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ABSTRACT

SIMULATING STOCHASTIC DIFFERENTIAL EQUATIONS USING
ITÔ-TAYLOR SCHEMES

Baylan, Ekin

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Assoc. Prof. Dr. Ömür Uğur

September 2014, 69 pages

The aim of this work is to understand the stochastic Taylor schemes and to mea-
sure the accuracy of them by comparing their closeness to the exact solutions
at the discretization points. Our assumption is that when we use the stochastic
Taylor schemes with higher orders, we obtain better approximation processes to
exact solutions of the stochastic differential equations. We give the stochastic
Taylor schemes with different orders by regarding the convergence criteria for the
stochastic differential equations. While Euler-Maruyama and Milstein schemes
are derived by using the derivatives of stochastic Taylor expansion, stochastic
Runge-Kutta schemes do not need these derivatives in their constructions. There-
fore, we have the chance to get higher order stochastic Taylor schemes with less
computational difficulties in Runge-Kutta schemes. Moreover, in the application
part of the thesis, we observe that the stochastic Runge-Kutta schemes supply
the best approximate processes to the exact solutions, for instance, in simulat-
ing Orsntein-Uhlenbeck process and in Monte Carlo method for option pricing
models.

Keywords : Stochastic Taylor Schemes, Euler-Maruyama, Milstein, Runge-Kutta,
Stochastic Simulations, Monte Carlo
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ÖZ

STOKASTİK DİFERANSİYEL DENKLEMLERİN ITÔ-TAYLOR
METOTLARI KULLANILARAK SİMÜLASYONU

Baylan, Ekin

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Yöneticisi : Doç. Dr. Ömür Uğur

Eylül 2014, 69 sayfa

Bu çalışmadaki asıl amacımız, stokastik Taylor metotlarını anlamak ve bölme
noktalarındaki gerçek çözüme olan yakınlıklarını karşılaştırarak doğruluklarını
ölçmek. Bizim varsayımımız şudur ki, daha yüksek mertebeli stokastik Taylor
metotları kullandığımızda, stokastik diferansiyel denklemlerin gerçek çözümlerine
daha iyi yaklaşım gösteren süreçler elde ederiz. Stokastik diferansiyel denklem-
ler için yakınsama kriterlerini göz önünde bulundurarak farklı mertebelerden
stokastik Taylor metotlarını verdik. Euler-Maruyama ve Milstein metotları, sto-
kastik Taylor açılımındaki türevler kullanılarak elde edilirken, stokastik Runge-
Kutta metodunu oluştururken bu türevlere ihtiyaç duyulmuyor. Bu nedenle,
Runge-Kutta metotlarda daha az hesaplama zorluklarıyla daha yüksek mertebeli
stokastik Taylor metotları elde edebiliriz. Ayrıca, tezin uygulama bölümünde,
stokastik Runge-Kutta metotlarının gerçek çözümlere en iyi yaklaşan süreçleri
sağladığını gözlemledik, örnek olarak Orsntein-Uhlenbeck sürecinin simülasyo-
nunda ve opsiyon fiyatlama modellerinin Monte Carlo metotlarında.

Anahtar Kelimeler : Stokastik Taylor metotları, Euler-Maruyama, Milstein, Runge-
Kutta, Stokastik Simülasyonlar, Monte Carlo
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CHAPTER 1

INTRODUCTION

The desire of obtaining more realistic models emerges the need of modeling with
the stochastic differential equations instead of ordinary differential equations in
the fields of financial mathematics, actuarial sciences, physics, biology, chemistry,
economics, and so on. Especially, the stochastic differential equations are used
for modeling stock and option prices in financial mathematics.

Stochastic differential equations come into the picture when a system decribed by
ordinary differential equation is influenced by a random term. So, it makes sense
to consider that by adding an extra term to the ordinary differential equations,
they can be obtained. This extra term includes Brownian Motion, named after
Robert Brown in 1827, and brings the randomness to the model. The key point
of the stochastic differential equation is that we cannot compute the random part
by using known ordinary calculus rules, since the Brownian Motion is nowhere
differentiable. Therefore, we are interested in the integral form of the stochastic
differential equations, and the most known versions of the stochastic calculus are
Itô and Stratonovich stochastic calculus. In that area, Kiyoshi Itô was the first
mathematician who defined related rules and formulas (1951) for the stochastic
differential and integral equations by generalizing them from the ordinary calcu-
lus. His most important contribution in financial mathematics is the so-called
Itô Lemma which enables us to solve the stochastic integral equations. Alterna-
tively, Ruslen L. Stratonovich introduced the Stratonovich stochastic integral by
modifying the Itô stochastic integral (1966). Thus, we can convert one stochastic
calculus to the other according to the studied field such as physics or biology [22].
While Itô stochastic calculus plays an important role in modeling the stock and
option prices in financial mathematics or determining the growth of a population
in biological science, Stratonovich stochastic calculus is commonly used in phys-
ical science and engineering to determine the movements of particles, or to make
a stability analysis for the stochastic dynamical systems.

Unlike the ordinary differential equations [3], most of the stochastic differential
equations don’t have an exact solution process; therefore, numerical approxima-
tion schemes have been developed by truncating the stochastic Taylor expansion
of the process at some point. Peter E. Kloeden and Eckhard Platen widely
state these numerical approximation schemes in the book of Numerical Solution
of Stochastic Differential Equations [11]. Regarding the convergence criteria,
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solution processes strongly or weakly converge to the true solution with an or-
der defined in the Taylor expansion of the process. Leonhard Euler and Gisiro
Maruyama obtained the basic approximation scheme, called Euler-Maruyama
scheme, by generalizing the Euler method for the ordinary case to the stochastic
differential equations (1955). So, this method is based on the the first differ-
entials of the process. In the following years, Grigori N. Milstein introduced
Milstein scheme for the numerical approximation schemes by using the second
order stochastic Taylor expansion (1974) [19]. By including more terms from the
stochastic Taylor expansion, we get higher orders of the approximation schemes
such as order of 3/2 strong Taylor scheme, order of 2 weak Taylor scheme and so
on in order to obtain more satisfactory methods. Unfortunately, adding higher or-
der terms of stochastic Taylor expansion to the numerical approximation schemes
is getting more complex and causes some computational mistakes; therefore, in-
stead of them, Runge-Kutta schemes, named after two German mathematicians
Carl Runge and Martin Kutta, become more preferable to propose stochastic
numerical approximations (1901). In these schemes, we do not need the differen-
tiations of the terms available in Taylor expansion and we can get higher order
approximation processes by applying the stochastic Runge-Kutta schemes. For
detailed researches about the scheme, we may refer to the book of Andreas Rößler
entitled Runge-Kutta Methods for the Numerical Solution of Stochastic Differen-
tial Equations in which he investigated many types of stochastic Runge-Kutta
schemes [26].

Our main objective on this thesis is to understand the theoretical as well as
the computational aspects of the numerical methods for simulating stochastic
differential equations. The stochastic Taylor expansions are introduced, hereby
different types of approximation schemes could be defined for the stochastic differ-
ential equations [30]. We investigate both strong and weak Taylor approximation
schemes such as Euler-Maruyama scheme for the strong order 1/2 and the weak
order 1, Milstein scheme for the strong order 1, weak Taylor scheme of order 2 and
strong Taylor scheme of order 3/2. For higher orders, after we examine the or-
dinary Runge-Kutta schemes, we move on the stochastic version of Runge-Kutta
methods and give the formulations of second, third and fourth stages Runge-
Kutta schemes for the stochastic differential equations. At the end, we support
the importance and the necessity of these schemes with an error analysis by pro-
viding the applications of different stochastic processes, for example, Geometric
Brownian Motion and Orsntein-Uhlenbeck process.

Actually, this may not be enough to understand the accuracy of the approxima-
tion methods; therefore, we are also interested in modeling the price of European
options. Fisher Black, Myron Scholes and Robert Merton developed a formula
to calculate the price of a European type option (1973) [1]. The price is calcu-
lated by Black & Scholes model while the approximation methods are used to
determine the behaviour of a stock price. The weakness of this model is that the
volatility is assumed to be constant which does not capture may essential aspects
of volatility structure, such as volatility smile. Hence, it is more meaningful to
study on the stochastic volatility models in which the volatility is not constant
and both the stock price dynamics and the volatility are modeled by the methods
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stated above. A finance professor Steven Heston describes the Heston model to
analyze the bond and currency options (1993) [4]. Instead of calculating the price
of the option at only one time, the price can be repeatedly calculated by using
Monte Carlo method, and the average of them gives more realistic result at the
end. Monte Carlo simulation was invented when working on a nuclear weapon
project in the late 1940s by Stanislaw Ulam. This simulation is the most powerful
way to measure the accuracy of the approximation processes.

In the preliminary research of this work, presented in Chapter 2, we define funda-
mental definitions of Brownian Motion, Itô and Stratonovich stochastic integrals
and then we mention the stochastic Itô-Taylor expansions. In the next chapter of
the thesis, we cover classical approximation schemes with different orders accord-
ing to the convergence criteria of stochastic calculus. In the application part, we
compare the methods for various kind of stochastic processes by the error analysis
and give the option pricing models in Monte Carlo simulation to demonstrate the
success of the approximation methods. At the end of the study, we conclude and
give an outlook to future studies.

For the stochastic simulations, we useMatlab programming [5, 12, 9, 31, 25] and
its toolboxes to help financial engineers and practitioners who benefit the most
from these numerical solutions. The book written by Ömür Uğur, An Introduction
to Computational Finance, is very beneficial to understand how to write Matlab

codes or create Matlab functions [34]. Besides, some of the Matlab scripts and
functions used to implement the methods are given in the appendix at the end
of the thesis.
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some basic definitions and theorems of stochastic calcu-
lus [2, 8, 11, 14, 17, 22]. We consider a filtered probability space (Ω,F , (Ft)t≥0,P)
where Ω is a sample space, F is a σ-algebra, (Ft)t≥0 is a filtration and P is a prob-
ability measure [17]. The σ-algebra contains empty set, complements of the sets
of the algebra and the union of the sets of the algebra. Here, (Ft)t≥0 represents a
right-continuous filtration and F0 contains all P-negligible events in F . The prob-
ability measure P has the properties that P(∅) = 0, P(Ω) = 1 and 0 ≤ P(A) ≤ 1,
for any set A ∈ Ω. We can define continuous-time stochastic process as a set of
random variables Xt in the time interval I = [t0, T ] where t0 ≥ 0 is the initial
time and 0 < T < ∞ is the maturity time.

Definition 2.1. [8, 17] A one-dimensional Brownian motion (Wt)t≥0 is a contin-
uous and R-valued adapted process which is defined on some filtered probability
space (Ω,F , (Ft)t≥0,P), with the following properties:

(i) W0 = 0 w.p.1.

(ii) the increments Wt −Ws are independent of Fs for each 0 ≤ s < t.

(iii) Wt −Ws is normally distributed with zero mean and t− s variance.

We call Wt as a standard Brownian motion if the Brownian Motion is normally
distributed with the properties that

E(Wt) = 0, V ar(Wt) = t

and W0 = 0 w.p.1. We can also call this process as Wiener process, so we denote
it by “Wt”. Wiener process helps us to constitute the random part of a stochastic
process. Throughout the thesis, we will consider the standard Brownian motions
if nothing else mentioned. A path of the standard Brownian motion is depicted
in Figure 2.1; similarly, several paths are sown in Figure 2.2.

We can also define multi-dimensional Brownian motion Wt = (W 1
t ,W

2
t , . . . ,W

d
t )

with d ∈ Z+.
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Definition 2.2. A d-dimensional Brownian motion is a continuous and adapted
process Wt = (W 1

t ,W
2
t , . . . ,W

d
t ) whose values are in Rd, defined on a probability

space (Ω,F , (Ft)t≥0,P), and has the following properties:

(i) Wt = 0 with probability 1,

(ii) the increments Wt −Ws are independent of Fs for each 0 ≤ s < t,

(iii) Wt −Ws is normally distributed with 0 mean and (t− s)Idd variance.

In finance, we will deal with stochastic differential equations of the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt, Xt0 = x0 ∈ R (2.1)

in the interval [t0, T ] where the first term is called drift term and the second
term is called diffusion term [29]. However, as the Wiener process is nowhere
differentiable, we define the integral form of the equation (2.1) as follows:

Xt = X0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs. (2.2)

The first integral is a Riemann integral which is calculated by the help of ordi-
nary calculus. However, the second integral includes a stochastic term and has
unbounded first variation. Therefore, we should define the stochastic integrals
such as Itô and Stratonovich stochastic integrals.

2.1 Itô and Stratonovich Integrals

In this part, we will state the most known stochastic integrals, Itô and Stratonovich
integrals, with their definitions. We will also mention about their similarities with
and the differences between each other [14, 29]. At the end of this section, Itô
and Stratonovich Formulas are given as in the theorems stated in [11, 24].

In order to define stochastic integrals, we consider a partition 0 ≤ t0 < t1 < . . . <
tN = T of an integration interval [t0, T ] with the property that

max
0≤i≤N−1

(ti+1 − ti) → 0 as N → ∞.

Let τi = θti+1+(1−θ)ti for a fixed θ ∈ [0, 1]. Then, the series of random variables

N−1
∑

i=0

Xτi

(

Wti+1
−Wti

)

as N → ∞ (2.3)

converge in probability if the process Xt satisfies

E

(∫ t

t0

X2
sds

)

< ∞, ∀t > 0, (2.4)
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or converge in the mean-square sense if the process Xt satisfies

P

(∫ t

t0

X2
sds < ∞

)

= 1, ∀t > 0. (2.5)

For different values of θ, we denote a fixed point of the subinterval [ti, ti+1] by
the corresponding τi. For example, for θ = 0, τi describes the left endpoints of
intervals [ti, ti+1] and limit of the series of random variables (2.3) describes the
Itô integral as

lim
∆ti→0

N−1
∑

i=0

Xti

(

Wti+1
−Wti

)

:=

∫ t

t0

XsdWs.

For θ = 1/2, τi represents the midpoints of [ti, ti+1] and the Stratonovich integral
by taking the limit of the series of random variables is constructed. We use the
notation “◦” to denote the Stratonovich calculus:

lim
∆ti→0

N−1
∑

i=0

X ti+ti+1

2

(

Wti+1
−Wti

)

:=

∫ t

t0

Xs ◦ dWs.

Therefore, (Xt)t∈I is a solution of the Itô stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (2.6)

where (Wt)t∈I is a Brownian motion, a(t,Xt) and b(t,Xt) are real valued func-
tions.

Moreover, (Xt)t∈I is also a solution of the Stratonovich stochastic differential
equation

dXt = a(t,Xt)dt+ b(t,Xt) ◦ dWt (2.7)

with respect to Stratonovich calculus, where a(t,Xt) and b(t,Xt) are real valued
functions and a(t,Xt) is defined as

a(t, x) := a(t, x)− 1

2
b(t, x)

∂b

∂x
(t, x). (2.8)

We have seen that both Itô and Stratonovich stochastic integrals are used for
the same processes, but the only difference between them is that we are looking
for the midpoints or the left endpoints of the discretizations for Stratonovich
and Itô integrals, respectively [11, 14]. Therefore, there exist some relations and
differences between the properties of these two types of integrals because of the
transformation of the drift term (2.8).

We can say for the relation of the integrals that we can get the same solution
of a stochastic differential equation by using Itô integral as well as Stratonovich
integral, so we can always switch one type of the integral to the corresponding
integral as seen in the following example [11]: consider a process Xt such as

Xt = Xt0 exp (2Wt − 2Wt0) ,
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which is the solution of both Itô stochastic differential equation of the form

dXt = 2Xtdt+ 2XtdWt,

and the Stratonovich stochastic differential equation is

dXt = 2Xt ◦ dWt.

The Itô integral has a different property than the Stratonovich integral, namely
the Itô isometry, which helps us connect Itô integration to Lebesgue integration.

Definition 2.3. Let f : I × Ω → R be a Borel-measurable function and Xt :

I×Ω → R be an Ft-adapted process with E
(

∫ t

t0
X2

sds
)

< ∞, for all t ∈ I holds.

Then, the following is called Itô isometry

E

(

(∫ t

t0

f(s,Xs)dWs

)2
)

= E

(∫ t

t0

f 2(s,Xs)ds

)

. (2.9)

WhenWt is a Brownian motion with respect to the filtration (Ft)t∈I , the processes
(

∫ t

t0
f(s,Xs)dWs

)

t∈I
and Wt are martingales with respect to (Ft)t∈I . Therefore,

the following property

E

(∫ t

t0

f(s,Xs)dWs

)

= 0

holds for all t ∈ I.

On the other hand, Stratonovich calculus has another property that is different
from Itô calculus. For example, we can easily calculate the following integral with
Stratonovich calculus because of the property that we can use similar rules with
the ordinary calculus for the Stratonovich case:

∫ t

0

Ws ◦ dWs =
1

2
W 2

t .

However, we have different result for the same integration by using Itô calculus,
which is

∫ t

0

WsdWs =
1

2
W 2

t − 1

2
t.

Since Itô and Stratonovich integrals have different rules and structures, we prefer
one of them to work with regarding interested studying field. After these proper-
ties we have covered, we are ready to give the definition of Itô and Stratonovich
processes.

Definition 2.4. Let a(t,Xt) and b(t,Xt) be real valued (Ft)-adapted functions,
and b(t,Xt) is also Borel-measurable. Then, the stochastic process

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs (2.10)
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is called an Itô process if the process satisfies the following two conditions of linear
growth and boundedness:

P

(∫ t

t0

|a(s,Xs)|ds < ∞ for all t ≥ 0

)

= 1 (2.11)

and

P

(∫ t

t0

b2(s,Xs)ds) < ∞ for all t ≥ 0

)

= 1. (2.12)

This definition shows that the stochastic integral equation (2.2) is well-defined
now.

Furthermore, we can also define them-dimensional stochastic differential equation
as follows:

dXt = A(t,Xt)dt+ B(t,Xt)dWt, Xt0 ∈ Rm, (2.13)

where Wt = (W 1
t ,W

2
t , . . . ,W

d
t ) are d-dimensional Brownian motion, A(t,Xt) :=

(a1(t,Xt), a2(t,Xt), . . . , am(t,Xt)) is Rm-valued function and B(t,Xt) is Rm×d-
valued function which can be written as

B(t,Xt) =





b11(t,Xt) . . . bd1(t,Xt)
...

. . .
...

b1m(t,Xt) . . . bdm(t,Xt)





with j = 1, 2, . . . , d and m > 1.

The kth term of a solution Xt := (X1
t , X

2
t , . . . , X

m
t ) ∈ Rm of a given Itô stochastic

differential equation (2.13) has the form

Xk
t = Xk

t0
+

∫ t

t0

ak(s,Xs)ds+
d
∑

j=1

∫ t

t0

bjk(s,Xs)dW
j
s , Xk

t0
= x0 ∈ R (2.14)

where ak(t,Xt) and bjk(t,Xt) are Rm-valued functions for k = 1, 2, . . . ,m and
j = 1, 2, . . . , d.

Similarly, we can define Stratonovich stochastic process in one- and multi-dimensions
regarding the transformation of the drift term (2.8).

Definition 2.5. Let a(t,Xt) and b(t,Xt) be real valued (Ft)-adapted functions,
and b(t,Xt) is also Borel-measurable. We assume that a(t,Xt) is defined as before
in (2.8). Then, the stochastic process

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs) ◦ dWs (2.15)

is called a Stratonovich process if the process satisfies the following two conditions
of linear growth and boundedness:

P

(∫ t

t0

|a(s,Xs)|ds < ∞ for all t ≥ 0

)

= 1 (2.16)
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and

P

(∫ t

t0

b2(s,Xs)ds) < ∞ for all t ≥ 0

)

= 1. (2.17)

In addition, in the multi-dimensional case, the kth term of a solution Xt :=
(X1

t , X
2
t , . . . , X

m
t ) ∈ Rm of the Stratonovich stochastic integral equation (2.15)

takes the following form

Xk
t = Xk

t0
+

∫ t

t0

ak(s,Xs)ds+
d
∑

j=1

∫ t

t0

bjk(s,Xs) ◦ dW j
s , Xk

t0
= x0 ∈ R (2.18)

with

ak = ak −
1

2

m
∑

i=1

d
∑

j=1

bji
∂bjk
∂xi

,

where ak(t,Xt) and bjk(t,Xt) are Rm-valued functions for k, i = 1, 2, . . . ,m and
j = 1, 2, . . . , d.

In the ordinary calculus, we compute Riemann (or Lebesgue) integrals with the
help of Fundamental Theorem of Calculus, Chain Rule and Taylor series. How-
ever, in the stochastic calculus, we have diffusion terms with Brownian Motions;
therefore, we need some new formulas which are generalized from the ordinary
calculus to the stochastic calculus in order to calculate the stochastic integrals.
At that point, Itô Formula and Stratonovich Formula, chain rule for random vari-
ables, help us to deduce the randomness of continuous-time stochastic processes.

Theorem 2.1. (Itô Formula [11, 22]) Let Xt be an Itô process defined in
(2.10). Suppose that each of the processes a(t,Xt) and b(t,Xt) satisfy the condi-
tions (2.11) and (2.12). Assume that f(t, x) is a twice continuously differentiable
function. Then, Yt = f(t,Xt) is again an Itô process given by

dYt =

(

∂f

∂t
(t,Xt) + a(t,Xt)

∂f

∂x
(t,Xt) +

1

2
b2(t,Xt)

∂2f

∂x2
(t,Xt)

)

dt

+ b(t,Xt)
∂f

∂x
(t,Xt)dWt. (2.19)

Similarly, we can give the definition of Stratonovich Formula as follows:

Theorem 2.2. (Stratonovich Formula [11]) Let Xt be a Stratonovich process
defined in (2.15). Suppose that each of the processes a(t,Xt) and b(t,Xt) satisfy
the conditions (2.16) and (2.17). Let f(t, x) be a twice continuously differentiable
function. Then, Yt = f(t,Xt) is again a Stratonovich process given by

dYt =

(

∂f

∂t
(t,Xt) + a(t,Xt)

∂f

∂x
(t,Xt)

)

dt+ b(t,Xt)
∂f

∂x
(t,Xt) ◦ dWt. (2.20)

Proof. Proofs of Theorems 2.1 and 2.2 can be found in Kloeden & Platen [11].
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Up to now, we deal with the stochastic integrals and their properties. At the end
of this section, Itô and Stratonovich formulas are given in order to obtain the
stochastic Taylor expansions in the next section.

2.2 Stochastic Taylor Expansions

In this section, we will define Taylor series expansions and use them to find an ap-
proximate solution of a given stochastic differential equation. In fact, stochastic
Taylor expansions can be considered as an extension of ordinary Taylor expan-
sions. In this area, general Taylor expansion formulas were firstly introduced by
Platen and Wagner [23], then Kloeden and Platen gave the most known versions
of the stochastic Taylor expansions in detail in their book [11].

We will evaluate the stochastic Taylor expansions in two subsections. Initially,
Itô-Taylor expansions will be discussed, then we will reformulate and generalize
the Itô-Taylor expansion to the case of Stratonovich-Taylor.

2.2.1 Itô-Taylor Expansion

In this subsection, we try to find the stochastic Taylor expansion of an Itô integral
at some point. It can be thought that the process is a generalization of an ordinary
Taylor expansion by using Itô formula (2.19).

Firstly, let Xt be the solution of an Itô stochastic differential equation (2.1) which
is in the integral form

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs, (2.21)

where real-valued functions a(t,Xt) and b(t,Xt) are defined as before. Let Yt =
f(t,Xt) where f : I × R → R is a twice continuously differentiable function
as defined in Theorem 2.1. In order to expand Itô-Taylor series recursively, we
consider the integral form of the Itô formula (2.19), given by the following,

Yt = Yt0 +

∫ t

t0

{

∂f

∂t
(s,Xs) + a(s,Xs)

∂f

∂x
(s,Xs) +

1

2
b2(s,Xs)

∂2f

∂x2
(s,Xs)

}

ds

+

∫ t

t0

b(s,Xs)
∂f

∂x
(s,Xs)dWs. (2.22)

We define two operators L0 and L1 to make this equation simpler:

L0 :=
∂

∂t
+ a

∂

∂x
+

1

2
b2

∂2

∂x2
(2.23)

and

L1 := b
∂

∂x
. (2.24)
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Now, we can write Itô formula (2.22) in terms of the operator functions as in [11]:

Yt = Yt0 +

∫ t

t0

L0f(s,Xs)ds+

∫ t

t0

L1f(s,Xs)dWs.

When we apply the Itô formula (2.22) to the function f = a in (2.21), we obtain

Xt = Xt0 +

∫ t

t0

{

a(t0, Xt0) +

∫ s

t0

L0a(u,Xu)du+

∫ s

t0

L1a(u,Xu)dWu

}

ds

+

∫ t

t0

b(s,Xs)dWs. (2.25)

If we seperate the extra terms and reorganize the last equation in order to make
it similar to (2.21), we have

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

b(s,Xs)dWs +Rt

where the remainder term Rt is given by

Rt =

∫ t

t0

∫ s

t0

L0a(u,Xu)duds+

∫ t

t0

∫ s

t0

L1a(u,Xu)dWuds.

We can continue applying the Itô formula (2.22) to the function f = L0a in (2.25)
to get

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

b(s,Xs)dWs +

∫ t

t0

∫ s

t0

L1a(u,Xu)dWuds

+

∫ t

t0

∫ s

t0

{

L0a(t0, Xt0) +

∫ u

t0

L0L0a(v,Xv)dv +

∫ u

t0

L1L0a(v,Xv)dWv

}

duds.

When we arrange the above equation again, we have

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

∫ s

t0

L0a(t0, Xt0)duds+

∫ t

t0

b(s,Xs)dWs +Rt

with the remainder

Rt =

∫ t

t0

∫ s

t0

∫ u

t0

L0L0a(v,Xv)dvduds+

∫ t

t0

∫ s

t0

∫ u

t0

L1L0a(v,Xv)dWvduds

+

∫ t

t0

∫ s

t0

L1a(u,Xu)dWuds.

Or, at the first, we can also apply the Itô formula (2.22) to both the functions
f = a and f = b in (2.21) at the same time, and we have

Xt = Xt0 +

∫ t

t0

{

a(t0, Xt0) +

∫ s

t0

L0a(u,Xu)du+

∫ s

t0

L1a(u,Xu)dWu

}

ds

+

∫ t

t0

{

b(t0, Xt0) +

∫ s

t0

L0b(u,Xu)du+

∫ s

t0

L1b(u,Xu)dWu

}

dWs. (2.26)
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We can then rewrite the equation (2.21) and obtain

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

b(t0, Xt0)dWs +Rt,

where Rt stands for the remainder term again, and which can be expressed as

Rt =

∫ t

t0

∫ s

t0

L0a(u,Xu)duds+

∫ t

t0

∫ s

t0

L1a(u,Xu)dWuds

+

∫ t

t0

∫ s

t0

L0b(u,Xu)dudWs +

∫ t

t0

∫ s

t0

L1b(u,Xu)dWudWs.

Recursively, we can keep applying the Itô formula (2.22) to the function f = L1b
in (2.26),

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

b(t0, Xt0)dWs

+

∫ t

t0

∫ s

t0

L1b(t0, Xt0)dWudWs +Rt

with a more complex form of the remainder

Rt =

∫ t

t0

∫ s

t0

L0a(u,Xu)duds+

∫ t

t0

∫ s

t0

L1a(u,Xu)dWuds

+

∫ t

t0

∫ s

t0

L0b(u,Xu)dudWs +

∫ t

t0

∫ s

t0

∫ u

t0

L0L1b(v,Xv)dvdWudWs

+

∫ t

t0

∫ s

t0

∫ u

t0

L1L1b(v,Xv)dWvdWudWs.

If we continue in this way by applying the Itô formula (2.22) to the functions
f = Lia and f = Lib for i = 0, 1 in the next steps, we will have the Itô-Taylor
expansion. To formalize this process, we need to solve and generalize the above
equations to the multi-dimensional cese. However, this far is not enough yet to
define general stochastic Taylor expansions. Firstly, we need to introduce multi-
indices and hierarchical sets [11, 27].

Definition 2.6. [26] Let M be the set of all multi-indices defined as

M := {α = (α1, α2, . . . , αl) : l ∈ N} ∪ {v}.
where αi ∈ {0, 1, . . . ,m}, m = 1, 2, . . ., i = 1, 2, . . . , l and v is the multi-index
of length 0. We denote the length of a multi-index by l(α) and the number of
components of a multi-index which are equal to 0 by n(α).

For example,

α = (0, 1, 0) ⇒ l(0, 1, 0) = 3, n(0, 1, 0) = 2,

α = (1, 2, 0) ⇒ l(1, 2, 0) = 3, n(1, 2, 0) = 1.
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We will use the notations −α = (α2, α3, . . . , αl) and α− = (α1, α2, . . . , αl−1) for
the indices whose lengths are greater than 1 in order to denote the indexes by
deleting the first and the last component of α, respectively. For example,

α = (0, 1, 0) ⇒ −(0, 1, 0) = (1, 0), (0, 1, 0)− = (0, 1),

α = (1, 2, 0) ⇒ −(1, 2, 0) = (2, 0), (1, 2, 0)− = (1, 2).

Definition 2.7. [26] Let A be a nonempty subset of M. A is called as a
hierarchical set if it satisfies

sup
α∈A

l(α) < ∞ and − α ∈ A for each α ∈ A \ {v}

and R(A) is called the remainder set if it consists of all next following multi-
indices with respect to the given hierarchical set A, which is defined as follows:

R(A) := {α ∈ M \A : −α ∈ A}.

Moreover, we have to define some classes for adapted right continuous stochastic
process (ft)t∈I with left hand limits [11, 26]. For each t ≥ 0,

• f ∈ Hv if |f(t,Xt)| < ∞ P-a.s.,

• f ∈ H(0) if
∫ t

0
|f(s,Xs)|ds < ∞ w.p.1,

• f ∈ H(1) if
∫ t

0
|f(s,Xs)|2ds < ∞ w.p.1.

Thus, we can write H(i) = H(1), for all i = 2, 3, . . . , l where l ≥ 2 as well as H(α)

for multi-indices α with l(α) > 1.

We need multiple Itô integrals to solve these stochastic processes (ft)t∈I in the
integration interval.

Definition 2.8. [11, 27] Let ρ and τ be two stopping times with t0 ≤ ρ ≤ τ ≤ T .
For a multi-index α ∈ M and a process f ∈ H(α), multiple Itô integral Iα[f(·)]ρ,τ
with respect to the d-dimensional Brownian motion Wt recursively is defined as
follows:

Iα[f(·)]ρ,τ :=











f(τ) if l = 0,
∫ τ

ρ
Iα−[f(·)]ρ,sds if l ≥ 1 and αl = 0,

∫ τ

ρ
Iα−[f(·)]ρ,sdW αl

s if l ≥ 1 and αl ≥ 1.

In order to be more clear about the usage of multiple Itô integrals Iα[f(·)], we give
some examples for a constant function f ≡ 1 with the condition 0 ≤ t0 ≤ t ≤ T
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as follows:

I(0)[f(·)]t0,t =

∫ t

t0

1du = t− t0, (2.27)

I(1)[f(·)]t0,t =

∫ t

t0

1dWs = Wt −Wt0 , (2.28)

I(1,0)[f(·)]t0,t =

∫ t

t0

I(1)[f(·)]t0,sds =
∫ t

t0

(Ws −Wt0)ds, (2.29)

I(0,1)[f(·)]t0,t =

∫ t

t0

I(0)[f(·)]t0,sdWs =

∫ t

t0

(s− t0)dWs, (2.30)

I(1,0,2)[f(·)]t0,t =

∫ t

t0

I(1,0)[f(·)]t0,sdW 2
s =

∫ t

t0

∫ s

t0

I(1)[f(·)]t0,ududW 2
s

=

∫ t

t0

∫ s

t0

∫ u

t0

1dW 1
v dudW

2
s

=

∫ t

t0

(∫ s

t0

(W 1
u −W 1

t0
)du

)

dW 2
s . (2.31)

While we have one-dimensional Brownian motion Wt in the equations (2.27)-
(2.30), there is 2-dimensional Brownian motion Wt = (W 1

t ,W
2
t ) in the last equa-

tion (2.31). The upper numbers of Wt represent which Brownian motion is used.
We note that if there is only one-dimensional Brownian motion, we use the no-
tation Wt without any sup-script.

We want to define the Itô-Taylor expansion; therefore, we need the Itô coefficient
functions as well. Let us generalize the operators which were defined for the
one-dimensional case in the equations (2.23) and (2.24) at the beginning of the
subsection. For the kth component of the generalized operators form-dimensional
Itô process with d-dimensional Brownian motion, we have the following equations

L0 :=
∂

∂t
+

m
∑

k=1

ak
∂

∂xk

+
1

2

m
∑

k,i=1

d
∑

j=1

bjkb
j
i

∂2

∂xk∂xi

(2.32)

and

Lj :=
m
∑

i=1

bji
∂

∂xi

(2.33)

for i, k = 1, 2, . . . ,m and j = 0, 1, . . . , d [11].

For each multi-index α = (α1, α2, . . . , αl) ∈ M and a continuously differentiable
function f(t,Xt), the Itô coefficient function will be defined in the following look:

fα :=

{

f if l = 0,

Lα1 · · ·Lαlf if l ≥ 1.

Now, we are ready to state the Itô-Taylor expansion theorem:
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Theorem 2.3. (Itô-Taylor Expansion [11, 27]) Let A ⊆ M be a hierarchical
set, ρ and τ be two stopping times with t0 ≤ ρ ≤ τ ≤ T and let f(t,Xt) : I×Rm →
R. Then for the solution (Xt)t∈I of the Itô stochastic differential equation (2.13),
the Itô-Taylor expansion

f(τ,Xτ ) =
∑

α∈A

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈R(A)

Iα[fα(·,X·)]ρ,τ (2.34)

holds, provided that all of the derivatives of f(t,Xt), a(t,Xt) and b(t,Xt) and all
of the multiple Itô integrals appearing in (2.34) exist.

Proof. Proof of the theorem can be found in [11].

2.2.2 Stratonovich-Taylor Expansion

By using a similar way with Itô-Taylor expansion, we can now derive Stratonovich-
Taylor expansion for stochastic processes. We always remember that we can turn
one of the stochastic calculus into the other. Therefore, some equations which
show the relations between Itô and Stratonovich calculus are given in this sub-
section.

Let us recall the process Xt, defined in (2.15), be the solution of Stratonovich
stochastic differential equation in the integral form

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs) ◦ dWs (2.35)

with a = a− (1/2)bb′, where b′ denotes the partial derivative with respect to the
second argument, namely, b′(t, x) = ∂b

∂x
(t, x). Let f : I×R → R be a continuously

twice differentiable function, then we get the integral form of Stratonovich formula
(2.20) in the following equation:

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

{

∂f

∂t
(s,Xs) + a(s,Xs)

∂f

∂x
(s,Xs)

}

ds

+

∫ t

t0

b(s,Xs)
∂f

∂x
(s,Xs) ◦ dWs. (2.36)

It can be seen that the first integral has 2 terms, not 3 terms as in the Itô formula
(2.19). This situation leads an opportunity to use the chain rule of ordinary
(deterministic) calculus to the Stratonovich stochastic differential equation.

Now, we define the operators of Stratonovich-Taylor expansion as follows:

L0 :=
∂

∂t
+ a

∂

∂x
(2.37)

and

L1 := b
∂

∂x
(2.38)
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for a = a − (1/2)bb′. Then, the equation (2.36) can be written by using these
operators as follows:

f(t,Xt) = f(t0, Xt0) +

∫ t

t0

L0f(s,Xs)ds+

∫ t

t0

L1f(s,Xs) ◦ dWs.

When we apply the Stratonovich formula (2.36) to the functions f = a and f = b
at the same time, we obtain

Xt = Xt0 +

∫ t

t0

{

a(t0, Xt0) +

∫ s

t0

L0a(u,Xu)du+

∫ s

t0

L1a(u,Xu) ◦ dWu

}

ds

+

∫ t

t0

{

b(t0, Xt0) +

∫ s

t0

L0b(u,Xu)du+

∫ s

t0

L1b(u,Xu) ◦ dWu

}

◦dWs. (2.39)

We can write the integral form of (2.35) with a remainder term

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

b(t0, Xt0) ◦ dWs +Rt,

where

Rt =

∫ t

t0

∫ s

t0

L0a(u,Xu)duds+

∫ t

t0

∫ s

t0

L1a(u,Xu) ◦ dWuds

+

∫ t

t0

∫ s

t0

L0b(u,Xu)du ◦ dWs +

∫ t

t0

∫ s

t0

L1b(u,Xu) ◦ dWu ◦ dWs.

If we continue in this way and apply the Stratonovich formula (2.36) to a function,
for example, f = L1b in (2.39), we obtain

Xt = Xt0 +

∫ t

t0

a(t0, Xt0)ds+

∫ t

t0

b(t0, Xt0) ◦ dWs

+

∫ t

t0

∫ s

t0

L1b(t0, Xt0) ◦ dWu ◦ dWs +Rt,

where Rt stands for the new remainder term, expressed as

Rt =

∫ t

t0

∫ s

t0

L0a(u,Xu)duds+

∫ t

t0

∫ s

t0

L1a(u,Xu) ◦ dWuds

+

∫ t

t0

∫ s

t0

L0b(u,Xu)du ◦ dWs +

∫ t

t0

∫ s

t0

∫ u

t0

L0L1b(v,Xv)dv ◦ dWu ◦ dWs

+

∫ t

t0

∫ s

t0

∫ u

t0

L1L1b(v,Xv) ◦ dWv ◦ dWu ◦ dWs.

We can recursively continue with the usage of the Stratonovich formula (2.36) to
the functions f = Lia and f = Lib for i = 0, 1 in the next steps to obtain the
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Stratonovich-Taylor expansion. We do not need to state similar examples again
and again, we can recommend the book [11] for detailed explanations about this
process.

We again define some classes for adapted right continuous stochastic process
(f

t
)t∈I with left hand limits according to the Stratonovich calculus. For each

t ≥ 0,

• f ∈ Hv if |f(t,Xt)| < ∞ P-a.s.,

• f ∈ H(0) if
∫ t

0
|f(s,Xs)|ds < ∞ w.p.1,

• f ∈ H(1) if
∫ t

0
|f(s,Xs)|2ds < ∞ w.p.1.

Thus, we can write H(i) = H(1), for all i = 2, 3, . . . , l where l ≥ 2 as well as H(α)

for multi-indices α with l(α) > 1.

We have multiple Stratonovich integral in order to solve these stochastic processes
(f

t
)t∈I in a time interval.

Definition 2.9. [11, 27] Let ρ and τ be two stopping times with t0 ≤ ρ ≤ τ ≤ T .
For a multi-index α ∈ M and a process f ∈ H(α), multiple Stratonovich integral
Jα[f(·)]ρ,τ with respect to the d-dimensional Brownian motion Wt recursively is
defined as follows:

Jα[f(·)]ρ,τ :=











f(τ) if l = 0,
∫ τ

ρ
Jα−[f(·)]ρ,sds if l ≥ 1 and αl = 0,

∫ τ

ρ
Jα−[f(·)]ρ,s ◦ dW αl

s if l ≥ 1 and αl ≥ 1.

For a constant function f ≡ 1 with the condition 0 ≤ t0 ≤ t ≤ T , we demonstrate
the usage of multiple Stratonovich integrals in below examples

J(0)[f(·)]t0,t =

∫ t

t0

1du = t− t0, (2.40)

J(1)[f(·)]t0,t =

∫ t

t0

1 ◦ dWs = Wt −Wt0 , (2.41)

J(1,1)[f(·)]t0,t =

∫ t

t0

J(1)[f(·)]t0,s ◦ dWs

=

∫ t

t0

(Ws −Wt0) ◦ dWs =
1

2
(Wt −Wt0)

2, (2.42)

J(0,1)[f(·)]t0,t =

∫ t

t0

J(0)[f(·)]t0,s ◦ dWs =

∫ t

t0

(s− t0) ◦ dWs, (2.43)

J(1,0,2)[f(·)]t0,t =

∫ t

t0

J(1,0)[f(·)]t0,s ◦ dW 2
s =

∫ t

t0

∫ s

t0

J(1)[f(·)]t0,udu ◦ dW 2
s

=

∫ t

t0

∫ s

t0

∫ u

t0

1 ◦ dW 1
v du ◦ dW 2

s , (2.44)
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Repeatedly, the numbers above of Wt’s represent the Brownian motion used and
if we do not write any number above, then we understand that we have one-
dimensional Brownian motion.

We want to define the Stratonovich-Taylor expansion; therefore, we need to in-
troduce Stratonovich coefficient functions. Let us generalize the operators in the
equations (2.37) and (2.38) from one-dimensional case to the multi-dimensional
case. The k-th component of the generalized operators form-dimensional Stratonovich
process with d-dimensional Brownian motion:

L0 :=
∂

∂t
+

m
∑

k=1

ak
∂

∂xk

(2.45)

and

Lj :=
m
∑

i=1

bji
∂

∂xi

(2.46)

where

ak := ak −
1

2

m
∑

i=1

d
∑

j=1

bji
∂bjk
∂xi

for k, i = 1, 2, . . . ,m and j = 0, 1, . . . , d. For each multi-index α = (α1, α2, . . . , αl) ∈
M and a continuously differentiable function f(t,Xt), the Stratonovich coefficient
function is defined to be

f
α
:=

{

f if l = 0,

Ljlf
−α

if l ≥ 1.

Now, we can define the Stratonovich-Taylor expansion in the following theorem.

Theorem 2.4. (Stratonovich-Taylor Expansion [11, 27]) Let A ⊆ M be a
hierarchical set, ρ and τ be two stopping times with t0 ≤ ρ ≤ τ ≤ T and let
f(t,Xt) : I × Rm → R. Then, for (Xt)t∈I , defined in (2.2), the Stratonovich-
Taylor expansion is introduced as follows:

f(τ,Xτ ) =
∑

α∈A

Jα[fα
(ρ,Xρ)]ρ,τ +

∑

α∈R(A)

Jα[fα
(·,X·)]ρ,τ (2.47)

provided that all of the derivatives of f(t,Xt), a(t,Xt) and b(t,Xt) and all of the
multiple Stratonovich integrals appearing in (2.47) exist.

Proof. Proof of the theorem can be found in [11].

So far, we have reviewed both Itô-Taylor and Stratonovich-Taylor expansions.
Since every Itô integral has an equivalent Stratonovich representation, transfor-
mation of coefficient functions to each other is possible, as well. To illustrate, we
can analyze in three cases [11]:
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• for l = 0, we have

Jα[f(·, X·)]ρ,τ = Iα[f(·, X·)]ρ,τ = f(τ,Xτ ),

• for l = 1, we have

J(j1)[f(·, X·)]ρ,τ = I(j1)[f(·, X·)]ρ,τ + I{j1 6=0}I(0)

[

1

2
Lj1f(·, X·)

]

ρ,τ

,

• for l ≥ 2, we have

Jα[f(·, X·)]ρ,τ = I(j1) [Jα−[f(·, X·)]ρ,·]ρ,τ
+ I{jl=jl−1 6=0}I(0)

[

1
2
J(α−)−[f(·, X·)]ρ,·

]

ρ,τ
,

where t0 ≤ ρ ≤ τ ≤ T are stopping times and α ∈ M are multi-indices.

By using the above equations, we might switch one stochastic calculus to the
other one and it supplies an opportunity to study on any field with the appro-
priate stochastic calculus. In finance, we are mostly interested in Itô stochastic
differential equations; therefore, from now on, we continue to study on Itô-Taylor
approximations instead of analyzing both types of the Taylor approximations.
However, if it is needed, we know how to interchange the type of the stochastic
calculus from one to another.
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CHAPTER 3

STOCHASTIC TAYLOR SCHEMES

This chapter aims to analyze strong Taylor approximations and weak Taylor ap-
proximations by using Itô-Taylor expansions defined in the previous chapter and
in [7, 16, 36, 37, 38]. Before we cover the main topic of the chapter, we give a time
discretization on the integration interval. we take into account the convergence
criteria which leads us to give the special forms of Itô-Taylor expansions of the
stochastic differential equations to measure the order of Itô-Taylor schemes at the
discretization points [11]. Firstly, Euler-Maruyama scheme, the simplest form of
Itô-Taylor expansions, will be investigated according to both strong and weak
convergence criteria. Secondly, adding an additional term from Itô-Taylor expan-
sion to Euler-Maruyama scheme, we get another approximation method, so-called
Milstein scheme. Then, we derive higher order Taylor schemes by taking more
terms from Itô-Taylor expansion; for example, order 2 weak Taylor scheme and
order 3/2 strong Taylor scheme. At the last section of this chapter, we analyze
related Runge-Kutta schemes in different stages in deterministic and stochastic
sense.

3.1 Introduction

In this section, we give some basic definitions about Itô processes and then con-
vergence criteria are stated at the end.

Throughout this chapter, we refer to the Itô process satisfying the stochastic
integral equation (2.10)

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs (3.1)

for t ∈ [t0, T ]. Let us introduce a partition of the time interval I = [t0, T ] such as

t0 ≤ t1 < · · · < tn < · · · < tN = T. (3.2)

The choice of the discretization points, which can be left endpoints or midpoints of
the subintervals [tn, tn+1] with n = 0, 1, . . . , N − 1, affects the type of stochastic
calculus studied, Itô calculus or Stratonovich calculus, respectively. However,
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we will continue to utilize Itô calculus only while defining the approximation
methods.

Let (Yt)t∈I be an approximation process to the exact solution Xt as follows:

Yt = Yt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs, t ∈ [t0, T ] (3.3)

We denote the approximation process by Ytn := Yn at the discretization points
for n = 0, 1, . . . , N . The process Ytn+1

can be written recursively

Yn+1 = Yn +

∫ tn+1

tn

a(s,Xs)ds+

∫ tn+1

tn

b(s,Xs)dWs. (3.4)

We can make some simplifications of multiple Itô integrals, defined in equations
(2.27)–(2.30) in the previous chapter, so as to use them in the aprroximation
schemes in the following sections. Let the notation ∆n indicate the increment of
subintervals [tn, tn+1] of the time discretization (3.2) as follows:

∆n :=

∫ tn+1

tn

dt = tn+1 − tn (3.5)

which is also equal to I(0)[f(·)]tn,tn+1
in (2.27).

The increment of the one-dimensional standard Brownian motion Wt on the time
interval [tn, tn+1] is denoted by the following:

∆Wn :=

∫ tn+1

tn

dWt = Wtn+1
−Wtn , (3.6)

which is equal to I(1)[f(·)]tn,tn+1
in (2.28) as well.

Moreover, in the next sections, the terms I(1,0),∆n
and I(0,1),∆n

in (2.29) and (2.30),
respectively, come into the picture in the stochastic Taylor approximation meth-
ods. However, the computations of these terms are expensive. When we realize
that these terms are also random variables, we define ∆Zn as a new random
variable, which is equal to the multiple Itô integral I(1,0),∆n

, with the following
properties:

• the mean is E(∆Zn) = 0,

• the variance is V ar(∆Zn) =
1
3
∆3

n,

• the correlation with ∆Wn is E(∆Wn,∆Zn) =
1
2
∆2

n.

Then, we can introduce these two multiple Itô integrals in terms of ∆Zn in the
following

I(1,0),∆n
=

∫ tn+1

tn

∫ s

tn

dWuds =

∫ tn+1

tn

(dWs − dWtn)ds = ∆Zn (3.7)
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and

I(0,1),∆n
=

∫ tn+1

tn

∫ s

tn

dudWs =

∫ tn+1

tn

(s− tn)dWs = ∆Wn∆n −∆Zn. (3.8)

Also, we will face with the following multiple Itô integrals; therefore, we want to
indicate them before the derivations of the stochastic Taylor approximations as
well [11]:

I(1,1),∆n
=

∫ tn+1

tn

∫ s

tn

dWudWs =
1

2

(

(∆Wn)
2 −∆n

)

(3.9)

and

I(1,1,1),∆n
=

∫ tn+1

tn

∫ s

tn

∫ u

tn

dWvdWudWs =
1

3!

(

(∆Wn)
2 − 3∆n

)

∆Wn. (3.10)

After constructing the Itô-Taylor schemes by benefiting from above equations
(3.5)–(3.10), we try to measure the accuracy of the approximation methods by
looking that how much the approximation process is close to the analytic solu-
tion of the stochastic differential equation. Therefore, we state strong and weak
convergence criteria of the stochastic processes, in advance.

Definition 3.1. [27] Let Yt be an approximation process to the true solution Xt

of a stochastic integral equation (3.1) at the discretization times. We say that the
process Yt strongly converges to the solution process Xt if there exist a positive
constant c1 and the maximum step size ∆n of the interval [t0, T ] satisfying

E(|XT − YT |) ≤ c1∆
p
n (3.11)

where p is the strong order of convergence.

Now, we use the multi-indices and hierarchical sets we mentioned before in Chap-
ter 2. Let us define a new set Λp in order to define the strong Taylor approximation
schemes according to a value of p which shows the order of the scheme [26].

Λp :=

{

α ∈ M : l(α) + n(α) ≤ 2p or l(α) = n(α) = p+
1

2

}

. (3.12)

By increasing values of p for the set Λp, we get additional multi-indices which are
used in Itô-Taylor expansion (2.34) so as to create the strong Itô-Taylor schemes.
For different p values, we can obtain strong approximation schemes with different
orders.

We remark that the summation of l(α) and n(α) which is less than or equal to
2p, defined in the set Λp, should be integer because both l(α) and n(α) are always
integers. Therefore, we can choose p from Z/2 to determine the order of a strong
Taylor approximation scheme.
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Definition 3.2. [27] Let Yt be an approximation process to the true solution Xt

of a stochastic differential equation (3.1) at the discretization times. We say that
the process Yt weakly converges to the solution process Xt if there exist a positive
constant c2 and the maximum step size ∆n of the interval [t0, T ] satisfying

|E(XT )− E(YT )| ≤ c2∆
q
n (3.13)

where q is the order of weak convergence.

In order to find the weak Taylor approximation schemes according to a value of
q, we again benefit from the hierarchical sets stated in Chapter 2 and introduce a
new set Γq which will be used for the definitions of the weak Itô-Taylor schemes
as follows:

Γq := {α ∈ M : l(α) ≤ q} . (3.14)

We obtain weak Itô-Taylor schemes by trying different values for q in the set Γq

and finding the corresponding multi-indices to use in Itô-Taylor expansion (2.34).
This process will be more clear when we explain the stochastic Taylor schemes in
the following chapter.

Also, since l(α) is defined as an integer, choices for q for the set Γq should be also
integer. Therefore, we note that we always take integer numbers for the orders
of the weak Itô-Taylor approximation schemes.

3.2 Euler-Maruyama Scheme

We now start to give different values to p and to q for the strong and weak
orders of the Itô-Taylor approximation schemes, respectively. Firstly, we try the
smallest value 1/2 for the strong order p and we see that the set Λp (3.12) has
the multi-indices α such as

Λ1/2 = {α : l(α) + n(α) ≤ 1 or l(α) = n(α) = 1}
= {α : l(α) = 1 and n(α) = 0 or l(α) = n(α) = 1}
= {α = (1) or α = (0)} . (3.15)

We also try the smallest value of q = 1 for the set Γq (3.14) which has the same
multi-indice α:

Γ1 = {α : l(α) ≤ 1}
= {α : l(α) = 1}
= {α = (0) or α = (1)} . (3.16)

It can be seen that the sets Λ1/2 and Γ1 have the same multi-indices α = (0)
and α = (1) in the equations (3.15) and (3.16). This means the approximation
scheme has both strong order and weak order for the convergence criteria. When
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Figure 3.1: Comparison the Euler-Maruyama scheme with the exact solution
where a=3, b=1 and at N=80 discretization time steps.

we use these multi-indices in the Itô-Taylor expansion (2.34) to construct the
first approximation scheme, namely Euler-Maruyama scheme, the approximation
process Yt will be written with the following stochastic differential equation

Yn+1 = Yn + I(0)f(0) + I(1)f(1)

= Yn + a(tn, Xtn)

∫ tn+1

tn

dt+ b(tn, Xtn)

∫ tn+1

tn

dWt

= Yn + a(tn, Xtn) (tn+1 − tn) + b(tn, Xtn)
(

Wtn+1
−Wtn

)

= Yn + a(tn, Xtn)∆n + b(tn, Xtn)∆Wn,

which is called the one-dimensional Euler-Maruyama scheme. Therefore, regard-
ing the p and q values, we say that Euler-Maruyama scheme has the strong order
p = 1/2 and weak order q = 1 satisfying the convergence criteria (3.11) and
(3.13), respectively.

The Euler-Maruyama scheme is the most known and commonly used approxima-
tion method which is derived by using the first derivations of Itô-Taylor expan-
sion of the stochastic differential equation. However, it is not an enough accurate
approximation always; therefore, this situation emerges the need for better meth-
ods that have higher p and q values for the sets Λp and Γq, respectively. See
Figure 3.1 for a numerical performance of Euler-Maruyama scheme applied to a
simple stochastic differential equation.
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3.3 Milstein Scheme

When we choose p = 1 for the strong order Itô-Taylor approximation scheme, the
multi-indices α can get only these values:

Λ1 = {α : l(α) + n(α) ≤ 2 or l(α) = n(α) = 3/2}
= {α : l(α) = 1 and n(α) = 0 or l(α) = 1 and n(α) = 1 or

l(α) = 2 and n(α) = 0}
= {α = (1) or α = (0) or α = (1, 1)} . (3.17)

We realized that Λ1 has one more multi-index α = (1, 1) than Λ1/2 which emerges
an extra term to the Euler-Maruyama scheme when we solve the Itô-Taylor ex-
pansion (2.34) with the multi-indices found in the above equation (3.17). Then,
we can rewrite the stochastic integral equation (3.1) for the set Λ1 as follows:

Yn+1 = Yn + I(0)f(0) + I(1)f(1) + I(1,1)f(1,1)

= Yn + a(tn, Xtn)

∫ tn+1

tn

dt+ b(tn, Xtn)

∫ tn+1

tn

dWt

+ b(tn, Xtn)
∂

∂x
b(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdWt

= Yn + a(tn, Xtn) (tn+1 − tn) + b(tn, Xtn)
(

Wtn+1
−Wtn

)

+
1

2
b(tn, Xtn)

∂

∂x
b(tn, Xtn)

(

(Wtn+1
−Wtn)

2 − (tn+1 − tn)
)

= Yn + a(tn, Xtn)∆n + b(tn, Xtn)∆Wn

+
1

2
b(tn, Xtn)b

′(tn, Xtn)
(

(∆Wn)
2 −∆n

)

,

which is actually the one-dimensional Milstein scheme [19, 20]. Therefore, we
can deduce that the Milstein scheme has the strong order p = 1.

We note that Milstein scheme has not corresponding weak order Itô-Taylor ap-
proximation scheme because of the choices for the value of q and the structure
of the set Γq. To be more precise, it is impossible to add the extra term to the
Euler-Maruyama scheme to get the Milstein scheme for the weak order Itô-Taylor
scheme due to the restriction of l(α) ≤ q for the set Γq.

It can be seen that Milstein scheme has an extra term when compared to Euler-
Maruyama scheme. This extra term,

1

2
b(tn, Xtn)b

′(tn, Xtn)
(

(∆Wn)
2 −∆n

)

,

brings a chance to obtain more satisfactory approximation to the Milstein method
when comparing to the Euler-Maruyama method. Moreover, it can be seen that
Milstein scheme is closer to the exact solution in the Figure ?? when comparing
the closeness of the Euler-Maruyama scheme in the Figure ?? with the same exact
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Figure 3.2: Comparison the Milstein scheme with the exact solution where a=3,
b=1 and at N=80 discretization time steps.

solution of the same stochastic differential equation with the variables a = 3 and
b = 1. See Figure 3.2.

We may carry on trying higher values for p and q in search of obtaining more
efficient stochastic Itô-Taylor approximation methods in the next sections.

3.4 Weak Taylor Scheme of Order 2

The another choice for the value of q is equal to 2. Then, by the properties of
the set Γq (3.14), the multi-indices can get these values such as

Γ2 = {α : l(α) ≤ 2}
= {α : l(α) = 1 or l(α) = 2}
= {α = (0) or α = (1) or α = (0, 0) or α = (0, 1)

or α = (1, 0) or α = (1, 1)}. (3.18)

Γ2 includes six different multi-indices α while Γ1 in the section of Euler-Maruyama
includes only two of them. These extra multi-indices should increase the accuracy
of the approximation scheme to the exact solution. By using the Itô-Taylor
expansion (2.34) with the set of multi-indices found in (3.18), we can write the
following stochastic integral equation

Yn+1 = Yn + I(0)f(0) + I(1)f(1) + I(0,0)f(0,0) + I(0,1)f(0,1)
+I(1,0)f(1,0) + I(1,1)f(1,1).
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Now, we need the calculations of corresponding multiple Itô integrals I(1,0) and
I(0,1) given in (3.7) and (3.8), respectively. By reorganizing the above equation,
we have

Yn+1 = Yn + a(tn, Xtn)

∫ tn+1

tn

dt+ b(tn, Xtn)

∫ tn+1

tn

dWt

+

(

a(tn, Xtn)a
′(tn, Xtn) +

1

2
b2(tn, Xtn)a

′′(tn, Xtn)

)∫ tn+1

tn

∫ t

tn

dsdt

+

(

a(tn, Xtn)b
′(tn, Xtn) +

1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)∫ tn+1

tn

∫ t

tn

dsdWt

+a′(tn, Xtn)b(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdt

+b(tn, Xtn)b
′(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdWt,

and carrying out further calculations,

Yn+1 = Yn + a(tn, Xtn) (tn+1 − tn) + b(tn, Xtn)
(

Wtn+1
−Wtn

)

+
1

2

(

a(tn, Xtn)a
′(tn, Xtn) +

1

2
b2(tn, Xtn)a

′′(tn, Xtn)

)

(tn+1 − tn)
2

+

(

a(tn, Xtn)b
′(tn, Xtn) +

1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)

×
(

(

Wtn+1
−Wtn

)

(tn+1 − tn)−
∫ tn+1

tn

∫ t

tn

dWsdt

)

+a′(tn, Xtn)b(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdt

+
1

2
b(tn, Xtn)b

′(tn, Xtn)
(

(

Wtn+1
−Wtn

)2 − (tn+1 − tn)
)

.

Further, rearranging the terms, we have

Yn+1 = Yn + a(tn, Xtn)∆n + b(tn, Xtn)∆Wn

+
1

2

(

a(tn, Xtn)a
′(tn, Xtn) +

1

2
b2(tn, Xtn)a

′′(tn, Xtn)

)

∆2
n

+

(

a(tn, Xtn)b
′(tn, Xtn) +

1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)

(∆Wn∆n −∆Zn)

+a′(tn, Xtn)b(tn, Xtn)∆Zn

+
1

2
b(tn, Xtn)b

′(tn, Xtn)
(

(∆Wn)
2 −∆n

)

,

which is called one-dimensional Itô-Taylor approximation scheme with weak order
p = 2. This scheme has additional terms to the Euler-Maruyama scheme and the
Milstein scheme because of the multi-indices α = (0, 0), α = (0, 1) and α = (1, 0).
Therefore, we may preassume that weak Itô-Taylor scheme of order 2 creates
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Figure 3.3: Comparison the weak order of 2 Taylor scheme with the exact solution
where a=3, b=1 and at N=80 time steps.

better approximation process to the exact solution. Numerical performance of
the method can be seen in Figure 3.3: the approximation process is very close to
the exact solution when compared to the figures of the previous schemes.

However, the terms of the approximation process are getting more complex to
calculate while the order of the scheme increases. In fact, constructing higher
order schemes from Itô-Taylor expansion is getting expensive because of the need
of the calculation of higher differentiations of the terms in the stochastic Taylor
expansion.

3.5 Strong Taylor Scheme of Order 3/2

Let us try p = 3/2 for the set Λp in the equation (3.12) to construct better
approximation methods. Then, the multi-indices found in Λ3/2 is given as

Λ3/2 = {α : l(α) + n(α) ≤ 3 or l(α) = n(α) = 2}
= {α : l(α) = 1 and n(α) = 0 or l(α) = 1 and n(α) = 1 or

l(α) = 2 and n(α) = 0 or l(α) = 2 and n(α) = 1 or

l(α) = 3 and n(α) = 0 or l(α) = 2 and n(α) = 2}
= {α = (0) or α = (1) or α = (1, 1) or α = (1, 0) or

α = (0, 1) or α = (1, 1, 1) or α = (0, 0)}. (3.19)

We have one more multi-index α = (1, 1, 1) different from the set Γ2 (3.18) for
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the weak Taylor scheme of order 2. For this set of multi-indices (3.19), we can
write the stochastic differential equation by using the Itô-Taylor expansion (2.34)
as follows:

Yn+1 = Yn + I(0)f(0) + I(1)f(1) + I(1,1)f(1,1) + I(1,0)f(1,0) + I(0,1)f(0,1)
+I(0,0)f(0,0) + I(1,1,1)f(1,1,1).

We again need the equations of corresponding multiple Itô integrals I(1,0), I(0,1)
and I(1,1,1). These terms are calculated in the introduction part of this chapter,
see equations (3.7), (3.8) and (3.10), respectively. By rearranging the terms with
this information, we have

Yn+1 = Yn + a(tn, Xtn)

∫ tn+1

tn

dt+ b(tn, Xtn)

∫ tn+1

tn

dWt

+b(tn, Xtn)b
′(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdWt

+a′(tn, Xtn)b(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdt

+

(

a(tn, Xtn)b
′(tn, Xtn) +

1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)∫ tn+1

tn

∫ t

tn

dsdWt

+

(

a(tn, Xtn)a
′(tn, Xtn) +

1

2
b2(tn, Xtn)a

′′(tn, Xtn)

)∫ tn+1

tn

∫ t

tn

dsdt

+

(

1

2
b2(tn, Xtn)b

′′(tn, Xtn) +
1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)

×
∫ tn+1

tn

∫ t

tn

∫ s

tn

dWudWsdWt,

and, even further,

Yn+1 = Yn + a(tn, Xtn) (tn+1 − tn) + b(tn, Xtn)
(

Wtn+1
−Wtn

)

+
1

2
b(tn, Xtn)b

′(tn, Xtn)
(

(

Wtn+1
−Wtn

)2 − (tn+1 − tn)
)

+a′(tn, Xtn)b(tn, Xtn)

∫ tn+1

tn

∫ t

tn

dWsdt

+

(

a(tn, Xtn)b
′(tn, Xtn) +

1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)

×
(

(Wtn+1
−Wtn)(tn+1 − tn)−

∫ tn+1

tn

∫ t

tn

dWsdt

)

+
1

2

(

a(tn, Xtn)a
′(tn, Xtn) +

1

2
b2(tn, Xtn)a

′′(tn, Xtn)

)

(tn+1 − tn)
2

+
1

2

(

b2(tn, Xtn)b
′′(tn, Xtn) + b(tn, Xtn)b

′(tn, Xtn)
2
)

×
(

1

3
(Wtn+1

−Wtn)
2 − (tn+1 − tn)

)

(

Wtn+1
−Wtn

)

.
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Figure 3.4: Comparison the strong order of 3/2 Taylor scheme with the exact
solution where a=3, b=1 and at N=80 time steps.

Having rearranged the terms, we have,

Yn+1 = Yn + a(tn, Xtn)∆n + b(tn, Xtn)∆Wn

+
1

2
b(tn, Xtn)b

′(tn, Xtn)
(

(∆Wn)
2 −∆n)

)

+ a′(tn, Xtn)b(tn, Xtn)∆Zn

+

(

a(tn, Xtn)b
′(tn, Xtn) +

1

2
b2(tn, Xtn)b

′′(tn, Xtn)

)

(∆Wn∆n −∆Zn)

+
1

2

(

a(tn, Xtn)a
′(tn, Xtn) +

1

2
b2(tn, Xtn)a

′′(tn, Xtn)

)

∆2
n

+
1

2

(

b2(tn, Xtn)b
′′(tn, Xtn) + b(tn, Xtn)b

′(tn, Xtn)
2
)

×
(

1

3
(∆Wn)

2 −∆n

)

∆Wn.

This equation is called the order 3/2 strong Taylor scheme for the one-dimensional
case. In this scheme, we have greater order and extra terms different than the
other Itô-Taylor methods. However, we should obtain more accurate approxima-
tion process than previous methods due to the contribution of the extra terms.
Figure 3.4 depicts the approximation obtained and the exact solution for a stoc-
ahstic process: both seems to be identical.

The improvement in the graphics can be seen evidently when comparing the
methods. As we stated before in the section of the weak Taylor scheme of order
2, it is hard to see the difference between the approximation method and the
exact solution process in Figure 3.4.
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By adding more terms from the stochastic Taylor expansion to the approximation
schemes we have covered, we can get greater orders for the strong Itô-Taylor
approximation schemes. Yet, it is not necessarily required to examine the higher
order strong Taylor schemes, because the calculations of higher differentiation of
the terms are getting harder in the stochastic Taylor expansion.

Although it is also possible to obtain higher orders Itô-Taylor schemes by adding
more terms to the existing approximation schemes from the stochastic Taylor
expansion and also by taking greater p and q values for the strong orders and the
weak orders, respectively, we face with more computational difficulties and time
consuming when we use greater p and q values. This situation shows the neces-
sity of some other Taylor approximation schemes which avoid from the higher
differentiations of the terms in the stochastic Taylor scheme. Thus, based on the
application in practice, one needs a trade-off between the orders of the methods
to be applied.

3.6 Runge-Kutta Schemes

In this section, we will deal with the method of Runge-Kutta both in ordinary
and stochastic cases. This type of method is used for higher order schemes of
the approximation processes. Firstly, we review the deterministic Runge-Kutta
methods in order to understand the stochastic version of Runge-Kutta methods.
The latter we will be covered later in the sequel.

The distinctive property of Runge-Kutta scheme from other approximation meth-
ods is that we do not have to calculate the derivatives of the drift and the diffusion
terms in constructing the method although Runge-Kutta scheme is also derived
from the Taylor expansions like the others. Calculating the derivatives of the
terms in the stochastic differential equations is computationally costly and this
situation emerges the need of approximation schemes that are free from deriva-
tives. Runge-Kutta scheme avoids to compute the derivatives and, as a result, it
becomes an important and valuable type of stochastic approximation methods.

3.6.1 Ordinary Runge-Kutta Scheme

In this subsection, we are interested in only deterministic part of the Itô stochastic
differential equation (2.10) which is, in fact, the ordinary differential equation

dXt = a(t,Xt)dt, Xt0 = x0 ∈ R, (3.20)

where the function a(t,Xt) is a continuously differentiable R-valued function in
the time interval I = [t0, T ]. We should consider the partial derivatives of the
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function a(t,Xt) with respect to the time variable t [11] as follows:

dXt

dt
= a(t,Xt), (3.21)

d2Xt

dt2
= at(t,Xt) + ax(t,Xt)a(t,Xt), (3.22)

d3Xt

dt3
= att(t,Xt) + 2atx(t,Xt)a(t,Xt) + axx(t,Xt)a

2(t,Xt)

+at(t,Xt)ax(t,Xt) + a2x(t,Xt)a(t,Xt) (3.23)

and so on. These partial derivatives help us to derive Runge-Kutta schemes by
defining the Taylor expansion of Xt. Recall the discretization, defined in the
equation (3.2), of the time interval I = [t0, T ] ;

0 ≤ t0 < t1 < · · · < tn < · · · < tN = T (3.24)

with n = 0, 1, . . . , N . Let ∆n be sufficiently small step size such that ∆n =
tn+1− tn as in the equation (3.5). And, let again Yn = Y (tn) be an approximation
process to the analytic solution Xtn of the initial value problem.

Then, the Taylor expansion of the solution Xt of an ordinary differential equation
(3.20) is given by

Xt+∆n
= Xtn+1

= Xtn +∆n
dXt

dt
+

∆2
n

2!

d2Xt

dt2
+

∆3
n

3!

d3Xt

dt3
+ · · · . (3.25)

By using the Taylor expansion of Xt (3.25), we will define the Runge-Kutta
schemes with different stages [6]. For example, we can show how to construct the
second-order Runge-Kutta scheme step by step as follows:

Firstly, we take the third-order Taylor expansion of the solution Xt by substitut-
ing the partial derivatives of the function a(t,Xt), defined in (3.21)–(3.23), into
(3.25). Then, we have the following:

Xtn+1
= Xtn +∆na+

1

2
∆2

n (at + axa) +O(∆3
n). (3.26)

Let us now state a remark which will help us to simplify (3.26):

Remark 3.1. We assume that the function φ(t,Xt) satisfies the following property:

φ(t+ ck,Xt + dl) = a(t,Xt) + ckat(t,Xt) + dlax(t,Xt) +O(k2),

where c, d, k, l are constants.

By this remark, we give some values to the variables c = 1, k = ∆n, d = ∆n,
l = a(tn, Xtn) in order to get the following representation

a(tn +∆n, Xtn +∆na(tn, Xtn)) = a+∆nat +∆naxa+O(∆2
n). (3.27)
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We realize that this function in (3.27) is also appearing in (3.26), so we can rewrite
the process Xtn+1

as follows:

Xtn+1
= Xtn +

1

2
∆na+

1

2
∆n (a+∆n(at + axa)) +O(∆3

n)

= Xtn +
1

2
∆na(tn, Xtn)

+
1

2
∆na (tn +∆n, Xtn +∆na(tn, Xtn)) +O(∆3

n). (3.28)

As a result, reorganizing (3.28) leads to the second-order ordinary Runge-Kutta
scheme defined as

Yn+1 = Yn +
∆n

2
(Φ1 + Φ2), (3.29)

where the functions Φ1 and Φ2 are given by

Φ1 = a(tn, Xtn)

and
Φ2 = a(tn +∆n, Xtn +∆nΦ1).

We can also state the fourth-order Runge-Kutta scheme by following similar steps
which lead us to construct the second-order Runge-Kutta scheme above. When we
study on the fifth-order Taylor expansion (3.25) which has the terms until O(∆5

n),
we add two extra terms into the expansion. After substituting the derivatives of
the function a(t,Xt) into the Taylor expansion and doing similar simplifying steps
together with Remark 3.1, we can reach the fourth-order ordinary Runge-Kutta
scheme:

Yn+1 = Yn +
∆n

6
(Φ1 + 2Φ2 + 2Φ3 + Φ4), (3.30)

where the functions Φi for i = 1, 2, 3, 4 are defined to be

Φ1 = a(tn, Xtn),

Φ2 = a(tn +
∆n

2
, Xtn +

∆n

2
Φ1),

Φ3 = a(tn +
∆n

2
, Xtn +

∆n

2
Φ2),

Φ4 = a(tn +∆n, Xtn +∆nΦ3).

It can be seen that the fourth-order Runge-Kutta scheme has only two more terms
than the second-order Runge-Kutta scheme. Hence, we understand that adding
more terms from the Taylor expansion in (3.25) leads us to get more accurate
approximation with higher orders. Furthermore, we may generalize the ordinary
Runge-Kutta scheme of order s as follows:

Yn+1 = Yn +∆n

s
∑

i=1

µiΦi, n ≥ 0, (3.31)
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where the functions Φi’s are defined as

Φi = a(tn + ci∆n, Xtn +∆n

s
∑

j=1

βijΦj)

for i = 1, 2, . . . , s and the coefficients βij, ci and µi are constants. The Butcher ar-
ray is defined for the coefficients to demonstrate them in a table like environment
as in [32]:

0
c2 β21

c3 β31 β32
...

...
...

. . .
cs βs1 βs2 . . . βs,s−1

µ1 µ2 . . . µs−1 µs

with βij = 0 for j ≥ i and

ci =
i−1
∑

j=1

βij and
s
∑

i=1

µi = 1.

We are interested in the case of βij = 0 for j ≥ i which means that the Runge-
Kutta scheme is in the explicit form. If the coefficients satisfy βij 6= 0 for j ≥ i,
then the method becomes in implicit form; we do not cover the implicit case of
the Runge-Kutta schemes, here, in this thesis. However, interested readers can
refer to the book [26] by Andreas Rößler for a detailed study of Runge-Kutta
schemes.

We note that the function Φ1 is always equal to the function a(tn, Xtn) since
c1 = 0 and β1j = 0 for all j ≥ 1 for the explicit form of the Runge-Kutta scheme.

For illustration purposes, we can write the Butcher arrays for the second-order
ordinary Runge-Kutta scheme (3.29) as

0
1 1

1/2 1/2

and the fourth-order ordinary Runge-Kutta scheme (3.30) as

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

As we have covered the basics of Runge-Kutta methods in the ordinary case, we
can generalize this knowledge to the stochastic case. In the next section, we give
the general forms of some stochastic Runge-Kutta schemes with different stages.
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3.6.2 Stochastic Runge-Kutta Scheme

In this subsection, we are moving on the stochastic case of Runge-Kutta schemes [32],
thus we recall the Itô stochastic differential equation (2.10):

dXt = a(t,Xt)dt+ b(t,Xt)dWt, Xt0 = x0, (3.32)

or, in the integral form

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs (3.33)

where Wt is a one-dimensional Brownian motion in the interval I = [t0, T ].

Recursive formula for successive approximations has the form

Yn+1 = Yn +

∫ tn+1

tn

a(s,Xs)ds+

∫ tn+1

tn

b(s,Xs)dWs,

where Yn converges to a solution Xtn in the interval [t0, T ] accordingly the def-
inition of the partition (3.24) in the previous subsection. We have known from
Chapter 2 that we can obtain the Itô-Taylor expansion recursively by applying
the Itô formula (2.1) to the solution process Xt (3.33).

By using similar steps as in the deterministic case, we can introduce the stochastic
Runge-Kutta schemes from the Itô-Taylor expansions by applying Remark 3.1 in
order to simplify the scheme.

In the light of these information, the general form of the stochastic Runge-Kutta
scheme with s-stage, with s ≥ 1, is defined by [18],

Yn+1 = Yn +
s
∑

i=1

µiΦi∆n +
s
∑

i=1

νiΨi∆Wn, (3.34)

where

Φi = a(tn + ci∆n, Y
(i)
n ), i = 1, 2, . . . , s,

Ψi = b(tn + ci∆n, Y
(i)
n ), i = 1, 2, . . . , s,

and

Y (i)
n = Yn +

i−1
∑

j=1

βijΦj∆n +
i−1
∑

j=1

γijΨj∆Wn.

Coefficients µi, νi, ci, βij , γij are constant which are selected in similar way as in
the deterministic case; however,

s
∑

i=1

µi =
s
∑

i=1

νi = 1

must be fulfilled.
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The Butcher array for the stochastic sense of the Runge-Kutta scheme is given
by

0
c2 β21 γ21
c3 β31 β32 γ31 γ32
...

...
...

. . .
...

...
. . .

cs βs1 βs2 . . . βs,s−1 γs1 γs2 . . . γs,s−1

µ1 µ2 . . . µs−1 µs ν1 ν2 . . . νs−1 νs

The additional part of the Butcher array, the rightest column, shows the coef-
ficients of the diffusion part of the stochastic differential equation. The above
table is given for the stochastic Runge-Kutta scheme including one-dimensional
Brownian motion. If we have multi-dimensional Brownian motion in the scheme
(3.34), then we have additional columns in the Butcher array for each Brownian
motion in the stochastic part. For example, the general structure of the stochas-
tic Runge-Kutta scheme including 2-dimensional Brownian motion is given such
as

Yn+1 = Yn +
s
∑

i=1

µiΦi∆n +
s
∑

i=1

νiΨi∆W 1
n +

s
∑

i=1

νiΨi∆W 2
n (3.35)

where

Φi = a(tn + ci∆n, Y
(i)
n ), i = 1, 2, . . . , s,

Ψi = b(tn + ci∆n, Y
(i)
n ), i = 1, 2, . . . , s,

and

Y (i)
n = Yn +

i−1
∑

j=1

βijΦj∆n +
i−1
∑

j=1

γijΨj∆W 1
n +

i−1
∑

j=1

γijΨj∆W 2
n

subject to the conditions
s
∑

i=1

µi =
s
∑

i=1

νi = 1.

Coefficients µi, νi, ci, βij , γij are constant. Also, the corresponding Butcher array
for the above scheme (3.35) is defined as

0
c2 β21 γ1

21
γ2

21

c3 β31 β32 γ1

31
γ1

32
γ2

31
γ2

32

...
...

...
. . .

...
...

. . .
...

...
. . .

cs βs1 βs2 . . . βs,s−1 γ1

s1 γ1

s2 . . . γ1

s,s−1
γ2

s1 γ2

s2 . . . γ2

s,s−1

µ1 µ2 . . . µs−1 µs ν1
1

ν1
2

. . . ν1s−1
ν1s ν2

1
ν2
2

. . . ν2s−1
ν2s

With the analogous properties as in the deterministic case, for the explicit form
of the stochastic Runge-Kutta schemes, the coefficients satisfy βij = γij = 0 for
j ≥ i and

s
∑

j=i

µi =
s
∑

i=1

νi = 1.
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Moreover, the functions satisfy Φ1 = a(tn, Y
(i)
n ) and Ψ1 = b(tn, Y

(i)
n ) since c1 =

β1j = γ1j = 0 for all j ≥ 1 and i = 1, 2, . . . , s in the explicit form.

Let us define some stochastic Runge-Kutta schemes with different stages for given
Buthcer arrays. Firstly, for the Butcher array of the second-stage stochastic
Runge-Kutta scheme [21] is given as follows:

0 0 0
1 1 0 1 0

1/2 1/2 1/2 1/2

and the corresponding approximation scheme has the form of

Yn+1 = Yn +
1

2

(

a(tn, Y
(1)
n ) + a(tn+1, Y

(2)
n )
)

∆n

+
1

2

(

b(tn, Y
(1)
n ) + b(tn+1, Y

(2)
n )
)

∆Wn (3.36)

where the process Y
(i)
n with i = 1, 2 satisfies

Y (1)
n = Yn,

Y (2)
n = Yn + a(tn, Y

(1)
n )∆n + b(tn, Y

(1)
n )∆Wn.

We show a comparison of the approximation process and the exact solution in
Figure 3.5. The paths of the processes indeed get closer to the true solution when
the number of stages is increased.

The third-stage explicit stochastic Runge-Kutta scheme [33, 35] is similarly ex-
pressed as

Yn+1 = Yn +

(

1

2
a(tn, Y

(1)
n ) +

3

4
a(tn +

1

2
∆n, Y

(2)
n )− 1

4
a(tn+1, Y

(3)
n )

)

∆n

+

(

1

2
b(tn, Y

(1)
n ) +

3

4
b(tn +

1

2
∆n, Y

(2)
n )− 1

4
b(tn+1, Y

(3)
n )

)

∆Wn,

where the functions Y
(i)
n with i = 1, 2, 3 satisfy

Y (1)
n = Yn,

Y (2)
n = Yn +

2

3
a(tn, Y

(1)
n )∆n +

2

3
b(tn, Y

(1)
n )∆Wn,

Y (3)
n = Yn +

(

a(tn, Y
(1)
n )− a(tn, Y

(2)
n )
)

∆n +
(

b(tn, Y
(1)
n )− b(tn, Y

(2)
n )
)

∆Wn.

The Butcher array of the scheme is

0 0 0
1/2 2/3 0 2/3 0
1 1 -1 0 1 -1 0

1/2 3/4 −1/4 1/2 3/4 −1/4
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Figure 3.5: Comparison the stochastic Runge-Kutta scheme of stage 2 with the
exact solution where a=3, b=0.5 and at N=80 time steps.
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Figure 3.6: Comparison the stochastic Runge-Kutta scheme of stage 3 with the
exact solution where a=3, b=0.5 and at N=80 time steps.
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Figure 3.6 shows the accuracy and numerical performance of the approximation
process to the exact solution for the third-stage stochastic Runge-Kutta scheme.

For the fourth-stage stochastic Runge-Kutta scheme, we have the below Butcher
array with three column [35] which means that we have 2-dimensional Brownian
motion in the scheme and the coefficients in the first column are given for the
deterministic part while the coefficients in the second and the third column are
given for the stochastic part of the approximation scheme.

0 0 0 0
1/2 1/2 0 -0.72 0 2.70 0
1/2 0 1/2 0 0.42 -0.20 0 1.76 0 0
1 0 0 1 0 -1.58 0.84 1.74 0 -2.92 0 0 0

1/6 1/3 1/3 1/6 -0.78 0.07 1.49 0.22 1.69 1.64 -3.02 -0.31

Therefore, the fourth-stage explicit stochastic Runge-Kutta scheme including two
independent Brownian motions is defined by using the coefficients of the above
Butcher array in the following:

Yn+1 = Yn +
(1

6
a(tn, Y

(1)
n ) +

1

3
a(tn +

1

2
∆n, Y

(2)
n )

− 1

3
a(tn +

1

2
∆n, Y

(3)
n ) +

1

6
a(tn+1, Y

(4)
n )
)

∆n

−
(

0.78 b(tn, Y
(1)
n ) + 0.07 b(tn +

1

2
∆n, Y

(2)
n )

+ 1.49 b(tn +
1

2
∆n, Y

(3)
n ) + 0.22 b(tn+1, Y

(4)
n )
)

∆W 1
n

+
(

1.69 b(tn, Y
(1)
n ) + 1.64 b(tn +

1

2
∆n, Y

(2)
n )

− 3.02 b(tn +
1

2
∆n, Y

(3)
n )− 0.31 b(tn+1, Y

(4)
n )
)

∆W 2
n ,

where the functions Y
(i)
n with i = 1, 2, 3, 4 satisfy

Y (1)
n = Yn,

Y (2)
n = Yn +

1

2
a(tn, Y

(1)
n )∆n − 0.72 b(tn, Y

(1)
n )∆W 1

n + 2.7 b(tn, Y
(1)
n )∆W 2

n ,

Y (3)
n = Yn +

1

2
a(tn, Y

(2)
n )∆n +

(

0.42 b(tn, Y
(1)
n )− 0.20 b(tn, Y

(2)
n )
)

∆W 1
n

+1.76 b(tn, Y
(1)
n )∆W 2

n ,

Y (4)
n = Yn + a(tn, Y

(3)
n )∆n −

(

1.58 b(tn, Y
(1)
n )− 0.84 b(tn, Y

(2)
n )

−1.74 b(tn, Y
(3)
n )
)

∆W 1
n − 2.92 b(tn, Y

(1)
n )∆W 2

n .

It can be seen in Figure 3.7 that the distance of the approximation process and the
exact solution is smaller than the distance of the second-stage and the third-stage
stochastic Runge-Kutta schemes: compare Figures 3.5 and 3.6.

In this chapter, we stated different approximation schemes with different orders
regarding the convergence criteria (3.11) and (3.13). However, we observe the
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Figure 3.7: Comparison the stochastic Runge-Kutta scheme of stage 4 with the
exact solution where a=3, b=0.5 and at N=80 the discretization times.

accuracy of the schemes by comparing the associated paths. We need better
processes to compare the stochastic Itô-Taylor scheme with each other. Therefore,
in the next chapter, we calculate some error terms for each of the schemes and
apply the methods for option pricing models via Monte Carlo simulations.
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CHAPTER 4

APPLICATION

In this chapter, we try to decide which Itô-Taylor scheme supplies the best approx-
imation process to the exact solution of a given stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt (4.1)

with the initial condition Xt0 = x0 ∈ R [10, 13].

Firstly, we handle the error analysis of the approximation methods covered in
Chapter 3 by creating and comparing the error functions of each Itô-Taylor
scheme. Secondly, we examine some volatility models to see how the approx-
imation methods are proceeding in the case of option pricing by using Monte
Carlo method. The price of a European option is derived by Black & Scholes
pricing model on the risk-neutral probability space (Ω,F , (Ft)t≥0,Q) where Q

is the risk-neutral probability measure [17]. The use of standard Brownian mo-
tion is an advantage for the opportunity to apply Black & Scholes model to the
stochastic differential equations because of the martingale property.

4.1 Introduction

In this section, we give some basic definitions and helpful preliminaries before
moving on the applications of the Itô-Taylor schemes. This section includes mean-
ings of local and global error as well as European option and Black & Scholes
model.

For analyzing the error functions of the stochastic processes which are constructed
by Itô-Taylor approximation schemes, we need to give the definition of local error.
We recall the partition 0 ≤ t0 < t1 < · · · < tN = T of the time interval I = [t0, T ].
In addition, Yt is the approximation process to the analytic solution Xt of a
stochastic differential equation at the discretization times tn for n = 0, 1, . . . , N ,
which is defined before in (3.3) at the beginning of the Chapter 3. We recall the
approximation process as follows:

Yt = Yt0 +

∫ t

t0

a(s,Xs)ds+

∫ t

t0

b(s,Xs)dWs, t ∈ [t0, T ]. (4.2)
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The approximation method is the best one when the approximation process Yt

is the closest to the exact form solution Xt at the discretization points. The
exact solution can generally be found by applying the Itô formula (2.19) to the
stochastic differential equation.

The errors of the approximation schemes will help us to judge the accuracy of
the methods. We will examine the errors at the time steps of the partition. The
error is generally defined as the difference between the exact solution and the
approximate solution at the discretization times. The local truncation error of
any approximation process Yt to the true solution Xt in the time interval [t0, T ]
is given by

local error = ǫ = Xtn − Yn (4.3)

where Yn = Y (tn) with n = 0, 1, . . . , N . The numerical method is consistent if
the local truncation error is O(∆n) where ∆n is the increment of the subinterval
[tn, tn+1] defined in the equation (3.5). Furthermore, we say that the numerical
method has order p if the local truncation error is O(∆p+1

n ) for any solution of
the initial value problem.

On the other hand, the fact that the local truncation error can be accumulated
over all of the iterations gives the global error with the assumption of the perfect
knowledge of the exact form of the solution at the initial time step. The numerical
method is said to be convergent if global truncation error goes to zero as the step
size goes to zero.

For the rest of this application chapter, we cover the option pricing models and
analyze them in Monte Carlo simulations. Therefore, we need to know what the
option means and how to calculate their values with the Black & Scholes model.
We can define a European option as the right to buy or sell an underlying stock
at an agreed price K in the certain time T . In other words, it is a contract and
you have compromised to a strike price K at the beginning of the agreement
assuming that the stock price Xt will go up or down in the future and you will be
free to use or not to use this option at the maturity time T . You can buy or sell
the stock at the market price or the price you have decided on at the beginning
of the agreement.

There are two types of option, calls and puts. While the call option gives a person
the right to buy the stock at a certain price at the maturity, the put option gives
the person the right to sell the stock at an agreed price at the maturity. Therefore,
the person who buys a call option expects that the stock price will be higher and
the person who buys a put option hopes that the stock price will decrease at the
maturity. The payoff functions of the options are introduced as follows:

ΠC(t,Xt) = max(XT −K, 0), for a call option, (4.4)

ΠP (t,Xt) = max(K −XT , 0), for a put option. (4.5)

We use the Black & Scholes formula to find the theoretical option prices under
the assumption that the market is arbitrage free, so we work on the risk-neutral
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probability space (Ω,F , (Ft)t≥0,Q), where Q is the risk-neutral probability mea-
surebsmodel, lamber. Regarding that the option is a call or a put, we take a hedge
position on the market in the process of the Black & Scholes model. We apply
the Black & Scholes formula to the stock price Xt where the formula describes
the value V (t,Xt) of the option over time and is defined as

∂V

∂t
+

1

2
σ2X2

t

∂2V

∂X2
+ rXt

∂V

∂X
− rXt = 0. (4.6)

By the Black & Scholes model, the value of a call option VC(t,Xt) and the value
of a put option VP (t,Xt) are respectively given by

VC(t,Xt) = XtN (d1)−Ke−r(T−t)N (d2) (4.7)

and
VP (t,Xt) = Ke−r(T−t)N (−d2)−XtN (−d1) (4.8)

with

d1 =
1

σ
√
T − t

(

ln

(

Xt

K

)

+

(

r +
σ2

2

)

(T − t)

)

,

d2 =
1

σ
√
T − t

(

ln

(

Xt

K

)

+

(

r − σ2

2

)

(T − t)

)

= d1 − σ
√
T − t,

where T−t is the time to maturity, Xt is the spot price of the underlying stock, K
is the strike price, r is the risk-free interest rate, σ is the volatility of the returns
of the stock and the N (d) is the cumulative distribution function of standard
normal distribution:

N (d) =
1√
2π

∫ d

−∞

e
−x

2

2 dx.

More information about Black & Scholes model can be found in [17].

Now, we are ready to proceed the applications of the Itô-Taylor schemes with
some examples by analyzing the error functions and option pricing models.

4.2 Geometric Brownian Motion

In this part, we introduce the process of Geometric Brownian Motion and try to
decide which method, covered in the previous chapters, creates the best approx-
imation to the stochastic process by examining the error function.

Geometric Brownian Motion is a continuous-time stochastic process and it can
be used to model stock prices in the Black & Scholes model. General structure
of the Geometric Brownian Motion satisfies the following stochastic differential
equation

dXt = rXtdt+ σXtdWt, X0 = x0 ∈ R, (4.9)
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where r and σ are non-negative constants and Wt is a Brownian Motion with
t ∈ [0, T ]. Here, by comparing the stochastic differential equation (4.1), the drift
term is a(t,Xt) = rXt and the diffusion term is b(t,Xt) = σXt. Drift term
determines the trend of the stochastic process while the diffusion term controls
the effect of the randomness of the Brownian motion Wt.

In finance, we can think that the process Xt behaves like a stock price where r
and σ represent the risk-free rate and the volatility of the stock price, respectively.
Therefore, we can determine that a stock price Xt goes up or goes down in the
time interval t ∈ [0, T ] by modeling with Geometric Brownian Motion (4.9) with
respect to the risk-free rate r and the volatility σ.

We can reach the exact (closed) form of the solution of Geometric Brownian
Motion in the following steps: firstly, we reorganize the the stochastic differential
equation (4.9) by

1

Xt

dXt = rdt+ σdWt.

By using Itô formula (2.19) to the function f(t,Xt) = lnXt it follows that

d(lnXt) =
1

Xt

dXt +
1

2
σ2X2

t

(

− 1

X2
t

)

dt

= rdt+ σdWt −
1

2
σ2dt

=

(

r − 1

2
σ2

)

dt+ σdWt.

As a result, we get the general form of the exact solution of Geometric Brownian
Motion as

ln
Xt

X0

=

(

r − σ2

2

)

t+ σWt,

or, more explicitly,

Xt = X0 exp

((

r − σ2

2

)

t+ σWt

)

. (4.10)

Now, we start to compare the approximation schemes with each other by exam-
ining the local error functions with respect to the exact solution process of the
Geometric Brownian Motion (4.10). As we mentioned before, the local error func-
tions are calculated by the differences between the approximation process and the
closed form process at the discretization times by using the equation (4.3). We
use Matlab to construct the approximation and exact solution processes and
some codes with some explanations are given in the appendix.

In Figure 4.1, we have demonstrated that the best approximation methods for
given Geometric Brownian Motion process are the higher order Itô-Taylor schemes:
weak Taylor scheme of order 2 and strong Taylor scheme of order 3/2. The error
functions for those two are around zero line and it can be seen that the stochas-
tic processes modeled with stochastic Runge-Kutta methods are getting greater
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Figure 4.1: Error functions of all methods for Geometric Brownian Motion with
the variables X0 = 1, T = 1, N = 25, r = 0.5 and σ = 0.5.

error exponentially. Moreover, the error measures can be found for the first 5
steps in Table 4.1. It is acceptable that the higher order Itô-Taylor schemes give
better results than the Euler-Maruyama and Milstein schemes. However, the
stochastic Runge-Kutta schemes do not have good approximation processes for
the Geometric Brownian Motion process surprisingly.

We continue with another stochastic process in the next section and determine
the best approximation method by the error functions, similarly.

Table 4.1: The errors ǫ at the first 5 steps calculated as ǫ = Xtn − Yn for n =
1, 2, . . . , 5.

Error Calculations
N E-M Mils SO3/2 WO2 SRK2 SRK3 SRK4
1 0.0046 0.0023 0.0001 -0.0003 -0.0053 -0.0057 -0.0054
2 0.0032 0.0039 0.0000 -0.0007 -0.0118 -0.0125 -0.0110
3 0.0212 0.0096 0.0003 -0.0005 -0.0203 -0.0226 -0.0208
4 0.0139 0.0084 0.0001 -0.0003 -0.0270 -0.0292 -0.0238
5 0.0350 0.0154 0.0005 -0.0001 -0.0396 -0.0439 -0.0373
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4.3 Orsntein-Uhlenbeck Process

In this section, we state another type of the stochastic differential process, namely
Orsntein-Uhlenbeck process. This process is also used for modeling the stock
prices or interest rates in finance. General form of Orsntein-Uhlenbeck process is
given in the following stochastic differential equation:

dXt = θ(r −Xt)dt+ σdWt, θ > 0, (4.11)

where θ, r and σ are nonnegative parameters and Wt is a Brownian Motion with
t ∈ [0, T ]. Again, when comparing the stochastic differential equation (4.1), the
drift term is a(t,Xt) = θ(r −Xt) and the diffusion term is b(t,Xt) = σ.

If we are modeling a stock price Xt with Orsntein-Uhlenbeck process, then θ gives
the speed of turning into the long-run level of the process Xt, r represents the
long-run mean of the process Xt, and σ shows the volatility of the process Xt.
The closed form solution of the stochastic process (4.11) is calculated by applying
Itô formula (2.19) to the function f(t,Xt) = Xte

θt as follows:

d(Xte
θt) = θXte

θtdt+ eθtdXt

= θXte
θtdt+ eθt (θ(r −Xt)dt+ σdWt)

= eθtθrdt+ σeθtdWt.

Then, in the integration form, we have

Xte
θt = X0 +

∫ t

0

eθsθrds+

∫ t

0

σeθsdWs.

Therefore, we obtain the exact solution of the Orsntein-Uhlenbeck process as

Xt = X0e
−θt + r(1− e−θt) +

∫ t

0

σeθ(s−t)dWs (4.12)

with X0 = x0 ∈ R.

Now, we can construct and plot the analytic solution process of the Orsntein-
Uhlenbeck and the approximation processes we have covered before. Related
Matlab codes are also given in the appendix at the end of the thesis.

In Figure 4.2, we have showed that the best approximation methods for the
Orsntein-Uhlenbeck process is the stochastic Runge-Kutta schemes with different
stages. Of course, the best one is the fourth-stage stochastic Runge-Kutta scheme
as seen obviously in the figure. However, we plot only four lines in the graphic
because the diffusion term b(t,Xt) is equal to a constant σ and the derivatives of
the diffusion term with respect to space will be zero. So, Euler-Maruyama scheme
gives the same results with Milstein scheme; strong Taylor scheme of order 3/2
has the same results with weak Taylor scheme of order 2 at the discretization
points for the Orsntein-Uhlenbeck process.
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Figure 4.2: Error functions of all methods for Orsntein-Uhlenbeck process with
the variables X0 = 1, T = 1, N = 25, θ = 0.5, σ = 0.5 and long run mean
r = 0.

Table 4.2: The errors ǫ at the first 6 steps calculated as ǫ = Xtn − Yn for n =
1, 2, . . . , 6.

Error Calculations
N EM & Mils SO32 & WO2 SRK2 SRK3 SRK4
1 -0.0010 0.0000 0.0000 0.0000 -0.0012
2 0.0009 0.0019 0.0024 0.0024 -0.0010
3 0.0031 0.0058 0.0060 0.0060 0.0019
4 0.0108 0.0116 0.0130 0.0129 0.0052
5 0.0153 0.0177 0.0189 0.0188 0.0104
6 0.0260 0.0263 0.0279 0.0279 0.0193
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Moreover, the local errors of the approximation processes by comparing the closed
form of the solution of the Orsntein-Uhlenbeck (4.12) process are given in Ta-
ble 4.2 for only the first 6 steps.

In addition to the Geometric Brownian Motion and the Orsntein-Uhlenbeck pro-
cess, we can think of the volatility models. In above stochastic processes, we
always take the drift and the diffusion terms as constant; however, we can take
the time-dependent drift and diffusion terms in the volatility models. Later in
the sequel, we mention this perspective of stochastic differential models.

4.4 Barrier Down-And-Out Option

Up to now, we have covered different stochastic differential processes and done
some stock price modeling. However, we need to be more clear about the accu-
racy of approximation methods. We decide to study on European options after
modeling the stochastic processes and we believe that studying on option pricing
models will be the best way to measure the success of the approximation meth-
ods. In this section, we apply Monte Carlo simulation since we obtain possible
outcomes obtained from possible paths of the stock prices, and then taking the
average of them gives us the expected outcome in this simulation.

The best way to get the approximate option price is to make Monte-Carlo sim-
ulation. In such a simulation, we firstly determine how the stock prices (paths)
behaves in the time interval [t0, T ] with an approximation method we mentioned
in Chapter 3, then we calculate the value V (T,XT ) of the option at time T which
is also equal to the payoff Π(t,Xt) of the option at the maturity time T for the
simulated path of the underlying stock prices. When we discount this price to
the present time, we obtain the option price at time t0.

To set an example, we can give a down-and-out barrier option which means that
if the stock price Xt crushes the barrier line B at any time until the maturity
time, then the value of the option V (t,Xt) will be zero; otherwise, the option
price will be calculated. Shortly, we can think that we never want the stock price
to be lower than a fixed value B which is called the barrier line. Moreover, the
closed form solution of a down-and-out barrier call option for B < K is given by

V B
C (t,Xt) = VC(t,Xt)−

(

Xt

B

)1− 2r

σ2

VC

(

t,
B2

Xt

)

, (4.13)

where VC(t,Xt) is the value of the European call option with the strike price K,
B is the barrier, r is the risk-free interest rate and σ is the volatility of the stock
price.

In Table 4.3, we can understand that when we increase the number of paths
keeping the discretization at the same level, we get better option values. Simi-
larly, if we look at the error results of different methods for the same iteration
and discretization level, we can say that higher order schemes have lower errors
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Table 4.3: The results of Monte Carlo simulation of a down-and-out call option,
where X0 = 50, K = 50, B = 45, r = 0.03 and σ = 0.1 in the time interval [0, 1].
(The price of the option found by the closed form solution (4.13) is 2.7543.)

Error Calculations
# Paths N E-M errorEM SRK2 errorSRK2 SRK4 errorSRK4

102 20 2.9761 -0.2218 3.1511 -0.3968 2.6910 0.0633
103 20 2.6202 0.1341 2.7762 -0.0219 2.8145 -0.0602
104 20 2.7132 0.0411 2.8739 -0.1196 2.9048 -0.1505
105 20 2.7791 -0.0248 2.9412 -0.1869 2.9438 -0.1895
106 20 2.7843 -0.0300 2.9472 -0.1929 2.9359 -0.1816
102 50 2.6295 0.1248 2.7811 -0.0268 2.3844 0.3699
103 50 2.8342 -0.1799 2.9983 -0.2440 2.9808 -0.2265
104 50 2.7819 -0.0276 2.9450 -0.1907 2.9753 -0.2210
105 50 2.7694 -0.0151 2.9310 -0.1767 2.9696 -0.2153
106 50 2.7684 -0.0141 2.9301 -0.1758 2.9473 -0.1930

absolutely by giving better approximate values to the exact value of the option
as we have expected. As a result, when we analyze all results in Table 4.3, we
examine that the fourth-stage of stochastic Runge-Kutta scheme, which has the
highest approximation order among the schemes in the table, gives the smallest
values for the errors comparing the closed form solution (4.13).

For another example, we state a volatility model in the next section. The differ-
ence of the this model is that the volatility in the diffusion part of the stochastic
differential equation is also a stochastic process, thus modeling the volatility as
well.

4.5 Heston Model

In Black & Scholes model, the only variable we cannot forecast is the volatility σ,
so to reach the perfect hedging is not possible. Therefore, we move on stochastic
volatility models to get rid of the uncertain variable, volatility. In this section,
we study on one of the stochastic volatility models: Heston model. In this model,
the stochastic process has a time-dependent diffusion term instead of a constant
diffusion term as before. The diffusion part is initially modeled by the methods
we have stated before, then the stochastic process is modeled depending on this
diffusion part.

In Heston model, the stochastic process Xt “seems” to be created by Geomet-
ric Brownian Motion (4.9); however, the volatility in the diffusion part of the
stochastic differential equation is constructed with correlated Brownian motion.
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The general structure of Heston model can be defined as in the following equation

dXt = rXtdt+
√
σtXtdW

X
t (4.14)

with
dσt = κ(θ − σt)dt+ ξ

√
σtdW

σ
t (4.15)

where the Brownian motions are correlated and they satisfy

dWX
t dW σ

t = ρdt, (4.16)

and r is the risk-free interest rate, θ is the long variance, κ is the speed of the
reverting σt to θ, and ξ is the volatility of the volatility process σt [28].

To be more understandable, we can rewrite (4.14) with the correlation dWX
t =

ρdW σ
t +

√

1− ρ2dZt where Zt is a standard Brownian motion as follows:

dXt = rXtdt+
√
σtXt

(

ρdW σ
t +

√

1− ρ2dZt

)

. (4.17)

Moreover, the closed form solution of Heston model is given as in the following:

Xt = X0 exp

(

rt+
ρ

ξ
(σt − κθt) +

(

κρ

ξ
− 1

2

)

σt +
√

1− ρ2
∫ t

0

√
σsdW

′
s

)

,

(4.18)
where dW ′

t is standard Brownian motion independent of WX
t and W σ

t .

While plotting a path of a stochastic process constructed by Heston model, we
follow the steps below:

• Firstly, we model the process σt with its own Brownian motion process
dW σ

t .

• Secondly, we determine the Brownian motion dWX
t for the process Xt by re-

garding the correlation ρ between Brownian motions in the equation (4.16).

• Finally, we construct the process Xt with the risk-free interest rate r,
stochastic volatility process σt and the Brownian motion dWX

t .

The effect of the stochastic volatility is clearly seen in Figure 4.3. The blue path
is plotted by Heston model with a stochastic volatility σt by taking care of the
equation (4.15) and the red path is obtained by Geometric Brownian Motion with
a constant volatility σ = 0.2. Although the processes go down and up at the same
time steps, the oscillation of the blue path is higher than the oscillation of the
red one due to the effect of the stochastic volatility.

Lastly, we study numerically approximating the price of a European option which
is constructed by Heston model. We model the stochastic volatility in different
ways, and then, we construct the stock price Xt depending on this stochastic
volatility. We make a decision about which approximation method is the best
one by examining the values given in Monte Carlo simulation. The price V (t,Xt)
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Figure 4.3: The process Xt constructed by Heston model with the variables X0 =
100, σ0 = 0.2, T = 1, N = 400, κ = 0.001, θ = 0.15, ξ = 0.001, r = 0.05, ρ =
0.5.

of an option, with the underlying Xt, governed by the Heston model can be
obtained by solving the following partial differential equation,

∂V

∂t
+ rXt

∂V

∂x
+ κ(θ − σ)

∂V

∂σ
+

1

2
σX2

t

∂2V

∂x2

+ ρξσXt
∂2V

∂Xt∂σ
+

1

2
ξ2σ

∂2V

∂σ2
− rV = 0. (4.19)

Figure 4.4 shows the behaviors of the stock prices Xt modeled by stochastic
Taylor schemes, and one can observe that Euler-Maruyama scheme constructs
the farthest solution process (path) to the exact, true solution. In addition, the
stochastic Runge-Kutta schemes give the best approximation processes to the
closed form solution.

In Table 4.4, indeed, we observe that when the number of paths increases while
keeping the number of discretization the same, we get better option values re-
garding the error. Similarly, comparing the results of different methods at the
same number of paths and discretization, we observe that the fourth-stage of
stochastic Runge-Kutta scheme has the smallest error values which means that
this method gives the most closest approximation to the exact option price.
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Figure 4.4: The stochastic process Xt constructed by Heston model with different
Itô-Taylor schemes.

Table 4.4: The results of Monte Carlo simulation of the value of an option defined
by Heston model, whereX0 = 100, K = 100, σ0 = 0.04 r = 0.04, ξ = 0.2, κ = 0.6,
θ = 0.04 and the correlation ρ = −0.15 between Brownian motions WX

t and W σ
t

in the time interval [0, 1/2]. (Exact price of the option is 6.5473 given in [15].)

Error Calculations
# Paths N E-M errorEM SRK2 errorSRK2 SRK4 errorSRK4

102 20 6.1287 0.4186 6.8577 -0.3104 6.1101 0.4372
103 20 6.3649 0.1824 7.1078 -0.5605 6.8022 -0.2549
104 20 6.4830 0.0643 7.2478 -0.7005 6.7563 -0.2090
105 20 6.5649 -0.0176 7.3411 -0.7938 6.5710 -0.0237
106 20 6.5449 0.0024 7.3195 -0.7722 6.5780 -0.0307
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CHAPTER 5

CONCLUSION

In this work, we studied the stochastic Itô-Taylor schemes with the aim of investi-
gating the best approximation method to a given stochastic differential equation.

In the preliminaries part of the study, Itô calculus and Stratonovich calculus
were stated in detail and their relationships with each other were given properly.
The stochastic Taylor expansions of two types of calculus were discussed at the
end of this part. Then, we moved on the stochastic approximation schemes by
interesting in only one type of calculus, Itô calculus. Using only Itô process
was not a problem because we had explained how to convert Itô calculus to
Stratonovich calculus clearly by giving examples.

In the next chapter, the main part of the study, the stochastic Taylor schemes
were given one by one in each section. Both strong and weak convergence cri-
terias were defined first, then the different types of the approximation schemes
were discussed by regarding the order of convergence. The basic type of them
was the Euler-Maruyama scheme with strong order of 1/2 and weak order of
1. This scheme was constructed by using the first derivatives of the Itô-Taylor
expansion of the stochastic differential equation. After that, we continued with
the Milstein scheme by adding one more term to the Euler-Maruyama scheme
from the stochastic Itô-Taylor expansion. It was shown that the Milstein scheme
had strong order of 1. Weak Taylor scheme of order 2 and strong Taylor scheme
of order 3/2 were found by analyzing more derivatives of the Itô-Taylor expan-
sion. Furthermore, we examined the Runge-Kutta schemes with different stages.
In order to derive the stochastic Runge-Kutta schemes, we prefered to under-
stood the ordinary Runge-Kutta scheme first. The opportunity of not using
the derivatives of the stochastic Itô-Taylor expansion gives the importance and
the utilizability to the Runge-Kutta schemes instead of the other types of the
stochastic Itô-Taylor schemes. We obtained higher order approximation schemes
by testing different stages of Runge-Kutta schemes and recognized that they were
more useful and computational simplicity when comparing the other types of the
stochastic Itô-Taylor schemes. Therefore, analyzing the Itô-Taylor schemes, es-
pecially the stochastic Runge-Kutta schemes, with their general structure and
paths are plotted.

Later in the application part, we justified our assumption that higher order
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stochastic Taylor schemes is the more preferable approximate process to the exact
solution of a given stochastic differential equation. Although the improvement of
the approximation schemes could be seen in the figures of the stochastic Itô-Taylor
schemes visually in the previous chapter, we numerically analyzed the accuracy
of each approximation scheme by comparing the exact solution processes and
using the error analysis for some given well-known stochastic processes and op-
tion pricing models. We started with Geometric Brownian Motion whose closed
form solution process was found by applying the Itô formula (2.19) to the func-
tion f(t,Xt) = lnXt. When we constructed and computed the stochastic Taylor
schemes for the Geometric Brownian Motion process, we got the best approxi-
mation methods as weak Taylor scheme of order 2 and strong Taylor scheme of
order 3/2. This can be seen in Figure 4.1 where the error process calculated by
subtracting the approximate process from the exact solution process at the dis-
cretization points. Then, we examined Orsntein-Uhlenbeck process and observed
that the stochastic Runge-Kutta schemes, especially the fourth-stage stochas-
tic Runge-Kutta scheme, gave the best approximation processes to the analytic
solution process which was obtained by applying the Itô formula (2.19) to the
function f(t,Xt) = Xte

θt.

After we had different results from the approximation methods for these two
stochastic processes, we decided to study on Monte Carlo simulations for option
pricing models in order to make more reliable and consistent decisions about
the success of the approximation methods in more realistic situations in finance:
we looked into the barrier down-and-out option. In Monte Carlo simulation,
we repeatedly got the value of the options by changing the number of paths
or the number of the discretizations of the stochastic process. By comparing
the Monte Carlo results with the closed form solution of the barrier down-and-
out option given in (4.13), we obtained the best results from the approximation
method modeled by the fourth-stage stochastic Runge-Kutta scheme. In the last
section of that chapter, we tried to improve our calculations by analyzing one
of the stochastic volatility model, namely Heston model, since letting volatility
be stochastic instead of constant helps us to obtain better approximations. We
again got better outcomes from the fourth-stage stochastic Runge-Kutta scheme
when applying Monte Carlo simulation for an option which was created by the
Heston model with stochastic volatility.

As a result, we introduced various types of the stochastic Taylor approximation
methods and tried to decide the best one throughout the study. At the end, it
was seen that we had the best results from the fourth-stage stochastic Runge-
Kutta scheme while doing the error analysis and Monte Carlo simulation. This
method was not only easy to implement, but it also avoids the calculation of the
derivatives of the stochastic Taylor expansion. Furthermore, it also gives the best
approximate solutions when compared to the exact solution processes.
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APPENDIX A

Some Matlab Codes

Euler-Maruyama Method

% Function of Euler-Maruyama approximation

% For the stochastic process dXt = a(Xt,t)dt + b(Xt,t)dWt

% with the initial condition X(t0=0) = X0 and t0<t<T

% the Euler-Maruyama approximation is calculated by

% X(t+1) = X(t) + a*dt + b*dWt

function [X, t, dt] = EulerMaruyama (X0, T, N, a, b)

randn(’state’, 13);

X = zeros(1, N+1); X(1)=X0; % initial value of Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW = sqrt(dt).*randn(N,1); % Brownian motion

for j = 1:N

X(j+1) = X(j) + a(t(j),X(j)).*dt(j) + b(t(j),X(j)).*dW(j);

end

Milstein Method

% Function of Milstein approximation

% For the stochastic process dXt = a(Xt,t)dt + b(Xt,t)dWt

% with the initial condition X(t0=0) = X0 and t0<t<T

% the Milstein approximation is calculated by

% X(t+1) = X(t) + a*dt + b*dWt + (1/2)*b*b’*(dWt^2-dt)

function [X, t, dt] = Milstein (X0, T, N, a, b, diff_b)

randn(’state’, 13);

X = zeros(1, N+1); X(1)=X0; % initial value of Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW = sqrt(dt).*randn(N,1); % Brownian motion
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for j = 1:N

X(j+1) = X(j) + a(t(j),X(j)).*dt(j) + b(t(j),X(j)).*dW(j) + ...

(1/2).*b(t(j),X(j)).*diff_b(t(j),X(j)).*((dW(j)^2)-dt(j));

end

Strong Taylor Method of Order 3/2

% Strong Taylor Approximation of Order 3/2

% For the stochastic process dXt = a(Xt,t)dt + b(Xt,t)dWt

% with the initial condition X(t0=0) = X0 and t0<t<T

% the strong Taylor approximation of order 3/2 is calculated by

% X(t+1) = X(t) + a*dt + b*dWt + (1/2)*b*b’*(dWt^2-dt) + a’*b*dZt +

%(1/2)*(a*a’+(1/2)*b^2*a’’)*dt^2 +

%(a*b’+(1/2)*b^2*b’’)*(dWt*dt-dZt) +

%(1/2)*(b^2*b’’+b*(b’)^2)*((1/3)*dWt^2-dt)*dWt

function [X, t, dt] = StrongOrder32 (X0, T, N, a, b, diff_a, diff_b, ...

diff_aa, diff_bb)

randn(’state’, 13);

X = zeros(1, N+1); X(1)=X0; % initial value of Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW = sqrt(dt).*randn(N,1); % Brownian motion (BM)

dZ = (1/2)*dt.*(dW + sqrt(dt).*randn(N,1)/sqrt(3)); % dependent BM with dW

for j = 1:N

X(j+1) = X(j) + a(t(j),X(j)).*dt(j) + b(t(j),X(j)).*dW(j) + ...

(1/2).*b(t(j),X(j)).*diff_b(t(j),X(j)).*((dW(j)^2)-dt(j)) + ...

diff_a(t(j),X(j)).*b(t(j),X(j)).*dZ(j) + ...

(1/2).*(a(t(j),X(j)).*diff_a(t(j),X(j)) + ...

(1/2).*diff_aa(t(j),X(j)).*(b(t(j),X(j)))^2).*((dt(j))^2) + ...

(a(t(j),X(j)).*diff_b(t(j),X(j)) + ...

(1/2).*diff_bb(t(j),X(j)).*(b(t(j),X(j)))^2).*(dW(j).*dt(j) - ...

dZ(j)) + (1/2).*(diff_bb(t(j),X(j)).*(b(t(j),X(j)))^2 + ...

b(t(j),X(j)).*((diff_b(t(j),X(j)))^2)).*((1/3).*(dW(j))^2 - ...

dt(j)).*dW(j);

end

Weak Taylor Method of Order 2

% Weak Taylor Approximation of Order 2

% For the stochastic process dXt = a(Xt,t)dt + b(Xt,t)dWt

% with the initial condition X(t0=0) = X0 and t0<t<T

% the weak Taylor approximation of order 2 is calculated by

% X(t+1) = X(t) + a*dt + b*dWt + (1/2)*b*b’*(dWt^2-dt) + a’*b*dZt +

%(1/2)*(a*a’+(1/2)*b^2*a’’)*dt^2 +

%(a*b’+(1/2)*b^2*b’’)*(dWt*dt-dZt)

function [X, t, dt] = WeakOrder2 (X0, T, N, a, b, diff_a, diff_b, ...

diff_aa, diff_bb)
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randn(’state’, 13);

X = zeros(1, N+1); X(1)=X0; % initial value of Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW = sqrt(dt).*randn(N,1); % Brownian motion (BM)

dZ = (1/2)*dt.*(dW + sqrt(dt).*randn(N,1)/sqrt(3)); % dependent BM with dW

for j = 1:N

X(j+1) = X(j) + a(t(j),X(j)).*dt(j) + b(t(j),X(j)).*dW(j) + ...

(1/2).*b(t(j),X(j)).*diff_b(t(j),X(j)).*((dW(j)^2)-dt(j)) + ...

diff_a(t(j),X(j)).*b(t(j),X(j)).*dZ(j) + ...

(1/2).*(a(t(j),X(j)).*diff_a(t(j),X(j)) + ...

(1/2).*diff_aa(t(j),X(j)).*(b(t(j),X(j)))^2).*((dt(j))^2) + ...

(a(t(j),X(j)).*diff_b(t(j),X(j)) + ...

(1/2).*diff_bb(t(j),X(j)).*(b(t(j),X(j)))^2).*(dW(j).*dt(j)-dZ(j));

end

Second-Stage Runge-Kutta Method

% Second-stage Stochastic Runge-Kutta Method

% For the stochastic process dXt = a(Xt,t)dt + b(Xt,t)dWt

% with the initial condition X(t0=0) = X0 and t0<t<T

% the second-stage Runge-Kutta method is calculated by

% X(t+1) = X(t) + (1/2)*(a(t,Xt)+a(t+1,Yt))*dt + ...

% (1/2)*(b(t,Xt)+b(t+1,Yt))*dWt

% where

% Y(t+1) = Y(t) + a(t,Xt)*dt + b(t,Xt)*dWt (constructed by the function Xhat)

function [X, t] = SRK2(X0, T, N, a, b)

randn(’state’, 13);

X(1) = X0; % initial value of Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW = sqrt(dt).*randn(N,1); % Brownian motion

for j = 1:N

Y = Xhat(t(j), X(j), dt(j), dW(j), a, b);

X(j+1) = X(j) + (1/2)*(a(t(j),X(j)) + a(t(j+1),Y)).*dt(j) + ...

(1/2)*(b(t(j),X(j)) + b(t(j+1),Y)).*dW(j);

end

The Function of Yt in Runge-Kutta Method

function X_hat = Xhat(t, X, dt, dW, a, b)

X_hat = X + a(t,X).*dt + b(t,X).*dW;
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Fourth-Stage Runge-Kutta Method

% Fourth-stage Stochastic Runge-Kutta Method

% For the stochastic process dXt = a(Xt,t)dt + b(Xt,t)dWt

% with the initial condition X(t0=0) = X0 and t0<t<T

% the fourth-stage Runge-Kutta method is calculated by

% X(t+1) = X(t) + sum(mu_i*a(t+c_i*dt,Yt_i)*dt) + ...

% sum(nu_i*b(t+c_i*dt,Yt_i)*dWt)

% where i = 1,2,3,4 and the function

% Yt_i = Y(t) + sum(beta_j*a(t+c_j*dt,Yt_j)*dt) + ...

% sum(gamma_j*b(t+c_j*dt,Yt_j)*dWt)

% where j=1,2,...,i-1 with the coefficients c, mu, nu, beta, gamma defined

% in Buthcer array.

function [X, t] = SRK4(X0, T, N, a, b)

rand(’state’,13); randn(’state’,13);

X(1) = X0; % initial value of Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW1 = sqrt(dt).*randn(N,1); % Brownian motion

dW2 = sqrt(dt).*randn(N,1); % independent Brownian motion

for j = 1:N

Y2 = Xhat2(t(j), X(j), dt(j), dW1(j), dW2(j), a, b);

Y3 = Xhat3(t(j), X(j), dt(j), dW1(j), dW2(j), a, b, Y2);

Y4 = Xhat4(t(j), X(j), dt(j), dW1(j), dW2(j), a, b, Y2, Y3);

X(j+1) = X(j) + ((1/6)*a(t(j),X(j)) + (1/3)*a(t(j)+(1/2)*dt(j),Y2) + ...

(1/3)*a(t(j)+(1/2)*dt(j),Y3) + (1/6)*a(t(j+1),Y4)).*dt(j) + ...

+ ((-0.78)*b(t(j),X(j)) + (0.07)*b(t(j)+(1/2)*dt(j), Y2) + ...

(1.49)*b(t(j)+(1/2)*dt(j),Y3) + (0.22)*b(t(j+1), Y4)).*dW1(j) + ...

((1.69)*b(t(j),X(j)) + (1.64)*b(t(j)+(1/2)*dt(j), Y2) + ...

(-3.02)*b(t(j)+(1/2)*dt(j),Y3) + (-0.31)*b(t(j+1), Y4)).*dW2(j);

end

Exact Solution of Geometric Brownian Motion

% Geometric Brownian Motion

% The stochastic process dXt = a(t,Xt)dt + b(t,Xt)dWt is given

% with the initial condition X(t0=0) = X0 and t0<t<T.

% The Geometric Brownian model is constructed when the functions satisfy

% a(t,Xt)=mu*Xt and b(t,Xt)=sigma*Xt.

% Then, the exact solution Xt will be as follows

% Xt = X0*exp((mu-0.5*sigma^2)*t + sigma*Wt)

function [X, t, dt] = Exact_GBM (X0, T, N, rate, sigma)

randn(’state’, 13);
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X = zeros(1, N+1); % solution process Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % time step

dW = sqrt(dt).*randn(N,1); W = cumsum([0;dW]); % Brownian motion

X = X0*exp(rate.*t - (1/2)*sigma^2.*t + sigma.*W); % exact solution

Exact Solution of Orsntein-Uhlenbeck Process

% Orsntein-Uhlenbeck Process

% The stochastic process dXt = a(t,Xt)dt + b(t,Xt)dWt is given

% with the initial condition X(t0=0) = X0 and t0<t<T.

% The Orsntein-Uhlenbeck process is constructed when the functions satisfy

% a(t,Xt)=theta*(r-Xt) and b(t,Xt)=sigma

% Then, the exact solution Xt will be as follows

% Xt = X0*exp(-theta*t) + r(1-exp(-theta*t)) + ...

% int(sigma*exp(theta*(s-t))*dWs

function [X, t, dt] = Exact_OUP(X0, T, N, rate, mu, sigma)

randn(’state’, 13);

X = zeros(1, N+1); % solution process Xt

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

dW = sqrt((1-exp((-2)*rate.*dt))/(2*rate)).*randn(N,1); % Brownian motion

W = cumsum([0;dW]);

X = X0*exp((-1)*rate.*t) + mu*(1 - exp((-1)*rate.*t)) + sigma.*W; %exact solution

Closed Form Solution of Down-and-Out Barrier Call Option

% Closed form solution of a barrier down-and-out call option is given by

% VB(t,Xt) = V(t,Xt) - V(t,B^2/Xt)*(Xt/B)^(1-(2*r/sigma^2)

% where V(t,Xt) is the European call option price, B is the barrier, r is

% the risk-free interest rate and sigma is the volatility of the process.

function value = Exact_BarrierDO (S0, B, K, rate, T, sigma)

randn(’state’, 13);

A = (B^2)./S0;

V1 = blsprice(S0,K,rate,T,sigma); % option pricing with Black&Scholes model

V2 = blsprice(A,K,rate,T,sigma); % option pricing with Black&Scholes model

value = V1 - ((S0/B)^(1-2*rate/(sigma^2))).*V2;
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Monte Carlo Simulation of a Down-and-Out Barrier Option

% Monte Carlo Simulation for Barrier Down-and-Out European Call Option

clear all, close all,

randn(’state’, 13)

rand(’state’, 13)

X0=50; T=1; N=200; M=100; rate=0.03; sigma=0.1; K = 50; B=45; % variables

X = zeros(1, N+1); X(1)=X0; % solution process Xt

V = zeros(1, M); % value of the option

V_sum = 0;

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

for i=1:M

for j=1:N

dW = randn(N,1); % Brownian motion

X(j+1) = X(j)*exp(rate.*dt(j) - (1/2)*sigma^2.*dt(j) + ...

sigma.*sqrt(dt(j)).*dW(j));

end

X_min = min(X);

if X_min < B % B is the barrier

V(i)=0;

else

V(i) = exp((-1)*rate*T)*max(X(end)-K,0); % discounted payoff

end

V_sum = V_sum + V(i);

end

V_GBM = (1/M)*V_sum % value of the option

Monte Carlo Simulation for Heston Model

% Monte Carlo simulation for Heston model

randn(’state’, 13); rand(’state’,13);

sigma0=0.04; X0=100; K=100; T=0.5;

rho=-0.15; kappa=0.6; theta=0.04; xi=0.2; rate=0.04;

N=50; M=50;

exact_value=6.5473; % exact solution of the model with these variables

sigma = zeros(1, N+1); sigma(1) = sigma0; % initial value of volatility

X = zeros(1, N+1); X(1) = X0; % initial value of X_t

t = linspace(0,T,N+1)’; % discretization

dt = diff(t); % step size

V = zeros(1, M); % value of the option

V_sum = 0; % initial value of iterative sum

for i=1:M

for j=1:N
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dZ = randn(N,1); dY = randn(N,1); % standard Brownian motions

dW = rho*dZ + sqrt(1-rho^2)*dY; % correlated Brownian motion

sigma(j+1) = sigma(j) + kappa.*(theta-sigma(j)).*dt(j) + ...

xi.*sqrt(abs(sigma(j))).*sqrt(dt(j)).*dW(j);

X(j+1) = X(j).*exp((rate - (1/2)*sigma(j)).*dt(j) + ...

sqrt(abs(sigma(j))).*sqrt(dt(j)).*dZ(j));

end

V(i) = exp((-1)*rate*T)*max(X(end)-K,0); % discounted payoff

V_sum = V_sum + V(i);

end

V_EM = (1/M)*V_sum % value of the option

error = exact_value - V_EM % difference btwn analytic and calculated value
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