
ANALYSIS OF BOOLEAN FUNCTIONS WITH RESPECT TO WALSH
SPECTRUM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDENER UYAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

SEPTEMBER 2013

Approval of the thesis:

ANALYSIS OF BOOLEAN FUNCTIONS WITH RESPECT TO
WALSH SPECTRUM

submitted by ERDENER UYAN in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Department of Cryptography,
Middle East Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doǧanaksoy
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Assoc. Prof. Dr. Ali Doǧanaksoy
Department of Mathematics, METU

Prof. Dr. Ferruh Özbudak
Department of Mathematics, METU

Assist. Prof. Dr. Zülfükar Saygı
Department of Mathematics, TOBB ETU

Dr. Fatih Sulak
Department of Mathematics, Atılım University

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: ERDENER UYAN

Signature :

v

vi

ABSTRACT

ANALYSIS OF BOOLEAN FUNCTIONS WITH RESPECT TO WALSH
SPECTRUM

Uyan, Erdener

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doǧanaksoy

September 2013, 60 pages

Boolean functions appear in various scientific disciplines including coding theory,
combinatorics, complexity theory, cryptography, graph theory, etc. In cryptogra-
phy, the design and analysis of Boolean functions possessing a range of crypto-
graphic characteristics has often been the focus of attention. A productive ground
of research for most of these cryptographic characteristics is Walsh spectrum, one
of the most common representations of a Boolean function. This thesis presents
an analysis of Boolean functions with respect to Walsh spectrum. The research
is mainly devoted to the problem of determining the existence, construction and
enumeration of n-variable Boolean functions having an arbitrary value, ω, appear-
ing a certain number of times, s, in their Walsh spectrum. The thesis develops a
new framework for the solution of this problem with parameters n, ω and s. Com-
plete classification of Boolean functions of up to 6-variables is obtained within
this framework. In higher dimensions, proof of existence by construction, several
explicit formulas and bounds for various ω and s values are devised. On the other
hand, the use of affine equivalence and the local connectivity is discussed. A new
affine invariant property and an algorithm for computing the sizes of equivalence
classes are introduced.

Keywords : Boolean functions, Walsh spectrum, spectral distribution, counting,
affine equivalence

vii

viii

ÖZ

BOOLE FONKSİYONLARININ WALSH SPEKTRUMLARINA GÖRE
ANALİZİ

Uyan, Erdener

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doǧanaksoy

Eylül 2013, 60 sayfa

Boole fonksiyonları kodlama teorisi, kombinatorik, karmaşıklık teorisi, kriptografi,
çizge kuramı vs. gibi çeşitli bilimsel disiplinlerde ortaya çıkmaktadır. Krip-
tografide, kriptografik karakteristik çeşitliliǧi içeren Boole fonksiyonlarının tasarım
ve analizi sık sık ilgi odaǧı olmuştur. Bu kriptografik karakteristiklerin çoǧu için
verimli bir araştırma alanı, Boole fonksiyonlarının en sık rastlanan gösterimlerinden
biri olan Walsh spektrumdur. Bu tez Boole fonksiyonlarının Walsh spektruma
göre bir analizini sunmaktadır. Araştırma temel olarak Walsh spektrumunda be-
lirli bir s sayısı kadar gözüken rastgele bir ω deǧerine sahip n deǧişkenli Boole
fonksiyonlarının varlıǧı, yapılandırılması ve sayılmasının belirlenmesi problemine
adanmıştır. Tez bu problemin çözümü için n, w ve s parametreleriyle yeni bir
çerçeve geliştirmektedir. Bu çerçeve dahilinde 6 deǧişkene kadar Boole fonksiyon-
larının tam sınıflandırılması elde edilmiştir. Daha yüksek boyutlarda, yapılandırma
yöntemiyle ispat, birkaç açık formül ve sınır bulunmuştur. Diǧer taraftan, afin
denkliǧin kullanılması ve lokal baǧlantısallık ele alınmıştır. Yeni bir afin deǧişmez
ve denklik sınıflarının boyutlarını hesaplamak için bir algoritma sunulmuştur.

Anahtar Kelimeler : Boole fonksiyonlar, Walsh spektrum, spektral daǧılım, sayma,
afin denklik

ix

x

To My Family

xi

xii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Assoc. Prof. Dr. Ali Doǧanaksoy
for supervising this thesis.

I also want to thank Dr. Çaǧdaş Çalık for his academic collaboration as well as
his friendship during the whole process.

I wish to express my sincere appreciation to Assist. Prof. Dr. Zülfükar Saygı,
Dr. Elif Yıldırım Saygı, Dr. A. Nurdan Saran, thesis committee members: Prof.
Dr. Ferruh Özbudak and Prof. Dr. Ersan Akyıldız, and all friends at METU
Institute of Applied Mathematics for their valuable contributions and feedback.

I also would like to thank administrative and academic staff of METU Depart-
ment of Modern Languages for their support throughout my undergraduate and
graduate studies.

I am deeply grateful to Aycan Yılmaz for her patience, help, encouragement and
being with me all the way.

Last but not the least, I am happy to thank my dear family for their endless
support, love and understanding.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF FIGURES . xix

LIST OF TABLES . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 General Overview . 1

1.2 Motivation . 3

1.3 Outline of the Thesis . 3

2 PRELIMINARIES . 5

2.1 Introduction . 5

2.2 Boolean Functions . 5

3 ANALYSIS OF BOOLEAN FUNCTIONSWITH SPECIFIED VAL-
UES IN WALSH SPECTRUM . 11

3.1 Introduction . 11

3.2 Problem . 11

3.3 Framework . 12

xv

3.4 Previous works in literature 13

3.5 Results . 13

4 ANALYSIS OF BOOLEAN FUNCTIONS WITH RESPECT TO
WALSH SPECTRUM USING EQUIVALENCE CLASSES 21

4.1 Introduction . 21

4.2 Affine Transformations and Equivalence Classes 21

4.3 Invariant Properties . 22

4.4 FDT6 . 23

4.5 Local Connectivity . 27

4.6 A New Invariant Property 28

4.7 Class Connection Digraphs 28

4.8 The Size of Equivalence Classes 32

4.9 Algorithm . 36

4.10 Complexity Analysis of the Algorithm 38

4.11 Conclusion . 39

5 CONCLUSION . 41

5.1 Thesis Summary . 41

5.2 Contributions of the Thesis 41

5.3 Further Study . 42

REFERENCES . 45

APPENDICES

A Function Distribution Tables . 49

B Algorithms . 55

xvi

CURRICULUM VITAE . 59

xvii

xviii

LIST OF FIGURES

Figure 2.1 Fast Walsh transform for Boolean functions of 3 variables . . . 8

Figure 3.1 Functions at 2n−2 distance to affine functions. 18

Figure 4.1 Class connection diagram for n = 4 29

Figure 4.2 Class connection digraph for B4 30

Figure 4.3 Class connection digraph for B5 31

Figure 4.4 Two nodes from a class connection digraph 34

Figure 4.5 Structure between two connected classes 34

xix

xx

LIST OF TABLES

Table 2.1 Addition and multiplication tables in F2 5

Table 2.2 Sum and product of two 2-variable Boolean functions 6

Table 3.1 Function distribution table template 12

Table 3.2 Number of s values generated by Proposition 3.8 using S5 . . . 16

Table 3.3 FDTn . 20

Table 4.1 Number of equivalence classes for small values of n. [38] 22

Table 4.2 Number of s values generated by Proposition 3.8 using S6 . . . 26

Table 4.3 Number of functions for each nonlinearity value 26

Table 4.4 Complexity of Algortihm 4.2 with respect to n 38

Table 4.5 Minimum cost of finding class sizes with respect to n 39

Table A.1 FDT1 . 49

Table A.2 FDT2 . 49

Table A.3 FDT3 . 49

Table A.4 FDT4 . 50

Table A.5 FDT5, |ω| ≤ 16 . 50

Table A.6 FDT5, |ω| ≥ 18 . 51

Table A.7 FDT6, |ω| ≤ 6 . 51

Table A.8 FDT6, 8 ≤ |ω| ≤ 14 . 52

Table A.9 FDT6, 16 ≤ |ω| ≤ 22 . 52

Table A.10FDT6, 24 ≤ |ω| ≤ 30 . 53

Table A.11FDT6, |ω|>32 † . 53

xxi

xxii

CHAPTER 1

INTRODUCTION

1.1 General Overview

Cryptography offers a variety of scientific research areas, each of which possess
its unique set of problems. In most of these areas, especially those related to
symmetric-key cryptographic systems, it is often a common practice to make use
of Boolean functions to devise, express and solve these problems.

Boolean functions, also known as switching functions are named after the En-
glish mathematician George Boole (1815-1864). In 1854 with his publication of
“An Investigation into the Laws of Thought”[3], Boole investigated the reason-
ing processes of the mind in mathematical language and he, in most simplistic
terms, symbolized logic in terms of a new algebra. However, it was not before
1938, when Shannon employed this algebra in his paper “A symbolic analysis
of relay and switching circuits”[35], that the theory of Boolean functions got its
fame. Today, Boolean functions are studied in various scientific disciplines such
as coding theory, combinatorics, computational complexity theory, cryptography,
graph theory, information theory, logic synthesis and switching circuit theory.

In cryptography, Boolean functions are seen as the most fundamental and prac-
ticed components of cryptographic systems. Researchers have been studying the
design and analysis of Boolean functions for a very long time now. The present
state into which cryptography has evolved through that time is shaped consider-
ably by these studies. Synthesizing and analyzing Boolean functions that possess
a range of cryptographic properties has been the primary focus of research for
cryptography. Day in, day out, several algorithms and constructions to generate
desirable Boolean functions are proposed or improved. This is in fact accompa-
nied by the continuous progress in the development of cryptanalysis techniques,
which force the designers to use better choices of Boolean functions to be used in
ciphers.

Boolean functions are simply mappings that output 0 or 1 for each n-bit input.
They are often assessed with, but not limited to, the following main cryptographic
features; balancedness, algebraic degree, nonlinearity, correlation immunity, al-
gebraic immunity and propagation criteria. In order a function to be balanced,

1

it should produce each of its outputs in equal number of times. A balanced
Boolean function can avoid being statistically distinguishable. Furthermore, at-
tacks like the linear cryptanalysis [24] impose Boolean functions to have high
nonlinearity,– the minimum distance to the set of affine functions. As for the
correlation immunity, it was introduced by Siegenthaler in correlation attacks
[36][37], as a measure of the correlation between a function’s outputs and some
subset of its inputs. Functions with high correlation immunity have many ap-
plications in key stream generation process of stream ciphers. Apart from that,
algebraic attacks [11], introduced by Courtois and Meier, brought the concept of
algebraic immunity into discussion. Functions with high algebraic immunity and
high algebraic degree are expected to resist these type of attacks. Finally, the
propagation criterion of degree p (PC(p)), introduced by Preneel [31], is satisfied
when the output of a Boolean function changes with probability of one half when-
ever i (1 ≤ i ≤ p) input bits are complemented. PC(p) is essential to analyze the
behavior of a Boolean function when inputs are modified and PC(p) of higher
degrees is required to prevent lower approximation type of attacks.

On the other hand, these expected features usually conflict with each other. For
instance, a function with even number of inputs can not be both balanced and
of maximum nonlinearity, or a function of maximal algebraic immunity can not
have algebraic degree greater than half of the number of inputs. Likewise, a
function satisfying high correlation immunity may still possess a linear structure.
Therefore, a ‘balance’ must be achieved between these desirable but incompatible
features. In other words, it is a challenge to determine the existence or to con-
struct Boolean functions involving a good combination of these properties that
can be used safely in cryptographic systems. Some of the constructions for such
functions can be seen in the publications of Carlet et al. [7][8], Limniotis et al.
[19], Sarkar and Maitra [33].

Counting Boolean functions with predetermined parameters is also an interesting
challenge. Not only it gives an idea about the success ratio of choosing these
functions by random search, but it also provides the ability to see whether the
functions used in a cryptographic system are chosen from a set of large cardinality.
Besides, it enables to determine the effect of setting extra conditions on the chosen
function type by observing the changes in the number of suitable functions.

There are several ways to represent a Boolean function such as truth table, alge-
braic normal form and Walsh spectrum being the most common ones. The most
informative representation about cryptographic features is in fact its Walsh spec-
trum, a vector of coefficients obtained by the Walsh-Hadamard transform. Other
than being able to compute balancedness, nonlinearity and correlation immunity
directly, exploring new characteristics of Walsh spectrum can be employed to
solve more problems of constructing, verifying and enumerating Boolean func-
tions having properties such as resiliency, as studied in [10] and [23], or algebraic
immunity as studied in [8]. It can also help to obtain new bounds on perfectly
balanced Boolean functions as shown in [20]. All of those works emphasize the
importance of finding relations among the Walsh coefficients. Thus, it is necessary
to investigate this highly interesting area of study in cryptography further.

2

1.2 Motivation

There are various open problems regarding the existence, construction and enu-
meration of Boolean functions possessing certain cryptographic features (cf.[30]).
Especially, the problems of counting Boolean functions that meet specified crite-
ria has often taken a considerable amount of attention in cryptography, mainly
because of its importance in defining and setting the boundaries for their search
space. Finding the number of functions having maximum nonlinearity for even
number of inputs, known as bent functions, or counting maximum nonlinear bal-
anced Boolean functions are such two important open problems.

However, solving these open problems is quite hard. This is primarily due to
their computational complexity cost. When the number of variables increases, the
size of the whole Boolean function set expands double exponentially. Thus, their
analysis require huge amount of computational resources, exceeding the capability
of today’s computers. The time required to solve these types of computational
complexity problems can be reduced either using high computational resources
or better algorithms. It would be much better to have both, however, the focus
should be on the latter,– to be able to discover better techniques and algorithms
that lead to faster solutions.

The main objective of this thesis is to develop algorithms and techniques to
determine the existence, to construct and to enumerate Boolean functions having
an arbitrary value appearing a certain number of times in their Walsh spectrum.

This research is developed based on these motivations and has the following con-
tributions to the existing literature. First of all, the existence of Boolean functions
with s many zeros in the Walsh spectrum for some s is shown by providing a con-
struction by concatenation method. Exact distributions of Boolean functions of
up to 6 variables with respect to Walsh coefficients are given. Several other results
and bounds, obtained by exploiting the Parseval’s Equation, affine classes, local
connectivity and other combinatorial observations are also presented. Moreover,
a new invariant property beneficial for testing affine equivalence is introduced.
Using this invariant, a new enumeration algorithm that counts the number of
functions in an affine equivalence class is presented.

1.3 Outline of the Thesis

The thesis is divided into five chapters including this introduction chapter.

In Chapter 2, notations and definitions about Boolean functions that will be
frequently used throughout the thesis are provided. Representations of Boolean
functions, namely truth table, algebraic normal form and Walsh spectrum are
discussed in details.

The details of the problems of interest are defined and a mathematical framework

3

is constructed in Chapter 3. Also, previous works on Walsh coefficients and
nonlinearity are discussed within this framework and our further findings are
explained in this chapter.

Chapter 4 contains the improvement of the solution to the main problem in
Chapter 3 by using the idea of affine equivalence. Moreover, a new invariant
property, which can be used for testing equivalence of functions, is introduced
and then used for a new algorithm to count the number of functions in an affine
class.

Chapter 5 concludes the thesis by summarizing the work, identifying the contri-
butions and providing suggestions for further research.

4

CHAPTER 2

PRELIMINARIES

2.1 Introduction

This chapter provides a review of the background material necessary to follow
this thesis. Representations of Boolean functions, namely the truth table, alge-
braic normal form and the Walsh spectrum will be given. The Walsh-Hadamard
transform and its famous speed-up algorithm, the Fast Walsh transform will be
explained.

2.2 Boolean Functions

Finite Field F2 and Boolean function

The finite field consisting of only two elements 0 and 1 is denoted by F2. Two
operations defined on this field are addition modulo 2, denoted by ⊕, and multi-
plication modulo 2, denoted by ·, which may be omitted for simplicity. Addition
and multiplication tables are as follows.

Table 2.1: Addition and multiplication tables in F2

⊕ 0 1 · 0 1
0 0 1 0 0 0
1 1 0 0 0 1

The n-dimensional vector space over F2 is Fn
2 . Let α, x ∈ Fn

2 , then α · x is the
inner product of vectors in Fn

2 .

An element α = (α0, α1, · · · , αn−1) of Fn
2 can be identified with an integer modulo

2n by

α̃ =
n−1�

i=0

αi2
n−i−1.

5

This identification provides the ordering of the vectors in Fn
2 with respect to

their corresponding integer values, called the lexicographic ordering, i.e. 0̃ � 1̃ �

2̃ � · · · � ˜2n − 1. Note that the tilde symbol will be omitted where there is no
ambiguity.

A Boolean function is a mapping from Fn
2 to F2. There are 2n elements in Fn

2 ;
hence the set of n-variable Boolean functions, denoted by Bn has cardinality 22

n
.

Truth Table and Polarity Truth Table

The vector [f(0̃), f(1̃), · · · , f(˜2n − 1)] is called the truth table of a Boolean func-
tion f , that is basically listing all outputs of f with respect to the lexicographic
ordering of its inputs.

The vector [(−1)f(0̃), (−1)f(1̃), · · · , (−1)f(˜2n−1)] is called the polarity truth table of
f . It is also shown by (−1)f , or equivalently 1− 2f .

The support of f is the set Ωf = {α ∈ Fn
2 | f(α) = 1} and the weight of f , wt(f),

is the cardinality of the support, i.e. wt(f) = |Ωf |.

The sum of two Boolean functions f and g is the function corresponding to the
sum of truth table values of f and g.

Table 2.2: Sum and product of two 2-variable Boolean functions

f g f ⊕ g f · g
0 0 0 0
1 1 0 1
1 0 1 0
1 1 0 1

The distance between two Boolean functions, denoted by d(f, g) is the weight of
their sum.

d(f, g) = wt(f ⊕ g)

The distance between a Boolean function f and a set of functions S is

d(f, S) = ming∈S{wt(f ⊕ g)}

Algebraic Normal Form and Algebraic Degree

Another representation of a Boolean function is a polynomial in the quotient
ring F2 [x0, ..., xn−1] /(x2

0 − x0, ..., x2
n−1 − xn−1), called the algebraic normal form

(ANF), shown as below.

f(x) = f(x0, · · · , xn−1) = c⊕
�

0≤i≤n−1

aixi ⊕
�

0≤i<j≤n−1

aijxixj ⊕ · · · ⊕ a01...n−1x0x1...xn−1,

where c, ai ∈ F2.

6

The size of the largest product term in ANF of f is called the algebraic degree,
or simply the degree of f , and is denoted by deg(f).

ANF is crucial primarily for the computation of algebraic degree and truth ta-
ble can be transformed to the algebraic normal form by means of the following
transform easily.

Let f be the truth table of a Boolean function. Then,

ANFf = f · An,

where An = A1 ⊗ An−1 for n>1 and A1 =

�
1 1
0 1

�
.

Here, ⊗ stands for the kronecker product which is defined for m × n matrix
A = (aij) and p×q matrix B = (bij) as themp×nq matrix made up ofm×n blocks
where the (i, j) block is aijB, which is p × q submatrix obtained by multiplying
each entry of B with aij.

The set of Boolean functions of degree less than or equal to r for 0 ≤ r ≤ n is
associated with the rth-order Reed-Muller code RM(r, n) in coding theory, i.e.
RM(r, n) = {f(x) | f(x) ∈ Bn, deg(f) ≤ r}. RM(0, n) is the repetition code
consisting of only all ones and all zeros vector, i.e. RM(0, n) = {0, 1}. On the
other hand, RM(−1, n) is accepted to be the zero codeword, i.e. RM(−1, n) =
{0}. The quotient set, denoted by RM(r, n)/RM(s, n), refers to the set {f(x) +
RM(s, n) | s<deg(f) ≤ r}, or equivalently all cosets of RM(s, n) in R(r, n).

Affine and Linear Boolean Functions

A Boolean function f(x) of degree at most one is called an affine function. ANF
of f is as follows

f(x) = l · x⊕ c = l0x0 ⊕ l1x1 ⊕ · · · ⊕ ln−1xn−1 ⊕ c ,

where c ∈ F2 and l ∈ Fn
2 . An affine function with the constant term c = 0 is

called a linear function. The functions f(x) = 0 or f(x) = 1, is called a constant
function. The set of all n-variable affine (linear) functions is denoted by An (Ln).
It can be observed that |An|=2 · |Ln| = 2n+1.

Walsh-Hadamard Transform and Walsh Spectrum

One of the essential tools to study Boolean functions is the Walsh-Hadamard
transform, which is defined for an n-variable Boolean function f as

Wf (α) =
�

x∈Fn
2

(−1)f(x)⊕α·x , α ∈ Fn
2 . (2.1)

The vector [Wf (0̃),Wf (1̃), ...,Wf (˜2n − 1)] is called the Walsh spectrum (WS) of
a Boolean function f , respectively. Each component Wf (α) of a Walsh spectrum

7

is called a Walsh coefficient, whose magnitude indicates the correlation between
f and the corresponding linear function.

Fast Walsh Transform

Walsh-Hadamard transform is performed faster by a butterfly type algorithm
called Fast Walsh transform (FWT). The transformation from truth table to the
Walsh spectrum can be done by FWT with O(n2n) complexity [34]. In order
to do so, the truth table is first converted to the polarity truth table. At each
step i, 2n−i consecutive blocks of length 2i are processed. First half of the block
elements is added to the other half of the block and form the first half of the
block in the next step. For the other half of the next step, the second half of the
current block is subtracted from the first half of the block.

Figure 2.1 demonstrates an example of FWT on 3-variable Boolean functions,
where [x0 x1 · · · x7] is the polarity truth table of a Booelan function f and at
the end of third step the Walsh spectrum in terms of xi’s is given.

Figure 2.1: Fast Walsh transform for Boolean functions of 3 variables

Remark 2.1. Due to the recursive structure of FWT, Walsh spectra of 2n−i

Boolean functions of i-variable are formed at the end of ith step of FWT (i ≤ n).
This makes constructions by concatenation possible.

8

Nonlinearity

Nonlinearity of a Boolean function is the minimum distance of a Boolean function
f to the set of all affine functions.

nl(f) = d(f,An) (2.2)

The nonlinearity of f can be computed from the Walsh spectrum by

nl(f) = 2n−1
−

1

2
maxα∈Fn

2
{|Wf (α)|}. (2.3)

Since nonlinearity is a measure of distance, its minimum value can be 0 and it
is clear from 2.2 that nl(f) = 0 if and only if f is an affine function. In order
to compute the maximum value of nonlinearity, the following fact, the Parseval
identity, is used.

Fact 2.1. [21] Parseval Identity:

�

α∈Fn
2

Wf (α)
2 = 22n (2.4)

To maximize nl(f), maxα∈Fn
2
{|Wf (α)|} value must be minimum possible. Since

there are 2n Walsh coefficients, each coefficient can be
�

22n

2n = ±2
n
2 according to

2.4. Therefore, the maximum nonlinearity can be nl(f) = 2n−1 − 2
n
2−1, which is

in fact possible if n is even.

Definition 2.1. [32][12] A Boolean function f ∈ Bn is called a bent function, if
Wf (α) = ±2

n
2 for all α ∈ Fn

2

Maximal nonlinearity is hence attained by bent functions. However, bent func-
tions only exist when n is even.

9

10

CHAPTER 3

ANALYSIS OF BOOLEAN FUNCTIONS WITH
SPECIFIED VALUES IN WALSH SPECTRUM

3.1 Introduction

This chapter presents our initial analysis on existence and enumeration of Boolean
functions with specified values in their Walsh spectrum. The main problem of
interest is discussed with a concise framework of parameters. Afterwards, the
results obtained for several instances of these parameters are given. Finally, the
chapter ends with a table of results. The work described here is based on the
results of the publication “Counting Boolean functions with specified values in
their Walsh spectrum” [40].

3.2 Problem

Our study on determining the existence and enumeration of the Boolean functions
with specified number of Walsh values is initiated from the problem C3 in [30].
It asks whether there exists a Boolean function whose Walsh spectrum contains
a specified number of zeros.

Problem 3.1. (C3[30]) Given an integer s, is there a function f ∈ Bn such that
#{α ∈ Fn

2 | Wf (α) = 0} = s?

This problem can be generalized by introducing a variable ω denoting a Walsh
coefficient value and transforming the decision problem to a counting problem
by asking the number of n-variable Boolean functions, whose Walsh spectrum
contains a specified number s of a specified Walsh coefficient ω, exist in Bn.

Problem 3.2. Given integers s and ω, how many functions f exist in Bn such that
#{α ∈ Fn

2 | |Wf (α)| = ω} = s?

It should be noted that ω is the absolute value of a Walsh coefficient. This
assumption has been made because the nonlinearity of a Boolean function is
directly related to the magnitude of the coefficients in its Walsh spectrum. Thus,
the sign of Wf (α) is omitted, and Walsh coefficients are considered with their

11

absolute values throughout the rest of the paper. Another advantage of omitting
the signs is that the distribution of absolute values of Walsh spectrum remains
invariant under affine transformations, which will be discussed in Chapter 4.

Problem 3.2 is important in the sense that it contains the distribution problem
of the nonlinearities, or equivalently the weight distribution of first-order Reed-
Muller codes. It is also related to the open problem of determining the number
of bent functions in general and provides the classification and enumeration of
Boolean functions in Bn with respect to their Walsh spectrum values. In order to
follow a systematic approach, we first form a precise mathematical framework.

3.3 Framework

The variables involved in solution instances of Problem 3.2 are n,s and ω. Hence,
the solutions are parametrized with respect to the 3-tuple (n,s,ω).

Definition 3.1. Let n,s and ω be nonnegative integers with n ≥ 1 and ω, s ≤ 2n.
We denote the set of Boolean functions such that #{α ∈ Fn

2 | |Wf (α)| = ω} = s
with S(n, s, ω).

Definition 3.2. A function distribution table of Bn (FDTn) is a table whose
entry at sthrow and ωthcolumn denotes the number of n-variable Boolean func-
tions having Walsh coefficient ω appearing exactly s times in their Walsh spec-
trum.

The column headers of an FDT are the Walsh coefficients |Wf (a)| considered
as absolute values, whereas rows correspond to the number s of times a Walsh
coefficient ω is observed in the Walsh spectrum of a function f ∈ Bn. The
template for FDTn is given in Table 3.1.

Table 3.1: Function distribution table template

s \ ω 0† 2 4 ... 2n/2(n-even) ... 2n−1 ... 2n−k ... 2n − 4 2n − 2 2n

0
1 Υ
2
*
*
*

2n − 2
2n − 1 Υ
2n ... ϑ

(† Column pertaining to Problem 3.1)

Example 3.1. S(n, 2n − 1, 0) = S(n, 1, 2n) = An is the set of affine functions in
Bn. So Υ = |An| = 2n+1 in Table 3.1.

12

Example 3.2. S(n, 2n, 2n/2) is defined for even values of n and corresponds to
the set of bent functions in Bn. The cardinality ϑ of this set is known only up to
n = 8 ([32], [18]).

Remark 3.1. A function f ∈ Bn is counted in exactly one entry of each column
of FDTn. Thus, the sum of each column corresponds to |Bn| = 22

n
.

Remark 3.2. Let FDT+
n be FDTn without the row s = 0. Then, a function f ∈ Bn

is counted in r different entries of FDT+
n , where r is the number of distinct Walsh

coefficients (up to absolute values) in its spectrum.

3.4 Previous works in literature

The existence of Boolean functions with t nonzero Walsh coefficients, for particu-
lar values of t, was studied in [26] and [27]. These studies are related to S(n, s, 0)
for s = 2n − t in the context of this paper

In [26], Pei and Qin showed that |S(n, s, 0)| = 0 for t = 2, 3, 5, 6 and 7, where
also the existence, i.e. |S(n, s, 0)|>0, for t = 4 and t = 8 was shown by providing
a construction for these parameters. However, there is no study concerning the
number of those functions. On the other hand, in [27], Porwik gave the exact

values of |S(n, 0, 0)| and
2n�

s=1

|S(n, s, 0)| up to n = 5, by exhaustive search.

In [9], Carlet and Mesnager gave a construction for a class of Boolean functions
having a single zero in their Walsh spectrum for (n ≥ 10). This class belongs to
the set S(n, 1, 0) and the work proves that |S(n, 1, 0)| �= 0 for (n ≥ 10).

Finally, Wu in [42] gave the distribution of Boolean functions with nonlinearity
nl(f) ≤ 2n−2. This is similar to finding |S(n, s, ω)| for all s and n such that
ω ≥ 2n−1 in our context.

3.5 Results

This section covers the results that have been obtained as our partial solutions
to Problem 3.2. The results are partitioned into distinct cases of solution sets
S(n, s, ω).

3.5.1 S(n, s, ω) for all s and ω such that n ≤ 5

An exhaustive search on n-variable Boolean functions for n ≤ 5 is performed in
order to find S(n, s, ω) for all s and ω. The results of these computations are
compiled to form the corresponding FDT, all of which can be found in Appendix
A.

13

Exhaustive search is infeasible for n ≥ 6 as Bn grows exponentially in n. In order
to find S(n, s, ω) for n = 6, we will use the idea of affine equivalence in Chapter
4. However, our aim at this point is to understand the general case by spotting
particular solutions for larger values of n by utilizing the following facts.

Fact 3.3. One bit change in truth table of a Boolean function f adds ±2 to each
component of WS(f).

Fact 3.4. For any α ∈ Fn
2 , Wf (α) ≡ 0 (mod 4), if wt(f) is even and Wf (α) ≡ 2

(mod 4) otherwise.

Fact 3.5. The distance between two affine functions, whose sum is non-constant,
is 2n−1.

Fact 3.6. The weight of the product of two affine functions, whose sum is non-
constant, is 2n−2.

3.5.2 S(n, s, ω) for all s and n such that ω>2n−1

In [42], it is shown that the number of Boolean functions with nonlinearity nl(f)

is 2n+1
�
2n

nl(f)

�
for nl(f)<2n−2. Here, we obtain this result with an alternative

self-contained approach that we also benefit for proving other results such as the
propositions 3.10 and 3.12.

Proposition 3.7. Let ω = 2n − 2k such that k<2n−2. Then, |S(n, 1, ω)| =
2n+1

�
2n
k

�
and |S(n, s, ω)| = 0 for all s>1.

Proof. k<2n−2 ⇒ ω>2n−1. In order to count the functions in corresponding
S(n, s, ω), we start from affine Boolean functions and consider consecutive bit-
flips in the truth tables of these functions. It is well known that affine functions
contain (2n − 1) 0’s and a single ±2n in their Walsh spectrum (see Example 3.1).
These functions are located in the rightmost column of FDTn. Using Fact 2.1, it
is clear that S(n, s, ω) = 0 for s>1 in that column. So the proposition holds for
S(n, s, 2n).

On the other hand, Fact 3.3 implies that a single bit change in the truth table of
an affine function produces 2n new functions with their largest Walsh coefficient
values changing to ±(2n − 2) and 0’s being changed to ±2. If we continue to
flip truth table bits, we can go up to the point where magnitudes of changed 0’s
and 2n collide. Fact 3.5 implies that this collision occurs at (2

n−1

2 = 2n−2). Until
that point, k bit changes in the truth table of an affine function results in

�
2n
k

�

different functions at k distance to the starting affine function. This produces
2n+1

�
2n
k

�
functions that have the Walsh coefficient ω = 2n − 2k in their Walsh

spectrum.

Moreover, up to the point where changed 0’s and 2n collide, i.e. k = 2n−2, the
ones produced from 2n stay single as none of the 0’s reach their magnitude yet. In
other words, for ω>2n−1 and s>1, |S(n, s, ω)| = 0, since the number of changed
bits is less than 2n−2.

14

This result gives the exact number of n-variable Boolean functions for the right
half of FDTn, i.e. for the values of |S(n, s, ω)| for all s and n such that ω>2n−1.
The case where ω = 2n−1 will be discussed in Proposition 3.12.

3.5.3 S(n, s, ω) for all n and for some s such that ω = 0

In this section, the existence of elements in S(n, s, 0), applicable to all n but
limited to some s values, is proved by the following proposition.

Proposition 3.8. Let Sm be defined as the set consisting of the values s such
that |S(m, s, 0)|>0. Let ζ ∈ Sm and η ∈ Sm\{2m − 1}. Then, for all n ≥ m+ 1

i. ζ̃ = ζ +
n−m−1�

i=0

2i+m
∈ Sn

ii. η̃ = η · 2n−m ∈ Sn

Proof. The following constructions prove the existence of such ζ̃ and η̃ in Sn:

i. Step 1. Concatenate the Walsh Spectrum of a Boolean function WS(f) to
itself for an arbitrary f ∈ Bn−1, and obtain the vector [WS(f)�WS(f)].
Step 2. Apply the last step of the Fast Walsh transform [34], i.e. compute
FWT n([WS(f)�WS(f)]).
The output is a new Walsh spectrum in nth dimension having 2n−1 more
zeroes than WS(f).

ii. If the procedure in (i) is applied to any WS(f) such that f /∈ An−1 by
concatenating it to the Walsh spectrum of an affine Boolean function l ∈

An−1, the result is a Walsh spectrum with the number of zeros doubled.

Note that while choosing η, the value 2m − 1 is excluded from Sm since it
corresponds to affine functions. Concatenation of two affine functions clearly
cannot result in doubling of the s value, but a new spectrum with either
2n − 1 or 2n − 4 zero Walsh values.

Using s = 0 column of FDT5, it is known that

S5 = {4, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 22, 24, 28, 31} .

Once, ζ̃ and η̃ values are obtained for all ζ and η in S5 by the above constructions,
a subset

S̃6 = {8, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 38,

39, 40, 41, 42, 43, 44, 46, 48, 51, 54, 56, 60, 63}

15

of S6 is formed. Similarly, S̃6 can now be employed to produce a subset for S7.
Therefore, both procedures should be used recursively and in combination to
obtain new functions having ζ̃ and η̃ zeroes in their Walsh spectrum for higher
values of n. Table 3.2 shows the number of s values generated this way and the
percentages taken with respect to 2n, number of all possible s values. Later, this
result will be improved according to FDT6 values in Chapter 4.

Table 3.2: Number of s values generated by Proposition 3.8 using S5

n Number of all s (2n) #s generated Percentage |Sn|

5 32 15 46.88% (15/32) 15
6 64 25 39.06% (25/64) unknown†

7 128 51 39.84% (51/128) unknown
8 256 69 26.95%(69/256) unknown
9 512 87 16.99% (87/512) unknown
† This number is going to be known in Table 4.2

3.5.4 Other Results

Proposition 3.9. Let σ = 22n

ω2 . Then |S(n, s, w)| = 0 for ω>2n/2 and s>σ.

Proof. Let WS(f) = [Wf (α0),Wf (α1), ...,Wf (ασ),Wf (ασ+1), ...,Wf (α2n−1)] be
a Walsh spectrum containing the value ω maximum number of times, say σ.
Without loss of generality assume that the first σ values are ω. Then using 2.1,

σω2 + (Wf (ασ+1)
2 + ...+Wf (α2n−1)

2) = 22n

⇔ σω2
≤ 22n ⇔ σ ≤

22n

ω2

Thus, σ is an upper bound for the maximum possible s value of a Walsh coefficient
ω in a Walsh spectrum. Since σ = 2n when ω = 2n/2 (for even n), the proposition
provides a bound for all ω>2n/2, which covers a significant number of columns of
FDTn.

Definition 3.3. A multiset M is a generalization of a set, in which repetition
of the same element is allowed. Number of occurrences of an element m in M is
called its multiplicity, denoted by µ(m).

Proposition 3.10. Let the multiset of all Walsh coefficients of all functions in
Bn be denoted by Wn, which has cardinality 22

n+n. Let 0 �= |Wf (α)| = ω ∈ Wn,
then the multiplicity of ω is

µ(ω) = 2n+1

�
2n

2n−1 + ω
2

�
, (3.1)

and µ(0) = 2n
�

2n

2n−1

�
.

16

Proof. Fix an arbitrary a ∈ Fn
2 . Then, Wf (α) = ω if and only if f is at distance

2n−1 + w
2 to the linear function α · x. The number of such functions is

�
2n

2n−1+ω
2

�
,

which can be obtained by making 2n−1 + ω
2 changes to TT of the linear function

a · x. Also, Wf (α) = −w occurs when the number of changes is 2n−1 −
ω
2 .

Since
�

2n

2n−1+ω
2

�
=

�
2n

2n−1−ω
2

�
, the number of Boolean functions with |Wf (α)| = ω

is 2
�

2n

2n−1+ω
2

�
. This fact holds for any α ∈ Fn

2 , so the total number of Walsh

coefficient ω in Wn is 2n+1.
�

2n

2n−1+ω
2

�
.

For ω = 0, similar reasoning holds. However, multiplicity is counted twice since
ω = −ω in this case. So the total number should be halved for µ(0).

Corollary 3.11. Let the header column of FDTn be the vector S, i.e. S =
[1, 2, · · · , 2n], and the column corresponding to an arbitrary ω be denoted by Ω.
Then,

µ(ω) = S · Ω

Proof. This is clear from the definition of FDTn(ω) and µ(ω).

Definition 3.4. Let f, g ∈ Bn. f is called the complement of g or vice versa if
f ⊕ g = 1. A set of Boolean functions is called complement-free if no two of
its elements are complements of each other .

Proposition 3.12. Let ω = 2n−1. Then,

i. |S(n, s, ω)| = 0 for s ≥ 5

ii. |S(n, 4, ω)| = 2
�
2n
3

�

iii. |S(n, 3, ω)| = 0

iv. |S(n, 2, ω)| = Ψ

v. |S(n, 1, ω)| = Φ

vi. |S(n, 0, ω)| = 22
n
− [Φ + Ψ + 2

�
2n
3

�
],

where Φ = µ(ω)−
�
2β + 4 · 2

�
2n
3

��
and Ψ =

��
2n+1

2

�
− 2n

� �
2n−1

2n−2

�
−
�
4
3

�
2
�
2n
3

�
.

Proof. A Walsh spectrum containing ω = 2n−1 can only be obtained by making
2n−2 changes to the truth table of an affine function. Therefore, we are interested
in the number of functions produced in this way. Since the distance between two
complement-free affine functions is 2n−1, a function can be obtained from more
than one affine function. In order for two affine functions to meet at the same
function, the changes must be done to the bits that differ in their truth tables.
So,

�
2n−1

2n−2

�
functions, which are at distance 2n−2 to both of these affine functions

can be produced.

17

Given two complement-free affine functions f1 and f2, a third one f3 can be chosen
so that all three can meet at a Boolean function g that is at 2n−2 distance to all.
For this to happen, there should be 2n−2 truth table positions in which f2 and f3
agree and f1 does not. These positions correspond to the support of the function
(f1 + f2)(f1 + f3), whose weight is 2n−2 from Fact 3.6. Hence, when these 2n−2

positions are changed in f1, the resulting function gets 2n−2 many bits closer to
both f2 and f3. After this point, g can be transformed to f2 and f3 by making
2n−2 changes.

Now, we will show that when the affine functions f1, f2, f3 meet at a function g,
a fourth one f4 always exists and is of the form f4 = f1 + f2 + f3 + 1, which is
also at distance 2n−2 to g. The existence of the fourth function can be justified
by showing that there are 2n−2 truth table positions, in which f1, f2 and f3
agree and f4 does not. These positions correspond to the support of the function
(f1 + f2 + 1)(f1 + f3 + 1), whose weight is also 2n−2. When the truth tables of
f1, f2, f3 agree at a point, f4 has the complement of their values at that point.
Because, when f1 = f2 = f3 = 0, f4 becomes 1 and when f1 = f2 = f3 = 1, f4
becomes 0. Note that g is in fact f1f2+f1f3+f2f3, since g+f1 = (f1+f2)(f1+f3),
g + f2 = (f1 + f2)(f2 + f3), g + f3 = (f1 + f3)(f2 + f3) and g + f4 = (f1 + f2 +
1)(f1+f3+1) are all products of two affine functions and have weights 2n−2 (Fact
3.6).

Thus, the inevitable existence of the fourth function proves that there exist no
functions in S(n, 3, ω); hence (iii) is proven.

The number of cases when four affine functions produce the same function is the
number of complement-free four-tuples {f1, f2, f3, f4} such that f4 = f1 + f2 +
f3 + 1. Since f4 is determined by f1, f2, f3, it is enough to choose first three
functions. So, f1 is chosen from 2n+1 affine functions in 2n+1 ways. f2 is chosen
in (2n+1 − 2) ways from all affine functions excluding f1 and f1 ⊕ 1. f3 is chosen
in (2n+1 − 4) ways from all affine functions excluding f1, f2, f1 ⊕ 1 and f2 ⊕ 1.
This makes 2n+1(2n+1 − 2)(2n+1 − 4) ways to choose f1, f2 and f3. However, we
should divide this number by 4, since each quadruple of functions {f1, f2, f3, f4}
is counted 4 times with this method. Moreover, depending on the choice of order
of the first three functions, it should also be divided by 3!, which makes

2n+1(2n+1 − 2)(2n+1 − 4)

4 · 3!
=

2n+1(2n − 1)(2n − 2)

3!
= 2

�
2n

3

�

Thus, (ii) is proven.

f1 f1 f2f1 f2 f3 f4

g1 g2 g3

Figure 3.1: Functions at 2n−2 distance to affine functions.

18

Recall that
�
2n−1

2n−2

�
functions can be produced that are at distance 2n−2 to two

affine functions. Two complement-free affine functions can be chosen in
�
2n+1

2

�
−2n

ways. This makes
��

2n+1

2

�
− 2n

� �
2n−1

2n−2

�
new functions in total. In order to count

the functions produced by exactly two affine functions, those generated by four
affine functions must be subtracted. Such functions are counted

�
4
2

�
= 6 times.

Therefore, excluding them we have
��

2n+1

2

�
− 2n

� �
2n−1

2n−2

�
−

�
4
2

�
2
�
2n

3

�
functions in

S(n, 2, ω). Hence, (iv) is proven.

The number of functions that are at 2n−2 distance to exactly one affine function
can be found using Corollary 3.11.

µ(ω) = |S(n, 1, ω)|+ 2|S(n, 2, ω)|+ 4|S(n, 4, ω)|

⇒ |S(n, 1, ω)| = µ(ω)− 2|S(n, 2, ω)| − 4|S(n, 4, ω)|

Thus, case (v) is computed. The last case (vi) is the number of remaining func-
tions in Bn.

Proposition 3.13. Let n ≥ 2.

|S(n, 0, 2)| ≥ 22
n−1,

where the equality holds only for 2 ≤ n ≤ 5.

Proof. This is equivalent to proving that
2n�

s=1

|S(n, s, 2)| ≤ 22
n−1, namely the num-

ber of functions having 2 in WS. By Fact 2.1, if there exists a Walsh coefficient

ωi>
�

22n

2n = 2n/2, then there must be at least one ωj<2n/2. Moreover, using Fact

3.4, we know that for n-variable functions having odd weight with 2 ≤ n ≤ 5, the
only Walsh coefficient value ω satisfying ω<2n/2 and ω ≡ 2 (mod 4) is 2, since
2n/2<6 for 2 ≤ n ≤ 5. In other words, functions having 2 in WS are exactly the
odd weight Boolean functions, which in total makes 22

n−1 functions.

For n ≥ 6, there exist functions with 2<ω<2n/2 and ω ≡ 2 (mod 4), since
2n/2>6, thus keeping the number of |S(n, 0, 2)| below the number of all odd
weight functions.

19

Table 3.3: FDTn

�����s
|ω|

0 2 ... 2n/2

(even-n)
... 2n−1(3.12)[42] 2n − 2k (0 ≤ k<2n−2) (3.7) [42]

0 ? ≥ 22
n−1

(3.13)
.... ? 22

n
−

�
Φ + Ψ + 2

�
2n
3

��
22

n
− 2n+1

�
2n

k

�

1 # [9] ? ... ? ... Φ 2n+1
�
2n

k

�

2 ? ? ... ? ... Ψ 0

3 ? ? ... ? ... 0 0

4 ? ? ... ? ... 2
�
2n
3

�
0

. ? ? ... ? ... 0 0

ŝ ∈ Sn
(3.8)

#
(3.8)

? ... ? ... 0 0

. ? ? ... ? ... 0 0

σ (3.9) ? ? ? #
(3.9)

0 0

. ? ? ? 0 0 0

2n − 7 0 [26] ? ... ? 0 0 0

2n − 6 0 [26] ? ... ? 0 0 0

2n − 5 0 [26] ? ... ? 0 0 0

2n − 4 2
�
2n
3

�

(3.12)

? ... ? 0 0 0

2n − 3 0 [26] 0 ... ? 0 0 0

2n − 2 0 [26] 0 ... ? 0 0 0

2n − 1 2n+1 2n+12n ... 0 0 0 0

2n 0 0 0 ϑ (n = 8
[18])

0 0 0

µ(ω)(3.10) 2n
�

2n

2n−1

�
2n+1

�
2n

2n−1+ω
2

�

Φ = µ(ω) −
�
2β + 4

�
2n
3

��
, Ψ =

��
2n+1
2

�
− 2n

��
2n−1

2n−2

�
−

�
4
3

�
2
�
2n
3

�

20

CHAPTER 4

ANALYSIS OF BOOLEAN FUNCTIONS WITH
RESPECT TO WALSH SPECTRUM USING

EQUIVALENCE CLASSES

4.1 Introduction

This chapter contains the utilization of equivalence classes to improve results in
Chapter 3. Firstly, the importance of affine transformations, various facts and
known affine invariant properties are going to be explained. After this prelimi-
nary information, construction of FDT6, included in [41], will be explained. A
new invariant property that can be used for testing equivalence of functions will
be introduced. This property will then be used as the core of a counting algo-
rithm that gives the number of functions in an equivalence class. The algorithm
developed in this chapter is the first known systematic algorithm to quantify this
number.

4.2 Affine Transformations and Equivalence Classes

Given the fact that Bn contains 22
n
functions, it isn’t manageable to analyze

each function even for relatively small values of n. This bound is as small as 6
due to today’s computation limits. In other words, B6 is not small enough to
be able to list all of its elements. Therefore, a convenient method would be to
partition this large set into equivalence classes by defining a suitable equivalence
relation. Choosing representatives for each class, this large set can be reduced to
the number of classes which makes the analysis easier. The most commonly used
equivalence relation is the affine transformations defined as follows.

Definition 4.1. A mapping Bn → Bn, g �→ f such that

f(x) = g(Ax⊕ a)⊕ bx⊕ c ,

where A is a nonsingular binary n× n matrix, a, b ∈ Fn
2 and c ∈ F2, is called an

affine transformation.

21

This definition states that an affine transformation is a composition of a linear
mapping, Fn

2 → Fn
2 , i.e.Ax, a variable complementation, i.e. x⊕ a, and an affine

shift, i.e. g(x)⊕ bx⊕ c. Applying all possible affine transformations to a Boolean
function produces a class of Boolean functions that possess similar characteristics,
which will be discussed in Section 4.3.

Definition 4.2. Two Boolean functions f and g are called affine equivalent if
there exists an affine transformation from f to g. Moreover, such f and g are
said to be in the same equivalence class.

Equivalence is also generalized in terms of Reed-Muller codes as follows.

Definition 4.3. Two Boolean functions f, g ∈ RM(r, n)/RM(s, n) are called
equivalent over RM(s, n) if there exists a nonsingular binary n×n matrix A and
a ∈ Fn

2 such that f(x) = g(Ax⊕ a) mod RM(s, n).

The case s = 1 corresponds to the definition of affine equivalence (Def. 4.2),
since RM(1, n) contains only affine functions. If s = 0, then b = 0, i.e. f(x) =
g(Ax⊕a)⊕ c, and the functions f and g are said to be equivalent over RM(0, n).
If the functions are equivalent over RM(−1, n), i.e. s = −1, then b and c are
both 0.

Complete classification for Bn with respect to equivalence classes is known only
up to n = 6, whereas only the total number[16] and classes in RM(3, 7)/RM(1, 7)
[5] is known for n = 7. Table 4.1 shows the number of equivalence classes of Bn.

Table 4.1: Number of equivalence classes for small values of n. [38]

n Number of classes

1 1
2 2
3 3
4 8
5 48 [2]
6 150357 [22]
7 63379147320777408548 [16]

4.3 Invariant Properties

Many cryptographic properties are invariant under affine transformations such as
nonlinearity, algebraic degree, algebraic immunity, or more importantly for this
study, the frequency distribution of absolute values of Walsh coefficients. In [6],
Braeken et al. surveys the invariant properties in details. Below, we give the
definition of “invariant” and state the invariant properties relevant to our study.

22

Definition 4.4. A mapping M from RM(r, n)/R(s, n) to a set is called an
invariant of R(r, n)/R(s, n), if for any two equivalent functions f(x), g(x) ∈

R(r, n)/R(s, n), M(f) = M(g) holds.

Proposition 4.1. ([28] 8.3) For two equivalent functions f and g such that
f(x) = g(Ax⊕ a)⊕ bx⊕ c, i.e. equivalent over RM(1, n),

Wf (w) = (−1)(w⊕b)A−1a⊕cWg((w ⊕ b)A−1). (4.1)

Proof.

Wf (w) =
�

w∈Fn
2

(−1)f(x)⊕wx =
�

(−1)g(Ax⊕a)⊕bx⊕c⊕wx

Substituting (w ⊕ b) with w� and (Ax⊕ a) with x�,

Wf (w
�
⊕ b) =

�
(−1)g(x

�)⊕w�A−1(x�⊕a)⊕c

Now, substituting (w�A−1) with w��,

Wf (w
��A⊕ b) =

�
(−1)g(x

�)⊕w��x�⊕w��a⊕c = (−1)w
��a⊕cWg(w

��)

Finally, changing (w��A + b) back to w and replacing w�� with (w ⊕ b)A−1, the
result is obtained.

Remark 4.1. Proposition 4.1 implies that the absolute value of Walsh coefficient
of f(x) at w is equal to the absolute value of Walsh coefficient of g(x) at v such
that w = Av ⊕ b. Since A is a nonsingular binary matrix, the distribution of
the absolute values of their Walsh spectrum will be equivalent. As a result, any
other property derived from the Walsh spectrum like nonlinearity will be affine
invariant.

4.4 FDT6

Equivalence classes under affine transformations have been studied in many works
dating back to 1960s [14][15]. The number of equivalence classes for the whole
set of Bn was counted up to n = 6. In 1991, Maiorana [22] discovered 150357
equivalence classes in B6. This classification was later confirmed by the works of
Braeken et. al. [5], Fuller [13], and Langevin [17]. Based on Remark 4.1, we are
ready to complete the function distribution table of dimension 6. We used the
data, specifically the representative and the cardinality of each class from [17] to
create FDT6 (see Definition 3.2) by a new algorithm (see Algorithm 4.1).

In this algorithm, we mainly input the representatives and cardinalities of each
of 150357 equivalence class, compute the frequency distributions of the Walsh co-
efficients and add up the cardinalities according to these frequency distributions.

23

Algorithm 4.1 Complete FDT6 for ω <32
Input: (f1, c1), (f2, c2), ..., (f150357, c150357) � Representatives and cardinalities of

equivalence classes in B6

Output: FDT6

ω ← 0

for s ← 0, 26 do � Initialize the table

while ω ≤ 26 do

FDT6[s][ω] ← 0

ω ← ω + 2

end while

end for

for i ← 1, 150357 do � Main loop

WalshSpectrumi ← abs(WHT (fi))

(U,C) ← CountUnique(WalshSpectrumi) � see Algorithm B.1

for j ← 1, length(U) do

if U [j] <32 then

FDT6[C(j)][U(j)] ← FDT6[C(j)][U(j)] + ci

end if

end for

end for

return FDT6

24

The algorithm contains a CountUnique function, which is a procedure that
gives unique elements and counts their occurrences from an input vector. This
procedure has been given in Algortihm B.1.

In order to simplify numbers obtained by this algorithm, we define the normalized
versions of |S(n, s, ω)| and FDTn to be as follows.

• |S(n, s, ω)| = |S(n,s,ω)|
2n+1

• FDTn is the normalized function distribution table of Bn such that its (s, ω)
entry contains |S(n, s, ω)|.

Note that, these definitions are appropriate since bx⊕ c part in the definition of
affine equivalence contributes 2n+1 times for all functions in an equivalence class
as b ∈ Fn

2 and c ∈ F2. In other words, all |S(n, s, ω)| values are divisible by 2n+1.

The output of Algorithm 4.1 is also given as FDT6 in Appendix A. In order to
ease the readability, the table is divided into four parts and shortened. One of
the important values of this table is the one corresponding to (s, ω) = (64, 8)
entry, which is 42 386 176, the number of 6-variable bent functions modulo affine
functions (i.e. RM(1, 6)).

Proposition 3.8 Revisited

Using FDT6, the number of s values generated by Proposition 3.8 can be updated.
It is now known that

S6 = {s | 2 ≤ s ≤ 44 or s ∈ {46, 48, 51, 54, 56, 60, 63}}.

Using the proposition, a subset S̃7 of S7 can be constructed.

{4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50,

52, 54, 56, 58, 60, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,

101, 102, 103, 104, 105, 106, 107, 108, 110, 112, 115, 118, 120, 124, 127} ⊂ S7

Recall that, the numbers in this subset show that there exists Boolean functions
having that many zeros in their Walsh spectra. Using this subset, one can proceed
recursively and generate s values for higher dimensions. Table 4.2 shows the
number of s values generated this way and the percentages taken with respect
to 2n, number of all possible s values. Compared to the cardinality of the set
generated for S7 using S5 (see Table 3.2) , there is approximately 59%(81−51

51)
increase in the number of generated s.

25

Table 4.2: Number of s values generated by Proposition 3.8 using S6

n Number of all s (2n) #s generated Percentage |Sn|

5 32 - - 15
6 64 50 78.13% (50/64) 50
7 128 81 63.28% (81/128) unknown
8 256 112 43.75% (112/256) unknown
9 512 143 27.93% (143/512) unknown
10 1024 174 16.99% (174/1024) unknown

Number of Functions for each Nonlinearity in B6

Using the same data and a similar algorithm (Alg. B.2), a modified version of
the Algorithm 4.1, we were able to obtain a survey on the number of functions
for each level of nonlinearity, which was also given in [13] based on the Remark
4.1.

The output of Algorithm B.2 is shown as Table 4.3, which has been ordered from
the highest nonlinearity level of 28 to the lowest 0 value. Note that, the counts
below the nonlinearity 16 are equal to the values in s = 1 column of Table A.11.
This is basically due to the fact that there is a single Walsh value in this part of
FDTn, which is maximal in the spectrum.

Table 4.3: Number of functions for each nonlinearity value

nl(f) # f

28 5425430528
27 347227553792
26 1617838297055232
25 103868560519987200
24 1305039828998603264
23 3821934098435833856
22 5097726702198767616
21 4011570131804454912
20 2291582136636334080
19 1087405010755682304
18 458313050588725248
17 176395152249028608
16 62526600834171264
15 20418431982428160
14 6125529594728448
13 1681517927964672
12 420379481991168
11 95180260073472
10 19388571496448
9 3525194817536
8 566549167104
7 79515672576
6 9596719104
5 975937536
4 81328128
3 5332992
2 258048
1 8192
0 128

26

4.5 Local Connectivity

In 2003, Joanne Fuller constructed a new method of analyzing the effect of affine
transformations with respect to their local connection neighborhood [13]. A sum-
mary of this approach is given below.

Definition 4.5. For a function f(x) ∈ Bn, the family of 1-local connection func-
tions, or simply 1-local neighborhood is defined by the functions

fα(x) =

�
f(x), x �= α

f(x)⊕ 1, x = α
, α = 0, 1, · · · , 2n − 1

This definition can be rephrased in terms of ANFs as follows.

Definition 4.6. For a function f(x) ∈ Bn, define its (1-local) connection func-
tions as

fα(x) = f(x) + ρα(x),

where ρα(x) ∈ {(x0 + α0)(x1 + α1) · · · (xn + αn)|α = (α0, α1, · · · , αn) ∈ Fn
2}

It is clear that 1-local neighborhood of a function f consists of 2n functions fα,
α ∈ Fn

2 , such that d(f, fα) = 1. According to Definition 4.6, it is also seen that
all connection functions of f have different algebraic degree than f , since ρα is
always of degree n. As algebraic degree is an affine invariant property, different
algebraic degrees imply non-equivalence of f with any of the fα’s. Thus, fα’s
belong to different equivalence classes than f . In other terms, fα’s connect f to
at least one and at most 2n distinct equivalence classes. The foremost result of
this structure is the following proposition.

Proposition 4.2. Let f and g be two equivalent functions such that g(x) =
f(Ax ⊕ a) ⊕ bx ⊕ c and let fα be a 1-local connection function of f , then there
exist a 1-local connection function gβ of g such that gβ(x) = fα(Ax⊕ a)⊕ bx⊕ c,
β = A−1(α⊕ a) and α = Aβ + a.

Proof.

fα(x) =

�
f(x), x �= α

f(x)⊕ 1, x = α
⇒

fα(Ax+ a)⊕ bx⊕ c =

�
f(Ax⊕ a)⊕ bx⊕ c, (Ax⊕ a) �= α

f(Ax⊕ a)⊕ bx⊕ c⊕ 1, (Ax⊕ a) = α
⇒

fα(Ax+ a)⊕ bx⊕ c =

�
g(x), x �= (A−1(α⊕ a))

g(x)⊕ 1, x = (A−1(α⊕ a))

Without loss of generality, let (A−1(α ⊕ a)) = β. Thus, fα(Ax + a) ⊕ bx ⊕ c is
equivalent to gβ such that β = (A−1(α⊕ a)) and α = Aβ + a.

27

The main consequence of this result due to the non-singularity ofA is the following
corollary.

Corollary 4.3. Let f and g be two equivalent Boolean functions. Then the 1-local
neighborhood of f and g are composed of functions of same classes.

4.6 A New Invariant Property

Corollary 4.3 establishes that the set of 2n connection functions is invariant. Here,
we propose another invariant based on this invariance.

Proposition 4.4. Let f and g be two equivalent Boolean functions. Then the
number of functions connecting f and g to any class in their 1-local neighborhood
is the same.

Proof. This is also a direct consequence of Proposition 4.2, since the proposition
ensures that for each connection function fα of f , there exists a connection func-
tion for g, say gβ, which is equivalent to fα. f and g belong to the same class,
while fα and gβ belong to another class in 1-local neighborhood.

The complement statement of this proposition can be employed to test two func-
tions for equivalence.

Corollary 4.5. For two Boolean functions f and g, if the counts of 1-local con-
nection functions, which connect them to the same equivalence class, are different,
f and g cannot be equivalent.

Assume that the equivalence classes, where two arbitrary Boolean functions f
and g reside, is connected to k and l distinct classes respectively. Let Lf =
{r1, r2, · · · , rk} and Lg = {t1, t2, · · · , tl} be the lists of number of connections
of f and g to their neighboring classes. Corollary 4.5 ensures that if k �= l or
Lf �≡ Lg then f and g cannot be equal.

4.7 Class Connection Digraphs

Fuller explains the importance of the local connectivity with the following words.

“The connectivity relationships that exist between equivalent functions provide a
unique perspective of the inherent structure that exists between the classes. Given
a single function from any class, we can effectively determine its position with
respect to all other classes.”.[13]

In the same work, in order to reflect this inherent structure, the local connec-
tivity was represented visually by class connection diagrams based on the fact
that any two equivalent functions will have the same connecting classes. In these

28

diagrams, each equivalence class is displayed as a single node and there is an edge
between ‘connected’ classes. For Boolean functions of 4-variables the correspond-
ing diagram is given in Figure 4.1.

Figure 4.1: Class connection diagram for n = 4

We enrich the class connection diagram by adding the number of connection
functions going in and out of each node (equivalence class), and thus convert the
diagram to a directed graph, simply digraph.

Definition 4.7. Class connection digraph of Bn is a directed and weighted graph
of equivalence classes in Bn, where the number of connection functions are as-
signed to the directed edges.

Figure 4.2 and Figure 4.3 are the class connection digraphs of B4 and B5 respec-
tively. Note that the sum of the weights directed out of each node adds up to 2n,
i.e. the number of total connecting functions. Moreover, the nodes are positioned
according to the nonlinearity of the corresponding class, starting from 0,- the root
node of affine class, and proceeding in ascending order. Thus, there are classes
with maximal nonlinearity, e.g. bent classes for even n values, at the bottom of
these digraphs.

In order to find the weights of the edges, we combine two invariant properties
which allow us to distinguish between connection functions. These two are the
distribution of absolute values of Walsh spectrum and the invariant proposed by

29

Figure 4.2: Class connection digraph for B4

30

Figure 4.3: Class connection digraph for B5

31

Corollary 4.5. We compute a row of numbers by concatenating these two data
that represent an equivalence class.

Recall from graph theory [1] that the depth of a node is the length of the path
from the root to that node. The root node is at depth zero. The set of all nodes
at a given depth is called a level.

Nodes in class connection digraphs are named with respect to the appearance of
each new distinct distribution of absolute values of Walsh spectrum. For instance,
WS05 represents the 5th different Walsh spectrum distribution. On the other
hand, small letter suffixes like a,b,c as in Figure 4.3 imply a different equivalence
class with the same distribution. As can be seen in the figures, there are 8 and
40 distinct distributions for B4, B5 respectively. On the other hand, the numbers
written in parenthesis inside each node correspond to the size of that equivalence
class up to affine functions, i.e. mod RM(1, n).

4.8 The Size of Equivalence Classes

In Section 4.4, FDT6 is computed using the representatives and cardinalities of
all equivalence classes in B6. It is in fact a challenging task to obtain these data
for higher dimension even if it is not possible to list all classes even for n = 7 (see
Table 4.1). However, fixing the algebraic degree or aiming at particular classes
(e.g. bent functions) can be enough to be able to complete more cells in FDTn.
In this section, we focus on the calculation of class sizes for a given representative
of that class.

Class Connection Digraphs induce an interesting and simple way to compute the
size of equivalence classes. Before going into details about this computation, a
brief review of the previous works is given below.

In previous works on equivalence classes [22][28], the size of each class is obtained
as a byproduct during the classification phases. It is usually noted to be found
by a computer program that applies affine transformations of variables until the
equivalence classes are exhausted.

In [13], self mapping analysis was proposed to be able to count the number of
functions in an equivalence class. An affine transformation that relates a Boolean
function to itself is called a self mapping of f . Using this analysis, the following
formula was found.

Proposition 4.6. For f ∈ Bn of equivalence class C(f) with θ self mappings, the
number of functions in C(f) is computed by

|C(f)| =
T

θ
,

32

where T is the total number of distinct affine transformations, i.e.

T = 22n+1
n−1�

i=0

(2n − 2i)

Since there is not any explicit formula for the number of self mappings, this
formula still depends on the classification algorithms that produce this number.
Though, the naive interval for the number of self mappings θ of a Boolean function

f is given to be 1 ≤ θ ≤
22n+1 �n−1

i=0 (2n−2i)
2n+1 , derived simply from the trivial class

sizes.

In [5], a formula for the number of functions in an equivalence class C(f) possess-
ing a p-property is given.

Np = KC(f)
�

f∈R

Bf .

where Bf is the number of proper bases in the zero sets of f with respect to

p-property, R is a representative coset and KC(f) =
2n!|C(f)|�n−1
i=0 (2n−2i)

.

The size of the class C(f) is a variable in this formula and to obtain it, the values
Np and Bf should be known beforehand, for which a direct computation is not
known.

In conclusion, none of the previous works included a method for direct computa-
tion of the size of an equivalence classes. We will now explain a method for doing
this.

In Figure 4.2 and Figure 4.3, it can be observed that the size of the classes written
inside parenthesis for each node follows a combinatorial pattern. These numbers
can be obtained by dividing the product of the incoming edge weights by the
product of the outgoing edge weights on the path from the root node to the node
of interest.

Proposition 4.7. Let Ci and Cj be two nodes in a class connection digraph rep-
resenting two equivalence classes having Ni and Nj number of functions. Let the
weight of the edge directed from Ci to Cj be x and the weight of the opposite edge
be y. Then,

Nj =
x

y
Ni. (4.2)

Proof. The proof of this proposition requires a combinatorial observation. Figure
4.4 shows two arbitrary nodes Ci and Cj connected as stated in the proposition.

The weight x represents the number of connection functions which transfer each
function of class Ci to class Cj. Thus, for each function in class Ci, x functions
are produced making a total of xNi functions that belong to Cj. However, these
functions can include multiple instances of same functions. In other words, a
group of functions from class Ci connect with same functions in class Cj. Due

33

x y

Ci

Cj

Figure 4.4: Two nodes from a class connection digraph

to the symmetry in 1-local neighborhood of each function of class Ci given by
Corollary 4.3, xNi

Nj
functions of class Ci meet at the same function in class Cj.

Similarly, for each function in class Cj, y functions are produced, which makes a
total of yNj functions. This implies that yNj

Ni
functions of class Cj meet at the

same function in class Ci.

Ci

Cj

· · · Ni functions

Nj functions

xNi
Nj

yNj

Ni

yNj

Ni

yNj

Ni

xNi
Nj

xNi
Nj

· · ·

Figure 4.5: Structure between two connected classes

Thinking in reverse, these numbers mean that for each function in Ci, there are
yNj

Ni
functions produced in Cj and for each function in Cj, there are xNi

Nj
functions

produced in Ci. As a result, group of xNi
Nj

functions in Ci matches with a group of
yNj

Ni
functions in Ci (see Figure 4.5). Equating the number of groups, the following

equality is found.

Ni
xNi
Nj

=
Nj
yNj

Ni

⇒ Nj =
x

y
Ni.

This proposition is better understood when seen as the conservation of total
number of connection functions between two connecting classes as Equation 4.2
implies

y ·Nj = x ·Ni.

34

Corollary 4.8. Let a Boolean function f with nonlinearity nl(f) belong to an
equivalence class C(f). Let IWf = {i1, i2, · · · , inl(f)} and OWf = {o1, o2, · · · , onl(f)}
be the lists of weights of incoming and outgoing edges on a path of minimum length
from the root node to the node of C(f). Then the size of the equivalence class of
f is found by

|C(f)| = 2n+1

nl(f)�

j=1

ij
oj

Proof. This is a successive use of the Proposition 4.7 on a path, which starts with
the well-known class of 2n+1 affine functions.

Example 4.1. Assume that the number of bent functions in B4 is needed. There
is only one equivalence class, say Cb(f), representing bent functions in this set
and it is shown by ‘WS08’ in Figure 4.2. Let f be a representative bent function
in this class. Then, IWf = {16, 15, 14, 12, 8, 1} and OWf = {1, 2, 3, 8, 15, 16}.
Thus,

|Cb(f)| = 25 ·
16 · 15 · 14 · 12 · 8 · 1

1 · 2 · 3 · 8 · 15 · 16
= 896

Example 4.2. Let us find the number of functions in the class denoted by ‘WS11’
in Figure 4.3. It can be seen from the class connection digraph that there are
three paths of minimum length that start with the root node and end at ‘WS11’.

1. WS01 → WS02 → WS03 → WS04 → WS05 → WS07 → WS11

2. WS01 → WS02 → WS03 → WS04 → WS06 → WS07 → WS11

3. WS01 → WS02 → WS03 → WS04 → WS06 → WS08 → WS11

Listing the weights and applying the formula for each case, the followings are
obtained.

1. IWf = {32, 31, 30, 1, 28, 24} and OWf = {1, 2, 3, 4, 1, 2}.

64 ·
32 · 31 · 30 · 1 · 28 · 24

1 · 2 · 3 · 4 · 1 · 2
= 64 · 416640 = 26664960

2. IWf = {32, 31, 30, 28, 4, 24} and OWf = {1, 2, 3, 4, 4, 2}.

64 ·
32 · 31 · 30 · 28 · 4 · 24

1 · 2 · 3 · 4 · 4 · 2
= 64 · 416640 = 26664960

3. IWf = {32, 31, 30, 28, 24, 10} and OWf = {1, 2, 3, 4, 5, 4}.

64 ·
32 · 31 · 30 · 28 · 24 · 10

1 · 2 · 3 · 4 · 5 · 4
= 64 · 416640 = 26664960

35

Remark 4.2. Instead of starting from the root node, the path in Corollary 4.8
can start from any class with known number of functions. Moreover, since the
numbers in opposite directions would cancel out, it is not necessary to choose the
shortest path, if one desires to find the number of functions as quick as possible.

Example 4.3. Assume that the number of functions in the equivalence class, rep-
resented by ‘WS39a’ in Figure 4.3 is given beforehand to be 868 (mod RM(1, n))
and the number of functions in the equivalence class ‘WS39b’ that has the same
distribution of absolute values of Walsh spectrum is needed. Then, out of many
paths connecting these two classes, two of them and the corresponding computa-
tion of the class size are as follows.

WS39a → WS37a → WS35a → WS37b → WS39b (the shortest path)

868 ·
32 · 30 · 12 · 1

1 · 2 · 3 · 32
= 52080

WS39a → WS37a → WS31 → WS27 → WS33b → WS37b

→ WS40 → WS38 → WS35b → WS37b → WS39b

868 ·
32 · 1 · 30 · 12 · 4 · 1 · 24 · 12 · 4 · 1

1 · 2 · 1 · 4 · 3 · 8 · 3 · 2 · 24 · 32
= 52080

Recall that, a factor of 2n+1 should be kept in mind for the actual values of class
sizes since the numbers in parenthesis are actual values divided by 2n+1.

Remark 4.3. Note that the size of each class contained in the chosen paths are
included in the computation.

Example 4.4. Take the shortest path in Example 4.3 for instance. The size of
‘WS39a’ is assumed to be known already.

i. Size of ’WS39b’: 868 · 32·30·12·1
1·2·3·32 = 52080

ii. Size of ‘WS37b’: 868 · 32·30·12
1·2·3 = 1666560

iii. Size of ‘WS35a’: 868 · 32·30
1·2 = 416640

iv. Size of ‘WS37a’: 868 · 32
1 = 27776

4.9 Algorithm

Corollay 4.8 allows to derive an algorithm to find the number of functions in any
equivalence class. The pseudocode of this algorithm is presented below. Unless
otherwise stated, f refers to the truth table of a Boolean function f .

36

Algorithm 4.2 CountEquivalentFunctions(f)
Input: f ∈ Bn

Output: Number of functions affine equivalent to f

l ← FindClosestAffine(f) � see Algorithm B.3

c ← l ⊕ f � vector of bits to flip in f

while c �= 0 do � until all 1 bits in c has been flipped

ftemp ← f

i ← find(c, 1) � locate first occurrence of 1 in c

c[i] ← 0 � change this 1 to 0 in c

f [i] ← f [i]⊕ 1 � making f closer to l in each loop

CurrentRow ← ComputeRow(ftemp)

NextRow ← ComputeRow(f) � see Algorithm B.4

Weightsin ← Weightsin ∪ {FindEdgeWeight(f, CurrentRow)}

Weightsout ← Weightsout ∪ {FindEdgeWeight(ftemp, NextRow)} � B.7

end while

Productin ← Product(Weightsin)

Productout ← Product(Weightsout) � multiply all elements in the list

return 2n+1 · Productin/Productout

37

4.10 Complexity Analysis of the Algorithm

The structure of Algorithm 4.2 allows its complexity to be calculated easily. First
of all, the main while loop is processed nl(f) times. Since nonlinearity is maxi-
mum for bent functions, this main loop can repeat 2n−1 − 2n/2−1 times at most.
Main loop calls only two sub-algorithms, ComputeRow (Alg. B.4) and Find-
EdgeWeight (Alg. B.7), both of which are called twice.

The first sub-algorithmComputeRow contains a single FWT andGetAllEdge
Weights functions. The most costly part is the GetAllEdgeWeights func-
tion. It contains 2n FWT calls and 2n CountConnectingWS, which contains
2n FWT calls itself. Thus in total, ComputeRow costs 2nO(n2n)+22nO(n2n) ≈
O(n23n).

The second sub-algorithm called from the main loop is FindEdgeWeight.
This function calls 2n FWT and 2n ComputeRow. This costs approximately
2nO(n23n).

In total, CountEquivalentFunctions algorithm costs at most

(2n−1
− 2n/2−1) · 2 ·

�
O(n23n) + 2nO(n23n)

�
≈ O(n25n),

which is basically 24n FWT calls.

Table 4.4: Complexity of Algortihm 4.2 with respect to n

n log2(n25n)

1 5.00
2 11.00
3 16.59
4 22.00
5 27.32
6 32.59
7 37.81
8 43.00
9 48.17
10 53.32
11 58.46
12 63.59

Although the complexity of O(n25n) does not allow the algorithm to be better
than the exhaustive search for n �= 5 when being used for complete classification,
it stands as an improvement for higher n values. It takes 48 · 227.32 ≈ 232.91

and 150357 · 232.59 ≈ 249.79 complexities to verify all orbit sizes in B5 and B6,
respectively. Still, listing all class cardinalities would not be feasible for B7,
since it contains 63379147320777408548 ≈ 265.78 classes (see Table 4.1). It would
take approximately 2103.59 to compute cardinality of each class even if the classes

38

were possible to store. However, given any function in B7, especially with good
cryptographic properties, this algorithm is successful in determining the number
of equivalent functions. Therefore, rather than using this algorithm for listing
complete classifications, which will take too much time, it is preferable to utilize
it to enumerate chosen classes of Boolean functions.

Moreover, since the theory allows to start from any class with known size, these
complexities are just upper bounds implying the worst case scenario, which is
starting from the affine class and going down to the bent classes. Thus, in best
case scenario, there are two connection classes, one of whose size is known. In
this case, the formula of Proposition 4.7 should be followed. Assuming that Ni

is known, then x and y values can be found by just two FindEdgeWeight
algorithm calls, which is approximately 23n FWT calls. In total, the minimum
cost of finding a class size is O(n24n)

Table 4.5: Minimum cost of finding class sizes with respect to n

n log2(n24n)

1 4.00
2 9.00
3 13.59
4 18.00
5 22.32
6 26.59
7 30.81
8 35.00
9 39.17
10 43.32
11 47.46
12 51.59

4.11 Conclusion

In this chapter, we used equivalence classes to improve results in Chapter 3. The
notion and the importance of equivalence with respect to affine transformations,
various facts and known affine invariant properties have been discussed. FDT6 has
been completed and given in Appendix A. A new affine invariant property that
can be used for testing equivalence has been introduced. Using this property, a
counting algorithm that gives the number of functions in an equivalence class has
been created. There are several methods in literature that gives this number as
a byproduct of classification algorithms. However, to the best of our knowledge,
this is the first systematic algorithm that aims to find only this quantity.

As a final remark, each FDTn in Appendix A can be verified by the above al-
gorithm since a representative from each class is already provided. Moreover,

39

equivalence classes in RM(3, 7)/RM(2, 7), whose representatives are given by
Braeken et el. in [5] are also verified.

40

CHAPTER 5

CONCLUSION

5.1 Thesis Summary

Boolean functions are essential to many applications used in various scientific
disciplines, most importantly in cryptography. Symmetric cryptographic systems
in particular count on ‘strong’ Boolean functions as their core components. Hence,
the design and analysis of Boolean functions is a very active area of study.

In this thesis, Boolean functions are studied with respect to their Walsh spectrum.
Their existence, construction and enumeration have been investigated according
to the distribution of values in Walsh spectrum.

The thesis is composed of five chapters. Chapter 1 provides the introduction to
the theory of Boolean functions and the motivation of the thesis, while Chapter
2 gives preliminary technical information about the thesis. Chapter 3 starts
with the main problem of interest, which asks the number of n-variable Boolean
functions, whose Walsh spectrum contains a specified number s of a specified
Walsh coefficient ω, exist in Bn. Later in this chapter, a mathematical framework
to study this problem is formed. The previous related results are adapted into
this framework. Finally, new results based on several grounds like the effects of
modifications on truth table or the Parseval’s identity, are presented. Chapter 4
contains the improvement of the solution to the main problem by using the idea
of equivalence classes. It starts with an introductory information on this idea and
the invariant properties of equivalence classes. Distribution of Boolean functions
of 6 variables according to the frequency of Walsh coefficients is completed with
this preliminary information and the data obtained from [17]. In order to proceed
with higher dimensions, a useful tool, the local connectivity proposed by [13], is
also explained. Later, based on this theory, a new invariant propertyand a new
algorithm to count the number of functions in an equivalence class are proposed.

5.2 Contributions of the Thesis

The research presented here has contributed to the existing literature about the
theory of Boolean functions in several ways.

41

Firstly a new framework of parameters to give a better view for the distribution
of Boolean functions with respect to the quantities of coefficients in their Walsh
spectrum is proposed. Secondly, previous works on Walsh coefficients and nonlin-
earity is redefined in this framework so that they could be viewed from a different
perspective. The highlights of the remaining contributions of the thesis are as
follows.

I. Solution sets S(n, s, ω) for all s and ω such that n ≤ 6 are found. Thus,
the distribution of Boolean functions with respect to the frequency of Walsh
coefficients up to 6 variables are completed.

II. Exact values of |S(n, s, ω)| for all s and n such that ω ≥ 2n−1, which is
in line with Wu’s work in [42] are formulized. In other words, functions of
arbitrary input length having Walsh coefficients larger than or equal to 2n−1

is completely determined.

III. Existence of n-variable Boolean functions with s many zeros in the Walsh
spectrum for some s is provided by means of a concatenation type of con-
struction method.

IV. Several other bounds and results are also found by exploiting the Parseval’s
Identity and other combinatorial observations.

V. A new invariant property that can be used to test the equivalence of Boolean
functions based on local connectivity introduced by [13] is proposed.

VI. Finally, a first-of-its-kind algorithm to count the number of functions in any
equivalence class using the proposed invariant property is presented.

5.3 Further Study

Classification of Bn for n ≤ 5, can be easily accomplished by exhaustive search as
the space is manageable. In order to complete the distribution of Boolean func-
tions of 6 variables according to the frequency of Walsh coefficients, equivalence
classes in B6 are used. However, for higher number of variables, even equivalence
classes do not reduce the search space enough. Thus, either particular classes
or specified algebraic degrees must be targeted. Although some results apply to
functions of arbitrary variables, the distribution of 7-variable Boolean functions
is still incomplete.

Existence of Boolean functions having s many zeros in their Walsh spectrum for a
fair percentage of possible s values is determined in this thesis. However, It is still
an open problem to determine the complete list of number of zeros that a Boolean
function of more then 6 input variables may contain in its Walsh spectrum.

Affine invariant properties are also of great importance to the analysis of Boolean
functions, since they are the main elements for distinguishing equivalence classes.
The new invariant presented here provides a solid contribution to the literature,

42

mainly because it is used in a pioneering algorithm to count the number of func-
tions in an equivalence class unlike any previous method. To be able to compute
the cardinality of an equivalence class easily is also an essential means to enumer-
ate Boolean function classes with ‘good’ cryptographic properties. Therefore, the
algorithm devised in this thesis can be used to study those existing classes in lit-
erature. This algorithm can be employed to compute the size of any equivalence
class feasibly up to n = 11 variables. In fact, an optimization of the algorithm,
such as computing only a particular subset of the outgoing edge weights might
also give the desired results. Therefore a further investigation can provide better
results in this area.

43

44

REFERENCES

[1] L.W. Beineke and R.J. Wilson, eds. Topics in Algebraic Graph Theory. Vol.
102. Cambridge University Press, 2004.

[2] E.R. Berlekamp and L.R. Welch, Weight Distributions of the Cosets of the
(32, 6) Reed-Muller Code, IEEE Transactions on Information Theory, 18(1),
pp. 203–207, 1972.

[3] G. Boole, An Investigation of The Laws of Thought on Which are Founded
the Mathematical Theories of Logic and Probabilities, Originally published
by Macmillan, London, 1854. Reprint by Dover, 1958.

[4] A. Braeken, Cryptographic properties of Boolean functions and S-boxes.
Ph.D. Thesis, KU Leuven, Belgium, 2006.

[5] A. Braeken, Y. Borissov, S. Nikova, B. Preneel, Classification of boolean
functions of 6 variables or less with respect to some cryptographic properties,
Automata, Languages and Programming. Springer Berlin Heidelberg, pp.
324–334, 2005.

[6] A. Braeken, S. Nikova, Y. Borissov, Classification of cubic Boolean functions
in 7 variables, Proc. of the 26th Symposium on Information Theory in the
Benelux, Brussels, Belgium, 2005.

[7] C. Carlet, Constructing balanced functions with optimum algebraic immunity,
IEEE International Symposium on Information Theory, pp. 451–455, 2007.

[8] C. Carlet, D. K. Dalai, K. C. Gupta, S. Maitra, Algebraic immunity for
cryptographically significant Boolean functions: Analysis and construction,
IEEE Transactions on Information Theory, 52 (7), pp. 3105–3121, 2006.

[9] C. Carlet, S. Mesnager, On the supports of the Walsh transforms of Boolean
functions, IACR Cryptology ePrint Archive 256, 2004.

[10] C. Carlet, P. Sarkar, Spectral domain analysis of correlation immune and
resilient Boolean functions, Finite Fields and Their Applications, 8 (1), pp.
120–130, 2002.

[11] N. Courtois and W. Meier, Algebraic attacks on stream ciphers with linear
feedback, Eurocrypt 2003 (E. Biham, ed.), LNCS, vol. 2656, Springer-Verlag,
pp. 34–359, 2003.

[12] J.F. Dillon, Elementary Hadamard difference sets, Ph.D. Thesis, University
of Maryland, USA, 1974.

45

[13] J. Fuller, Analysis of affine equivalent Boolean functions for cryptography,
Ph.D. Thesis, QUT, Australia, 2003.

[14] M.A. Harrison, The Number of Transitivity Sets of Boolean Functions, Jour-
nal of the Society for Industrial and Applied Mathematics 11, pp. 806–828,
1963.

[15] M.A. Harrison, On the Classification of Boolean Functions by the General
Linear and Affine Group, Journal of the Society for Industrial and Applied
Mathematics 12, pp. 284–299, 1964.

[16] X. D. Hou, AGL (m, 2) acting on R (r, m)/R (s, m), Journal of Algebra
171.3, pp. 921–938, 1995.

[17] P. Langevin, Classification of Boolean functions under the affine group,
http://langevin.univ-tln.fr/project/agl/agl.html, 2009.

[18] P. Langevin, G. Leander, Counting all bent functions in dimension eight
99270589265934370305785861242880, Designs, Codes and Cryptography,
59 (1), pp. 193–205, 2011.

[19] K. Limniotis, N. Kolokotronis, N. Kalouptsidis, Constructing Boolean func-
tions in odd number of variables with maximum algebraic immunity, IEEE In-
ternational Symposium on Information Theory Proceedings, pp. 2686–2690,
2011.

[20] O. A. Logachev, S. V. Smyshlyaev, V. V. Yashchenko, On ρ-balanced Boolean
functions, Discrete Mathematics and Applications, 22 (3), pp. 345–352, 2012.

[21] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error Correcting Codes,
North- Holland, 1977.

[22] J. Maiorana, A Classification of the Cosets of the Reed-Muller Code R(1,6).
Mathematics of Computation, 57 (195), pp. 403–414, 1991.

[23] S. Maitra, E. Pasalic, Further constructions of resilient Boolean functions
with very high nonlinearity, IEEE Transactions on Information Theory,
48 (7), pp. 1825–1834, 2002.

[24] M. Matsui, Linear cryptanalysis for DES cipher, Eurocrypt 1993 (T. Helle-
seth, ed.), LNCS, vol. 950, Springer-Verlag, pp. 38–397, 1993.

[25] Q-S. Meng, H-G. Zhang, M. Yang, Z-Y. Wang, Analysis of affinely equivalent
Boolean functions, Science in China Series F: Information Sciences 50 (3),
pp.299–306, 2007.

[26] D. Pei, W. Qin, The correlation of a Boolean function with its variables, in:
Proceedings of the First International Conference on Progress in Cryptology,
INDOCRYPT ’00, Springer-Verlag, pp. 1–8, 2000.

[27] P. Porwik, Walsh coefficients distribution for some types of Boolean func-
tions, Institute of Computer Science, University of Silesia, 2004.

46

http://langevin.univ-tln.fr/project/agl/agl.html
http://langevin.univ-tln.fr/project/agl/agl.html

[28] B. Preneel, Analysis and Design of Cryptographic Hash Functions, Ph.D.
Thesis, KU Leuven, Belgium, 1993.

[29] B. Preneel, R. Govaerts, J. Vandewalle, Cryptographic properties of quadratic
Boolean functions, 1st International Conference on Finite Fields and Appli-
cations, 1991.

[30] B. Preneel, O. Logachev, Open problems in Boolean function theory: The
cryptographer’s view, in: Boolean Functions in Cryptology and Information
Security, NATO Science for Peace and Security Series, IOS Press Inc., pp.
343–351, 2008.

[31] B. Preneel, W.V. Leekwijck, L.V. Linden, R. Govaerts, and J. Vandewalle,
Propagation characteristics of Boolean functions, In Advances in Cryptology-
EUROCRYPT’ 90, LNCS 437, pp. 55–165, Springer-Verlag, 1990.

[32] O. S. Rothaus, On bent functions, Journal of Combinatorial Theory, Series
A, 20 (3), pp. 300–305, 1976.

[33] P. Sarkar and S. Maitra, Construction of nonlinear Boolean functions with
important cryptographic properties, Advances in Cryptology, EUROCRYPT
2000, LNCS 1807, pp. 491–512, Springer-Verlag, Berlin/New York, 2000.

[34] J. L. Shanks, Computation of the fast Walsh-Fourier transform, IEEE Trans-
actions on Computers, 100 (5), pp. 457–459,1969.

[35] C. E. Shannon, A symbolic analysis of relay and switching circuits, Electrical
Engineering, 57 (12), pp. 713–723, 1938.

[36] T. Siegenthaler, Correlation Immunity of Nonlinear Combining Functions
for Cryptographic Applications, IEEE Transactions on Information Theory,
30 (5), pp. 776–780, 1984.

[37] T. Siegenthaler, Decrypting a class of stream ciphers using ciphertext only,
IEEE Transactions on Computers, C-34 (1), pp. 81–85, 1985.

[38] N.J.A. Sloane, Sequence A001289, Number of equivalence classes of Boolean
functions modulo linear functions, The On-Line Encyclopedia of Integer Se-
quences, http://oeis.org/A001289, 2013.

[39] E. Uyan, Boolean function distributions with respect to Walsh coefficients
http://www.metu.edu.tr/~uerdener/phd/fdt.htm, 2013.

[40] E. Uyan, Ç. Çalık, A. Doǧanaksoy, Counting Boolean functions with speci-
fied values in their Walsh spectrum, Journal of Computational and Applied
Mathematics, ISSN 0377-0427, http://dx.doi.org/10.1016/j.cam.2013.
06.035, 2013.

[41] E. Uyan, A. Doǧanaksoy, Distribution of Boolean Functions of 6 Variables
According to the Frequency of Walsh Coefficients, 6th International Informa-
tion Security & Cryptology Conference, ISC Turkey 2013, Ankara, Turkey,
20-21 September 2013.

47

http://oeis.org/A001289
http://www.metu.edu.tr/~uerdener/phd/fdt.htm
http://www.metu.edu.tr/~uerdener/phd/fdt.htm
http://dx.doi.org/10.1016/j.cam.2013.06.035
http://dx.doi.org/10.1016/j.cam.2013.06.035

[42] C-K. Wu, On distribution of Boolean functions with nonlinearity ≤ 2n−2,
Australasian J. Combin., 17, pp. 51–59, 1998.

48

APPENDIX A

Function Distribution Tables

Table A.1: FDT1

s \|ω| 0 2

0 0 0
1 4 4
2 0 0

Table A.2: FDT2

s \|ω| 0 2 4

0 8 8 8
1 0 0 8
2 0 0 0
3 8 0 0
4 0 8 0

Table A.3: FDT3

s \|ω| 0 2 4 6 8

0 128 128 144 128 240
1 0 0 0 128 16
2 0 0 0 0 0
3 0 0 0 0 0
4 112 0 112 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 16 128 0 0 0
8 0 0 0 0 0

49

Table A.4: FDT4

s \|ω| 0 2 4 6 8 10 12 14 16

0 33664 32768 33920 33280 37536 47616 61696 65024 65504
1 0 0 0 0 0 17920 3840 512 32
2 0 0 0 0 26880 0 0 0 0
3 0 0 0 17920 0 0 0 0 0
4 0 0 0 0 1120 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 26880 0 0 14336 0 0 0 0 0
7 0 0 3840 0 0 0 0 0 0
8 3840 0 26880 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0
10 0 14336 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0
12 1120 17920 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
15 32 512 0 0 0 0 0 0 0
16 0 0 896 0 0 0 0 0 0

Table A.5: FDT5, |ω| ≤ 16

s \|ω| 0 2 4 6 8 10 12 14 16

0 2181005312 2147483648 2181070848 2147803136 2186856192 2165897216 2351758336 2887755776 3647300416
1 0 0 0 0 0 59424768 483524608 1039933440 622182400
2 0 0 0 0 0 346644480 883752960 346644480 25474560
3 0 0 0 0 2222080 713287680 427750400 20633600 0
4 13332480 0 0 28887040 375531520 133324800 147292160 0 9920
5 0 0 0 0 0 426639360 0 0 0
6 170655744 0 0 26664960 739508224 449748992 888832 0 0
7 106659840 0 0 447272960 79360 0 0 0 0
8 666624000 0 0 0 774950400 0 0 0 0
9 284426240 0 0 142213120 0 0 0 0 0
10 475080704 0 888832 780394496 170655744 0 0 0 0
11 213319680 0 0 0 0 0 0 0 0
12 144435200 106659840 116659200 17776640 31109120 0 0 0 0
13 0 0 426639360 568852480 0 0 0 0 0
14 3809280 0 910417920 0 0 0 0 0 0
15 0 597295104 483556352 28442624 0 0 0 0 0
16 16086272 449748992 142213120 106659840 14054656 0 0 0 0
17 0 0 0 0 0 0 0 0 0
18 0 337756160 0 0 0 0 0 0 0
19 17776640 568852480 0 0 0 0 0 0 0
20 0 10665984 0 0 0 0 0 0 0
21 0 20316160 0 0 0 0 0 0 0
22 1666560 53329920 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0
24 79360 2539520 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0
28 9920 317440 31744000 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0
30 0 0 1777664 0 0 0 0 0 0
31 64 2048 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0

50

Table A.6: FDT5, |ω| ≥ 18

s \|ω| 18 20 22 24 26 28 30 32

0 4079552512 4236971008 4282079232 4292665856 4294649856 4294935552 4294965248 4294967232
1 215414784 57996288 12888064 2301440 317440 31744 2048 64
2 0 0 0 0 0 0 0 0
... 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0

Table A.7: FDT6, |ω| ≤ 6

s \|ω| 0 2 4 6

0 72621222574527744 72057602467610624 72620544008126464 72057622083079424
1 0 0 0 0
2 105833226240 0 0 0
3 1722169774080 0 0 279982080
4 18251051857920 0 0 242534476800
5 87944051220480 0 0 72571355136
6 266917829165568 0 0 5049693798912
7 769143475666944 0 0 1041773322240
8 2138149299686400 0 0 46160060567040
9 4252057890877440 0 0 22294693048320
10 6105590049226752 3563462590464 5375655936 318935587815936
11 8202945889861632 0 0 344858407649280
12 11169686287323648 17618712330240 173133918720 1147171079476800
13 11950669988167680 134391398400 0 1634668654510080
14 9472893446016000 10751311872000 11087290368000 3155879210803200
15 6560061945163776 28670164992 260859303936 3799950102336192
16 4761952300046592 590073040908288 286056593956224 5966106700732416
17 3019781441617920 0 8090362183680 6417306866073600
18 1421987940696960 2137171158958080 2903602090072320 7885495224337920
19 487272272578560 2167009782497280 120229064847360 6729634715811840
20 184216244655744 1362013145579520 12934924056375552 9404376692368896
21 117198498816000 6934460358131712 676423606118400 5145082754961408
22 24292389687552 5486797902458880 24611185665803520 6930253495388160
23 45663077376000 4270958641152000 1421993706577920 4389266748948480
24 128100272307840 15327122841354240 19624795765182720 3093122840801280
25 7570715443200 3923109128945664 1071088413954048 2437301570715648
26 99314340475392 8882293960802304 6217932249865728 1516734154801152
27 73120261559296 8271606505078784 250634358374400 724202892492800
28 17335115481600 2729334178099200 753267543104160 618725559029760
29 50189027696640 4319361943142400 7310892072960 145874343444480
30 29400528995712 3071917184716800 31322467233792 134730475364352
31 8641366917120 754841031081984 2016 19061180006400
32 16938738915840 1395015149316096 1310636113920
33 1338081024000 117579781079040 0 2153622159360
34 2711626444800 218435229250560 0 2814379868160
35 151222321152 11670581035008 0 525278380032
36 466259115840 39555770268672 0 302853505024
37 5879623680 1633975418880 0 80634839040
38 142153901568 10712646346752 0 0
39 16297290240 1359966289920 0 0
40 16825173120 1207842693120 11293655826432 0
41 1959874560 138871111680 0 0
42 840133728 57568315392 84978881003520 5119672320
43 209986560 13439139840 0 0
44 142178400 9099417600 191545260318720 0
45 0 10665984 10695763427328 597295104
46 3749760 10543325184 160689405886464 0
47 0 0 25688915804160 0
48 241950660 15484842240 51895751792640 0
49 0 1142784000 16050995527680 0
50 0 0 6288285523968 0
51 17498880 1119928320 3226793472000 0
52 0 0 376225920000 0
53 0 0 179188531200 0
54 546840 34997760 34430018560 0
55 0 0 5711634432 0
56 11160 714240 281981952 0
57 0 0 279982080 0
58 0 0 104993280 0
59 0 0 0 0
60 651 41664 4999680 0
61 0 0 0 0
62 0 0 0 0
63 1 64 0 0
64 0 0 0 0

51

Table A.8: FDT6, 8 ≤ |ω| ≤ 14

s \|ω| 8 10 12 14

0 72622095976660224 72057689154119936 72625034638355584 72142467633545216
1 0 662473154560 24023638388736 747614794924032
2 0 9130356619776 207318618759168 2995695843194880
3 0 44785297890816 719428478963712 7242174646990080
4 2961685440 209499448052160 2188257251009760 11859982725648960
5 91554140160 581080576462848 4396261821235200 13938338817220608
6 5278134677760 1547109348830976 7844919431271552 12540151435773696
7 118695723612480 2917542785935680 10411747357832352 9616702651727040
8 686891401136640 5100761866346496 12066003006382080 6865856427064320
9 3207474708480 6941532029071360 11379448548235264 4128919532236800
10 209504767128384 8710898218998528 9359218987896960 1648147202994432
11 3289041327882240 8950279657439232 5771002952171520 356293099782144
12 13059723162336144 9129127308123648 4124139956982528 31220241776640
13 13074183198720 7456265936437248 1301540936048640 1612696780800
14 724262090509440 6917940343480320 962121643130880 22855680
15 9483549226012848 4811912521887744 312211255867392 10303340544
16 29265523912590336 3886013057246208 113765111566848 0
17 4959042600960 2320173419397120 4676820664320 0
18 302041308119040 1434637361332224 207628438929408 0
19 3691807869173760 674302121902080 53756559360 0
20 9531988828669440 296361927622656 107513118720 0
21 290808053760 87344169615360 84978881003520 0
22 15474924541440 27830050762752 5375655936 0
23 177256654848000 1451427102720 0 0
24 394568875975680 854505308160 11293655826432 0
25 385255342080 0 0 0
26 8648086487040 0 0 0
27 50166815784960 0 0 0
28 72125261493376 2712715264 0 0
29 684556185600 0 0 0
30 17263717801344 0 0 0
31 99358640640000 0 0 0
32 128254086213120 0 0 0
33 197107384320 0 0 0
34 7552796590080 0 0 0
35 45617816272896 0 0 0
36 53903749939200 0 0 0
37 24078458880 0 0 0
38 2019230760960 0 0 0
39 13923508838400 0 0 0
40 15514367016960 0 0 0
41 0 0 0 0
42 0 0 0 0
43 0 0 0 0
44 0 0 0 0
45 0 0 0 0
46 6089610240 0 0 0
47 100793548800 0 0 0
48 111866840064 0 0 0
49 0 0 0 0
... 0 0 0 0
63 0 0 0 0
64 42386176 0 0 0

Table A.9: FDT6, 16 ≤ |ω| ≤ 22

s \|ω| 16 18 20 22

0 73640137188883852 78376899729410752 91801043670119456 110117258751722048
1 5240629419250176 18947976160909824 29921358592984320 27393590186016768
2 12560023422051840 22835525169348864 17361660563856000 6108505058154240
3 17917219124686560 15589394844663360 4453518280108128 485968528731840
4 16964459254387680 6659042781484800 546544843474560 9837047888640
5 10864229316820992 1545493802065920 30350253459456 28222193664
6 4861454914971648 155468441216256 699893953920 281148672
7 1513645200518040 5332394704896 11945902080 0
8 418173220747800 53756559360 31997952 0
9 104723252838400 995491840 0 0
10 30139398955008 0 0 0
11 0 0 0 0
12 354120459840 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 241284036 0 0 0
17 0 0 0 0
... 0 0 0 0
64 0 0 0 0

52

Table A.10: FDT6, 24 ≤ |ω| ≤ 30

s \|ω| 24 26 28 30

0 125833798480977392 135582604969668032 140532277216848224 142737029667930944
1 16966291037375232 8345818667585280 3564137512349568 1376946651273984
2 1292022710254080 186233857770240 18768803969664 1211745943296
3 22914064812240 530580832320 4500024480 10707648
4 161782145280 0 42663936 0
5 0 0 0 0
6 291648 0 0 0
7 0 0 0 0
... 0 0 0 0
64 0 0 0 0

Table A.11: FDT6, |ω|>32 †

|ω|\s 0 1 2 ... 2n

34 18426325641727123456 20418431982428160 0 0 0
36 18440618544114823168 6125529594728448 0 0 0
38 18445062555781586944 1681517927964672 0 0 0
40 18446323694227560448 420379481991168 0 0 0
42 18446648893449478144 95180260073472 0 0 0
44 18446724685138055168 19388571496448 0 0 0
46 18446740548514734080 3525194817536 0 0 0
48 18446743507160384512 566549167104 0 0 0
50 18446743994193879040 79515672576 0 0 0
52 18446744064112832512 9596719104 0 0 0
54 18446744072733614080 975937536 0 0 0
56 18446744073628223488 81328128 0 0 0
58 18446744073704218624 5332992 0 0 0
60 18446744073709293568 258048 0 0 0
62 18446744073709543424 8192 0 0 0
64 18446744073709551488 128 0 0 0

† For readability, this is a transposed version of the conventional FDTn seen in [?]

53

54

APPENDIX B

Algorithms

Algorithm B.1 CountUnique(Vector)
Input: V ector
Output: (UniqueElementList, CountOfOccurrences)
MaxV al ← Max(V ector)
for i ← 0,MaxV al do � Initialisation

counter[i] ← 0
end for
for each value in Vector do

counter[value] ← counter[value] + 1
end for
for value ← 0,MaxV al do

if counter[value]>0 then
UniqueElementList ← UniqueElementList ∪ {value}
CountOfOccurrences ← CountOfOccurrences ∪ {counter[value]}

end if
end for

Algorithm B.2 NumberofFunctionsPerNonlinearity()

Input: (f1, c1), (f2, c2), ..., (f150357, c150357) � Representatives and cardinalities of
equvalance classes in B6

Output: Number of functions for each nonlinearity in B6

for nl ← 0, 26 do � Initialisation
fcounts[nl] ← 0

end for
for i ← 1, 150357 do � Main loop

WalshSpectrumi ← Abs(WHT (fi))
Wmax ← Max(WalshSpectrumi)∗
nl ← 2n−1 −

Wmax
2

fcounts[nl] ← fcounts[nl] + ci
end for
return fcounts

55

Algorithm B.3 FindClosestAffine(f)
Input: f ∈ Bn

Output: l ∈ RM(1, n)
WalshSpectrum ← Abs(WHT (f))
Wmax ← Max(WalshSpectrum)
for index ← 1, length(WalshSpectrum) do

if WalshSpectrum[index] = Wmax then
l ← index×GRM(1,n) � using generator matrix of RM(1,n) code
break � first found affine will suffice

end if
end for
return l

Algorithm B.4 ComputeRow(f)
Input: f ∈ Bn

Output: rowf � An array of data generated by f
WalshSpectrum ← Abs(WHT (f))
(U,C) ← CountUnique(WalshSpectrum) � see Algorithm B.1
A ← GetAllEdgeWeights(f) � see Algorithm B.5
rowf ← [U || C || A]
return rowf

Algorithm B.5 GetAllEdgeWeights(f): Algorithm to find the weights of
outgoing edges of f
Input: f ∈ Bn

Output: All Weights � weights of outgoing edges of f
ConnectionFunctions ← 0 � initialize matrix of connection functions
for j ← 0, 2n do

f [j] ← f [j]⊕ 1
WalshSpectrum ← Abs(WHT (f))
(U,C) ← CountUnique(WalshSpectrum) � see Algorithm B.1
WSfrequencies ← CountConnectionWS(f) � see Algorithm B.6
CurrentRow ← [U || C || WSfrequencies]
ConnectingFunctions(j) ← CurrentRow
f [j] ← f [j]⊕ 1

end for
(U,C) ← CountUnique(ConnectionFunctions)
weights ← C
return weights

56

Algorithm B.6 CountConnectionWS(f): Algorithm to find the number of
occurence of each distinct Walsh Spectra of Connecting Functions of f
Input: f ∈ Bn

Output: WSCounts � distribution of Walsh spectra of connection functions
ConnectionFunctionsWS ← 0 � initialize matrix of Walsh spectra
for j ← 0, 2n do

f [j] ← f [j]⊕ 1
WalshSpectrum ← Abs(WHT (f))
(U,C) ← CountUnique(WalshSpectrum) � see Algorithm B.1
CurrentRow ← [U || C]
ConnectingFunctionsWS(j) ← CurrentRow
f [j] ← f [j]⊕ 1

end for
(UniqueWS,WSCounts) ← CountUnique(ConnectionFunctionsWS)
return WSCounts

Algorithm B.7 FindEdgeWeight(f ,rowg): Algorithm to find the number of
connection functions between two neighbor functions f to g
Input: f ∈ Bn

Output: weight � weight of the edge between given classes
ConnectionFunctionRows ← 0
for j ← 0, 2n do

f [j] ← f [j]⊕ 1
newrow ← ComputeRow(f) � see Algorithm B.4
ConnectionFunctionRows(j) ← newrow
f [j] ← f [j]⊕ 1

end for
weight ← count(ConnectionFunctionRows, rowg) � count rowg among all
return weight

57

58

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Uyan, Erdener
Nationality: Turkish
Date and Place of Birth: 1985, Edirne
Email: uerdener@metu.edu.tr

EDUCATION

Degree Institution Year of Graduation
Ph.D. on BS. Department of Cryptography, METU 2013
B.S. Department of Mathematics, METU 2008
High School Robert College 2004

AWARDS AND HONORS

Award Institution Year
Academic Performance Award Middle East Technical University 2011
Honor Roll Middle East Technical University 2005,2007,2008
Dora Aksoy Award Robert College 2004

PROFESSIONAL EXPERIENCE

Year Place Enrollment
2009-2013 Middle East Technical University Research Assistant
2005-2013 Middle East Technical University System Administrator

PUBLICATIONS

E. Uyan, A. Doǧanaksoy, Distribution of Boolean Functions of 6 Variables Accord-
ing to the Frequency of Walsh Coefficients, 6th International Information Security
& Cryptology Conference, ISC Turkey 2013, Ankara, Turkey, 20-21 September
2013.

59

E. Uyan, Ç. Çalık, A. Doǧanaksoy, Counting Boolean functions with specified val-
ues in their Walsh spectrum, Journal of Computational and Applied Mathematics,
ISSN 0377-0427, http://dx.doi.org/10.1016/j.cam.2013.06.035, 1 July 2013.

M. S. Turan, E. Uyan, Near-Collisions for the Reduced Round Versions of Some
Second SHA-3 Compression Functions using Hill Climbing, Springer-Verlag Berlin
Heidelberg 2010, LNCS 6498, G.Gong and K.C. Gupta Eds.: INDOCRYPT 2010,
Haydarabad, India, pp. 131-143, 12-15 December 2010.

M. S. Turan, E. Uyan, Practical Near-Collisions for Reduced Round Blake, Fugue,
Hamsi and JH, Information Technology Laboratory Publications, NIST, USA, 23
August 2010.

B. Bilgin, N. Öztop, E. Uyan, A Survey on Rebound Attack, 4th International
Information Security & Cryptology Conference, Proceedings, ISC Turkey 2010,
Ankara, Turkey, pp. 242-246, 6-8 May 2010.

60

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTERS
	INTRODUCTION
	General Overview
	Motivation
	Outline of the Thesis

	PRELIMINARIES
	Introduction
	Boolean Functions

	ANALYSIS OF BOOLEAN FUNCTIONS WITH SPECIFIED VALUES IN WALSH SPECTRUM
	Introduction
	Problem
	Framework
	Previous works in literature
	Results

	ANALYSIS OF BOOLEAN FUNCTIONS WITH RESPECT TO WALSH SPECTRUM USING EQUIVALENCE CLASSES
	Introduction
	Affine Transformations and Equivalence Classes
	Invariant Properties
	FDT6
	Local Connectivity
	A New Invariant Property
	Class Connection Digraphs
	The Size of Equivalence Classes
	Algorithm
	Complexity Analysis of the Algorithm
	Conclusion

	CONCLUSION
	Thesis Summary
	Contributions of the Thesis
	Further Study

	REFERENCES
	APPENDICES
	Function Distribution Tables
	Algorithms
	CURRICULUM VITAE

