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ABSTRACT

MODELING CORRELATION STRUCTURE FOR COLLATERALIZED DEBT
OBLIGATIONS AND DETERMINING THE UNDERLYING CREDIT DEFAULT
SWAP SPREAD EQUATIONS

llalan, Deniz
Ph.D., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Azize Hayfavi
Co-Supervisor : Assoc. Prof. Dr. Tolga Omay

January 2015, 89 pages

Pricing complex financial derivatives such as collateealizlebt obligations (CDOSs)
is considered as the main reason triggering the 2008 finlacrtssés. The correlation
structure related to the credit risks involved in a porddbr pricing issues have been
tried to overcome via a Gaussian copula framework first duoed by David Li. This
approach regards the correlation among the credit riskooamaily distributed, en-
abling us to derive analytical solutions. However, despasimplicity, this Gaussian
copula approach is far from reality, which caused mispgahthe tranches of CDOs.
This phenomenon is called the correlation smile. Firstiys thesis approaches the cor-
relation smile issue by considering a Lévy copula framewwvken this is introduced
to pricing equations we saw that the correlation smile isrected”. Thus, we came up
with a more accurate model of pricing the above mentionetttras. The second part
of the thesis aims to model the Itraxx 125 CDS spreads forréiffiesectors which com-
prise the CDO. Here, we introduce an autocorrelation onegsotgether with finite
number of Fourier series terms. Introduction of Fouriereseto estimate the dynam-
ics of the process is not done in an ad-hoc manner or as doneshiafdealing with
seasonality. Here the moving average is transformed to avifrgcand fluctuating”
average by the help of Fourier series. The rationale behisdinoving and fluctuat-
ing” averaging technique is due to its capability in remgMmgh frequency structures
like breaks, spikes and stochastic volatility. Insteadddiag jump structures to the
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model which makes the parameter estimation quite cumbexrsoor model in dis-

crete time can easily be transformed to a well-known meag@rtiegg continuous time

process. Moreover, our alternative model is a quite powarid accurate forecasting
technique.

Keywords Collateralized Debt Obligation (CDO), Credit Default Swap ®DCop-
ula, Fourier Series, Forecasting
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0z

TEMINATLI BORC YUKUMLULUKLER I IQIN KORELASYON YAPISININ
MODELLENMESI VE BUNA TEMEL TESKIL EDEN KREDI TEMERRUT
TAKASI PRIM DENKLEMLERININ BELIRLENMESI

llalan, Deniz
Doktora, Finansal Matematik Bolim
Tez YOneticisi : Dog. Dr. Azize Hayfavi
Ortak Tez Yoneticisi : Dog. Dr. Tolga Omay

Ocak 2015[_89 sayfa

Teminatli borg yukumlalga (TBY) gibi karmasik finansal tirev Urln fiyatlamasinin
2008 krizini tetikleyen ana unsur oldu disinilmektedir. Fiyatlama problemi, port-
foy icerisindeki temerrut risklerinin birbirleriyle olakorelasyon yapisinin ilk kez
David Li tarafindan 6nerilen Gauss dlantisi sayesinde asiimaya calisiimistir. Bu
yaklasim temerrit korelasyonlarinin normafddigini varsaymak suretiyle analitik
c6ztmler bulmamiza olanak tanimaktadir. Ancak bagité ragmen Gauss ligan-
tisi yaklasimi gercekten oldukca uzak didndan 6tirt TBY’ne ait bolmelerin yanlhs
fiyatlanmasina sebep olmustur. Buna korelasyon gulimsexdeseriimektedir. Bu
tezde ilk olarak Lévy b@lantisi kavrami kullaniimak suretiyle bu korelasyon giié-
mesine yaklasiimaktadir. Bunun fiyatlama denklemlerirt@l@alildiginde korelasyon
gulimsemesinin dizelgini gorduk. Dolayisiyla yukarida bahsi gecen kisimlaahal
dogru fiyatlamasini yapan bir modelle karsi kargiyayiz.if@nci kismi ise TBY’ni
olusturan Itraxx isimli 125 adet kredi temerrit takasi(T T) primlerini modelle-
meyi amaglamaktadir. Burada birinci dereceden 0z ilinkdiberaber sonlu sayida
Fourier serisi terimini iceren bir siirec ortaya konulmalktaStrec¢ dinamiklerini tah-
min etmede Fourier serisi, gecici bir nedenle ya da bundareginde oldgu gibi
mevsimsellji aciklama amaciyla kullaniimamistir. Burada harekethlama, Fourier
serisi yardimiyla “hareketli ve dalgall” ortalamaya détiirjilmustar. Bu “hareketli
ve dalgal” ortalamanin altinda yatan mantik kirilma, aikselis ve rassal oynaklik
gibi yuksek frekansl yapilarin yakalanabilmesidir. Paetre tahminini gugclestiren
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sicrama yapilarini modele koymak yerine, sureksiz zamarmamodelimiz surekli
zamanda oldukca iyi bilinen bir ortalamaya geri donen séi@nusttrulebilmekte-
dir. Ayrica, dnerdjimiz bu alternatif model oldukca gucli ve @ bir kestirim yon-
temidir.

Anahtar Kelimeler Teminath Bor¢ YUukumlulgu (TBY), Kredi Temerrit Takasi (KTT),
Baglanti, Fourier Serisi, Kestirim
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CHAPTER 1

INTRODUCTION

Credit derivatives market drew quite a lot of attention bagig from 1998 and experi-
enced a vast growth until the financial market crisis in 2008 asset price bubble in
2008 caused a shrinkage, however, could not be able to @feinuge trading amounts
of these products.

Typically, a credit derivative is a financial asset whichaets possibility of the default
of a certain underlying instrument. A widely used creditigive is a credit default
swap (CDS). In a CDS agreement, the protection buyer is insagathst the default
of an asset backed loan via predetermined periodic paynenit® protection seller
just like an ordinary insurance contract.

On the other hand, a collateralized debt obligation (CDOhistlaer extensively used
credit derivative which is usually regarded as the mairrimsent triggering the 2008
world financial crisis. CDO is a portfolio of credit derivagis which consists of multi-
ple tranches, each having a different risk and return profile

The structure of a CDO is as follows: Regional banks assigriceldans to public
usually collateralized with mortgage. These loans are paild periodic predeter-
mined installments. An investment bank acts as a gathertdrese loans in a pool.
When these loans are collected, the investment bank arraegtsn tranches as se-
nior, mezzanine and junior (equity). Whenever the pool isdilWith payments the
senior tranche is firstly paid, then mezzanine and finallyjuineor tranche gets paid.
In that sense junior tranche is the most vulnerable among.thé defaults happen
there will be no flow of payment from the loan pool to the junii@nche. Thus ju-
nior tranche is attractive to risk lover investors. Sincerenosk means more return,
the junior tranche owners are promised to be paid higherrré¢han other tranches.
The return structure gradually decreases from junior taosdranches. The invest-
ment banks were rated by the trusted rating agencies whereane day prior to sub
prime meltdown Lehman Brothers was rated top by three biggathamely Standards
& Poors, Fitch and Moody’s. Although these ratings placetirhan Brothers to a
position of “as reliable as the US government”, still theisetranches were paying
interest which was considerably above the governmentl| Tdi#s. This was one of
the attractiveness of these products.

At the beginning, the credit pools were consisting of acko@hs given to public. The



loans were basically mortgage based loans, credit cardsLeter on, the structure
became a Ponzi scheme. Since the investment banks weree¢dpmare was no cut
in the demand for CDO tranches. Therefore, in order to meétehigemands, banks
began to offer loans to low paying ability customers. Thisdered the quality of the
loan pool to diminish, thus the number of defaults to inceeas

Meanwhile, the banks secured themselves via taking codlieis houses for mortgage
based loans. Up to sub prime meltdown the real estate prerésrm a steady growth
for nearly a decade, therefore the banks safely gave thass ko low paying ability
clients.

The sub prime meltdown not only raised questions regardiagtedibility of invest-
ment banks, it also seriously undermined the reputatiomexditrating agencies and
FED. After the collapse, in order to boost up the economy, FEeDided to follow
some unorthodox monetary policies as quantitative eagia@ butterfly effect, major
central banks throughout the world began to pump money icvo@nies. However,
this did not go as expected, since the newly created money tioinancial markets
instead of real economies. Nowadays, we are still facingptbblem of excess liquid-
ity and decreasing growth in the entire world. Yet, afteisthkbose monetary policies,
we began to witness new records in stock exchanges whiclergtite trading of this
complex derivatives to increase even further.[43]

In addition to all these, there was another quite importssiié which was not taken
seriously by the investment banks due to possible computatbmplexities. The pric-
ing of these CDOs is not obvious in the sense that the expdotedf defaults of the
loan payers has to be taken into account. Moreover, it is knibvat during recession
or depression periods, the default correlation amongreiffiesectors in the economy
tends to rise. A typical CDO consists of 125 loans, so in ordeatculate the price of
this CDO we have to know the correlation structure of thesedaehich corresponds
to a variance covariance matrix of 7750 cells!

It was the first attempt introduced by David Li that the catieln structure can be rep-
resented by a common factai™yielding a single factor Gaussian copula framework
enabling the practitioners to compute the price of theseptexfinancial derivatives.
However, this computation technique inherited a major thack which came to sur-
face at the financial crisis.

The Gaussian copula approach rendered the tranches to peamis thus triggered
some inefficiencies in the market. Although several attsrape proposed to overcome
this issue, practitioners still use this technique jushay do to compute the prices of
options via Black-Scholes model, keeping in mind the vatgtdmile phenomenon.
Here, we face another smile surface, namely the correlatile.

First, the Gaussian copula which is presented by David Lumsraarized in the sense
that it is the benchmark for pricing these complex deriegtithroughout the literature.
Therefore, in order to grasp the idea of Li, basic prelimemregarding copulas are
given. Then, the major drawback of this pricing techniqueossidered. Finally, our
contribution to this framework via Lévy copula is explained



Later, we took into account the CDS spreads for differentossavhich comprise the
CDO. Our lItraxx 125 data has seven different sectors on wiiehQDSs are writ-
ten. We used an averaging approach due to high cross cret#tthe series. In
this framework, we identified CDS spread as an auto regrepsbeess together with
Fourier series terms. The key issue here lies inside theeuskfourier series, not
for capturing the seasonality or smooth breaks as done ititdrature before. In-
troduction of Fourier series not only grasps the moving ayey but also catches the
points beyond the modulus of continuity bound of the Brownrastion. In that sense
we introduce a “moving and fluctuating average”. In factstaveraging technique
has the capability of capturing high frequency structuilesdharp breaks, spikes and
stochastic volatility. Our technigue is not data speciftacan be applied to any arbi-
trary time series which exhibits stationarity. Finallyetforecast power of our model
Is demonstrated.

The thesis is organized as follows:

Chapter 1: Introduction to default based derivatives andrgegon of the overall CDO
market including the economical effects. Objective of thwlg and our contributions
to the literature.

Chapter 2: Description of the CDO pricing model proposed byi®av. Brief ex-
planation of copulas and basic theorems. Presentatiomgef k'omogeneous portfolio
approach and CDO pricing technique with single factor Gaunssopula framework.

Chapter 3: Numerical methods for pricing CDO tranches with<Se&un copula.

Chapter 4: Explanation of Lévy copulas and our alternativdehdPresentation of nu-
merical techniques and demonstration of a better pricingger€ming the correlation
smile phenomenon.

Chapter 5: Time series models and statistical tests whiathinsgur model for pricing
the CDS spreads.

Chapter 6: Analysis of our model with a literature survey iis field.
Chapter 7: Application of our model to a real CDS spread data.
Chapter 8: Forecasting CDS spreads with our model.

Chapter 9: Summary and concluding remarks.






CHAPTER 2

PRICING CDO TRANCHES VIA GAUSSIAN COPULA
FRAMEWORK

The technique applied by the practitioners in order to pieeCDO tranches is intro-
duced by David Li[[36, 37] which takes into account the Gaarssiopula as a bench-
mark. Therefore, we begin by introducing copulas and rdliteorems. For detailed

explanations, theorems and proofs see [[14], 15, 16, 24, 42845253, 54].

2.1 Copulas

2.1.1 Basic Definitions and Preliminaries

Definition 2.1. Let X andY be random variables with distribution functions and a
joint distribution function. For each pair of real numbérsy), three numbers can be
associatedf'(z), G(y) and H(z,y), each lying on the interval [0,1]. In other words,
each pair of z, y) is a carried to a point{(z),G(y)) in the unit square, and this ordered
pair is connected to a numbéf(z, y) in [0,1]. This correspondence, which gives the
value of the joint distribution function to each orderedrpail values of individual
functions, is called a copula.

Generally, the copula of am-dimensional random vector is antuple characterizing
the dependence structure, independent from margins. Tihegaula and margins
gives another explanation of the law of a random vector.

Definition 2.2. Let S; and.S, be nonempty subsets &f of whereR is the extended
real line. LetH be a two-place real function such that its domain, Dbm S; x Ss.
Let B = [z1, 2] X [y1, 2] be a rectangle all of whose vertices are in DémThen
H-volume ofB is

Vu(B) = H(x2,y2) — H(x2,y1) — H(z1,y2) + H(z1,91).

Definition 2.3. A two-place real functior# is two-increasing ift’;(B) > 0 for all
rectangles3 whose vertices are in Dom.

Definition 2.4. We say that the functiof/ from S; x S, into R is grounded if
H(l’,CLQ) =0= H(ahy)

5



forall (z,y)in S; x Sy .
Definition 2.5. A two-dimensional sub copula is a functid@rt* with the following
properties:

e DomC* = S; x S5, whereS; andS, are subsets af=[0,1].

e (C*is grounded and two-increasing.

e For everyu in Sy and every in Sy, C*(u, 1) = v andC*(1,v) = v.

Since for everyu, v) in DomC*, we have
0<C*(u,v) <1,

it follows that
RarC* Cc I =0, 1].

Definition 2.6. A two-dimensional copula is a two sub copdlavhose domain is unit
square.

Theorem 2.1.LetC* be a sub copula. Then for evefy, v) in DomC*

max(u +v —1,0) < C*(u,v) < min(u,v).

Proof. Let (u,v) be any point in Dor@™. Now
C*(u,v) < C*(u,1) = u,

and
C*(u,v) < C*(1,v) = v;

therefore,
C*(u,v) < min(u,v).

On the other hand since
C*<U2, 'UQ) — C*(UQ,Ul) — C*(Ul,vg) + C*<U1, ’U1> 2 O,
settingus = v = 1, u; = u, v; = v, we have

C*(u,v) > max(u+v — 1,0).

These upper and lower bounds are known as Frechet-Hoeffdimgja bounds.

Theorem 2.2.LetC* be a sub copula. Then for evefy,, us),(v1, v2) in DomC* we
have
|C™ (g, v2) — C(ur, v1)| < [(u2 — w)| + vz — v1.

Definition 2.7. A distribution functionF is a function with domairR such that

6



e F'is non-decreasing,
o F(—o0) =0andF(oo) = 1.

Definition 2.8. A joint distribution function/ is a function with domaifR?2 such that

e H is two-increasing,

o H(xz,—00) = H(—00,y) =0andH (co,o0) = 1.

2.1.2 Sklar's Theorem

Theorem 2.3. Let H be a joint distribution function with boundarigs andG. Then
there is a copula’ such that for allz, y in R ,

H(x,y) = C(F(z),G(y)).

If /" andG are continuous, then' is unique; otherwise(”' is uniquely determined on
Ran/” x Ranz. On the other hand, i€ is a copula andF' and G are distribution
functions, then the functioA defined by

H(z,y) = C(F(x), G(y))

Is a joint distribution function with marging’ andG.

For the proof of Sklar's Theorem we consider the following:

Lemma 2.4. Let H be a joint distribution function with marging andG. Then there
exists a unique sub copuda" such that for allx, y in ,

H(z,y) = C"(F(x),G(y)).
Proof. The joint distributionZ with S; = S, = R for any points(x, y;) and(xs, i)
in R2 satisfies
|H (22,92) — H(z1,91)| < |F(22) — F(a1)| 4+ |G(y2) — G(y)]-

If F(z1) = F(29) andG(y1) = G(y2), thenH (z1,y1) = H(z2,y2). HenceC* is well
defined. Thus the set

{(F(2),G(y), H(z,y)), z,y € R}

defines a two-place real function whose domain is RanRan . Note that for each
u in RanF, there is anc in R such that'(z) = u hence

C*(F(z),G(o0) = H(z,00) = F(x) = u.

Similarl
e C*(F(00),G(y) = H(oo,y) = G(y) = v.

Since H is a joint distribution function it is two increasing and graled. Therefore
C* is a sub copula. O



Lemma 2.5. Let C* be a sub copula. Then there exists a copulauch that
C(u,v) = C*(u,v),

for all (u,v) in DomC*. That is any sub copula can be extended to a copula usually in
a non-unigue manner.

Proof. (Sklar) It directly follows from the above lemmas. In additj if /" andG are
continuous, then Ran= Ranz = I. ]

2.1.3 Multivariate Copulas

The definitions and theorems in the previous sections werevimdimensions. They
can be extended to higher dimensions as well. For this sedtiwill be sufficient

to give the definition of a rectangle im dimensions and the corresponding Sklar’'s
theorem.

Definition 2.9. Let S}, s, ..., S,, be nonempty subsets Bf andH be ann-tuple real
valued function such that

DomH = S| X Sy x -+ x S,,.

Let B = [0, 1] ann-box all of whose vertices are in Dath The H volume of B is
given by
Vi(B) = Xsgr(c) H(c),

where sum is taken over all verticesf B, and sgiic) is given by

sgn(c) — 1 ,if ¢, = a;foraneven number of K's
gne) = 1 ,if ¢, = ayforanodd number of ks

Theorem 2.6.Let H be an n-dimensional distribution function with margifis 5, ... F;,
Then there is am-copulaC such that for allx in R,

H(xq,x9,...,2,) = C(F(x1), F(22), ..., F(2,)).

The uniqueness property satisfied by the continuity of thigilolition functions in two
dimensions is also valid forn-dimensional case, where all the distributions should
all together be continuous. Otherwise, the copula is uniggglen in the Cartesian
product of range of individual distribution functions asite.

2.1.4 Expected Tranche Loss of a CDO

Let us consider a synthetic CDO, a CDO formed by CDSs. A protec@ler of a
synthetic CDO gets intermittent payments from a protectioyeb, acting as a security
for certain losses of subordinated tranches. The lossethiharotection seller has to
reimburse are determined via a reference credit portfolio.
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The pricing of a synthetic CDO works similar as the pricing adinary CDSs since
a synthetic CDO consists of CDSs. To calculate the loss of aiodranche say from
K to Ky with 0 < K; < Ky < 1 of the reference portfolio, let us make further
assumptions and introduce some new notations.

Assume that the spread payment dates are discietet, < ... < t, = T whereT
denotes the maturity of the synthetic CDO. Actually, this Bmfuite sense since the
payment due dates are also discrete in real life. Some furthe/ant notations are as
follows

e s denotes the yearly spread payments made by the protectyemn. bu

o L% 1, (t) denotes the loss of tranch€,, K, up to timet, taking into consid-
eration possibility of recoveries. Usually models assuem® zecovery, which
is the assumption here; however, conventionally recovat®y is taken as 40%.
Moreover, there are models taking into account stochastiovery rates which
are beyond the aim of this work.

e Short term interest rate(t) is given, considered to be constant and free from
tranche loss. Again, there are studies considering sttchaterest rate which
according to us is not the main item in pricing synthetic CDOs.

Now, utilizing from Girsanov’s Theorem, consider the rigutral measure and denote
it with ). Indicate expectation of the above mentioned tranche logenthis new
measure byEq[L% . (t)] or simply byE[Lf . (¢)]. The discount factor is

t1
Eqlexp(~ [ r(u)du)
to
or in shortD(to, t1).

The valuation of a synthetic CDO very much looks like the vabraof a simple swap.
One first has to evaluate the present value of spread paytiegrievaluate discounted
value of protection payments taking into account the exgirst of defaults, and finally
equalize them.

The value of the premium leg is computed as follows
n t;
Premium Leg = Z At; - s-Eqg {(1 — L ., (1)) exp (—/ T(u)du)}
=1 to

_ ZAti cs+ [(1 = ELE, , () D(to, t:))]

WhereAti =t; —t;_1.



Protection payments are made in case of a default. For siityplhtegration is avoided
by discretization. Therefore we have the following:

Protection Leg = Eg Mtl exp <— /tsr(u)du)> de}lKQ(s)]
(- [ o) (209 - Pt

2

Ui ng
g
O
@D
-

- Z (<EL§1K2(ti) - EL§1K2 (ti—l)) oD(to,ti).

i=1

Equalizing the premium and protection leg yields

Z?:l (ELﬁle <t1> - ELIR;HKQ (tlfl)) ) D(to, tl)
Y Aty s [(1=ELE, i, () D(to,t:)]

S =

In case a loss occurs in the portfolio denotedﬂglortfolio(t) , we can calculate the
corresponding percentage loss as follows

LE (1) = min ((Lgort;?lk)_(t;f@) - K1)+

If the discrete distribution of the aggregate loss of thenerice portfolio up to time
is known (considering recoveries) and can take enlgossible values then,

Lgortfolio(t) = [ngrtfolio(t) with risk neutral probability F*(¢, k)

k=1,...m
Thus, we have the following
_l’_
1 R
" i ((Lportfolio<t)a Kz) - K1>
ELg k,(t) = Eqg folo™
+
m 3 R ) B
L i <<Lp0rtfollo(t)= Kz) Kl>

KQ_KI k=1 KQ—KI

10



If the loss distribution function of the portfolio is contiaus, then

1

ELf(t) = g . (min(e. o) = K dP"(0.2)
_ ﬁ (/K (@ = K AF™(t2) + [ (K~ K dFR(t,x))
_ ﬁ(/}( (x — K))dFR(t,2) + /K (zx — K)) dFE(t, 7))

+ /1 (Ky — K,) dFR(t,x))

K>
1

- YK (/Kl (z — K1) dF(t,z) + /K1 (v — K3) dFR(w)) :

It can be realized that it is crucial in pricing of a CDO trantb@btain the loss distri-
bution function. The benchmark model for this, which will ppeesented below is one
factor Gaussian copula model first brought in by David Li [37]

2.1.5 Large Homogeneous Portfolio Approximation and Gausan Copula Ap-
proach

Let ; be a random variable denoting time to default of a firirom the reference port-
folio. Instead of focusing the firms default times one by dhis, framework considers
the default correlations among the firms for pricing. The €&#an copula approach
allows us to price CDO tranches without taking into accouatrttarginal distribution
of the firms. LetA;(¢) be the standardized asset return of firmp to time which is
assumed to be of following form

where M (t) is the market risk and(;(¢) is the firm based (idiosyncratic) risk, both
standard normally distributed. (This is a commonly usedveation since asset re-
turns are almost normally distributed as the Black-Schoigi®n pricing formula pro-
claims). The above equation rendetgt) to be standard normally distributed as well.
If we denote the distribution function of default timgby @;, then the issuer said to
be defaulted before timewhen

¢lAli(1)] < Qi(?),

or, equivalently,
Ai(t) < 97N Q1)) = Cilt).

Here,Q;(t) = Q[ < t|, whereQ is the risk neutral probability implied from observ-
able market prices. (In fact, as we shall see later, in thes§an copula frameworks

11



the whole asset return structure of the firms reduce to aesic@nponent, which is
derived from the existing market prices, enabling us toeptie tranches of CDOSs).
According to [2.]1) the'" issuer defaults up to time when

Ci(t) — a; M(t)

1 —a?

7

Xi(t) =

Then probability that'” issuer defaults up to time given M (t) becomes,

2

pit|M) < & (OZ‘” — ol “)> |

2.1.6 Loss Distribution of the Large Homogeneous Portfolio Uder One Factor
Gaussian Model

Just like the idea of central limit theorem, here the aim ideéave analytical results
for pricing the CDO tranches for the limiting cases. The eflaassumptions for the
credit issuers now have the same:

e Portfolio weights,
e Default probabilityQ(t),
e Recovery ratev,

e Correlation to the sensitivity of the market.

pltM) < 6 <M> |

Vi@

Proposition 2.7. For anyp andz in (0,1] the following holds:

. m k . (m—Fk) _ 0 JIf T <p,
Trlzgréoz(k‘)p(l p) _{1 Jf x> p.

k=0

Lemma 2.8. For the case of no recovery for all assets forming the padfdhe loss
distribution of an infinitely large homogeneous portfolidiwasset returns follows a
one factor Gaussian copula model as

Ai(t) = aM(t) + V1 — @2 X,(t),

puiton —o (VB C0)

Y

12



wherex € [0, 1] is the percentage loss of the portfolio.

Under assumptions of large homogeneous portfolio modeljritegrals can be com-
puted analytically as the following lemma asserts:

Lemma 2.9. In the large homogeneous portfolio model, expected lossra it of

mezzanine tranche absorbing losses ftemto K, percent of the overall portfolio in
case of zero recovery is:

o ¢2(_¢_1(K17 C(t)7 p)) _ ¢2<_¢_1(K27 C(t)> p))
ELK1K2 <t> - 5
Ky — K,y
whereg, is bivariate normal distribution function with variance @aiance matrix

(s )

13
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CHAPTER 3

NUMERICAL APPROXIMATION OF TRANCHE PRICING
WITH GAUSSIAN COPULA

The Gaussian copula approach involves some improper algaghich has to be com-
puted numerically. Moreover, the correlation coefficiest ihvolved in the variance
covariance matrix should be calculated via an “implied elation” from the existing
market prices of CDO’s. However, having obtained till only enables us to price
the other tranches instantly. Here the aim is to offer amdtieoretical model which
explains the correlation surfaces better than the traditiapproach. Simulation yields
the following (for details see [38])

3.1 Canonical Copula Form

A direct application of Sklar's Theorem yields

O"[C(Fi(x1)), ..., C(Fo(
OF (1), ...,0F,(x,

f('rla Loy weey 'In)

?mxﬂmm (3.1)

= (Fi(1)), oo, () x [ filw)

=1

wherec(Fi(z1)), ..., (Fu(xn)) = f(z1, @0, oy xn)/ Ty fizs)

3.2 Exact Maximum Likelihood Method

Let © be the parameter space afide thek-dimensional vector of parameters to
be estimated. Let LK[O) and Ikl(#) be, respectively, likelihood and log-likelihood
function for observation at time Define the log-likelihood function IkP) as follows

Ikl (0) =) "Ikl (6)

15



Taking into account the canonical form describedinl(3.1haee

() = " Inc(Fi(z1)), s (Fa(za) + > Y In fo(al)

t=1 n=1

The maximum likelihood estimataris defined a® = (6;,6s, ..., 6;) . For the Gaus-
sian copula le® = {V : V € R¥*¥} denote parameter space withbeing a sym-
metric and positive definite matrix. The application of caical form yields

i T 1 a / -1
IkIseessg) = v — o PRAVERE I (3.2)
t=1

Assuming that the log likelihood function is differentialwith respect and the solu-
tion of (3.2) 9/06 = 0 defines a global maximum, the maximum likelihood estimator
can be recovered as

0 T

T T
. 1 N 1
|k| 9aussia _ v _ - / _ = /
oV -1 T9) 9 4 9 ;:1 &=V T ;:1 &t

3.3 CDO Tranche Pricing

Let A and B the attachment and detachment points respectively. If vetdethe
reached loss of reference portfolio at titnes L(¢) the loss of the tranche can be given
as:

LAP(t) = (L(t) = A)IamL(t) + (B = A)Ipsr, vy L(1).
Just like a regular swap analysis a fair price of a CDO translgg/en by

* B (1fy D(0, )5 (2)]
"AB = oS, D0, t)min{maxB — L(%;),0], B — A}’

where D denotes the discount factor, the numerator being the exgédass (default
leg) and the denominator being the installments (premigh le

3.4 Simulation Results with Matlab

The Matlab code given in the appendix is divided into 3 parts:

e Generating default times via Gaussian copula by the helpglikelihood esti-
mation.

16



e Equalizing the default and premium legs.

e Calculating the tranche spreads for different values ofetation and recovery
rates.

For 125 loan payers, 1 year of maturity and 1000 simulatismed)ave Figure3l1,Figure 3.2
and Figuré 313

Equity Tranche (0%-3%)
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' . "
e
v ‘ f
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Tranche spread (bps perannum

[=w )
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Figure 3.1: Equity tranche spread modeled with Gaussiaualadpr different recovery
rates.
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Mezzanine Tranche (3%-14%)
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Figure 3.2: Mezzanine tranche spread modeled with Gaussipuala for different
recovery rates.

Senior Tranche (14%-100%)
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Figure 3.3: Senior tranche spread modeled with Gaussianaégr different recovery
rates.
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CHAPTER 4

INTRODUCING LEVY COPULA TO OVERCOME THE
CORRELATION SMILE PROBLEM

4.1 Lévy Copulas

Definition 4.1. A stochastic processy;) on R with X, = 0 is called a Lévy process
if:

Forn>1and0 <ty <t <..<t, <T,therandom variables
Xt()7 Xt1 - Xt()7 th - Xt17 ceey th - th,1

are independent.

Distribution of X, ;, — X, does not depend an

For everyt € [0, 1] ande > 0, lim,_,; Pr[X, — X;] > e =10

30y € F with P[] = 1 such thatvw € 2 ,X;(w) is right continuous and has
left limits in ¢ € [0, 1].

This definition renders a Lévy proce§s;) to exhibit discontinuities (jumps). Char-
acteristics of the jumps are given by jump measudefined on0, 7] x R"™ by

p(A) = #{(t, AX,) € A}.

For every measurable sdt ¢ R”, u([t1,t2] x A) counts the number of jumps with
sizes not exceeding betweert; and¢, . On the other hand, Lévy measwrés defined
as

v(A) = E[#{t€[0,1]: AX, # 0,AX, € A}], A € B(RY)
indicates expected number of jumps, per unit time withinsibie.

Definition 4.2. Let (X;) be a Lévy process oR? with Lévy measurev. The tail
integral ofv is a functionUU : (R? — 0) — R defined as follows:

U(xy,...,xq) =V (H [(331)> (H Sqr(%’))
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where

_ [zyo0)  if x>0
I(z) = { (—o0,z] ,if <0
Definition 4.3. A function F : RZ, — R, is called a Lévyi-copula function (or Lévy
copula), if

o F(uy,...,uq) # 0for (uy, ..., uq) # (00, ..., 00).

o F(uy,...,uq) = 0if u; =0 for at leastoné € {1, ..., d}.
e F'isd-increasing.

e Fi(u)=uforany: e {1,...,d}, u € R.

Theorem 4.1(Generalized Sklar’'s Theoreml.et v be a Lévy measure dR?. Then
there exists a Lévy copuld such that tail integrals of satisfy

Ur(Xi)ier) = F1((Us)ier)

for any non-empty’ C (1,...,d) and any(x;);c; € RI. Conversely, iff' is a d-
dimensional Lévy copula and,, ...,v; are Lévy measures oR with tail integrals
Ui, ...,Uy , then there exists a unique Lévy meadRtfevith one-dimensional tail inte-
gralsUy, ..., Uy.

Theorem 4.2. Let (X;) be a Lévy process oR?. Then the independence copula is
given by

d
FJ_(ula ) Ud) - Z U; H [oo(u])
i=1  j#i
Definition 4.4. Define
S, ={xr e R*:sgnz;) = ... = sgn(zy)}

and
S_ = {z € R*:sgn(z;) # sgr(z)}.

Let X, be a Lévy process oR?. Its jumps are considered completely positively de-
pendent if there is an increasing 9etC S such thatAX, € D, ¢t > 0. Ford = 2,
jumps of X; are completely negatively dependent if there is a decrgastD of S_
suchthatAX; € D,t > 0.

Theorem 4.3.Let(X,) be a Lévy process dR? whose Lévy measure is supported by
an ordered seD C S. The complete positive dependence Lévy copula is:

d
B (1 oy 1) = min(fus], o, [0al) Ts + (1, ., ) x ]| s@r(u).
=1

If d = 2, the complete negative dependence Lévy copula is

Fi(u1,uz) = min(fu |, [uz|) Is + (u1, uz).
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Conversely, i) or Fj is a Lévy copula of X;) , then the Lévy measure is supported by
a strictly ordered subsé? C S . If, in addition, tail integrald/; of X* are continuous
and satisfy

lim U;(z) = 00,1 =1, ...,d,

z—0

then jumps ofX; are completely dependent (for further discussion [see [51])

4.2 Modeling of CDO Tranches via Lévy Copula

Our Itraxx 125 data which is to be widely explored in the sujosat chapters indicate
that the seven sectors on which the CDSs are written comgribm synthetic CDO
have almost the same correlation structure during timesigés That is, all sectors
jump at the same time. Actually, this is not data specific m ¢gbnse that the CDS
spreads have tendency to move together during crisis eribdr instance, if there
is a negative financial shock then we expect the possibifitgedault to rise for all
possible companies, even for the countries. Thereforenéateling purposes, we took
into account a perfectly dependent Lévy copula which haddhewing form. The
reader can find extra information in [3,[5,6] L1] 21,[25/30, 57

i=1 i=1

Now, again for 125 loan payers, 1 year of maturity and 100Qukitions, we have
Figure[4.1,Figuré 42 and Figure %.3 as given below
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Figure 4.1: Equity tranche spread modeled with Lévy copateadifferent recovery
rates.
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Figure 4.2: Mezzanine tranche spread modeled with Lévyledpudifferent recovery
rates.

22



Senior Tranche (14%-100%)
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Figure 4.3: Senior tranche spread modeled with Lévy copadalifferent recovery
rates.
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With the Gaussian copula framework we confront the “coti@tasmile” problem.
This phenomenon occurs due to the inconsistency of singépeter correlation struc-
ture. When the correlation parameter is derived from the etgkices, i.e. implied
correlation, senior tranches imply high correlation wiasrginior and part of mezza-
nine tranches imply low correlation.

Comparing Figuré 311 and Figure 4.1, we see that for juniorctta when correlation

parameter gets higher so does the expected tranche lodseaassociated fair spread.
Gaussian copula framework implies a higher correlation #ng, a higher fair spread.
On the contrary our model gives lower spread everywhere.

For senior tranche the case is different when we look at Ei@@® and Figuré 4].3.
Since senior tranche investors are affected only whendasghe collateral go beyond
most of the pool notional, many defaults should occur in offde this to happen.
However, in practice higher correlation implies lower sgtesince the probability of
huge number of defaults is quite unlikely. Gaussian cop@méwork implies lower
correlation and thus lower fair spread. Our model, on themliand, gives a higher
spread.

Finally, looking at Figuré 312 and Figure #.2 we witness f@zzanine tranche, Gaus-
sian copula model gives higher and sometime later loweetairon. Our model gives

lower spread at the beginning and later higher spread whicbrnsistent for correcting

the correlation smile phenomenon.
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CHAPTER 5

TIME SERIES CONCEPTS RELATED TO OUR CDS SPREAD
PRICING MODEL

5.1 Introduction

In this chapter we introduce the notions related to timeesanhich have become the
ingredients of our model. In order to make forecasting wedrgationarity of the rel-
evant series. Therefore, first we mention stationarity @tated concepts. Later, we
give brief explanations of widely used time series modeteahniques and their rela-
tion not only among each other but also with stochastic iifidal equations. Statisti-
cal testing procedures applied to these models are takeadebunt in the subsequent
sections. Definitions and theorems are taken from([17, 34559

5.2 Some Basic Concepts

Definition 5.1 (Strong Stationarity)Let (z;,, z,, - . ., 2, ) be random variables such
that(z((w,t)[t = 0,41, £2,...,4+n)) and letF" be ann dimensional joint distribution
function i.e.

By By By (11, mn) = (P(w)|2(w, ), 2(ws tn) < mn).

2ty

The time serie$z;,,i = 0,1,...,n) is said to be strongly stationary if

F, ,F F

zty s Lzegr oo ztn(-) =

F

Zt1+k: Y

F E

Rto+k? ") Ztn+k<'>'

Definition 5.2 (Weak Stationarity) The time serie$z;,,i = 0,1,...,n) is said to be
weakly stationary if:

o [(z) = p,pu € RV,
o E(z}) =02 0% € R, V¢,

° COV(Zt, Zk> = COV(ZtJrl, ZkJrl), Vt, /{7, l.
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Definition 5.3 (Autocorrelation Function)Let X andY” be two random variables. The

correlation is defined as
Cov(X,Y)

pry =1 Nar(X)Var(Y)

Let (Z;) be a stationary process the autocorrelation function (A€HBgfined as

_ Cov(z, z1—k) _ Cov(z, 21—k) %
VVar(z)Var(z, ;) Var(z) Yo

Pk
Definition 5.4 (Partial Autocorrelation Function)Let (Z;) be a stationary process.
The partial autocorrelation function (PACF) defined by
Corr = (Zigk, Ze)| Zisi—1, Zigi—2s - - - 5 Zig1)

is a conditional correlation which basically eliminates thtervening values between
Zyii and z,.

Definition 5.5 (Weak Stationarity) The time serieéz;,,i = 0, 1, ..., n) is called white
noise if

® ]E(Zt) = OVt,

o E(z7) =02 0% € R, V¢,

® COV(Zt, ZtJrk) = 0, Vt, k.

Definition 5.6 (Cross Correlation)Given two stationary time seri¢s(;) and(Y;) the
cross covariance function is defined as

'72?y(h) = E(xt—i-h - H:E)(yb My)

where,, and i, are the means of the serieX;) and (Y;) respectively. The cross
correlation is defined as 7
zy

pa(h) = e 0)

5.3 Main Time Series Models

5.3.1 Autoregressive (AR) Model

Consider the time series
Yy = o+ 1Yp—1 + €

wheree, is white noise with constant®. variance. This is called an autoregressive one
(AR(1)) model. It can easily be extended Ad?(p) model as:

Yo = Qo+ oY1+ ...+ Qplrp + €&
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Assuming weak stationarity we have,

E(y:) = p,  Var(y) =7, Covye, Yi—1) = W,

wherep, v, and~, are constants. The mean 4f?(1) model can be computed under

stationarity by
Qp

E(y;) = p=

Thus for the existence of mean we must haye# 1. Moreover mean is zero if and
only if ap = 0. Consideringy, = 0 and lettinga; = « the variance can be computed
as follows

1—@1.

Y = Var(y) =Ely — E(y))” = Elyy] = By

= Ble + a6y + a6 o+ ... ]0% +a’c* +a*c? + ...

0.2

12

Here we took into account the stationarity properties. beorfor the variance to be
bounded and non-negative we must have< 1. In summary for weak stationarity of
the aboveA R(1) model,|a| < 1 should hold.

5.3.2 Relationship Between OU-Process andiR(1) Model

The Ornstein-Uhlenbeck (OU) stochastic processatisfies the following SDE,

dsy = 0(pu — s)dt + dB;

whered, i, o € RT andB; is the standard Brownian motion.
The autoregressive (AR(p)) model is defined by the following difference equation

p
Sy = Z NiSt—i + €
i=1

where \; are real constants angl is the white noise. Now consider the following
AR(1) model

Spp1 = O(p — 8¢)(tig1 — ti) + o(By 11 + By,),

Now
Bi,s1+ By, = e/ (tiy1 — 1)

whereg, is standard normally distributed. Then we have

Ser1 = O — 5¢)(tiy1 — i) + o€/ (tig1 — i),

which is Euler-Maryuama discretization of OU process ae8m, ; — ¢;,7 € N.
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5.3.3 Moving Average (MA) Model

A moving average ongM A(1)) model is defined by
Yr = o + Pe1 + €
wheree, is a white noise. We can shift the model without altering angreacteristics

thus letting, = 0 makes no difference. The mean is trivially zero. The varsaisc
computed as follows: The general A(p) process is,

v = Var(y) = Ely, — E(y)]” = Elyiy] = Elyi]* = Ele; + Ber—1 + € + Bers
= B’Eel | + BEe_16: + BEee;, 1 + Ee? = o*(1 + 7).

The generalM/ A(p) process is

Ye =+ P11 + Bo€ro+ ... + ﬁpet—p + €, €~ N(O, 0'2).

5.3.4 Relationship Betweem R(1) and M A(co) Model

Consider thed R(1) model stated as
Yo = Qo+ Q1 Y1 + &

Recursive substitution yields the following

-1 2
Y=y p+ P 6y Qe g+ + 6.

If |a| < 1,then

lim oy, =0
p—0o0

which gives us
o0
Yt = Z '€y
=0

The last expression is precisely anA(co) process. Wheife| < 1 we say that the
AR(1) process is “invertible”.

5.3.5 Autoregressive Moving Average (ARMA) Model

An autoregressive moving average qaeR M A(1)) model is defined by
Y = A+ ay1+ fe1 + &
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Now
E(y:) = A+ aB(y;—1) + fE(e-1) + E(e).
From covariance stationarity we have
E(y:) = E(y-1) = 1,

thus,
A

1—a’

p=A+opu= =

The variance is computed as follows:

Y = (1 — ) + g1 + Berq + €,

= Yy~ p=o(y1 — p) + B e,
= E(y, — H)2 = E(a(yi—1 — p) + Per1 + Gt)27
= Yo = 04270 + 204502 + 0%+ BQUQ,
= Yo — 042’)/0 = 204502 +o%+ ﬁ202,
1+ 2a8%)0?
= Yo = —(1 — )

5.3.6 Unit Root

Consider ad R(p) process of form
Yy = a0+ a1y + ...+ apyp + €.
We can assume, = 0 . The process is said to exhibit a unit root if

p
Z a; = 1.
i=1

For anAR(1) process of form
Yr = Qo + Q1Yr—1 + €

has a unit root when; = 1. In fact this corresponds to the random walk which in the
limiting case becomes the Brownian motion. If a process atehinit root then it is
non stationary.

5.4 Akaike Information Criterion

Definition 5.7. If X is a discrete random variable ayi¢iz) is the value of its pdf at
then the entropy oX is

H(z) = =) f(x)log, f(x).

zeX
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If X is a continuous random variable arifz) is the value of its pdf at then the

entropy of X is:
- [ f@)log, fa)ds
X

For value ofa (the basis of logarithm}, e and10 are commonly used.

Definition 5.8. If X andY are discrete random variables afid:, y) is the value of
their pdf at(z, y) then the joint entropy ok andY” is

—ZZf(x,y)lnf(x,y)

zeX yeYy

Definition 5.9. If X andY are discrete random variable&z, y) and f(y|z) are the
value of their probability and joint probability distriban at(x, y) then the conditional
entropy ofY” givenY X is:

HY|X)==3 > flay)nf(y).

zeX yeYy

These definitions can easily be transformed to continuoses ¢a integral.

Definition 5.10(Kullback-Leibler Divergence)For two probability distributiong (z),
g(z) and for a discrete random variablethe Kullback-Leibler Divergence is defined

as:
D(fllg) = Y f(a) ;”

reX

It is a measure for comparison of entropy of two distribusiowver same random vari-
able.

Theorem 5.1. Normal distribution has the largest entropy amongst all ramdvari-
ables of equal variance.

Proof. Letg(z) ~ N(u,0?). Let f(z) be an arbitrary pdf with the same variance. The
differential entropy (entropy for continuous random vhlés) is translation invariant
sinceh(X +¢) = h(X), c € R. Therefore we can assurii#f (z)] = u. Now consider
the Kullback-Liebler divergence between the above meetiafistributions

0 < Dill = [ s (%) tr= [~ om@)
. / " (@) In(g(x))dz = —h(f) - / " (@) In(g(x))dz
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The last term can be expressed as follows

/Oof(x)ln dx—/ fla ln( Xe‘”za%’z)dx
— / flo 1n< )mm()/g@)(-%)m

o? 1 9 1 o
= 3 ln(27m ) —In(e )TC'Z = (In(270%) + In(e)) = —éln(27m ) = h(g).

Thus we havé:.(g) — h(f) > 0, and from the third property we gétg) — h(f) =0
if and only if f(z) = g(x). ]

Definition 5.11 (Maximum Likelihood Estimation)Let X;, i = 1,2,...,n be random
variables with a joint density

fo(z, 20, ... ) = f(T1,29,...,2,]0),

whered denotes true state of nature. The maximum likelihood ppieds findingd as
the estimator of which makes the observed data most probabl&’ Ifi = 1,2, ..
are i.i.d., then the likelihood function becomes

IIﬂMﬂ

Since the structure of the maximization problem is preskwr@er strictly increasing
transformations, for convention, usually the function éonbaximized becomes

Zln (2:10)).

Definition 5.12 (Akaike Information Criterion) [1] The Kullback-Leibler divergence
for continuous random variables is

)

DUM%i/ﬂﬂmﬂ@M—/f@Wg@WM

This in fact can be expressed as

D(fllg) = Ey[In f(x)] = Ey In[g(x|0)],

where expectations are taken with respect to true gtate

/ﬂwnﬁwmz

wherec is a constant from the definition of entropy although the thséribution func-
tion is not known.
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Now the only expression to be estimated is

Eg (In[g(x|0)])

which is the main work of Akaike’s Information Criterion (AI€)]. This estimator is
found as

AIC (k) = —2Ikl (6) + 2k.

where Ikl is log likelihood for model is maximum likelihood estimate of the param-
eters andk denotes number of variables in the model.

Intuitively, minimum AIC value gives us the preferred modaiong the candidates for
a given data. The value which minimizes the AIC gives us tgddagth[12].

5.5 Statistical Tests

In this sub-section we briefly give the statisticals tediagd in our model. For the
test of stationarity, unit root tests are given. Later the-Berkins methodology is in-
troduced for the determination pfandq coefficients in the underlyind RM A(p, q)
process. Finally Jarque-Bera normality test is given fordiagnostic check of resid-
uals.

5.5.1 Unit Root Tests (Linear)

This subsection analyses basic unit root tests in a linaandwork.

5.5.1.1 Dickey Fuller Test

In order to test whether
Y = Y1+ &

follows a random walk i.e. has unit root we set the null hypstbH, : o; = 1 versus
alternative hypothesif; : o; < 1. The unit root testing procedure offered by Dickey
and Fuller [13] takes into accountstatistics ratio of the least-squares estimation of
a1. The least square estimation of mean and variance becomes:

T T
Z Yt—1Y¢ Z (yt - dlyt—1)2
T Toe T—-1 ’
E yt2—1

t=1
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whereT is the sample size. Thestatistics ratio is:

T
A Z Yi—1€¢
] — 1 =1

~ std.dev(a;) T '
Oc t_zlyt?—l

If the sample size is increased then DF in the limit is a fuorcof standard Wiener
process. In case af; = 1 then it converges to another nonstandard asymptotic dis-
tribution. Critical values are computed via simulation amdsgnce of unit root is
determined.[13]

DF

5.5.1.2 Augmented Dickey Fuller Test

Wide usage ofAR(p) processes lead to testing the unit root for lagged modelg- Au
mented Dicker Fuller Test (ADF) verifies the existence of umt in anAR(p) frame-
work by performing hypothesis testirtgy, : 5 = 1 versusH,; : § < 1 for the regression

p—1
Ye =+ Bt +yy1 + Z Ay +e, g~ N(O, 02)7
i=1

where, u, 8 are constants and is the difference operator. The ADfstatistics is
given by
__B-1
std.dev(3)’

herej , is the least-squares estimatorbf

5.5.2 Unit Root Tests (Non-Linear)

This section analyzes more general unit root tests. Fasts with threshold are intro-
duced. Then, more general models are taken into consideraitluding non-linear
trends together with smooth changes also included witlaeehrends.

5.5.2.1 Enders and Granger (EG) TAR Type Test

Enders and Granger[[18] use threshold autoregressive (TARgs to offer tests of the
null hypothesis of a unit root allowing under the alternativpothesis for stationary
asymmetric threshold to a constant expectation or detéstitinear trend.

k
Y — Y1 =+ 1Ly 1+ B (1 — 1) ypq1 + Z 0iAYy—; + N, (5.1)

Jj=1
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I — 1 ,|f yt71>0
EEZ1 i g, <0

and)\, is a white noise. iff; = B, = 0in (&) theny, exhibits a unit root, while i3, =
P2 < 0, y; Is a stationary TAR process with symmetric change, at i 0, 5, < 0
andfj; # (s, vy, is a stationary TAR process showing asymmetric alterattemders
and Grangel[18] suggest testing for whethgnas a unit root using the-statistic for
testings; = > = 0 in (6.1) and/or the most significant of the statistics from those
for testing3; = 0 andf, = 0.

5.5.2.2 Leybourne Newbold and Vougos (LNV) Smooth Break Test

Leybourne, Newbold and Vougés [35] build up unit root tesktere the alternative is
stationary around a linear trend with a smooth break, arelthieir small sample prop-
erties. Lety, be process with changing trend function together by smaatisition on
the time domaint = 1,2,...,T.

Yr =+ S (7, 7) + & (5.2)
Y = a + Bit + @Sy (7, 7) + & (5-3)
Yr = a + Bit + aaSi(7, ) + BatSi(, T) + & (5.4)

wheresz, is a zero mean stationary process &h@d, 7) is the logistic smooth transition
function, defined by:

Sy(y,7) = [1 4+ exp{—~(t —7T)} ", 7% > 0.

In this strategy, structural change is modeled as smoothbstiveen different regimes
rather than an instant structural break. The transitiorction S;(v, 7) is continu-
ous and bounded between 0 and 1. Thus the STR model can bdedge regime-
switching model which renders for two regimes, connectdt extreme values of the
shift function, S;(v, 7) = 0 andS;(vy, 7) = 1, while shift from one regime to other is
stable. Here; determines smoothness of the transition. Two regimes a@cmded
with small and large values of the transition variakle- ¢ relative to threshold = 7.
For the large values of, S;(v,7) passes through the interval (0,1) very quickly, and
as~ reachestoo this function changes value from 0 to 1 in an instant mannamet

t = 7T. Therefore, if it is assumed that is a white noise, theri (8.2) is a stationary
process around a mean which changes from initial valut final valuea; + as.
Leybourne et al.[35] also give similar conditions for madstated in[{5]2) and(3.3).
In these specifications no change and one instantaneowsuséduchange are limit-
ing cases whereas this specification is more general whiedregradual structural
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changes as well. Leybourne et al[35] establish the hygethéor unit root testing
based on[(5]2)[ (5.3) and (5.4) as follows

Hy: Unit Root (Linear Non stationary)
H,: Stationary (Stationary around smoothly changing trerdliatercept)

Following Leybourne et al.[35] the test statistics progbkere is calculated with a
two-step procedure

Step 1Usage of a nonlinear least-squares (NLS) algorithm, estisnanly the pre-
dictable component of the ideal model and calculate the Mis&luals

MOdeI 1 :ét = Yt — a — ngt(’y,T),
Model 2 :¢, = y, — & — it — @Si(y, 7),
Model 3 :ét =Y — &+ Blt + d23t<77 T) + B2t5’t(’77 T)’

Step 2Work out the ADF statistic, the t ratio connected within the ordinary least-
squares (OLS) regression.

5.5.2.3 Kapetanios Shin and Snell (KSS) ESTAR Test

Let y, follow a single variable exponential smooth transitionoaegressive (ESTAR)
model of level 1

Yr = Bye—1 +y—1 [1 — exp(—0y; 4 )] + &,

which after reparameterising can be written suitably as

Ay = oyi—1 + -1 [1 — exp(=0y; 4 )] + &,
wherep = 3 — 1.

Overall stationarity of the process can be found by testing null hypothedif, :

0 = 0 against alternativé?; : 6 > 0. However, testing null hypothesis straightly
is not possible since is not known under value of the null. To solve this difficulty,
Kapetanios et al.[31] use the method of Luukkonen €t al {d@gstore the transition
function by its appropriate Taylor approximation to geéttgpe test statistic. By using
Taylor approximation, the following supplementary regien is obtained

Ay = 59?_4 + e,

wheree; contains original shocks as well as the error term arising from Taylor ap-
proximation. The test statistic for= 0 againsty < 0is ty, = 6/s.e(d), whered is

~

the OLS estimate and s(&) is the standard error ot

In a wide framework when errors are serially correlated, abiliary regression is
improved byp!" order lag of dependent variable. The extended model candrease
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follows )
Ayr =Y piAyij + 0y} 4 + e,

Jj=1

From here one can obtain thestatistics fory) = 0 against) < 0 as:

» {iwayl s Ole(r)er}

d

t= = ;
st.de\(d) 7 [ [ W (r)sdr

wherelV (r) is a standard Wiener process defined-an [0, 1].

5.5.2.4 Sollis Smooth Break with TAR Type Test

Sollis [49] developed a unit root test by combining Enderd @nanger([18] and Ley-
bourne, Newbold and Vougas [35]. Enders and Grariger [18] tleeshold autore-
gressive (TAR) models to propose tests of the null hypothafse unit root that let
under alternative hypothesis for stationary asymmetrange to a constant mean or
a deterministic linear trend. In Sollis [49], the EG tests generalized to the case of
a nonlinear trend. In particular, smooth transition tegbeiemployed by Leybourne,
Newbold and Vougas [35], is together with a TAR method of E®udd up unit-root
tests that permits under the alternative hypothesis aitit@mbuetween deterministic
linear trends, about which stationary asymmetric changghtriappen. The resem-
blance of the EG and LNV techniques for testing for existesf@eunit root in original
series both eliminating deterministic parts of the datakeetinit root test claims that
models used by these authors might be unitedyLbe generated by Model 1, Model
2 or Model 3 withz; formed by the following TAR model. Combining(5.1) and Model
1, Model 2 or Model 3, Sollis test is obtained by

k
Aéy =+ Piliér g + Po(l — I)é1 + Z 0; A& + Ny, (5.5)

J=1

where

I — 1 7|f Et:1>0
T 21 if e, <0

and), is awhite noise. Thug, is a smooth transition TAR (ST-TAR) process. Without
taking into consideration of which model from Model 1, Mo@ebr Model 3 is used
to explain the deterministic parts of, if 3, = 5, = 0 in (&.8) thené; and thusy,
exhibits a unit root, while if3; = g, < 0, y, is a stationary ST-TAR process with
symmetric, and if3; < 0, B, < 0 andp; # (s, y; IS a stationary ST-TAR process
showing asymmetric change. The testing;ihas a unit root using th&-statistic for
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the test of3; = 3, = 0 in (&.3) and/or the highest significant of thetatistics from
those for testings; = 0 andg; = 0.

Hy : g; = 0, for all 7, (Linear Non stationary)

H, : B; < 0, for somes. (Stationary around nonlinear trend and intercept)

5.5.2.5 Omay and Yildirirm (OY) Smooth Break with ESTAR Test

This test by Omay and Yildirnm_[46, 56] is for unit root null pgthesis by mixing
KSS and LNV techniques make use of exponential smooth transautoregressive
(ESTAR) models for offering tests of null hypothesis of a unibt that allow under
alternative hypothesis for stationary non-linear shitvaods a constant expectation.
Here, the KSS tests are generalized to the case of non-lireeatt. In this approach,
again a transition function is considered which is exatté/game as described in LNV
framework.

The hypotheses for unit root testing based[onl (5.2)] (5.8)&@l) become
Hy - Unit Root (Linear and nonstationary)

H, : Stationary (Nonlinear and stationary around smoothly ghrantrend and inter-
cept)

Following Leybourne et al.[35] , the test statistics pragmbbere are calculated with a
two-step procedure:

Step 1Using a nonlinear least-squares (NLS) algorithm, estiroatg a deterministic
component of the preferred model and compute the NLS resicdisadone in LNV
setup.

Step 2Calculate the KSS statistic, theatio associated witp; in the ordinary least-
squares (OLS) regression

Hy : B; = 0, for all i, (Linear Non stationary)

Hy : B; < 0, for some i, (Nonlinear and stationary around nonlineardrend inter-
cept)

5.5.2.6 Box-Jenkins Test

This test proposed by Box and Jenkins [10] focuses on the pilbeACF and PACF of
the time series. The ACF and PACFARM A(p, q) process has typical characteristics
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related to lag operator. Thus the test is applied by lookintpe ACF and PACF of
the series. The use of ACF enables us to identify the true datargting process as
stationary including whether the series exhibit a certaassnality or not. However, as
mentioned earlier one should also have the inevitabilitydtbion. Moreover, the Box-
Jenkins testing involves a diagnostic checking to make thatethe residuals from the
estimated model are a white noise. AIC described in Sectidi7 % used to identify
p andgq. We can define an “identification procedure” for Box-Jenkest &is follows

e Check for Stationarity via ACF
Let's consider am R(1) process without drift i.e.

Y = 11 + e =p1(P1Y—2 +€1-1) + &4
=&+ P160-1 + PrE_a + Poe_s + - + Py,

One can lety, = 0 and havell(y;) = 0 without loss of generality. For large

values oft,

0.2

Var(y,) = m,

if [|¢1]] < 1 and

pio?
Cov(ys, yi—s) = i-0 pivar(y,).
1

If we consider am R(2) process without drift i.e.

Y = P1Yi—1 + PaYi—2 + &

for stationarity we need to have + po < 1,2 — @1 < 1 andg, < 1.

Thus, we can infer that certain restrictions on the pararssteould be satisfied
in order to meet stationarity criterion.

Now consider an\/ A(1) process without drift, i.e.,
Yr = € — ther .

Then, we have
E(y,) =0, Var(y)=oc*(1+6})
and

- —910'2 ,|f s=1
Cov(ytvyt—S) = { -0 , otherwise

For anM A(2) process described as
Yr = €¢ — ther 1 — Oagy o

we similarly havelE(y,) = 0, Var(y;) = o?(1 + 6? + 62) and
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—010%(1 —0y) if s=1
Cov(yyi—1) = § —Bo0? Jf s =2
0 , otherwise

Generally speaking, moving average processes are statioumtenot necessarily
invertible.From the above discussions we can say that the @&GFstationary
AR(k) process decreases to zero wieincreases. On the other hand, the ACF
of a M A(1) process cuts-off after |, i.e., the number of lag operataiways
leading to stationarity. For the time serieg),: = 1,...,n, the sample auto
correlation at lag: is given by

n—=k _ _

> (¥~ V) (Yi - V)

pk:Tk:tZI poy . ,k:0,1,2,...,
> (Yi-Y)

t=1

wherey = > y;/n is the sample mean. For vast sample sjzes normally

t=1
distributed with meam, and variance
R 1
Var (pr,) ~ - (14207 + 205+ -+ 2p2,)

due to Bartlett. Thus if the linear connection between timéesebservations
divided by a lag of: time units is denoted by, then the standard deviatici,
becomes

We finally have the-statisticst,, = /s, which helps us to agree on whether
the series in question has stationarity.|tlf | > 2 thenr, is considered to be
statistically large thus we have non-stationarity. If teees is not stationary, it
can be transformed into a stationary series by the help dafitfe¥ence operator.
In practice, we almost never go beyond second order diftereimce real data
involve at most second degree of non-stationarity.

Identify the Model by ACF and PACF

In order to choose a model, that is to findndq for the ARM A(p, ¢) process in
addition to ACF, one should also take into account the PACR& aee different
types of behaviors for ACF and PACF according to the model. Rad&(p)
model the ACF dies down and PACF cuts off after jagrhe roles are reversed
for M A(p) model. In anARM A(p, q) framework both ACF and PACF dies
down. The decay process can be exponential, sine wave ortarmiaf both
according to the lag. The sample autocorrelation functtdagk is
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1 ,|f k=1
k—1
Tk 2 Th—1,jTk—j

Cov(yiy—1) = =1 if k£=23,...

where

Tk = Tk—1,7 — TkkTk—1,k—j

forj =1,2,....k — 1. ;. can be thought as the sample auto correlation of time
series separated by a lagiafnits with the intervening outcomes are eliminated.
The standard error ofy;, is s,, = +/1/n with t-statisticst,,, = (7xx)/(Sr.,.)-
Similar argument applies in determination of stationaitityz,,, | > 2 for any k,
thenry, is considered to be statistically large.

Estimate the Parameters

Although least-squares can be used, since MA processas/ahedd, maximum
likelihood method is also applicable for parameter estiomst To test whether
a drift term is included in the model,

> 2

s:/v/n

should hold. Herez is the means., is the standard deviation and n is the size
for the sample. Now, we have identifipcandg.

Diagnostic Checking

Check whether the estimated coefficients are statisticadiyifccant underi-
statistics. IfARM A(p, q) fits the model then the residuals should be uncor-
related. In that sense, we should look at the portmante&aattgsstics.

k

Q) =n—d(n—d+2))

=1

_rile)

2
n—d—1_ X(k—p—q)

Select the Model with the Minimum Entropy

Whenp andq are determined we have 3 possible candidates to fit the datseT
areARMA(p, q), AR(p) andM A(q). The one with the minimum Akaike Infor-
mation Criterion defined by:

AIC = —21In(LKL) + 2k,

where LKL is the likelihood function and is the number of parameters that
should be estimated is our model.
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5.5.3 Jarque-Bera Normality Test

This test proposed by Jarque and Bera (1980)[2/7, 28, 29] ynedmicentrates on the
skewness and kurtosis of the sample data. In order for thplsambe generated from
a normal distribution one should expect the skewness artddsito be equal to zero.
In Jarque-Bera test having a kurtosis of zero is equivalehate it less than 3. The
Jarque-Bera test statistics is defined as follows

(g, (K=37
JB_6<S+ ).

wheren is number of observations, and K denote skewness and kurtosis given by

%Z(%—f)g %Z(%’—i’f
S: =1 ,K: =1

( Z:zn:l (2; — x)Q) 320

7 being the sample mean.

n

3=

For sample sizes of 2000 or larger, this test statistic asytcplly converges to a Chi-
squared distribution with 2 degrees of freedom (normabtyejected if test statistic
exceeds Chi-squared value).
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CHAPTER 6

OUR CDS SPREAD MODEL

6.1 Motivation

Enders and LeE[20] constructed a unit root test by usage wfid¢tcseries in order to
approximate smooth breaks. Their approach comes from théhat exact break time
cannot be known a priory. Therefore, a slight modificatioDafkey-Fuller test has
been proposed by the following manner

Y = d(t) + pyi—1 + T + .

d(t) is defined by using the Fourier expansion
2kt 2kt T
—ozo—i-ZoszIn( ) Zﬁkcos< - ) ; n< o

wheren is frequency and’ is number of observations. Becker, Enders and Hurn [7]
showed that structural changes are caught in low frequen@a the other hand, as
pointed out by Enders and Lee [20] , Becker et al.[]7, 8] and Ended Jones[19],
higher frequencies of the Fourier terms approximates tbehsistic components of
the series. Therefore, by using the low frequencies of Eoteirms, we modeled the
structural breaks (pure jumps) and similar issues in detestic components and with
high frequencies we modeled the other stochastic compsmdrthe series such as
seasonality, stochastic volatility, spikes, etc. Hengee&timating the series in hand,
this approach leads us to obtain a better forecasting enuati

6.2 Our Model

6.2.1 The Algorithm

Our model takes into account very general time series. Amylmearity, structural
breaks (i.e., pure jumps), any mean reverting breaks $p&es, volatility clustering,
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stochastic volatility, etc.), can be considered. Morepwerlet the time series be peri-
odic in the entire real line, thus we do not confine ourselaesihounded domain. For
forecasting purposes, our algorithm applies only to statip series. An identification
procedure algorithm is defined as follows

Step 1Apply the linear unit root tests to series defined in SectidnlsIf the test fails
then employ more general non linear unit root tests in Se@&ib.2. These tests also
identify the structure of the series in hand with respectracsural break in determin-
istic components, linearity or non linearity in the stodimsomponent. Notice that by
employing these newly proposed tests, the generality aliiow the testing procedure
increases. If the series are stationary, i.e., one of thie sé®w that there is no unit
root then follow Step 2.

Step 2Consider the time dependent function[22]

ft) = i <aksin (QWTM) + Bkcos<2%kt)) )

k=1

Evaluate the function fok = 1 and estimate the parameters andb; with least-
squares. Then demean the original series by this moving aciifiting average.

Step 3Use Box-Jenkins test to determipandg in an ARM A(p, q) framework. Make
diagnostic check for the residuals with Jarque-Bera testofinality is satisfied then
stop the procedure. Otherwise, go back to Step 2, increaskeeuency by one and
demean the original series with this new moving and fluchgediverage.

Step 4If the normality is achieved for the residuals term frohi® M A(p, g) model
then the model is ready for forecasting and the transfoondtiom stochastic differ-
ence equation space to stochastic differential equatiacespy using Hull and White
[23] SDE. Otherwise return to step 2.

Once the process is terminated we end up with the followingeho

p q
y = f(t) +e+ Z PilYi—i + Z Oici—i
i=1 i=1

However, notice that since our series exhibit stationamityving average model can be
transformed to anl R(1) process by the ergodicity condition. Moreover, the Fourier
expansion has the capability of mimicking the moving avereggardless of the lag.
Therefore, under stationarity, we end up with the followaxgpansion as the forthcom-
ing theorem asserts,

yr = f(t) + a1 + e (6.1)

Theorem 6.1. Any stationary time series can be represented byAdt(1) process
together with a Fourier series (i.e. can be approximated badigl Fourier sum).
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Proof. SubtractAR(1) process from any type of serigswhich includes structural
break, non linearity or any type of anomalies in the data gimey process.

p
Ys — Z Piyi—i + &= f(t).
i=1

By Drichlet conditions we can approximate the nonlinear fiomcf (¢) as stated below:

T/2

ft) = ;ak sin (2%]“) + By cos <27TTM> :

From the definition ofAR(1), we know that it is stationary and the residual term is
gy N(O, 0'2). [

Our aimis to represent the series with a mean reverting psoghich fluctuates around
our moving and fluctuating average together with normalstributed residual terms.
The normality of the residual terms renders us to transfarnpoocess in discrete time
to continuous time in an easy and intuitive manner, as wikkaained below.

6.2.2 Transformation to Continuous Time

From the discussion in Section 5.5[2 {6.1) can be transfdrimehe following Hull
and White Model
dy(t) = (f(t) — y(t))dt + odW (t) (6.2)

wheres > 0 andWW (t) is a standard Wiener process.

The solution of[(6.R) is

dy(t) = (f(t) — y(t))dt + cdW (2),
= d(e'y(t)) = e'y(t)dt + e'dy(t) = e'y(t)dt + €' ((f(t) — y(t))dt + odW (1)),
= elyt)dt + e f(t)dt — ely(t)dt + aetdW (t) = e' f(t)dt + oe'dW (t)

t t

= ey(t) =y(0) + /esf(s)ds + a/ede(s),

t t

= uO =0+ [ s o [raws),

0 0

For further discussion in SDEs séé[[2] 9, 23,2432, 33, 45@h
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CHAPTER 7

APPLICATION OF THE MODEL TO THE CDS SPREAD DATA

7.1 Description of the Data

Our data is obtained from Itraxx 125 index, which is the pidame for the family of
CDS index products including the regions of Europe, Ausdralapan and non-Japan
Asia. Itraxx 125 forms a huge sector of the whole credit denes. It involves credit
default swap (CDS) premiums for loan payers from seven @iffesectors namely
automotive, industry, consumer, energy, financial (s@niamancial (sub) and non-
financial with a maturity of 10 years. Unlike a CDS traded oherd¢ounter the data, we
are dealing forms a CDS index which is completely standaddizedit security traded
in an organized liquid market.[|[4, 26,147,158] take into actotlhe determination
of CDS spreads. Our approach, briefly explained in Chapter 6cmnagpletely new
approach. The data are daily and quite rich in number (mane 2000 observations).
In the plots the horizontal denotes the day and the vertiaaldenotes the CDS spread
premium in terms of bps. The FigulesI 1|7 2[7. {74, BT below are time series
plotting of the sector based CDS spreads beginning from Z0R2. for 2040 days.
Figure[7.8 is the depiction of their simple average.
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Figure 7.1: ITraxx 125 CDS spread for automotive sector.
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Figure 7.2: ITraxx 125 CDS spread for industry sector.
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Figure 7.3: ITraxx 125 CDS spread for consumer sector.
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Figure 7.4: ITraxx 125 CDS spread for energy sector.
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Figure 7.5: ITraxx 125 CDS spread for financial senior sector.
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Figure 7.6: ITraxx 125 CDS spread for financial sub sector.
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Figure 7.7: ITraxx 125 CDS spread for non financial sector.
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Figure 7.8: Simple average of the seven sectors compriiagxl 125 index.
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Figure 7.9: ITraxx 125 CDS spreads for seven sectors anddbeiage.

Looking at Figurd_7]9, we can see certain dates in which ttewer of the series
exhibit “jumps”. Another way of saying that is, there are éisnwhere the movement
cannot be explained by Brownian motion.

One can also realize a strong correlation among sectorsoynig at the graphs. It is
also likely that the mean has changed after some time. Mergava glance, it seems
probable that certain mean reverting type structures oedur

The major structural break corresponds to the 2008 finandgs. CDSs exhibit sim-
ilar structural break during times of crises despite of thetar. Towards the end,
we see high volatility particularly for financial sub and faczal senior sectors. This is
mainly due to the unorthodox expansionary monetary palicamely quantitative eas-
ing applied by FED. Major central banks throughout the wésdgian to follow loose
monetary policies in order to boost up economies. Howewes,further diminished
the credibility of the financial sector. This is the reasonHigh CDS spreads pertain-
ing to financial sector. Since, financial sub sector is molaerable to shocks than
financial senior sector; its CDS spread was highest. CDSsewrdh non-financial
sector is the least liquid market compared to other CDSs. e€fbix there are times
when lack of demand is at stage. Due to this reason we songetiegsome constant
and then sharp movements.

7.2 Analysis of the Data

We took into account the cross correlation among the senes gn Definition 5.6.
The chart below gives the correlation coefficients of the mseaf CDS spreads com-
prising the CDO:
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Table 7.1: Cross correlation of the series (correlation efrtfeans).

Automotive | Industry | Consumer Energy| Senior Fin.| Sub Fin.| Non Fin.

Automotive 1.000 0.905 0.872 0.785 0.506 0.486 0.610
Industry 0.905 1.000 0.942 0.842 0.544 0.522 0.768

Consumer 0.872 0.942 1.000 0.837 0.573 0.559 0.774
Energy 0.785 0.842 0.837 1.000 0.833 0.803 0.809

Senior Fin. 0.506 0.544 0.573 0.833 1.000 0.992 0.782
Sub Fin. 0.486 0.522 0.559 0.803 0.992 1.000 0.774

Non Fin. 0.610 0.768 0.774 0.809 0.780 0.774 1.000

Having examined the high correlation coefficients amongntieans, we take the av-
erage of the series and considered it as a “representalie’se findings also support

our Lévy copula framework. Now we follow Step 1 and apply agrtunit root tests

to the data for checking stationarity. The data passes K8®artests as seen below.
Moreover it almost passes EL test for=3 which is 3 Fourier series terms. When

Fourier terms are increased beyond 3, EL test is also passed.

Table 7.2: Unit root test results.

ADF | EGF| EGt KSS | LNV | SolisF| Solist| OY EL
Model 1| -1.155| 0.783| -0.389| -3.726* | -3.045| 4.955 | -3.021| -4.919* | -1.719
Model 2 -2.989| 4.096 | -2.762| -5.024* | -2.861
Model 3 -3.831* | -3.047| 4.956 | -3.034| -5.035* | -2.878
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Table 7.3: Critical values for unit root tests.

10% 5% 1%
ADF -2.580 | -2.890| -3.510
EG EGF | 3.740 | 4560 | 6.410
EGt 5.150 | 6.080 | 8.120
LNV | Model 1| -3.797 | -4.103 | -4.685
Model 2 | -4.277 | -4.565| -5.141
Model 3| -4.552 | -4.825| -5.420
KSS | Model 1| -1.920| -2.220| -2.820
Model 2| -2.660 | -2.930 | -3.480
Model 3| -3.130 | -3.400 | -3.930
Solis F| Model 1| 7.706 | 8.845 | 11.620
Model 2| 9.995 | 11.309| 13.733
Model 3| 11.234| 12.558| 15.392
Solist | Model 1| -3.119 | -3.356 | -3.820
Model 2 | -3.495| -3.731| -4.159
Model 3| -3.671| -3.897 | -4.368
OY | Modell| -3.489| -3.801| -4.412
Model 2| -3.879| -4.180 | -4.757
Model 3| -4.053 | -4.370 | -4.969

After achieving stationarity, we move to Step 2 and then Steprom the unit root
tests, we also identified the structure of the series as oed,to the reason that the
alternative hypothesis of the series included testabletmgsis such as nonlinear sta-
tionarity, structural break and stationarity and nonlnitgaaround a structural break.
These identifications are helpful for our modeling, becatsse structures are well
approximated by Fourier series as mentioned above. TheaMatde given in the ap-
pendix shows that our data can be represented by an autessegré process having
a normally distributed error term with constant varianagetber with a finite number
of Fourier terms.

Here are graphical representations of the moving and fltintpaverage obtained by
different number of Fourier series terms give in 110712 and 7.13.

In[Z.12[7.1%,7.76 arid 7.17 below are some graphs of thenearief residuals after de-
meaning certain number of Fourier terms. Notice that algiwaihe variance decreases
gradually, normality is achieved a97'" iteration with the inclusion of arl 2(1) pro-
cess.
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Figure 7.10: Moving and fluctuating average with first Fourggms.
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Figure 7.11: Moving and fluctuating average with first ancbselc-ourier terms.
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Figure 7.12: Moving and fluctuating average with first, secand third Fourier terms.
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Figure 7.13: Moving and fluctuating average with 997 Fourggms together with
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Figure 7.14: Residuals when first Fourier terms are demeaned.
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Figure 7.15: Residuals when first 100 Fourier terms are deatkan
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Figure 7.16: Residuals when first 500 Fourier terms are deatkan
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Figure 7.17: Residuals when first 997 Fourier terms are deatkan
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Table 7.4: Variances of the Residuals

# of Fourier terms | Variance | Normality
1 20,926 No
100 14,516 No
500 2,651 No
997 0,06 Yes
00 0018 0,008 {0,000 000G 018

Figure 7.18: Pdf of residuals when 997 Fourier terms are destk
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CHAPTER 8

FORECASTING OF THE CDS SPREADS WITH OUR MODEL

8.1 Properties of Forecasts

Consider our model presented in Secfiod 6.2 which is

yr = f(t) + ayi1 +er,e0 ~ N(0,07).
Iteration of one period yields

Yer1 = f(t) + ays + g1

Sincef(t) anda are estimated, we are able to foreaast given information available
att as

E(yt+l|yt7 Yt—15 €, Et—1, ) = f(t) + Y.

Similarly since
Yirz = [() + ayipr + Erpo

the forecasting function becomes

]E(yt+z|yt, Yt—1,- -5 €ty €15 - - )
= f(t) + oBE(yg1|ye, -1, .-, €, €21, .. )
= f(t) + alf(t) + ay:).

Further iteration gives the following forecast function

E(esjlYe Yets 061, ) = fE) A +a+ o+ +a/7h) + o'y,

Now since

lim E(yt+j|yt>yt—la ey &t 81, - ) = (f(t))/<1 - a) + lim ajyt
Jj—00 Jj—00
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we can conclude that the conditional forecast convergesi¢onditional mean if the
process is a stationary ARMA type. If the stationarity of tees are not obtained the
forecast function diverges or unidentified in the case &f 1

IO

jlgglo E(?JHJ”ytaytA, €L EI, ) = 1_ o

+ lim o’y = oo. (8.1)
Jj—o0

In next subsection, we apply our moving and fluctuating ayiegatechnique to the
CDS data extensively discussed in Chapter 7.

8.2 Forecasting with Our Model

Let us consider the CDS data presented in Chapter 7, which &s/drage of the seven
sectors comprising the CDO. Now, we wish to compare the acgwaad power of
our model for this particular data set. First we take a simpl(1) process, then
an AR(1) process together with first two Fourier terms and finally cewnechnique
whichis AR(1) process together with 997 Fourier terms. We take 808" data point
as a basis and try to forecast the remaining data up to 2048 reéRults are shown in
Figure[8.1,Figuré 812 and Figure B.3

Forecast of AR1
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Figure 8.1: Forecasting with ahR(1) process.
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Forecast of N=2 Fourier AR1
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Figure 8.2: Forecasting with adR(1) process together with the first and second
Fourier terms.
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Figure 8.3: Forecasting with atR(1) process together with 997 Fourier terms.
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Looking at Figurd 8J1,Figurie 8.2 and Figlirel8.3 above, wedsatuce the following
for the original and demeaned data

1. The AR(1) process is too far from accuracy. Discrepancies from reia dee
inherited into the model and moreover they get wider as tmdex increases as

shown in [811)

2. TheAR(1) model combined with the first two terms of Fourier seriess defi-
nitely better in forecasting than the sold?(1) process. A mean reverting struc-
ture is at stage. However, the oscillations around the meaustdl very high.
Therefore, we proceed with the algorithm that we mentionaati®n 6.2.1.

3. The final model, obtained by usage of our proposed algoritave better fore-
casting power than the above two models. The obtained medekiAR(1)
process with 997 Fourier termis1,...,997 clearly has high accuracy. The vari-
ance around the mean is very low showing us that we can usenthdel for
forecasting purposes. On the other hand, the predictedblas are oscillating
around the moving and fluctuating average with a very smaiamae, demon-
strating that we obtained a robust model for forecastind& spreads.

In the time series literature, the forecasting power of thedeh is used for model
selection, as well. Depending on these findings, we can adadhat we have a well
specified and concrete model.
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CHAPTER 9

CONCLUSION

The synthetic CDO market, comprised of CDSs drew quite a lottehtion due to
high returns compared to sure gains. However, the complexkithis derivative and
problems in its pricing caused the 2008 sub prime crisis whiad a contagious ef-
fect. Here, the default correlation is assumed to be noynealfrelated, rendering us
to extract implied correlation parameter from the exis®@@gO prices. However, due
to this confining assumption, in this thesis, first we aim to@ct this mispricing. This
is done by the introduction of the correlation of jumps amesegtors which can be
regarded as the crisis periods. By this new technique, we aldecto obtain better re-
sults compared to the existing pricing still applied by piteners. The phenomenon,
known as the correlation smile under the pricing via Gauss@pula is corrected in
our model by the introduction of a perfectly dependent Lévguda.

Later we analyzed the underlying CDS spread processes of tl@@ Eere, by the

introduction of our new “moving and fluctuating” averageheigjue comprised of a
partial Fourier sum, we not only introduced a new techniqu@ieable to a specific
data, but also a general model extendable to any statiomaeyseries. The power of
this new technique is the allowance of the modeling in disctiene to be transformed
into a well known and analytically tractable continuousdistochastic differential
equation. Thus, instead of an ad-hoc stochastic diffeakatjuation including jump,
spike and/or stochastic volatility components where thampater estimation is hard
and usually non-solvable, our technique exhibits much easyytic solutions. Here,
the crucial thing and the major contribution is trying to fiadinite sum of Fourier

series terms where the distribution of the residuals armabrTherefore, we not only
tried to avoid usage of known filtering techniques but alscjuded any over fitting
iIssues. Moreover, instead of direct computation, we eséichtne Fourier coefficients,
which is a complete different approach.

Another contribution is the forecasting with our new metblogy. We saw that our
moving and fluctuating average together with&R(1) process is quite powerful in
forecasting compared to other processes.

Throughout the model, the key is the inclusion 4R(1) process in the sense that
usage of only partial Fourier sums is not sufficient to achiesrmality of the residu-
als. Having established the normality of the residual temestransform this discrete
time process to a continuous stochastic differential egnand thus forming a bridge
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between discrete and continuous world.

Moreover, we constructed a model which is not data speciine €an form am R(1)
process with finite number of Fourier series terms for anytray data. The only as-
sumption we need here is stationarity which is quite pldasibthe sense that accurate
forecasting can only be done with it.

We only included original computer codes in the appendix.tRke testing of unit root,
selection of lag, determination of the Fourier coefficieatsl their significance and
graphical representations, various Matlab and Winratesade used. Part of them are
in package form and can be found anywhere. Most are alreanlydied in Matlab,
Winrats and Eviews as specific codes. Even one can find sonmeeof in Excel.
However, if still requested, those codes can also be given.

As mentioned before, we proposed a new technique which @atatspecific and has a
very high forecasting power. We believe that our model wileggood forecast results
when applied to other time series as well. Our model giveh@gléxibility to trans-
form any data in discrete time, into a well known stochasiifeential equation. As
a future study, one can generate data from stochastic efiffiat equations, including
jumps and stochastic volatility, then use our techniquefess it in the form of Hull
and White model and compare the simulation results.
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APPENDIX A

Normality Test Results

Table A.1: Normality test results

JB value
k | without AR | with AR
1 1696.66 | 25697.19
2 1666.95 | 25372.82
3 1321.40 | 24951.07
4 971.77 24689.43
5 1137.25 | 24274.09
6 2753.32 | 23566.25
7 2530.65 | 23411.05
8 2218.51 | 22819.04
9 2396.25 | 22346.14
10 1797.96 | 22162.81
100 6416.25 | 15734.38
101 6506.51 | 15761.95
102 6632.51 | 15796.36
103 6791.96 | 15924.30
104 6957.53 | 16119.95
105 6992.36 | 16295.49
106 7425.07 | 16873.11
107 7593.39 | 17124.48
108 7692.78 | 17178.45
109 7848.88 | 17229.13
200 | 19314.07 | 21934.58
201 | 18782.85 | 21264.90
202 | 18381.90 | 20582.26
203 | 18102.82 | 20172.59
204 | 18049.30 | 20110.50
205| 18874.58 | 19953.77
206 | 17639.35 | 19704.45
207 | 17904.22 | 19903.35
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JB value

k | without AR | with AR
300| 20397.13 | 17252.27
301 | 20617.44 | 17588.55
302 | 20924.96 | 18037/44
303 | 20959.53 | 18067.64
304 | 21273.48 | 18217.59
305| 21604.30 | 18431.70
306 | 21609.17 | 18436.46
307 | 21743.30 | 18516.88
308 | 21771.01 | 18594.76
309 | 21804.50 | 18660.68
400 | 37748.76 | 36605.39
401 | 37616.82 | 36347.54
402 | 37744.45 | 36635.47
403 | 37622.41 | 36356.59
404 | 37538.81 | 36123.09
405| 37173.60 | 35709.88
406 | 37619.54 | 36209.12
407 | 38365.10 | 36890.89
408 | 38244.38 | 36689.74
409 | 39293.48 | 37867.14
500| 26192.25 | 27396.68
501 | 25999.09 | 26987.15
502 | 25641.55 | 26387.46
503 | 25222.65 | 25629.53
504 | 24894.70 | 24930.87
505| 24615.60 | 24268.13
506 | 24533.73 | 23849.34
507 | 24410.54 | 23377.97
508 | 24106.60 | 22923.76
509 | 23732.27 | 22319.84
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JB value

k | without AR | with AR
600 | 21203.67 | 19701.37
601 | 21967.24 | 20718.63
602 | 22665.59 | 21975.61
603 | 23169.25 | 22469.14
604 | 24218.92 | 24076.64
605| 24000.55 | 23647.69
606 | 23854.41 | 23268.31
607 | 23869.78 | 23202.91
608 | 23954.91 | 23306.35
609 | 24283.94 | 23678.35
700 | 21590.62 | 16043.39
701| 21101.79 | 15746.76
702 | 20607.89 | 15267.12
703 | 20362.54 | 15186.81
704 | 20019.22 | 14803.39
705 | 19726.43 | 14552.50
706 | 19570.10 | 14352.26
707 | 19553.72 | 14170.40
708 | 19411.10 | 13929.74
709 | 19235.04 | 13602.34
800 | 25598.18 | 6691.66
801 | 25269.18 | 6503.55
802 | 24884.61 | 6302.83
803 | 24456.19 | 6069.20
804 | 24370.50 | 6031.54
805 | 24419.89 | 6145.07
806 | 24482.00 | 6095.74
807 | 25286.86 | 6187.15
808 | 25959.22 | 6304.02
809 | 27634.50 | 6938.01
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JB value

k | without AR | with AR
900 | 14502.42 | 7966.29
901 | 14519.84 | 7970.06
902 | 14392.66 | 7901.58
903 | 14302.42 | 7894.53
904 | 14254.62 | 8025.81
905| 14083.39 | 8012.09
906 | 14028.36 | 8122.11
907 | 13789.01 | 7833.52
908 | 13746.58 | 7678.11
909 | 13607.99 | 7474.80
990 587.79 373.21
991 526.53 324.38
992 378.43 167.16
993 307.79 158.50
994 211.39 124.87
995 95.15 32.08
996 108.95 27.71
997 62.27 1.65
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APPENDIX B

Sine Fourier Coefficients and Their Significance

Table B.1: Sine Fourier Coefficients and Their Significance

Term | Coefficient| t-statistics| Significance
1 -41.96 -2.80 0.01
2 49.23 6.53 0.00
3 -38.74 -1.77 0.00
4 15.34 4.08 0.00
5 -10.49 -3.50 0.00
6 -22.73 -9.12 0.00
7 8.55 3.98 0.00
8 -11.73 -6.27 0.00
9 11.76 7.02 0.00
10 -5.76 -3.85 0.00
100 -1.36 -9.66 0.00
101 0.05 0.34 0.74
102 -0.52 -3.73 0.00
103 -0.88 -6.43 0.00
104 -0.53 -3.91 0.00
105 0.38 2.80 0.01
106 -1.99 -15.06 0.00
107 0.52 3.98 0.00
108 -0.33 -2.50 0.02
109 -0.60 -4.67 0.00
200 0.21 3.59 0.00
201 0.45 7.53 0.00
202 -0.35 -6.00 0.00
203 0.48 8.27 0.00
204 -0.30 -5.20 0.00
205 0.43 7.55 0.00
206 -0.05 -0.97 0.34
207 -0.40 -7.10 0.00
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Term | Coefficient| t-statistics| Significance
300 -0.27 -9.80 0.00
301 0.44 15.91 0.00
302 0.13 4.57 0.00
303 -0.03 -1.04 0.30
304 -0.39 -14.29 0.00
305 0.06 2.36 0.02
306 -0.01 -0.37 0.71
307 0.11 4.07 0.00
308 0.00 0.08 0.94
309 -0.01 -0.37 0.71
400 0.08 7.18 0.00
401 -0.18 -16.61 0.00
402 -0.25 -23.53 0.00
403 -0.08 -7.81 0.00
404 -0.20 -19.59 0.00
405 0.15 2.80 0.01
406 -1.99 14.17 0.00
407 -0.01 -1.16 0.25
408 -0.05 -4.50 0.00
409 0.28 28.14 0.00
500 0.04 14.87 0.00
501 0.11 38.94 0.00
502 -0.32 -119.53 0.00
503 0.16 68.48 0.00
504 -0.25 -108.48 0.00
505 0.20 89.05 0.00
506 -0.07 -32.32 0.00
507 -0.08 -34.70 0.00
508 0.16 69.87 0.00
509 -0.12 -53.20 0.00
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Term | Coefficient| t-statistics| Significance
600 -0.01 -2.54 0.01
601 0.07 12.91 0.00
602 -0.16 -29.56 0.00
603 0.12 23.37 0.00
604 -0.17 -31.76 0.00
605 0.03 5.99 0.00
606 -0.17 -29.63 0.00
607 0.01 1.32 0.19
608 0.06 10.52 0.00
609 -0.16 -27.44 0.00
700 -0.07 -9.33 0.00
701 0.24 37.07 0.00
702 -0.19 -25.59 0.00
703 0.16 21.56 0.00
704 -0.04 -6.25 0.00
705 0.00 0.39 0.70
706 0.17 24.23 0.00
707 -0.20 -27.79 0.00
708 0.14 18.50 0.00
709 0.00 0.40 0.69
800 -0.01 -2.13 0.04
801 -0.03 -3.87 0.00
802 0.07 10.14 0.00
803 -0.01 -2.22 0.00
804 0.03 4.53 0.00
805 0.04 6.23 0.00
806 0.01 2.24 0.03
807 0.00 0.51 0.62
808 -0.03 -4.47 0.00
809 0.06 8.50 0.00
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Term | Coefficient| t-statistics| Significance
900 0.01 2.36 0.02
901 0.00 0.61 0.54
902 0.01 2.97 0.00
903 0.00 -0.42 0.68
904 -0.01 -1.29 0.20
905 0.02 4.94 0.00
906 -0.01 -2.52 0.02
907 0.01 2.81 0.01
908 0.01 1.81 0.08
909 -0.01 -2.25 0.03
990 0.00 0.40 0.69
9901 0.00 2.06 0.05
992 0.00 -0.77 0.45
993 0.01 2.34 0.02
994 0.00 -1.64 0.11
995 0.01 3.16 0.00
996 0.00 -0.41 0.69
997 0.01 2.18 0.04

78




APPENDIX C

Cosine Fourier Coefficients and Their Significance

Table C.1: Cosine Fourier Coefficients and Their Significance

Term | Coefficient| t-statistics| Significance
1 0.37 8.12 0.00
2 35.04 307.10 0.00
3 -3.78 -76.39 0.00
4 -6.51 -120.91 0.00
5 22.63 283.31 0.00
6 -15.69 -214.91 0.00
7 -0.70 -14.96 0.00
8 -2.66 -55.22 0.00
9 -6.41 -119.06 0.00
10 1.31 28.69 0.00
100 0.17 3.69 0.00
101 -0.18 -4.08 0.00
102 0.24 5.37 0.00
103 1.13 25.26 0.00
104 -1.03 -22.58 0.00
105 1.53 34.21 0.01
106 -0.48 -10.66 0.00
107 -0.92 -20.16 0.00
108 -0.34 -7.54 0.00
109 -0.33 -7.34 0.00
200 -0.95 -22.14 0.00
201 0.77 18.42 0.00
202 -0.95 -22.46 0.00
203 0.38 8.97 0.00
204 -0.63 -14.98 0.00
205 0.21 5.04 0.00
206 0.37 8.98 0.00
207 0.35 8.32 0.00
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Term | Coefficient| t-statistics| Significance
300 -0.25 -6.83 0.00
301 -0.50 -13.30 0.00
302 0.47 12.75 0.00
303 0.03 0.83 0.41
304 0.22 6.12 0.00
305 -0.46 -12.28 0.00
306 0.00 -0.09 0.93
307 -0.14 -3.74 0.00
308 -0.15 -3.98 0.00
309 0.09 2.50 0.02
400 -0.21 -6.69 0.00
401 0.38 12.26 0.00
402 -0.37 -12.10 0.00
403 -0.36 -11.74 0.00
404 -0.07 2.16 0.04
405 -0.15 -4.93 0.00
406 -0.01 0.45 0.66
407 0.08 2.63 0.01
408 -0.07 -2.40 0.02
409 -0.01 -0.33 0.75
500 -0.21 10.65 0.00
501 0.36 15.28 0.00
502 -0.12 -5.23 0.00
503 0.01 0.61 0.55
504 0.04 1.62 0.11
505 -0.25 -10.58 0.00
506 0.24 1.62 0.00
507 -0.20 -8.60 0.00
508 -0.04 -1.76 0.09
509 0.10 4.10 0.00
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Term | Coefficient| t-statistics| Significance
600 -0.01 -0.59 0.56
601 0.16 9.34 0.00
602 -0.02 -1.18 0.24
603 0.09 5.54 0.00
604 0.09 5.47 0.00
605 0.10 5.94 0.00
606 -0.06 -3.55 0.00
607 -0.06 -3.86 0.00
608 0.04 2.63 0.01
609 -0.13 -8.01 0.00
700 -0.16 -15.23 0.00
701 0.08 7.59 0.00
702 0.05 4.45 0.00
703 -0.14 -13.01 0.00
704 0.12 11.88 0.00
705 -0.14 -13.89 0.00
706 0.12 11.39 0.00
707 0.07 6.63 0.00
708 -0.13 -8.58 0.00
709 0.16 16.38 0.00
800 -0.05 -8.79 0.00
801 -0.01 -1.55 0.13
802 -0.07 -11.56 0.00
803 0.05 8.36 0.00
804 -0.07 -13.53 0.00
805 0.06 10.35 0.00
806 -0.02 -2.99 0.00
807 0.08 15.11 0.00
808 -0.05 -10.40 0.00
809 0.07 12.62 0.00
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Term | Coefficient| t-statistics| Significance
900 -0.02 -8.46 0.00
901 0.00 0.68 0.50
902 -0.01 -3.64 0.00
903 0.02 6.77 0.00
904 -0.04 -13.44 0.00
905 0.01 5.28 0.00
906 -0.01 -4.92 0.00
907 -0.01 -3.37 0.00
908 0.01 2.77 0.01
909 -0.01 -4.32 0.00
990 0.00 -1.69 0.10
9901 0.00 0.41 0.68
992 0.00 -1.61 0.12
993 0.00 0.32 0.75
994 0.00 -1.13 0.26
995 -0.01 -2.89 0.01
996 0.00 2.24 0.03
997 -0.01 -2.58 0.01
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APPENDIX D

Matlab Codes

[Default Tines|
function Gaussi an_Copul a = Guss(n, r)

R=ones(n, n);
i=1:n;
j=1:n;

if i~
R(i,j)=r;
end

h=0;

for i=0.025:.025:.975
h=h+1;
k=0;
for j=0.025:.025:.975
X=[i:j];
k=k+1;
U=nor m nv(X);
bl ock1=1/ (det (R) *0.5);
bl ock2=-0.5+xU (i nv(R)-ones(n, n))*U,
gauss_gri d(h, k) =bl ock1lxexp(bl ock2);
end
end
surf(gauss_grid)

end

Cash Fl ow
function [ PV_def, PV _premium]=cash _flow expiry,def tine,rec,zc rate,...
capital, C D)

% Conput ati on of Default and Premi um Legs of a CDO
% expiry : CDO maturity

% def_time : simulated default tine

% zc_rate : constant zero coupon rate

% capital : notional ampunt
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% C. attachnent
% D. det achnent

PV_def =0;
PV_prenm um=0;
nunrsi ze(def _time, 2);
| oss=zeros(num 1); % default for each credit
tot | oss=0; %unul ative portfolio |oss
periodi c_|l oss=zeros(expiry,1l); % accunul ated | oss at each paynent
out _capital =zeros(expiry,1); % outstanding tranche capital
fee=zeros(expiry,1);
total fee=0;
i ndi cat or =0;
c=0;
% calculate total loss in k th simulation
for i=1:num
if def_tine(l,i)<expiry %there certainly is a |loss when sinul ated
% default tine is less than CDO maturity
loss(i)=(1l-rec)+capital;
tot | oss=tot | oss+l oss(i); % sum of individual |osses
end
end

% % DEFAULT LEG SI MULATI ON % %

%if loss is below the attachnent point C there’'s no default paynent
if tot | oss<C
PV_def =0;
%if |loss is above C and below D there’s default paynent
el seif tot_loss>C & tot_I| oss<D
for i=1:num
if def_time(l,i)<expiry
i ndi cat or =i ndi cator +l oss(i); %unul ative loss is nenorized
if indicator>C %tranche begins to absorbe | osses above C%
if c==
di sc_fact_def=0;
r=zc_rate;

di sc_fact_def=(1+r)~(-def _tinme(1,i)); %discount factor

% at default
PV_def =PV_def +(i ndi cat or- C) »di sc_fact _def;

% only the | oss exceeding Cis absorbed

c=1;

el se
di sc_fact _def =0;
r=zc_rate,;
di sc_fact_def=(1+r)"(-def _time(1,i));
PV_def =PV_def +l oss(i)*di sc_fact _def;

end

end
end
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end
%if portfolio loss is above D, tranche absorb | osses only up to D
elseif tot | oss>D
for i=1:num
if def time(1,i)<expiry
i ndi cat or =i ndi cat or +l oss(i);
if indicator>C & indicator<D %if the |osses are in C-D range
if c==0
di sc_fact _def =0;
r=zc_rate
disc_fact _def=(1+r)~(-def tinme(1,i));
PV_def =PV_def +(i ndi cat or- C) *di sc_fact _def;
c=1;
el se
di sc_fact _def =0;
r=zc_rate
di sc_fact_def=(1+r)"(-def _time(1,i));
PV_def =PV_def +l oss(i ) *di sc_fact _def;

end
el sei f indicator>D
if c==
di sc_fact_ def=0;
r=zc_rate;

di sc_fact_def=(1+r)~(-def time(1,i));
absorbed | oss=D- (i ndicator-loss(i));

PV_def =PV_def +(absor bed_| oss*di sc_fact_def);
c=2;

end
end
end
end
end

% % PREM UM LEG SI MJLATI ON % %

for i=l:expiry
periodi c_| oss(i)=0;
for j=1.num
if def _time(i,j)<
% cal cul ated the accunul ated portfolio | osses
periodi c_l oss(i)=periodic_|loss(i)+(1l-rec)+*capital
end
end
out _capital (i)=m n(max(D-periodic_loss(i),0),DC
% out st andi ng capital at each paynent
fee(i)=((1l+zc_rate)”(-i))*out _capital (i);
PV_prem um=PV_prem umtf ee(i);
end
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[CDO Tranches |
function [ price_eq,price_nezz,price_sen | = CDO tranche(ref_ent, T,k )
% fair price of tranches of a synthetic CDO

% ref _ent : # of reference entities

% T : maturity

% k : # of sinulations

tic

%initialize a vector of zeros for each tranche

CDO Pl=zeros(5,5);

CDO _P2=zeros(5,5);

CDO _P3=zeros(5,5);

%initialize a vector of zeros for different recoveries
Recovery =zeros(ref_ent,5);

hazar d=zeros(5, 1) ;

% obligors spread is set to 150 bps

spread=150/ 10000;

% hazard rate=spread/ (1-recovery)
% cal cul ate the correspondi ng hazard rate

for rec_cycle=1:5
Recovery(:,rec_cycle)=(.2+xrec_cycle)-.2;

% Recovery(:,rec_cycle)=0.4;

% recovery is from0%to 80%
hazard(rec_cycl e) =spread/ (1- Recovery(1,rec_cycle));

end

ZC=0.05; %constant interest rate

Anount =zeros(ref _ent, 1); %vector of notional anmount for each credit
Amount (:)=100; % each credit has 100 units of notional anount
C=zeros(3,1);

D=zeros(3,1);

% fix three attachnment (0% 3% 1499 and detachnent (3% 14% 100% points
C(1)=(0/100) *sun{ Anount) ;

D(1) =(3/100) *sum Anount ) ;

C(2)=(3/100) *sun{ Anount ) ;

D(2) =( 14/ 100) * sunm( Ammount ) ;

C(3) =(14/ 100) *sum( Anount ) ;

D(3) =(100/ 100) *sum( Anount ) ;

ti me=zeros(ref_ent,1);
i ndex=zeros(ref_ent, 1);

R=[0:.2:0.8]; %constant pairwi se correlation from0%to 80%
% correl ation | oop
for Rcycle=1:5
for xx=1:ref _ent
for yy=1:xx
i f xx==yy
corr(xx,yy)=1;
el se
corr(xx,yy)=R(R_cycle); % populate correlation matrix
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corr(yy, xx) =R(R_cycl e);
end
end
end

def t=gaussian_tine(corr,k,ref_ent);
% generate default tines with gaussian copula and constant hazard rate

S fees=zeros(5, 3);

% dumry variable for nenorizing the sinulated paynent |eg

S defaul t =zeros(5, 3);

% dumry variable for nenorizing the sinulated default |eg

M f ees=zeros(5, 3);

M def aul t =zer os(5, 3);

% vari abl e nenorizing the paynent |eg for each | oop of recovery&corr

for n=1:k % simulation | oop begins
for rec_cycle=1:5 % recovery | oop begins
[time,index]=sort(def_t(n,:));
% sort vector of default tines
tau=[time./hazard(rec_cycle);index];
%generate vector of default times by dividing the corr. hazard rate
for u=1:3 %start the loop for each tranche
recovery=0;
f ees=0;
% cal cul ate the default and prem um | egs
[defaul t, fees]=
cash_flow T, tau, Recovery(1,rec_cycle), ZC, Amount (1), C(u), D(u));
S fees(rec_cycle,u)=S fees(rec_cycl e, u) +f ees;
S default(rec_cycle,u)=S default(rec_cycle, u)+defaul t;
end
end
end
for u=1:3
for rec_cycle=1:5
M fees(rec_cycl e,u)=S fees(rec_cycle, u)/Kk;
M defaul t (rec_cycl e, u)=S default(rec_cycle,u)/k
% average default |eg
end
end

for rec_cycle=1:5
CDO P1(R cycle,rec_cycle)=(Mdefault(rec_cycle, 1)/
(M fees(rec_cycle,1)))*10000; % spread for 0% 3% tranche
CDO P2(R cycl e, rec_cycle)=(M default(rec_cycle,2)/
(M fees(rec_cycle, 2)))*10000; % spread for 3% 14%tranche
CDO P3(R cycle,rec_cycle)=(Mdefault(rec_cycle,3)/
(M fees(rec_cycle, 3)))*10000; % spread for 14% 100% tranche
end
end

pri ce_eq=CDO _P1;
price_nmezz=CDO P2;
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price_sen=CDO P3;

figure(l)

surf((0:.2:.8),R price_eq);

title(' Equity Tranche (0% 3%’ )

xl abel (" Recovery’);

yl abel (" Correl ation’);

zl abel (" Tranche spread (bps per annum’);

figure(2)

surf((0:.2:.8),R price_nezz);

title(’ Mezzai ne Tranche (3% 14% ')

x| abel (" Recovery’);

yl abel (' Correl ation’);

zl abel (" Tranche spread (bps per annum’);

figure(3)

surf((0:.2:.8),R price_sen);

title(’ Senior Tranche (14% 100% ')

x| abel (" Recovery’);

yl abel (" Correl ation’);

zl abel (" Tranche spread (bps per annum’);

toc
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