Generation, Transmission, Distribution and Trade of Electricity ”is issued which allowed

the private sectors to build and operate the electricity generation, transmission and distribution
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systems for the first time in the history of Turkish Republic”[2]. After this law private sector

entities again started to involve in electricity sector and monopoly of TEK started to disappear.

Private participants involved in the electricity market by the following financing technics:

Build Operate and Transfer (BOT), Transfer of Operating Rights (TOR) and Build Operate

Own (BOO) [19]. In a BOT system private companies build and operate a power plant for a

specific period of time, for that time government give guarantee to purchase a certain amount

electricity. At the end of the specified time ownership of the plant transfers to government

without any cost. Main difference in BOO from BOT is that at the end of contract ownership

of the power plant remains at the private investor. In the TOR system a private investor

retains all rights to operate in a specific area. Government transfer the right to operate in

a given sector to a private sector for a certain period of time and at the end of the contract

again ownership is transferred to government agency. Actually it is a kind of leasing. BOT

and BOO are used to ensure the establishment of new power plants by the private sector in

Turkey and TOR is used to attract private investors to involve in the distribution of electricity

sector [32]. Until the end of 1999 twenty two power plants were established by BOT [49].

Almost ten private entities were participated in the generation, transmission and distribution

of electricity in Turkey between the years 1988 and 1992 [62]. In 1994, TEK, public-owned

and vertically integrated monopoly, had come to end of his life by the Law of Council of

Ministers [62] [49]. TEK was “split into two separate state owned enterprises as Turkish

Electricity Generation Transmission Company (TEAŞ) and Turkish Electricity Distribution

Company (TEDAŞ) ”[49]. As it can be understood from the name of the companies, TEAŞ

engaged in the production of electricity and TEDAŞ engaged in the transmission of electricity

where they are bought reported to MENR. The period between the years 1984 and 2000 is the

Era of TEK and Private Sector.

2.3.4 Liberalization Era

The period since 2001 can be referred to as the “Liberalization”. In 2001 Energy Market

Regulatory Authority (EMRA) was established. EMRA is structured as an independent reg-

ulatory entity which is “responsible for preparing and implementing secondary legislation,

authorizing market participants, approving and publishing tariffs, monitoring and supervis-

ing market participants, conducting technical, legal and financial audits, settling disputes,

approving, amending and enforcing performance standards, and, where necessary, applying

11



sanctions ”[48]. Corporations need to obtain a license for distribution, transmission, genera-

tion and wholesale or retail, to take place in the electricity market. Privatization has gained

momentum after 2001 with Electricity Market Law no. 4628 which split TEAŞ into three

public owned entities: Turkish Electricity Transmission Company (TEIAŞ), Turkish Electric-

ity Generation Company (EÜAŞ) and Turkish Electricity Trading and Contracting Company

(TETAŞ). These are responsible for the following respectively: transmission and system op-

eration, generation, wholesale trading and contracting. Lastly TEDAŞ split into twenty one

regional distribution companies.

There are 289 private companies and 6 public institutions in the production sector, 112 pri-

vate companies and 1 public institution in the wholesale sector, 12 private companies and 9

public institutions in the distribution and retail sector, 108 private autoproducer and 1 public

autoproducer, 1 private autoproducer group according to their licenses as of June 2012. Table

2.1 shows the development of Turkey’s installed capacity where thermal represents the capac-

ity produced in thermal power plants, hydroelectric represents the capacity produced in the

hydroelectric power plants and geothermal and wind represents the capacity produced by the

wind power and geothermal power. Units are in MW [62]. Installed capacity is the maximum

electricity production at an instant in time [17, p.82].

2.4 The Turkish Electricity Market

Turkey produces electricity from the following primary energy sources: natural gas, coal,

hydraulic, liquid fuels and other renewable energy sources. Table 2.2 shows the percentage

Turkey electricity generation by primary sources in 2011 [21, p.22]. Table 2.2 shows that

almost half of the Turkish electricity production comes from natural gas; coal comes in the

second place. 73 % of electricity production is made by these two energy sources and the rest

is produced from renewable energy sources and others. An obvious future study is the impact

of the prices of these commodities on electricity prices in Turkey. Wind and other renewable

energy sources may have small percentage in Turkish electricity productions but in the near

future their shares may increase with new investments and incentives on electricity generation

using these methods.
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Table 2.1: Development of Turkey’s installed capacity.

Year Thermal Hydroelectric Geothermal and Wind Total
1913 17.2 0.1 17.3
1923 32.7 01 32.8
1930 74.8 3.2 78
1940 209.2 7.8 217
1950 389.9 17.9 407.8
1960 860.5 411.9 1272.4
1970 1509.5 725.4 2234.9
1980 2987.9 2130.8 5118.7
1990 9535.8 6764.3 17.5 16317.6
2000 16052.5 111175.2 36.4 27264.1
2001 16623.1 11672.9 36.4 28332.4
2002 19568.5 12240.9 36.4 31845.8
2003 22974.4 12645.4 33.9 25587
2004 24144.7 12645.4 33.9 36824
2005 25902.3 12906.1 35.1 38843.5
2006 27420.2 13062.7 81.9 40564.8
2007 27271.6 13394.9 169.2 40835.7
2008 27595 13828.7 393.5 41817.2
2009 29339.1 14553.3 868.8 41817.2
2010 32278.5 15831.2 1414.4 49524.1

Table 2.2: Turkey electricity generation by primary sources.

Primary Sources Percentage
Natural Gas 44.71%
Hydraulic 22.80%

Coal 28.26%
Wind 2.07%

Liquid Fuels 1.67%
Geothermal 0.29%

Waste and Other 0.20%

Total 100%

The next table shows the percentage share of the producers in Turkey’s electricity generation

[21, p.21]. Most of the electricity is produced by EÜAŞ but this is expected to decrease

due the privatization in the future. The second biggest producers are the private generation

companies and TOR (see subsection 2.3.3) with 29%, auto producers, entities that produce

electricity for their own usages, have the least share with 5.13%.
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Table 2.3: Share of the producers in Turkey’s electricity generation.

Producers Percentage
EÜAŞ 40.42 %

Private generation companies & TOR 29.17%
Build own operate 19.67%

Build operate transfer 5.61%
Auto producers 5.13%

Total 100%

2.4.1 Turkish Day Ahead Electricity Market

The market operator of Turkish electricity market is the “Electricity Market Services and

Financial Settlement Department” (PMUM) which operates as a part of TEIAŞ. PMUM is

responsible for day ahead planning, the day ahead market operation, settlement and data pub-

lishing activities. The system operator of Turkish electricity market is the “National Load

Dispatch Center (MYTM)”. MYTM is responsible for forecasting day ahead electricity de-

mand and maintaining a balance between supply and demand. Almost 80% of electricity

agreements are made via bilateral contracts between producers, wholesalers and customers,

the rest takes place in the spot market operated by PMUM. The main function of the the spot

market is to balance the excess or deficit that occur in the bilateral agreements. The bal-

ancing mechanism is divided into two parts as day ahead balancing and real-time balancing.

Day ahead market consists of activities to balance next day’s production and/or consumption.

Real-time balancing is used to balance the supply and demand in real time. This balancing

system provides the backup capacity that can be activated within a maximum of 15 minutes

system by the system operator. All licensed producers, wholesalers, autoproducers, retailers

and eligible consumers participate in the day ahead and real-time market. Eligible consumers

that consume 25mW or above per year, are freely choose their suppliers.
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2.4.1.1 The Price Formation of Day Ahead Electricity Market

Most of what follows is from [20], which is a document in Turkish. Here we explain its

contents in English. Day ahead electricity prices (SGÖF) are determined as follows: in the

first step direction of the system is determined by comparing total daily production schedule

and consumption forecasts. If the total consumption is greater than total production, there will

be an energy gap or deficit in the system; if the total consumption is less than total production

then there will be energy surplus in the system. In the case of an energy gap, offers in the

direction of sale to the system is accepted and in the case of energy surplus offers in the

direction of purchase from the system is accepted. If the total consumption is equal to the

total production then the system will be in equilibrium so there won’t be any sale or purchase.

An example of this procedure is given in Table 2.4 [20].

Table 2.4: Determining the direction of the system.

Hour Total Produc-
tion Schedule
(mWh)

Total Consump-
tion Forecast
(mWh)

Difference System
Direction

Accepted
Offer Direc-
tion

8 15000 16000 -1000 Energy Gap Sale to the
system

9 17000 15500 1500 Energy Sur-
plus

Purchase
form the
system

... ... ... ... .... ...

... ... ... ... .... ...
11 18000 18000 0 Equilibrium Equilibrium
12 14000 17000 -3000 Energy Gap Sale to the

system
13 13000 14500 -1500 Energy Gap Sale to the

system
14 14000 12000 2000 Energy Sur-

plus
Purchase
form the
system

... ... ... ... .... ...

... ... ... ... .... ...

In the second step, for each hour the offers/prices that the participants propose to the system

are sorted. Sale offers are ranked in descending order and purchase offers are ranked in

ascending order. An example of this procedure is given in Table 2.5 [20].
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The table on the left below shows how prices are ordered if there is an energy gap or sale

to the system and the table on the right shows how prices are ordered if there is an energy

surplus or purchase from the system. This procedure is done for all hours in a day.

Table 2.5: Ranking the system offers.

The Amount of Offer
(mWh)

Offer Price
(TL/mWh)

100 70
100 71
200 72
200 73
100 73
150 74
200 75
175 76
100 80
200 82

The Amount of Offer
(mWh)

Offer Price
(TL/mWh)

100 75
90 73
50 50
67 47
63 45
5 43
88 42
120 41
56 30
130 30

In the third step, hourly offers are evaluated to compensate the difference between the total

production schedule and the estimated consumption for each hour. In the case of energy gap,

offers are accepted from the lowest price to the highest price until the gap is closed and in

the case of energy surplus offers are accepted from the highest price to the lowest price until

the surplus is eliminated. The last accepted offer that compensates the difference is called

SGÖF. In the evaluation process it is assumed that all offers can be fulfilled partially. Figure

2.2 shows how this procedure is performed [20].
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In this example we assume that there is an energy gap at ten o’clock and the gap is 1000 mWh.

In order to close this gap enough amount of offers are accepted and the last accepted offer’s

price 98TL will be SGÖF for ten o’clock. In this case we assume that there is no block or/and

flexible offer. (See the following paragraphs for the definition of these terms.)

Figure 2.2: Formation of SGÖF with hourly offers.

Also there can be block offers in the system. Block offers are given at least for four hours and

it can be given five times a day. If block offers are accepted it must be used for consecutive

hours. Block offers may decrease SGÖF for some hours and it may increase SGÖF for another

hour so to accept the block offers net effect for 24 hours must be examined. Block offers are

usually used by the producers in order to increase the efficiency of power plant. Figure 2.3

shows how the SGÖF is effected if there is a suitable block offer [20].
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In this example we assume that there is an energy gap again at ten o’clock and the gap is

1000 mWh and we have a block offer of 300 mWh with the price 83 TL/mWh. In this

situation block offer decreases the SGÖF so it is accepted and the new SGÖF for ten o’clock

is determined to be 85 TL/mWh. Also it is assumed that there is no flexible offer.

Figure 2.3: Formation of SGÖF with hourly and block offers.

In addition to block offers there can be flexible offers in the system. A flexible offer is an

hourly offer in which the hour is not stated, it can be used in any hour of a day. If the flexible

offer decreases the SGÖF it should be accepted. Figure 2.4 shows how the SGÖF is effected

if there is a suitable block offer [20].
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Let’s assume that we have a flexible offer of 100 mWh with 79 TL/mWh and energy gap

is 1000 mWh. This offer decreases the SGÖF so it is accepted and the new SGÖF for ten

o’clock will be 80 TL/mWh.

Figure 2.4: Formation of SGÖF with hourly, block and flexible offers.
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CHAPTER 3

LITERATURE REVIEW

In a competitive electricity market, price modeling and forecasting allow producers and cos-

tumers to take optimal actions. Producers can develop investment plans while costumers can

build up strategies in long term contracts with these forecasted prices. There are many stud-

ies in the literature about electricity demand modeling, spot electricity price forecasting and

electricity derivatives pricing. In the current literature, spot electricity prices are typically

modeled by stochastic differential equations (SDE) [6] [34], artificial neural networks (ANN)

[33], regime switching models [41] [58], dynamic regression [26], generalized autoregres-

sive conditional heteroscedasticity (GARCH) [53] [65] and autoregressive moving average

(ARMA) type models. The present thesis mainly employes ARMA type models. Therefore,

in this literature review we have mostly confined ourselves to an overview of these type of

models.

3.1 Forecasting with AR and ARMA

Unless otherwise noted all of the displays in this section are taken from [15], [38], [61],

[63]. Authors in [15] discussed the forecasting power of ARMA, ARMA combination with

GARCH, gaussian mixture and switching regime approach. In order to provide a basic knowl-

edge about econometric models used to estimate spot and future electricity prices, all models

used in the paper [15] will be summarized below.

Models are characterized by parameter Q which is estimated by maximizing the log likelihood
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function L(Q) given by:

maximize{Θ}L(Q) =

T∑
t=1

ln ( f [εt|ψt−1; Q]). (3.1)

(This is given as display 1 in [63])

ψt−1 is the sigma algebra generated by the random variables up to time t − 1.

Autoregressive moving average: ARMA(p,q) is defined as follows:

ŷt = yt + εt

=

p∑
z=1

αzyt−z +

q∑
z=1

εt−z + εt,
(3.2)

where yt is the observed value while ŷt represents the predicted value and εt indicates the

error, i.e., εt = ŷt − yt. The error is assumed to be normally distributed with the probability

distribution:

f [εt|ψt−1] =
1
√

2πσ
exp

− (
εt − µ
√

2σ

)2 .
The authors estimate µ and σ via maximum likelihood. Authors than suggests the use of

ARMAX (Autoregressive moving average model with exogenous inputs) model to take into

account influences of exogenous variable. Their work in this direction is summarized in

Subsection 3.3 .

General autoregressive conditional heteroscedasticity: In this case again the error is dis-

tributed normal but its variance with respect to time, that is εt ∼ i.i.d N(µ, σt
2) with the

probability distribution:

f [εt|ψt−1] =
1

√
2πσt

exp

− (
εt − µ
√

2σt

)2 .
GARCH(p,q) is defined as:

σt
2 = ω +

p∑
z=1

αzσt−z
2 +

q∑
z=1

βzεt−z
2, (3.3)

where ω > 0, αz ≥ 0 and βz ≥ 0 [63]. These are the sufficient conditions for positive variance

and the parameters can be found by log likelihood function in 3.1 [39].

21



Gaussian mixture: Authors state that if the fat tail occurs from the deviations of the normality

hypothesis it is useful to use Gaussian mixture rather than GARCH and it is defined as follows:

f [εt|ψt−1] =

m∑
j=1

p[S t = j] f [εt|S t = j, ψt−1], (3.4)

(This is given as display 7 in [63])

and the probability distribution of the state variable S t is given in (3.5) which can be estimated

by (3.1).

f [εt|S t = j, ψt−1] =
1

√
2πσ j

exp

−
εt − µ j
√

2σ j

2 . (3.5)

Switching regime: The last model used in this paper is switching regime in which the prob-

ability occurrence of state variable is time variant that is P[S t = j|ψt−1]. It is called state

dependent switching regime model:

f [εt|ψt−1] =

m∑
j=1

P[S t = j|ψt−1] f [εt|S t = j, ψt−1].

and the probabilities can be calculated by (3.6).

P[S t = j|ψt−1] =

2∑
i=1

P[S t = j|S t−1 = i]P[S t−1 = i|ψt−1], (3.6)

where two state, first order Markow switching is used , S t depends on the state of the last time

step t − 1 and transition matrix T represents the probability of changing or remaining in the

respective regime.

T =

P[S t = 1|S t−1 = 1] P[S t = 1|S t−1 = 2]

P[S t = 2|S t−1 = 1] P[S t = 2|S t−1 = 2]



=

 ρ11 1 − ρ22

1 − ρ11 ρ22

 .
(This is given as display 10 in [63])

Lastly the probabilities of the two price regimes at t = 0 is defined as:

P[S 0 = 1|ψ0] =
1 − ρ22

2 − ρ22 − ρ11
,

P[S 0 = 2|ψ0] =
1 − ρ11

2 − ρ22 − ρ11
,
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and for any time t > 0 the probabilities are calculated by:

P[S t = j|ψt] =
P[S t = j|ψt−1] f [εt|S t = j, ψt−1]

f [εt|ψt−1]
.

The parameters µ j, σ j, ρ11 and ρ22 can be estimated by (3.1).

These explained models are used to extend ARIMA model and they are used to predict the spot

electricity prices of the European Energy Exchange AG (EEX) which represent the German

electricity market. Historical electricity prices of the spot and two reserve market are used

as data. The accuracy of the models are checked by the mean absolute error (MAE), fraction

of variance (R2), the mean absolute percentage error (MAPE), the value of the log likelihood

function (LLF) and the Schwarz Bayes Information criterion (SBC). “Low values in MAE

and MAPE and high values in R2 indicate a good prediction accuracy while high value of

LLF and low value in SBC shows a good representation of the price distribution.”[63]

ARMA model is compared with the extended ARMA models and results show that additional

price information of the reserve market as an exogenous variable of ARMAX doesn’t im-

prove the representation of the prices of spot market and the prediction power. ARMA with

GARCH improve the representation of price distributions while doesn’t improve the predic-

tion power. ARMA with GM increases the representation of the price distribution while de-

creases the forecasting power. ARMA with SR improves the representation of distributions.

When we look at the reserve market, results shows that all the discussed extended models

except GARCH improve the representation of the price distribution and prediction power. In

the case of GARCH extension it increases the representation of prices while no improvements

in prediction power.

The forecasting power of univariate time series models are tested in [38] for the Leipzig Power

Exchange. The Leipzig Power Exchange was the electricity market for Germany before it was

merged with EEX in 2002. The data set contains the period between 16 June, 2000 and 15

October, 2001. All models in this study used to estimate complete data set as a single time

series and 24 time series for each hours in order to see the dynamic behavior of each hours.

Models used in this study are: AR(1) process, AR(1) process with time varying intercept,

ARMA process with time varying intercept, crossed ARMA process with time varying inter-

cept, ARMA processes with jumps and unobserved components model. In order to test the

forecasting power root mean square error (RMSE), MAE and Diebold Mariano (DM) [27]
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are used. DM is used to determine which model has the best forecasting power. The results

shows that forecasting hour by hour strategy increases the forecasting power of the univariate

time series.

The last study for this part is [61] which uses 12 time series methods to estimate hourly spot

prices of California and Nord Pool market. The datasets used in this study include data from

the years 1999 to 2000 for California and 1998 to 1999, 2003 to 2004 for Nord Pool electricity

market. Load data is used as an exogenous variable in California market and air temperature

is used as an exogenous variable in the Nordic market.

The first model considered in this study is autoregressive (AR) models given in (3.7). The

logarithms of price and load data are used to reduce variance. Moreover the mean of price

data and the median of load data was removed to center the data around zero.

pt = φ1 pt−24 + φ2 pt−48 + φ3 pt−168 + φ4mpt + ψ1zt + d1DMon + d2DS at + d3DS un + εt. (3.7)

(This is given as display 1 in [61])

To cope with weekly seasonal behavior autoregressive structure pt−24, pt−48 , pt−168 and three

dummy variables DMon, DS at, DS un are used. The variable zt denotes the log load forecast for

the California market and actual temperature for the Nord Pool. The minimum of the previous

day’s 24 hourly log price is mpt which is used to link previous day’s price signals to today’s

bidding behavior. If the parameter ψ1 equals to zero, the model will be AR otherwise it is

ARX. It is noted that “parameters can be estimated by minimizing the Final Prediction Error

(FPE) criterion ”[61].

The next model is spike preprocessed model. This model is almost same as described above,

the main difference is: the price spikes are replaced with a less extreme value. This is done by

the technique called damping scheme. In this technique“an upper limit T is set on the price

which is equal to the mean plus three standard deviation of the price in the calibration period

”. Then all the prices greater than T are transformed to Pt = T + T log 10
(

PT
T

)
and the spike

preprocessed model is denoted by p-ARX and p-AR.

Also regime switching model is discussed in this paper. In order to model with spikes in the

data Threshold Autoregressive (TAR) is used.

Instead of time series models, a continuous time stochastic differential equation is used to
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estimate spot electricity prices. Mean reverting jump diffusions model is defined in (3.8).

dpt = (α − βpt) + σdWt + Jdqt, (3.8)

(This is given as display 3 in [61])

where Wt represents the Brownian motion and responsible for small fluctuations around the

mean. The independent compound Poisson process denoted by qt which produces jumps

with the size J and frequency λ. J is a Gaussian distribution with mean µ and variance δ2.

Seasonal behavior is captured by the α which is a deterministic function of time. Since the

data is discrete and the model is continuous authors apply transformations to the model to get

a discrete time model which is given in (3.9).

pt = φ1 pt−24 + ψ1zt + d1DMon + d2DS at + d3DS un + εt,i, (3.9)

(This is given as display 4 in [61])

where

i =


1, if no jump occurred in this time period.

2, if there was a jump.

and εt,1 ∼ N(0, σ2), εt,2 ∼ N(µ, σ2 + δ2).

Lastly, we observe that semiparametric models are also used in the modeling of electricity

prices. The main idea behind semiparametric models according to authors is that “a nonpara-

metric kernel density estimator shows a better fit to the data. If this is the case perhaps the time

series models would give a more accurate result.”. To test this situation four semiparametric

models are used with two different estimators. The nonparametric estimators for autoregres-

sive models are: iterated Hsieh Manski estimator (IHM) and the smoothed nonparametric ML

estimator.

The results of point forecasts show that models with exogenous variable perform better then

the rest for the California market but the situation is not same for the Nordic market. Analysis

for interval forecasts show that two semiparametric models are superior than the rest. Overall

performance of semiparametric models are again better than the other discussed models for

California electricity market and Nord Pool.
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3.2 Forecasting with ARIMA

Authors in [37] try to forecast the day ahead electricity prices of Spain and California by us-

ing autoregressive integrated moving average (ARIMA) models. Their aim is to use ARIMA

model today in order to predict tomorrow’s hourly electricity prices. For the Spanish electric-

ity market models is as follows:

(1 − φ1B1 − φ2B2 − φ3B3 − φ4B4 − φ5B5)

(1 − φ23B23 − φ24B24 − φ47B47 − φ48B48 − φ72B72 − φ96B96 − φ120B120 − φ144B144) (3.10)

(1 − φ168B168 − 1 − φ336B336 − 1 − φ504B504) log pt

= c + (1 − θ1B1 − θ2B2)(1 − θ24B24)(1 − θ168B168 − θ336B336 − θ504B504)εt.

(This is given as display 3 in [37])

This model doesn’t use differentiation and also needs five previous hours to predict the next

hour. Three weeks have been used to predict and check the performance of the model. The

first one is an usual demand weak, the second is a low demand week and the last one is a high

demand week. Daily mean errors are around 5% for the first weak, 8% for the second weak

and 7% for the last weak. Also different statistical tools are used to check the accuracy of

the model like: the average prediction error, Mean Weak Error (MWE) and Forecast Mean

Square Error (FMSE). Authors conclude that average prediction error is around 10% with and

without explanatory variables.

Model for the Californian market is

(1 − φ1B1 − φ2B2)

(1 − φ23B23 − φ24B24 − φ47B47 − φ48B48 − φ72B72 − φ96B96 − φ120B120 − φ144B144)

(1 − φ167B167 − φ168B168 − φ169B169 − φ192B192)

(1 − B)(1 − B24)(1 − B168) log pt (3.11)

= c + (1 − θ1B1 − θ2B2)(1 − θ24B24 − θ48B48 − θ72B72 − θ96B96)

(1 − θ144B144)

(1 − θ168B168 − θ336B336 − θ504B504)εt.

(This is given as display 4 in [37])
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The models need the previous two hours to predict the next and also uses hourly, daily and

weekly differentiation. One week is used to test the power of the model which is the prior to

the begging of price volatility and electricity crisis. After computations 5% of mean error is

founded, also accuracy of the model is checked again by statistical tools same in the Spanish

case. In this case average prediction error is around 5% in the stable period and around 11%

in the volatility period. It is concluded that accuracy of this model is better than the previous

model before the electricity crisis.

Extended ARIMA models are worked in [44] [45] for Californian electricity market. The

authors in [44] forecasts daily electricity prices then modify the predicted error to improve

the accuracy. The procedure of forecasting and modification is summarized below.

The time domain for the prices are denoted by t ∈ {D− + D+}, where D− represents the

historical time domain and D+ refers to the forecasting domain. P−(t) is the historical prices,

by using this forecasting price model M is set up. Error series {E−, t ∈ D−}, which is also a

time series, are obtained by comparing the real historical prices and the model M. This error

series are used to set up error forecasting model which is denoted by ME1. After M and ME1

are established, prices are forecasted (P̃−(t) is the forecasted price) by the model M at time

t ∈ D− and the model errors Ẽ−(t) are forecasted by ME1 at time t ∈ D−. The equation 3.12 is

used to modify the forecasted prices and residual error is calculated by the equation 3.13.

P̃∗(t) = P̃−(t) + Ẽ−(t), t ∈ D−. (3.12)

E1(t) = P−(t) − P̃∗(t), t ∈ D−. (3.13)

(These are given as display 9 and10 in [44])

If the accuracy of the model is not at the desired level authors continue to modify the fore-

casted prices one more time and then accuracy of the model is checked again by the residual

error. This procedure goes on until the desired accuracy level is reached. Model M that is set

up in t ∈ D− used to forecast prices P̃+(t) in t ∈ D+ and in the same manner MEi is used to

forecast errors Ẽ+ in t ∈ D+. Forecasted prices are adjusted by (3.14).

P̃∗+(t) = P̃+(t) +
∑

i

Ẽ+(t), t ∈ D+. (3.14)

(This is given as display 11 in [44])

The historical prices of California Power Market is used as an example and the model for
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historical prices is defined in 3.15 and historical prices of the years 1999 and 2000 is used

as an numerical example. In both cases 50 historical prices are used to forecast next 10 days

prices.

(1 − φ1B − φ2B2)(1 − B)(1 − B7)Pt = c + εt. (3.15)

(This is given as display 12 in [44])

Model needs previous two days prices to forecast next day and first order differentiation is

used to eliminate linear trend while seventh order is used to eliminate the weekly trend. The

parameters of 3.15 is determined by regressive analysis which will be the model M. ARIMA

M with the same order but different parameters are used to forecast prices for both years

but the error forecasting models MEi are differs in both cases. This is because the prices of

1999 is more stationary than 2000 according to authors. Error forecasting models ME1 and

ME2 for 1999 are AR(3) and AR(2), respectively, while error forecasting model for 2000

are ARIMA(3,1,1) and AR(3), respectively. It is concluded that extended ARIMA model

increases the accuracy level while it provides an easy way of modeling.

Electricity price forecasting by Wavelet-ARIMA technique is used in [4]. Wavelet transform

is used to divide price series in to three to six pieces which are expected to present a better

behavior. In this study twenty four hours of electricity prices of Spanish market is forecasted.

Forecasting method consist of three parts. In the first part historical prices are decomposed in

to four series by the wavelet transform. In the second step appropriate ARIMA model is used

to forecast prices in each series. In last part inverse wavelet transform is used to reconstruct

the estimate series in order to forecast the prices of the target day. Four weeks of four sea-

sons of 2002 is used to compare the wavelet-ARIMA model with classical ARIMA model.

Weekly error of the wavelet-ARIMA and ARIMA is below 4.8% and 6.3%, respectively, for

winter. The authors claim: “The performance of wavelet-ARIMA for the spring week is more

accurate than winter with a weekly error below 5.7% while the weekly error for ARIMA

model is 6.4%. For the summer weekly error of wavelet-ARIMA is 10.7% while weekly er-

ror of ARIMA is 13.4%. Fall season is the worst case for the both techniques weekly error of

wavelet-ARIMA and ARIMA is 13.8% and 11.3%, respectively. As a result of this study it is

founded that; wavelet-ARIMA technique is superior than ARIMA technique for the Spanish

electricity market ”[4].
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In [5] time series analysis, neural networks and wavelets techniques, to predict 24 hours elec-

tricity prices for PJM, are compared. Compared time series techniques are ARIMA, dynamic

regression and transfer function. The results of this study as follows: the dynamic regression

and transfer function models are more accurate than ARIMA models and wavelet models

behave similarly to ARIMA models while neural network techniques do not show good per-

formance (see p.1039 [5] for results)

3.3 Forecasting with ARMAX and ARIMAX

In this section two studies used ARIMAX model to forecast spot and futures electricity prices,

and one study that uses ARMAX to forecast electricity prices are summarized. In the first

study weekly futures prices at Nord Pool are compared with the forecasted spot prices by

using a time series model with external variables ARIMAX in [31]. It is thought that future

prices can be seen as good indicator of spot prices. Temperature, precipitation, reservoir

levels, power load and basis are used as external variables. The period between January 1,

1998 and September 30, 2007, which contains 509 weekly prices, is used for analysis. Spot

reference is the for each week is the average of the 168 system prices of the same week

(24hours × 7days).

Properties of external variables and their transformations are as follows:

• Reservoir levels (Rt): Reservoir levels are the percentage of the total hydropower ca-

pacity in the Nord Pool area.

• Weather variables: Temperature index (NTI) and the precipitation index (NPI) are used

in the study. The precipitation index is transformed to weekly frequency by (3.16) and

by using NTI the variable heating degrees week (HDW) is defined in (3.17) which is

the difference between 18 degrees celsius and the NTI of each day.

Pt =

7∑
i=1

NPIt,i. (3.16)

HDWt =

7∑
i=1

(18 − NT It,i)+. (3.17)

• Basis: Basis is the difference between the future prices and the spot prices. It is ex-

pressed by B(t,Ti) = F(t,Ti) − S (t), i = 1, 2, 3, 4. F(t,Ti) is the futures prices on week

29



t to deliver in week Ti and Ti = t + i. Four weekly contracts nearest to the delivery are

used.

The following model is used to estimate external variables Rt, HDWt and precipitin (Pt).

Xt = α + βt +

p∑
i=1

(γi sin
2π
52

it + δi cos
2π
52

it) +

k∑
j=1

θ jXt− j + ut, (3.18)

where Xt represents Rt, HDWt and Pt.

(This is given as display 1 in [31])

Estimation of the basis is done by (3.19).

B(t,Ti) = α +

p∑
i=1

(γi sin
2π
52

it + δi cos
2π
52

it) +

k∑
j=1

4∑
i=1

γi jB(t − j,Ti) + ut, (3.19)

for i = 1, 2, 3, 4.

(This is given as display 2 in [31])

These estimates in (3.19) and (3.18) will be used in the exante approach. Lastly the spot prices

model is defined in (3.20).

(1 − L)S (t) = c + α1 sin
2π
52

+ α2 cos
2π
52

+ βRt + γPt + δHDWt + φB(t − 1,T1) + µt, (3.20)

µt = ψ1µt−1 + ψ2µt−2 + ψ3µt−3 + ψ4µt−4 + εt.

L is the lag operator, µt is the residual and εt is white noise (N(0, σ2)).

(This is given as display 3 in [31])

Forecasting is done by using two approaches: expost approach which is done by using real

observed external values and in an exante approach each external variable are forecasted by

with electricity prices. The whole period is split into two subperiods. The ex post subperiod

contains data between the 1st week of 1998 and the 39th week of 2003 which has 300 observa-

tions and the exante subperiod starts from the 40th week of 2003 and finishes at the 39th week

of 2007 which contains 209 observations. To estimate the forecasting accuracy of ARIMAX

model two different forecasting methods are considered. First method is the myopic method

which uses the present spot price as a forecasted settlement price at the expiration week of

each futures. Second method is the futures method that uses the present futures prices as the

forecasted settlement price in the corresponding forecasting week.
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Results of this study shows that ARIMAX model has lower mean squared error (MSE) than

myopic and futures methods in almost all cases. According to the authors “ARIMAX model

is superior than the other compared model in the Nord Pool market”[31].

Another study on electricity futures is [55]. The aim of this study is to develop a model

for long term electricity prices of EEX which represents the features of German electricity

market. The formula used in this study to calculate the price of standard futures contract is

Ft,T = S t,T (1 + r − λ)T−t. (3.21)

Ft,T represents the price of the futures contract, S t,T denotes the spot price, T − t is the time to

maturity and the term (1 + r−λ)T−t shows the risk premium. Authors changed the equation in

3.21 because “this model implies no direct link between the spot and futures prices.”In order

to solve this problem expected spot price E(S t,T ) is used instead of spot prices which is stated

in (3.22). In order to obtain a linear equation (3.22) is transformed into (3.23), a logarithmic

form.

Ft,T = E(S t,T )(1 + r − λ)T−t, (3.22)

log Ft,T = log E(S t,T + (T − t) log (1 + r − λ). (3.23)

(These are given as display 2 and 3 in [55])

It is stated that “the term log (1 + r − λ) will stay stable as long as it remains far from the ma-

turity so the main factor that determine the future price is expected spot price”[55]. Expected

future spot price is mostly influenced by the supply and demand of electricity. To estimate

futures prices, variables that directly influence electricity supply and demand are used in this

study. These variables are used as external variables of an ARIMAX model. External vari-

ables are categorized in three groups. The first group is futures on prices of oil, natural gas

and coal. The second group contains emission allowances and the last group variables reflect

financial market conditions, which include EUR/USD exchange rate, spread1 and the Prime

Utilities Index (UTIL). Phelix Base Futures with next year’s delivery is used as a depended

variable and data contains variables between the period of 2006 and June 2009.

1 Spread is the difference between 10 years and 1 year government bonds in Germany and UTIL contains
stocks of companies that involves in the energy sector.
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ARIMAX model that used in this study define in (3.24).

Yt = α +

p∑
i=1

βiYt−i + εt +

q∑
j=1

θ jεt− j +

b∑
k=1

γkXt−k. (3.24)

(This is given as display 5 in [55])

The model is estimated by ordinary least squares (OLS). Results of the study shows that

all external variables have significant explanatory power on electricity future prices and the

relations between external variables.

ARIMA and ARIMAX models are used in [59] to predict the spot electricity prices of Cal-

ifornia market. The exogenous variable of ARMAX is the system loads. The data from the

period July 5, 199 to April 2, 2000 is used to calibrate the models and the period between

April 3, 2000 and December 3, 2000 is used to test the models. In this study 24 hours of

electricity spot prices are tried to forecast. The logarithmic transformation is applied to data

in order to obtain a more stable variance, also the mean was removed to center the data. Gen-

eral ARMAX model used in this study is give in (3.25). (Unless otherwise noted all of the

displays in this section are taken from [59])

A(p)Pt = C(r, k)Zt + B(q)εt, (3.25)

where

C(r, k)Zt = Zt−k + c1Zt−k−1 + ... + crZt−k−6,

Zt is the value of exogenous variable at time t. Authors found that moving average part

(B(q)εt) decreases the performance so only the ARX model is used, that is B(q)εt = εt. Opti-

mal model is of the form

A(p)pt = pt − a1 pt−24 − a2 pt−48 − a3 pt−168 − a4mpt,

where mpt is a function of all prices on the previous day. Three dummy variable are injected

to the model in order to cope with the weekly seasonality and the new model is as follows:

pt − a1 pt−24 − a3 pt−168 − a4mpt = c1zt + dMon + dS at + dS un + εt,

where dMon, dS at, dS un are the coefficients of the dummies.

Accuracy of the model is checked by mean daily error and mean weekly error. Results shows

that AR model is almost good as ARX but the ARIMA and ARIMAX models are not as

successful as ARX.
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CHAPTER 4

MODELING TEMPERATURE

4.1 Introduction

To model temperature dynamics we have considered several alternatives. The approach that

we found most effective is presented in Section 5.3. Earlier alternatives and considerations

that led to this approach are given in Section 5.2. The main idea of Section 5.3 is the following:

temperature dynamics consist of two alternating phases: cooling and heating. Conditioning

on these phases significantly simplify analysis and obviate the need to use more complicated

models, such as those reviewed and discussed in Section 5.2.

4.1.1 Data

We have average daily temperature data of İzmir, İstanbul and Ankara. The data measured in

degree Celsius and it consists of the period between December 1, 2009 and May 31, 2012.

The data set was obtained from the Turkish State Meteorological Service (MGM). In the

set we have some missing data and we assign values to the missing ones by using linear

interpolation. The next table shows the descriptive statistics of the daily temperature data for

each cities while Figure 4.1 shows the daily average daily temperature for each cities.

Table 4.1: Descriptive statistics of the average daily temperature for each cities.

City N Min Median Max Mean Std. Deviation Variance
Ankara 913 -9.9 11.2 32.4 12.02 9.1 82.84
İzmir 913 1.2 16.7 33.5 17.63 7.66 58.71

İstanbul 913 -2.5 13.7 29.9 14.4 7.85 61.66
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Figure 4.1: Daily average temperature of the cities.

4.2 Alternative models

Our initial approach included the following spatial averaging: take the averages of the daily

temperature of the three cities to obtain a daily average temperature for Turkey. The following

analysis uses this average. Later we have noticed a nontrivial problem with this idea. This

problem is described at the end of this section. Still, an analysis based on this average was

instrumental in developing our final approach (explained in Section 5.3) hence it is given

below as is using the spatially averaged temperature.

To model temperature dynamics we start with

Tt = Xt + Λt,

where Tt is the temperature and Λt is a deterministic seasonal function.

We considered three alternatives to model Λt of the daily average temperature data of Turkey.

1. The first approach we tried was to use a cosine function to model Λt. This is a well

known idea to model seasonal trends, see, for example, [24]. To do this, one chooses
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(a0, a1, a2, a3) so that the square distance between T and the following function is min-

imized:

Λ(t) = a0 + a1t + a2cos(2π(t − a3)/365). (4.1)

Figure 4.2 shows the fitted curve of the function (4.1).

Figure 4.2: Mean temperature and the fitted curve of the function (5.1.).

Then one subtracts the seasonal part form Tt in order to have a deseasonalized process

Xt. Then the idea is to model Xt as a stationary process. Without listing a detailed

analysis, we would like to state that the resulting Xt had a complicated structure to

which simple time series models did not fit well. For this reason, we did not think the

use of (4.1) appropriate to model the seasonality of temperature.

2. Local Linear Regression (LLR) is another alternative to model the seasonality of tem-

perature, which is computed using

arg maxe, f

365∑
i=1

{T̄t − es − fs(t − s)}2K
( t − s

h

)
,
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where T̄t is the mean of daily averages temperature, h is the bandwidth, K is a Kernel.

We tried the Epanechnikov Kernel which is used in [64] to model temperature dynamics

and bandwidth proposed by [9]. Figure (4.3) shows the LLR and the daily average

temperature. This technique gives on the surface better results than the previous but it

clearly overfits.

Figure 4.3: Mean temperature and the LLR.

3. Finally we tried a simple idea which seems to fit the best. Figure 4.1 suggests that every

year consists of a warming period and a cooling period that are approximately of the

same length. In order to determine the starting and the ending day of the cycle, we first

compute the mean temperature of the two summer seasons.

From Figure 4.4 it can be seen that temperature starts to decay at the end of July so we

decide to end the first cycle at July 31,2010 which was started in December 1, 2009.

The second cycle starts from August 1, 2010 till July 31, 2011 and the last cycle starts

from August 1, 2011, till May 31, 2011. Figure 4.5 shows the temperature cycles of

Turkey during the time interval for which we have data.

The figure 4.6 shows the mean of the cycles depicted in Figure 4.5. Figure 4.6 clearly

suggests the use of a piecewise linear curve. We fit a linear curve of the form y = aix + bi

for the decreasing and increasing part of the mean temperature (the variables are chosen so
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Figure 4.4: Mean temperature of the summer seasons.

Figure 4.5: Temperature cycles of Turkey.

that the resulting piecewise linear curve is continuous). Figure 4.7 shows the fitted curve and

mean temperature.

One obtains the deseasonalized temperature (or fluctuations in temperature) by taking the

difference of the two curves in Figure 4.7. Although the results are not reported, we have

been able to fit simple time series models to this difference.

These results inspired us to use the same approach without taking the mean over the years,
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Figure 4.6: Mean temperature of the cycles.

Figure 4.7: Fitted curve and mean temperature.

i.e., applying it directly to the temperature data of all of the three years. In doing this, one

has to decide how to model the length of the periods. In the mean temperature one has to

choose only one length, i.e., just decide when the cooling period ends and when the heating

period starts (see Figure 4.7). In the analysis of the three years there are multiple cooling and

heating periods and their lengths may change with the years. We settled with the simplest

approach: use a fix constant length. Unfortunately this approach did not yield good results.
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Without listing further numerical results we would like to state that the main problem is that

the fluctuations that remain after subtracting off the trend have too complicated a structure.

It is clear that to get a good global model of temperature, one has to take the lengths of the

cooling and heating periods as random and model them as random variables. This we leave

to future work.

Taking the spatial averages may not be a good idea We have also noticed the following

problem with taking spatial averages to compute an average temperature in Turkey. The next

figure shows a sample of the average daily temperature from İzmir and Ankara.

Figure 4.8: A sample form İzmir and Ankara.

Figure 4.8 suggests that the average daily temperature of İzmir and Ankara are highly corre-

lated and the temperature of Ankara behaves like a shifted version of the İzmir’s temperature.

So when we calculate the average temperature of these two cities, we not only compute the

mean over locations but also over time. After these considerations we have decided to use the

temperature of a single city in our analysis. Another future work would be to model the tem-

perature of several cities as a high dimensional stochastic processes whose dynamics correctly

model the interdependencies.
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4.3 Conditional Model

This time we are going to work with the two full cycles of Ankara’s temperature date and

we will divide the data into four separate parts. The first part and the third part are warming

periods while the second part and the last part are cooling periods. In each part we fit a curve

to remove the seasonal component and then we apply autoregression with degree two to the

deseasonalized data. Figure 4.9 shows the four periods of Ankara’s temperature data and the

fitted curves.

Figure 4.9: Four periods of Ankara’s temperature data and the fitted curves.
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The periods and their models are as follows (note that the lengths of the periods change from

year to year, this change has not been modeled as a random variable in this thesis, but we

hope to do it in future work):

• The first period starts from January 22, 2010 and ends on August 5, 2010 which is a

warming period. We used the first 136 observations for calibration. The table figure

shows the parameters and R2 of the fitted line while Figure 4.10 shows the PACF (see

for definition of PACF [10, p.222]) of the deseasonalized data.

Table 4.2: Fitted parameters and R2 of the first period.

a b R2

0.1409 1.351 85%

Figure 4.10: PACF of the desesonalized data for the first period.

Although Figure 4.10 and AIC suggests us to use AR(1), we use AR(2) to form a

consistent model for Ankara, because in the next periods we will see that PACF and

information criterions suggests us to use AR(2). The model is as follows:

xt = 0.8287xt−1 − 0.1188xt−2 + εt,

where xt is the deseasonalized temperature and εt is the white noise. The qq-plot of the

AR(2) residuals showed in Figure 4.11.
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Figure 4.11: QQ-plot of the AR residuals for the first period.

Figure 4.11 shows that we have some outliers but when we drop the lowest three ob-

servation the data follows a normal distribution. Since this is a warming period, sudden

and large temperature declines may cause disturbances in the normal distribution. The

next figure shows the qq-plot of the residuals when the outliers were dropped.

Figure 4.12: QQ-plot of the AR residuals for the first period when the outliers were dropped.
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• The second period starts from August 6, 2010 till February 1, 2011 which is a cooling

period. We used the first 150 observations for calibration. The table shows the param-

eters and R2 of the fitted line while Figure 4.13 shows the PACF of the deseasonalized

data.

Table 4.3: Fitted parameters and R2 of the second period.

a b R2

-0.1646 28.09 87%

Figure 4.13: PACF of the desesonalized data for the second period.

AR(2) model for the second period is as follows:

xt = 1.094xt−1 − 0.2833xt−2 + εt,

where xt is the deseasonalized temperature and εt is the white noise.
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Figure 4.14 shows the qq-plot of the AR(2) residuals.

Figure 4.14: QQ-plot of the AR residuals for the second period.

Again we have outliers at the lower part of the qq-plot, this time we dropped the low-

est three observations and from Figure 4.3 shows the qq-plot when the outliers were

dropped. It can be seen that the residuals follows a normal distribution.

Figure 4.15: QQ-plot of the AR residuals for the second period when the outliers were
dropped.
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• The third period starts from February 2, 2011 and ends on July 28, 2011 which is a

warming period. We used the first 147 observations to calibrate the model. The table

figure shows the parameters and R2 of the fitted line while Figure 4.16 shows the PACF

of the deseasonalized data.

Table 4.4: Fitted parameters and R2 of the third period.

a b R2

0.1491 -0.02704 88%

Figure 4.16: PACF of the desesonalized data for the third period.

Figure 4.16 suggests higher order autoregression with non-consecutive lags but we use

AR(2) to create a simple and a general model for Ankara. The model for the third

period is as follows:

xt = 0.9144xt−1 − 0.2256xt−2 + εt,

where xt is the deseasonalized temperature and εt is the white noise. Figure 4.3 shows

the qq-plot of the AR(2) residuals.
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Figure 4.17: QQ-plot of the AR residuals for the second period.

Again we have outliers and we dropped the smallest three observations and the new qq

plot is showed in Figure 4.3.

Figure 4.18: QQ-plot of the AR residuals for the third period when the outliers were dropped.
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• The last period starts from July 28, 2011 till February 1, 2012 which is a cooling pe-

riod. We used the first 153 observation to calibrate our model. The table figure shows

the parameters and R2 of the fitted line while the figure 4.19 shows the PACF of the

deseasonalized data.

Table 4.5: Fitted parameters and R2 of the last period.

a b R2

-0.1706 26.47 87%

Figure 4.19: PACF of the desesonalized data for the third period.

The PACF again suggests AR(1) but we again use AR(2) to create a general model. The

AR(2) model for the last period is as follows:

xt = 0.9501xt−1 − 0.09718xt−2 + εt,

where xt is the deseasonalized temperature and εt is the white noise. Figure 4.20 shows

the qq-plot of the AR(2) residuals.
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Figure 4.20: QQ-plot of the AR residuals for the last period.

We have outliers but when we drop the smallest two observations we have a qq-plot

that looks like normally distributed. The next figure shows the qq-plot when the outlier

were eliminated.

Figure 4.21: QQ-plot of the AR residuals for the third period when the outliers were dropped.
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After removing the seasonal component we apply the ADF (see for definition of ADF [57,

p.76]) test for all the periods and we reject the null hypothesis of unit root at 5% level of

significance. We also compute the Jarque-Bera test (JBT) to check the normality of the resid-

uals after eliminating the outliers and we failed to reject the null hypothesis at 5% level of

significance for all the periods. In each periods sudden and large temperature falls create

disturbances in the normal distribution, the reason for this can be the insufficient data. Also

it can be caused from the cycle separations, the data can be divided into the cycles by using

different methods. These facts can be explored in future studies.

4.3.1 Forecasting

We forecast the next days temperature for the each period defined in Section 5.3. The next

figures shows the observed values, forecasted values and the confidence intervals for each

period starting from the first till the end, respectively.

Figure 4.22: Forecasted values of the first period.

In the first period we use the first 136 observations for calibration and the last 30 observations

are used to check the accuracy of the model. We find the mean squared forecast errors as 1.37.

We also calculate the KST and the JBT for the errors and in both we failed to reject the null

hypothesizes so we conclude that the errors follow a standard normal distribution.
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Figure 4.23: Forecasted values of the second period.

In the second period we use the first 150 observations to set the model and the last 30 obser-

vations are used to check the prediction power of our model. The MSE is 1.56 for this period

so the accuracy of this period is a little worse than the first period. We again compute the

KST and the JBT and in both we fail to reject the null hypothesizes so we have still standard

normal errors.

Figure 4.24: Forecasted values of the third period.
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In the third period we use the first 147 observations for the calibration and the last 30 obser-

vations are used to validate our model. The MSE is 1.27 for this period which is the smallest

of all periods. The qq-plot of this period had the worst shape but the model of this period has

the smallest MSE so making decisions by only looking the qq-plots is not a good idea for our

case. We compute the KST and the JBT and in both we failure to reject the null hypothesizes.

Figure 4.25: Forecasted values of the last period.

In the last period we use the first 153 observations to calibrate the model and the last 30

observations are used to check the accuracy of the model. The MSE is 2.41 which is the

highest of all periods. We again compute the KST and the JBT and in both we failure to reject

the null hypothesizes so we have still standard normal errors.
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CHAPTER 5

MODELING the TURKISH DAY AHEAD ELECTRICITY

PRICES

5.1 Introduction

To model the Turkish day ahead electricity market we use simple time series models. In

Section 6.2 we discussed some properties of the price dynamics of Turkey and in Section 6.3

we model the Turkish electricity market and we explore the effect of temperature on the price.

As discussed in Section 5.2 this effect can be studied on a global or a local level. The analysis

of Section 6.3 conducts a local analysis. That is, conditioning on a particular period (mid

February to late March) where the trends of temperature and price have simple structures,

how much the fluctuations in temperature from its trend influence the fluctuations of the price

from its respective trend? As shown in Section 6.3, this influence seems to be very little.

5.1.1 Data

The price data of our interest are the average day ahead electricity prices established at PMUM

in the period between December 12, 2009 and September 2, 2012, which is taken from [51].

The price is measured in TRY/MWh. Table 6.1 shows the descriptive statistics of the elec-

tricity prices of Turkey while Figure 5.1 show the day ahead prices of the Turkish electricity

market.
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Table 5.1: Descriptive statistics of the average day ahead electricity prices of Turkey.

City N Min Median Max Mean Std. Deviation Variance
Ankara 1007 28.75 138.6 703.97 135.24 38.944 1516.6

Figure 5.1: Day ahead prices of the Turkish electricity market.

5.2 Price Dynamics of the Turkish Electricity Market

The price of the Turkish electricity market shows all the characteristic behavior of the elec-

tricity markets defined in Subsection 2.1.3. We have a high volatility market which can be

seen from Figure 5.1 clearly shows that market is highly volatile and exhibits many prices

spikes. For example, on February 9, 2012, there is a price increase by almost 400 % which

reverts back to its normal level in a couple of days. Figure 5.2 shows a 90 days sample from

the Turkish electricity market which represents the seasonal behavior of the Turkish market.

On the weekends, electricity price starts to decrease and on mondays price came back to its

normal level. This price movement repeats itself continuously so the price dynamics of the

weekdays and the weekends have different characteristics. For the rest of this chapter, we will

only consider the weekdays and the characteristics of the weekends can be explored in future

work.

Figure 6.3 shows the logarithm of the electricity price, the official holidays and the religious

holidays. The red dashed lines show the official holidays while the blue dashed lines show

the beginning and the ending of the religious holidays. It can be clearly seen that the holidays

effect the price of the Turkish electricity market. Before two or three days from the religious
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Figure 5.2: A sample from the Turkish electricity market.

holidays, price starts to decline until the last day of the holiday and the price reaches the

lowest values of that month. It is well known that the dates of the religious holidays in Turkey

shift backward every year. This creates a further challenge in the modeling of Turkish prices.

To see the full effect of these holidays (in particular, how do the dynamics change when a

holiday is in the summer or in the spring? and so on) on the prices many years have to pass

to get a full set of data that covers all season/holiday interactions.

Except the year 2012 the electricity price declines on the official holidays. The decline in the

industrial activities on holidays may cause price declines, this is reasonable but in the year

2012 the price does not fall, the reason for this can be investigated in future work.

In figure 6.4 we plot the price of the year 2010 and the price of the year 2011 together to

show the similarities. It can be seen that the first 71 observations have similarities while the

observations between the green dashed lines are almost the same. It is striking to see that

from one year to the other the electricity prices follow similar paths. This is in stark contrast

to the behavior of stock markets. As indicated in Chapter 2, this is a feature common to many

electricity markets. To the best of our knowledge there is currently no clear explanation of

this phenomenon and it is an interesting subject for future work.
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Figure 5.3: Day ahead price of the Turkish electricity market of 2010,2011,2012.
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Figure 5.4: Day ahead price of the Turkish electricity market of the year 2010 and the year
2011.

5.3 Modeling the Price

In this section we model the price of selected periods from each year. Our main idea for a

global model would be similar to the one we have developed for the temperature. However,

this task is much more complicated and need to take into account the following considerations:

• Weekdays, weekends, religious holidays and official holidays have different price dy-

namics before the model this dynamics need to be understood fully.

• The reasons for the spikes and the behavior of this jumps need to be investigated. Proper

modeling of the spikes need to be developed.

• we can refer to the change in dynamics of the price on the weekends and on holidays as

a “phase change.” Then we have at least two types of phase changes: 1) phase changes

whose dates are fixed: the weekends and the national holidays 2) phase changes whose

dates shift earlier every year: these are the religious holidays. An inspection of data

reveals that there maybe a third type of phase change: those whose starting date is

random. The spikes can be seen as particular cases of this phase change. We think that

data needs to be examined further whether this idea makes sense.
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• The electricity market in Turkey is very young. Some of the features we currently

observe may be transient.

5.3.1 The Model

In the price of electricity model, our aim is to investigate the effect of the temperature on the

price. We compare AR with ARX where the X represents the exogenous variable. We use

the deseasonalized temperature as X and we use three time periods to compare the models.

The first period starts from February 2, 2010 ends on March 22,2010, the second period

starts form February 2, 2011 till March 2 2011 and the last period contains the data between

February 2, 2012 and March 22, 2012. In each period we dropped the weekends’ prices and

the temperature of the weekends. The reason we use these periods is the following: in this

time period there seems to be linear decrease in prices. Furthermore, this time period has no

holidays which ensure that no phase transitions of the first two types listed above occur in this

period. This is a period of 35 days. We will use the first 30 observations for calibration and

the last five observations used to check the accuracy of the models.

Figure 5.5 shows the price of the each period and the line on the figure represents the starting

of the each period.

Figure 5.5: The price of the each periods.

We model all of the prices that are depicted in Figure 5.5 using a model of the form Ψt + Xt
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where Ψ is an affine function and X a stationary process. We estimate the deterministic affine

part using least squares regression.

Figure 5.6 shows the detrended (log price minus the estimated affine trend) price and the fitted

lines of the each period.

Figure 5.6: Price of the each period and the fitted lines.

In the next step we normalize the detrended price and detrended temperature by diving them

their standard deviations. The same transformation will also be applied to the temperature

process, the goal here is to have two processes that have the same scales . We plot the PACF

of the each period to determine the order of AR and figure 5.7 show the PACF of the each

period.

In the first period there are correlations at the second lag and the sixth lag, while in the second

period and the last period there are correlations at the first lag and the sixth lag, so we decide

to use same AR(6) with non consecutive lags to generate a common model for each period.

The AR(6) model is as follows:

yt = θ1yt−1 + θ2yt−2 + θ6yt−6 + εt,
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Figure 5.7: PACF of the each period.

where yt represent the price of electricity and εt is a white noise process. Our ARX(6) model

is as follows:

yt = θ1yt−1 + θ2yt−2 + θ6yt−6 + φxt−1 + εt,

where xt represents the temperature.

We use the temperature of the previous day because today’s temperature can not effect the

today’s market price since we are working on the day ahead market. The next table shows the

coefficients of the each period.

Table 5.2: Coefficients of each period.

Period Model θ1 θ2 θ6 φ

The First Period AR 0.1741 -0.3445 -0.2151
ARX 0.1742 -0.3458 -0.22002 0.04167

The Second Period AR 0.4645 -0.25535 -0.5297
ARX 0.4584 -0.25508 -0.5249 -0.031009

The Third Period AR 0.44155 -0.2787 -0.43826
ARX 0.4511 -0.2784 -0.4368 0.1113
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In each period we use the JBT and KST to see whether the residuals are coming form standard

normal distribution or not and in both we failed to reject the null hypothesis at 5% significance

level. Figure 5.8 shows the qq plot of the residuals of AR (left) and ARX (right), the first line

represents the first period, the second lines represents the second period, while the last line

represents the third period.

Figure 5.8: QQ plots of the residuals of the first period, the second year and the last periods.
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5.3.2 Forecasting

Figure 5.9 shows the forecasted values with their confidence intervals.

Figure 5.9: Forecasted price of the each period.
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In the first figure the observation fall outside the confidence interval it is caused by a great

decrease in the price since we determined the confidence interval according to normal distri-

bution, the price in the first period may not follow a normal distribution.

Another observation about forecasts is that the temperature does not effect the price in the

given periods. From Table 5.2 it can be seen that the coefficients of the temperature is very

small. To check the relations between price and the temperature we plot the scatter plot where

x axis represents the temperature while the y axis represents the price.

Figure 5.10: Scatter plots of temperature and price for each period.

In each period the red line represents the least squares line. We plot the least squares line

to show the relations between the price and the temperature but the line in each period is

almost parallel to x axis so we concluded that there is a little relation between the price and

temperature fluctuations .
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For each period correlation coefficients and the p values for testing the hypothesis of no

correlation are as follows (for ease of notation we will refer to fluctuations in temperature

simply as “temperature” and to fluctuations in the logarithm of the price process as “price.”):

• The correlation coefficients between the price and the temperature in the first period is

0.0602 and the p value is 0.731. In each case we assume that if the p values are greater

then 0.05 then the correlation is insignificant. For the first period we can conclude that

there is no significant correlation since the p value is 0.731.

• The correlation coefficients between the price and the temperature in the second period

is −0.02809 and the p value is 0.8727 which again suggests that there is no significant

correlation in the second period.

• The correlation coefficients between the price and the temperature in the second period

is 0.0945 and the p value is 0.5889. Also in the last period there doesn’t seem to be a

significant correlation between price and temperature.

Note that these results are in agreement with Figure 5.10.
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CHAPTER 6

CONCLUSION AND OUTLOOK

This thesis studies two stochastic processes in Turkey: temperature and day ahead electricity

prices observed at PMUM. Our analysis of temperature is based on dividing time into alter-

nating cycles, which represent warming and cooling periods. We observe that lengths of these

cycles change from year to year and seem to be random. We defer an analysis of this random-

ness to future work and content ourselves to an analysis that fixes the period. Our analysis of

temperature conditioned in this way consists of fitting a line to the data and using a simple

time series model for the residuals. Our results indicate that this approach works fairly well.

We find that the temperature of different cities may have correlations so when computing an

average temperature for the whole country this situation must be taken into account. The tem-

perature of the cities can be modeled by using a multidimensional stochastic process in future

work.

In the electricity market part of this thesis we observed that the Turkish electricity market has

many of the well known properties of the electricity markets in the world. Most significantly,

electricity prices seem to be seasonal, that is from one year to the next prices seem to follow

similar trajectories that include many trends. However, these trends are much more compli-

cated than the trends we observe in temperature. A full analysis of these structures require

further work. As significant is the multiphase behavior of these prices (weekends, holidays

and random phases).

To simplify our analysis we focused on a particular period between february and march where

the log prices have a linear trend. We deseanolized the price data of this period by fitting a

line. We then fitted a simple autoregression to the residuals. Even this very simple model

results in fairly good predictions. We also investigated the local effects of temperature on the
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electricity prices and found that deviations of the electricity price from its linear trend are not

effected by the deviations of the temperature from its trend during this period.

There are many future directions, here we name some of them: 1) build a global model of

electricity prices that allow random, deterministic and shifting phase changes and price spikes

2) remember that the fluctuations in temperature always had one or two outliers. It may be a

good idea to use a distribution more general than normal to account for these outliers 3) build

a global model for temperature 3) combine the global models to better understand the global

effect of temperature on electricity prices.
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