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ABSTRACT

CONSTRUCTION OF CRYPTOGRAPHICALLY STRONG BOOLEAN
FUNCTIONS WELL SUITED FOR SYMMETRIC CRYPTOSYSTEMS

Ahmed Khan, Mansoor
PhD, Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

August 2013, 51 pages

Boolean functions are amongst the vital ingredients of any symmetric cryptosystem
in order to implement principles of confusion and diffusion. These are utilized as
non-linear filtering functions or combiner functions in LFSR-based stream ciphers and
as s-box component functions or non-linear encryption functions in Fiestel structure
based block ciphers. Consequently, the cryptographic properties of Boolean functions
are amongst the main contributors to the strength of these ciphers against cryptanaly-
sis. The key cryptographic characteristics of Boolean functions include balanced-ness,
non-linearity, correlation immunity and resilience, strict avalanche criteria and prop-
agation criteria, and more recently, algebraic degree and algebraic immunity. Hence
cryptographically strong Boolean functions are invariably required to posses superior
cryptographic characteristics mentioned above in order to effectively resist all existing
and potential cryptanalytic attack techniques.

The purpose of this research work is construction of cryptographically strong Boolean
functions that can be utilized in symmetric cryptosystems offering effective resistance
to existing cryptanalysis techniques. During the course of this research work, existing
significant methods of construction would be studied and analyzed in depth. Based
on this analysis, construction methods for Boolean functions with good cryptographic
properties are aimed to be proposed. More focus would be directed to construction
methods based on principles of finite fields and that involving combinatorial design
theory. The significant constructions based on finite field principles include use of

vii



primitive polynomials, primitive elements and block codes, while those based on com-
binatorial design theory depend on the use of combinatorial objects, such as relative
difference sets, for constructing Perfectly Non-linear (PN) or Almost Perfectly Non-
linear (APN) functions. In the end, the proposed constructions would be analyzed in
terms of their cryptographic properties in comparison with other existing constructions
in order to evaluate their efficacy for deployment in symmetric cryptosystems.

Keywords : Boolean Functions, Symmetric Cipher, Non-Linearity, Algebraic Immu-
nity, Optimal Algebraic Immunity
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ÖZ

SIMETRIK KRIPTOSISTEMLERDE KULLANİLABILECEK KRIPTOGRAFIK
OLARAK GÜÇLÜ BOOLE FONKSIYONLARİNİN INŞA EDILMESIDIR

Ahmed Khan, Mansoor
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ağustos 2013, 51 sayfa

Boole fonksiyonları, karmaşıklık ve yayılma prensiplerini uygulamaya çalışan her-
hangi bir simetrik kriptosistem için önem taşıyan yapılar arasındadır. LFSR tabanlı
akış şifrelerinde doğrusal olmayan filtreleme fonksiyonları ya da birleştirici fonksiyon-
lar ile, Feistel yapılı blok şifrelerinde de S-kutuları ya da doğrusal olmayan şifreleme
fonksiyonları ile bu prensipler sağlanmaktadır. Bu nedenle, Boole fonksiyonlarının
kriptografik özellikleri, bahsedilen şifre sistemlerinin kriptoanalize dayanıklılığını sağ-
layan esas kriterler arasındadır. Boole fonksiyonlarının önemli kriptografik karakteris-
tikleri dengeliliği, doğrusal olmamayı, korelasyon bağımlılığını ve dayanıklılığını, katı
çığ etkisini, dağılma kriterini ve son olarak cebirsel derecesini ve cebirsel bağımlılığını
içerir. Bu yüzden kriptografik olarak güçlü Boole fonksiyonlarının, bilinen ve potan-
siyel bütün kriptoanaliz saldırı tekniklerine karşı etkili olarak dayanmasını sağlamak
için yukarıda bahsedilen üstün kriptografik özelliklere her şartta sahip olması gerek-
lidir.

Bu araştırma çalışmasının amacı da simetrik kriptosistemlerde kullanılabilecek, bili-
nen kriptoanaliz tekniklerine etkili savunma sunan, kriptografik olarak güçlü Boole
fonksiyonlarının inşa edilmesidir. Bu araştırma çalışması boyunca, bilinen güçlü inşa
yöntemleri derinlemesine çalışılmış ve analiz edilmiştir. Bu analiz temel alınarak,
iyi kriptografik özelliklere sahip Boole fonksiyonlarının inşa yöntemlerinin önerilmesi
amaçlanmıştır. Sonlu cisimler cebiri prensiplerine dayalı, kombinatorik tasarım teorisi-
nin de dahil olduğu inşa yöntemleri üzerinde daha çok durulmuştur. Sonlu cisimler ce-
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birine dayalı inşalarda ilkel polinomlar, ilkel elemanlar ve blok kodları prensipleri kul-
lanılmakta olup, kombinatorik tasarım teorisini kullananlarda ise Mükemmel Doğrusal
olmayan (PN) ya da Neredeyse Mükemmel Doğrusal olmayan (APN) fonksiyonları
inşa etmek için göreceli fark kümeleri gibi kombinatorik nesneler kullanılmıştır. Son
olarak, önerilen inşalar kriptografik özellikleri açısından diğer bilinen inşalarla kıyasla-
narak, simetrik sistemlerde kullanılabilirliğini değerlendirmek için analiz edilecektir.

Anahtar Kelimeler : Boole fonksiyonları, Simetrik Şifreler, Doğrusal Olmamayı, Ce-
birsel Bağımlılığını, Optimal Cebirsel Bağımlılığını
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CHAPTER 1

INTRODUCTION

1.1 Cryptology

Cryptology has been used to protect information from unwanted disclosure for thou-
sands of years. One of the earliest and commonly known examples is Caesar cipher
employed by the Roman Emperor Julius Caesar around 60 BC for secret communica-
tions with his troops. But cryptology is not all about protecting information; the other
aspect is trying to recover secret information from encrypted message using analytical
or mathematical techniques. Naturally, cryptology has two main branches; Cryptog-
raphy dealing with encrypting information for protection from disclosure to unwanted
parties, and Cryptanalysis that deals with employing techniques to recover the original
intelligible text from encrypted messages. Over the years, role of cryptology has been
in constant evolution. While classical cryptology dealt primarily with making encryp-
tion schemes for encrypting data and breaking them by the adversaries to recover data,
with the emergence of information age, new requirements such as user authentication,
integrity of data and non-repudiation by users have been added to the applications of
cryptology. In all applications, the original information is referred to as plaintext while
the encrypted or coded messages are named ciphertext.

Cryptography can be further divided into two main categories; Asymmetric or Public
Key cryptography and Symmetric or Private Key cryptography. In some literature,
one way or hash functions are regarded as the third type of cryptographic schemes.
The major difference between public and private key cryptography is that the earlier
uses different keys for encryption and decryption while the latter utilizes same keys
at both ends. Symmetric or private key cryptography consists of two main types of
schemes; Block Ciphers and Stream Ciphers. Block ciphers usually employ a fixed
encryption transformation on bigger blocks of the input message while stream ciphers
use a variable one, commonly at single bit level.

Block ciphers are primarily based on the principles of Confusion and Diffusion intro-
duced by Claude Shannon in [34]. Confusion is transforming the relationship between
secret key and ciphertext as complicated as possible. Diffusion deals with propagating
the change in a single bit of plaintext over the complete ciphertext bits. Non-linear
transformations are used to create confusion while diffusion is achieved by linear
transformations. The transformations are usually applied recursively and repeatedly
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to achieve both confusion and diffusion. Each repetition is called a round and uses
a different round key, derived from the secret key. A standard block cipher design is
shown in Figure 1.1.

Figure 1.1: A typical block cipher

There are two main structures used in block cipher design, Feistel structure and Substi-
tution Permutation Network (SPN). Feistel structure employs a defined transformation
on half of the input block in each round while the SPN round modifies the complete
input block using the round keys. An example of SPN and Feistel structure is shown in
Figure 1.2. Boolean functions find their application in designing these round functions
for block ciphers.

Figure 1.2: SPN and Feistel structures

(a) SPN structure (b) Fiestel structure

Unlike block ciphers, stream ciphers commonly use a simple function, the Exclusive
OR (XOR), between plaintext bits and the key bits to obtain ciphertext. This, however,
mandates the length of secret key to be either as long as the plaintext or sufficiently
long to resist cryptanalysis. The Vernam cipher or One Time Pad (OTP) [41] is a
stream cipher that uses a random bit stream as secret key XORed with the plaintext
to produce the cipher text. The length of plaintext and the secret key is equal and as
the name suggests, each key is used only once. It is arguably the lone provably secure
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cryptosystem but is quite impractical due to required length of the secret key and no
re-use restriction. The modern stream ciphers employ a smaller psuedo random bit
stream as secret key in comparison and try to imitate the concept of OTP. A typical
stream cipher structure is shown in Figure 1.3.

Figure 1.3: A typical stream cipher

Linear Feedback Shift Registers (LFSRs) are mostly used to generate the pseudo ran-
dom bit streams in stream ciphers. Owing to the Berlekamp-Massey algorithm [18],
use of merely LFSRs to generate key streams is not enough and some non-linearity
needs to be induced to increase the Linear Complexity (LC) of the generated key
stream. This is achieved by employing Non-Linear Filter Generator (Figure 1.4) and/

or Non-Linear Combiner designs (Figure 1.5) in stream ciphers. Once again, Boolean
functions are integral part of both these structures.

Figure 1.4: Non-linear filter generator

Figure 1.5: Non-linear combiner
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1.2 Motivation for research

As evident from discussion in the preceding section, Boolean functions play an impera-
tive role in design of almost every modern symmetric cipher. They are either utilized as
non-linear filtering functions or combiner functions in LFSR-based stream ciphers or
as S-Box component functions and non-linear encryption functions in Feistel structure
based block ciphers. Resultantly, the cryptographic properties of Boolean functions
become the primary contributors to the strength of these ciphers against cryptanalysis.
The important cryptographic characteristics of Boolean functions include Balanced-
ness, high Non-Linearity, Correlation Immunity and Resiliency, Strict Avalanche Cri-
teria and Propagation Criteria, and more recently, high Algebraic Degree and optimal
Algebraic Immunity. It, therefore, becomes needless to say that Boolean functions
are required to invariably possess strong cryptographic characteristics in order to ade-
quately resist all existing and potential cryptanalytic attack techniques.

In [13, 14], N. Courtois, and W. Meier presented Algebraic and Fast Algebraic attacks
on stream ciphers with linear feedback. Subsequently, some variants of these attacks
were devised to further improve their efficiency [1–3, 26, 30]. This triggered a series
of research work in which several constructions of Boolean functions were proposed
focused on attaining high algebraic degree and optimal or sub-optimal algebraic im-
munity, while maintaining high non-linearity [5, 8–11, 15, 16, 28, 39, 40, 42, 43, 45].
In [11], C. Carlet and K. Feng proposed an infinite class of Boolean functions that pos-
sessed balanced-ness, high algebraic degree, optimal algebraic immunity, high non-
linearity compared and good immunity to fast algebraic attacks. The proposed con-
struction in [11] is based on selecting a primitive element α ε Fn

2 and selecting its con-
secutive powers from 1 to (2n−1 − 2), along with “0” and “1” vector in the support
set of the function. Subsequently in [45], X.Zeng, C.Carlet, J.Shan, L.Hu presented
three more constructions, achieving either the same or in some cases, even higher non-
linearities, while maintaining the degree and algebraic immunity as in [11]. These
construction methods also utilized a primitive element α ε Fn

2 and selecting its pow-
ers in the support set of the function. However, the powers selected in this case were
not consecutive, rather based on some pre-defined sets. Although the infinite class
achieved very high values of non-linearity, they were not close to bent functions, thus
leaving room for further improvement in non-linearity, while preserving the rest of the
properties.

In [40], Z. Tu, and Y. Deng presented a combinatorial conjecture and constructed a new
class of balanced Boolean functions combining ideas in [11, 17, 19]. The functions
belonging to this new class also attained maximal algebraic degree for balanced func-
tions, optimal algebraic immunity and non-linearity better than [11, 45]. However, in
[12], C. Carlet pointed out a weakness in the construction. The product of constructed
functions with any Linear function reduced the degree of the resultant function by al-
most half, making it vulnerable to fast algebraic attacks [1–3, 13, 14, 26, 30]. A repair
was also suggested in the same work to remove this weakness but the rest of the prop-
erties including algebraic degree and resistance to fast algebraic attacks were being
studied. A modified family of functions in [40] was presented in [37] also by X. Tang,
D. Tang, X. Zeng, L. Hu, but the vulnerability to the weakness of original construction
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and resistance to algebraic and fast algebraic attacks was not investigated. Therefore,
construction of an infinite class of functions with comparable cryptographic properties,
while also offering good resistance to algebraic and fast algebraic attacks was still an
open area.

1.3 This Thesis

The constructions proposed in [11] and [45] clearly demonstrated, and also proved
mathematically, that selecting different powers of the primitive elements affected the
non-linearity of the functions, along with their algebraic degree and algebraic immu-
nity. In this research work, we have devised two algorithms by modifying the genetic
hill climbing algorithm [40] for improvement in the non-linearity of functions con-
structed using the infinite class proposed in [11] for number of variables n ≥ 8. The
improved functions not only possess higher non-linearity than the original functions
in [11], but also maintain the high algebraic degree and optimal algebraic immunity.
The improvement algorithms have been verified by constructing all Boolean functions
for 8 ≤ n ≤ 11 and improving their non-linearity. Chapter 3 covers the details of this
research work.

The second contribution in this thesis is construction of two hybrid classes of balanced
Boolean functions based on ideas in [11, 17, 19] by modifying the construction in [40].
The modified functions not only maintain their cryptographic properties i.e. balanced-
ness, maximal algebraic degree for balanced functions, optimal algebraic immunity
and very high non-linearity, but also avoid the weakness pointed out in [12]. We also
practically analyse and verify (using MAGMA) that the functions constructed in the
two proposed hybrid classes are not comparably vulnerable to fast algebraic attacks as
functions in [40]. Details of this contribution are discussed in Chapter 4.

Finally, a 1-resilient class of Boolean functions with high algebraic degree, optimal
algebraic immunity and high non-linearity has also been proposed by using ideas in
[37, 39] and modifying our second construction in Chapter 4. This construction was
also implemented in MAGMA and analysed to verify their cryptographic properties.
An analysis for resistance against algebraic and fast algebraic attacks was also per-
formed which shows that functions belonging to this class offer good resistance to
these attacks. Chapter 5 includes the details of the said construction.
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CHAPTER 2

BOOLEAN FUNCTION BASICS

Let us first discuss the basics of Boolean functions relevant to this research work.
We start off with some definitions. Let F2 define the Binary Field. Then Fn

2 can be
visualized as an n-dimensional vector space over F2. A Boolean function f on n-
variables can be envisaged as a mapping from Fn

2 to F2. Let Bn denote the set of all
Boolean Functions from Fn

2 into F2.

2.1 Boolean function representations

2.1.1 Truth Table and Sequence

Any Boolean function f(x1, ..., xn) can be represented as a binary string of length 2n with
each representing the output of the function with respect to the ordered pair (x1, ..., xn)
as the input:-

f = { f (0, 0, ..., 0), f (0, 0, ..., 1), ..., f (1, 1, ..., 1)} . (2.1)

This is known as the Truth Table of f. The Sequence of f denoted by Seq(f ) is a (1,−1)
valued mapping of the truth table obtained by S eq(f) = 1 − 2f = (−1) f .

2.1.2 Algebraic Normal Form (ANF) and Algebraic Degree

Any n-variable Boolean function can be considered as a multivariate polynomial over
F2. This polynomial can be represented as a sum of distinct variables, each of order k
while 0 ≤ k ≤ n. Then

f (x1, x2, ..., xn) = a0 +

∑
1≤i≤n

aixi

 + ...+

 ∑
1≤i< j≤n

ai, jxix j

 + ...+
(
a1,2,...,nx1x2...xn

)
(2.2)
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where each ai ε F2. The above representation is called the Algebraic Normal Form
(ANF) of f. The maximum number of variable x appearing in a single term amongst
all terms of the ANF is called the Algebraic Degree of f.

2.1.3 Trace Representation

Recall that the trace function from Fn
2 to it’s sub-field Fk

2 is defined as

trn
k (x) = x + xq + xq2

+ ... + xqd−1

where q = 2k and d = n/k. Therefore if p(x) is a polynomial of degree ≤ 2n − 1 and
x ε Fn

2, then the Boolean function f can also be represented by tr(p(x)), called it’s trace
representation.

2.2 Weight and Support

The weight of a Boolean function wt(f ), sometimes also referred to as the Hamming
Weight, is the number of 1s in its truth table representation. The Support of f , Supp(f )
is defined as

supp( f ) = {∀ x | f (x) = 1} . (2.3)

2.3 Balanced-ness

An n-variable Boolean function is called Balanced if wt (f) = 2(n−1), i.e its support set
supp(f ) has dimension 2(n−1).

2.4 Walsh Spectrum

For α = (α1, α2, ..., αn) and ω = (ω1, ω2, ..., ωn), define α · ω as the usual inner product
α · ω = (α1ω1, α2ω2, ..., αnωn). Then the Wash transform of f, W f is calculated as

W f (α) =
∑
αεFn

2

(−1)f(α)+α.ω. (2.4)

Obviously, each coefficient in the Walsh spectrum has values between 2n and −2n.
Note that for a balanced Boolean function, W f (0) = 0. The total energy in the Walsh
spectrum is conserved, as established in Parseval’s Identity
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∑
αεFn

2

W2
f (α) = 22n. (2.5)

2.5 Non-Linearity

The Non-Linearity of f, nl(f ) is given by

nl( f ) = 2(n−1) −
1
2

max
αεFn

2

∣∣∣W f (α)
∣∣∣ . (2.6)

2.6 Bent Function

A Boolean function f in Fn
2 is called “Bent” if it’s Walsh spectrum is two valued, i.e.

Wf(α) = ±2n/2 ∀α ε Fn
2, where n is always even. Clearly, a bent function is unbalanced

since Wf(0) , 0.

2.7 Correlation Immunity and Resilience

Correlation Immunity (CI) = k implies that the output of the function is statistically
independent of the combination of any k of its inputs. In terms of the Walsh spectrum,
W f (α) = 0 for all α with 1 ≤ wt(α) ≤ k. A Boolean function has Resiliency = k if it is
balanced and has correlation immunity = k. In other words, a k-resilient function has
W f (α) = 0 for all α with 0 ≤ wt(α) ≤ k.

2.8 Annihilator of a Function

The Annihilator of f , AN(f ) is a Boolean function g such that f ∗ g = 0, where f ∗ g
is the usual product of functions f ∗ g = f (x).g(x).

2.9 Algebraic Immunity

This brings us to the last definition that is Algebraic Immunity of f, AI(f ) which is
determined as the minimum degree non-zero annihilator of f

AI( f ) = min
{
deg(g) | ∀ g εBn st f (x).g(x) = 0, ∀ x ε Fn

2
}
. (2.7)
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High value of algebraic immunity insinuates that non-linearity of the function is fairly
high. This was established in [25] and is now commonly known as the Lobanov’s
Bound for minimum value of non-linearity given it’s algebraic immunity.

nl( f ) ≥ 2
∑

0≤i≤(AI( f )−2)

(
n − 1

i

)
. (2.8)

2.10 Some Cryptanalytic Attacks

2.10.1 Berlekamp-Massey Attack

Definition 2.1. Linear Complexity (LC) of a periodic bit sequence is defined as the
length of the shortest LFSR that can produce this sequence. A bit sequence S t is
periodic when it repeats after a finite number of bits i.e. for an integer p ≥ 0, S t =

S t+p∀t ≥ 0. This integer p is called the period of the recurring sequence. Linear
Complexity of a sequence is∞ when it can not be produced by an LFSR.

Berlekamp-Massey attack is based on the Berlekamp-Massey algorithm proposed in
[18] to calculate the Linear Complexity of a pseudo-random bit sequence. It also re-
covers the connection polynomial and size of an LFSR that can be equivalently used to
generate the sequence being analysed. It requires ≥ 2.LC number of bits of a sequence
to construct an LFSR of length L = LC and evaluate it’s connection polynomial that
generates the sequence.

2.10.2 Correlation and Fast Correlation Attacks

Correlation attack [25] targets the improperly selected combining function f in non-
linear combiner model (Figure 1.5). If the key-stream obtained as output of this func-
tion is correlated to one of the input LFSRs more than others, a divide-and-conquer
approach can be employed to recover the initial state of each LFSR separately. This
reduces the attack complexity from Brute Force search =

∏
1≤i≤k

IS i to
∑

1≤i≤k

IS i , where

IS i stands for all possible combinations of initial states for the ith LFSR and k is the
total number of LFSRs used.

Since it is possible to utilise a divide-and-conquer approach on the non-linear combiner
model, Fast Correlation attacks [27] envisage to recover the output of a single LFSR
with known connection polynomial as a decoding problem based on observed key-
stream. Their attack set-up is shown in Figure 2.1.

As shown in the Figure 2.1, output of the register is assumed to be filtered by a Binary
Symmetric Source that is memory-less. This action combines output of registers in the
design as well as the combining function over the key-stream output. Hence, problem
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Figure 2.1: Fast Correlation attack set-up

of recovering the output of this register is equivalent to decoding a message transmitted
over a noisy channel and the correlation of the key-stream to one or more of the input
register becomes the probability of each output bit being/ not being flipped. Meier and
Staffelbach devised two algorithms to decode the output key-stream from the noisy
one using known structure of the register(including it’s connection polynomial). This
attack suffered a huge limitation on length of the LFSRs used to a maximum of 10
stages to be successful. However, it was intriguing that a cryptographic problem could
be envisaged as a decoding problem and the attack was modified to make it more
efficient [6].

2.10.3 Algebraic and Fast Algebraic Attacks

Algebraic attacks [13] recover the initial states of an LFSR by simultaneous solution
of a system of non-linear equations. These equations are constructed by observing the
output key-stream after a sufficient number of output bits are generated in relation to
the combiner/ non-linear filter function used and connection polynomial of the LFSR.

f (IS ) = s0

f (IS + 1) = s1

f (IS + 2) = s2

.

.

.

where f is the combiner/ non-linear filter function, IS is the initial state of LFSR and
(IS + 1) = CP(IS ), CP being the connection polynomial of LFSR. Since the con-
nection polynomial of the LFSR is a linear function, degree of each of the equations
in constructed system is equal to the degree of combining function. This degree, can
however be reduced further either by using a function g such that ( f ⊕ 1).g = 0 or a
function h such that f .h = 0 [26]. After obtaining the system of linear equations, it is
solved using methods such as Linearisation or Gröbner Basis [20–22].

In fast algebraic attack [14], the degree of non-linear equations to be solved simulta-
neously is attempted to be further reduced by looking for relations between the initial
state of the LFSR and more output bits, compared to a single output bit in each step in
case of algebraic attack. This makes the attack more efficient. The attack is dependant
solely on the existence of functions g and h with degrees (e, d), e < d respectively,
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such that f .g = h further improves the efficiency of the attack. However, it requires
additional pre-computations to calculate linear combinations, required to cater for con-
sidering several output key-stream bits instead of one for each equation in the system.

2.11 Resisting Cryptanalytic Attacks

As mentioned earlier, a Boolean function to be utilized in a symmetric cipher must
be balanced, possess high algebraic degree, high non-linearity and optimal algebraic
immunity. A high algebraic degree enables the function to resist Berlekamp-Massey
attack [18], high non-linearity contributes to enduring fast correlation attacks [6, 27],
while high algebraic immunity is a necessary but not sufficient condition to counter al-
gebraic and fast algebraic attacks [1–3, 13, 14, 26, 30]. The optimal value of algebraic
immunity is d n

2e. It is elaborated in [12] that if we can find g of low algebraic degree
and h , 0 of feasible algebraic degree such that f ∗ g = h, then the function f becomes
vulnerable to fast algebraic attack. To attain optimal resistance to fast algebraic attacks
for an n-variable function f , there should not exist two functions g , 0 and h such
that f ∗ g = h and deg(g) + deg(h) < n while deg(g) < n/2. The function f is the
“weakest” when there exists a function g of degree 1 (linear function), and a function
h with degree dn

2e such that f ∗ g = h. The “next to weakest” case is when there exists
a function g of degree 1 (linear function), and a function h with degree d n

2e + 1 with
f ∗ g = h.
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CHAPTER 3

IMPROVEMENT IN NON-LINEARITY OF CARLET-FENG
INFINITE CLASS

3.1 The Carlet-Feng Infinite Class of Boolean Functions

We now describe the infinite class of balanced Boolean functions with high algebraic
degree, optimal algebraic immunity, good immunity to fast algebraic attacks and good
non-linearity as proposed in [11] by C. Carlet and K. Feng. Let α ε Fn

2 be the primitive
element of Fn

2 . Then Boolean function f from Fn
2 to F2 for number of variables n

whose support set is supp( f ) =
{
0, 1, α, α2, ..., α2(n−1)−2

}
has optimal algebraic immunity

i.e.d n
2e. The algebraic degree of f is (n − 1) and it is balanced. Furthermore the non-

linearity of f is given by

nl( f ) ≥ 2(n−1) +
2

n
2 + 1
π

ln
(

π

4(2n − 1)

)
− 1 ≈ 2(n−1) −

2 ln 2
π

n2
n
2 . (3.1)

Mathematical proofs of the above relations are presented in [11] and we do not repro-
duce them here. It is mentioned that these functions, owing to their high algebraic de-
gree, optimal algebraic immunity and good non-linearity, behave well against fast cor-
relation attacks [17, 19], algebraic attacks, fast algebraic attacks [1–3, 13, 14, 26, 30]
and Berlekamp-Massey attack [12].

Specifically in connection with resistance to fast algebraic attacks, computer investiga-
tions were performed to discover that for the proposed class of functions, no non-zero
function g of degree at most e and no function h of degree at most d exists such that
f ∗ g = h when (e, d) = (1, n − 2) for odd n and (e, d) = (1, n − 3) for even n; both
verified when n ≤ 12. In case of e > 1, the functions g and h with respective degrees
(e, d) such that (e + d) < (n− 1) were not observed for n ≤ 9 and e < n/2, for n = 10
and e ≤ 3 and for n = 11 and e ≤ 2. It is also highlighted that before this construction
[11], no infinite class of Boolean functions with high algebraic degree, good algebraic
immunity and good non-linearity was presented.

In [45], three more classes of Boolean functions were proposed by X.Zeng, C.Carlet,
J.Shan, L.Hu. In this case powers of the primitive element α ε Fn

2 to be included in
support of the function f were chosen based on some pre-defined sets. While the
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method improved non-linearity of some constructed functions, the rest had the same
non-linearity as in [11]. Hence these constructions did not guarantee a higher non-
linearity than [11] for all functions. Later in [28, 39, 42, 43] more constructions were
presented to achieve optimal algebraic immunity, good non-linearity and in some cases
1-resiliency. However, none of these attained significant increase in the non-linearity
of functions as compared to [11].

Since construction in [45] employs a different criterion for selection of powers of
the primitive element α ε Fn

2 than [11] and achieves some functions with better non-
linearity, we studied the behaviour of functions in detail. While [11] presents an easy
selection criteria, the one used in [45] is comparatively intricate. Subsequently, our fo-
cus was directed to using the construction in [11] as the starting point and then chang-
ing the powers of α in the support set based on the affect on Walsh spectrum of the
functions. This led to the development of a relatively simple algorithm derived from
the hill climbing approach [40], based on the behaviour of Walsh spectrum of Boolean
functions. The algorithm improves in non-linearity of functions while preserving al-
gebraic degree and algebraic immunity. Non-linearity of most functions constructed
by [11] was improved using this algorithm, while some could not be improved. Sub-
sequently, a second algorithm was developed by modifying the first one to improve
non-linearity of remaining functions as well. Therefore as compared to [45], which
improves non-linearity in case of some functions as compared to [11], we achieve bet-
ter non-linearity for all functions.

3.2 Algorithms for Improving Non-linearity

3.2.1 The Behaviour of Walsh Spectrum

Before we describe the algorithms developed, we first review the behaviour of the
Walsh spectrum of a Boolean function and the effects caused by changes in the truth
table of a function. Recall that the Sylvester-Hadamard matrix, also known as the
Walsh-Hadamard matrix, is defined as follows

H0 = 1, H1 =

[
1 1
1 −1

]

Hn = Hn−1 ⊗ H1 = Hn−1 ⊗

[
1 1
1 −1

]
=

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
. (3.2)

The symbol ⊗ denotes the usual Kronecker product. It is clear that Hn is a matrix of
order 2n. Using this matrix, the Walsh Transform of a function, also called the Walsh-
Hadamard transform, can be easily calculated [23]. Given the sequence of a Boolean
function S eq( f ) = (y0, y1, ..., y2n−1), the Walsh spectrum can be computed as

H f = Hnx[y0, y1, ..., y2n−1] = Hn[y0, y1, ..., y2n−1]T
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= Hn



y0
y1
.
.
.

y2n−1


=

[
A + B
A − B

]
(3.3)

where A =



y0
y1
.
.
.

y2n−1−1


and B =



y2n−1

y2n

.

.

.
y2n−1


.

Hence the Walsh spectrum can be calculated recursively by using Equation 3.2. Let us
demonstrate the process by an example

Example 3.1. Let f be a 3-variable Boolean function with the truth table f (x1, ..., x3) =

(0, 1, 1, 1, 1, 0, 0, 0)T . Using the recursion described in Equation 3.2, the Walsh spec-
trum computation can be performed as follows

S eq( f ) = (1,−1,−1,−1,−1, 1, 1, 1)T

W f = H3

[
1 −1 −1 −1 −1 1 1 1

]T

W f = H3



1
−1
−1
−1
−1

1
1
1


=

[
A + B
A − B

]
=



H2


1
−1
−1
−1

 + H2


−1
1
1
1



H2


1
−1
−1
−1

 − H2


−1
1
1
1
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=




H1

[
1
−1

]
+ H1

[
−1
−1

]

H1

[
1
−1

]
− H1

[
−1
−1

]
 +


H1

[
−1

1

]
+ H1

[
1
1

]

H1

[
−1

1

]
− H1

[
1
1

]



H1

[
1
−1

]
+ H1

[
−1
−1

]

H1

[
1
−1

]
− H1

[
−1
−1

]
 −


H1

[
−1

1

]
+ H1

[
1
1

]

H1

[
−1

1

]
− H1

[
1
1

]




=





[
0
2

]
+

[
−2

0

]
[

0
2

]
−

[
−2

0

]
 +



[
0
−2

]
+

[
2
0

]
[

0
−2

]
−

[
2
0

]




[
0
2

]
+

[
−2

0

]
[

0
2

]
−

[
−2

0

]
 −



[
0
−2

]
+

[
2
0

]
[

0
−2

]
−

[
2
0

]




=




−2

2
2
2

 +


2
−2
−2
−2



−2

2
2
2

 −


2
−2
−2
−2




=



0
0
0
0
−4

4
4
4


.

Now, we observe that a single bit change in the truth table of the function f changes the
Seq(f ) either from 1 to -1 or vice versa. Hence the Walsh spectrum values will either
be unaffected or would increase/ decrease by a value of 2. This affect is independent
to the number of values since for larger variables, only the number of Walsh spectrum
values changed would differ, but the deviation would always be ±2. Hence according
to Equation 2.6, the non-linearity of the function is increased or decreased by a value 1
with a single bit change in the truth table. Therefore, if suitable element of support set
of the function is interchanged with the set of roots, that is, two suitable values in the
truth table are swapped; the maximum coefficients in the Walsh spectrum is reduced
by 4. Resultantly, the non-linearity of the function can be increased by a value of 2.

3.2.2 Algorithm 1

Let us fix some notations before presenting the algorithms. The array TT() holds the
truth table of the Boolean Function constructed using [11]. ITT() holds the truth ta-
ble of the improved function. Walsh() refers to the routine that calculates the Walsh
spectrum of the Boolean function from its truth table representation. The algorithm is
presented below
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ALGORITHM 1

Walsh(TT())
maxWalsh = max | Walsh(TT ()) |
copy TT()→ ITT()
LastCount = 0
ReRun:
Count = LastCount + 1

if Count < (2n − 1) then
for i = αcount → α2(n−1)−2 do

ITT(i) = 0
LastCount = i
Walsh(ITT())
maxWalsh2 = max | Walsh(ITT ()) |
if maxWalsh2 < maxWalsh then

exit For
else

ITT(i) = TT(i)
end if

end for
if maxWalsh2 ≥ maxWalsh then

then GoTo Skipj:
end if
for j = α2(n−1)−1 → α2n−2 do

ITT(j) = 1
Walsh(ITT())
maxWalsh3 = max | Walsh(ITT ()) |
if maxWalsh3 < maxWalsh2 then

then exit For
else

ITT(j) = TT(j)
end if

end for
if maxWalsh3 = maxWalsh − 4 then

then output “Function Improved”
else

GoTo ReRun:
end if

end if

Skipj:
if maxWalsh2 ≥ maxWalsh or maxWalsh3 > maxWalsh − 4 then

output “Function could not be improved” and exit
end if.
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In contrast to the generic hill climbing approach, Algorithm 1 changes an element of
the support set to a root and determines its suitability based on change in the Walsh
spectrum instead of searching all possible pair swaps. If the maximum Walsh value is
reduced, it keeps this change and looks for a suitable change of a root to the support
set. Once the suitable root to support swap is found, the maximum Walsh value is
reduced by 4 and the non-linearity of the function improves by 2. This reduces the
number of steps since the swap occurs only if the first change is suitable to increase
the non-linearity. The support to root swap is handled in the loop for variable “i”
and the loop for “j” handles the root to support swap to complete the improvement
in non-linearity. In case non-linearity improvement is not achieved once a support to
root swap is selected and all possible root to support interchanges have been tried,
algorithm is re-run by incrementing the “LastCount” variable within the for loop for
“i”. This ensures the next suitable support to root swap is selected.

3.2.3 Algorithm 2

Algorithm 2 is an iterative application of Algorithm 1. However, it’s also different to
Algorithm 1 in the sense that it accepts a change in truth table even if the maximum
value of Walsh spectrum is not decreased, but the number of maximum Walsh values
is decreased in intermediate steps. Maximum Walsh value is ultimately decreased in
the final iteration (non-linearity of functions was improved in at the most 4 iterations
in all cases). Hence, increase in non-linearity of function by 2 is achieved in a similar
manner as explained in case of Algorithm 1 in the preceding paragraph, except addition
of variable “Count2” that determines the total number of swaps/ iterations allowed.
The algorithm is presented below

ALGORITHM 2

Walsh(TT())
maxWalsh = max | Walsh(TT ()) |
nmaxWalsh = # maxWalsh
copy TT()→ ITT()
LastCount = 0
Count2 = 1

ReRun:
Count = LastCount + 1
if Count < (2n − 1) then

while Count2 ≤ 6 do
for i = αcount → α2(n−1)−2 do

ITT(i) = 0
LastCount = i
Walsh(ITT())
maxWalsh2 = max | Walsh(ITT ()) |
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nmaxWalsh2 = # maxWalsh2
if maxWalsh2 < maxWalsh or nmaxWalsh2 < nmaxWalsh then

Count2 +=1 and exit For
else

ITT(i) = TT(i)
end if

end for
if maxWalsh2 ≥ maxWalsh then

GoTo Skipj:
end if
for j = α2(n−1)−1 → α2n−2 do

ITT(j) = 1
Walsh(ITT())
maxWalsh3 = max | Walsh(ITT ()) |
nmaxWalsh3 = # maxWalsh3
if maxWalsh3 < maxWalsh2 or nmaxWalsh3 < nmaxWalsh2 then

Count2 +=1 and exit For
else

ITT(j) = TT(j)
end if

end for
if maxWalsh3 = maxWalsh − 4 then

output “Function Improved”
else

Count2 -=1 and GoTo ReRun:
end if

end while
end if

Skipj:
if maxWalsh2 ≥ maxWalsh or maxWalsh3 > maxWalsh − 4 then

output “Function could not be improved” and exit
end if.

3.3 Advantages obtained

By employing Algorithms 1 and 2, the non-linearity of all the functions constructed
using Carlet-Feng infinite class of Boolean functions [11] can be improved by at least 2
for number of variables n ≥ 8. Additionally the algorithms preserve the balanced-ness,
maximal algebraic degree and optimal algebraic immunity of the functions. Table 3.1
and 3.2 list some selected results for n = 8 to demonstrate the improvement in non-
linearity for Algorithm 1 and 2 respectively, although all defining polynomials and
primitive elements have been practically verified for 8 ≤ n ≤ 11. Some results for n =

9, 10 and 11 are included in Appendix A, B and C respectively for reference.

Another significant advantage of the method is that the swapping of support set element
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with the root resulting in improvement in non-linearity of the functions is not unique,
i.e more than one such pairs exist. Resultantly, whilst there exists only one function
for a fixed defining polynomial and a fixed primitive element in the infinite class [11],
more than one function with higher non-linearity can be obtained using algorithm 1 or
2 by just changing the value of variable “LastCount”. Same is demonstrated by some
examples presented in Table 3.3 for n = 8, although it has been practically verified for
all values.

Table 3.1: Comparison of non-linearities for n = 8 by Algorithm 1

Defining
Polynomial
(Integer value)

Primitive el-
ement (Inte-
ger value)

Non-
linearity
of function in
[11]

Elements swapped
(root↔support)

Non-linearity
of improved
function

285 2 112 α104 ↔ α230 114
299 128 112 α66 ↔ α147 114
301 57 112 α101 ↔ α233 114
333 16 112 α87 ↔ α241 114
351 4 112 α1 ↔ α238 114
355 26 112 α94 ↔ α221 114
357 101 112 α74 ↔ α145 114
361 119 112 α21 ↔ α200 114
369 47 112 α20 ↔ α228 114
391 61 112 α109 ↔ α241 114
397 5 112 α17 ↔ α143 114
425 185 112 α105 ↔ α181 114
451 220 112 α32 ↔ α160 114
463 97 112 α54 ↔ α253 114
487 187 112 α65 ↔ α198 114
501 10 112 α46 ↔ α137 114

Table 3.2: Comparison of non-linearities for n = 8 by Algorithm 2

Defining
Polynomial
(Integer value)

Primitive el-
ement (Inte-
ger value)

Non-
linearity
of function in
[11]

Iterations
(root↔support)

Non-linearity
of improved
function

301 2 108 1st α54 ↔ α226 112
2nd α108 ↔ α245

3rd α75 ↔ α251

4th α33 ↔ α202

357 2 112 1st α17 ↔ α253 114
2nd α16 ↔ α165

425 2 112 1st α81 ↔ α241 114
2nd α82 ↔ α210

3rd α83 ↔ α250
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Table 3.3: Different improved functions from same parent function

Defining
Polynomial
(Integer value)

Primitive el-
ement (Inte-
ger value)

Non-
linearity
of function in
[11]

Different options
for swapping
elements

Non-linearity
of improved
function

285 2 112 (i) α104 ↔ α230 114
(ii) α36 ↔ α247 114
(iii) α106 ↔ α153 114

351 4 112 (i) α32 ↔ α160 114
(ii) α107 ↔ α238 114
(iii) α54 ↔ α234 114

369 47 112 (i) α20 ↔ α228 114
(ii) α5 ↔ α220 114
(iii) α31 ↔ α228 114

451 220 112 (i) α20 ↔ α228 114
(ii) α101 ↔ α233 114
(iii) α126 ↔ α235 114

501 10 112 (i) α46 ↔ α137 114
(ii) α51 ↔ α254 114
(iii) α58 ↔ α136 114

3.4 Summarized Results

The devised algorithms were implemented in MAGMA computational algebra system
for 8 ≤ n ≤ 11 and all the functions belonging to Carlet-Feng infinite class of Boolean
functions [11] were improved using these. Majority of functions were improved using
Algorithm 1 by a single pair swap (an element from the support set with a root). The
functions that could not be improved by Algorithm 1 were improved by Algorithm
2 within at the most four pair swaps. Table 3.4 demonstrates a comparison of non-
linearities of the improved functions with their parent functions in [11] for 8 ≤ n ≤ 11.

Table 3.4: Comparison of properties of functions

n Degree
fCarlet−Feng

AI
fCarlet−Feng

Non-
linearity
fCarlet−Feng

Degree
fImproved

AI
fImproved

Non-
linearity
fImproved

8 7 4 112 7 4 114
9 8 5 232 8 5 234
10 9 5 478 9 5 480
11 10 6 980 10 6 982

Note: The values of fCarlet−Feng have been taken from [11]. The non-linearity values are average, nl( fImproved) =

(nl( fCarlet−Feng) + 2) in all cases.

It was mentioned in [11], the product of the constructed functions with any linear
functions ( f ∗ l) reduces the degree of the resultant functions to at most n− 2 in case of
even number of variables “n” and at most n−1 in case of odd “n”. Hence the functions
do not fall in the worst case or next to worst case resistance to algebraic and fast
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algebraic attacks [24]. Similar analysis was performed on the functions improved by
Algorithm 1 and 2 for 8 ≤ n ≤ 10 and it was ascertained that the improved functions
offer identical behavior to the parent functions when the product with the set of all
linear functions was obtained. Results of the analysis are presented in Table 3.5.

Table 3.5: Comparison of degrees of functions f ∗ l

n Degree
fImproved

Degree
fImproved ∗ l

8 7 ≥6
9 8 ≥8
10 9 ≥8

3.5 Conclusion

An effective and efficient method of improving non-linearity of Carlet-Feng infinite
class of Boolean functions has been developed. The two algorithms devised have been
derived from genetic hill climbing algorithm. Not only do these increase the non-
linearity of parent functions but also preserve other cryptographic properties includ-
ing maximal algebraic degree for balanced functions, optimal algebraic immunity and
good resistance to algebraic and fast algebraic attacks as shown in practical results pre-
sented. Moreover, the proposed method also increases total number of functions that
can be obtained for each number of variables, whilst a particular defining polynomial
and primitive element is fixed. Both algorithms have been implemented practically
using MAGMA and results presented verify the efficacy of proposed method.
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CHAPTER 4

TWO HYBRID CLASSES OF BOOLEAN FUNCTIONS

4.1 Tu-Deng Functions

Z. Tu and Y. Deng used ideas from [11], [17] and [19] to construct an infinite class of
balanced Boolean functions (Construction 2 in [40]) that achieved maximal algebraic
degree, optimal algebraic immunity and a higher non-linearity than the functions be-
longing to [11] and [45]. Their construction is explained in the subsequent paragraphs.

Let n = 2k, k ≥ 1 and α be a primitive element of Fk
2. The Boolean function g :

Fk
2 → F2 is defined as

supp( f ) =
{
1, α, α2, ..., α2(k−1)−1

}
. (4.1)

Define the function f(x,y) on Fk
2 × F

k
2 as follows

f =


g(xy2k−2) ; i f x.y , 0
1 ; i f x = 0 and y ε 4′

0 ; otherwise
(4.2)

where 4′ =
{
αi | i = 2(k−1) − 1, 2(k−1), ..., 2k − 2

}
. The function f (x,y) is balanced, has

maximum possible algebraic degree i.e. 2k−1 = n−1, has optimal algebraic immunity
= dke = dn

2e and the non-linearity is lower bounded by

nl( f ) ≥ 2(2k−1) − 2(k−1) − 2
k
2 k ln 2 − 1. (4.3)

The function g(x,y) clearly belongs to Dillon’s PS ap class of bent functions presented in
[17], while the construction principle for the balanced function f(x,y) has been adopted
from Dobbertin’s idea in [19] with slight modification. The functions belonging to
this class were practically verified to have achieved non-linearity very close to the bent
functions for number of variables 4 ≤ n ≤ 18 (using MAGMA). In [12], however, it
was pointed out by C. Carlet that for every linear function l ε Fn

2, the product l ∗ f was
equal to l ∗ g(xy(2k−2)). Since the degree of the bent function g(xy(2k−2)) is k = n

2 , the
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degree of l∗f was reduced to at the most k+1 = n
2+1, which is actually “next to weakest”

resistance against fast algebraic attacks [12], as explained in Sub-section 2.11. Repair
of these functions was also suggested in [12] by removing the affine components using
affine hyper planes. The lower bound for non-linearity of the functions was revised to

nl( f ′) = 2(2k−1) − 2k = 2(n−1) − 2
n
2 (4.4)

where f ′ is the repaired function. However, it was commented that the properties of
the repaired function including algebraic degree and resistance to fast algebraic attacks
were under investigation.

4.2 The two hybrid classes

Before we present the classes constructed, we review the basic ideas that have been
utilized for constructing the hybrid classes of functions. We state Dillon’s Construction
[17] of PS ap class of bent functions based on difference sets, followed by Dobbertin’s
Construction [19] for obtaining a balanced and highly non-linear Boolean function
using a normal bent function.

Theorem 4.1 (Dillon’s PS ap class of bent functions [17]). The non-zero points lying
on any 2k − 1 lines through the origin constitute a difference set in the affine plane
L ⊕ L, L = GF(2k). The bent functions (i.e. characteristic functions) corresponding to
these difference sets are equivalent to functions of the form

f (x, y) = Tr(π(XY2k−2)) (4.5)

where Tr {.} is the trace with respect to L/F and n : L → L is any function for which
Tr(π(Z)) is a balanced function on L which vanishes at 0 (in particular, π may be taken
to be any permutation fixing 0). The algebraic degree of this class of bent functions is
deg( f (x, y)) = k and hamming weight is wt( f (x, y)) = 2(2k−1) − 2(k−1).

Definition 4.1. A Bent function on F2k
2 is called “Normal” if it is constant on a sub-

space of F2k
2 of dimension k.

Theorem 4.2 (Dobbertin’s balanced and highly non-linear function [19]). Let W =

GF(2n) and V = W2. Let g be a normal bent function on V. That is w.l.o.g. g(x, 0) =

0∀ x ε W. Furthermore, let a balanced function h : W → GF(2) be given. Set for
x, y ε W

f (x, y) =

{
g(x, y) ; i f y , 0
h(x) ; otherwise (4.6)

then f(x,y) is balanced and we have

W f(a,b) =

{
Wg(a,b) + Wh(a,b) ; i f a , 0
0 ; otherwise . (4.7)
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In particular, it follows that

RΘ = 2n + Rθ (4.8)

where R is the Spectral Radius of a Boolean function f : GF(2n)→ GF(2) defined as

R f = max
{
|W f (α)| : α ε Fn

2

}
(4.9)

Theorem 4.3 ([37]). Let h εBk has deg(h) = d, 1 ≤ d ≤ k. Let g(x,y) be a 2k variable
normal bent function with deg(g) < k + d. Then the 2k variable Boolean Function
defined by

f (x, y) =

{
g(x, y) ; i f x , 0
h(y) ; i f x = 0 (4.10)

with (x, y) ε Fk
2 has deg( f (x, y)) = k + d.

Now we present the two classes constructed using ideas in [11], [40][17] and [19], so
that the functions attain balanced-ness, maximal algebraic degree, optimal algebraic
immunity and very high non-linearity and do not possess the weakness as functions
in [40] that was described in [12]. Our first construction is obtained by modification
of Construction 2 in [40], that is itself based on the main idea presented in [19]. We
construct a new class of functions in a manner that preserves the other cryptographic
properties of Construction 2 in [19], in addition to eliminating the weakness against
algebraic and fast algebraic attacks. The class also includes a considerably larger total
number of functions for each number of variables using function belonging to the
infinite class in [11] as the balanced component. Our second construction is a novel
construction as it differs from Dobbertin’s main idea in [19] and Construction 2 of
[40] significantly. This construction includes even a larger total number of functions in
comparison with our first construction and also uses a function different than the ones
in [11] as the balanced component.

Theorem 4.4 (Construction 1). Let g and h be two balanced Boolean functions g, h :
Fk

2 → F2 defined as

supp(g) =
{
1, α, α2, ..., α2(k−1)−1

}
(4.11)

supp(h) =
{
α j, α j+1, ..., α2(k−1)+ j−1

}
; f or 1 ≤ j ≤ 2k−2 − 1 (4.12)

where α is a primitive element of Fk
2 , g has the same definition as in [40], while h

is a function belonging to the infinite class in [11], where it is clearly mentioned that
support set of functions introduced in that class can, in fact, be defined for every n as{
α j, α j+1, ..., α2(n−1)+ j−1

}
for a suitable j, while maintaining optimal algebraic immunity.
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Note that for j = 0, the function h = g, while for j = 2(k−1) − 1, h equals the conditions
used to balance construction in [40] and we avoid using this value. Now for n = 2k ≥
4, define the function f1(x, y) : Fk

2 × F
k
2 → F2 as

f1(x, y) =

{
g(xy−1) ; i f x , 0 and y , 0
h(x) ; otherwise (4.13)

then f1(x, y) is a balanced Boolean function with maximum possible algebraic degree
= 2k− 1 = n− 1, optimal algebraic immunity = dke = d n

2e, and very high non-linearity.

The comparison of non-linearity with [11] and [40] is presented in Table 4.2. It has
been practically verified for 4 ≤ n ≤ 12 (using MAGMA) that this construction does
not have the weakness as the function in [40] pointed out in [12], details are discussed
in Section 4.4. A comparison with functions in [40] has been presented in Table 4.4.

Theorem 4.5 (Construction 2). Let g and h be two balanced Boolean functions g, h :
Fk

2 → F2 defined as

supp(g) =
{
1, α, α2, ..., α2(k−1)−1

}
(4.14)

supp(h) =
{
0, α j, α j+1, ..., α2(k−1)+ j−2

}
; f or 1 ≤ j ≤ 2k−1 (4.15)

where α is a primitive element of Fk
2, Again, g has the same definition as in [40],

however, h does not belong to the infinite class in [11]. Now for n = 2k ≥ 4, define the
function f2(x, y) : Fk

2 × F
k
2 → F2 as

f2(x, y) =


g(xy−1) ; i f (x , 0 and y , 0) and (x , y)
0 ; i f x , 0 and y = 0
h(x) ; otherwise

(4.16)

then f2(x, y) is a balanced Boolean function with maximum possible algebraic degree
= 2k− 1 = n− 1, optimal algebraic immunity = dke = d n

2e, and very high non-linearity.

Our Construction 1 is a modification of Construction 2 of [40] using the function h
belonging to the class in [11] as the balanced function but takes more output values
from the balanced function than the normal bent one as compared to [40]. Our Con-
struction 2 is a novel construction that is different to even the main idea presented by
Dobbertin in [19]. f2(x, y) in our Construction 2 differs from the normal bent function
g(xy−1) on more input vectors than the function proposed in [19], [40] and even our
Construction 1. Moreover, the function h is also different to the infinite class in [11]
and has much more flexibility in construction as compared to our Construction 1, due
to larger range for j. These functions also do not possess the weakness pointed out in
[12] and have been practically verified for 4 ≤ n ≤ 12 (using MAGMA). Table 4.2
highlights the comparison with [11] and [40] in terms of non-linearity of the functions,
while Table 4.4 indicates the comparison with respect to the weakness [12].
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4.3 Analysis of the Constructions 1 and 2

We shall now analyse the balanced-ness, non-linearity, algebraic degree, algebraic im-
munity and the resistance to algebraic and fast algebraic attacks of the functions in
Constructions 1 and 2.

Proposition 4.6. The functions belonging to Constructions 1 and 2 are balanced.

Proof. Using the result in 4.1, the hamming weight of the function g(xy−1) is 2(2k−1) −

2(k−1). Furthermore, h(x) is a balanced Boolean function on Fk
2 and therefore, has weight

2(k−1). Hence the weight of functions f1 and f2 is wt( f1, f2) = wt(g(xy−1)) + wt(h(x)) =

2(2k−1) − 2(k−1) + 2(k−1) = 2(2k−1) = 2(n−1). Therefore, the functions are balanced. �

Proposition 4.7. The non-linearity of function in Construction 1 and 2 satisfies

nl( f ) ≥ 2(2k−1) − 2(k−1) − 2
k
2 k ln 2 − 1. (4.17)

Proof. It is obvious that the function g(xy−1) is a normal bent function as per definition.
Hence we first use 4.2 to show that nl( f1, f2) = 2(n−1) − 2

n
2 + nl(h). In this theorem, it

was established that

W f(a,b) =

{
Wg(a,b) + Wh(a,b) ; i f a , 0
0 ; otherwise . (4.18)

Moreover, it has been already established that the dual of any normal bent function is
also normal (Lemma 7 of [19]). Using the fact that a normal bent function like g(xy−1)
on Fn

2 that is constant on an affine sub-space S of Fn
2 with dimension S = n

2 , is also
constant on each proper coset of S [19], we deduce that the function has 2

n
2−1 values

of 2
n
2 and 2

n
2−1 values of −2

n
2 in the Walsh spectrum. Hence for a fixed x0,Wg(x0, y) is

±2
n
2 and the non-linearity of f can be computed as

nl( f1, f2) = 2(n−1) −
1
2

2 n
2 + max

αεFk
2

|Wh(α)|


= 2(n−1) −
1
2

(
2

n
2 + 2

n
2 − 2.nl(h)

)
= 2(n−1) − 2

n
2 + nl(h).

(4.19)

In [40], the lower bound on non-linearity of their construction has been computed as

nl( f ) ≥ 2(2k−1) − 2(k−1) − 2
k
2 k ln 2 − 1.

Since the function g(xy−1) is the same as in Construction 2 of [40] and the support
set of h(x) also has the same dimension, the proof for non-linearity of functions in
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Proposition 5.4 of [40] remains valid and we do not repeat it here. It may be noted
that the above inequality gives a lower bound on the non-linearities of the functions in
Constructions 1 and 2, but the exact non-linearities can be precisely calculated using
Equation 4.19 once that of the function h(x) is known. �

Proposition 4.8. The algebraic degree of functions in Constructions 1 and 2 is

deg( f1, f2) = 2k − 1 = n − 1. (4.20)

Proof. Since we have ascertained that g(xy−1) is a normal bent function, using the
result of 4.3, we get

deg( f1, f2) = deg(g(xy−1)) + deg(h(x)). (4.21)

From Remark 6.3.11 of [17] and using the fact that PS ap bent functions are a sub-class
of PS (−) class, we have deg(g(xy−1)) defined over F2k

2 ≈ F
n
2 as deg(g(xy−1)) = k = n

2 .
In [11], the degree of h(x) defined over Fk

2 has been proved to be deg(h(x)) = k − 1.
Hence, we have

deg( f1, f2) = k + k − 1 = 2k − 1 = n − 1.

�

Proposition 4.9. With the assumption that Tu-Deng conjecture in [40] is correct; the
algebraic immunity of functions in Construction 1 and 2 is optimal i.e. d n

2e.

Proof. Since there is no change in the support of the function g(xy−1) defined in Con-
struction 1 of [40] and the support set of h(x) also has the same dimension, the proof
of algebraic immunity in Proposition 5.1 of [40] also remains valid, so we do not re-
produce it here. �

4.4 Implementation and results

As mentioned earlier, the functions in two proposed hybrid classes attain very high
non-linearity values. In fact, they maintain the close to bent function non-linearities as
in [40]. Owing to the structure of the balanced function h(x) used in our constructions
(the range of j in its support set), the total number of functions for each number of vari-
ables n increases quite significantly. Most importantly, it has been practically verified
for all linear functions l εBn that the degree of l ∗ f1 and l ∗ f2 is at least 2k − 2 = n− 2
for even values of k and 2k−1 = n−1 for odd values of k for the range 4 ≤ n ≤ 12, and
we conjecture it for all even n. Hence there exist no non-zero function g of degree ≤ e
and no function h of degree at the most d such that f ∗ g = h, when (e, d) = (1, n − 2)
for odd k and (1, n − 3) when k is even.
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All implementations were done in MAGMA, including construction of the two hybrid
classes in Construction 1 and 2, computation of non-linearity and algebraic degree for
4 ≤ n ≤ 18, and analysis of resistance to weakness pointed out in [12] for 4 ≤ n ≤ 12.
The “boolfun” library of R-package was utilized to verify the results for algebraic
immunity of constructed functions for 4 ≤ n ≤ 12. Table 4.1 highlights a comparison
between values of non-linearity of functions belonging to Construction 1 and 2 (in
MAGMA) with the lower bound as per Proposition 4.7. Table 4.2 gives the comparison
in terms of non-linearities of the functions in [11] and [40] with our hybrid classes. A
count of total number of functions possible in [40] and our constructions is depicted
in Table 4.3. Finally, Table 4.4 demonstrates the results of product of the functions
belonging to our hybrid classes with the set of all linear functions l εBn and compares
it with the functions in [40].

Table 4.1: Comparison of non-linearities in Prop 4.7 and con-
structed functions

n nl( f1, f2) in Proposition 5.2 nl( f1, f2) constructed

4 ≥3 4

6 ≥21 26

8 ≥107 116

10 ≥476 490

12 ≥1982 2008

14 ≥8073 8118

16 ≥32551 32624

18 ≥130674 130792

Table 4.2: Comparison of non-linearities with [11] and [40]

n nl( fbent) nl( f[11]) nl( f[40]) nl( f1, f2)

4 6 4* 4 4

6 28 24 26 26

8 120 112 116 116

10 496 478 490 490

12 2016 1970* 2008 2008

14 8128 8036* 8118 8118

16 32640 32530* 32624 32624

18 130812 130442* 130792 130792

The values with * have been computed in [40] and not in the original construction
in [11]
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Table 4.3: Comparison of total number of functions with [40]

n No of primitive
elements(α)

No of functions in
[40]

No of functions in
Construction 1 and 2
(1/2)

4 2 2 2/2

6 6 12 12/48

8 8 24 72/192

10 30 180 1260/2880

12 36 324 4860/10368

14 126 2268 70308/145152

16 128 3840 241920/491520

18 432 23760 3017520/6082560

Table 4.4: The comparison of degrees of f ∗ l with [40]

n deg( fTuDeng) deg(l ∗ fTuDeng)? deg( f1, f2) deg(l ∗ f1, f2)

4 3 ≤ 2 3 ≥ 2

6 5 ≤ 4 5 ≥ 5

8 7 ≤ 5 7 ≥ 6

10 9 ≤ 6 9 ≥ 9

12 11 ≤ 7 11 ≥ 10

The column with ? indicates values have been calculated as pointed out in [12]

4.5 Conclusion

We have presented two hybrid classes of Boolean functions for an even n ≥ 4, derived
from ideas in [11],[40], [17] and [19] to construct balanced Boolean functions with
maximum possible algebraic degree, optimal algebraic immunity and very high values
of non-linearity. While our Construction 1 is a modification of Construction 2 in [40],
our Construction 2 is a new one that significantly differs from classes proposed in [11],
[40] and [19]. Furthermore, the functions belonging to these classes are not weak
against fast algebraic attacks as were the functions in [40] indicated in [12]. We have
practically implemented and verified the described cryptographic properties of these
classes for 4 ≤ n ≤ 18, while the removal of the weakness pointed out in [12] has been
confirmed for 4 ≤ n ≤ 12. The implementations were done using MAGMA, while the
verification of properties and calculation of algebraic immunity was performed using
“boolfun” library of R-package.
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CHAPTER 5

A CLASS OF 1-RESILIENT FUNCTIONS

5.1 Constructing Resilient functions

The infinite classes of functions proposed in [11], [19] and our Construction 1 and 2
are all 0-resilient and are suited for application in block ciphers. In case of stream
cipher on the other hand, constructions like non-linear combining, non-linear filtering
and alternating step generator require functions to be at least 1-resilient. However,
increase in resilience results in reduction in at least one property out of non-linearity,
algebraic degree and algebraic immunity of functions.

Siegenthaler’s inequality in [46] establishes that the upper bound on algebraic degree
of a m-resilient function of “n” variables is “n − m − 1”. It means that for a 1-resilient
function, maximum possible algebraic degree is “n − 2”, that is one less than maxi-
mal degree achieved in our constructions 1 and 2. It also implicates that a maximum
achievable order of resilience is m = n − 2, which means that the algebraic degree of
this function would be 1, that is it would be a linear function. Additionally, since Par-
seval’s Indentity (2.5) demands conservation of energy, increase in number zero entries
in Walsh spectrum to improving resilience implies that the maximum absolute value
may increase. This decreases the non-linearity of function (2.6). The upper bounds for
non-linearity of m-resilient functions ([34, 36, 41]) are

nl( f ) ≤


2n−1 − 2m+1 ; i f n/2 − 1 < m + 1
2n−1 − 2n/2−1 − 2m+1 ; i f n = even & n/2 − 1 ≥ m + 1
2n−1 − 2m+1d2n/2 − m − 2e ; i f n = odd & n/2 − 1 ≥ m + 1

.

The trade-off between resilience and achievable non-linearity is tabulated in [36],
which highlights the upper bound for non-linearity of m-resilient functions for m ≥ 1
that clearly demonstrate a reduction in achievable non-linearity as compared to 0-
resilient ones. Nevertheless, we propose a class of 1-resilient functions in n-variables
over Fn

2 by using ideas in [37, 39] and modifying our Construction 2.
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Theorem 5.1 (Construction 3). Let g and h be two balanced Boolean functions g, h :
Fk

2 → F2 defined as

supp(g) =
{
1, α, α2, ..., α2(k−1)−1

}
(5.1)

supp(h) =
{
0, α j, α j+1, ..., α2(k−1)+ j−2

}
; f or 1 ≤ j ≤ 2k−1 (5.2)

where α is a primitive element of Fk
2. The function g has the same definition as in [40]

but the function h does not belong to the infinite class in [11]. Now for n = 2k ≥ 4,
define the function f3(x, y) : Fk

2 × F
k
2 → F2 as

f3(x, y) =


g(xy−1) ; i f (x , 0 and y , 0) and (x , y)
h(x) ; i f x = y , 0
h(x) ⊕ 1 ; i f y = 0
h(y) ⊕ 1 ; i f x = 0

(5.3)

then f3(x, y) is a 1-resilient Boolean function with high algebraic degree = 2k − 2 =

n − 2, optimal algebraic immunity = dke = d n
2e, and very high non-linearity.

5.2 Analysis of Construction 3

The proofs for balanced-ness and algebraic degree remain unchanged since the support
set of g, h and construction of the normal bent function g(xy−1) remain the same as
our Construction 2. We were not able to prove optimal algebraic immunity although
we have verified it practically by implementation in MAGMA. We leave the proof of
optimal algebraic immunity as an open problem. Hence, we now need to prove only
1-resilience of functions belonging to this construction.

Proposition 5.2. The functions belonging to Constructions 3 are 1-resilient.

Proof. We note that for 1-resilience, W f (λ) = 0∀ λ such that wt(λ) ≤ 1. Since the
functions are balanced, W f (0) = 0 and we only need to investigate the cases when
wt(λ) = 1. According to Construction 3, there are only two such cases; a , 0, b = 0
and a = 0, b , 0. Hence, we start by the following fact

S upp( f3(a, b)) =


{βb, b} ; β ε S upp(g) < {1}, b ε Fk

2
∗

{a, b} ; a = b ε S upp(h) < {0}
{a, 0} ; a ε S upp(h ⊕ 1)
{0, b} ; b ε S upp(h ⊕ 1)

. (5.4)

Now let’s calculate the Walsh spectrum of f3(a, b)
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W f3(a, b) =
∑

x,yεFk
2

(−1) f3(x,y)(−1)tr(ax+by).

We know that (−1) f (x) = 1 − 2 f (x), therefore

W f3(a, b) =
∑

x,yεFk
2

(1 − 2 f3(x, y))(−1)tr(ax+by)

=
∑

x,yεFk
2

(−1)tr(ax+by) − 2
∑

x,yεFk
2

f3(x, y)(−1)tr(ax+by)

=
∑

x,yεFk
2

(−1)tr(ax+by) − 2
∑

x,yεS upp( f3(x,y))

(−1)tr(ax+by).

Recall that

∑
xεFk

2

(−1)tr(ax) =

{
2k ; i f a = 0
0 ; otherwise . (5.5)

Therefore

W f3(a, b) = − 2
∑

x,yεS upp( f3(x,y))

(−1)tr(ax+by)

= − 2
∑

βεS upp(g)<{1}

∑
yεFk

2
∗

(−1)tr(aβ+b)y − 2
∑

yεS upp(h(y))<{0}

(−1)tr(a+b)y

− 2
∑

xεS upp(h(x)⊕1)

(−1)tr(ax) − 2
∑

yεS upp(h(y)⊕1)

(−1)tr(by)

= − 2
∑

βεS upp(g)<{1}

∑
yεFk

2

(−1)tr(aβ+b)y − 1

 − 2
∑

yεS upp(h(y))<{0}

(−1)tr(a+b)y

− 2
∑

xεS upp(h(x)⊕1)

(−1)tr(ax) − 2
∑

yεS upp(h(y)⊕1)

(−1)tr(by).

(5.6)

Now using a , 0, b = 0 in 5.6, we get
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W f3(a, b) = − 2
∑

βεS upp(g)<{1}

∑
yεFk

2

(−1)tr(aβy) − 1

 − 2
∑

yεS upp(h(y))<{0}

(−1)tr(ay)

− 2
∑

xεS upp(h(x)⊕1)

(−1)tr(ax) − 2
∑

yεS upp(h(y)⊕1)

(−1)0

= − 2
∑

βεS upp(g)<{1}

∑
yεFk

2

(−1)tr(aβy) − 1

 − 2

∑
xεFk

2

(−1)tr(ax) − 1


− 2

∑
yεS upp(h(y)⊕1)

(1).

Since S upp(h(x)) = S upp(h(x) ⊕ 1) = 2k−1, using 5.5 we get

W f3(a, b) = − 2
∑

βεS upp(g)<{1}

[0 − 1] − 2 [0 − 1] − 2.2k−1

= 2(2k−1 − 1) + 2 − 2.2k−1

= 0.

(5.7)

The case for a = 0, b , 0 is exactly the same as above with change of exponents only.
Hence it is proved that functions belonging to construction 3 are 1-resilient.

�

5.3 Implementation and results

Construction 3 was also implemented in MAGMA and results were obtained for 4 ≤
n ≤ 18. The results were then compared with already proposed constructions that
achieved optimum values of algebraic degree, algebraic immunity and high non-linearity
of functions. In all cases, maximum possible algebraic degree for a 1-resilient Boolean
function i.e. n−2 is achieved. A comparison of rest of the properties with constructions
in [37, 39] is presented in Table 5.1.
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Table 5.1: Comparison of our Construction 3 with [37, 39]

n nl( f[39]) AI( f[39]) nl( f[37])
Thm 9/10

AI( f[37]) nl( f3) AI( f3)

4 4 2 4 1* 4 2

6 24 3 22/18 2* 24 3

8 112 4 108/103 3* 112 4

10 484 5 484/482 4* 484 5

12 1996 6 1998/1994 5* 1996 6

14 8100 7 8104/8106 6* 8100 7

16 32588 8 32604/- 7* 32588 8

18 130760 9 130768/130778 8* 130760 9

The entries with ∗ indicate that the functions have at least sub-optimal values of algebraic immu-
nity, as indicated by authors themselves in [37]

It is evident from above comparison that our Construction 3 achieves the best results for
1-resilient functions having optimal algebraic immunity,together with [39]. The con-
struction in [37] achieves better non-linearities for n ≥ 12 but they do not guarantee
optimal algebraic immunity, whereas the construction in [39] and our Construction 3
achieve optimal algebraic immunity (practically verified in MAGMA). The total num-
ber of functions in our class is also much larger as compared to [39]. A comparison
between total number of functions for each n is presented in Table 5.2. Moreover,
constructions in [37, 39] do not investigate the resistance of functions to algebraic and
fast algebraic attacks. We performed similar analysis of our Construction 3 as for Con-
struction 1 and 2 to test resistance to these attacks; results are depicted in Table 5.3
which clearly reflect that functions in this class offer good resistance to algebraic and
fast algebraic attacks.

Table 5.2: Total number of functions in [39] and our construction 3

n No of primitive
elements(α)

No of functions in
[39]

No of functions in
Construction 3

4 2 2 2

6 6 12 48

8 8 24 192

10 30 180 2880

12 36 324 10368

14 126 2268 145152

16 128 3840 491520

18 432 23760 6082560
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Table 5.3: Degrees of f ∗ l for our Construction 3

n deg( f3) deg(l ∗ f3)

4 2 2

6 4 5

8 6 7

10 8 9

12 10 11

5.4 Obtaining m-Resilient functions

As discussed earlier, increasing resilience of functions requires a trade-off with achiev-
able algebraic degree, non-linearity and algebraic immunity. Having said that, certain
applications, such as functions used as non-linear combining or non-linear filtering
functions, do require a reasonable order of resilience in order to effectively resist cor-
relation and fast correlation attacks. Given a t-resilient functions, many methods of
obtaining m-resilient functions for m ≥ (t + 1) have been proposed based on compo-
sition of functions, iterative and recursive approaches. For example, constructions in
[29, 38, 44] result in increase in order of resilience and number of variables, those in
[10, 31] obtain functions with same order of resilience but larger number of variables,
while methods in [20, 35] can be used to construct different functions with same order
of resilience and number of variables from known ones.

This implies that using our construction 3 as the base class, functions with higher order
of resilience can be easily constructed using methods proposed in [29, 38, 44]. Another
interesting implication is that although our hybrid class in construction 3 is for even
“n” only, techniques in [7, 10, 29, 31, 32, 38, 44] can be used to increase the order of
resilience as well as obtain functions for odd “n + 1” variables as well. For instance,
construction in [38] can be used to obtain m-resilient functions in “n + 1” variables
and (m + 1)-resilient functions in “n + 2” variables using two m-resilient functions in
“n” variables as base functions. Similarly, two functions on “n1” and “n2” variables
that are m1 and m2-resilient respectively, can be used as base functions to construct
(m1 + m2 + 1)-resilient function in “n1 + n2” variables using construction in [44].

5.5 Conclusion

We have proposed a class of 1-resilient functions in Construction 3 with high algebraic
degree, optimal algebraic immunity and high non-linearity by using ideas in [37, 39]
and modifying our hybrid class Construction 2 (Theorem 4.5). Functions in our con-
struction 3 can be utilized as base functions to obtain m-resilient functions for m ≥ 2
in number of variables ≥ n using methods proposed in [7, 10, 29, 31, 32, 38, 44]. We
have practically implemented and verified the described cryptographic properties of
this class for 4 ≤ n ≤ 18. We have also tested the functions belonging to this class for
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resistance against algebraic and fast algebraic attacks for 4 ≤ n ≤ 12. Results show
that Construction 3 also offers good resistance against these attacks. The implementa-
tions were done using MAGMA, while the verification of properties and calculation of
algebraic immunity was performed using “boolfun” library of R-package.
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CHAPTER 6

CONCLUSION

In this thesis, we have proposed two algorithms by modifying the genetic hill climbing
algorithm [40] for improvement in the non-linearity of functions constructed using the
infinite class proposed in [11] for number of variables n ≥ 8. The improved functions
achieve higher non-linearity than the original functions in [11] and also maintain high
algebraic degree and optimal algebraic immunity. The proposed algorithms have been
verified by constructing all Boolean functions for 8 ≤ n ≤ 11 and improving their
non-linearity.

We have also constructed two hybrid classes of balanced Boolean functions based on
ideas in [11, 17, 19] by modifying the construction in [40]. The modified functions
maintain their cryptographic properties i.e. balanced-ness, maximal algebraic degree
for balanced functions, optimal algebraic immunity and very high non-linearity and
avoid the weakness pointed out against algebraic and fast algebraic attacks in [12]. We
have also practically analysed and verified (using MAGMA) that functions belonging
to the two proposed hybrid classes are not comparably vulnerable to fast algebraic
attacks as functions in [40] and offer good resistance.

Finally, we have constructed a 1-resilient class of Boolean functions with high alge-
braic degree, optimal algebraic immunity and high non-linearity by by using ideas in
[37, 39] and modifying our second construction in Chapter 4. This construction was
also implemented in MAGMA and analysed to verify their cryptographic properties.
An analysis for resistance against algebraic and fast algebraic attacks was also per-
formed which shows that functions belonging to this class offer good resistance to
these attacks. Functions belonging to this class can also be utilized as base functions
to obtain m-resilient functions for m ≥ 2 in number of variables ≥ n using methods
proposed in [7, 10, 29, 31, 32, 38, 44].
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Appendix A

SOME RESULTS FOR n = 9

Table A.1: Comparison of non-linearities of functions

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity of
function in
[11]

Elements
swapped
(root↔support)

Non-
linearity
of improved
function

529 23 232 α1 ↔ α470 234
539 10 234 α96 ↔ α355 236
647 2 234 α220 ↔ α417 236
661 17 234 α152 ↔ α335 236
731 64 232 α254 ↔ α505 234
847 32 234 α27 ↔ α494 236
859 197 232 α182 ↔ α441 234
949 219 232 α5 ↔ α260 234

Table A.2: Different improved functions from same parent function

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity of
function in
[11]

Different
options for
swapping
elements

Non-
linearity
of improved
function

529 3 232 (i) α1 ↔ α470 234
(ii) α201 ↔ α343 234
(iii) α5 ↔ α470 234

731 64 232 (i) α254 ↔ α505 234
(ii) α184 ↔ α506 234
(iii) α249 ↔ α506 234

901 386 232 (i) α241 ↔ α261 234
(ii) α254 ↔ α259 234
(iii) α144 ↔ α325 234
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Appendix B

SOME RESULTS FOR n = 10

Table B.1: Comparison of non-linearities of functions

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity of
function in
[11]

Elements
swapped
(root↔support)

Non-
linearity
of improved
function

1033 2 478 α3 ↔ α571 480
1051 16 480 α12 ↔ α856 482
1163 399 480 α367 ↔ α1007 482
1239 2 478 α92 ↔ α945 480
1305 903 478 α72 ↔ α815 480
1347 32 478 α205 ↔ α863 480
1431 4 478 α392 ↔ α582 480
2011 16 482 α1 ↔ α630 484

Table B.2: Different improved functions from same parent function

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity of
function in
[11]

Different
options for
swapping
elements

Non-
linearity
of improved
function

1033 2 478 (i) α3 ↔ α571 480
(ii) α5 ↔ α761 480
(iii) α6 ↔ α853 480

1305 903 478 (i) α72 ↔ α815 480
(ii) α170 ↔ α793 480
(iii) α202 ↔ α642 480

1431 4 478 (i) α392 ↔ α582 480
(ii) α501 ↔ α749 480
(iii) α27 ↔ α590 480
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Appendix C

SOME RESULTS FOR n = 11

Table C.1: Comparison of non-linearities of functions

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity of
function in
[11]

Elements
swapped
(root↔support)

Non-
linearity
of improved
function

2053 6 982 α631 ↔ α1584 984
2071 2044 982 α467 ↔ α1886 984
2119 7 980 α545 ↔ α1352 982
2147 16 982 α430 ↔ α1531 984
2421 2 982 α1 ↔ α1122 984
2955 7 986 α529 ↔ α1375 988
3573 596 986 α141 ↔ α1388 988
3851 746 982 α473 ↔ α1057 984

Table C.2: Different improved functions from same parent function

Defining
Polynomial
(Integer
value)

Primitive
element
(Integer
value)

Non-
linearity of
function in
[11]

Different
options for
swapping
elements

Non-
linearity
of improved
function

2119 7 980 (i) α545 ↔ α1352 982
(ii) α316 ↔ α1764 982
(iii) α162 ↔

α1862
982

2421 2 982 (i) α1 ↔ α1122 984
(ii) α501 ↔ α1025 984
(iii) α985 ↔

α1253
984

3851 746 982 (i) α473 ↔ α1057 984
(ii) α650 ↔ α1677 984
(iii) α857 ↔

α2012
984
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