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ABSTRACT 

 

CONSENSUS CLUSTERING OF TIME SERIES DATA 

 

 

Yetere Kur#un, Ayça 

M.Sc., Department of Scientific Computing 

                                Supervisor          : Prof. Dr. "nci Batmaz 

                                Co-Supervisor : Assist. Prof. Dr. Cem "yigün 

 

January 2014, 78 pages 

 

 

In this study, we aim to develop a methodology that merges Dynamic Time Warping 
(DTW) and consensus clustering in a single algorithm. Mostly used time series 
distance measures require data to be of the same length and measure the distance 
between time series data mostly depends on the similarity of each coinciding data 
pair in time. DTW is a relatively new measure used to compare two time dependent 
sequences which may be out of phase or may not have the same lengths or 
frequencies. DTW aligns two time series data so that the distance between them is 
minimized. However, DTW is a similarity measure that is employed for single 
variable with standard clustering methods rather than consensus clustering. Thus our 
motivation is to create an algorithm that can combine the benefits of the DTW with 
benefits of consensus clustering, which will also provide a solution for multivariate 
applications. We present the results of our study both with simulated data, well 
known datasets from the literature and Turkey’s long-term meteorological time series 
data between years 1950 and 2010. In all the cases we experimented with, when used 
with consensus clustering DTW performs better than Euclidian Distance measure. 
However in some cases the performance difference was insignificant, making it 
unnecessary to use both DTW and Consensus Clustering, due to time consuming 
computations. This thesis ends with a conclusion and the outlook to future studies.  
 
Keywords: Consensus Clustering, Ensemble Clustering, Dynamic Time Warping, 
Time Series Clustering, Turkey Climate Regions 
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ÖZ 

 

ZAMAN SER"S" VER"LER"N"N ORTAK KÜMELENMES" 

 

 

Yetere Kur#un, Ayça 

Yüksek Lisans, Bilimsel Hesaplama Bölümü 

                                Tez Yöneticisi   : Prof. Dr. "nci Batmaz 

                                Ortak Tez Yöneticisi : Yard. Doc. Dr. Cem "yigün 

 

Ocak 2014, 78 sayfa 

 

 

Bu çalı#manın amacı Devingen Zaman E#le#tirme (DZE) ve Ortak Kümeleme 
yakla#ımlarını bir araya getiren bir metodun olu#turulmasıdır. Zaman serisi 
verilerinin birbiri ile kar#ıla#tırılmasında en sık kullanılan uzaklık metrikleri verilerin 
aynı boyutta olmasını gerektirir. Bu uzaklık metrikleri genelde verilerin zaman 
bazında kar#ılıklı gelen noktalarının yakınlıklarını kullanmaktadır. DZE zaman serisi 
verilerinin yakınlıklarının belirlenmesinde kısmen yeni bir metrik olup, arasında faz 
farkı bulunan, aynı boyutta olmayan ya da frekansları farklı olan verilerin 
kar#ıla#tırılmasında kullanılabilmektedir. DZE iki zaman serisini birbirileri ile 
farkları en az olacak #ekilde hizalamaktadır. Literatürde DZE metodu yaygın olarak 
tek de$i#ken ve standart kümeleme algoritmaları ile birlikte kullanılmaktadır. Bu 
do$rultuda çalı#manın amacı DZE’nin ve ortak kümeleme metodolojilerinin 
avantajlarını bir araya getiren ve birden fazla de$i#kene sahip problemler için de 
kullanılabilecek bir algoritmanın olu#turulmasıdır. Çalı#manın sonuçları, bu 
çalı#maya özel yaratılan veri setleri, literatürde sık kullanılmı# olan örnek veri setleri 
ve Türkiye’nin 1950-210 yılları arasını kapsayan uzun dönem meteorolojik zaman 
serisi verileri ile test edilmi#tir. Tüm test verilerinde, DZE ile birlikte kullanılan ortak 
kümeleme algoritması standart Euclid uzaklı$ı ile gerçekle#tirilen kümelemelerden 
daha iyi sonuçlar vermi#tir. Bununlar birlikte bazı test durumlarında görülen fark çok 
küçüktür. Bu kapsamda, DZE ve ortak kümeleme algoritmasının çözümle sürelerinin 
uzunlu$u da dikkate alındı$ında bu test durumları için DZE ve ortak kümeleme 
algoritmasının birlikte kullanımını gereksiz kılmaktadır. Tez, çalı#ma sonuçlarının ve 
gelecek dönem çalı#malarının bir özeti ile sonlanmaktadır. 
 
Anahtar Kelimeler: Ortak Kümeleme, Devingen Zaman E#le#tirme, Zaman Serisi 
Kümeleme, Türkiye’nin "klim Bölgeleri 
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CHAPTER 1  

 

 

INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Introduction and Motivation 

 
Clustering is the activity of unsupervised grouping of data points into classes so that 
the similar objects will be in the same cluster. There are varieties of clustering 
methods extensively used in literature such as k-means, hierarchical clustering, graph 
partitioning and so on. Since each method depends on different rationale, the results 
obtained from their use usually may not be the same. This situation leads to some 
confusion regarding which one gives the best clustering result. The common practice 
is to find the overlapping classes generated by different clustering methods and 
determine the non-overlapping observations. However, we may not come up with a 
solid solution with this approach. Alternatively, domain knowledge if available can 
be utilized to resolve this problem.  
 
Consensus clustering is an attempt to solve this problem objectively; it tries to 
combine multiple clusterings of a dataset into one consolidated clustering. Consensus 
clustering methodologies offers benefits such as improved quality of solution, 
improved robustness against wide ranges of datasets, elimination of the model 
selection process, knowledge reuse, distributed clustering and effective consolidation 
of clusters depending on different views of data having multiple features [1]. 
 
Employing the clustering algorithms requires comparing two objects, thus one needs 
a distance (similarity) measure to define how much similar those two objects are. 
Commonly used similarity measures are Euclidean distance, Minkowski distance, 
Pearson’s correlation coefficient and related distances, short time series distance and 
so on [2].  Mostly used time series distance measures require data to be of the same 
length and measure the distance between time series data mostly dependent on the  
similarity of each coinciding data pair in time. Here, the Dynamic Time Warping 
(DTW) is a relatively new measure used to compare two time dependent sequences 
with data which may be out of phase or may not have the same lengths or 
frequencies. DTW aligns two time series data so that the distance between them is 
minimized [2]. In literature DTW provided successful results when used for 
classification applications [3], while in this study it is used for clustering 
applications.     
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In this study, we aim to develop a methodology that merges DTW and consensus 
clustering in a single algorithm. DTW is a similarity measure that is employed for 
single variable with standard clustering methods rather than consensus clustering. 
Thus our motivation is to create an algorithm that can combine the benefits of the 
DTW with benefits of consensus clustering, which will also provide a solution for 
multivariate applications. In literature, time series clustering algorithms are used for 
several application areas like medicine, signal processing, economics, bio statistics 
and so on [4].  So we believe our approach with the DTW consensus clustering will 
also be applicable to those application areas. 
 
In this study, the experimentation of our proposed DTW consensus clustering 
methodology will be performed by using both simulated data and well known 
datasets from the literature. Also by using Turkey’s long-term meteorological time 
series data between years 1950 and 2010, we will try to identifying the climate zones 
of Turkey.  
 
The DTW and consensus clustering methodologies employed in this study are 
introduced in Chapter 2 overviews clustering analysis, distance/similarity measures, 
basic clustering algorithms, time series clustering, specific distance and similarity 
measures for the time series data and finally consensus clustering. 
 
Chapter 3 and Chapter 4 represent the results of our experimentation with several 
datasets, concluding with  Chapter 5, including the future research possibilities.   
 
 
1.2 Data Clustering Analysis 

 
Clustering is the unsupervised classification of patterns (observations, data items, or 
feature vectors) into groups (clusters) [5]. Each cluster comprises objects that are in a 
way more similar to one another and dissimilar to the objects in another cluster (see 
Figure 1.1). Thus, by seeking similarity, clustering analysis answers two basic 
questions: “How many groups (clusters) are there in a dataset?” and “Which data 
point belongs to which group (cluster)?” However there are many different ways of 
measuring the similarity of data points and many different ways to cluster the data 
into groups. So there is never a single answer to those questions but many depending 
on the similarity measures and clustering algorithms used. 
 
Clustering has been used by many scientific disciplines as a data analysis technique. 
Clustering is useful in several exploratory pattern-analysis, grouping, decision-
making, and machine-learning situations, including data mining, document retrieval, 
image segmentation, and pattern classification [5]. 
 



 3 

 
 

Figure 1.1 Data Clustering Example 
 
1.3 Distance and Similarity Measures Used in Clustering Analysis 

 
For clustering analysis, a measure to define the distance/similarity between two data 
points is essential. Many different distance and similarity measures are utilized in 
clustering analysis. The most commonly used similarity and distance measures for 
quantitative measures of continuous features are defined in Table 1.1. Because of the 
variety of feature types and scales, the distance measure (or measures) must be 
chosen carefully [5]. 
 

Table 1.1 Similarity/Distance Measures for Quantitative Measures [6] 
 

Measures Forms Comments 
Euclidian Distance 

 
Features with large 
values and variances 
tend to dominate 
over other features. 

Minkowski 
Distance  

Features with large 
values and variances 
tend to dominate 
over other features. 

City-Block 
Distance 

 

Tend to form 
hyperrectangular 
clusters. 

Sup Distance 
 

 

Mahalonobis 
Distance  is the within-group 

covariance matrix.  
Tend to form 
hyperellipsoidal 
clusters. 
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Table 1.1 (Continued) Similarity/Distance Measures for Quantitative Measures [6] 

 
Measures Forms Comments 

Pearson 
Correlation  

 

 

 

Unable to detect the 
magnitude of 
differences of two 
variables. 

Point Symmetry 
Distance  

 is minimize 
when a symmetric 
pattern exists. 

Cosine Similarity 
 

Especially used for 
document clustering. 

 
 
1.4 Basic Data Clustering Algorithms 
 
There are many clustering algorithms available in the literature, each having different 
application areas. Traditionally clustering techniques can be classified as hierarchical 
clustering and partitional clustering, based on the property of clusters generated. 
Hierarchical clustering groups data objects with a sequence of partitions, either from 
singleton clusters to a cluster including all individuals or vice versa, while partitional 
clustering directly divides data objects into some pre-specified number of clusters 
without an hierarchical structure. [6]. 
 
Berkhin [7] in his study has classified the clustering algorithms as follows: 

• Hierarchical methods 
o Agglomerative algorithms 
o Divisive algorithms 

• Partitioning relocation methods 
o Probabilistic clustering 
o k-medoids methods 
o k-means methods 

• Density-based partitioning methods 
o Density-based connectivity clustering 
o Density functions clustering 

• Grid-based methods 
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• Methods based on co-occurrence of categorical data 
• Other clustering techniques 

o Constraint-based clustering 
o Graph partitioning 
o Clustering algorithms and supervised learning 
o Clustering algorithms in machine learning 

• Scalable clustering algorithms 
• Algorithms for high-dimensional data 

o Subspace clustering 
o Coclustering techniques 

 
In this study we will only focus on the most commonly used algorithms, which are 
also utilized in the experimentation part of this study. Those algorithms are 
Hierarchical clustering, both agglomerative and divisive, k-medoids and k-means 
methods which are partitioning clustering methods. 
 
 
1.4.1 Hierarchical Methods 

 
This clustering method arranges the data into a hierarchical structure by the use of 
similarity/distance matrix. Hierarchical clustering creates a tree, called a 
“dendogram” (see Figure 1.2 (b)), representing the whole dataset, in which the data 
points are leaves. The internal nodes describes the similarity structure of the points, 
in another saying, the extend of the proximity between data points. The height of the 
dendogram usually gives the distance between each pair of objects or clusters, or an 
object and a cluster [6]. The final clustering results can be acquired by cutting the 
dendogram at the demanded level (frequently, the requested number k of clusters). 
The advantages and disadvantages of the hierarchical clustering are discussed in 
Table 1.2. 
 

  
(a) (b) 

 
Figure 1.2 (a) An Example of a Three Cluster Problem,  and (b) Regarding 

Dendogram Obtained by Hierarchical Clustering [5] 
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Table 1.2 Advantages and Disadvantages of the Hierarchical Clustering [7] 

 
Advantages Disadvantages  

• Flexibility regarding the level of 
granularity, 

• Ease of handling any form of 
similarity or distance, 

• Applicability to any attribute 
type. 

• The difficulty of choosing the 
right stopping criteria, 

• Most hierarchical algorithms do 
not revisit (intermediate) clusters 
once they are constructed. 

 
 
1.4.1.1 Agglomerative Hierarchical Clustering 

 
Agglomerative clustering starts with N clusters (the number of data points) each 
containing only one object. Then successions of merge operations are performed 
until finally all the data points are in the same cluster. So the general algorithm is as 
follows [6]: 
 
1. Create N clusters, one for each object.  
2. Calculate the distance matrix between clusters. 
3. Find the minimal distance between clusters, using the following equation: 
 

, (1.1) 
 
4. Combine cluster  and  to form a new cluster. 
5. Update the distance matrix between clusters by computing the distances 
between the new cluster and the other clusters. 
6. Repeat steps 3– 5 until all objects are in the same cluster. 
 
There are different definitions for a distance between two clusters; based on those 
definitions agglomerative clustering methods can result in different solutions. The 
most commonly used definitions for the closest pair of clusters are “Single Linkage,” 
“Average Linkage” and “Complete Linkage.” In Single Linkage the distance 
between two clusters is the distance between the two closest objects, whereas 
Average Linkage measures the distance between clusters as the distance between the 
cluster centroids and the Complete Linkage is the distance between most distant pair 
of objects (see Figure 1.3). 
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Single Linkage Average Linkage Complete Linkage 

 
Figure 1.3 Distance Between Two Clusters 

 
 
1.4.1.2 Divisive Hierarchical Clustering 

 
As opposed to agglomerative clustering, for divisive clustering, in the beginning, the 
entire dataset belongs to a cluster, and then, a procedure successively divides it until 
all clusters are singleton clusters. So the general algorithm is as follows [7]: 
 
1. Put all the objects in one cluster. 
2. Select the cluster  for splitting. 
3. Split cluster  into two new sub-clusters  and . 
4. Replace cluster  with the new sub-clusters  and . 
5. Repeat steps 2–4 until all clusters have exactly one object (N clusters, one for 
each object). 
 
There are different divisive algorithms depending on the way they select the cluster 
for splitting and the way they split the selected cluster. 
 
 
1.4.2 Partitioning relocation methods (k-means and k-medoids) 

 
Partitioning relocation methods divide data into k subsets. But as it is not 
computationally feasible to create and evaluate every possibility, heuristics are used 
for finding the optimal clusters iteratively. This heuristics use different relocation 
methods to iteratively reassign points between the k clusters. For this purpose each 
cluster is associated with a cluster representative. There are two basic partitioning 
relocation methods: namely, k-means algorithm and k-medoids algorithm. Both of 
those algorithms attempt to minimize the distance between the points within the 
same cluster. In k-means algorithm, a fictitious data point is created, which is the 
centroid of the data points in the same cluster and the distance between this centroid 
and other data points are tried to be minimized. However in k-medoids, the algorithm 
chooses a particular data point as the cluster center and the distance between this data 
point and the other data points are tried to be minimized. 
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Berkhin [7] in his study explained that representation by k-medoids has two 
advantages: it presents no limitations on attribute types and the choice of medoids is 
dictated by the location of a predominant fraction of points inside a cluster, and 
therefore, it is insensitive to the presence of outliers. But in k-means a cluster is 
represented by its centroid, which is the mean of points within a cluster. Thus k-
means only with numerical attributes and can be negatively affected by a single 
outlier. On the other hand, centroids have the advantage of clear geometric and 
statistical meaning. 
 
The general k-means algorithm is as follows [6]: 
 
1. Select the number of clusters, k. 
2. Select k data points as the k cluster centers (i.e; randomly). 
3. For each object find the cluster to be in by assigning them to the nearest 

cluster center. 
4. Re-calculate the k cluster centers. 
5. Repeat steps 3–4 until cluster membership does not changes from the 

previous iteration. 
 
The general k-medoids algorithm is as follows [7]: 
 
1. Select the number of clusters, k. 
2. Form the k medoids by selecting k data points as the k cluster centers (i.e; 

randomly). 
3. For each object find the cluster to be in by assigning them to the nearest 

medoid. 
4. For every cluster, select a non-medoid object to replace with the cluster 

medoid. 
5. For each object find the cluster to be in by assigning them to the nearest 

medoid. 
7. Calculate the total distances from the medoids for all clusters obtained 

through steps 4 and 5. 
8. Select the lowest distance alternative. 
9. Repeat steps 4–8 until cluster medoids does not changes from the previous 

iteration. 
 
 
1.5 Time Series Data Clustering 

 
When the values of a data do not change over time then this data is called to be static. 
Many of the clustering analysis in the literature are performed with those kinds of 
datasets. For a dynamic dataset, as in time series data, comprise values that changes 
with time.  Time series data is of interest because of its pervasiveness in various 
areas ranging from science, engineering, business, finance, economic, health care, to 
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government [2]. So there is also a need for clustering algorithms and 
similarity/distance measures dealing with time series data. 
 
 
1.5.1 Clustering Algorithms for Time Series Data 

 
Mainly there are no specific clustering algorithms dealing especially with the time 
series data. However here in this section we will try to name some of the general 
purpose clustering algorithms that have been used in the literature for the time series 
clustering analysis. 
 
Liao in his survey research [2] regarding the clustering of time series data, 
extensively identifies the time series clustering approaches. The most commonly 
used algorithms surveyed in this study are summarized in Table 1.3. 
 

Table 1.3 Commonly Used Clustering Algorithms 
 

Clustering algorithm Distance measure Variable Ref. 

Euclidean Single 
[11] 
[12] 
[13] 

Root mean square Single [14] 

Kullback–Leibler distance Single/ 
Multiple 

[15] 
[16] 

J divergence and symmetric 
Chernoff  information 
divergence 

Multiple 
[17] 

Agglomerative  
hierarchical 

Based on the assumed 
independent Gaussian models of 
data errors 

Single 
[18] 

k-Means (including the 
modified k-means) Euclidean  Single / 

Multiple 

[19] 
[20] 
[21] 

DTW Single [22] k-Medoids Euclidean Single [23] 
Euclidean Single [24] 

Two cross-correlation based Single / 
Multiple 

[24] Fuzzy c-means 
(including the modified 
Fuzzy c-means) Short time series (STS) distance Single [25] 
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1.5.2 Similarity and Distance Measures for Time Series Data Clustering 

 
Even though clustering algorithms may not require a special version or an adjustment 
for analysis of time series data; this is not the case for similarity and distance 
measures. In this part of our study we will try to introduce, from Table 1.3, the most 
commonly used similarity and distance measures for the time series data. 
 
 
1.5.2.1 Euclidian and Root Mean Square Distance 

 
The Euclidian distance is already introduced in Section 1.3Distance and Similarity 
Measures Used in Clustering Analysis, Table 1.1. For time series data the same 
formula is used, where  and are d dimensional vectors, d being the length of the 
time series data. Root Mean Square distance ( ) is simply the average geometric 
distance, 
 

. 
(1.2) 

 
 
1.5.2.2 Kullback-Leiber Distance 

 
The Kullback-Leibler distance measures how different two probability distributions 
are. Let  and be the transition probability matrices for two Marko chains with d 
probability distributions each, and  and  be the transition probabilities from l 
to k in  and . Then the Kullback-Leibler distance of two probability 
distributions is [2], 
 

. (1.3) 

 
1.5.2.3 Dynamic Time Warping 

 
DTW algorithm is known for being efficient as the time series similarity measure, 
which minimizes the effects of shifting and distortion in time by allowing “elastic” 
transformation of time series in order to detect similar shapes with different phases 
[8]. Speech recognition has been a well known applications area of DTW for a long 
time, but in literature DTW was also used in very diverse areas such as 
bioinformatics, chemical engineering, signal processing, robotics and aligning 
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biometric data, signatures and fingerprints [4]. Details of the DTW algorithm will be 
discussed in “CHAPTER 2.” 
 
 
1.5.2.4 Cross-Correlation 

 
Dissimilarity based on cross correlation ( ) of two time series data (  and ) 
can be represented with Equation (1.4), where max is the maximum lag [2]. 
 

, (1.4) 

 
 
1.5.2.5 Short time series (STS) distance 

 
Möller-Levet et al. [25] proposed the STS distance measure by considering each time 
series as a piecewise linear function [2]. The STS distance between the series  and 

 (  and  are d dimensional vectors, d being the length of the time series data) is 
defined as in Equation (1.5). Here  represents the time for data point  and . 
 

, (1.5) 

 
1.5.2.6 J divergence and symmetric Chernoff information divergence 

 
J divergence and symmetric Chernoff information divergence is used for spectral 
matrix estimators for different stationary vector series [2]. Details for those distance 
measures can be found in the study of  Kakizawa et al. [17]. 
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CHAPTER 2  
 

 

METHODS 

 

 

2.1 Dynamic Time Warping  

 
Dynamic Time Warping algorithm is a time-series similarity measure, which can be 
used for data that may be out of phase or may not have the same lengths or frequency 
for that matter. DTW algorithm is as follows; 
 
Step 1. Generating the Cumulative Distance Matrix 
 
The first step is to compare each point in one time series data with every other point 
in the second time series data, generating a matrix. So the cumulative distance 
between time series data points is calculated using dynamic programming technique. 
 
Given two time series   and , the 
cumulative distance matrix can be found using equations (2.1), (2.2) and (2.3). In 
those equations, the Euclidian distance between two data points is normally used for 
defining . 
 

, (2.1) 
, (2.2) 

. (2.3) 
 
In the above formulation one step dynamic programming is used, however the depth 
(time window) of algorithm can be defined specific to the problem nature. Figure 2.1 
shows different step size (or constraints) examples that might be used with DTW 
algorithm. 
 
The Euclidean distance measure can be seen as a special case of DTW with step size 
being equal to zero. However, this special case can only be defined when the two 
time series have the same length. 
 
The detailed algorithm for creating the cumulative distance matrix is given in Table 
2.1. 
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(a) Standard constraint for step size one (b) Version for the standard 

constraint for step size two 

  
(c) Constraint suggested by Sakoe et al. 

[33] 
(d) Constraint suggested by Sakoe et 

al.[33] 
 

Figure 2.1 Different Step Size (or Constraint) Examples for DTW Algorithm 
 

Table 2.1 Detailed Cumulative Distance Matrix Algorithm 
 

Detailed Cumulative Distance Matrix Algorithm with Euclidian Distance 
1:   
2:   
3:   
4:   
5:   
6:       
7:  end 
8:   
9:          
10:  end 
11:   
12:          
13:                 
14:         end 
15:  end 
16:  Cummulative_Distance  
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Step 2. Finding The Optimal Path 
 
The optimal warping path is the minimum distance path on the cumulative distance 
matrix. The minimum distance path is a sequence of points  

with    for ,   ,   and  ,  satisfying 
the following conditions: 

  
Boundary condition: The starting and ending points of the warping path must be the 
first and the last points of aligned sequences,  and . 
 
Monotonicity condition:  and . This condition 
preserves the time-ordering of points. 
 
Step size condition: Limits the warping path making big shifts in time while 
aligning sequences. Step size condition can be formulated as 

 for a single step size. 
So starting in reverse order with  and finishing with , the simple 
procedure for the optimal path is described in (2.4) [9]: 
 

 (2.4) 

 
Table 2.2 Detailed Optimal Warping Path Algorithm 

 
Detailed Optimal Warping Path Algorithm 

1:   
2:   
3:  while  
4:          
5:                 
6:          
7:               
8:         else 
9:               if  
10:                        
11:               else if  
12:                      
13:                else 
14:                        
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Table 2.2 (Continued)Detailed Optimal Warping Path Algorithm 
 

15:                      
16:                end 
17:         end 
18:          
19:          
20:  end 

 
 
2.2 An Example for the Dynamic Time Warping Algorithm: 

 
Suppose we compare two time series data, 
 
Time Series Data-1:  
Time Series Data-2:  
 

 
 

Figure 2.2 Graphic Representation of the Time Series Data 
 
Actually the two series is quite similar with peaks and slopes with a small phase 
shift. However, pairwise comparison of the data points would indicate the data is not 
similar.  When these two time series are compared by Euclidian Norm, the distance 
between the series is 20.69. Yet, if we use DTW, the distance between the two series 
is only two. The cumulative distance matrix is presented in Figure 2.3 with optimal 
warping path highlighted with red color.  
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11 0 214 214 214 214 214 215 224 288 429 8 4 
10 0 214 214 214 214 214 215 224 260 365 7 4 
9 0 214 214 214 214 214 215 222 196 301 6 4 
8 0 214 214 214 214 214 214 213 132 237 5 4 
7 1 214 214 214 214 214 213 194 68 148 4 5 
6 12 213 213 213 213 213 190 99 19 4 125 269 
5 7 69 69 69 69 69 74 18 3 39 75 124 
4 4 20 20 20 20 20 10 2 18 99 108 124 
3 2 4 4 4 4 4 1 2 38 159 160 164 
2 0 0 0 0 0 0 1 10 74 243 244 244 
1 0 0 0 0 0 0 1 10 74 243 244 244 

0 0 0 0 0 1 3 8 13 1 0 
 

1 2 3 4 5 6 7 8 9 10 11  
 

Figure 2.3 Cumulative Distance Matrix and the Optimal Warping Path 
 
 
2.3 Consensus Clustering 

 
In literature, the idea of using several runs of one or more clustering algorithms, 
different parameters of an object or dataset resamples, to create better clusters is 
know as consensus clustering, clustering aggregation or in other words ensemble 
clustering. In this study we will use the term “consensus clustering” to indicate this 
idea. However the only reason for using consensus clustering is not only to obtain 
better clustering. Ghosh et al. [1] and Ghaemi et al. [26] lists other reasons to use 
consensus clustering as follows: 

• Improved quality of solution: Better clustering results as compared to a single 
clustering solution 

• Novelty: Achieving a better clustering solution that can not be obtained by 
using any single algorithm. 

• Robust clustering: Obtaining good results across wide ranges of domain and 
datasets by constructing ‘meta’ clustering models. 

• Stability and confidence estimation: Clustering solutions with lower 
sensitivity to noise, outliers, or sampling variations.  

• Model selection: Cluster ensembles provide an approach to the model 
selection problem by considering the match across the base solutions to 
determine the final number of clusters to be obtained [27]. 

• Knowledge reuse: A consensus solution can combine different clusterings of 
the objects due to past projects to get a more consolidated clustering. 

• Multiview clustering: Effective consolidation of clusters depending on 
different views of data having multiple features. 

• Distributed computing (Parallelization and Scalability): Consolidation of 
parallel clustering results from distributed sources of data or features when it 
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is not possible to first collect the entire data (subset of the features of each 
object etc.) at a central site. 

 
Consensus clustering is generally a two-stage approach. First stage is to create 
diversity of clustering and the second stage is to obtain a consensus across those 
diverse solutions by utilizing an algorithm (see Figure 2.4). Diversity can be 
achieved by several mechanisms [1] [26]: 

• Using different clustering algorithms. 
• Using different initialization points or parameters. 
• Using different subsets of data or creating resamples from the original data. 
• Using different features of data. 

 

 
 

Figure 2.4 Consensus Clustering Approaches [1] [26] 
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2.3.1 Consensus Clustering Algorithms 

 

2.3.1.1 Voting 

 
Voting is the most simple consensus approach. While using this approach initially a 
diversity mechanism is used to create a group of different solutions, then a voting 
algorithm is used to assign data points to clusters in order to determine the final 
consensus clustering. Voting algorithm simply assigns the cluster labels to the data 
points by determining the majority vote. Dudoit et al. [31] and Fischer et al. [32] 
propose a consensus functions that is based on voting. 
 

2.3.1.2 Coassociation Based Function 

 
This approach is actually a pairwise similarity based approach. In this approach a 
combined coassociation matrix is generated by using the ratio of a number of 
clusterings in which the two data points are shared the same clusters to the total 
number of clusterings in the ensemble [26]. This matrix is actually a similarity 
matrix defining the similarity between the data points.  This matrix can be solved by 
using one of the many clustering algorithms in order to obtain a final consensus 
solution. This approach due to its simplicity and intuitiveness was used in many 
studies ([10], [29], [30]). 
 
 
2.3.1.3 Graph Partitioning 

 
Clusters can be represented as edges on a hypergraph in which data points are the 
vertices. Thus edges connecting the vertices define the data points within the same 
cluster. To solve the problem of consensus clustering Strehl et al. [30] proposed an 
approach called Hypergraph-Partitioning Algorithm (HGPA). This algorithm re-
partitions the data using the given clusters.  To obtain the consensus clusters the 
hypergraph is partitioned into k unconnected components of approximately the same 
size by cutting a minimal number of hyperedges [30]. Strehl et al. [30] also proposed 
the Meta-CLustering Algorithm (MCLA) in their study which also uses hypergraphs. 
They define the idea in MCLA as “to group and collapse related hyperedges and 
assign each object to the collapsed hyperedge in which it participates most strongly.” 
 
 
2.3.1.4 Finite Mixtures 

 
While using the finite mixture models the main assumption is to model cluster labels 
as random variables drawn from a probability distribution described as a mixture of 
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multinomial distributions. The most known study using the mixture models was done 
by Topchy et al. [28]. In their study authors propose a probabilistic model of 
consensus using a finite mixture of multinomial distributions in a space of cluster 
labels. Combined clustering can be found by solving a simple maximum log-
likelihood problem by using the expectation maximization algorithm.  
 
 
2.4 Consensus Methodology Used In This Study 

 
The consensus methodology developed by Monti et al. [10] proposes a resampling-
based approach for class discovery and clustering validation. The proposed 
methodology provides a method to represent the consensus across multiple runs of 
clustering algorithms [10]. This approach is an coassociation matrix based approach 
for consensus clustering.  Monti et al. [10] expressed their motivation for the 
proposed methodology as to increase the robustness and stability of clusters to 
sampling variability.  They have also explained that their method can also be used to 
represent the consensus over multiple runs of a clustering algorithm with random 
restart so as to account for the sensitivity to the initial conditions. Even though it was 
not mentioned in their paper, their approach is also suitable for obtaining a consensus 
result for different clustering algorithms, as it is suggested by Simpson [34]. Also it 
is suitable for multiview (multivariate) clustering, giving way for the utilization of 
different features of the data. 
 
So Monti et al.s’ proposed methodology, by using different clustering algorithms, 
different initialization points or parameters, different features of data and  resamples 
from the original data, has the benefits of “Improved Quality of Solution,”  
“Novelty,” “Robust Clustering” and “Stability”  which are discussed in Section 2.3. 
 
In this study, we use this proposed approach for achieving a consensus clustering 
result, by also including the usage of different clustering algorithms. The multivariate 
case will be discussed in Section 2.5. This consensus clustering approach can simply 
be summarized as follows [10]: 
 
For a selected bootstrapping technique with different clustering algorithms and 
number of clusters; 
 
1. Resample the dataset for h iterations (in our case the square distance matrix 

developed by DTW will be resampled). 
2. Select a number of clustering algorithms for the consensus solution, 

 
Starting from the first clustering algorithm, ,  repeat Step 3 and 4 for all the 
clustering algorithms: 

 
3. Apply the clustering algorithm to each and every resampled dataset. 
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4. Compute the consensus clustering matrix using all the runs (each and every 
resampled dataset) from the same algorithm. Here, the consensus clustering 
matrix for the kth clustering algorithm  can be generated using the 
following equation: 

 

  (2.5) 

 
Here,  is the connectivity matrix corresponding to the hth iteration of the 
kth clustering algorithm, where 

 

  (2.6) 

 
Furthermore,  is the indicator matrix corresponding to the hth iteration of 
the kth clustering algorithm such that  
 

  (2.7) 

 
5. Combine the consensus clustering matrices obtained for each algorithm using 

weights ( ) in order to form the following merged matrix  
 

  (2.8) 

 
6. Use the merged matrix as a similarity matrix and obtain the final 

clustering solution. 
 
 
2.5 Multivariate Problems 

 

As mentioned earlier in Section 2.3, one of the benefits offered by consensus 
clustering is to obtain a single consolidated partition by effectively combining all the 
clusterings of different aspects of the data. For the multivariate case there can be 
several different approaches to tackle the problem. This study deals with the 
following two approaches: 
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• Combining the similarity matrices into a single merged similarity matrix 

and obtaining the clusters with the consensus clustering algorithm: As 
for each variable before creating a consensus solution with the algorithm 
defined in Section 2.4, one can create an ensemble using the similarity 
matrices of each variable using the DTW methodology. This can be simply 
done by using (2.9), where  represents the similarity matrix for the nth 
variable: 

 

  
(2.9) 

 
• Combining the merged matrix of each variable and obtaining a final 

consensus clustering: It is also possible to use the same approach defined in 
Section 2.4 to obtain the ensemble of variables using the merged matrices 
defined in Step 5 of the consensus algorithm (see Figure 2.5).  

 

 
 

Figure 2.5 Final Merged Matrix 
 

In that case one can obtain the  final merged matrix using Equation (2.10), 
where  represents the merged matrix for the nth variable obtained by 
using the consensus clustering algorithm: 

  

  
(2.10) 
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CHAPTER 3  
 

 

EXPERIMENTATION 

 

 

In order to test our proposed approach we have experimented with four distinct 
datasets. Two of those datasets were created specific for this study. The other two 
datasets are used in the literature for testing of the classification algorithms for time 
series data. Those two datasets are “Synthetic Control Dataset” and “Daily and 
Sports Activities Dataset” [35]. 
 
In literature “Agglomerative Hierarchical” clustering and “k-means” Clustering 
algorithms with Euclidian distance measure are the mostly used algorithms for time 
series data clustering analysis. Hence we have used those algorithms in order to 
compare the performance of theirs to that of our proposed algorithm. Initially we will 
discuss the performance of just DTW as a time series distance measure when 
compared to that of the Euclidian distance measure. For that purpose we will be 
using different window sizes (namely, window sizes 1, 2, 3, 4 and 5). 
 
For obtaining consensus clustering merged matrices, we have utilized the R Package 
that was created by Simpson [34]. For all datasets we have used Agglomerative 
Nesting (Hierarchical Clustering), Partitioning Around Medoids, Divisive Analysis 
Clustering and k-means as different clustering algorithms within the consensus 
clustering algorithm. All four clustering algorithms were equally weighted for 
calculation of the final consensus clustering merged matrix. Different parameter sets 
used for different clustering algorithms are presented in Table 3.1. In order to obtain 
the clustering labels, for final clustering we solved the merged matrices obtained 
from both Agglomerative Nesting (Hierarchical) and k-means clustering. 
 

Table 3.1 Parameter Sets Used for Different Clustering Algorithms 
 

Algorithm Definition Distance 
Measure 

Method Other 
Parameters 

Agglomerative Nesting 
(Hierarchical Clustering ) Euclidean Average 

Linkage R defaults 

Partitioning Around Medoids Euclidean - R defaults 
Divisive Analysis Clustering Euclidean - R defaults 
k-means - Hartigan-Wong R defaults 
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3.1 Experimentation with Simulated Dataset -1 

 
For initial experimentation a dataset with eight clusters, each having 50 randomly 
generated time series data with 100 time points, are created. All the time series data 
have a sinusoidal behavior with decreasing frequency. Cluster1 has a doubled period 
when compared to Cluster 2. Cluster 1-2, Cluster 5-6, and Cluster 3-4, Cluster 7-8 
has the same behavior, respectively, except Cluster 3-4 and 7-8 has smaller 
amplitude than Cluster 1-2 and 5-6. Yet all those clusters have overlapping data 
points. The representation of the dataset is presented in Figure 3.1. 
 
Run times for the generation of similarity matrices, run times for the clustering 
algorithms, errors and the identified cluster labels from the real cluster labels was 
presented in Table 3.2, Table 3.3 and Table 3.4 respectively. 
 
In order to obtain the error values, once the clustering is performed, for each cluster 
the real cluster label is found by declaring the cluster label with majority as the 
dominant real cluster label. After the real cluster label is found for each cluster, error 
values are calculated using the following equation: 
 

, where (3.1) 

 (3.2) 

 
In Equation (3.1),  represents the total error of Cluster i and  represents the 
number of objects in Cluster i. 
 
From the run time results for the generation of similarity matrices (see Table 3.2), it 
can easily be seen that DTW is computationally very expensive since even with a 
time window of size one the ratio between the run times of DTW and that of 
Euclidian is nearly 2500. This ratio increases to nearly 5000 for time window equal 
to five. 
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Figure 3.1 Simulated Dataset -1 
 

Table 3.2 Generation Times (Sec) for Similarity Matrices - Simulated Dataset -1 
 

  Generation Times (Sec) 
dtw window 1 1536.2000 
dtw window 2 1714.4000 
dtw window 3 2003.6000 
dtw window 4 2439.5000 
dtw window 5 3071.5000 
Euclidian Distance 0.6372 

 
The results show that all the distance measures and clustering algorithms were able 
to identify all the original cluster labels (see Table 3.4). Yet k-means was not able to 
cluster all the data points truly with any of the window sizes. For this dataset it can 
be seen that the error rate of the clustering algorithms increases for all algorithms as 
the time window size for DTW increases. Even though this is the case consensus 
clustering algorithm makes less errors for larger window sizes when compared with 
the conventional clustering algorithms. 



 26 

 
Table 3.3 Run Times (Sec) for Clustering Algorithms - Simulated Dataset -1 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.5478 47.5886 8135.3794 8175.9848 
dtw window 2 0.3865 47.5702 7710.4353 7751.2336 
dtw window 3 0.4065 63.8660 7705.3883 7746.7287 
dtw window 4 0.3533 61.3791 7525.4211 7585.5954 
dtw window 5 0.4061 54.2084 7755.4284 7813.6511 
Euclidian 
Distance 0.3398 48.8171 7720.4343 7764.1053 

 
Table 3.4 Errors and Clusters for Clustering Algorithms - Simulated Dataset -1 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.0000 0.0025 0.0000 0.0000 
dtw window 1 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 

0.0000 0.0025 0.0000 0.0000 
dtw window 2 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 

0.0000 0.0050 0.0000 0.0000 
dtw window 3 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 

0.0075 0.0125 0.0000 0.0000 
dtw window 4 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 

0.1475 0.0300 0.0100 0.0075 
dtw window 5 1,2,3,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 

0.0000 0.0000 0.0000 0.0000 Euclidian 
Distance 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 

 
 
3.2 Experimentation with Simulated Dataset -2 

 
In order to observe the performance difference more realistically between the 
algorithms we created the second dataset which would be harder to cluster. We 
created a dataset with four clusters, each having 50 randomly generated time series 
data with 100 time points. All the time series data have a sinusoidal behavior with a 
superimposed upward polynomial behavior. Each time series data has also a 
randomly generated phase shift. Cluster1 has a doubled period when compared to 
Cluster 2. All clusters has the same behavior except that Cluster 1-2 has a smaller 
standard deviation than Cluster 3-4. Yet all those clusters have overlapping data 
points. The representation of the dataset is presented in Figure 3.2. 
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Figure 3.2 Simulated Dataset -2 
 
In order to define the similarities between the four simulated clusters we can use the 
cross-correlation coefficient with zero lag. This matrix is given in Table 3.5. 
Coefficients presented in this matrix are the average absolute coefficients over the 50 
randomly generated samples. The diagonal of the matrix defines the auto-correlation 
coefficient of each cluster. As can be seen from the matrix clusters 1-3, 2-4 and 3-4 
have rather high correlation coefficients when compared to clusters 1-2, 1-4 and 2-3. 
Thus one can expect to have mislabeling for clusters 1-3, 2-4 and 3-4. 
 

Table 3.5 Correlation Coefficients for Four Clusters 
 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Cluster 1 0.5120 0.2179 0.4302 0.3230 
Cluster 2 0.2179 0.5170 0.3123 0.4318 
Cluster 3 0.4302 0.3123 0.5204 0.4702 
Cluster 4 0.3230 0.4318 0.4702 0.4802 

 
Run times for the generation of similarity matrices, run times for the clustering 
algorithms, error rates and the identified cluster labels from the real cluster labels for 

 was presented in Table 3.6, Table 3.7, Table 3.8 Table 3.9, Table 
3.10, Table 3.11, Table 3.12, Table 3.13, Table 3.14, Table 3.15, Table 3.16 . 
 
From the run times for the generation of similarity matrices it can easily be seen that 
DTW is computationally very expensive since even with a time window size of one, 
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the ratio between run times of DTW and Euclidian is nearly 1800. It increases to 
nearly 3400 for time window size equal to five. 
 
Regarding the clustering algorithm run times, clustering errors and cluster discovery 
results, following observations were made: 

• Results show that the consensus clustering algorithm with DTW (window 
size equal to one) as the distance measure perform better for all 

, when compared both with respect to the conventional 
clustering algorithms (AGNES, k-means) and with respect to the similarity 
distance measures (DTW window size 2-5 and Euclidian Distance Measure). 

• As the final clustering algorithm k-means (with DTW window size equal to 
one)  perform better (between 1.4% and  25%) at three cases out of five, with 
two cases AGNES and k-means have the same errors. 

• Consensus clustering is computationally very time consuming, and hence 
expensive. 

• Leaving out the consensus clustering results, when DTW is compared with 
the Euclidian distance measure, DTW always have better results than 
Euclidian distance measure whit k-means clustering algorithm. 

• Euclidian distance measure perform better when used with conventional 
clustering algorithms (AGNES, k-means), rather than consensus clustering 
algorithm. 

• k-means (both as conventional clustering algorithm and final clustering 
algorithm for consensus clustering) performs better for finding true clusters 
when compared to the hierarchical clustering. 

• Euclidian distance measure, for all cases, failed to find the 4th cluster when 
used with AGNES algorithm. 

• As expected, when k increases, the number of clusters detected truly also 
increases and the clustering errors decreases (see Figure 3.3). When DTW 
window size increases, the number of clusters detected truly increases and the 
clustering errors either increases or stays the same (see Figure 3.3). 

 
Table 3.6 Generation Times (Sec) for Similarity Matrices - Simulated Dataset -2 

 
  Generation Times (Sec) 
dtw window 1 391.1945 
dtw window 2 441.8830 
dtw window 3 499.8164 
dtw window 4 599.4900 
dtw window 5 740.1800 
Euclidian Distance 0.2181 
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Table 3.7 Run Times (Sec) for Clustering Algor. - Simulated Dataset -2 (k=4) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.3461 9.0636 1588.4601 1595.6962 
dtw window 2 0.0229 9.5095 1612.2358 1619.2281 
dtw window 3 0.0167 9.5828 1591.2608 1599.8411 
dtw window 4 0.0989 12.1372 1606.2564 1613.2364 
dtw window 5 0.0911 10.7992 1620.2566 1627.9906 
Euclidian 
Distance 0.0186 12.1208 1594.2668 1603.2860 

 
Table 3.8 Errors and Clusters for Clustering Algor. - Simulated Dataset -2 (k=4) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4350 0.3700 0.3650 0.3600 
dtw window 1 1,2,3 1,2,3 1,2,3 1,2,3 

0.3800 0.4100 0.4300 0.3900 
dtw window 2 1,2,3 1,2,3,4 1,3,4 1,2,3,4 

0.4250 0.4500 0.3850 0.4100 
dtw window 3 1,2,3 1,3,4 1,2,3,4 1,2,3,4 

0.4600 0.4800 0.5000 0.5100 
dtw window 4 1,2,3 1,2,3,4 1,3,4 1,2,3,4 

0.5600 0.4800 0.5750 0.5600 
dtw window 5 1,2,3 1,2,3 1,3,4 1,3,4 

0.4400 0.4350 0.5550 0.4900 Euclidian 
Distance 1,2,3 1,2,3 1,3,4 1,2,3,4 
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Table 3.9 Run Times (Sec) for Clustering Algor. - Simulated Dataset -2 (k=5) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0271 11.8210 1588.1776 1597.3620 
dtw window 2 0.0160 13.7690 1612.2158 1623.0052 
dtw window 3 0.0160 13.1753 1591.2185 1599.6934 
dtw window 4 0.0884 18.4880 1606.2456 1615.4424 
dtw window 5 0.0887 15.9433 1620.2240 1631.5009 
Euclidian 
Distance 0.0180 14.4006 1594.2175 1605.3910 

 
Table 3.10 Errors and Clusters for Clustering Algor. - Simulated Dataset -2 (k=5) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.3900 0.3200 0.2500 0.2300 
dtw window 1 1,2,3 1,2,3,4 1,2,3 1,2,3,4 

0.3350 0.3400 0.2800 0.2900 
dtw window 2 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 

0.3500 0.3650 0.3950 0.3650 
dtw window 3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.4450 0.4400 0.4800 0.4400 
dtw window 4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.5150 0.4650 0.4550 0.4850 
dtw window 5 1,2,3,4 1,2,3,4 1,2,3 1,2,3,4 

0.3650 0.4250 0.4550 0.4750 Euclidian 
Distance 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 
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Table 3.11 Run Times (Sec) for Clustering Algor. - Simulated Dataset -2 (k=6) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0201 14.5091 1588.2101 1597.8628 
dtw window 2 0.0167 15.5018 1612.2005 1622.9132 
dtw window 3 0.0186 16.7971 1591.2324 1602.5481 
dtw window 4 0.0881 17.0572 1606.1987 1618.5764 
dtw window 5 0.0886 18.2975 1620.2120 1633.1699 
Euclidian 
Distance 0.0184 15.9662 1594.2463 1605.4089 

 
Table 3.12 Errors and Clusters for Clustering Algor. - Simulated Dataset -2 (k=6) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2950 0.2400 0.1750 0.1400 
dtw window 1 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.3350 0.3250 0.1950 0.2000 
dtw window 2 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 

0.3500 0.3550 0.2150 0.2200 
dtw window 3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.4150 0.4650 0.4200 0.4050 
dtw window 4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.4750 0.4800 0.4650 0.4850 
dtw window 5 1,2,3,4 1,2,3,4 1,2,3 1,2,3,4 

0.3100 0.3700 0.4600 0.4550 Euclidian 
Distance 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 
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Table 3.13 Run Times (Sec) for Clustering Algor. - Simulated Dataset -2 (k=7) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0881 17.5801 1588.1547 1600.0209 
dtw window 2 0.0886 18.0287 1612.2263 1624.4970 
dtw window 3 0.0891 18.6063 1591.1950 1603.5106 
dtw window 4 0.0886 19.2363 1606.2396 1620.5226 
dtw window 5 0.0912 18.7671 1620.1921 1637.3047 
Euclidian 
Distance 0.0890 16.6778 1594.2226 1608.1250 

 
Table 3.14 Errors and Clusters for Clustering Algor. - Simulated Dataset -2 (k=7) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2950 0.1050 0.0300 0.0300 
dtw window 1 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.3350 0.3450 0.1800 0.1950 
dtw window 2 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 

0.3050 0.3400 0.2300 0.2350 
dtw window 3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.4150 0.3900 0.3450 0.3000 
dtw window 4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.4200 0.4150 0.4500 0.4600 
dtw window 5 1,2,3,4 1,2,3,4 1,2,3 1,2,3,4 

0.2500 0.3100 0.4350 0.4300 Euclidian 
Distance 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 
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Table 3.15 Run Times (Sec) for Clustering Algor. - Simulated Dataset -2 (k=8) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0887 20.3169 1588.1639 1598.4081 
dtw window 2 0.0886 19.1207 1612.2275 1624.5023 
dtw window 3 0.0889 20.8761 1591.2329 1604.0647 
dtw window 4 0.0887 22.4597 1606.2067 1621.3637 
dtw window 5 0.0950 19.3942 1620.2126 1639.2593 
Euclidian 
Distance 0.0886 19.0565 1594.2481 1606.8935 

 
Table 3.16 Errors and Clusters for Clustering Algor. - Simulated Dataset -2 (k=8) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2400 0.1050 0.0200 0.0200 
dtw window 1 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.2400 0.2700 0.1650 0.1050 
dtw window 2 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.3050 0.3550 0.2300 0.2250 
dtw window 3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.3750 0.3750 0.2500 0.3150 
dtw window 4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.3850 0.4150 0.3800 0.3900 
dtw window 5 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

0.2500 0.2400 0.4150 0.3950 Euclidian 
Distance 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 
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(a) Agglomerative Nesting (AGNES) 

 
(b) k-means 

 
Figure 3.3 Error Rates with Respect to Window Size and Number of Clusters 
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(c) Consensus Clustering (AGNES) 

 
(d) Consensus Clustering (k-means) 

 
Figure 3.3 (Continued) Error Rates with Respect to Window Size and Number of 

Clusters 
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3.3 Experimentation with Synthetic Control Dataset 

 

Synthetic Control Dataset was obtained from UCI Machine Learning Repository 
[35]. This dataset contains 600 examples (six clusters each having 100 time series 
observations) of control charts synthetically generated by the process of Alcock et al. 
[36]. There are six different classes of control charts, namely “Normal,” “Cyclic,” 
”Increasing trend,” “Decreasing trend,” “Upward shift” and “Downward shift.” 
Figure 3.4 shows ten examples from each class. 
 

 
 

Figure 3.4 Synthetic Control Dataset 
 
Run times for the generation of similarity matrices, run times for the clustering 
algorithms, error rates and the identified cluster labels from the real cluster labels for 

 was presented in  Table 3.19, Table 3.20, Table 3.21, Table 3.22, 
Table 3.23, Table 3.24, Table 3.25, Table 3.26 and Table 3.27. 
 
From the run time results for the generation of similarity matrices it can easily be 
seen that DTW is computationally very expensive since even with a time window of  
size one, the ratio between run times of DTW and Euclidian is nearly 500. It 
increases to nearly 900 for time window size equal to five. 
 
Considering the clustering algorithm run times, clustering errors and cluster 
discovery results, following observations were made: 
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• Results show that consensus clustering algorithm with DTW (window size 
equal to one) as the distance measure perform better for all , 
when compared both with respect to the conventional clustering algorithms 
(AGNES, k-means) and with respect to the similarity distance measures 
(DTW window size 2-5 and Euclidian Distance Measure). 

• As the final clustering algorithm k-means (with DTW window size equal to 
one)  performs better for all the cases (between 1.2% and  15%). 

• Consensus clustering is computationally very time consuming, and hence 
expensive. 

• Leaving out the consensus clustering results, when DTW is compared with 
Euclidian distance measure, DTW always have better results than Euclidian 
distance measure whit k-means clustering algorithm. 

• Euclidian distance measure perform better with conventional clustering 
algorithms (AGNES, k-means) in three cases out of five when compared to 
consensus clustering algorithm. 

• As expected, when k increases, the number of clusters detected truly also 
increases and the clustering errors decreases (see Figure 3.5). When DTW 
window size increases, the number of clusters detected truly increases and the 
clustering errors either increases or stays the same (see Figure 3.5). 

 
Table 3.17 Generation Times (Sec) for Similarity Matrices – Synth. Cont. Dataset 

 
  Generation Times (Sec) 
dtw window 1 1308.8000 
dtw window 2 1402.8000 
dtw window 3 1609.6000 
dtw window 4 1941.0000 
dtw window 5 2468.5000 
Euclidian Distance 2.6839 

 
Table 3.18 Run Times (Sec) for Clustering Algor. - Synthetic Con. Dataset (k=6) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.2571 119.0178 13396.2312 13477.6702 
dtw window 2 0.2017 123.7814 13514.9075 13588.6206 
dtw window 3 0.2391 153.5004 13619.9366 13692.0911 
dtw window 4 0.8808 205.8110 13499.0220 13620.8210 
dtw window 5 0.8576 276.4131 13378.2213 13488.5771 
Euclidian 
Distance 0.2628 153.5539 13442.9459 13526.6285 
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Table 3.19 Errors and Clusters for Clustering Algor. - Synthetic Con. Dataset (k=6) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.3900 0.2167 0.2033 0.1767 
dtw window 1 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3717 0.3783 0.1950 0.1933 
dtw window 2 1, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.4050 0.3833 0.1867 0.1867 
dtw window 3 1, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3917 0.3767 0.3450 0.2750 
dtw window 4 1, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.4067 0.3833 0.3267 0.3683 
dtw window 5 1, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,3,4,5,6 

0.2283 0.2433 0.3317 0.2650 Euclidian 
Distance 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5 1,2,3,4,6 

 
Table 3.20 Run Times (Sec) for Clustering Algor. - Synthetic Con. Dataset (k=7) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.2412 144.7325 13395.8776 13487.2521 
dtw window 2 0.2042 143.9999 13514.9527 13647.5288 
dtw window 3 0.2462 171.1087 13619.9096 13739.9510 
dtw window 4 0.8063 300.2434 13498.9735 13633.2264 
dtw window 5 0.8031 443.8419 13378.0446 13576.3871 
Euclidian 
Distance 0.2398 251.2110 13442.9460 13547.6816 
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Table 3.21 Errors and Clusters for Clustering Algor. - Synthetic Con. Dataset (k=7) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2233 0.2133 0.1383 0.1317 
dtw window 1 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3717 0.2150 0.1867 0.1883 
dtw window 2 1, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.4000 0.3750 0.1883 0.1850 
dtw window 3 1, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3217 0.3667 0.2667 0.2750 
dtw window 4 1, 2, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3583 0.3750 0.3200 0.3283 
dtw window 5 1, 2, 3, 4, 5, 6 1, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2283 0.2333 0.2583 0.2350 Euclidian 
Distance 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

 
Table 3.22 Run Times (Sec) for Clustering Algor. - Synthetic Con. Dataset (k=8) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.2084 172.9747 13395.8845 13493.3732 
dtw window 2 0.2054 157.1848 13514.9753 13684.1874 
dtw window 3 0.2393 199.5846 13619.8873 13778.6623 
dtw window 4 0.8030 322.5613 13498.9606 13714.1831 
dtw window 5 0.8109 413.2476 13378.0515 13552.9046 
Euclidian 
Distance 0.2063 269.1474 13442.9395 13605.4401 
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Table 3.23 Errors and Clusters for Clustering Algor. - Synthetic Con. Dataset (k=8) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2233 0.2033 0.1917 0.1767 
dtw window 1 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3717 0.2100 0.1817 0.1900 
dtw window 2 1, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3317 0.2117 0.1800 0.1800 
dtw window 3 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3217 0.2967 0.2083 0.2050 
dtw window 4 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3550 0.3150 0.3017 0.3167 
dtw window 5 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2283 0.2267 0.2267 0.2317 Euclidian 
Distance 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

 
Table 3.24 Run Times (Sec) for Clustering Algor. - Synthetic Con. Dataset (k=9) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.8086 214.3973 13396.0509 13536.2734 
dtw window 2 0.8049 197.0057 13514.9142 13698.5777 
dtw window 3 0.8019 246.2865 13619.8966 13784.3393 
dtw window 4 0.8015 347.5116 13498.9528 13740.9422 
dtw window 5 0.8059 356.7311 13378.0390 13622.9971 
Euclidian 
Distance 0.8013 363.1410 13442.9469 13611.2687 
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Table 3.25 Errors and Clusters for Clustering Algor. - Synthetic Con. Dataset (k=9) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2233 0.2100 0.1400 0.1383 
dtw window 1 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2067 0.2117 0.1850 0.1433 
dtw window 2 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3100 0.2117 0.1817 0.1783 
dtw window 3 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3217 0.2267 0.2117 0.1883 
dtw window 4 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3383 0.2583 0.2933 0.2983 
dtw window 5 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2283 0.2317 0.2133 0.2217 Euclidian 
Distance 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

 
Table 3.26 Run Times (Sec) for Clustering Algor. - Synthetic Con. Dataset (k=10) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.8101 245.9032 13396.0678 13560.4635 
dtw window 2 0.8059 224.3224 13515.2466 13733.3051 
dtw window 3 0.8041 257.1076 13619.9774 13812.7344 
dtw window 4 0.8097 394.0911 13499.0686 13730.5603 
dtw window 5 0.8024 320.1215 13378.1050 13656.1541 
Euclidian 
Distance 0.8050 456.9493 13443.0447 13588.9502 
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Table 3.27 Errors and Clusters for Clustering Algor. – Synt. Con. Dataset (k=10) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.2233 0.2150 0.1400 0.1383 
dtw window 1 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2067 0.2183 0.1383 0.1467 
dtw window 2 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3067 0.2200 0.1600 0.1533 
dtw window 3 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3117 0.2300 0.1983 0.1950 
dtw window 4 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2650 0.2533 0.2633 0.2650 
dtw window 5 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.2283 0.2317 0.2317 0.2050 Euclidian 
Distance 1, 2, 3, 4, 5, 6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 
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(a) Agglomerative Nesting (AGNES) 

 
(b) k-means 

 
Figure 3.5 Error Rates with Respect to Window Size and Number of Clusters 
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(c) Consensus Clustering (AGNES) 

 
(d) Consensus Clustering (k-means) 

 
Figure 3.5 (Continued) Error Rates with Respect to Window Size and Number of 

Clusters 
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3.4 Experimentation with Daily and Sports Activities Dataset 
 
Daily and Sports Activities Dataset was obtained from UCI Machine Learning 
Repository [35]. The dataset was created by Altun et al. [37]. In this dataset there are 
19 activities performed by eight subjects (four female, four male, between the ages 
20 and 30). The subjects were asked to perform the activities in their own style and 
were not restricted on how the activities should be performed. For this reason, there 
are inter-subject variations in the speeds and amplitudes of some activities. There 
were five measurement points (torso, right arm, left arm, right leg, left leg) and nine 
different sensors at each point (x, y, z accelerometers, x, y, z gyroscopes, x, y, z 
magnetometers).  
 
Altun et al. [37] mentioned that the best identifiers for the human activities are leg 
accelerometers and magnetometers. So in our study we had only used the data 
obtained from Right Leg z-accelerometer and  Right Leg z-magnetometer. We have 
also only included the following 7 activities in our study: standing, ascending and 
descending stairs, walking in a parking lot, running on a treadmill with a speed of 8 
km/h, cycling on an exercise bike in horizontal positions, and jumping.  
 
3.4.1 Right Leg Accelerometer Data 

 
Data for Right Leg Accelerometer is presented in Figure 3.6. All the seven activities 
are presented for a single performer. 
 
When the clustering algorithm run times, clustering errors and cluster discovery 
results are considered, following observations were made: 

• k-means clustering algorithm with DTW (window size equal to one) as the 
distance measure performs better for all , when compared 
with other algorithms (AGNES, Consensus Clustering and with respect to the 
similarity distance measures (DTW window size 2-5 and Euclidian Distance 
Measure). 

• k-means clustering algorithm with DTW (window size equal to one) as the 
distance measure, identify all the true clusters, while Euclidian distance fail to 
identify all the true clusters. 

• When DTW is compared with Euclidian distance measure, DTW have better 
results than Euclidian distance measure regardless of the clustering algorithm 
used. 

• k-means (both as conventional clustering algorithm and final clustering 
algorithm for consensus clustering) performs better for finding true clusters 
when compared to hierarchical clustering. 

• Euclidian distance measure, for all cases, failed to find the 2nd , 3rd  and 6th 
clusters when used with AGNES algorithm and 2nd and 6th clusters when used 
with k-means algorithm. 

• As expected, when k increases, the number of clusters detected truly also 
increases and the clustering errors decreases (see Figure 3.7).  



 46 

• When DTW window size increases, the number of clusters detected truly 
increases and the clustering errors either increases or stays the same (see 
Figure 3.7). 

 

  
standing ascending stairs 

  
descending stairs walking in a parking lot 

  
running on a treadmill cycling on an exercise bike 

 
Jumping 

 
Figure 3.6 Daily and Sports Activities Dataset – Right Leg Accelerometer 
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Table 3.28 Generation Times (Sec) for Similarity Matrices - Right Leg 
Accelerometer 

 
  Generation Times (Sec) 
dtw window 1 6714.5609 
dtw window 2 7659.0000 
dtw window 3 8717.1000 
dtw window 4 10355.0000 
dtw window 5 12625.0000 
Euclidian Distance 0.1838 

 
Table 3.29 Run Times (Sec) for Clustering Algor. - Right Leg Acc. (k=7) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0109 4.1308 126.2235 130.4206 
dtw window 2 0.0207 3.4265 125.6267 128.9476 
dtw window 3 0.0198 3.7485 124.8268 127.6829 
dtw window 4 0.0198 3.5619 124.2296 127.5414 
dtw window 5 0.0202 4.1236 126.0298 129.3655 
Euclidian 
Distance 0.0097 4.2221 127.6304 130.5787 

 
Table 3.30 Errors and Clusters for Clustering Algor. - Right Leg Acc. (k=7) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.6071 0.3571 0.4286 0.4286 
dtw window 1 1,5,6,7 1,2,3,5,6,7 1,3,5,6,7 1,2,3,5,6,7 

0.4643 0.4107 0.4464 0.4464 
dtw window 2 1,2,5,6,7 1,2,3,5,6,7 1,2,5,6,7 1,2,3,5,6,7 

0.4464 0.4821 0.5179 0.5000 
dtw window 3 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 

0.5357 0.4643 0.5000 0.5000 
dtw window 4 1,2,5,6 1,2,5,6,7 1,2,3,5,6,7 1,2,5,6,7 

0.5536 0.5536 0.5714 0.5893 
dtw window 5 1,4,5,6 1,2,3,5,6 1,2,4,5 1,2,5 

0.6964 0.5357 0.6786 0.5536 Euclidian 
Distance 1,5,7 1,3,4,5,7 2,4,5,6,7 1,2,3,4,5,7 
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Table 3.31 Run Times (Sec) for Clustering Algor. - Right Leg Acc. (k=8) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0081 4.6239 126.2424 129.4190 
dtw window 2 0.0213 3.8210 125.6657 129.0018 
dtw window 3 0.0217 4.0602 124.8719 127.6840 
dtw window 4 0.0215 3.9075 124.2659 127.3343 
dtw window 5 0.0211 5.0715 126.0647 129.3947 
Euclidian 
Distance 0.0089 4.4435 127.6868 130.3328 

 
Table 3.32 Errors and Clusters for Clustering Algor. - Right Leg Acc. (k=8) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4643 0.3571 0.4286 0.4464 
dtw window 1 1,2,5,6,7 1,2,3,5,6,7 1,3,5,6,7 1,2,3,5,6,7 

0.4643 0.4107 0.4464 0.4464 
dtw window 2 1,2,5,6,7 1,2,3,5,6,7 1,2,5,6,7 1,2,3,5,6,7 

0.4464 0.4643 0.4464 0.5000 
dtw window 3 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 1,2,3,5,6,7 

0.5357 0.4464 0.4464 0.4464 
dtw window 4 1,2,5,6 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 

0.5536 0.4643 0.5714 0.5714 
dtw window 5 1,4,5,6 1,2,5,6,7 1,2,5,6 1,2,5,6 

0.6786 0.4821 0.6607 0.4821 Euclidian 
Distance 1,4,5,7 1,3,4,5,7 2,4,5,6,7 1,3,4,5,7 
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Table 3.33 Run Times (Sec) for Clustering Algor. - Right Leg Acc. (k=9) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0088 4.9190 126.2432 129.5848 
dtw window 2 0.0214 4.0726 125.6660 128.8466 
dtw window 3 0.0213 4.2046 124.8636 128.0212 
dtw window 4 0.0211 4.3267 124.2655 127.8415 
dtw window 5 0.0212 5.8849 126.0613 129.5155 
Euclidian 
Distance 0.0089 5.1156 127.7083 130.6620 

 
Table 3.34 Errors and Clusters for Clustering Algor. - Right Leg Acc. (k=9) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4643 0.3571 0.4107 0.3750 
dtw window 1 1,2,5,6,7 1,2,3,5,6,7 1,3,4,5,6,7 1,2,3,5,6,7 

0.4643 0.4107 0.4107 0.3929 
dtw window 2 1,2,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4464 0.4464 0.4643 0.4643 
dtw window 3 1,2,5,6,7 1,2,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.5357 0.4107 0.4643 0.4821 
dtw window 4 1,2,5,6 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 

0.5536 0.4464 0.5357 0.5357 
dtw window 5 1,4,5,6 1,2,5,6,7 1,2,5,6,7 1,2,4,5,6 

0.6786 0.4821 0.6429 0.5000 Euclidian 
Distance 1,4,5,7 1,3,4,5,7 2,4,5,6,7 1,3,5,6,7 
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Table 3.35 Run Times (Sec) for Clustering Algor. - Right Leg Acc. (k=10) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0090 5.0064 126.2475 129.8662 
dtw window 2 0.0220 4.2638 125.6657 129.1115 
dtw window 3 0.0214 4.4556 124.8648 128.7936 
dtw window 4 0.0217 4.7448 124.2680 127.7549 
dtw window 5 0.0224 6.4064 126.0581 129.6015 
Euclidian 
Distance 0.0101 5.7489 127.6635 131.6771 

 
Table 3.36 Errors and Clusters for Clustering Algor. - Right Leg Acc. (k=10) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4464 0.3571 0.4286 0.3571 
dtw window 1 1,2,4,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4286 0.4107 0.4107 0.3929 
dtw window 2 1,2,5,6,7 1,2,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4464 0.4464 0.4643 0.4107 
dtw window 3 1,2,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4464 0.4107 0.4643 0.4821 
dtw window 4 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 

0.5536 0.4464 0.5000 0.5179 
dtw window 5 1,4,5,6 1,2,5,6,7 1,2,4,5,6,7 1,2,4,5,7 

0.6607 0.5179 0.6429 0.5179 Euclidian 
Distance 1,4,5,7 1,3,4,5,7 2,4,5,6,7 1,3,5,6,7 
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Table 3.37 Run Times (Sec) for Clustering Algor. - Right Leg Acc. (k=11) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0204 5.1082 126.4409 129.9592 
dtw window 2 0.0219 4.4792 125.6597 129.2141 
dtw window 3 0.0216 4.5380 124.8597 128.4587 
dtw window 4 0.0214 5.0576 124.2564 127.8032 
dtw window 5 0.0222 6.3390 126.0483 129.8735 
Euclidian 
Distance 0.0226 6.1510 127.6548 131.3690 

 
Table 3.38 Errors and Clusters for Clustering Algor. - Right Leg Acc. (k=11) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4464 0.3393 0.4286 0.3571 
dtw window 1 1,2,4,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4107 0.3393 0.3929 0.3929 
dtw window 2 1,2,4,5,6,7 1,2,4,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4107 0.3571 0.4107 0.4464 
dtw window 3 1,2,5,6,7 1,2,3,4,5,6,7 1,2,3,5,6,7 1,2,3,5,6,7 

0.4464 0.4286 0.4643 0.4643 
dtw window 4 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 1,2,5,6,7 

0.5357 0.4464 0.5000 0.4821 
dtw window 5 1,2,4,5,6 1,2,5,6,7 1,2,4,5,6,7 1,2,3,5,7 

0.6429 0.4821 0.6071 0.5000 Euclidian 
Distance 1,4,5,7 1,3,4,5,7 2,4,5,6,7 1,3,5,6,7 
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(a) Agglomerative Nesting (AGNES) 

 
(b) k-means 

 
Figure 3.7 Error Rates with Respect to Window Size and Number of Clusters 
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(c) Consensus Clustering (AGNES) 

 
(d) Consensus Clustering (k-means) 

 
Figure 3.7 (Continued) Error Rates with Respect to Window Size and Number of 

Clusters 
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3.4.2 Right Leg Magnetometer Data 

 
Data for Right Leg Magnetometer is presented in Figure 3.8. All the seven activities 
are presented for a single performer. 
 

  
standing ascending stairs 

  
descending stairs walking in a parking lot 

  
running on a treadmill cycling on an exercise bike 

 
jumping 

 
Figure 3.8 Daily and Sports Activities Dataset – Right Leg Magnetometer 
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Following observations were made, when the clustering algorithm run times, 
clustering errors and the clusters that were truly identified were considered: 

• Results show that consensus clustering algorithm with DTW (window size 
equal to one) as the distance measure perform better for , while 
Euclidian Distance with AGNES perform better for , when 
compared with other algorithms and similarity distance measures. 

• Results show that AGNES clustering algorithm discover all the clusters while 
other clustering algorithms failed to discover all the clusters. 

• Within consensus clustering results, DTW have better results than Euclidian 
distance measure. 

• k-means clustering algorithm and Consensus Clustering algorithm (AGNES) 
for all cases, failed to find the 7th cluster, regardless of the distance measure 
used. 

• As expected, when k increases, the number of clusters detected truly also 
increases and the clustering errors decreases (see Figure 3.9). 

• When DTW window size increases, the number of clusters detected truly 
increases and the clustering errors either increases or stays the same (see 
Figure 3.9). 

 
Table 3.39 Generation Times (Sec) for Similarity Matrices - Right Leg 

Magnetometer 
 

  Generation Times (Sec) 
dtw window 1 6776.0248 
dtw window 2 7465.1000 
dtw window 3 8630.2000 
dtw window 4 10449.0000 
dtw window 5 12921.0000 
Euclidian Distance 0.2048 
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Table 3.40 Run Times (Sec) for Clustering Algor. - Right Leg Mag. (k=7) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.2133 3.2085 124.8416 127.4041 
dtw window 2 0.0222 3.0854 123.8244 126.2854 
dtw window 3 0.0221 3.1448 157.8456 160.3321 
dtw window 4 0.0221 3.0164 123.8547 126.3899 
dtw window 5 0.0220 3.1424 124.4652 127.0785 
Euclidian 
Distance 0.0222 2.9026 124.4638 126.9531 

 
Table 3.41 Errors and Clusters for Clustering Algor. - Right Leg Mag. (k=7) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4464 0.4643 0.4286 0.4464 
dtw window 1 2,3,4,5,6,7 1,2,3,4,6 2,3,4,5,6 1,2,3,4,5,6 

0.4643 0.4643 0.4286 0.4464 
dtw window 2 1,2,3,4,6 1,2,3,4,6 2,3,4,5,6 1,2,3,4,5,6 

0.4464 0.4464 0.4286 0.4286 
dtw window 3 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 2,3,4,5,6 

0.4464 0.4464 0.4286 0.4286 
dtw window 4 2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 2,3,4,5,6 

0.4286 0.4464 0.4286 0.4286 
dtw window 5 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 2,3,4,5,6 

0.4107 0.4464 0.4464 0.4464 Euclidian 
Distance 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 2,3,4,5,6 
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Table 3.42 Run Times (Sec) for Clustering Algor. - Right Leg Mag. (k=8) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0151 3.1987 124.8452 127.4962 
dtw window 2 0.0222 3.1743 123.8267 126.4271 
dtw window 3 0.0220 3.2909 157.8512 160.4235 
dtw window 4 0.0221 3.1460 123.8610 126.4211 
dtw window 5 0.0219 3.1532 124.4586 127.0770 
Euclidian 
Distance 0.0220 3.1081 124.4641 126.9716 

 
Table 3.43 Errors and Clusters for Clustering Algor. - Right Leg Mag. (k=8) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.4107 0.4107 0.4286 0.4286 
dtw window 1 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.4107 0.4286 0.4286 
dtw window 2 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.4107 0.4107 0.4286 0.3929 
dtw window 3 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 1,2,3,4,5,6 

0.4107 0.4107 0.4286 0.3929 
dtw window 4 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.4107 0.4286 0.4286 
dtw window 5 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 2,3,4,5,6 

0.4107 0.4286 0.4286 0.4286 Euclidian 
Distance 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 1,2,3,4,5,6 
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Table 3.44 Run Times (Sec) for Clustering Algor. - Right Leg Mag. (k=9) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0205 3.2591 124.8459 127.7219 
dtw window 2 0.0251 3.3551 123.8240 126.6241 
dtw window 3 0.0277 3.3646 157.8493 160.4894 
dtw window 4 0.0240 3.2791 123.8613 126.5741 
dtw window 5 0.0236 3.3805 124.4586 127.2090 
Euclidian 
Distance 0.0219 3.2346 124.4670 127.1211 

 
Table 3.45 Errors and Clusters for Clustering Algor. - Right Leg Mag. (k=9) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.3929 0.3929 0.3929 0.4107 
dtw window 1 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3750 0.3929 0.3929 0.4107 
dtw window 2 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.3929 0.3929 0.4107 
dtw window 3 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.3929 0.3929 0.4107 
dtw window 4 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3750 0.3929 0.3929 0.3929 
dtw window 5 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.4107 0.4286 0.3929 Euclidian 
Distance 1,2,3,4,5,6,7 1,2,3,4,5,6 2,3,4,5,6 1,2,3,4,5,6 
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Table 3.46 Run Times (Sec) for Clustering Algor. - Right Leg Mag. (k=10) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0208 3.4684 124.8425 127.9803 
dtw window 2 0.0222 3.4706 123.8243 126.8878 
dtw window 3 0.0221 3.5385 157.8537 160.8704 
dtw window 4 0.0219 3.4613 123.8632 126.7882 
dtw window 5 0.0220 3.5158 124.4619 127.3015 
Euclidian 
Distance 0.0217 3.3759 124.4672 127.2440 

 
Table 3.47 Errors and Clusters for Clustering Algor. - Right Leg Mag. (k=10) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.3929 0.3929 0.3929 0.3571 
dtw window 1 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3750 0.3929 0.3929 0.3929 
dtw window 2 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.4107 0.3929 0.3571 
dtw window 3 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3929 0.3929 0.3929 0.3571 
dtw window 4 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3750 0.4107 0.3929 0.3571 
dtw window 5 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3750 0.3929 0.4286 0.3929 Euclidian 
Distance 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 
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Table 3.48 Run Times (Sec) for Clustering Algor. - Right Leg Mag. (k=11) 
 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

dtw window 1 0.0204 3.6876 124.8402 128.0768 
dtw window 2 0.0219 3.6766 123.8236 127.3289 
dtw window 3 0.0219 3.8103 157.8535 160.9896 
dtw window 4 0.0228 3.6252 123.8652 127.0269 
dtw window 5 0.0223 3.7256 124.4688 127.6225 
Euclidian 
Distance 0.0217 3.6469 124.4680 127.6618 

 
Table 3.49 Errors and Clusters for Clustering Algor. - Right Leg Mag. (k=11) 

 

  

Agglomerative 
Nesting 

(AGNES) 
k-means 

Consensus 
Clustering 
(AGNES) 

Consensus 
Clustering 
(k-means) 

0.3750 0.3750 0.3750 0.3393 
dtw window 1 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3571 0.3750 0.3750 0.3393 
dtw window 2 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3571 0.3929 0.3750 0.3393 
dtw window 3 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3750 0.3750 0.3750 0.3750 
dtw window 4 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 

0.3750 0.3929 0.3750 0.3393 
dtw window 5 1,2,3,4,5,6,7 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6,7 

0.3571 0.3750 0.3929 0.3571 Euclidian 
Distance 1,2,3,4,5,6,7 1,2,3,4,5,7 1,2,3,4,5,6,7 1,2,3,4,5,6 

 



 61 

 
(a) Agglomerative Nesting (AGNES) 

 
(b) k-means 

 
Figure 3.9 Error Rates with Respect to Window Size and Number of Clusters 
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(c) Consensus Clustering (AGNES) 

 
(d) Consensus Clustering (k-means) 

 
Figure 3.9 (Continued) Error Rates with Respect to Window Size and Number of 

Clusters
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3.5 General Discussion of The Results 

 
For most of  the cases we experimented with, DTW provides better results than the 
Euclidian Distance measure. Mostly usage of window size equal to one provides 
better results than the usage of other window sizes. However, consensus clustering 
with DTW is computationally very expensive when compared to the usage Euclidian 
Distance and the conventional clustering algorithms. Thus this feature makes it 
harder to work with large datasets having too many time series samples and data 
points. Also in some cases the performance difference is around 1%, which makes it 
unnecessary to use both DTW and Consensus Clustering simultaneously.  
 
But in all the cases we experimented with, when used with consensus clustering 
DTW performs better than Euclidian Distance measure, both regarding the errors and 
cluster discoveries. In addition, generally k-means (both as conventional clustering 
algorithm and final clustering algorithm for consensus clustering) is better in 
performance (errors and the number of clusters detected truly) compared to 
hierarchical clustering when DTW is used as a distance measure.  
 
Also, dataset we have created (Simulated Data-2) backed up our initial expectation 
that DTW would perform better with data having phase shifts. This point is open for 
further experimentation with simulated datasets as the phase shift properties of real 
datasets are hard to observer if it wasn’t considered in the data collection and 
mentioned in the dataset description. 
 
Finally it should be mentioned that all this conclusions are dependent on the dataset’s 
properties and need to be experimented with more data in detail in order to be 
expressed firmly. 
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CHAPTER 4  
 

 

DETERMINING TURKEY’S CLIMATE REGIONS USING CONSENSUS 

CLUSTERING 

 

 

4.1 Dataset Description 

 
The dataset that was used in order to define the Turkey’s Climate Regions, is 
Turkey’s long term meteorological data, which was recorded at 244 stations of the 
Turkish State Meteorological Service (TSMS) over the period 1950–2010. There are 
13 variables in the dataset. We have only used nine variables. Those variables are,  

• monthly mean air temperatures,  
• monthly minimum air temperatures, 
• monthly maximum air temperatures, 
• monthly minimums of mean temperatures, 
• monthly maximums of mean temperatures, 
• monthly averages of minimum temperatures, 
• monthly averages of maximum temperatures,  
• monthly precipitation totals (in millimeters),  
• monthly relative humidity (in per cent). 
 

In order to create a complete dataset, Iyigun et al. [38], Aslan et al. [39] and 
Yozgatligil et al. [40] applied data preprocessing and minimized the number of 
missing values. The details of the dataset and the preprocessing performed was 
discussed in detail in References [38], [39], [40], [41]. In this study the data is also 
standardized prior to its use, to prevent domination of any variable with large 
measurement values. 
 

4.2 Clustering Analysis Results 

 
We have performed multivariate clustering analysis for  using 
DTW with window size equal to one as a similarity measure and consensus 
clustering with multivariate strategies described in Section 2.5. 
 
For obtaining consensus clustering merged matrices we have utilized the R Package 
that was developed by Simpson [34]. For all datasets we have used Agglomerative 
Nesting (Hierarchical Clustering), Partitioning Around Medoids, Divisive Analysis 
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Clustering and k-means as different clustering algorithms within the consensus 
clustering algorithm. All four clustering algorithms were equally weighted for 
calculation of the final consensus clustering merged matrix. Different parameter sets 
used for different clustering algorithms are presented in Table 4.1. In order to obtain 
the clustering labels, for final clustering we solved the merged matrices obtained 
with both Agglomerative Nesting (Hierarchical Clustering) and k-means. 
 

Table 4.1 Parameter Sets Used for Different Clustering Algorithms 
 

Algorithm Definition Distance 
Measure 

Method Other 
Parameters 

Agglomerative Nesting 
(Hierarchical Clustering ) Euclidean Average 

Linkage R defaults 

Partitioning Around Medoids Euclidean - R defaults 
Divisive Analysis Clustering Euclidean - R defaults 
k-means - Hartigan-Wong R defaults 

 
The results are presented in Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5 
and Figure 4.6 for  respectively. 
 
Results show us that up to  Agglomerative Nesting as a final clustering 
algorithm does not provide reliable results as it forms singleton clusters (clusters 
with only one element), with the exception of Combined Merged Matrices  and 

. Also for  and , Agglomerative Nesting create clusters with 
elements less than or equal to five, for Combined Merged Matrices. Even though 
final clustering algorithm have an effect on shaping the final clustering results, when 
results are considered it is hard to say whether consensus clustering methodology for 
combining multivariate data or final clustering algorithm has a greater effect on the 
clustering results. 
 
When Combined Similarity Matrices is uses as a methodology for combining 
multivariate data it is observed that, with the use of similarity matrices both AGNES 
and k-means algorithms create a cluster for the Marmara Region. Mediterranean 
Region, Central Anatolian Region and Black Sea Region have fairly stable cluster 
definitions having a consensus among the methods used with the increasing cluster 
numbers. Yet the cluster definitions for East Anatolian Region, Marmara Region, 
Aegean Region and Western Anatolia Region change a lot between clustering 
methods use when there is an increase in the cluster numbers. 
 
The percentage differences between the results obtained by Iyigun et al. [38] and this 
study is as follows:  

• Clustering Results for Combined Similarity Matrices (AGNES): 29.51 % 
• Clustering Results for Combined Similarity Matrices (k-Means): 34.02 % 
• Clustering Results for Combined Merged Matrices (AGNES): 36.48 % 
• Clustering Results for Combined Merged Matrices (k-Means); 30.74 % 
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When results are compared with the results obtained by Iyigun et al. [38], result for 
“Clustering Results for Combined Similarity Matrices (AGNES)” and “Combined 
Merged Matrices (k-Means)” more coincide with the findings of  Iyigun et al. for 

. Our proposed algorithms created two distinct Mediterranean regions which 
can be named as Western and Eastern Coastal Mediterranean Regions, whereas 
Iyigun et al.s’ study suggested that there is only a single Coastal Mediterranean 
Region. Also with our algorithm Eastern Anatolia is divided in to 3 clusters. Yet 
Iyigun et al.s’ study show that there are 4 clusters for Eastern Anatolia. 
   
However it is not possible to tell which algorithm performed better as there is no 
original cluster labels. So there is a need to expert judgment in order to conclude 
which clustering is better regarding the real regional definition. 
 

  
(a) Clustering Results for Combined 

Similarity Matrices (AGNES) 
(b) Clustering Results for Combined 

Similarity Matrices (k-Means) 

  
(c) Clustering Results for Combined 

Merged Matrices (AGNES) 
(d) Clustering Results for Combined 

Merged Matrices (k-Means) 
 

Figure 4.1 Clustering Results for k=7 
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(a) Clustering Results for Combined 

Similarity Matrices (AGNES) 
(b) Clustering Results for Combined 

Similarity Matrices (k-Means) 

  
(c) Clustering Results for Combined 

Merged Matrices (AGNES) 
(d) Clustering Results for Combined 

Merged Matrices (k-Means) 
 

Figure 4.2 Clustering Results for k=8 
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(a) Clustering Results for Combined 

Similarity Matrices (AGNES) 
(b) Clustering Results for Combined 

Similarity Matrices (k-Means) 

  
(c) Clustering Results for Combined 

Merged Matrices (AGNES) 
(d) Clustering Results for Combined 

Merged Matrices (k-Means) 
 

Figure 4.3 Clustering Results for k=9 



 70 

 

  
(a) Clustering Results for Combined 

Similarity Matrices (AGNES) 
(b) Clustering Results for Combined 

Similarity Matrices (k-Means) 

  
(c) Clustering Results for Combined 

Merged Matrices (AGNES) 
(d) Clustering Results for Combined 

Merged Matrices (k-Means) 
 

Figure 4.4 Clustering Results for k=10 



 71 

 

  
(a) Clustering Results for Combined 

Similarity Matrices (AGNES) 
(b) Clustering Results for Combined 

Similarity Matrices (k-Means) 

  
(c) Clustering Results for Combined 

Merged Matrices (AGNES) 
(d) Clustering Results for Combined 

Merged Matrices (k-Means) 
 

Figure 4.5 Clustering Results for k=11 
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(a) Clustering Results for Combined 

Similarity Matrices (AGNES) 
(b) Clustering Results for Combined 

Similarity Matrices (k-Means) 

  
(c) Clustering Results for Combined 

Merged Matrices (AGNES) 
(d) Clustering Results for Combined 

Merged Matrices (k-Means) 
 

Figure 4.6 Clustering Results for k=12 
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CHAPTER 5  
 

 

CONCLUSION AND FUTURE WORK 

 

 

Our initial suggestion was that, better clustering results can be obtained by using a 
similarity measure (DTW for our study) that is suitable for time series data, rather 
than simple distance measures (Euclidian Distance Measure etc.) used for common 
applications. In literature DTW provided successful results when used for 
classification applications [3], while in this study it is used for clustering 
applications.   So in this study we have discussed the use of DTW as a similarity 
measure for time series data in clustering applications and whether it performs better 
or not. In Chapter 3 we have discussed the results of our experimentation and 
conclude that for most of  the cases we experimented with DTW provides better 
results than the Euclidian Distance measure. However, consensus clustering with 
DTW is computationally very expensive when compared to the usage of Euclidian 
Distance measure. Thus this feature makes it harder to work with large datasets 
having too many time series samples and data points. As a feature work it will be 
also beneficial to use additional distance measures (cross-correlation etc.) to compare 
with DTW. 
 
Also, dataset we have created (Simulated Data-2) backed up our initial expectation 
that DTW would perform better with data having phase shifts. This point is open for 
further experimentation with simulated datasets as the phase shift properties of real 
datasets are hard to observer if it was not considered in the data collection and 
mentioned in the dataset description. 
 
In addition to our discussions with DTW we also discussed consensus clustering in 
this study. We were also expecting that with the benefits provided with consensus 
clustering approach we could obtain even better results for the time series data. In all 
the cases we experimented with, when used with consensus clustering DTW 
performs better than Euclidian Distance measure, both regarding the errors and 
cluster discoveries. However in some cases the performance difference was around 
1%, which makes it unnecessary to use both DTW and Consensus Clustering, due to 
time consuming computations. 
 
With the use of consensus clustering we also introduce to methodologies for 
multivariate clustering using DTW. We used this multivariate approach in the real 
world problem of defining Turkeys’ Climate Regions described in Chapter 4. The 
results were compared to the results obtained by Iyigun et al. [38]. The results of 
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both studies have coinciding futures, yet it is not possible to tell which algorithm 
performed better as there is no original cluster labels. So there is a need to expert 
judgment in order to conclude which clustering is better regarding the real regional 
definition. 
 
In this study we only analyzed Turkeys’ Climate Regions by using the available data 
as long time series data. As a future work extension, it is also possible to analyze the 
available data as short-time series (i.e; 10 year periods) and demonstrate how the 
climate region definitions and the number of climate regions change over the years. 
 
Finally, it should be mentioned that regarding the usage of DTW with Consensus 
Clustering and the multivariate problem approach, all the conclusions of this study 
are dependent on the dataset properties and need to be further experimented with 
different types of datasets in detail in order to come up with more solid conclusions. 
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