
1

2

CONSTRUCTION OF QUASI-CYCLIC SELF-DUAL CODES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

PINAR ÇOMAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2013

ii

Approval of the thesis:

CONSTRUCTION OF QUASI-CYCLIC SELF-DUAL CODES

submitted by PINAR ÇOMAK in partial fulfillment of the requirements for
the degree of Master of Science in Department of Cryptography, Middle
East Technical University by,

Bülent Karasözen
Director, Graduate School of Applied Mathematics

Ferruh Özbudak
Head of Department, Cryptography

Ferruh Özbudak
Supervisor, Department of Cryptography, METU

Jon Lark Kim
Co-supervisor, Department of Mathematics, Sogang
University

Examining Committee Members:

Asst. Prof. Dr. Ömer Küçüksakallı (Head of the examining
com.)
Department of Mathematics, METU

Prof. Dr. Ferruh Özbudak(Supervisor)
Department of Mathematics, METU

Asst. Prof. Dr. Sedat Akleylek
Department of Computer Engineering, Ondokuz Mayıs Uni-
versity

Date:

iv

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: PINAR ÇOMAK

Signature :

v

vi

ABSTRACT

CONSTRUCTION OF QUASI-CYCLIC SELF-DUAL CODES

Çomak, Pınar

M.S., Department of Cryptography

Supervisor : Ferruh Özbudak

Co-Supervisor : Jon Lark Kim

September 2013, 58 pages

Quasi-cyclic and self-dual codes are interesting classes of linear codes. Quasi-

cyclic codes are linear codes which takes maximum possible value of minimum

distance among the codes with the same length and same dimension. Another

class of interesting linear codes is the self-dual codes. Self-dual codes have close

connections with group theory, lattice theory and design theory. There has been

an active research on the classification of self-dual codes over finite fields and over

rings. We study on construction of quasi-cyclic self-dual codes, especially binary

cubic ones. With a new algebraic approach, binary quasi-cyclic codes of length

3` over a field are defined by the linear codes of length ` over the ring F2×F4. In

this thesis, we improve the result for the cubic self-dual binary codes, by finding

two new self-dual codes with the algebraic approach.

Keywords: self-dual codes, quasi-cyclic codes, Chinese Remainder Theorem, cubic

vii

construction

viii

ÖZ

QUASI-CYCLIC SELF-DUAL KODLARIN YAPILANDIRILMASI

Çomak, Pınar

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Ferruh Özbudak

Ortak Tez Yöneticisi : Jon Lark Kim

Eylül 2013, 58 sayfa

Yarı-devirli ve self-dual kodlar, lineer kodların ilgi çekici sınıflarıdır. Aynı uzun-

luk ve boyuta sahip lineer kodlar arasında, olası en yüksek minimum uzaklığa

sahip kodlar yarı-devirli kodlardır. Lineer kodların diğer bir ilgi çekici sınıfı ise

self-dual kodlardır. Self-dual kodların, grup teori, kafes teorisi ve dizayn teori ile

yakın bir bağlantısı vardır. Sonlu cisimler ile halkalar üzerindeki self-dual kodların

üzerine çalışan aktif araştırma grupları bulunmaktadır. Yarı-devirli self-dual kod-

lar arasında özellikle ikilik ve kübik olanlarının yapılandırılması üzerine çalıştık.

Yeni cebirsel yaklaşım ile, sonlu cisimler üzerinde tanımlanan 3` uzunluğundaki

ikilik quasi-cyclic kodlar, F2× F4 halkası üzerinde tanımlanan ` uzunluğunda bir

lineer kod olarak tanımlanmıştır. Bu tezde, cebirsel yaklaşım ile iki yeni self-dual

kod bularak, ikilik kübik self-dual kodların sonucu geliştirilmiştir.

Anahtar Kelimeler: self-dual kodlar, yarı-devirli kodlar, Çin Kalan Teoremi,

ix

kübik yapılandırılma

x

To mum and Azra

xi

xii

ACKNOWLEDGMENTS

I want to thank my supervisor Prof. Dr. Ferruh Özbudak for his guidance and

helpful suggestions during the preparation of this thesis.

I do specially appreciate the help of my co-supervisor Prof. Dr. Jon-Lark Kim

who played the main role during this research. I would like to thank my friends

Nari and Sung in Seoul for providing me a pleasant time during my visit. I would

also like to take this opportunity to thank for the hospitality of Department of

Mathematics, Sogang University.

I am also thankful to my thesis defence committee members for their useful

comments and discussions.

I deeply appreciate everybody who helped me directly or indirectly to accomplish

this thesis.

Also, I want to thank my friends for their helps in LATEX.

This work in this thesis is partially supported by Turkish Scientific and Technical

Research Council (TÜBİTAK) under project no 112T011.

Finally, I appreciate the financial support from Council of Higher Education

(YÖK) for funding me during my master study in Seoul, South Korea.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

DEDICATION . xi

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

CHAPTERS

1 INTRODUCTION . 1

2 CODES . 3

2.1 Linear Codes . 3

2.1.1 Preliminaries . 4

2.1.1.1 Minimum Hamming Distance and Weight 4

2.1.1.2 Permutation Equivalence of Linear Codes 5

2.1.1.3 Automorphism Groups 6

2.1.1.4 Weight Enumerators 7

2.1.2 Some Examples of Self-dual Codes with their Weight
Enumerator . 7

2.1.3 Inner products 8

2.1.3.1 Euclidean inner product 9

2.1.3.2 Hermitian inner product 9

2.1.4 Dual Codes . 9

2.1.4.1 Self-dual Codes 11

2.1.4.2 Generator Matrix 11

2.1.4.3 Standard Form of Generator Matrix . 12

xv

2.1.4.4 Parity-check Matrix 13

2.1.4.5 Standard Form of Parity-check Matrix 16

2.1.5 Cyclic codes . 17

2.1.5.1 Generator Matrix and Generator Poly-
nomial 20

2.1.5.2 Parity-check Matrix and Parity-check
Polynomial 22

3 QUASI-CYCLIC CODES . 25

3.1 Preliminaries . 25

3.2 1-1 correspondence: . 26

4 CONSTRUCTION OF QUASI-CYCLIC SELF-DUAL CODES . 29

4.1 Ring Decomposition . 29

4.1.1 Decomposition by the Chinese Remainder Theorem 29

4.1.2 The Discrete Fourier Transform 31

4.2 Existence of Self-dual Codes 32

5 APPLICATIONS . 36

5.1 Constructions of Self-dual codes 36

5.1.1 Building-up Construction 36

5.1.2 The (u+ v | u− v) Construction for m = 2 . . 37

5.1.3 Construction for m = 3 38

5.1.4 Construction for m = 5 39

5.1.5 Construction for m = 7 39

6 CUBIC SELF-DUAL BINARY CODES 41

7 CONCLUSION . 50

A ALGORITHM . 51

B SOME ALGEBRA . 55

B.1 Group . 55

B.2 Ring . 55

B.3 Ideal . 56

xvi

REFERENCES . 57

xvii

xviii

CHAPTER 1

INTRODUCTION

Coding theory has become a fast growth mathematical theory which has a wide

area of applications especially in communication system and information theory.

Among all types of block codes, linear codes are the most studied. Because of their

algebraic structure they are easier to define, encode and decode when compared

with nonlinear codes. The best known error correcting codes are Hamming, Go-

lay, Bose-Chaudhuri-Hocquenghem and Reed-Solomon, which are all subclasses

of cyclic codes, because of their rich mathematical structure. The Reed-Muller

codes are also important because they are Majority Logic Decodable, a scheme

which is fast and simple.

Linear codes which are quasi-cyclic and self-dual simultaneously are an inter-

esting class of codes. Quasi-cyclic codes have been discovered with minimum

distance exceeding that previously known for any linear code of the same length

and dimension, or, indeed, taking the maximum possible value. From this point

of view, this family of codes is very interesting. Moreover, quasi-cyclic codes were

studied for their application in some cryptosystems, McEliece, Niederreiter’s. In-

deed they allow an interesting key reduction compared to Goppa codes.

One class of codes which has many well-known best error correcting codes is lin-

ear self-dual code, one is the Reed-Muller code that was used in the spacecraft

Mariner 9 to send the gray image of Mars on 19 January 1972. Self-dual codes

have a rich mathematical theory and strong connections with other areas of com-

binatorics, group theory and lattice. Self-dual codes are important because many

of the best known codes are of this type.

1

Quasi-cyclic codes can be considered as modules over the group algebra of the

cyclic group, from the module theory. Quasi-cyclic codes are remarkably a gen-

eralization of cyclic codes. The authors of [10] introduced the algebraic ap-

proach to quasi-cyclic codes. In their paper, they consider linear codes over a

ring R, and they use the one-to-one correspondence φ between (self-dual) quasi-

cyclic codes over a field Fq and (self-dual) linear codes over an auxiliary ring

R := R(Fq,m) = Fq[Y]/(Y m − 1) where m is coprime with the characteristic

of F. They show that all binary extended quadratic residue codes of length 3`

are attainable by the cubing construction. When q = 2, m = 3 and the code is

self-dual, the code is called cubic self-dual binary codes [3].

In this thesis, this type of codes is studied. The outline is as follows: In Chapter

2, linear codes, containing especially cyclic codes and their properties, containing

the self-duality, are introduced. In Chapter 3, quasi-cyclic codes and the one-to-

one correspondence between `-quasi-cyclic codes over a field and linear codes over

a ring are mentioned. In Chapter 4, the ring decomposition and some theorems

about existence of self-dual codes are given. Chapter 5 contains the building-up

construction and some other constructions of quasi-cyclic self-dual codes depend-

ing on the values m. Chapter 6 presents the (a+x | b+x | a+b+x) construction

among the other ones. Our contribution of this thesis is to find new weight enu-

merators of cubic self-dual [54, 27, 10] codes with (a + x | b + x | a + b + x)

construction. In this chapter in this construction, we choose some other possible

and suitable linear codes for C2. As a result, we found two new codes with differ-

ent weight distributions other than previously found. In last chapter, the work is

concluded with the algorithm we used in MAGMA.

2

CHAPTER 2

CODES

Quasi-cyclic code is a type of linear codes and it is a generalization of cyclic

codes. The properties of quasi-cyclic codes are inherited from the ones of the

linear codes. Therefore, it is more convenient to give the general properties.

2.1 Linear Codes

Most practical error-correcting codes in use are linear codes. Any linear combi-

nation of codewords is also a codeword. Its advantages over arbitrary codes are

as follows [1]:

1. It is much easier to evaluate the distance d(C). We will see below that

d(C) = w(C).

2. To specify a non-linear code, we may have to list all the codewords. We can

easily specify a linear [n, k] code by giving a basis of k codewords (from a

generator matrix).

3. Encoding is fast and requires little storage.

4. To determine which errors are correctable and detectable is much easier.

5. The probability of correct decoding is much easier to calculate.

6. There are many nice decoding techniques for linear codes.

3

Definition 2.1.1 A q-ary linear code C is a linear subspace of Fnq . If C has

dimension k then C is called an [n, k] linear code.

The number of codewords in the form [n, k] over Fq equals qk. The code rate is

R = k
n
.

Because of linearity, for c, c′ ∈ C and for a ∈ Fq, the followings must be satisfied:

1. c+ c′ ∈ C

2. ac ∈ C.

The all-zero vector 0 automatically belongs to a linear code.

2.1.1 Preliminaries

2.1.1.1 Minimum Hamming Distance and Weight

The minimum Hamming distance d(C) is the minimum number of distinct coor-

dinates between any pair of distinct codewords. The weight w(c) of a codeword c

in Fnq is defined to be the number of non-zero entries of c. One of the most useful

properties of a linear code is that its minimum distance is equal to the smallest

of the weights of the nonzero codewords, i.e.

Theorem 2.1.2 [6] Let C be a linear code and let w(C) be the smallest of the

weights of the nonzero codewords of C. Then

d(C) = w(C).

in other words,

d = min
∀c 6=c′

dist(c, c′) = min
∀c 6=0

wt(c)

4

Proof. There exist codewords c and c′ of C such that d(C) = d(c, c′). Then

d(C) = w(c− c′) ≥ w(C),

since c− c′ is a codeword of the linear code C.
On the other hand, for some codeword c ∈ C,

w(C) = w(c) = d(c,0) ≥ d(C),

since 0 belongs to the linear code C.
Hence d(C) ≥ w(C) and w(C) ≥ d(C) which gives d(C) = w(C). �

It is important because if a code C has minimal Hamming weight d, then C can

correct

b(d− 1)/2c errors. In other words, to find a linear code that can correct t errors,

one must find a linear code with minimum weight satisfying d ≥ 2t + 1, sphere

packing bound [2]. Another parameter that is often optimized is the information

rate of the code. The information rate of an [n, k] code is defined to be k/n. It

states that for every k bits of useful information, the code generates a total of

n bits of data, of which n − k are redundant. When the ratio is closed to 1, it

is more efficient to encode information using the code. Efficiency refers to the

length of messages that are used to encode the information. The extremal code

is used for the codes which has the possible largest minimum weight of a given

length code. The optimal code is one having the highest minimal distance of any

self-dual code of that length. An extremal code is automatically optimal.

2.1.1.2 Permutation Equivalence of Linear Codes

Two codes are said to be equivalent up to permutation if they differ only in the

order of their coordinates. We will use only equivalent during the work since it

means equivalent up to permutation. The rowspace of generator matrix is equal

to the code. We can permute the rows of matrix since it does not change the

rowspace. However, the column permutation changes the rowspace, so the code.

5

If we apply column permutation, we get an equivalent code, since the length,

dimension and weight structure are unchanged.

Theorem 2.1.3 [6] Two k × n matrices generate equivalent linear [n, k] codes

over Fq if one matrix can be obtained from the other by a sequence of a sequence

of operations of the following types:

(R1) Permutation of the rows.

(R2) Multiplication of a row by a nonzero scalar.

(R3) Addition of a scalar multiple of one row to another.

(C1) Permutation of the columns.

(C2) Multiplication of any column by a nonzero scalar.

Proof. The row operations (R1), (R2) and (R3) preserve the linear independence

of the rows of a generator matrix and simply replace one basis by another of the

same code. The column operations (C1) and (C2) convert a generator matrix to

one for an equivalent code. �

2.1.1.3 Automorphism Groups

The subset of transformations that preserve the code forms Automorphism Group

Aut(C) (or Permutation Group Perm(C)) . For binary codes, Aut(C) is the sub-

group of the permutation group Sn where n is the length of the codewords of C,
[18].

Let G denote the group of any transformation. The order of G is n! for binary

codes.

The number of the codes that are equivalent to a given code C is |G|
/
|Aut(C)|.

6

2.1.1.4 Weight Enumerators

The Hamming Weight of a vector u = (u1, . . . , un) ∈ Fn, denoted by wt(u), is the

number of components of u, which are nonzero.

We denote the number of vectors of the code C having Hamming Weight equal

to i by Ai. The Hamming Weight Enumerator of the code C is defined to be

WC(x, y) =
∑
c∈C

xn−wt(c)ywt(c) =
n∑
i=0

Aix
n−iyi.

Often, the x is replaced by 1 and we write it as a polynomial in the single variable

y [18].

2.1.2 Some Examples of Self-dual Codes with their Weight Enumer-

ator

We denote a linear code with length n, dimension k and minimum distance d over

a field Fq by [n, k, d]q. We omit q for binary codes (i.e. q = 2).

The parentheses in a vector mean that all permutations indicated by the paren-

theses are applied to that vector. For example, 1(1101000) stands for the seven

vectors (11101000), (11010001), (10100011), (11000110), (10001101), (10011010),

(10110100).

Here is some self-dual codes:

• The [2, 1, 2] repetition code i2 = {00, 11} is a binary self-dual code with

weight enumerator

Wi2(x, y) = x2 + y2.

• The [8, 4, 4] Hamming code e8 generated by 1(1101000) has weight enumer-

ator

We8(x, y) = x8 + 14x4y4 + y8.

7

• The [24, 12, 8] binary Golay code g24 generated by

1(10101110001100000000000) has weight enumerator

Wg24(x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24.

2.1.3 Inner products

In order to define dual codes, we must define inner products.

We denote inner product by (,), [18]. The inner product of the codewords

x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn is defined by

(x, y) =
n∑
i=1

(xi, yi).

and it satisfies the following conditions:

(x+ y, z) = (x, z) + (y, z),

(x, y + z) = (x, y) + (x, z),

(ax, y) = a(x, y) = (x, ay),

if (x, y) = 0 for all x then y = 0,

if (x, y) = 0 for all y then x = 0.

To define the dual code a linear code we must define conjugacy operation (which

may be identity), denoted by a bar. It satisfies

x = x, x+ y = x+ y, xy = x y.

Then the inner product must satisfy

(x, y) = (y, x), (ax, y) = (x, ay).

Inner products for linear codes over F`mq and over R` are as follows, respectively,

[18].

8

2.1.3.1 Euclidean inner product

Standard (Euclidean) inner product is defined on F`mq as

(a, b) = a · b =
m−1∑
i=0

`−1∑
j=0

aijbij

for

a = (a0,0, a0,1, . . . , a0,`−1, a1,0, . . . , a1,`−1, . . . , am−1,0, . . . , am−1,`−1)

and

b = (b0,0, b0,1, . . . , b0,`−1, b1,0, . . . , b1,`−1, . . . , bm−1,0, . . . , bm−1,`−1)

2.1.3.2 Hermitian inner product

Hermitian inner product is defined on R` as

(x, y) = 〈x, y〉 =
`−1∑
j=0

xjyj

for

x = (x0, x1, . . . , x`−1) and y = (y0, y1, . . . , y`−1)

Here the conjugation map − on R is a map sending Y to Y −1 = Y m−1 and it acts

as the identity map on Fq.

2.1.4 Dual Codes

We can define the dual of a code C to be

C⊥ = {u ∈ Fn : (u, v) = 0 for all v ∈ C}.

The dual of a binary linear code is again a binary linear code. The dual code C⊥

of the code C is understood with respect to standard (Euclidean) inner product.

Theorem 2.1.4 [6] Suppose C is an [n, k] code over Fq. Then the dual code C⊥

of C is a linear [n, n− k] code.

9

Proof. First, we show that C⊥ is a linear code.

Suppose u, v ∈ C⊥ and a, b ∈ Fq. Then for all w in C,

(au+ bv) · w = a(u · w) + b(v · w)

= a0 + b0 = 0.

Hence, au+ bv ∈ C⊥, so C⊥ is linear.

Now, we show that dimension of C⊥ is n− k. Let G = [gij] be a generator matrix

of C. The elements of C⊥ are all orthogonal to the rows of that matrix such that

n∑
j=1

gijvj = 0 for i = 1, 2, . . . , k

for the vectors v = (v1v2 . . . vn) in C⊥. This is a system of k independent homoge-

neous equations in n unknowns. By linear algebra, the dimension of C⊥ is n−k. �

Example 2.1.5 It is easy to check that

if C =



0000

1100

0011

1111

, then C⊥ = C.

if C =



000

110

011

101

, then C⊥ =

000

111
.

Theorem 2.1.6 For any [n, k] code C, (C⊥)⊥ = C.

Proof. Clearly, C ⊆ (C⊥)⊥ since every vector in C is orthogonal to every vector

in C⊥. But dim((C⊥)⊥) = n− (n− k) = k = dim(C), and so C = (C⊥)⊥. �

10

We will show that a parity-check matrix H of a code C is a generator matrix

of C⊥.

2.1.4.1 Self-dual Codes

A code C is said to be self-dual if C = C⊥. C is self-orthogonal if C ⊂ C⊥.

If C is self-dual then

|C| = |F|n/2,

and if |F| is not a square then n must be even. In particular, if C is linear over a

field, then n is even and C is a subspace of dimension n/2. Since each codeword

in C is orthogonal to the all codewords in C, the weight of all codewords must be

even. The self-dual codes in which there is at least one codeword with weight not

divisible by 4 are called Type I or singly-even self-dual binary codes. The self-

dual codes in which the weight of each codeword is divisible by 4 are called Type

II or doubly-even self-dual binary codes. For self-dual codes the transmission

rate k/n is always 1/2.

2.1.4.2 Generator Matrix

As C is a subspace, there exists a basis c1, c2, . . . , ck where k is the dimension of the

subspace. The linear combinations of these basis vectors give all the codewords.

These vectors in matrix form can be written as the columns of a k × n matrix.

Such a matrix is called a generator matrix.

Definition 2.1.7 Let C ⊆ Fnq be a linear code with dimension k. We say that a

matrix G ∈ Fk×nq is a generator matrix for C if its k rows span C.

Note that by choosing different basis for the code as a vector space, we get dif-

ferent generator matrices. So, the generator matrix is not unique.

11

With the generator matrix G, we encode a message x ∈ Fkq as the codeword

xG ∈ C ⊆ Fnq . We take a matrix G whose rows are the codewords of any basis of

C, say c1, c2, . . . , ck, and define for each message m the corresponding codeword

c by c = mG.

Thus a linear code has an encoding map E : Fkq → Fnq which is a linear transfor-

mation x→ xG.

Example 2.1.8 Let c1 = 12043, c2 = 23104 and c3 = 40211 be a basis for a

3-dimensional code over F5. So the message m = 123 is encoded as

mG =
(

1 2 3
)

1 2 0 4 3

2 3 1 0 4

4 0 2 1 1

 = 23324

So C is just the span of the rows of G, Im(G).

2.1.4.3 Standard Form of Generator Matrix

Particularly convenient linear codes are those which have a k×n generator matrix

in which the first k columns forms the identity matrix Ik, because in this case

the message coincides with the first k symbols of its codeword. This is a time

saving feature because the vast majority of words are received with no errors so

for these words all the receiver needs to do with the received codeword is read off

its first k symbols.

Definition 2.1.9 The form of the generator matrix of a code C

G = [Ik | A] ,

where Ik is the k×k identity matrix, and A is a k×(n−k) matrix, called standard

or systematic form.

By performing operations of types (R1), (R2), (R3), (C1) and (C2), G can be

transformed to the standard form.

12

Example 2.1.10 Let C be the [7, 4] code of F7
2 generated by the rows of G (in

standard form):

G =


1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 0


We get the 16 codewords by multiplying G on the left by the 16 different binary

row vectors of length 4. The list of all the codewords is:

(0000000), (1101000), (0110100), (0011010), (0001101), (1000110), (0100011),

(1010001), (1111111), (0010111), (1001011), (1100101), (1110010), (0111001),

(1011100), (0101110).

Notice that there are 7 codewords of weight 3, 7 of weight 4, 1 of weight 7 and 1

of weight 0. Hence, the minimum distance of this code is 3 because of linearity of

the code, and so it is a 1-error correcting code, because d ≥ 2t+ 1.

This [7, 4, 3] code is called the [7, 4] Hamming Code.

2.1.4.4 Parity-check Matrix

When generator matrix in standard form is used, the first k symbols of the code-

word are just the message symbols, and the last n − k symbols are redundant

check symbols. Note that, by permuting coordinates if needed, every linear code

can have a generator matrix in standard form.

Example 2.1.11 For c1 = 12043, c2 = 23104 and c3 = 40211 being a basis for a

3-dimensional code over F5, the standard form of the generator matrix is

G =


1 2 0 4 3

2 3 1 0 4

4 0 2 1 1

 =


1 0 0 1 4

0 1 0 4 2

0 0 1 1 0


and the message m = 123 is encoded as

mG =
(

1 2 3
)

1 0 0 1 4

0 1 0 4 2

0 0 1 1 0

 = 12323

13

123 (the first 3 symbols of the codeword) are the message symbols, and the last 2

symbols 23 are redundant check symbols.

For [7, 4] Hamming code, the messages are all sixteen 4-bit binary words which

are encoded as 7-bit codewords. The three additional bits are fixed by requiring

that the total number of ones in each of the three sets is even. Using modulo 2

addition and denoting a codeword by c1c2 . . . c7 these conditions become:

c1 + c3 + c4 + c5 = 0

c1 + c2 + c4 + c6 = 0

c1 + c2 + c3 + c7 = 0

So this Hamming code C can be specified as the set of all 7-bit strings which

satisfy these equations. The equations can be written in matrix form as

cHᵀ = 0

where c is the codeword (c1c2 . . . c7), regarded as a row vector, H is the matrix
1 0 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 0 0 0 1


0 is the zero column vector 

0

0

0


and Hᵀ is the transpose of H. Notice that the left hand sides of the three equa-

tions are just the dot products of c with the rows of H, so another description of

C is that it is just S⊥ where S is 1011100, 1101010, 1110001.

Definition 2.1.12 [1] H is called a parity check matrix for a linear code C if

(i) its rows are independent,

14

(ii) C is the set of all words satisfying cHᵀ = 0. That is, C is the null space of

H. We can write the code C as

C = {x ∈ Fnq | xHᵀ = 0}.

Theorem 2.1.13 [1] H is a parity check matrix for the [n, k] linear code C if

and only if it is a generator matrix for C⊥.

Proof.

(⇒) H is a parity check matrix for C
⇒ C = null(H)

⇒ k = n− dim(Im(H))

⇒ dim(Im(H)) = n− k
⇒ dim(Im(H)) = dim(C⊥)

But Im(H) ⊆ C⊥, so Im(H) = C⊥.
That is, H is a generator matrix of C⊥.

(⇐) H is a generator matrix for C⊥.

⇒ rows of H are independent and C⊥ = Im(H)

⇒ c · u = 0 for all c ∈ Cwhere u is any linear combination of H.

⇒ C ⊆ Null(H)

⇒ C = Null(H) since

That is, H is a parity check matrix for C. �

It follows that from this theorem every linear code C has a parity check matrix

as any generator matrix of C⊥. In other words, the code generated by H is called

the dual code of C, C⊥.

Thus H is an (n − k) × n matrix satisfying GHᵀ = 0, where Hᵀ denotes the

transpose of H and 0 is an all-zero matrix.

15

2.1.4.5 Standard Form of Parity-check Matrix

Theorem 2.1.14 [6] If G = [Ik | A] is the generator matrix in standard form

for the [n, k] code C, then H = [−Aᵀ | In−k] is the parity check matrix for C.

Proof. By previous theorem, we know H is a generator matrix for C⊥.

Now, GHᵀ = [Ik | A] [−Aᵀ | In−k] = Ik(−A) + (A)In−k = 0 which implies the

rows of H are orthogonal to the rows of G, therefore Im(H) = row space of H is

contained in C⊥ �

Definition 2.1.15 [6] The form of the parity-check matrix of a code C

H = [B | In−k]

where B is the (n− k× k) matrix −Aᵀ and In−k is the (n− k)× (n− k) identity

matrix, is called standard form.

Many codes are most easily defined by specifying a parity-check matrix, or a set

of parity-check equations. If a code is given by a parity-check matrix H which is

not in standard form, then H can be reduced to standard form in the same way

as for a generator matrix

Example 2.1.16 For [7, 4] Hamming code, a generator matrix G is

G = [Ik | A] =


1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 0


and the parity-check matrix H is

H = [−Aᵀ | In−k] =


1 0 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 0 0 0 1


where the matrix A is

(
1 1 1
0 1 1
1 0 1
1 1 0

)
. It is easily calculated that GHᵀ = 0.

16

2.1.5 Cyclic codes

As one of the linear error-correcting codes, cyclic codes have convenient algebraic

structures for efficient error detection and correction. Cyclic codes have some

additional structural constraint on the codes. They are based on Galois fields and

they are very useful for error controls because of their structural properties. The

encoding and decoding algorithms for cyclic codes are computationally efficient.

Cyclic codes are linear codes for which the automorphism group contains the

cyclic group of order n, where n is the length of the word.

Definition 2.1.17 [6] An [n, k] linear code C is said to be cyclic if for every

codeword c = (c0, c1, . . . , cn−1) ∈ C, then there is the corresponding codeword

c′ = (cn−1, c0, . . . , cn−2) in C where c′ is a cyclic shift of c.

It is more convenient to represent the codewords as polynomials. The codeword

c = (c0, c1, . . . , cn−1)

is represented by the polynomial

c(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1.

Fq[x] is the set of polynomials in x with coefficients in Fq. Let f(x) be a fixed

polynomial in Fq[x]. We denote by Fq[x]/f(x) the set of polynomials in Fq[x] of

degree less than the degree of f(x), with addition and multiplication in modulo

f(x).

With polynomial representation, a cyclic shift can be represented as follows:

xc(x) = c0x+ c1x
2 + c2x

3 + · · ·+ cn−1x
n

in mod (xn − 1) is

xc(x) mod (xn − 1) = cn−1 + c0x+ c1x
2 + c2x

3 + · · ·+ cn−2x
n−1

So multiplication by x in the ring Fq[x]/(xn− 1) corresponds to a cyclic shift. In

the same way, any power of x times a codeword gives a codeword, so that, for

17

example,

(c0, c1, . . . , cn−1)↔ c(x) = xnc(x)

(cn−1, c0, . . . , cn−2)↔ xc(x)

(cn−2, cn−1, c0, . . . , cn−3)↔ x2c(x)

...

(c1, c2, . . . , c0)↔ xn−1c(x)

where the arithmetic is done in the ring Fq[x]/(xn − 1). So, it is easy to see that

if we take a polynomial a(x) ∈ Fq[x]/(xn − 1) of the form

a(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

then

c(x)a(x)

is a linear combination of cyclic shifts of c(x) also is a codeword of C. Hence, a

cyclic code is an ideal in Fq[x]/(xn − 1).

Theorem 2.1.18 [1] A set I of polynomials in the ring R = F [x]/(xn − 1)

represents a cyclic code C if and only if I is an ideal of R.

Proof.

(⇐) Let I be an ideal and let c1, c2 be members of I, and λ any constant member

of R. Then c1 + c2 ∈ I by subring property of I, and λc1 ∈ I by the ideal prop-

erty. In terms of code C, it is proved that C is closed under addition and scalar

multiplication, i.e. C is linear. In order to show that it is cyclic, we can use the

ideal property as ∀x ∈ R, xc(x) ∈ I also. This means that C is closed under the

cyclic shift operation. Hence C is a cyclic code.

(⇒) Conversely, let C be cyclic. We have to show that I ∈ R has all these prop-

erties:

1. r + s ∈ I, r × s ∈ I,

2. r + s = s+ r,

3. (r + s) + t = r + (s+ t), (r × s)× t = r × (s× t),

18

4. r × (s+ t) = (r × s) + (r × t), (s+ t)× r = (s× r) + (t× r),
5. I has 0, such that r + 0 = r,

6. I has −r, such that r + (−r) = 0.

where r, s, t ∈ I, any set of polynomials in R.

Properties 2,3,4 hold for all members of R, in other words, I inherits these prop-

erties from R. C is linear so 0 ∈ C and c ∈ C ⇒ (−1)c ∈ C, means properties

5 and 6 also hold for I. The addition part of property 1 also follows from the

linearity of C.
And also we need to show I has the ideal property. Let c be any codeword,

represented by c(x) in I, and g(x) = g0 + g1x+ ...+ gn−1x
n−1 be any polynomial

in R. Then

g(x)c(x) = g0c(x) + g1xc(x) + ...+ gn−1x
n−1c(x)

and this represents the word

g0c+ g1c
1 + g2c

2 + ...+ gn−1c
n−1

which is a linear combination of cyclic shifts of c, so must be in C. Hence

g(x)c(x) ∈ I so I has the ideal property.

And for the multiplicative part of property 1, it is automatically shown by:

g(x)c(x) ∈ I for all g ∈ R, c ∈ I, so in particular g(x)c(x) ∈ I for all g ∈ I, c ∈ I.

�

By this theorem, we can say that C is a cyclic code if and only if its set of repre-

sentative polynomials in R is the set of all multiples of some single polynomial,

and conversely, every such set of polynomials represents a cyclic code. We write

I = 〈g〉 for the ideal consisting of all multiples of g, where g is generator of I.

Then g(x) is the generator polynomial of C.

Theorem 2.1.19 [6] Let C be a nonzero cyclic code in R. Then,

(i) there exists a unique monic polynomial g(x) of smallest degree in C,

(ii) C = 〈g(x)〉,
(iii) g(x) is a factor of xn − 1.

19

Proof.

(i) Suppose both of the monic polynomials g(x) and h(x) are of least degree in

C. Then g(x)−h(x) ∈ C and has smaller degree. This gives a contradiction

if g(x) 6= h(x), for then a suitable scalar multiple of g(x) − h(x) is monic,

is in C and is of smaller degree than g(x).

(ii) Suppose a(x) ∈ C. By the division algorithm for Fq[x], a(x) = q(x)g(x) +

r(x), where deg(r(x)) < deg(g(x)). But, r(x) = a(x) − q(x)g(x) ∈ C. By

the minimality of deg(g(x)), we must have r(x) = 0 and so a(x) ∈ 〈g(x)〉.

(iii) By the division algorithm,

xn − 1 = q(x)g(x) + r(x)

where deg(r(x)) < deg(g(x)). But then r(x) ≡ −q(x)g(x) mod (xn−1), and

so r(x) ∈ 〈g(x)〉. By the minimality of deg(g(x)), we must have r(x) = 0,

which implies that g(x) is a factor of xn − 1.

�

2.1.5.1 Generator Matrix and Generator Polynomial

We have seen that linear codes have generator matrix and the subclass of cyclic

codes have generator polynomials.

Definition 2.1.20 In a nonzero cyclic code C, the monic polynomial of least

degree is called the generator polynomial of C.

The generator polynomial of a cyclic [n, k] code has degree n− k.

Theorem 2.1.21 [6] Suppose nonzero cyclic code C with generator polynomial

g(x) = g0 + g1x+ · · ·+ gn−kx
n−k

20

of degree n− k. Then dimC = k and it has a generator matrix G of the form



g0 g1 g2 · · · gn−k 0 0 · · · 0

0 g0 g1 · · · gn−k−1 gn−k 0 · · · 0
...

.
...

.

0 0 · · · 0 g0 g1 · · · · · · gn−k


in which each row is the first cyclic shift of the previous one, and neither g0 nor

gn−k is zero.

Proof. First observe that this matrix has k rows, which is the dimension of

C. If the first row is a codeword of C, then so are all the rest by the cyclic

property. Then we need to show that rows are linearly independent and that C
has a codeword of the form given by first row.

These k rows represent the codewords g(x), xg(x), . . . , xk−1g(x), and it remains

only to show that every codeword in C can be expressed as a linear combination

of them. Let a(x) be a codeword in C. Then,

a(x) = q(x)g(x)

for some polynomial q(x), and no need modulo xn − 1 since deg(a(x)) < n. It

follows that deg(q(x)) < k. Hence,

q(x)g(x) = (q0 + q1x+ · · ·+ qk−1x
k−1)g(x)

= q0g(x) + q1xg(x) + · · ·+ qk−1x
k−1g(x),

which is the desired linear combination. �

Remark 2.1.22 g0 and gn−k must be nonzero because, if g0 = 0, then the first

column of G is all zero, so every codeword of C has zero as its first place. But

this is impossible because C has nonzero words so some cyclic shift of such a word

will have non-zero digit as its first symbol. Similarly, by considering the last digit

of the codewords, gn−k cannot be zero.

21

2.1.5.2 Parity-check Matrix and Parity-check Polynomial

Since the given generator matrix of a cyclic code is not in the standard form, it

is not appropriate to write the parity-check matrix from standard form of G for

cyclic codes. However, it is closely related to a polynomial interpretation of the

parity check matrix of a cyclic code.

Let C = 〈g(x)〉 be a cyclic [n, k] code with generator polynomial g(x). It is known

that g(x) is a factor of xn − 1. So g(x)h(x) = xn − 1 for some polynomial h(x).

Now deg(g) = n − k so deg(h) = k. Also since g(x) and xn − 1 are monic, h(x)

is monic.

Definition 2.1.23 The polynomial h(x) introduced above is called the check poly-

nomial of C.

Theorem 2.1.24 [1] c(x) corresponds to a codeword of C if and only if c(x)h(x) ≡
0 mod (xn − 1).

Proof.

(⇒)

c ∈ C ⇒ c(x) ≡ a(x)g(x) mod xn − 1 for some a(x) ∈ F[X]

⇒ c(x)h(x) ≡ a(x)g(x)h(x) ≡ 0 mod xn − 1

(⇐) Conversely, suppose c(x)h(x) ≡ 0. Divide c(x) by g(x) to get c(x) =

g(x)q(x) + r(x) with deg(r) < n− k. Then

c(x)h(x) ≡ 0⇒ g(x)q(x)h(x) + r(x)h(x) ≡ 0

⇒ r(x)h(x) ≡ 0

⇒ r(x)h(x) is a multiple of xn − 1

But, deg(r) < n− k and deg(h)=k, so deg(rh) < n and hence rh = 0. Therefore

r = 0 so c(x) = g(x)q(x); that is, c ∈ C. �

Theorem 2.1.25 If C is cyclic then so is C⊥.

22

Proof. Let C be a cyclic [n, k] code. Let c be any codeword, ct be its tth cyclic

shift; that is, if c = (c1, c2, . . . , cn) then ct = (cn−t+1, cn−t+2, . . . , cn, c1, c2, . . . , cn−t).

Note that is immediate from the definition of a cyclic code that if c ∈ C, then

ct ∈ C for all t. We shall show h1 ∈ C⊥ whenever h ∈ C⊥ thus providing the

cyclicity of C⊥.

h1 · c = hnc1 + h1c2 + · · ·+ hn−1cn

= h1c2 + · · ·+ hn−1cn + hnc1

= h · cn−1 because h ∈ C⊥ and cn−1 ∈ C

Hence h1 ∈ C⊥ as required. �

In spite of its name, the polynomial h(x) does not generate C⊥. The point is

that the product of c(x) and h(x) being zero in R is not the same thing as the

corresponding codewords in Fnq being orthogonal. But there is a close connection

between h(x) and C⊥.

So, using this connection, we can find the generator matrix for the dual C⊥, in

other words, the parity-check matrix for C. And we can write the generator

polynomial for C⊥.

Theorem 2.1.26 [6] Suppose C is a [n, k] cyclic code with check polynomial

h(x) = h0 + h1x+ · · ·+ hkx
k.

Then,

(i) a parity-check matrix for C is

H =



hk hk−1 · · · h0 0 0 · · · 0

0 hk hk−1 · · · h0 0 · · · 0
.

...
. 0

0 · · · · · · 0 hk hk−1 · · · h0


23

(ii) C⊥ is a cyclic code which is generated by the reciprocal polynomial of h(x)

h̄(x) = hk + hk−1x+ · · ·+ h0x
k.

Proof.

(i) A polynomial c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 is a codeword if and only if

c(x)h(x) = 0. Now for c(x)h(x) to be zero, then in particular the coefficient

of xk, xk+1, . . . , xn−1 must all be zero, i.e.

c0hk+ c1hk−1+ · · · + ckh0 = 0

c1hk+ c2hk−1+ · · · + ck+1h0 = 0
.

...

cn−k−1hk+ · · · +cn−1h0 = 0

Thus any codeword c0c1 · · · cn−1 of C is orthogonal to the vector

hkhk−1 · · ·h000 · · · 0 and its cyclic shifts. So the rows of the matrix H given

in the statement of the theorem are all codewords of C⊥. We have already

observed that h(x) is monic of degree k and so hk = 1; it means that the

rows of H are linearly independent, since it is in the echelon form and there

are nothing other than zero below 1s. The number of rows of H is n − k,

which is the dimension of C⊥. Hence H is a generator matrix of C⊥, i.e. a

parity-check matrix for C.

(ii) If we can show that h̄(x) is a factor of xn − 1, then we will say 〈h̄(x)〉 is a

cyclic code whose generator matrix is the above matrix H, and hence that

〈h̄(x)〉 = C⊥. We observe that h̄(x) = xkh(x−1). Since h(x−1)g(x−1) =

(x−1)n − 1, we have xkh(x−1)xn−kg(x−1) = xn(x−n − 1) = 1 − xn, and so

h̄(x) = xkh(x−1) is a factor of xn − 1.

�

24

CHAPTER 3

QUASI-CYCLIC CODES

3.1 Preliminaries

Let Fq be a finite field and m be a positive integer coprime with the characteristic

of Fq.

Definition 3.1.1 [5] A linear code C of length `m over Fq is called quasi-cyclic

code if the codeword

(c0,0, . . . , c0,`−1, c1,0, . . . , c1,`−1, . . . , cm−1,0, . . . , cm−1,`−1) ∈ C

then

(cm−1,0, . . . , cm−1,`−1, c0,0, . . . , c0,`−1, . . . , cm−2,0, . . . , cm−2,`−1) ∈ C.

We denote the standard shift operator as T on Fq. This code is invariant under

T ` (so under `-shift) and this codes are called as `-quasi-cyclic codes or quasi-

cyclic codes of index `. The quasi-cyclic codes are the generalization of cyclic

codes, when ` = 1 it is just a cyclic code.

Example 3.1.2 The binary [6, 3] code with generator matrix
1 1 0 1 0 0

0 0 1 1 0 1

0 1 0 0 1 1


25

is quasi-cyclic code of index 2.

For binary codes, permutations of the coordinates of a code form another equiva-

lent code. For this code, these two matrices

G =


1 1 0 1 0 0

0 0 1 1 0 1

0 1 0 0 1 1

 and G′ =


1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1


G and G′ generate equivalent codes for ` = 2 and m = 3.

3.2 1-1 correspondence:

Let R be a commutative ring with identity. A linear code C of length n over R is

defined to be a R-submodule of Rn. If R is a finite field Fq of order q, the linear

code C of order n over Fq is an Fq-vector subspace of Fnq .

Let Fq[Y] denote the polynomials, Y be indeterminate and coefficients be in Fq.

Define the ring as R := R(Fq,m) = Fq[Y]/(Y m − 1). This ring is the same in

the polynomial representation of cyclic codes of length m over Fq. Namely, cyclic

codes of length m over Fq are ideals of R(Fq,m).

Modules over R is closely related to the ideals in Fq[Y]/(Y m − 1). In fact, ideals

are just 1-dimensional R-submodules.

Let C be a `-quasi-cyclic code over Fq of length `m. Let

c = (c0,0, . . . , c0,`−1, c1,0, . . . , c1,`−1, . . . , cm−1,0, . . . , cm−1,`−1)

denote a codeword in C.
Define a map φ : F`mq → R` by

φ(c) = (c0(Y), c1(Y), . . . , c`−1(Y)) ∈ R`

where

cj(Y) =
m−1∑
i=0

cijY
i ∈ R, j = 0, . . . , `− 1.

We denote by φ(C) the image of C under φ.

26

Lemma 3.2.1 [10] The map φ gives a one-to-one correspondence between `-

quasi-cyclic codes over Fq of length `m and linear codes over R of length `.

Proof.

(⇒) φ(C) is closed under scalar multiplication by elements of Fq because of the

linearity of C over Fq. Since Y m = 1 in R,

Y cj(Y) =
m−1∑
i=0

cijY
i+1 =

m−1∑
i=0

ci−1,jY
i

where the subscripts are taken modulo m.

The word

(Y c0(Y), Y c1(Y), . . . , Y c`−1(Y)) ∈ R`

corresponds to the word

(cm−1,0, . . . , cm−1,`−1, c0,0, . . . , c0,`−1, . . . , cm−2,0, . . . , cm−2,`−1) ∈ F`mq

which is in C since C is `-quasi-cyclic code. Therefore, φ(C) is closed under mul-

tiplication by Y , and hence φ(C) is an R-submodule of R`.

(⇐) It is easy to see that every linear code over R of length ` comes from a

quasi-cyclic code of index ` and length `m over Fq. �

Proposition 3.2.2 [10] Let a, b ∈ F`mq . Then (T `k(a)) · b = 0 for 0 ≤ k ≤ m− 1

if and only if 〈φ(a), φ(b)〉 = 0.

Proof.

〈φ(a), φ(b)〉 = 0 means

0 =
`−1∑
j=0

ajbj =
`−1∑
j=0

(
m−1∑
i=0

aijY
i

)(
m−1∑
k=0

bkjY
−k

)
. (3.1)

Comparing the coefficients of Y h on both sides, the equation 3.1 is equivalent to

`−1∑
j=0

m−1∑
i=0

ai+h,jbij = 0, for all 0 ≤ h ≤ m− 1 (3.2)

27

where the subscripts i+h is considered to be in {0, 1, . . . ,m− 1} by taking mod-

ulo m. The equation 3.2 means that (T−`h(a)) · b = 0. Since T−`h = T `(m−h),

it follows that the equation 3.2, and hence 〈φ(a), φ(b)〉 = 0, is equivalent to

(T `k(a)) · b = 0 for 0 ≤ k ≤ m− 1. �

From this proposition, it follows that a quasi-cyclic code C is self-dual with respect

to the Euclidean inner product if and only if φ(C) is self-dual with respect to the

Hermitian inner product, where C is an `-quasi-cyclic code over Fq of length `m

and φ(C) is its image in R` under φ. And also φ(C)⊥ = φ(C⊥), where the dual in

F`mq is taken with respect to the Euclidean inner product, while the dual in R` is

taken with respect to the Hermitian inner product.

28

CHAPTER 4

CONSTRUCTION OF QUASI-CYCLIC SELF-DUAL

CODES

4.1 Ring Decomposition

Let

R = R(Fq,m) = Fq[Y]/(Y m − 1).

When m is coprime with the characteristic of Fq, so q, the ring can be decom-

posed into a direct sum of fields by Chinese Remainder Theorem (CRT) or Dis-

crete Fourier Transform (DFT) [10]. There are two benefits of this approach, as

investigating self-dual quasi-cyclic codes in a systematic way and decomposing

the quasi-cyclic codes into codes of lower lengths.

The polynomial Y m − 1 factors completely into distinct irreducible factors in

Fq[Y], so it can be written as

Y m − 1 = δg1 . . . gsh1h
∗
1 . . . hth

∗
t (4.1)

where δ is nonzero in Fq, g1, . . . , gs are the polynomials which are self-reciprocal,

and h∗i ’s are reciprocals of hi’s, for all 1 ≤ i ≤ t.

4.1.1 Decomposition by the Chinese Remainder Theorem

The ring R can be written as by CRT, [10]

R =
Fq[Y]

(Y m − 1)
=

(
s⊕
i=1

Fq[Y]

(gi)

)
⊕

(
t⊕

j=1

(
Fq[Y]

(hj)
⊕ Fq[Y]

(h∗j)

))
(4.2)

29

The direct sum on the right-hand side is endowed with the coordinate-wise addi-

tion and multiplication.

Let Fq[Y]
/

(gi) be denoted by Gi, and in the same way Fq[Y]
/

(hj) by H ′j and

Fq[Y]
/

(h∗j) by H ′′j for simplicity of notation. Then

R` =

(
s⊕
i=1

G`
i

)
⊕

(
t⊕

j=1

(
H ′`j ⊕H ′′`j

))
.

In particular, every R-linear code C of length ` can be decomposed as the direct

sum

C =

(
s⊕
i=1

Ci

)
⊕

(
t⊕

j=1

(
C ′j ⊕ C ′′j

))
where Ci, C ′j and C ′′j are linear codes over Gi, H

′
j and H ′′j , respectively, all of length

` for each 1 ≤ i ≤ s, and for each 1 ≤ j ≤ t.

Every element of R can be written as c(Y), for some polynomial c ∈ Fq[Y]. The

decomposition (4.2) shows that c(Y) may also be written as an (s+ 2t)-tuple

(c1(Y), . . . , cs(Y), c′1(Y), c′′1(Y), . . . , c′t(Y), c′′t (Y)) (4.3)

where ci(Y) ∈ Gi, (1 ≤ i ≤ s), c′j(Y) ∈ H ′j, (1 ≤ j ≤ t) and c′′j (Y) ∈ H ′′j ,

(1 ≤ j ≤ t).

Here, we can consider the ci, c
′
j and c′′j as polynomials in Fq[Y]. Also [10] we can

write c(Y) as

(c1(Y), . . . , cs(Y), c′′1(Y), c′1(Y), . . . , c′′t (Y), c′t(Y)).

Theorem 4.1.1 [10] A linear code C over R of length ` is self-dual with respect

to Hermitian inner product, or equivalently, an `-quasi-cyclic code of length `m

over Fq is self-dual with respect to Euclidean inner product, if and only if

C =

(
s⊕
i=1

Ci

)
⊕

(
t⊕

j=1

(
C ′j ⊕ (C ′j)⊥

))

where, for 1 ≤ i ≤ s, Ci is a self-dual code over Gi of length ` with respect to the

Hermitian inner product and for 1 ≤ j ≤ t, C ′j is a linear code of length ` over

H ′j and (C ′)⊥ is its dual with respect to the Euclidean inner product.

30

4.1.2 The Discrete Fourier Transform

Let m be coprime with q. In the case m ∈ F∗q := Fq − {0}, and the isomorphism

(4.2) can be described by DFT, [10].

There is a one-to-one correspondence between the factors gi, hj and h∗j and the

q-cyclotomic cosets of Z/mZ. The q-cyclotomic cosets corresponding to gi, hj and

h∗j are Ui, Vj and Wj respectively. For

c =
∑

g∈Z/mZ

cgY
g ∈ Fq[Y]/(Y m − 1),

its Fourier transform is

ĉ =
∑

h∈Z/mZ

ĉhY
h,

where the Fourier coefficient ĉh is defined as

ĉh =
∑

g∈Z/mZ

cgω
gh

where ω is a primitive mth root of unity in some Galois extension of Fq.

For a vector x, by its Fourier transform, it is meant that the vector whose ith

entry is the Fourier transform of the ith entry of x. This gives the following trace

parametrization for quasi-cyclic codes over finite fields.

Theorem 4.1.2 [10] Let m is coprime with q. Then, the following construction

gives the quasi-cyclic codes over Fq of length `m and of index `, for any `.

Let Y m − 1 = δg1 . . . gsh1h
∗
1 . . . hth

∗
t , with the assumptions mentioned above, and

also

Fq[Y]
/

(gi) = Gi, Fq[Y]
/

(hj) = H ′j and Fq[Y]
/

(h∗j) = H ′′j .

Let Ui (respectively, Vj and Wj) denote the cyclotomic coset of Z
/
mZ correspond-

ing to Gi, (respectively H ′j and H ′′j) and fix ui ∈ Ui, vj ∈ Vj and wj ∈ Wj.

For each i, let Ci be a code over Gi of length `, for each j, let C ′j be a code over

H ′j of length ` and let C ′′j be a code over H ′′j of length `.

31

For xi ∈ Ci, y′j ∈ C ′j and y′′j ∈ C ′′j , and for each 0 ≤ g ≤ m− 1, let

cg((xi), (y
′
j), (y

′′
j)) =

s∑
i=1

TrGi/Fq(xiω
−gui)

+
t∑

j=1

(TrH′
j/Fq(y

′
jω
−gvj) + TrH′′

j /Fq(y
′′
jω
−gwj)).

Then the code

C = {(c0((xi), (y′j), (y′′j)), . . . , cm−1((xi), (y
′
j), (y

′′
j))) | ∀xi ∈ Ci,∀y′j ∈ C ′j and ∀y′′j ∈ C ′′j }

is a quasi-cyclic code over Fq of length `m and of index `. Conversely, every

`-quasi-cyclic code over Fq of length `m is obtained through this construction.

Moreover, C is self-dual with respect to the Euclidean inner product if and only if

the Ci are self-dual with respect to the Hermitian inner product and C ′′j = (C ′j)⊥

for each j with respect to Euclidean inner product.

4.2 Existence of Self-dual Codes

Let R = R(Fq,m) = Fq[Y]/(Y m − 1).

Self-dual codes over R are understood self-dual codes with respect to Hermitian

inner product.

This section contains some lemmas regarding the length and possible weight enu-

merators of self-dual codes.

Proposition 4.2.1 [10] Let m be relatively prime to q and let ` be odd. Then no

self-dual `-quasi-cyclic codes over Fq of length `m exist.

Proof. Since Y − 1 is a factor of Y m− 1, Fq is always a direct factor of R in the

decomposition (4.1). Since ` is odd, no self-dual code of length ` exists over Fq. �

The following lemma gives more information about length.

32

Lemma 4.2.2 [5] Let R = R(Fq,m) = Fq[Y]/(Y m − 1).

(i) If char(Fq) = 2 or q ≡ 1 (mod 4), then there exists a self-dual code of length

` over R if and only if 2 | `.

(ii) If q ≡ 3 (mod 4), then there exists a self-dual code of length ` over R if and

only if 4 | `.

Proof.

To prove the lemma, suppose C is a self-dual code of length ` over R. Assume

that C1 in the decomposition of C in (4.1.1) is a Euclidean self-dual code over Fq
of length `.

For (i),

(⇒) If a code is self-dual, then its length must be even. So 2 | `.
(⇐) Suppose 2 | `. Let ` = 2k.

We take an Euclidean self-dual code over Fq of length 2 using the generator ma-

trix:

G =
[
1 c

]
; where c2 = −1 in Fq. It is easily seen that a self-dual code C over R

of length 2 is generated by this matrix. Then the direct sum of the k-copies of C
form a self-dual code over R of length 2k = `.

Remark that the reason how such a c exists is char(Fq) = 2 or q ≡ 1 (mod 4).

For (ii),

(⇒) It is well-known if q ≡ 3 (mod 4), then a self-dual code of length n over Fq
exists if and only if n is a multiple of 4.

By this observation, 4 | `.
(⇐) Suppose 4 | `. Let ` = 4k.

We take an Euclidean self-dual code over Fq of length 4 using the generator ma-

trix

G =

[
1 0 α β

0 1 −β α

]
where α2 + β2 + 1 = 0 in Fq. A self-dual code C over R of

length 4 is generated by this matrix. Then the direct sum of the k-copies of C
form a self-dual code of length 4k = ` over R.

Remark that there exist such α and β in Fq because q ≡ 3 (mod 4). �

33

By the following lemma, possible weight enumerators of a binary `-quasi-cyclic

self-dual code of length `m with a prime m are determined.

Lemma 4.2.3 [11] Let C be a binary code and H any subgroup of Aut(C). If

Ai is the total number of codewords in C of weight i and Ai(H) is the number of

codewords which are fixed by some non-identity element of H, then

Ai ≡ Ai(H) (mod |H|)

Proof. We need to consider some non-identity element of H because the identity

of H always fixes any codeword. Thus, we can divide the codewords of weight i

into two classes: first one is the codewords fixed by some element of H, and the

rest is second. The number of codewords fixed by an element in H is Ai(H). Let

a ∈ C be not fixed by any element of H. Then the |H| codewords ga for g ∈ H
must all be distinct. Thus the number of these codewords must be multiple of

|H|, say m|H|.
∴ Ai = Ai(H) +m|H|
∴ Ai ≡ Ai(H) (mod |H|) �

Proposition 4.2.4 [10] A code C of length `m is quasi-cyclic code of index ` if

and only if Perm(C) contains a fixed point free (fpf) permutation consisting of `

disjoint m-cycles. In particular, if m denotes a prime, a fpf permutation with `

disjoint m-cycles means a fpf permutation group of order m.

Proof.

(⇒) If C is `-quasi-cyclic then T ` is the permutation sought for, where T denotes

the cyclic shift.

(⇐) If Perm(C) contains such a permutation σ, then up to coordinate labeling,

we can assume that σ = T `. �

34

Remark 4.2.5 In this work, we study binary self-dual codes with a fixed point

free automorphism of order three, so-called binary cubic self-dual codes.

Lemma 4.2.6 [5] Let C be a binary `-quasi-cyclic self-dual code of length m`

with m prime. If m does not divide the weight i, then m must divide Ai.

Proof. From previous proposition, C must contain an fpf permutation σ of order

m. Let

H = 〈σ〉 whose order m. Since σ is an fpf of order m and any codewords of

weight i with m - i, cannot be fixed by any non-identity element of H, we have

Ai(H) = 0.

∴ by previous lemma Ai ≡ Ai(H) = 0 (mod m) �

Example 4.2.7 For ` = 12 and m = 3.

There are two weight enumerators for [36, 18, 8] self-dual code.

W1 = 1 + 225y8 + 2016y10 + . . .

W2 = 1 + 289y8 + 1632y10 + . . .
(4.4)

By previous lemma, we can directly say that there is no binary cubic self dual

code having the weight enumerator W2.

Since 3 should divide A8 (if m - i, then m | Ai).

But 3 - 289. So there is no code having W2.

35

CHAPTER 5

APPLICATIONS

5.1 Constructions of Self-dual codes

This chapter contains some methods for combining codes to get new codes with

greater length. The building-up construction and some constructions depending

on m for self-dual codes over the ring R = Fq[Y]/(Y m − 1) are given. For more

than the constructions which are mentioned in this chapter, one can look [11].

5.1.1 Building-up Construction

The following theorem is the building-up construction for self-dual codes over

the ring R, equivalently `-quasi-cyclic self-dual code over Fq. The construction is

given for the case char(Fq) = 2, although the method holds not only for the fields

with even characteristic, but also for the other cases. However, we are interested

in only that case. The construction is as follows.

Proposition 5.1.1 [5], [8] Let G0 = (ri) be a matrix generating the self-dual

code C0 over R of length 2`, where ri is the ith row of the k × 2` matrix, G0, for

1 ≤ i ≤ k. Let x = (x1, . . . , x2`) be a vector in R2` with 〈x, x〉 = −1 and let c

be in R such that cc̄ = −1 . Set yi = 〈ri, x〉 for 1 ≤ i ≤ k. Then the following

36

matrix

G =


1 0 x1

y1 cy1 r1
...

...
...

yk cyk rk


generates a self-dual code C over R of length 2`+ 2.

Every self-dual code C over R = Fq[Y]/(Y m− 1) of length 2`+ 2 can be obtained

by the building-up construction in the previous proposition (5.1.1) up to permu-

tation equivalence, provided that char(Fq) = 2 or q ≡ 1 (mod 4), m is a prime p,

and q is a primitive element of Fp, [5].

The rest of this chapter includes some constructions for self-dual codes over R =

Fq[Y]/(Y m − 1) which depends on m.

5.1.2 The (u+ v | u− v) Construction for m = 2

In this subsection, we consider `-quasi-cyclic codes over the finite field Fq of length

2`.

(i) q is odd. If C1 and C2 are codes of length ` over Fq, then

C{ (u+ v | u− v) | u ∈ C1, v ∈ C2}

is an `-quasi-cyclic code of length 2` over Fq. All `-quasi-cyclic codes of

length 2` over Fq are constructed by this construction. Moreover, C self-

dual if and only if C1 and C2 are self-dual with respect to the Euclidean

inner product, [10].

(ii) q is even. If q is a power of 2, then Y 2 − 1 = (Y − 1)2, so R is the ring

Fq + uFq, where u2 = 0. Therefore, every `-quasi-cyclic code of length 2`

over Fq (q even) can be realized as a code of length ` over Fq + uFq, [10].

37

5.1.3 Construction for m = 3

This is the case which this work focuses on. Assume that m = 3 and that q is

not a power of 3.

(i) q ≡ 2 (mod 3)

Y 2 + Y + 1 is irreducible in Fq[Y], so

Y 3 − 1 = (Y − 1)(Y 2 + Y + 1)

as a product of irreducible factors. By (4.2), R can be decomposed as

R =
Fq[Y]

(Y 3 − 1)
= Fq ⊕ Fq2 .

This isomorphism gives a correspondence between the `-quasi-cyclic codes

C of length 3` over Fq and a pair (C1, C2), where C1 is a linear code over Fq
of length ` and C2 is a linear code over Fq2 of length `. Using the Discrete

Fourier Transform [10] and the theorem (4.1.2), we have

C = { (x+ 2a− b | x− a+ 2b | x− a− b) | x ∈ C1, a+ ωb ∈ C2} (5.1)

where ω2 + ω + 1 = 0.

Moreover, C is self-dual if and only if C1 is self-dual with respect to Euclidean

inner product and C2 is self-dual with respect to Hermitian inner product.

(ii) q ≡ 1 (mod 3)

In this case, Y 3− 1 factors completely into (Y − 1)(Y − ω)(Y − ω2), where

ω2 + ω + 1 = 0 and ω ∈ Fq. An `-quasi-cyclic code C over Fq of length

` decomposes into C1 ⊕ C2 ⊕ C3, where C1, C2 and C3 are codes over Fq of

length `. Moreover, C is self-dual if and only if C1 is self-dual with respect

to the Euclidean inner product and C3 = C⊥2 with respect to the Euclidean

inner product, [10].

In the next chapter, for binary case, more details and some examples are given

about construction.

38

5.1.4 Construction for m = 5

In this subsection, we consider `-quasi-cyclic codes over the finite field Fq of length

5`.

Suppose that m = 5 and q is such that Y 4 + Y 3 + Y 2 + Y + 1 is irreducible in

Fq[Y]. Let ω ∈ Fq4 be such that ω4 + ω3 + ω2 + ω + 1 = 0 and let Tr denote the

trace from Fq4 to Fq. Then, for C1 a code of length ` over Fq and C2 a code of

length ` over Fq4 , the code

C = { (x+ Tr(y) | x+ Tr(yω−1) | Tr(yω−2) | x+ Tr(yω−3) | x+ Tr(yω−4))

| x ∈ C1, y ∈ C2}

is an `-quasi-cyclic code of length 5` over Fq. All such codes are constructed by

this way, [10].

Moreover, C is a self-dual code if and only if C1 and C2 are self-dual codes with

respect to the Euclidean and the Hermitian inner product, respectively.

Remark 5.1.2 When q = 2t, the above construction is equivalent to the con-

struction

(x+a | x+a+b | x+b+c | x+c+d | x+d), where x ∈ C1 and a+bω+cω2+dω3 ∈ C2.

5.1.5 Construction for m = 7

In this subsection, we consider `-quasi-cyclic codes over the finite field Fq of length

7`.

Suppose that m = 7 and q = 2t is such that Y 7 − 1 factors into irreducible

polynomials such as (Y − 1)(Y 3 + Y + 1)(Y 3 + Y 2 + 1). Let ω be a root of

Y 3 + Y + 1 in Fq3 . Let C1 be a code of length ` over Fq and let C2, C3 be codes of

length ` over Fq3 . Let Tr denote the trace from Fq3 to Fq. Then the code

C = { (c0, . . . , c6) | ci = x+ Tr(yω−i) + Tr(zωi), x ∈ C1, y ∈ C2, z ∈ C3}

is an `-quasi-cyclic code over Fq of length 7`. All such codes are constructed

by this way, [10]. Conversely, all `-quasi-cyclic codes of length 7` over Fq are

39

constructed by this way. Moreover, C is self-dual if and only if C1 is self-dual and

C3 = C⊥2 .

Example 5.1.3 [10] There is an extremal Type I code of length 42 which is cyclic,

hence 6-quasi-cyclic. Its binary component C1 has to be equivalent to the unique

[6,3,2] self-dual code.

40

CHAPTER 6

CUBIC SELF-DUAL BINARY CODES

In this chapter, we assume that m = 3 and that q is not a power of 3. We study

the `-quasi-cyclic self-dual codes of length 3` over Fq, in other words, binary self-

dual codes with a fixed point free automorphism with order 3 from the proposition

(4.2.4). It is shown in [10] that all such codes can be obtained by a generalized

cubic construction of Turyn’s, from a code over F2 and a code over F4 both of

length ` (binary and quaternary, respectively). Cubic binary codes of length 3`

are viewed as codes of length ` over the ring F2 × F4, [3].

In the construction (5.1), when q = 2t (t odd) and for any `

C = { (x+ b | x+ a | x+ a+ b) | x ∈ C1, a+ ωb ∈ C2}.

It is easily verified that, if a, b ∈ C ′2 for some linear code C ′2 over Fq, then

C2 := { a+bω | a, b ∈ C ′2} is a linear code over Fq2 , where ω2+ω+1 = 0. So, if we

begin with two Fq-linear codes C ′2 and C1, the construction in (6) gives Turyn’s

(a+ x | b+ x | a+ b+ x)-construction. Particularly, we obtain

Theorem 6.0.4 [10] The (a+x | b+x | a+b+x)-construction which is applied

to two linear codes C1 and C ′2 over F2t (where t odd) of length `, gives an F2t-linear

code C of length 3` that is quasi-cyclic of index `.

Example 6.0.5 [11] The binary extended Golay code G24 is obtained by Turyn’s

construction.

If we choose C ′2 as the binary extended Hamming code ([8, 4, 4] code obtained by

41

adding overall parity checks to [7, 4, 3] Hamming code) with generator matrix:

A8 =


1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1


and C1 as equivalent code of this code by reversing the order of the coordinates of

words with generator matrix:

A′8 =


0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0

1 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0


then, the code C given by the construction (6) is the binary extended [24, 12, 8]

Golay code as a quasi-cyclic code of index 8.

No simple formula is known for the minimum distance of C, although a lower

bound is given by the following proposition:

Proposition 6.0.6 [11] For any binary vectors a, b, x,

wt(a+ x | b+ x |a+ b+ x) = 2wt(a⊕ b)− wt(x) + 4s,

≥ 2wt(a⊕ b)− wt(x),

where s is the number of times a is 0, b is 0 and x is 1.

In the paper [5], the classification of binary cubic self-dual codes of lengths up

to 42 (up to permutation equivalence) is completed by building-up construction.

After that, in [4], the classification of cubic self-dual [48, 24, 10] code is completed.

Up to permutation equivalence the numbers of cubic self-dual codes of lengths

up to 48 are as follows [5]:

There is/are

for ` = 2, unique binary cubic self-dual code of length 6,

for ` = 4, 2 binary cubic self-dual codes of length 12,

42

for ` = 6, 3 binary cubic self-dual codes of length 18,

for ` = 8, 16 binary cubic self-dual codes of length 24,

for ` = 10, 8 binary cubic self-dual codes of length 30,

for ` = 12, 13 binary cubic self-dual codes of length 36,

for ` = 14, 1569 binary cubic self-dual codes of length 42,

for ` = 16, 264 binary cubic self-dual codes of length 48.

For ` = 18, we have tried to find more codes by the cubic construction (6). Our

motivation is that the number of inequivalent codes which are found is at only

7. Also, it is the lowest length which is not completed the classification. In order

to increase the number, we use the cubic construction since it is proven that all

binary cubic self-dual codes can be found by this construction.

For self-dual [54, 27, 10] codes, there are two weight enumerators [5]

W1 = 1 + (351− 8β)y10 + (5031 + 24β)y12 + . . . (0 ≤ β ≤ 43)

W2 = 1 + (351− 8β)y10 + (5543 + 24β)y12 + (43884 + 32β)y14 + . . .
(6.1)

In [5], by building-up construction four inequivalent codes with W1 for

β = 0, 3, 6, 9 and three inequivalent codes with W2 for β = 12, 15, 18 are found.

For cubic construction, we use the notations as in [3].

Binary codes C of length 54 are formed by this construction from a binary code

C1 of length 18 and a quaternary code C2 of length 18. If A,B and X are binary

vectors of length 18 then let

U = X + A

V = X +B

W = X + A+B

and writing F4 = F2(ω) we can define a Gray map from F18
2 × F18

4 → F54
2 as

φ(X, A+ ωB) := (U | V | W). (6.2)

With this notations, the constructed code C is φ(C1, C2).

43

For ` = 18,

In [3], by this construction one [54, 27, 10] code with weight enumerator W1 for

β = 0 and one [54, 27, 10] code with weight enumerator W2 for β = 12 are found

by taking C1 = H18, I18, respectively and C2 = S18, [17], where

H18 =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



,

I18 =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


44

and

S18 =



1 0 0 0 0 0 0 0 0 1 ω 1 1 ω2 1 1 ω ω2

0 1 0 0 0 0 0 0 0 ω ω 0 ω2 0 1 ω2 ω ω

0 0 1 0 0 0 0 0 0 ω 1 0 ω ω ω ω2 0 ω2

0 0 0 1 0 0 0 0 0 0 ω 1 0 ω ω ω ω2 ω2

0 0 0 0 1 0 0 0 0 ω2 1 1 ω ω 1 1 ω2 1

0 0 0 0 0 1 0 0 0 ω2 ω ω ω 0 1 ω 0 ω2

0 0 0 0 0 0 1 0 0 0 ω2 ω ω ω 0 1 ω ω2

0 0 0 0 0 0 0 1 0 ω ω2 1 0 ω2 0 ω ω ω

0 0 0 0 0 0 0 0 1 ω 1 1 ω2 1 1 ω 1 ω2



Our aim here is to find more codes for other β values, by taking C1 = H18 and

C2 = σ(M18) where the matrix M18 is any self-dual quaternary code, but not ex-

tremal, (since the only extremal one is S18, [17]) and σ is a suitable permutation,

which is chosen by using Random of Magma.

We tried at least 20 different Hermitian self-dual quaternary codes for C2, we took

C1 = H18 and as a result we get 2 new inequivalent codes, both are with weight

enumerator W1 for β = 12 and β = 15. The codes σ(M18) and σ′(M ′
18) which we

use for C2 and the corresponding new [54, 27, 10] codes, and the permutations σ

and σ′ are as follows:

For the matrix M18

45



1 0 0 0 0 0 0 0 0 1 ω 1 1 ω2 1 1 ω ω2

0 1 0 0 0 0 0 0 0 ω2 ω2 1 1 ω ω2 1 0 0

0 0 1 0 0 0 0 0 0 1 ω ω2 ω2 ω2 ω2 ω 1 ω

0 0 0 1 0 0 0 0 0 ω2 1 ω 1 ω2 ω2 ω2 ω ω

0 0 0 0 1 0 0 0 0 0 ω ω ω2 ω2 0 0 ω 0

0 0 0 0 0 1 0 0 0 0 1 1 ω2 1 0 ω2 1 ω

0 0 0 0 0 0 1 0 0 ω 1 0 1 1 ω2 ω 1 0

0 0 0 0 0 0 0 1 0 ω2 ω 0 ω 1 ω 0 0 0

0 0 0 0 0 0 0 0 1 ω 1 1 ω2 1 1 ω 1 ω2


and for the permutation

σ = (1, 14, 13, 10)(2, 18, 4, 17, 11, 6, 16, 8, 7, 9, 12, 3, 15, 5),

we use C1 = H18 where H18 is mentioned before, and C2 = σ(M18), then we get

the following [54, 27, 10] code

[100000000000000000000000010010110000011100110100101010]

[010000000000000000000000010011010100100000101100010111]

[001000000000000000000000010010111110010010010010101000]

[000100000000000000000000010000011111100001111010011111]

[000010000000000000000000000011011011010100010101101000]

[000001000000000000000000010001011001000010001000111100]

[000000100000000000000000010010101000100110101000100100]

[000000010000000000000000000001101010001111011110101010]

[000000001000000000000000000010101110101001000101001011]

[000000000100000000000000000000101110100101010010101110]

[000000000010000000000000000001100011110011000011011111]

[000000000001000000000000000011111000001100100111011101]

[000000000000100000000000000010001110101010001110111011]

[000000000000010000000000010011110010010101100000000111]

[000000000000001000000000000000100101100101100101101101]

[000000000000000100000000010001100101011010001011101101]

[000000000000000010000000000000000001011010010101001111]

46

[000000000000000001000000010001001110100101111011000000]

[000000000000000000100000000000110011001010001100101001]

[000000000000000000010000010001000000000110011101011010]

[000000000000000000001000010010101101000111011101100010]

[000000000000000000000100000000011011111000111100011011]

[000000000000000000000010000011011100101000010101011100]

[000000000000000000000001000001001001111101000001000110]

[000000000000000000000000100010011001010110100001001100]

[000000000000000000000000001011101011111111010010000001]

[000000000000000000000000000100110000001100101110100110]

with weight distribution W = [〈0, 1〉, 〈10, 255〉, 〈12, 5319〉, 〈14, 48876〉,
〈16, 313278〉, 〈18, 1443468〉, 〈20, 4791612〉, 〈22, 11630505〉, 〈24, 20897964〉,
〈26, 27977586〉, . . . , 〈54, 1〉]
in other words, with W1 and β = 12.

For the matrix M ′
18

1 0 0 0 0 0 0 0 0 ω2 0 ω2 ω2 1 ω2 ω2 0 1

0 1 0 0 0 0 0 0 0 0 0 ω 1 ω ω2 1 0 0

0 0 1 0 0 0 0 0 0 0 ω2 ω 0 0 0 1 ω 1

0 0 0 1 0 0 0 0 0 ω 0 ω2 ω 0 0 0 1 1

0 0 0 0 1 0 0 0 0 1 ω2 ω2 0 0 ω2 ω2 1 ω2

0 0 0 0 0 1 0 0 0 1 0 0 0 ω ω2 0 ω 1

0 0 0 0 0 0 1 0 0 ω 1 0 0 0 ω ω2 0 1

0 0 0 0 0 0 0 1 0 0 1 ω2 ω 1 ω 0 0 0

0 0 0 0 0 0 0 0 1 0 ω2 ω2 1 ω2 ω2 0 ω2 1


and for the permutation

σ′ = (1, 6, 2, 14, 4, 8, 16, 7, 12, 18, 9, 3, 5, 15, 13, 17),

47

we use C1 = H18 and C2 = σ′(M ′
18), then we get the following [54, 27, 10] code

[100000000000000000000000001001010100001010011111101000]

[010000000000000000000000001001101011010000101111111110]

[001000000000000000000000001100101110000100100110000100]

[000100000000000000000000001000111101111011010001011000]

[000010000000000000000000001000110001010111100001000001]

[000001000000000000000000001100101101010111011010101101]

[000000100000000000000000001001101001000000010101011010]

[000000010000000000000000000101011010111111101010101010]

[000000001000000000000000001101000100011001111010011110]

[000000000100000000000000001000101101100110100101011101]

[000000000010000000000000001101111111100101101010111111]

[000000000001000000000000000100011001101010001001110000]

[000000000000100000000000000101101000010101001010011110]

[000000000000010000000000000000111110111111100101000100]

[000000000000001000000000000000010111000011101010001001]

[000000000000000100000000000101111101101001000101101111]

[000000000000000010000000001000110100010101111011100000]

[000000000000000001000000001101010001111111010100001001]

[000000000000000000100000001000110101001010111000100000]

[000000000000000000010000000100000101110101110100011111]

[000000000000000000001000000001111011010001000010100001]

[000000000000000000000100001001100111110111001001010100]

[000000000000000000000010000101101011111110000101011000]

[000000000000000000000001001101111000101000000010011101]

[000000000000000000000000100001110011011010111011000011]

[000000000000000000000000010100101001011010100111110000]

[000000000000000000000000000011001111110000110011001100]

48

with weight distribution W ′ = [〈0, 1〉, 〈10, 231〉, 〈12, 5391〉, 〈14, 48972〉,
〈16, 312798〉, 〈18, 1443468〉, 〈20, 4792956〉, 〈22, 11629833〉, 〈24, 20895948〉,
〈26, 27979266〉, . . . , 〈54, 1〉],
in other words, with W1 and β = 15.

Recall that we say a binary code is of Type II if and only if it is self-dual and all

its codewords have Hamming weights a multiple of 4.

For a binary `-quasi-cyclic code of length 3`, i.e., if m = 3, its binary component

C1, means the component in the decomposition corresponding to the polynomial

Y − 1. Also the quaternary component C2 of the code C corresponds Y 2 + Y + 1.

(i)(ii)(iii)(iv)(v)(vi)(vii)(viii) Proposition 6.0.7 [10] A self-dual binary code C is a Type II `-quasi-cyclic code

of length 3` if and only if its binary component C1 is of Type II.

Proof.

(⇒) Taking a = b = 0 in the (x + a | x + b | x + a + b) construction, it is seen

that (x | x | x) ∈ C for all x ∈ C1. Thus, C1 is Type II.

(⇐) The weight of (a | b | a + b) is twice the Hamming weight of (a + ωb),

where ω2 + ω + 1 = 0. From the Hermitian self-duality of C2, it follows that the

Hamming weight of (a + ωb) is even. Hence the weight of (a | b | a + b) is a

multiple of 4. �

Remark 6.0.8 These [54, 27, 10] codes are of Type II 18-quasi-cyclic self-dual

codes of length 54 since their binary component H18 is of Type II and self-dual

with respect to Euclidean inner product, by the previous proposition.

49

CHAPTER 7

CONCLUSION

In this thesis, we have studied `-quasi-cyclic self-dual codes over the field F2.

Before this special type of linear codes, we gave basic information about linear

codes and cyclic codes.

We showed the one-to-one correspondence between quasi-cyclic codes over a field

F of index ` with length `m and linear codes over an auxiliary ring R of length `.

By Chinese Remainder Theorem, we decomposed that ring into a direct product

of fields. That ring decomposition provides a code construction from codes of

lower lengths. We used the cubic construction (x+ a | x+ b | x+ a+ b) among

all constructions to find more new codes, since it is easy to implement and also

it is proven that all codes can be found by this one.

By this construction, with suitable choices of binary and quaternary codes of

length 18, we found two more [54, 27, 10] codes than previously known. We gave

all information about the construction step-by-step.

50

Appendix A

ALGORITHM

In this work, to construct new code, the MAGMA Computational Algebra Sys-

tem is used. We use (x + a | x + b | x + a + b) construction method in [10].

Below is the algorithm.

The following binary code is used for C1 from [17] :



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


And the following two quaternary codes are used for C2 from [12] :

51



1 0 0 0 0 0 0 0 0 1 ω 1 1 ω2 1 1 ω ω2

0 1 0 0 0 0 0 0 0 ω2 ω2 1 1 ω ω2 1 0 0

0 0 1 0 0 0 0 0 0 1 ω ω2 ω2 ω2 ω2 ω 1 ω

0 0 0 1 0 0 0 0 0 ω2 1 ω 1 ω2 ω2 ω2 ω ω

0 0 0 0 1 0 0 0 0 0 ω ω ω2 ω2 0 0 ω 0

0 0 0 0 0 1 0 0 0 0 1 1 ω2 1 0 ω2 1 ω

0 0 0 0 0 0 1 0 0 ω 1 0 1 1 ω2 ω 1 0

0 0 0 0 0 0 0 1 0 ω2 ω 0 ω 1 ω 0 0 0

0 0 0 0 0 0 0 0 1 ω 1 1 ω2 1 1 ω 1 ω2


and



1 0 0 0 0 0 0 0 0 ω2 0 ω2 ω2 1 ω2 ω2 0 1

0 1 0 0 0 0 0 0 0 0 0 ω 1 ω ω2 1 0 0

0 0 1 0 0 0 0 0 0 0 ω2 ω 0 0 0 1 ω 1

0 0 0 1 0 0 0 0 0 ω 0 ω2 ω 0 0 0 1 1

0 0 0 0 1 0 0 0 0 1 ω2 ω2 0 0 ω2 ω2 1 ω2

0 0 0 0 0 1 0 0 0 1 0 0 0 ω ω2 0 ω 1

0 0 0 0 0 0 1 0 0 ω 1 0 0 0 ω ω2 0 1

0 0 0 0 0 0 0 1 0 0 1 ω2 ω 1 ω 0 0 0

0 0 0 0 0 0 0 0 1 0 ω2 ω2 1 ω2 ω2 0 ω2 1



.

We want to have a bigger matrix whose first 9 rows are rows of the genera-

tor matrix GM of C2, and the second 9 rows are the rows of the matrix GM*ω

and the last 9 rows are from GM*ω.

Algorithm 1 Multiplying C2 by ω and ω2

A 9 × 18 generator matrix of C2: GM := GeneratorMatrix(C2) A 27 ×
18 matrix GMlongi in [1 . . . 9] temp1[i] ← ω∗GM[i] temp2[i] ← ω2∗GM[i]

GMlong[i]←GM[i] GMlong[i+ 9]←temp1[i] GMlong[i+ 18]←temp2[i]

We use the following function to separate a quaternary matrix into two binary

matrices such that A+ ωB = C for binary matrices A and B, quaternary matrix

52

C.

function AF4toF2(codeword)

V := VectorSpace(GF(2),18);

ets := [ElementToSequence(codeword[i]) : i in [1..18]];

return V![ets[i][1] : i in [1..18]];

end function;

function BF4toF2(codeword)

V := VectorSpace(GF(2),18);

ets := [ElementToSequence(codeword[i]) : i in [1..18]];

return V![ets[i][2] : i in [1..18]];

end function;

where codeword is the rows of matrices.

Algorithm 2 Separation of the matrix GMlong as A+ ωB =GMlong

The 27 × 18 matrix GMlong The 27 × 18 matrices A,B where

A + ωB =GMlongi in [1 . . . 27] A[i] ← AF4toF2(GMlong[i]) B[i] ←
BF4toF2(GMlong[i])

We use σ(A) and σ(B) with some permutations found by using the function Ran-

dom of Magma.

Algorithm 3 Permutation on the matrices A and B

The matrices A and B, any permutation σ from Random(Sym(18)) The

two permuted matrices σ(A) and σ(B)k in [1 . . . 27] σ(A)[k]← A[k]σ σ(B)[k]←
B[k]σ

53

The(x+ a | x+ b | x+ a+ b) construction is done with the following algorithm.

Algorithm 4 The (x+ a | x+ b | x+ a+ b) construction

The generator matrix of C1, GM2 and σ(A), σ(B)A generator matrix G of

the code constructed by cubic construction i in [1 . . . 9] j in [1 . . . 27] m in

[1 . . . 18] G[27 ∗ (i − 1) + j,m] ← GM2[i,m] + σ(A)[j,m] G[27 ∗ (i −
1) + j,m + 18] ← GM2[i,m] + σ(B)[j,m] G[27 ∗ (i − 1) + j,m + 36] ←
GM2[i,m] + σ(A)[j,m] + σ(B)[j,m]

With the function of Magma LinearCode(G), we get the code C. Then with

the function MinimumWeight(C), we learn minimum weight, so minimum dis-

tance. We searched the codes with minimum distance 10 among all codes. And

among this codes, we tried to find some codes with weight enumerator W1 and

β 6= 0, 3, 6, 9 and with W2 and β 6= 12, 15, 18 since they are found before [5].

Consequently, after this process we found two codes with weight enumerator W1

and β = 12 and 15. They are given in Chapter 6.

54

Appendix B

SOME ALGEBRA

B.1 Group

Definition B.1.1 [9] A group is a set G together with a binary operation ∗ on

G such that the following three properties hold:

1) ∗ is associative; that is, for all a, b, c in G,

a ∗ (b ∗ c) = (a ∗ b) ∗ c;

2) There is an identity element e in G such that for all a in G

a ∗ e = e ∗ a = a;

3) For each a ∈ G, there exists an inverse element ga−1 ∈ G such that

a ∗ a−1 = a−1 ∗ a = e.

If the group also satisfies

4) For all a, b ∈ G,

a ∗ b = b ∗ a,

then the group is called abelian (or commutative).

B.2 Ring

Definition B.2.1 [9] A ring (R,+, ·) is a set R, together with two binary oper-

ations, denoted by + and · such that:

55

1) R is an abelian group with respect to +.

2) · is associative-that is, (a · b) · c = a · (b · c) for all a, b, c ∈ R.

3) The distributive laws hold; that is, for all a, b, c ∈ R we have a·(b+c) = a·b+a·c
and (b+ c) · a = b · a+ c · a.

Definition B.2.2 [9]

1) A ring is called a ring with identity if the ring has multiplicative identity-that

is, if there is an element e such that ae = ea = a for all a ∈ R.

2) A ring is called commutative if · is commutative.

3) A ring is called an integral domain if it is commutative ring with identity e 6= 0

in which ab = 0 implies a = 0 or b = 0.

4) A ring is called a division ring (or skew field) if the nonzero elements of R for

a group under ·.
5) A commutative division ring is called a field.

Definition B.2.3 [9] A subset S of a ring R is called a subring of R provided

S is closed under + and · and forms a ring under these operations.

B.3 Ideal

Definition B.3.1 [9] A subset J of a ring R is called an ideal provided J is a

subring of R and for all a ∈ J and r ∈ R we have ar ∈ J and ra ∈ J .

56

REFERENCES

[1] J. Baylis, Error Correcting Codes A Mathematical Introduction, Chapman
and Hall Mathematics, 1998.

[2] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley
Publishing Company, 1984.

[3] A. Bonnecaze, A.D. Bracco, S.T. Dougherty, L.R. Nochefranca, P. Solé, Cu-
bic self-dual binary codes, IEEE Trans. Inform. Theory., vol. 49, no. 9, pp.
2253-2259, Sep. 2003.

[4] S. Bouyuklieva, N. Yankov, J.-L. Kim, Classification of binary self-dual
[48, 24, 10] codes with an automorphism of odd prime order, Finite Fields
and Their Appl., vol. 18, no. 6, pp. 1104-1113, 2012

[5] S. Han, J.-L. Kim, H. Lee and Y. Lee, Construction of quasi-cyclic self-dual
codes, Finite Fields and Their Appl., vol. 18, no. 3, pp. 613-633, 2012.

[6] R. Hill, A First Course in Coding Theory, Clarendon Press, Oxford, 1986.

[7] W.C. Huffman, V. Pless, Fundamentals of Error-correcting Codes, Cam-
bridge University Press, Cambridge, 2003.

[8] J.-L. Kim, Y. Lee, Euclidean and Hermitian self-dual MDS codes over large
finite fields, J. Combin. Theory Ser. A. vol. 105, pp. 79-95, 2004.

[9] R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley Publishing Company,
1983

[10] S. Ling, P. Solé, On the algebraic structure of quasi-cyclic codes I, Finite
fields IEEE Trans. Inform. Theory. vol. 47, pp. 2751-2760, 2001.

[11] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes,
Amsterdam, The Netherlands, North-Holland, 1977.

[12] A.Munemasa,
http://www.math.is.tohoku.ac.jp/∼munemasa/research/codes/sd2.html

[13] http://www.coursehero.com/file/6259603/CHAPTER-03-Cyclic-codes.pdf

[14] http://www-math.ucdenver.edu/ wcherowi/courses/m5410/codingintro.pdf

[15] http://www.cs.cmu.edu/ venkatg/teaching/codingtheory/notes/notes1.pdf

[16] http://www.neng.usu.edu/classes/ece/7670/lecture5.pdf

57

[17] V. Pless, A classification of self-orthogonal codes over GF(2), Discrete Math.,
vol. 3, pp. 209-246, 1972.

[18] E. Rains and N.J.A. Sloane, Self-dual codes, in Handbook of Coding Theory,
V.S. Pless and W.C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier,
1998.

58

