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ABSTRACT

NUMERICAL MODELLING OF SPATIO-TEMPORAL PATTERNS IN A
DC-DRIVEN GAS DISCHARGE-SEMICONDUCTOR SYSTEM

ÖZDEN, GÖZDE

M.S., Department of Scienti�c Computing

Supervisor : Assoc. Prof. Dr. �smail Rafatov

Co-Supervisor : Prof. Dr. Bülent Karasözen

SEPTEMBER 2015, 44 pages

In this thesis, numerical modelling of temporal and spatial pattern formation
in the planar layered system, consisted of a DC driven planar gas discharge
layer, coupled to high ohmic semiconductor layer, is carried out in 1D and 2D
Cartesian geometry. Numerical model includes continuity equations for ions
and electrons, the Poisson equation for the electric �eld, the energy balance
equation for the background gas. The conditions correspond to a transition
from the Townsend regime to the glow discharge. Calculations are performed
for the nitrogen at medium pressure, using Comsol Multiphysics and Matlab
packages. First, period doubling bifurcation of the system is observed within 1D
model and related Lorenz maps are derived. Then, stable pattern formation is
studied within 2D model. The e�ects of di�erent modeling approaches, including
the e�ect of heating of the background gas, is examined.

Keywords: plasma, gas discharge, barrier discharge, nonlinear dynamics, pattern
formation
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ÖZ

DC GAZ DE�ARJI-YARI �LETKEN S�STEMDEK� UZAY-ZAMANSAL
YAPININ NÜMER�K MODELLENMES�

ÖZDEN, GÖZDE

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. �smail Rafatov

Ortak Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Eylül 2015 , 44 sayfa

Bu tezde yüksek dirençli yar� iletken tabaka ile birle³tirilmi³ DC güdümlü dü-
zlemsel de³arj katman�n� içeren sistemde uzay-zamansal yap�n�n olu³umunun
nümerik modellenmesi 1 ve 2 boyutlu olarak kartezyen geometride çal�³�lm�³t�r.
Nümerik model, iyonlar ve elektronlar için süreklilik denklemlerini, elektrik alan
için Poisson denklemini, arka plandaki gaz için enerji denge denklemini içerir.
Durumlar Townsend rejimden glow de³arja geçi³e kar³�l�k gelir. Hesaplamalar
orta bas�nçl� nitrojen için Comsol Multiphysics ve Matlab paketleri kullan�larak
yap�lm�³t�r. �lk olarak, sistemin periyodunun ikiye katlanmas�ndaki çatallanma
1 boyutlu gözlenmi³tir ve Lorenz çizimi uygulanm�³t�r. Daha sonra, durgun
yap� olu³umu 2 boyutlu modelde çal�³�lm�³t�r. Çe³itli arka plan gaz s�cakl�§�nda,
de§i³ik model yakla³�mlar�n�n etkisi incelenmi³tir.

Anahtar Kelimeler: plazma, gaz de³arj�, bariyer de³arj�, do§rusal olmayan di-

namikler, pattern olu³umu
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CHAPTER 1

INTRODUCTION

One of the main problems in philosophy and science is the existence and origin
of order. It was believed that ordered patterns and structures are created with
the external intervention or control. In the last couple of decades, the problem
has been categorized into the context of self-organization.

It is self-evident the importance of the pattern and form in biology since it
is impossible not to see these patterns in the animal world. In Figure 1.1, only
two examples are given. The process is still unknown because of lack of inclu-
sion genes in the models and lack of translation genetic information into physical
systems [1, 2].

(a) zebras (b) a leopard

Figure 1.1: Examples of pattern in animal world [3].

These patterns are observed in reaction di�usion systems such as granular me-
dia, lasers, reacting chemicals and especially plasma. Figure 1.2 demonstrate
only two results of the experiment done by Gunaratne and his group in 1994.
In this experiment, chorite-iodide-malonic acid was used as a reaction di�usion
system. Transition stripe to hexagone type of these patterns were observed with
this experiment [1].
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Figure 1.2: Stripe and hexagone structures by chlorite-iodide-malonic reaction
di�usion system [1].

It is known from many numerical studies that steady state �nite amplitude
spatial patterns can be produced by reaction di�usion systems. Such patterns
are called as Turing patterns. Turing implied that chemicals can react and dif-
fuse in such a way as to produce steady state heterogeneous spatial patterns
of chemical under certain conditions [4]. These reaction di�usion systems are
described with nonlinear di�erential equations in the form:

∂c

∂t
= f(c) +D∇2c. (1.1)

where c is the concentration, f is reaction function and D is the di�usion coef-
�cient [1].

This type of equations can not be solved analytically due to the absence of
general methods for solving them. In this case, it is used some numerical tech-
niques such as FEM and FDM.

In the last couple of decades, electrical systems are also de�ned as reaction dif-
fusion types. Experimentally, di�erent type of patterns were obtained as shown
in Figure 1.3. These patterns were obtained increasing the applied voltage value
in the same experiment. In this experiment, SC-GDG system was used. Two
di�erent resistivity of the SC is used as an electrode. Transition to di�erent
structures in the following order hexagone, stripe and stripe with defect were
obtained.

In this thesis work, SC-GDG system is studied numerically to understand the
pattern formation.
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Figure 1.3: Sequence of snapshots (a)-(e) and (f)-(j) obtained by two di�erent
resistivity of the SC (1.6×109 Ωcm and 3.5×108 Ωcm),p = 11.25 Torr, T = 90 K
[5].

1.1 Gas Discharge

Gas discharge physics deals with the �ow of the current through the ionized gas.
When the gas at appropriate pressure in a gap between electrodes is exposed to
an applied electric �eld, discharge occurs. The process occurs inside small tube
as shown in Figure 1.4. There are two parallel electrodes. They are connected
to the power supply. It is �lled with gas. If the pressure inside the tube is
su�cient, the process occurs applying su�cient voltage.

Figure 1.4: A gas discharge tube [6].

There are many types of discharge. They can be divided into two main catego-
rizes. One of them is non-self-sustaning. In this type, current growth depends
on the limitted rate of ionization as increasing the voltage. This means that ex-
ternal source is necessary to ionize the molecules since electrons can not continue
the process. The other one is self-sustaining ionization. In this case, electrons
are produced by incident radiation at the cathode. They gain the energy in the
�eld. They cause the ionization to consume this extra energy. Then, the process
occurs.

Self-sustaining discharge includes many important types such as glow discharge,
Townsend discharge and arc discharge. They di�er from each other in the cur-
rent and applied voltage [6].

3



Figure 1.5: Schematic diagram of Townsend ionization.

1.2 Townsend Ionzation and Electric Breakdown

In genereal, the process of transformation of a nonconducting material into a
conducting applying to it a su�ciently strong �eld is de�ned as electric break-
down. In this process, Townsend ionization occurs. A few electrons initiates the
avalanche multiplying accidentally due to incident radiation such as cosmic rays
and photoelectrons that is produced by cathode irradiated by a ultraviolet light.
Then, energy increases in the �eld. Thus, these electrons ionize gas molecules
to consume this extra energy and new electrons and molecules are produced.
Accelerating these electrons in the �eld, the process occurs again. Then, these
produced positively ions bombard the cathode and new electrons are moves to
the anode again. This process is called secondary emission or γ process [6],[2].

In Figure 1.5, this process is shown for only one electron. When the light fall
into cathode, the electron is emitted. This electron moves to the anode, oppo-
site direction of the electric �eld, and molecules are ionized. Positively charged
molecules, ions, arrive the cathode and this process occur again producing elec-
tron picking up from the cathode after bombardment of the ions.

Mathematically, taking n as the number of electrons produced by one electron
in a discharge gap with lenght d (assuming larger than the mean free path of an
electron, λf )

dn

dx
= αn, (1.2)

α is the �rst ionization coe�cient, n0 is the number of emitted electrons. Then,
n yields

n = n0e
αx. (1.3)
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Then, the current in the gap is

i = en0e
αx. (1.4)

The number of ions is
ni = γn0[eαx − 1], (1.5)

where γ is the secondary emission coe�ceint for the cathode. Then, the break-
down condition can be obtained from n and ni as

eαx = 1 +
1

γ
. (1.6)

The electric �eld on the cathode is ratio of the electric potential to the discharge
gap, E = V/d where V is the applied voltage. Thus, λf must be smaller than
d = V/E and probability of it is exp(−x/λf ). Townsend coe�cent is de�ned as
the number of collisions leading to ionizations per unit length. It is

α = Ape−Bp/E, (1.7)
αx = ln (1 + 1/γ). (1.8)

Here, A = 1/λf and B = V/λf . These constants depend on the gas species and
they are obtained from experimental results [6]. p is the reduced pressure.

Putting these coe�cents into breakdown condition de�ned by equation (1.8),
breakdown voltage Vt is

Vt =
B(px)

In( A
In(1/γ)+1

) + In(px)
,
E

p
=

B

In( Apx
In(1+1/γ)

)
. (1.9)

Characteristic value of the current corresponding Townsend discharge is [6, 7]

Jc =
ε0µiV

2
t

2x3
, (1.10)

where µi is the mobility coe�ceint for the ions.

1.3 Dielectric Barrier Discharge

DBD systems consist of two parellel electrodes one of them covered with dielec-
tric layer. The experimental setup is similar with SC-DGD systems as shown in
Figure 1.6. Electrodes are transparant to observe the spatial distribution of the
patterns. This type is commonly used in research [8] and it is important since the
�rst observation of pattern formation was performed on DBD system by Boyers
and Tiller at 1982 [9]. 50 µm gas tube �led with He gas at atmospheric pressure
in that work. Hexagonal array of current �laments were obtained. Increasing
the applied voltage, the structure of �laments turned into stripes [2].
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Figure 1.6: SC-GDG system experimental setup [14].

1.4 Aims and Motivations

Gas discharge is a complicated system since it is a�ected from a lot of parame-
ters. These parameters are gas species, pressure, temperature, applied voltage
(AC or DC) and so on [10]. Semiconductor-gas discharge gap (SC-GDG) systems
is one of the great example of the gas discharge �eld. In this case, semiconductor
is used as the cathod and it is made of high Ohmic material such as gallium
arsenide (GaAs) and silicon (Si). In these systems, current could not increase so
high since the semiconductor with high Ohmic character does not allow to occur.

Arising of the patterns is explained in di�erent perspective of the view. One
of the most attained view is current-voltage characteristic (CVC) issue. Accord-
ing to it, it is predicted transition from Townsend discharge to glow discharge
[11]. It is de�ned as glow discharge is appeared in 100− 1000 V voltage getting
low current as 0.1 A - 1 µA [6].

In present work, SC-GDG system under cryogenic conditions is shown. In this
case, DC voltage is applied. The current is approximately1− 10 µA/cm2. This
value is a quite small but it appears due to high Ohmic resistance of the semi-
conductor. This kind of discharge is known as Townsend discharge [7]. In this
case, temperature is below 123 K to get the current with that value. Under that
conditions, patterns can be obtained. If the temperature increases, the current
increases so patterns can disappear.

In order to understand the mechanism of the pattern formation, some experi-
mental works were done in the past. Some of the primary works were done H.G.
Purwins, A. Astrov and E. Ammelt in the mid of the 1990s [12, 5]. In these
works, SC-GDG system is used and di�erent type of patterns were obtained
namely spiral, target and hexagonal. These patterns appeared in transition be-
tween each other by changing some conditions, especially applied voltage. The
main interest is how patterns appear and in which conditions they change.
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Figure 1.7: Breakdown potentials in various gases (Paschen curve) [6].

The system is similar with one that was used by Prof. Dr. H.G. Purwins and
his group one [8, 13] shown in Figure 1.6. There are discharge gap and semi-
conductor layer. By the camera system, these patterns can be recorded. By
doing this, theory can be compared with the experimental results. In our case,
the diameter of the discharge area is 2 cm. The thickness of the discharge gap
is d = 0.044 cm and it is ds = 0.1 cm for the semiconductor layer. Discharge
gap is �lled with nitrogen gas with presure 211.52 Torr. Its reduced pressure
is p = 619.8 Torr so the value of pd ≈ 27.3 gives that discharge occurs right
side of the Paschen curve. It is important to understand the formation of the
patterns. It was implied that patterns appear due to the heating of the gas by
the discharge current [7]. It is known as a thermal mechanism. This mechanism
causes the pattern formation since discharge conditions belong to the right side
of the Paschen's curve which is shown in Figure 1.7. When the heat increases at
a �xed place, the gas expands so its density decreases. This causes the voltage
decline and so discharge occurs.

Parameters are taken from the experiment which was done before [7, 13]. It
is important to de�ne the model and the physical system in order to understand
the process. Figure 1.6 demonstrate the experimental setup.

The system is shown schematically in Figure-1.8. It is seperated into two parts.
Lowest part of the system is the gas discharge gap (GDG). It is �lled with ni-
trojen. Semiconductor is in the upper part. In the GDG, electrons and ions act
due to electric �eld formed from potential. Electrons appear by the collison of
the positively charged ions with the cathode. This process is called γ-process
as explained in the introduction chapter. Electrons appear as a result of this
process. This is known as α- process.

Gas discharge occurs following these two processes each other in simply. The
current is expected to be low since resistance of the conductor is very high.
When the applied voltage changes a litte, structure turns into another one. For
example, hexagon patterns occur about 1815 V and it turns into stripe structure
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Figure 1.8: Schematic diagram of the SC-GDG system.

about 1935 V [10]. Here, hexagon type is discussed. In Figure 1.9, the experi-
mental result of this work is shown [7]. The image was recorded with the camera.

Formation of pattern structures are generally explained by current-voltage char-

Figure 1.9: Hexagonal current patterns [7], p = 211.52 Torr, T = 100 K Ut =

2400 V.

acteristic (CVC) [16]. However, this approximation is valid for higher current
density [17]. In this case, the current density is in the micro range. Thus, it is
necessary to insert new terms to the model in order to explain the formation of
the structures. Thermal conductivity equation covers this addition [7].

1.5 Organization of the Thesis

In Chapter 2, equations of the SC-GDG model are introduced. These equa-
tions are continuity equation for particle species, Poisson equation for electric

8



�eld, and heat equation for the background gas. Then, boundary conditions are
de�ned for 1D and 2D cases. Dimensional analysis is done in following part.
Next, equations are derived using adiabatic elimination of electrons. The main
aim is to show that solutions can be obtained using the tricks belonging this
method. Then, parameter regime is given. Data in that part are taken from
experimental and theoretical works [15, 7]. Calculations were perfomed on the
package namely COMSOLr.

In Chapter 3, results are discussed. Firstly, 1D results of the system were
demonstrated in order to show the validity of the model. Then, Lorenz map
was plotted to show a transition to the chaotic state. Next, 1D system solutions
in there di�erent cases are compared. If there is any di�erence between them,
e�ects of control parameters in each cases is discussed. Then, the solutions that
was obtained by adiabatic elimination method. E�ect of this method is dis-
cussed. Next, solutions that are obtained with Scharfetter Gummel method are
compared with others. 2D solutions are mentioned.

In Chapter 5, whole results are summarized and they are compared with the
literature. Then, potential future works are discussed.
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CHAPTER 2

THE SC-GDG MODEL

2.1 Derivation of Equations

Consider a di�erential element of surface as shown in Figure 2.1. It is centered at
the point x(t) = (x, y) at time t. As shown on this �gure, u is the mean velocity
of particle species with density n. The number of particles �owing across the
surface, nudxdy, changes with time as follows,

∂n

∂t
dxdy = −[nuxdy]x+dx + [nuxdy]x − [nuydx]y+dy + [nuydx]y. (2.1)

Indexes on the velocity imply the direction of it. If it is divided by surface area,

Figure 2.1: Small particle moving with velocity u.

dxdy, the well known continuity equation is obtained,

∂n

∂t
= − ∂

∂x
(nux)−

∂

∂y
(nuy). (2.2)

Then, if the source term, S, is added for the collisional case, the continuity
equation can be written as, [18],

∂n

∂t
+∇ · Γ = S. (2.3)

11



Here, Γ = nu is the particle �ux. Then, the equation of motion of the particle,
[6, 18], is

m
∂u

∂t
= qE−∇p. (2.4)

where m is the mass of the particle, q is the charge of the particle, ν is the
collision frequency, index i implies the ith collision, gradient term denotes the
change in the velocity and p is the pressure. Using p = kTn, integration of the
equation (2.4) yields,

u =
q

mν
E− kT

mν

∇n
n
. (2.5)

Here, k is the Boltzmann constant, T is the temperature and ν is the collision
frequency. The coe�cient of the electric �eld is called as mobility and the other
term is called di�usion

µ =
q

mν
, D =

kT

nmν
. (2.6)

There is a relation between these two coe�cients µ = |q|D/(kT ), called Einstein
relation [6]. Then, partical �ux is

Γ = −µnE−D∇n. (2.7)

For two �uid plasma of ions and electrons, it must be de�ned two di�erent �uxes
as

Γe = −µeneE−De∇ne, Γi = µiniE−Di∇ni. (2.8)

Subscripts e and i denotes the electron and ion species.

The mean velocity in equation (2.5) includes two terms, namely drift and dif-
fusion. The drift term is vd = µE. The mobility and collision frequency are
assumed to be constant in the analysis [6]. The frequency in this term is pro-
portional to the gas pressure. Thus, the drift velocity is proportional with the
ratio |E|/p. It depends on the combination of reduced |E|/p, not individually E
and p [6].

The right hand side in equation (2.3) implies the source term. Physical meaning
of it is explained in the introduction chapter as ionization process. This term
can be arised by creation of particles or decreation by loss of particles [18]. In
the source term, classical Townsend approximation is used [6]. According to this
approximation, the coe�cient is de�ned as

α(|E|/E0) = e(−E0/E). (2.9)

In this term, E0 is proportional with the reduced pressure in this model. In this
work, ionization is taken into account, but recombination which is the charge de-
cay process is neglected. Thus, the source term is written as a sum of generation
by impact ionization in Townsend approximaton [16],

S = | − µeneE−De∇ne|ᾱ(|E|), ᾱ(|E|) = α0α

(
|E|
E0

)
. (2.10)
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The continuity equation is used to de�ne the each charge particle density in the
system. These particles are electrons and ions. These equations are written as

∂ne
∂t

+∇ · (−µeneE−De∇ne) = |−µeneE−De∇ne| ᾱ(|E|), (2.11)

∂ni
∂t

+∇ · (µiniE−Di∇ni) = |−µeneE−De∇ne| ᾱ(|E|). (2.12)

The subscript g refers to the gas discharge region and s refers to semiconductor
region. Poisson equation is used to get the solution of the electric �eld in GDG,

∇ · E =
e

ε0
(ni − ne), E = −∇ϕg. (2.13)

Here, e is the electric charge, ε0 is the dielecric constant of the vacuum, ϕg is
the electric potential in the GDG region. The electric �eld in the SC region can
be calculated using current density which is

α(|E|/E0) = exp(−E0/E), ∇ · Js = 0. (2.14)

Here, σ̄s is the conductivity of the semiconductor. Its value is constant and it
is a property that changes matter to matter. ϕs is the potential on the SC area
and it is interested in the stationary solution so

∇ · E = 0, E = −∇ϕs. (2.15)

Using particle current densities, total current density in the GDG can be de�ned
as

Jg = e(Γi − Γe) = e(µini + µene)E +De∇ne −Di∇ni. (2.16)

Lastly, the equation of thermal conductivity is de�ned as

Ncp1
∂T

∂t
+∇(−λ∇T ) = Jg · E. (2.17)

cp1 is the heat capacity, k is the Boltzmann constant and λ is the thermal con-
ductivity.

The system is de�ned by equations (2.11), (2.12), (2.13), (2.15) and (2.17).
Terms that are used in these equations are shown in equations (2.8)-(2.10).

∂ne
∂t

+∇ · (−µeneE−De∇ne) = |−µeneE−De∇ne| ᾱ(|E|), (2.18)

∂ni
∂t

+∇ · (µiniE−Di∇ni) = |−µeneE−De∇ne| ᾱ(|E|), (2.19)

∇ · E =
e

ε0
(ni − ne), 0 ≤ y ≤ dg (2.20)

∇ · E = 0, dg ≤ y ≤ dg + ds (2.21)

Ncp1
∂T

∂t
+∇(−λ∇T ) = Jg · E. (2.22)

Within the 1D model, equations of the system are solved along normal to the
electrodes.
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Figure 2.2: Boundary conditions on the 2D model.

2.2 Boundary Conditions

The system is schematically shown in �gure 2.2. Thickness of the GDG region
is dg and it is ds for SC region. The anode is at y = 0 and the cathode is at
y = dg. At the anode, ion current �ux is zero,

Γi(x, 0, t) = 0. (2.23)

If the di�usion �ux is neglegible, then the ion density is also zero there. Thus,
the boundary condition at y = 0

ni(x, 0, t) = 0. (2.24)

Remaining conditions at anode, y = 0, are given below

ne
v̄e
4
− 1

2
(−neµeE−De∇ne) = 0, (2.25)

ϕg = Ut, (2.26)
∂T

∂y
= 0, (2.27)

where Ut is the applied voltage and v̄e = (8kTe/(πme))
1/2 is the electron thermal

velocity [7].

Secondary electron emission (γ-process) occurs at cathode. For this condition
di�usion term can be neglegible since it is too small. In this case, the boundary
condition at y = dg is related with the γ-process which is de�ned as electron
emission process by ions,

|Γe(x, dg, t)| = γ |Γi(x, dg, t)| , (2.28)

from which
µene(x, dg, t) = γµini(x, dg, t). (2.29)
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Electric potentials for GDG and SC are taken equal to each other at y = dg
because electric potential is continuous,

ϕg(x, dg, t) = ϕs(x, dg, t). (2.30)

However, current density of GDG is di�erent from SC's and hence electric �eld
values are di�erent at x = dg. In this case, they become equal using Maxwell-
Ampere law

Jg + ε0∂tE = Js + ε0∂tE, (2.31)

It is useful to rewrite in the following form:

∂tΣ = (Jg − Js) · n, (2.32)

where Σ is the surface charge density de�ned at y = dg by

Σ = (εε0Es − ε0Eg) · n. (2.33)

Remaining conditions at cathode, y = dg,

∂ni
∂y

= 0 (2.34)

T = T0. (2.35)

Finally, at y = dg + ds, electric potantial is ϕs = 0.

At the lateral boundaries, x = 0 and x = l, we impose homogeneous Neumann

∂ne
∂x

= 0, (2.36)

∂ni
∂x

= 0, (2.37)

∂ϕg
∂x

= 0, (2.38)

∂ϕs
∂x

= 0, (2.39)

∂T

∂x
= 0. (2.40)

2.2.1 Boundary Conditions for 1D

Boundary conditions for 1D case are the same conditions as given above but
restricted by y-direction. At the anode y = 0,

ni(0, t) = 0 (2.41)

ne
v̄e
4
− 1

2
(−neµeE−De∇ne) = 0, (2.42)

ϕg(0, t) = Ut (2.43)
∂T

∂x
= 0. (2.44)
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At the boundary point between GDG and SC,

∂tΣ = (Jg − Js) · n, (2.45)
Σ = (εε0Es − ε0Eg) · n, (2.46)

ϕs(dg, t) = ϕg(dg, t), (2.47)
ne(dg, t) = γµni(dg, t). (2.48)

At y = dg + ds,
ϕs(dg + ds, t) = 0. (2.49)

2.3 Dimensional Analysis

Equations that represents the system include variables and parameters. Vari-
ables are two types namely dependent and independent. Dependents are ob-
tained after getting solution of the equations. They are unknowns and they
are solved at di�erent conditions. Thus, they depend on the other variables.
Independent variables are exactly what it sound like. They do not change by
other variables. In this case for example, density of the particles are dependent
variables and they depend on time and position but time and position are inde-
pendent variables [19].

Units, or dimensions, describe the parameters or variables as categorizing them.
They give an idea about its physical properties. In Table 2.1, some dimensions
that are used in this work is given,

Table2.1: Some dimensions used in this work.
symbol dimension unit

d length cm
t time s
T temperature K
p pressure Torr
σ conductivity Ω−1cm−1

µ mobility cm2V−1s−1

D di�usion coe�cient cm2s−1

U voltage V
n particle density cm−3

J current density µ A cm−2

Although dimensions are necessary to understand the physical property of the
system, reduction of the equations to the dimensionless form have some ad-
vantages to solve them. Making this reduction, total number of variables and
parameters are reduced to the minimal. Another advantage is that equations
become less complex case and then analysis of them is simpli�er. Finally, when
the model is nondimensionalized properly, more important and less important
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terms (and process) can be distinguished by comparison with unity.

In this section, dimensional analysis of equations (2.22) are explained. Thus,
it is important to de�ne new parameters. New dimensionless parameters and
variables are α0 = Ap, E0 = Bp, τ = t/t0, t0 = (α0µeE0)−1, E = E/E0,
ρ = ni/n0, µ = µi/µe, X = x/X0, X0 = α−1

0 , σ = ne/n0, q0 = ε0α0E0 and
n0 = q0/e.

Equations with these parameters are called as dimensionless group [20]. Then,
inserting these parameters such as ne, t, x and E into continuity equation for
electron, we obtain

n0

t0

∂σ

∂τ
+

1

X0

∂

∂X
(−µen0σEE0 − µeTe

n0

X0

∂σ

∂X
) = n0µeE0| − σE −De

∂σ

∂X
|α0e

− E0
EE0 .

(2.50)
It is the equality De = µeTe in this equation. Then, multiplying each term with
t0/n0 and using de�nition of the terms t0 and X0 it yields

∂σ

∂τ
+

∂

∂X
(−Egσ −De

∂σ

∂X
) = | − Eσ −De

∂σ

∂X
|e−

1
E . (2.51)

Similarly, it can done for ions continuity equation. In this equation, it is used
Di = µiTi for di�usion term

∂ρ

∂τ
+

∂

∂X
(µEρ− µDi

∂ρ

∂X
) = | − Eσ −De

∂σ

∂X
|e−

1
E . (2.52)

Using E , X, ni and ne we obtain dimensionless Poisson equation,

E0

X0

∂E
∂X

=
e

ε0
(ρ− σ)n0, (2.53)

from which
∂E
∂X

= ρ− σ, E = −∂ϕg
∂X

. (2.54)

Equation for SC region is written as

E0

X0

∂E
∂X

= 0, E = −∂ϕs
∂X

, (2.55)

from which
∂E
∂X

= 0. (2.56)

Electric potential is continuous. This means that, it can be calculated in GDG
region and in SC region. To get the dimensionless version of it, parameters t0,
µi, ni and E are substituted into equation (2.32) to have

1

t0

∂Σ

∂τ
= e(1 + γ)µµen0ρE0E + eµeDe

∂σ

∂X
− eµµeDi

∂ρ

∂X
− σsµeq0E0E . (2.57)

Using the de�nition σs = σ̄s/(µeq0) and multiplying with t0α0/q0. We get the
dimensionless version of the surface charge density. It is Q = Σα0/q0. Then,

∂Q

∂τ
= [(1 + γ)µρE +De

∂σ

∂X
− µDi − σsE ]. (2.58)
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Before getting the case for thermal conductivity equation, the heat di�usion
coe�cient must be de�ned. It is also known as thermometric conductivity and
it is χ = λ/(n0cp1) where λ is the thermal conductivity constant.[21]. When the
equation is multiplied with t0α2

0, it becomes dimensionless:

n0cp1
t0

∂T

∂t
+

1

X0

∂

∂X

(
− λ

X0

∂T

∂X

)
= EE

2
0en0µe
E0X0

(
ρµE + σE + Te

∂σ

∂X
− µT ∂ρ

∂X

)
.

(2.59)
ζ = (t0α

2
0λ)/(n0cp1) is dimensionless constant. When each term is multiplied

with (t0)/(n0cp1) and t0 parameter is written in the equation, then it is obtained
in the �nal form

∂T

∂τ
+ ζ

∂2T

∂X2
= E

(
ρµE + σE +De

∂σ

∂X
−Di

∂ρ

∂X

)
. (2.60)

The complete system of equations in dimensionless form becomes

∂σ

∂τ
+

∂

∂X
(−Egσ −De

∂σ

∂X
) = | − Eσ −De

∂σ

∂X
|e−

1
E , (2.61)

∂ρ

∂τ
+

∂

∂X
(µEρ− µDi

∂ρ

∂X
) = | − Eσ −De

∂σ

∂X
|e−

1
E , (2.62)

∂E
∂X

= ρ− σ, 0 ≤ y ≤ dg (2.63)

∂E
∂X

= 0, dg ≤ y ≤ dg + ds (2.64)

∂T

∂τ
+ ζ

∂2T

∂X2
= E ·

(
ρµE + σE +De

∂σ

∂X
−Di

∂ρ

∂X

)
.(2.65)

2.4 Adiabatic Elimination of Electrons

Adiabatic elimination is a useful method that allows to enhance the computa-
tional e�ciency [22]. It is based on that calculations are done using the time
scale. In this case, the fast variable dynamics can be eliminated choosing slow
variables properties in calculations, which reach the solution over large time
scale. When the slow varibles reach the solution, fast variables has already been
in equilibrium.

In this system, electrons are more mobile and lighter compearing to ions. Then,
the time parameter changes to ti0 = 1/(α0µiE0) [17]. Conductivity of the semi-
conductor also becomes dimensionless multiplying by 1/(µiq0). Using these
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changed parameters, system equations are

∂

∂x

(
−sE −De

∂s

∂X

)
= exp

(
− 1

E

) ∣∣∣∣−sE −De
∂s

∂X

∣∣∣∣ (2.66)

∂ρ

∂τi
+

∂

∂X

(
ρE −Di

∂ρ

∂X

)
= exp

(
− 1

E

) ∣∣∣∣−sE −De
∂s

∂X

∣∣∣∣ (2.67)

∂E
∂x

= ρ, (2.68)

∂T

∂τi
+
ζ

µ

∂2T

∂X2
= E

(
ρE + sE +De

∂σ

∂X
−Di

∂ρ

∂X

)
. (2.69)

In equations, electron density is calculated as s = σ/µ in the limit as µ→ 0. In
this case, continuity equation for electron turns into stationary equation. It is
expected to get solutions 1/µ times faster compared to the other calculations.

2.5 Parameter Regime

In this part, parameters are described. Two sets of parameters are considered.
In 1D calculations, it was used the parameters given in Table 2.2 to get the
Lorenz map solution, [16],

Table2.2: Parameters used to get Lorenz map, [16].
symbol value de�nition

Ut 513− 570 V applied voltage
p 30 Torr pressure
dg 0.1 cm thickness of the GDG
ds 0.12 cm thickness of the SC
σ (2.6× 105Ωcm)−1 conductivity
µ 0.0035 mobility ratio
γ 0.08 secondary emission coe�cient
εs 13.1 dielectric constant

Parameters given in table 2.3 were used in 1D and 2D calculations. They were
used before in the experiment and also in the theoretical works [7, 15].
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Table2.3: Parameters used to 1D and 2D solutions, [7].
symbol value de�nition

Ut 2397− 2473 V applied voltage
p 211.52 Torr pressure
dg 0.044 cm thickness of the GDG
ds 0.1 cm thickness of the SC
σ 1.3× 10−8 Ω−1cm−1 conductivity
Te 6 eV electron temperature
De 4260 cm2s−1 di�usion coe�cient for e−

Di 0.016 cm2s−1 di�usion coe�cient for ions
µ 0.0026 mobility ratio
γ 0.0026 secondary emission coe�cent
εs 11.7 dielectric constant
A 12 cm−1Torr−1 constant for Townsend coe�cent
B 342 V cm−1Torr−1 constant for Townsend coe�cent
χ 0.22555 m2s−1 thermal di�usion coe�cent

2.6 Scharfetter Gummel Method

Scharfetter Gummel is used to solve drift-di�usion equations. It is assumed that
current density is constant [23]. Thus,

dΓe
dx

= 0. (2.70)

Using de�nition of the current density in equation-5, it can be obtained the
derivative of the electron density as

∂σ

∂x
= −σµeE

D e
− Γe
De

. (2.71)

It is de�ned the term as u = σ + Γi/(µeE) for simplicity,

∂u

∂x
=

∂σ

∂x
(2.72)

= −
(
σ +

Γi
µeE

)
µeE

De

(2.73)

= −uµeE
De

. (2.74)

Then, the solution of u is u = Cexp(−µeEh/De). In here, C is a constant and
h is the interval between two points. To get rid of C the ratio of values of u at
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point i and i+ 1,

ui+1

ui
=

Cexp(−µeE(i+1)h
De

)

Cexp(−µeE(i)h
De

)
(2.75)

= Cexp(−µeEh
De

) (2.76)

=
σi+1 +

Γi+1/2

µeE

σi +
Γi+1/2

µeE

. (2.77)

The current density is calculate at i+ 1. Using above equality,

Γii+ 1/2 = − µeE

1− exp(−µeEh
De

)
σi −

µeE

1− exp(−µeEh
De

)
σi+1 (2.78)

= αeσi − βeσi+1. (2.79)

is obtained. Lastly, the continuity equation must be expressed in implicit form.

Figure 2.3: Current �ux in 1D.

In �gure-2.3, it is seen that the interval dg is divided into N equal part as length
h. Similarly, time is also divided into small pieces as τ that is used as time step.
n+ 1 refers to calculations at that time and n belongs to previous calculations.

∂σ

∂t
=

σn+1
i − σni

τ
, (2.80)

∂Γ

∂x
=

Γi+1/2 − Γi−1/2

h
(2.81)

= −αeσi−1 + (αe + βe)σi − βeσi+1

h
. (2.82)

The �nal version of the continuity equation for electrons is given below,

−
(τα
h

)
σn+1
i−1 +

(
1 +

(α + β)τ

h

)
σni −

(
τβ

h

)
σn+1
i+1 = (2.83)

σni + τα0exp

(
−E0

En
i

)
|αnσni − βnσni |. (2.84)

Similarly, for ions

−
(ταi
h

)
ρn+1
i−1 +

(
1 +

(αi + βi)τ

h

)
ρni −

(
τβi
h

)
ρn+1
i+1 = (2.85)

σni + τα0exp

(
−E0

En
i

)
|αneσni − βne σni |. (2.86)
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Exponential values for ions are

αi =
µiEi

1− exp(−µiEih
Di

)
, βi = − µiEi

1− exp(µiEih
Di

)
. (2.87)

Implicit forms for equation that are used to solve electric potentials at GDG
and SC

−ϕi−1 + 2ϕi − ϕi+1 =
eh

ε0
(ρi − σi) , [0, dg] (2.88)

−ϕi−1 + 2ϕi − ϕi+1 = 0 , [dg, ds] (2.89)

For the boundary between GDG and SC regions, given at the below equation is
used,

Jg + ε0
E

∂t
= Js + εε0

Es
∂t

(2.90)

Then, this equation is explained detailly at boundary conditions part.

∂

∂t
(−ε0E + εε0Es) = Jg − Js (2.91)

∂Qsurf

∂t
= Jg − Js (2.92)

= (ρµiE + σµeE +De
∂σ

∂t
−De

∂ρ

∂t
)− σsEs. (2.93)

2.7 Boundary Conditions for Scharfetter Gummel Method

At anode ϕ = 0, surface charge density is used as �ux term,

−ε0
∂ϕ

∂x
= ε0

ϕ

dg
−Qsurf (2.94)

−ε0
ϕN − ϕN−1

h
= ε0

ϕN
dg
−Qsurf . (2.95)

Then, the equation used at that boundary is

−
(ε0
h

)
ϕN−1 + ε0

(
1

L
+

1

h

)
ϕN = Qsurf . (2.96)

Then, conditions are ϕs(dg) = ϕN and ϕs(dg + ds) = −Ut where Ut is applied
voltage. Boundary conditions for electron density

σ2 − σ1 = 0, (2.97)
σN = γµρN (2.98)

For ions density

ρ1 = 0 (2.99)
ρN − ρN−1 = 0. (2.100)
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CHAPTER 3

NUMERICAL RESULTS

3.1 1D Analysis

Results are obtained using COMSOLr version 4.3 and MATLABr. Equations
that are used in the model are explained in previous chapter. 1D and 2D solu-
tions are obtained in COMSOLr solving dimensionless form of the equations. In
1D, equations were solved after adiabatic elimination of electrons. In this case,
the aim is to get the solutions in shorter time. Using MATLABr, equation are
resolved using Scharfetter Gummel method. In this part, these solutions are
compared with each other and with the literature.

To get the Lorenz map, it was used 1D mesh with number of grid 200. The
time step was 2.03×10−10 s and calculations were performed until 2.44×10−4 s.

All 1D calculations were perfomed on a 120 spatial grid for GDG region and

Figure 3.1: 2D mesh in Comsolr.

on 50 spatail grid for SC region. Maximum time step was 1.33×10−4 s. Implicit
backward di�erential formulas (BDF) was chosen as a time step solver method.
By this method, COMSOLr kept the solution of the previous step and it used
them to get the next one. In this case, time step was not constant. It changes
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during the calculation because it tries to get smaller error than absolute toler-
ance de�ned in the solver. In this case, the spatial grid was 120 × 800 spatial
grid for GDG region and 50 × 800 for SC region as shown in �gure 3.1. Mesh
points were distributed symmetrically along the boundaries. It was assumed
that patterns appear due to the nonlinearity of the gas discharge. In this case,
semiconductor is a weakly conducting material. Thus, it was chosen that SC
grid number is less than GDG's [7].

In COMSOLr, continuity equations and heat equation were added the model
in Transport of Diluted Species form. Electric potentials for each region were
calculated by Poisson equation form. Weak form boundary PDE form was used
to get the solution of the surface charge.

The grid point number was the same with the 1D COMSOLr for Scharfet-
ter Gummel method. This method was performed on MATLABr. Time step
was 10−15 s and it was not constant. The control parameter is ratio of the min-
imum value of the electric �eld value to the current density. The end time was
8.94× 10−4 s. It was enough to get the acceptable solution.

In these calculations, two di�erent regimes are investigated. The main di�er-
ence between them applied voltage as Ut = 2473 V and Ut = 2397 V. Calculated
breakdown voltage by equation (1.9) is Vt = 2327.9 V. Characteristic value of
the currents are 3.17mAcm−2 and 1.91mAcm−2 respectively by equation 1.10.

In 2D calculations, applied voltage was Ut = 2397 V. It was enough that calcu-
lations were perfomed only this voltage value to show patterns.

3.2 Lorenz Map

Parameters given in Table 2.2 were used in this part. These data were obtained
before [16]. It was repeated to be sure the validity of the used model. In Figure
3.2, current and voltage graphs are shown. Applied voltage values are 543.11 V
and 563.78 V. Oscillation results were obtained.

In Figure 3.3, current-voltage graphs were obtained changing the applied voltage
slightly. Here, 534.11 V and Ut = 548.94 V are the critical values. Thus, current
and voltage vs time graphs were plotted to compare them in �gure 3.2. Number
of peaks increse in the same interval as increasing applied voltage in that �gure.
This interval is the one period of the solution. If it is excepted the �rst solution
in (a) �gure 3.3, it becomes double in (b). It is called period doubling cascade
[20]. Each graph was plotted in the same interval. Increasing the applied volt-
age, it repeats itself and the system translate to the chaotic regime.
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Figure 3.2: Current and voltage vs time graphs, applied voltage (a) and (c)
Ut = 534.11 V, (b) and (d) Ut = 563.78 V, conditions are given in Table 2.2.
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Figure 3.3: Phase portraits of orbits, current vs voltage, applied voltage Ut (a)
534.11 V, (b) 548.94 V, (c) 563.78 V, (d) 593.45 V, remaining conditions are as
in Figure 3.2.
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Figure 3.4: Lorenz map, applied voltage Ut(a) 534.11 V, (b) 548.94 V, (c)
563.78 V, (d) 593.45 V remaining conditions are as in Figure 3.2.
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Figure 3.5: Lorenz map, applied voltage Ut (a) 534.11 V, (b) 548.94 V, (c)
563.78 V, (d)593.45 V, remaining conditions are as in �gure 3.2.
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Then, it is necessary to show that the system goes to the chaotic phase in
di�erent way. It is to get the Lorenz map of the solutions at the critical values.

Edward Norton Lorenz, the pioneer of the chaos theory, said that (1963) :

the trajectory appearently leaves one spiral only after exceeding some critical
distance from the center. Moreover, the extend to which this distance is ex-
ceeded appears to determine the point at which the next spiral is centered; this
in turn seems to determine the number of circuits to be executed before changing
spirals again. It therefore seems that some single feature of a given circuit should
predict the same feature of the following circuit

This means that the following peak value in the oscillating system can be pre-
dicted by the previous one. Number of the local maxima gives an idea about
the period of the system. This means that maxima points increases as the con-
trol parameter increases [20]. Thus, the Lorenz map of the current and voltage
values are plotted because of the oscillating character of them. In Figure 3.4
and 3.5, they are shown.

It can be obviously seen that number of peaks are increasing and graph becomes
of unimodal shape as increasing the applied voltage. Then, the transformation
to the chatic behavior can be seen in Figure 3.3.

Di�erently, Lorenz map of the oscillating solutions were obtained in this work.
These oscillations are periodic for both voltage and current data. Thus, parabolic
character can be seen obviously in each Figure 3.5 and 3.4. Then, it can be said
that the system behaves chaotically as applied voltage increses.

3.3 E�ect of the Modeling Approaches

The results are shown in Figure 3.6. There, three di�erent solutions are plotted.
The �rst solution which is shown in blue is the solution of the total system. It is
the 1st case. In calculations, all system equations that are explained in previous
chapter were used to solve it. The second solution in red does not include the
heat equation in calculation. It is the 2nd case. The temperature of the gas is
constant at 100 K. The e�ect of this equation in the solutions is compared as
taken the temperature value constant. The third solution, 3rd case, in green
does not include the di�usion term. It is neglected for this case and its e�ect is
observed.

In the Figure 3.6, whole solutions give nearly the same results. Current and
voltage values go to stationary solution after damping oscillation. Voltage val-
ues converge to the breakdown voltage. This is consistent with the experimental
results [15]. Current values are also consistent but they are far from the charac-
teristic value of it. Experimental conditions provide this low current values. It
was done in cryogenic condition and in the high pressure. Characteristics of the
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Figure 3.6: 1d solutions along normal to the electrodes on GDG, (case 1)temper-
ature e�ect, (case 2)constant temperature, (case 3) negligible di�usion (a)voltage
on the GDG-SC boundary, (b)current density on the GDG-SC boundary,
(c)electron density, (d)ion density, applied voltage Ut = 2473 V.
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semiconductor also cause this e�ect. It is assumed in the introduction chapter.

The system was solved as DBD system eliminating the heat equation. In this
case, nonlinearity of the discharge is caused by the redistribution of the electric
�eld along the current density [7]. Then, it is shown that this system can be
solved as DBD system.

If the temperature of the gas is taken constant, the solution is similar with
others as seen in the �gure 3.6. In this case, heat equation was neglected.

Convergence and oscillation behaviour of each solution are similar. At this time
solution is near the stationary case but not exactly. Thus, there are small dif-
ferences between them. During the calculations, changing time step can cause
them. It is seen obviously current and voltage graphs. The solution in case
2nd folows other solutions a bit later. It can be seen also the amplitude of the
solution in case 3rd is a little bit greater than the case 1st at initial times. The
di�erences nearly disappear as the solutions go to stationary state.

The third graph shows the ion density solutions. This solution is plotted be-
fore the stationary state. Thus, there is a small di�erence between each case.
It is obvious for case 1 and 3. This di�erence can be also explained using �g-
ure 3.7. In this �gure, temperature value changes from 118 K to 100 K along
the discharge region. On the other hand, it is constant in case 2 and there is
no temperature e�ect on case 3. Temperature a�ects the ion density since the
di�usion constant of the ion is proportional with the gas temperature. Thus,
the di�erence between these cases arises due to this reason. However, it is not
considered mainly since the range of the solution is nearly the same for each case.

There is nearly no di�erence in electron density solutions. These solutions are
plotted at the same time with the ion density graphs plotted. There is no dif-
ference as in ion density graph. It can be explained as the temperature of the
electrons are constant for each case. Thus, it can be say that nonlinearity of the
system is explained with the gas temperature.

Using adiabatic elimination method, each case are resolved. Each case reaches
the steady state solution in a less time than the previous solution. For example,
it is seen that there is no oscillation at time 0.00085 s in �gure 3.8 but solutions
still oscillate at that time in the previous �gure 3.6. Moreover, ion densities
are nearly the same at the stationary time. Thus, it can be said that adiabatic
elimination works in this model since desired solution is obtained consuming less
time.

In Figure 3.9, case 1 is the solution of the 1D system applying voltage Ut =
2473 V and case 2 is the solution of the same system with adiabatic elimination
of electrons. The system reaches the steady state much more before with the
adiabatic elimination of electrons.
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Figure 3.8: 1d solutions applying adiabatic elimination, (c)current, (d)voltage,
(c)ion density (d)electron density, applied voltage Ut = 2473 V.
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Figure 3.9: E�ect of the adiabatic elimination of electrons, (case1)1D solution,
(case 2)1D soltion by adiabatic elimination of electrons.
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3.4 Results by Scharfetter Gummel

The 3rd case was solved in MATLABr using Scharfetter Gummel method. So-
lutions are shown in Figure 3.10. Both solutions are converges to the break-
down voltage in the voltage graphs. Current values converges to the J =
20.16 µAcm−2. This is closer to the experimental and theoretical works [15, 7].

Density of the each particle solution is also given in this �gure. Range of the
solutions, values at the boundaries for each particle species are obtained same
by each solver. However, these graphs are not similar especially at half interval
of the region. This can be explained that accuracy of each method are di�er-
ent. COMSOLr uses FEM and Scharfetter Gummel method is semi implicit
method. They are di�erent from each other. Behaviours are similar but char-
acters are di�erent for each particle density graph. Methods that were used
to obtain them cause this e�ect. Moreover, distribution of the mesh can cause
this di�erence. On COMSOLr, mesh were distributed symmetrically intense at
the boundary. This is a trick that is assumed the nonlinearity of the discharge
appears especially at the boundaries. Thus, grid points exist intensively at the
boundary. However, grid point interval on the MATLABr code is constant and
they are same for each interval. Mainly, distribution of the mesh points cause
this di�erence.
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Figure 3.10: 1d solutions, (a)electron density, (b)ion density, (c)voltage,
(d)current, applied voltage Ut = 2473 V
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3.5 2D Analysis

In this part, 2d solutions are analysed. Three di�erent cases are solved again to
show e�ects. Each cases were resolved applying total voltage Ut = 2397 V and
the remaining conditions are given in Table 2.3. In Figure 3.11, voltage values at
the boundary point converges to the calculated breakdown voltage but current
values are far from its characteristic value. Possible reasons are explained in the
previous part.

Heat equation in the solutions was assumed to cause the nonlinearity of the
system. It is not enough to show this e�ect in 1D solutions as shown in Figure
3.11. 2D solution gives more e�ective results for this nonlinearity since patterns
distributes along x direction as shown in Figure 1.8.

In Figure 3.13, ion density and heat equation solutions are shown in 2D geom-
etry. Patterns are seen there. It is interesting that change of the temperature
value in a 20% causes this e�ect. This supports the explanation that is about the
di�erece in solution of each cases in 1D. It was explained the di�erece between
case 1 and 2 as changing the temperture value cause the di�erece on ion density
graph. The gas temperature was taken constant in case 2.

In Figure 3.14, voltage, current and ion density vs x axis graphs are plotted.
Each graph has an oscillating solution. They behaves similarly. Each one has
seven main peak values along this boundary. Gas temperature a�ects the ion
density since the di�usion coe�cient of ion �ux is proportional with the tem-
perature value of the gas. Then, these patterns were obtained.

Solutions are consistent with the experimental results [15]. Patterns were ob-
served in 2D solutions. Gas temperature is assumed to get these patterns [7].
Solutions are in agreement with the theoretical work [7].
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Figure 3.11: Solutions along normal to the electrodes, (a) voltage, (b) current,
(c) ion density, (d) electron density, applied voltage Ut = 2397 V, remaining
conditions are as given in Table 2.3.
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(a)

(b)

Figure 3.12: Patterns (a) ion density, (b) temperature, the same conditions as
in �gure 3.11.
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(b)

Figure 3.13: 2D solutions, (a) ion density, (b) gas temperature, applied voltage
Ut = 2397 V, remaining conditions are given in Table 2.3.
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Figure 3.14: Solutions, (a) temperature along y = 0, (b) ion density x = dg,
applied voltage Ut = 2397 V, remaining conditions are as given in Table 2.3.
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CHAPTER 4

CONCLUSION

In this thesis we have studied numerically the temporal and spatial pattern
formation in the gas discharge- semiconductor (SC-GDG) system under experi-
mental conditions [15] and [16]. This system consists of the planar gas discharge
and high ohmic semiconductor layers, sandwiched between two planar electrodes,
to which a DC potential is applied. The experimental conditions [15, 16] corre-
spond to the transition from the Townsend regime to glow discharge. In these
experiments, the nitrogen plasma is sustained at pressures 30 Torr [16] and
211.54 Torr [15], the gap size as well as the width of the semiconductor layer
are of the order of 0.1 cm, the conductivities of the GaAs semiconductor are
3.85× 10−6 Ω−1cm−1 1.3× 10−8 Ω−1cm−1, the temperature is 100 K.

Calculations are carried out in one and two spatial dimensions (1D,2D), us-
ing �uid equations of plasma in the drift-di�usion approximation. The models
are derived within Comsol Multiphysics and Matlab computational packages.

First, within 1D model we studied the e�ects of di�erent modelling approxi-
mations, namely

• e�ect of the di�usion �ux,

• e�ect of heating of the background gas,

• e�ect of adiabatic elimination of the electron dynamics

on the computed results. Comparison of the solutions showed that in the consid-
ered parameter regime all these approximations lead nearly to the same results.

Next, we carried out 1D calculations under conditions of [16] and [15]. Re-
sults demonstrate the period doubling bifurcations of the system with increase
in the applied voltage in exact agreement with [16]. Moreover, we developed the
Lorenz diagrams, which indicate the transition of the system from periodic to
chaotic regime as the applied voltage is increased. Then, Scharfetter Gummel
method was used to solve the same system. Matlab was used to applied it.
Nearly the same results with the other solution were obtained.

Finally, within 2D calculations under conditions [15] the spatial patterns were
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obtained. Analysis con�rm that computed results are in reasonable agreement
with experimental observations and theoretical study [7].
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