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Business Administration, METU

Prof. Dr. Gerhard Wilhelm Weber
Financial Mathematics, METU

Assoc. Prof. Dr. Azize Hayfavi
Financial Mathematics, METU

Assoc. Prof. Dr. Ece Ceylan Karadağlı
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ABSTRACT

MODELING CORRELATION STRUCTURE FOR COLLATERALIZED DEBT
OBLIGATIONS AND DETERMINING THE UNDERLYING CREDIT DEFAULT

SWAP SPREAD EQUATIONS

İlalan, Deniz

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor : Assoc. Prof. Dr. Tolga Omay

January 2015, 89 pages

Pricing complex financial derivatives such as collateralized debt obligations (CDOs)
is considered as the main reason triggering the 2008 financial crisis. The correlation
structure related to the credit risks involved in a portfolio for pricing issues have been
tried to overcome via a Gaussian copula framework first introduced by David Li. This
approach regards the correlation among the credit risks as normally distributed, en-
abling us to derive analytical solutions. However, despiteits simplicity, this Gaussian
copula approach is far from reality, which caused mispricing of the tranches of CDOs.
This phenomenon is called the correlation smile. Firstly, this thesis approaches the cor-
relation smile issue by considering a Lévy copula framework. When this is introduced
to pricing equations we saw that the correlation smile is “corrected”. Thus, we came up
with a more accurate model of pricing the above mentioned tranches. The second part
of the thesis aims to model the Itraxx 125 CDS spreads for different sectors which com-
prise the CDO. Here, we introduce an autocorrelation one process together with finite
number of Fourier series terms. Introduction of Fourier series to estimate the dynam-
ics of the process is not done in an ad-hoc manner or as done before in dealing with
seasonality. Here the moving average is transformed to a “moving and fluctuating”
average by the help of Fourier series. The rationale behind this “moving and fluctuat-
ing” averaging technique is due to its capability in removing high frequency structures
like breaks, spikes and stochastic volatility. Instead of adding jump structures to the
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model which makes the parameter estimation quite cumbersome, our model in dis-
crete time can easily be transformed to a well-known mean reverting continuous time
process. Moreover, our alternative model is a quite powerful and accurate forecasting
technique.

Keywords: Collateralized Debt Obligation (CDO), Credit Default Swap (CDS), Cop-
ula, Fourier Series, Forecasting
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ÖZ

TEMİNATLI BORÇ YÜKÜMLÜLÜKLER İ İÇİN KORELASYON YAPISININ
MODELLENMEṠI VE BUNA TEMEL TEŞKİL EDEN KREDİ TEMERRÜT

TAKASI PRİM DENKLEMLERİNİN BELİRLENMEṠI

İlalan, Deniz

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Ortak Tez Yöneticisi : Doç. Dr. Tolga Omay

Ocak 2015, 89 sayfa

Teminatlı borç yükümlülü̆gü (TBY) gibi karmaşık finansal türev ürün fiyatlamasının
2008 krizini tetikleyen ana unsur olduğu düşünülmektedir. Fiyatlama problemi, port-
föy içerisindeki temerrüt risklerinin birbirleriyle olankorelasyon yapısının ilk kez
David Li tarafından önerilen Gauss bağlantısı sayesinde aşılmaya çalışılmıştır. Bu
yaklaşım temerrüt korelasyonlarının normal dağıldığını varsaymak suretiyle analitik
çözümler bulmamıza olanak tanımaktadır. Ancak basitliğine răgmen Gauss bağlan-
tısı yaklaşımı gerçekten oldukça uzak olduğundan ötürü TBY’ne ait bölmelerin yanlış
fiyatlanmasına sebep olmuştur. Buna korelasyon gülümsemesi adı verilmektedir. Bu
tezde ilk olarak Lévy băglantısı kavramı kullanılmak suretiyle bu korelasyon gülümse-
mesine yaklaşılmaktadır. Bunun fiyatlama denklemlerine dahil edildiğinde korelasyon
gülümsemesinin düzeldiğini gördük. Dolayısıyla yukarıda bahsi geçen kısımların daha
doğru fiyatlamasını yapan bir modelle karşı karşıyayız. Tezin ikinci kısmı ise TBY’ni
oluşturan Itraxx isimli 125 adet kredi temerrüt takasının(KTT) primlerini modelle-
meyi amaçlamaktadır. Burada birinci dereceden öz ilintili ile beraber sonlu sayıda
Fourier serisi terimini içeren bir süreç ortaya konulmaktadır. Süreç dinamiklerini tah-
min etmede Fourier serisi, geçici bir nedenle ya da bundan öncesinde oldŭgu gibi
mevsimsellĭgi açıklama amacıyla kullanılmamıştır. Burada hareketli ortalama, Fourier
serisi yardımıyla “hareketli ve dalgalı” ortalamaya dönü¸stürülmüştür. Bu “hareketli
ve dalgalı” ortalamanın altında yatan mantık kırılma, ani yükseliş ve rassal oynaklık
gibi yüksek frekanslı yapıların yakalanabilmesidir. Parametre tahminini güçleştiren
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sıçrama yapılarını modele koymak yerine, süreksiz zamandaki bu modelimiz sürekli
zamanda oldukça iyi bilinen bir ortalamaya geri dönen sürece dönüştürülebilmekte-
dir. Ayrıca, önerdĭgimiz bu alternatif model oldukça güçlü ve doğru bir kestirim yön-
temidir.

Anahtar Kelimeler: Teminatlı Borç Yükümlülü̆gü (TBY), Kredi Temerrüt Takası (KTT),
Bağlantı, Fourier Serisi, Kestirim
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CHAPTER 1

INTRODUCTION

Credit derivatives market drew quite a lot of attention beginning from 1998 and experi-
enced a vast growth until the financial market crisis in 2008.The asset price bubble in
2008 caused a shrinkage, however, could not be able to eliminate huge trading amounts
of these products.

Typically, a credit derivative is a financial asset which regards possibility of the default
of a certain underlying instrument. A widely used credit derivative is a credit default
swap (CDS). In a CDS agreement, the protection buyer is insuredagainst the default
of an asset backed loan via predetermined periodic paymentsto the protection seller
just like an ordinary insurance contract.

On the other hand, a collateralized debt obligation (CDO) is another extensively used
credit derivative which is usually regarded as the main instrument triggering the 2008
world financial crisis. CDO is a portfolio of credit derivatives which consists of multi-
ple tranches, each having a different risk and return profile.

The structure of a CDO is as follows: Regional banks assign certain loans to public
usually collateralized with mortgage. These loans are paidwith periodic predeter-
mined installments. An investment bank acts as a gatherer ofthese loans in a pool.
When these loans are collected, the investment bank arrangescertain tranches as se-
nior, mezzanine and junior (equity). Whenever the pool is filled with payments the
senior tranche is firstly paid, then mezzanine and finally thejunior tranche gets paid.
In that sense junior tranche is the most vulnerable among them. If defaults happen
there will be no flow of payment from the loan pool to the juniortranche. Thus ju-
nior tranche is attractive to risk lover investors. Since more risk means more return,
the junior tranche owners are promised to be paid higher return than other tranches.
The return structure gradually decreases from junior to senior tranches. The invest-
ment banks were rated by the trusted rating agencies where even one day prior to sub
prime meltdown Lehman Brothers was rated top by three big ratings namely Standards
& Poors, Fitch and Moody’s. Although these ratings placed Lehman Brothers to a
position of “as reliable as the US government”, still the senior tranches were paying
interest which was considerably above the government T-bill rates. This was one of
the attractiveness of these products.

At the beginning, the credit pools were consisting of actualloans given to public. The
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loans were basically mortgage based loans, credit cards etc. Later on, the structure
became a Ponzi scheme. Since the investment banks were top rated there was no cut
in the demand for CDO tranches. Therefore, in order to meet higher demands, banks
began to offer loans to low paying ability customers. This rendered the quality of the
loan pool to diminish, thus the number of defaults to increase.

Meanwhile, the banks secured themselves via taking collateral as houses for mortgage
based loans. Up to sub prime meltdown the real estate prices perform a steady growth
for nearly a decade, therefore the banks safely gave those loans to low paying ability
clients.

The sub prime meltdown not only raised questions regarding the credibility of invest-
ment banks, it also seriously undermined the reputation of credit rating agencies and
FED. After the collapse, in order to boost up the economy, FEDdecided to follow
some unorthodox monetary policies as quantitative easing.As a butterfly effect, major
central banks throughout the world began to pump money into economies. However,
this did not go as expected, since the newly created money flows to financial markets
instead of real economies. Nowadays, we are still facing theproblem of excess liquid-
ity and decreasing growth in the entire world. Yet, after these loose monetary policies,
we began to witness new records in stock exchanges which renders the trading of this
complex derivatives to increase even further.[43]

In addition to all these, there was another quite important issue which was not taken
seriously by the investment banks due to possible computation complexities. The pric-
ing of these CDOs is not obvious in the sense that the expected time of defaults of the
loan payers has to be taken into account. Moreover, it is known that during recession
or depression periods, the default correlation among different sectors in the economy
tends to rise. A typical CDO consists of 125 loans, so in order to calculate the price of
this CDO we have to know the correlation structure of these loans which corresponds
to a variance covariance matrix of 7750 cells!

It was the first attempt introduced by David Li that the correlation structure can be rep-
resented by a common factor “a” yielding a single factor Gaussian copula framework
enabling the practitioners to compute the price of these complex financial derivatives.
However, this computation technique inherited a major drawback which came to sur-
face at the financial crisis.

The Gaussian copula approach rendered the tranches to be mispriced, thus triggered
some inefficiencies in the market. Although several attempts are proposed to overcome
this issue, practitioners still use this technique just as they do to compute the prices of
options via Black-Scholes model, keeping in mind the volatility smile phenomenon.
Here, we face another smile surface, namely the correlationsmile.

First, the Gaussian copula which is presented by David Li is summarized in the sense
that it is the benchmark for pricing these complex derivatives throughout the literature.
Therefore, in order to grasp the idea of Li, basic preliminaries regarding copulas are
given. Then, the major drawback of this pricing technique isconsidered. Finally, our
contribution to this framework via Lévy copula is explained.
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Later, we took into account the CDS spreads for different sectors which comprise the
CDO. Our Itraxx 125 data has seven different sectors on which the CDSs are writ-
ten. We used an averaging approach due to high cross correlation of the series. In
this framework, we identified CDS spread as an auto regressiveprocess together with
Fourier series terms. The key issue here lies inside the usage of Fourier series, not
for capturing the seasonality or smooth breaks as done in theliterature before. In-
troduction of Fourier series not only grasps the moving average, but also catches the
points beyond the modulus of continuity bound of the Brownianmotion. In that sense
we introduce a “moving and fluctuating average”. In fact, this averaging technique
has the capability of capturing high frequency structures like sharp breaks, spikes and
stochastic volatility. Our technique is not data specific. It can be applied to any arbi-
trary time series which exhibits stationarity. Finally, the forecast power of our model
is demonstrated.

The thesis is organized as follows:

Chapter 1: Introduction to default based derivatives and description of the overall CDO
market including the economical effects. Objective of the study and our contributions
to the literature.

Chapter 2: Description of the CDO pricing model proposed by David Li. Brief ex-
planation of copulas and basic theorems. Presentation of large homogeneous portfolio
approach and CDO pricing technique with single factor Gaussian copula framework.

Chapter 3: Numerical methods for pricing CDO tranches with Gaussian copula.

Chapter 4: Explanation of Lévy copulas and our alternative model. Presentation of nu-
merical techniques and demonstration of a better pricing. Overcoming the correlation
smile phenomenon.

Chapter 5: Time series models and statistical tests which used in our model for pricing
the CDS spreads.

Chapter 6: Analysis of our model with a literature survey in this field.

Chapter 7: Application of our model to a real CDS spread data.

Chapter 8: Forecasting CDS spreads with our model.

Chapter 9: Summary and concluding remarks.
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CHAPTER 2

PRICING CDO TRANCHES VIA GAUSSIAN COPULA
FRAMEWORK

The technique applied by the practitioners in order to pricethe CDO tranches is intro-
duced by David Li [36, 37] which takes into account the Gaussian copula as a bench-
mark. Therefore, we begin by introducing copulas and related theorems. For detailed
explanations, theorems and proofs see [14, 15, 16, 24, 41, 44, 48, 52, 53, 54].

2.1 Copulas

2.1.1 Basic Definitions and Preliminaries

Definition 2.1. Let X andY be random variables with distribution functions and a
joint distribution function. For each pair of real numbers(x, y), three numbers can be
associated,F (x), G(y) andH(x, y), each lying on the interval [0,1]. In other words,
each pair of(x, y) is a carried to a point (F (x),G(y)) in the unit square, and this ordered
pair is connected to a numberH(x, y) in [0,1]. This correspondence, which gives the
value of the joint distribution function to each ordered pair of values of individual
functions, is called a copula.

Generally, the copula of ann-dimensional random vector is ann-tuple characterizing
the dependence structure, independent from margins. The pair copula and margins
gives another explanation of the law of a random vector.

Definition 2.2. Let S1 andS2 be nonempty subsets of̄R of whereR̄ is the extended
real line. LetH be a two-place real function such that its domain, DomH = S1 × S2.
Let B = [x1, x2] × [y1, y2] be a rectangle all of whose vertices are in DomH. Then
H-volume ofB is

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

Definition 2.3. A two-place real functionH is two-increasing ifVH(B) ≥ 0 for all
rectanglesB whose vertices are in DomH.

Definition 2.4. We say that the functionH from S1 × S2 intoR is grounded if

H(x, a2) = 0 = H(a1, y)
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for all (x, y) in S1 × S2 .

Definition 2.5. A two-dimensional sub copula is a functionC∗ with the following
properties:

• DomC∗ = S1 × S2, whereS1 andS2 are subsets ofI=[0,1].

• C∗ is grounded and two-increasing.

• For everyu in S1 and everyv in S2, C∗(u, 1) = u andC∗(1, v) = v.

Since for every(u, v) in DomC∗, we have

0 ≤ C∗(u, v) ≤ 1,

it follows that
RanC∗ ⊂ I = [0, 1].

Definition 2.6. A two-dimensional copula is a two sub copulaC whose domain is unit
square.

Theorem 2.1.LetC∗ be a sub copula. Then for every(u, v) in DomC∗

max(u+ v − 1, 0) ≤ C∗(u, v) ≤ min(u, v).

Proof. Let (u, v) be any point in DomC∗. Now

C∗(u, v) ≤ C∗(u, 1) = u,

and
C∗(u, v) ≤ C∗(1, v) = v;

therefore,
C∗(u, v) ≤ min(u, v).

On the other hand since

C∗(u2, v2)− C∗(u2, v1)− C∗(u1, v2) + C∗(u1, v1) ≥ 0,

settingu2 = v2 = 1, u1 = u, v1 = v, we have

C∗(u, v) ≥ max(u+ v − 1, 0).

These upper and lower bounds are known as Frechet-Hoeffdingcopula bounds.

Theorem 2.2. LetC∗ be a sub copula. Then for every(u1, u2),(v1, v2) in DomC∗ we
have

|C∗(u2, v2)− C∗(u1, v1)| ≤ |(u2 − u1)|+ |v2 − v1|.
Definition 2.7. A distribution functionF is a function with domain̄R such that
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• F is non-decreasing,

• F (−∞) = 0 andF (∞) = 1.

Definition 2.8. A joint distribution functionH is a function with domainR̄2 such that

• H is two-increasing,

• H(x,−∞) = H(−∞, y) = 0 andH(∞,∞) = 1.

2.1.2 Sklar’s Theorem

Theorem 2.3. LetH be a joint distribution function with boundariesF andG. Then
there is a copulaC such that for allx, y in R̄ ,

H(x, y) = C(F (x), G(y)).

If F andG are continuous, thenC is unique; otherwise,C is uniquely determined on
RanF × RanG. On the other hand, ifC is a copula andF andG are distribution
functions, then the functionH defined by

H(x, y) = C(F (x), G(y))

is a joint distribution function with marginsF andG.

For the proof of Sklar’s Theorem we consider the following:

Lemma 2.4. LetH be a joint distribution function with marginsF andG. Then there
exists a unique sub copulaC∗ such that for allx, y in ,

H(x, y) = C∗(F (x), G(y)).

Proof. The joint distributionH with S1 = S2 = R̄ for any points(x1, y1) and(x2, y2)
in R̄2 satisfies

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|.
If F (x1) = F (x2) andG(y1) = G(y2), thenH(x1, y1) = H(x2, y2). HenceC∗ is well
defined. Thus the set

{(F (x), G(y), H(x, y)), x, y ∈ R̄}
defines a two-place real function whose domain is RanF × RanG . Note that for each
u in RanF , there is anx in R̄ such thatF (x) = u hence

C∗(F (x), G(∞) = H(x,∞) = F (x) = u.

Similarly
C∗(F (∞), G(y) = H(∞, y) = G(y) = v.

SinceH is a joint distribution function it is two increasing and grounded. Therefore
C∗ is a sub copula.
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Lemma 2.5. LetC∗ be a sub copula. Then there exists a copulaC such that

C(u, v) = C∗(u, v),

for all (u, v) in DomC∗. That is any sub copula can be extended to a copula usually in
a non-unique manner.

Proof. (Sklar) It directly follows from the above lemmas. In addition, if F andG are
continuous, then RanF = RanG = I.

2.1.3 Multivariate Copulas

The definitions and theorems in the previous sections were for two dimensions. They
can be extended to higher dimensions as well. For this section it will be sufficient
to give the definition of a rectangle inn dimensions and the corresponding Sklar’s
theorem.

Definition 2.9. Let S1, S2, ..., Sn be nonempty subsets ofR̄, andH be ann-tuple real
valued function such that

DomH = S1 × S2 × · · · × Sn.

Let B = [0, 1] ann-box all of whose vertices are in DomH. TheH volume ofB is
given by

VH(B) = Σsgn(c)H(c),

where sum is taken over all verticesc of B, and sgn(c) is given by

sgn(c) =

{
1 , if ck = ak for an even number of k’s,
−1 , if ck = ak for an odd number of k’s.

Theorem 2.6.Let H be an n-dimensional distribution function with marginsF1, F2, ...Fn

Then there is ann-copulaC such that for allx in R̄n,

H(x1, x2, ..., xn) = C(F (x1), F (x2), ..., F (xn)).

The uniqueness property satisfied by the continuity of the distribution functions in two
dimensions is also valid forn-dimensional case, where all the distributions should
all together be continuous. Otherwise, the copula is uniquely given in the Cartesian
product of range of individual distribution functions as before.

2.1.4 Expected Tranche Loss of a CDO

Let us consider a synthetic CDO, a CDO formed by CDSs. A protection seller of a
synthetic CDO gets intermittent payments from a protection buyer, acting as a security
for certain losses of subordinated tranches. The losses that the protection seller has to
reimburse are determined via a reference credit portfolio.
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The pricing of a synthetic CDO works similar as the pricing of ordinary CDSs since
a synthetic CDO consists of CDSs. To calculate the loss of a certain tranche say from
K1 to K2 with 0 ≤ K1 ≤ K2 ≤ 1 of the reference portfolio, let us make further
assumptions and introduce some new notations.

Assume that the spread payment dates are discrete,t1 ≤ t2 ≤ ... ≤ tn = T whereT
denotes the maturity of the synthetic CDO. Actually, this makes quite sense since the
payment due dates are also discrete in real life. Some further relevant notations are as
follows

• s denotes the yearly spread payments made by the protection buyer.

• LR
K1K2

(t) denotes the loss of trancheK1,K2 up to timet, taking into consid-
eration possibility of recoveries. Usually models assume zero recovery, which
is the assumption here; however, conventionally recovery rate is taken as 40%.
Moreover, there are models taking into account stochastic recovery rates which
are beyond the aim of this work.

• Short term interest rater(t) is given, considered to be constant and free from
tranche loss. Again, there are studies considering stochastic interest rate which
according to us is not the main item in pricing synthetic CDOs.

Now, utilizing from Girsanov’s Theorem, consider the risk neutral measure and denote
it with Q. Indicate expectation of the above mentioned tranche loss under this new
measure byEQ[L

R
K1K2

(t)] or simply byE[LR
K1K2

(t)]. The discount factor is

EQ[exp(−
∫ t1

t0

r(u)du)]

or in shortD(t0, t1).

The valuation of a synthetic CDO very much looks like the valuation of a simple swap.
One first has to evaluate the present value of spread payments, then evaluate discounted
value of protection payments taking into account the expectation of defaults, and finally
equalize them.

The value of the premium leg is computed as follows

Premium Leg =
n∑

i=1

∆ti · s · EQ

[
(1− LR

K1K2
(t)) exp

(
−
∫ ti

t0

r(u)du

)]

=
n∑

i=1

∆ti · s ·
[(
1− ELR

K1K2
(t))D(t0, ti)

)]

where∆ti = ti − ti−1.
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Protection payments are made in case of a default. For simplicity, integration is avoided
by discretization. Therefore we have the following:

Protection Leg = EQ

[∫ t1

t0

exp

(
−
∫ s

t0

r(u)du)

)
dLR

K1K2
(s)

]

≈
n∑

i=1

EQ exp

[(
−
∫ ti

t0

r(u)du

)(
LR
K1K2

(ti)− LR
K1K2

(ti−1)
)]

=
n∑

i=1

(
(ELR

K1K2
(ti)− ELR

K1K2
(ti−1)

)
.D(t0, ti).

Equalizing the premium and protection leg yields

s =

∑n
i=1

(
ELR

K1K2
(ti)− ELR

K1K2
(ti−1)

)
·D(t0, ti)∑n

i=1 ∆ti · s ·
[(
1− ELR

K1K2
(t)
)
D(t0, ti)

] .

In case a loss occurs in the portfolio denoted byLR

portfolio(t) , we can calculate the

corresponding percentage loss as follows

LR
K1K2

(t) =
min

((
LR

portfolio(t), K2

)
−K1

)+

K2 −K1

.

If the discrete distribution of the aggregate loss of the reference portfolio up to timet
is known (considering recoveries) and can take onlym possible values then,

LR

portfolio(t) =
[
LR,k

portfolio(t) with risk neutral probability FR(t, k)
]

k=1,...,m
.

Thus, we have the following

ELR
K1K2

(t) = EQ



min

((
LR

portfolio(t), K2

)
−K1

)+

K2 −K1




=
1

K2 −K1

m∑

k=1



min

((
LR

portfolio(t), K2

)
−K1

)+

K2 −K1


 .
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If the loss distribution function of the portfolio is continuous, then

ELR
K1K2

(t) =
1

K2 −K1

∫ 1

K1

(min(x,K2)−K1) dF
R(t, x)

=
1

K2 −K1

(∫ K2

K1

(x−K1) dF
R(t, x) +

∫ 1

K2

(K2 −K1) dF
R(t, x)

)

=
1

K2 −K1

(∫ 1

K1

(x−K1) dF
R(t, x) +

∫ 1

K2

(x−K1) dF
R(t, x))

+

∫ 1

K2

(K2 −K1) dF
R(t, x)

)

=
1

K2 −K1

(∫ 1

K1

(x−K1) dF
R(t, x) +

∫ 1

K2

(x−K2) dF
R(t, x)

)
.

It can be realized that it is crucial in pricing of a CDO trancheto obtain the loss distri-
bution function. The benchmark model for this, which will bepresented below is one
factor Gaussian copula model first brought in by David Li [37].

2.1.5 Large Homogeneous Portfolio Approximation and Gaussian Copula Ap-
proach

Let τi be a random variable denoting time to default of a firmi from the reference port-
folio. Instead of focusing the firms default times one by one,this framework considers
the default correlations among the firms for pricing. The Gaussian copula approach
allows us to price CDO tranches without taking into account the marginal distribution
of the firms. LetAi(t) be the standardized asset return of firmi up to time which is
assumed to be of following form

Ai(t) = aiM(t) +
√
1− a2iXi(t), (2.1)

whereM(t) is the market risk andXi(t) is the firm based (idiosyncratic) risk, both
standard normally distributed. (This is a commonly used convention since asset re-
turns are almost normally distributed as the Black-Scholes option pricing formula pro-
claims). The above equation rendersAi(t) to be standard normally distributed as well.
If we denote the distribution function of default timeτi by Qi, then the issuer said to
be defaulted before timet when

φ[A|i(t)] ≤ Q|i(t),

or, equivalently,
Ai(t) ≤ φ−1(Qi(t)) =: Ci(t).

Here,Qi(t) = Q[τi ≤ t] , whereQ is the risk neutral probability implied from observ-
able market prices. (In fact, as we shall see later, in the Gaussian copula frameworks
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the whole asset return structure of the firms reduce to a single component, which is
derived from the existing market prices, enabling us to price the tranches of CDOs).
According to (2.1) theith issuer defaults up to timet, when

Xi(t) =
Ci(t)− aiM(t)√

1− a2i
,

Then probability thatith issuer defaults up to timet, givenM(t) becomes,

pi(t|M) ≤ φ

(
Ci(t)− aiM(t)√

1− a2i

)
.

2.1.6 Loss Distribution of the Large Homogeneous Portfolio Under One Factor
Gaussian Model

Just like the idea of central limit theorem, here the aim is toderive analytical results
for pricing the CDO tranches for the limiting cases. The related assumptions for the
credit issuers now have the same:

• Portfolio weights,

• Default probabilityQ(t),

• Recovery rateR,

• Correlation to the sensitivity of the market.

p(t|M) ≤ φ

(
C(t)− aM(t)√

1− a2

)
,

Proposition 2.7. For anyp andx in (0,1] the following holds:

lim
m→∞

⌊mx⌋∑

k=0

(
m

k

)
pk(1− p)(m−k) =

{
0 , if x < p,
1 , if x > p.

Lemma 2.8. For the case of no recovery for all assets forming the portfolio, the loss
distribution of an infinitely large homogeneous portfolio with asset returns follows a
one factor Gaussian copula model as

Ai(t) = aM(t) +
√
1− a2Xi(t),

F∞(t, x) = φ

(√
1− a2φ−1 − C(t)

a

)
,
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wherex ∈ [0, 1] is the percentage loss of the portfolio.

Under assumptions of large homogeneous portfolio model, the integrals can be com-
puted analytically as the following lemma asserts:

Lemma 2.9. In the large homogeneous portfolio model, expected loss at time t of
mezzanine tranche absorbing losses fromK1 to K2 percent of the overall portfolio in
case of zero recovery is:

ELK1K2(t) =
φ2(−φ−1(K1, C(t), ρ))− φ2(−φ−1(K2, C(t), ρ))

K2 −K1

,

whereφ2 is bivariate normal distribution function with variance covariance matrix

ρ =

(
1 −

√
1− a2

−
√
1− a2 1

)
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CHAPTER 3

NUMERICAL APPROXIMATION OF TRANCHE PRICING
WITH GAUSSIAN COPULA

The Gaussian copula approach involves some improper integrals which has to be com-
puted numerically. Moreover, the correlation coefficient “a” involved in the variance
covariance matrix should be calculated via an “implied correlation” from the existing
market prices of CDO’s. However, having obtained “a” will only enables us to price
the other tranches instantly. Here the aim is to offer another theoretical model which
explains the correlation surfaces better than the traditional approach. Simulation yields
the following (for details see [38])

3.1 Canonical Copula Form

A direct application of Sklar’s Theorem yields

f(x1, x2, ..., xn) =
∂n[C(F1(x1)), ..., C(Fn(xn))]

∂F1(x1), ..., ∂Fn(xn)
×

n∏

i=1

fi(xi) (3.1)

= c(F1(x1)), ..., (Fn(xn))×
n∏

i=1

fi(xi)

wherec(F1(x1)), ..., (Fn(xn)) = f(x1, x2, ..., xn)/
∏n

i=1 fi(xi)

3.2 Exact Maximum Likelihood Method

Let Θ be the parameter space andθ be thek-dimensional vector of parameters to
be estimated. Let LKL(Θ) and lkl(θ) be, respectively, likelihood and log-likelihood
function for observation at timet. Define the log-likelihood function lkl(θ) as follows

lkl(θ) =
T∑

i=1

lkl t(θ)

15



Taking into account the canonical form described in (3.1) wehave

lkl(θ) =
T∑

t=1

ln c(F1(x1)), ..., (Fn(xn)) +
T∑

t=1

N∑

n=1

ln fn(x
t
n)

The maximum likelihood estimator̂θ is defined aŝθ = (θ̂1, θ̂2, ..., θ̂k) . For the Gaus-
sian copula letΘ = {V : V ∈ R

N×N} denote parameter space withV being a sym-
metric and positive definite matrix. The application of canonical form yields

lkl gaussian(θ) = −T

2
V − 1

2

T∑

t=1

ξ′t(V
−1 − I)ξt. (3.2)

Assuming that the log likelihood function is differentiable with respectθ and the solu-
tion of (3.2) ∂/∂θ = 0 defines a global maximum, the maximum likelihood estimator
can be recovered as

∂

∂V −1
lkl gaussian(θ) =

T

2
V − 1

2

T∑

t=1

ξ′tξt ⇒ V̂ =
1

T

T∑

t=1

ξ′tξt

3.3 CDO Tranche Pricing

Let A andB the attachment and detachment points respectively. If we denote the
reached loss of reference portfolio at timet asL(t) the loss of the tranche can be given
as:

LA,B(t) = (L(t)− A)I{A,B}L(t) + (B − A)I{B,
∑n

i=1 Ni}L(t).

Just like a regular swap analysis a fair price of a CDO tranche is given by

s∗A,B =
E∗
(
[
∫ T

0
D(0, t)dLA,B(t)

]

E∗ [α
∑n

i=1 D(0, ti)min{max[B − L(ti), 0], B − A}] ,

whereD denotes the discount factor, the numerator being the expected loss (default
leg) and the denominator being the installments (premium leg).

3.4 Simulation Results with Matlab

The Matlab code given in the appendix is divided into 3 parts:

• Generating default times via Gaussian copula by the help of log likelihood esti-
mation.
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• Equalizing the default and premium legs.

• Calculating the tranche spreads for different values of correlation and recovery
rates.

For 125 loan payers, 1 year of maturity and 1000 simulations,we have Figure 3.1,Figure 3.2
and Figure 3.3

Figure 3.1: Equity tranche spread modeled with Gaussian copula for different recovery
rates.
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Figure 3.2: Mezzanine tranche spread modeled with Gaussiancopula for different
recovery rates.

Figure 3.3: Senior tranche spread modeled with Gaussian copula for different recovery
rates.
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CHAPTER 4

INTRODUCING LÉVY COPULA TO OVERCOME THE
CORRELATION SMILE PROBLEM

4.1 Lévy Copulas

Definition 4.1. A stochastic process(Xt) onRd with X0 = 0 is called a Lévy process
if:

• Forn ≥ 1 and0 ≤ t0 < t1 < ... < tn ≤ T , the random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1

are independent.

• Distribution ofXt+s −Xt does not depend ont.

• For everyt ∈ [0, 1] andǫ > 0, lims→t Pr[Xs −Xt] > ǫ = 0

• ∃Ω0 ∈ F with P [Ω0] = 1 such that∀ω ∈ Ω ,Xt(ω) is right continuous and has
left limits in t ∈ [0, 1].

This definition renders a Lévy process(Xt) to exhibit discontinuities (jumps). Char-
acteristics of the jumps are given by jump measureµ defined on[0, T ]× R

n by

µ(A) = #{(t,∆Xt) ∈ A}.
For every measurable setA ⊂ R

n, µ([t1, t2] × A) counts the number of jumps with
sizes not exceedingA betweent1 andt2 . On the other hand, Lévy measureν is defined
as

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd)

indicates expected number of jumps, per unit time within thesetA.

Definition 4.2. Let (Xt) be a Lévy process onRd with Lévy measureν. The tail
integral ofν is a functionU : (Rd − 0) → R defined as follows:

U(x1, ..., xd) = ν

(
d∏

i=1

I(xi)

)(
d∏

i=1

sqn(xi)

)
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where

I(x) =

{
[x,∞) , if x > 0
(−∞, x] , if x < 0

Definition 4.3. A functionF : Rd
∞ → R∞ is called a Lévyd-copula function (or Lévy

copula), if

• F (u1, ..., ud) 6= 0 for (u1, ..., ud) 6= (∞, ...,∞).

• F (u1, ..., ud) = 0 if ui = 0 for at least onei ∈ {1, ..., d}.

• F is d-increasing.

• Fi(u) = u for anyi ∈ {1, ..., d}, u ∈ R.

Theorem 4.1(Generalized Sklar’s Theorem). Let ν be a Lévy measure onRd. Then
there exists a Lévy copulaF such that tail integrals ofν satisfy

UI((Xi)i∈I) = FI((Ui)i∈I)

for any non-emptyI ⊂ (1, ..., d) and any(xi)i∈I ∈ R
I . Conversely, ifF is a d-

dimensional Lévy copula andv1, ..., vd are Lévy measures onR with tail integrals
U1, ..., Ud , then there exists a unique Lévy measureR

d with one-dimensional tail inte-
gralsU1, ..., Ud.

Theorem 4.2. Let (Xi) be a Lévy process onRd. Then the independence copula is
given by

F⊥(u1, ..., ud) =
d∑

i=1

ui

∏

j 6=i

I∞(uj).

Definition 4.4. Define

S+ = {x ∈ R
d : sgn(x1) = ... = sgn(xd)}

and
S− = {x ∈ R

2 : sgn(x1) 6= sgn(x2)}.
Let Xt be a Lévy process onRd. Its jumps are considered completely positively de-
pendent if there is an increasing setD ⊂ S such that∆Xt ∈ D, t ≥ 0. For d = 2,
jumps ofXt are completely negatively dependent if there is a decreasing setD of S−

such that∆Xt ∈ D, t ≥ 0.

Theorem 4.3. Let (Xt) be a Lévy process onRd whose Lévy measure is supported by
an ordered setD ⊂ S. The complete positive dependence Lévy copula is:

F||(u1, ..., ud) = min(|u1|, ..., |ud|)IS + (u1, ..., ud)×
d∏

i=1

sgn(ui).

If d = 2, the complete negative dependence Lévy copula is

F|(u1, u2) = min(|u1|, |u2|)IS + (u1, u2).
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Conversely, ifF|| orF| is a Lévy copula of(Xt) , then the Lévy measure is supported by
a strictly ordered subsetD ⊂ S . If, in addition, tail integralsUi of X i are continuous
and satisfy

lim
x→0

Ui(x) = ∞, i = 1, ..., d,

then jumps ofXt are completely dependent (for further discussion see [51]).

4.2 Modeling of CDO Tranches via Lévy Copula

Our Itraxx 125 data which is to be widely explored in the subsequent chapters indicate
that the seven sectors on which the CDSs are written comprising the synthetic CDO
have almost the same correlation structure during times of crises. That is, all sectors
jump at the same time. Actually, this is not data specific in the sense that the CDS
spreads have tendency to move together during crisis periods. For instance, if there
is a negative financial shock then we expect the possibility of default to rise for all
possible companies, even for the countries. Therefore, formodeling purposes, we took
into account a perfectly dependent Lévy copula which has thefollowing form. The
reader can find extra information in [3, 5, 6, 11, 21, 25, 30, 57].

F|| = min
7∑

i=1

(|ui|)IS + (ui){i=1,...,7}

7∏

i=1

sgn(ui).

Now, again for 125 loan payers, 1 year of maturity and 1000 simulations, we have
Figure 4.1,Figure 4.2 and Figure 4.3 as given below
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Figure 4.1: Equity tranche spread modeled with Lévy copula for different recovery
rates.

Figure 4.2: Mezzanine tranche spread modeled with Lévy copula for different recovery
rates.
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Figure 4.3: Senior tranche spread modeled with Lévy copula for different recovery
rates.
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With the Gaussian copula framework we confront the “correlation smile” problem.
This phenomenon occurs due to the inconsistency of single parameter correlation struc-
ture. When the correlation parameter is derived from the market prices, i.e. implied
correlation, senior tranches imply high correlation whereas junior and part of mezza-
nine tranches imply low correlation.

Comparing Figure 3.1 and Figure 4.1, we see that for junior tranche when correlation
parameter gets higher so does the expected tranche loss and the associated fair spread.
Gaussian copula framework implies a higher correlation and, thus, a higher fair spread.
On the contrary our model gives lower spread everywhere.

For senior tranche the case is different when we look at Figure 3.3 and Figure 4.3.
Since senior tranche investors are affected only when losses in the collateral go beyond
most of the pool notional, many defaults should occur in order for this to happen.
However, in practice higher correlation implies lower spread since the probability of
huge number of defaults is quite unlikely. Gaussian copula framework implies lower
correlation and thus lower fair spread. Our model, on the other hand, gives a higher
spread.

Finally, looking at Figure 3.2 and Figure 4.2 we witness for mezzanine tranche, Gaus-
sian copula model gives higher and sometime later lower correlation. Our model gives
lower spread at the beginning and later higher spread which is consistent for correcting
the correlation smile phenomenon.
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CHAPTER 5

TIME SERIES CONCEPTS RELATED TO OUR CDS SPREAD
PRICING MODEL

5.1 Introduction

In this chapter we introduce the notions related to time series which have become the
ingredients of our model. In order to make forecasting we need stationarity of the rel-
evant series. Therefore, first we mention stationarity and related concepts. Later, we
give brief explanations of widely used time series modelingtechniques and their rela-
tion not only among each other but also with stochastic differential equations. Statisti-
cal testing procedures applied to these models are taken into account in the subsequent
sections. Definitions and theorems are taken from [17, 34, 39, 55].

5.2 Some Basic Concepts

Definition 5.1 (Strong Stationarity). Let (zt1 , zt2 , . . . , ztn) be random variables such
that(z((ω, t)|t = 0,±1,±2, . . . ,±n)) and letF be ann dimensional joint distribution
function i.e.

Fzt1
, Fzt2

, . . . , Fztn (r1, r2, . . . , rn) = (P (ω)|z(ω, t1), . . . , z(ω, tn) ≤ rn).

The time series(zti , i = 0, 1, . . . , n) is said to be strongly stationary if

Fzt1
, Fzt2

, . . . , Fztn (.) = Fzt1+k
, Fzt2+k

, . . . , Fztn+k
(.).

Definition 5.2 (Weak Stationarity). The time series(zti , i = 0, 1, . . . , n) is said to be
weakly stationary if:

• E(zt) = µ, µ ∈ R, ∀t,

• E(z2t ) = σ2, σ2 ∈ R, ∀t,

• Cov(zt, zk) = Cov(zt+l, zk+l), ∀t, k, l.
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Definition 5.3 (Autocorrelation Function). LetX andY be two random variables. The
correlation is defined as

ρX,Y =
Cov(X, Y )√
Var(X)Var(Y )

.

Let (Zt) be a stationary process the autocorrelation function (ACF) is defined as

ρk =
Cov(zt, zt−k)√
Var(zt)Var(zt−k)

=
Cov(zt, zt−k)

Var(zt)
=

γk
γ0

.

Definition 5.4 (Partial Autocorrelation Function). Let (Zt) be a stationary process.
The partial autocorrelation function (PACF) defined by

Corr= (Zt+k, Zt)|Zt+k−1, Zt+k−2, . . . , Zt+1)

is a conditional correlation which basically eliminates the intervening values between
Zt+k andZt.

Definition 5.5 (Weak Stationarity). The time series(zti , i = 0, 1, . . . , n) is called white
noise if

• E(zt) = 0∀t,
• E(z2t ) = σ2, σ2 ∈ R, ∀t,
• Cov(zt, zt+k) = 0, ∀t, k.

Definition 5.6 (Cross Correlation). Given two stationary time series(Xt) and(Yt) the
cross covariance function is defined as

γxy(h) = E(xt+h − µx)(yt, µy)

whereµx andµy are the means of the series(Xt) and (Yt) respectively. The cross
correlation is defined as

ρxy(h) =
γxy√

γx(0)γy(0)
.

5.3 Main Time Series Models

5.3.1 Autoregressive (AR) Model

Consider the time series
yt = α0 + α1yt−1 + ǫt

whereǫt is white noise with constantσ2. variance. This is called an autoregressive one
(AR(1)) model. It can easily be extended toAR(p) model as:

yt = α0 + α1yt−1 + . . .+ αpyt−p + ǫt.
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Assuming weak stationarity we have,

E(yt) = µ, Var(yt) = γ0, Cov(yt, yt−1) = γt,

whereµ, γ0 andγt are constants. The mean ofAR(1) model can be computed under
stationarity by

E(yt) = µ =
α0

1− α1

.

Thus for the existence of mean we must haveα1 6= 1. Moreover mean is zero if and
only if α0 = 0. Consideringα0 = 0 and lettingα1 = α the variance can be computed
as follows

γ0 = Var(yt) = E[yt − E(yt)]2 = E[ytyt] = E[yt]
2

= E[ǫt + αǫt−1 + α2ǫt−2 + . . . ]σ2 + α2σ2 + α4σ2 + . . . =
σ2

1− α2
.

Here we took into account the stationarity properties. In order for the variance to be
bounded and non-negative we must haveα2 < 1. In summary for weak stationarity of
the aboveAR(1) model,|α| < 1 should hold.

5.3.2 Relationship Between OU-Process andAR(1) Model

The Ornstein-Uhlenbeck (OU) stochastic processst satisfies the following SDE,

dst = θ(µ− st)dt+ dBt

whereθ, µ, σ ∈ R
+ andBt is the standard Brownian motion.

The autoregressivep, (AR(p)) model is defined by the following difference equation

St =

p∑

i=1

λiSt−i + ǫt

whereλi are real constants andǫt is the white noise. Now consider the following
AR(1) model

st+1 = θ(µ− st)(ti+1 − ti) + σ(Bti+1 + Bti),

Now
Bti+1 + Bti = ǫt

√
(ti+1 − ti)

whereǫt is standard normally distributed. Then we have

st+1 = θ(µ− st)(ti+1 − ti) + σǫt
√
(ti+1 − ti),

which is Euler-Maryuama discretization of OU process at timesti+1 − ti, i ∈ N.
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5.3.3 Moving Average (MA) Model

A moving average one(MA(1)) model is defined by

yt = α0 + βǫt−1 + ǫt

whereǫt is a white noise. We can shift the model without altering any characteristics
thus lettingµ = 0 makes no difference. The mean is trivially zero. The variance is
computed as follows: The generalMA(p) process is,

γ0 = Var(yt) = E[yt − E(yt)]2 = E[ytyt] = E[yt]
2 = E[ǫt + βǫt−1 + ǫt + βǫt−1

= β2
Eǫ2t−1 + βEǫt−1ǫt + βEǫtǫt−1 + Eǫ

2
t = σ2(1 + β2).

The generalMA(p) process is

yt = µ+ β1ǫt−1 + β2ǫt−2 + . . .+ βpǫt−p + ǫt, ǫt ∼ N(0, σ2).

5.3.4 Relationship BetweenAR(1) andMA(∞) Model

Consider theAR(1) model stated as

yt = α0 + α1 · yt−1 + ǫt.

Recursive substitution yields the following

yt = αpyt−p + αp−1ǫt−p+1 + · · ·+ α2ǫt−2 + αǫt−1 + ǫt.

If |α| < 1 , then
lim
p→∞

αpyt−p = 0

which gives us

yt =
∞∑

i=0

αiǫt−i.

The last expression is precisely anMA(∞) process. When|α| < 1 we say that the
AR(1) process is “invertible”.

5.3.5 Autoregressive Moving Average (ARMA) Model

An autoregressive moving average one(ARMA(1)) model is defined by

yt = λ+ αyt−1 + βǫt−1 + ǫt.
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Now
E(yt) = λ+ αE(yt−1) + βE(ǫt−1) + E(ǫt).

From covariance stationarity we have

E(yt) = E(yt−1) = µ,

thus,

µ = λ+ αµ ⇒ µ =
λ

1− α
.

The variance is computed as follows:

yt = µ(1− α) + αyt−1 + βǫt−1 + ǫt,

⇒ yt − µ = α(yt−1 − µ) + βǫt−1 + ǫt,

⇒ E(yt − µ)2 = E(α(yt−1 − µ) + βǫt−1 + ǫt)
2,

⇒ γ0 = α2γ0 + 2αβσ2 + σ2 + β2σ2,

⇒ γ0 − α2γ0 = 2αβσ2 + σ2 + β2σ2,

⇒ γ0 =
1 + 2αβ2)σ2

(1− α2)
.

5.3.6 Unit Root

Consider anAR(p) process of form

yt = a0 + a1yt−1 + . . .+ apyt−p + ǫt.

We can assumea0 = 0 . The process is said to exhibit a unit root if
p∑

i=1

ai = 1.

For anAR(1) process of form

yt = a0 + a1yt−1 + ǫt

has a unit root whena1 = 1 . In fact this corresponds to the random walk which in the
limiting case becomes the Brownian motion. If a process exhibits unit root then it is
non stationary.

5.4 Akaike Information Criterion

Definition 5.7. If X is a discrete random variable andf(x) is the value of its pdf atx
then the entropy ofX is

H(x) = −
∑

x∈X

f(x) loga f(x).
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If X is a continuous random variable andf(x) is the value of its pdf atx then the
entropy ofX is:

h(x) = −
∫

X

f(x) loga f(x)dx.

For value ofa (the basis of logarithm)2, e and10 are commonly used.

Definition 5.8. If X andY are discrete random variables andf(x, y) is the value of
their pdf at(x, y) then the joint entropy ofX andY is

H(X, Y ) = −
∑

x∈X

∑

y∈Y

f(x, y) ln f(x, y).

Definition 5.9. If X andY are discrete random variables,f(x, y) andf(y|x) are the
value of their probability and joint probability distribution at(x, y) then the conditional
entropy ofY givenY X is:

H(Y |X) = −
∑

x∈X

∑

y∈Y

f(x, y) ln f(y|x).

These definitions can easily be transformed to continuous case via integral.

Definition 5.10(Kullback-Leibler Divergence). For two probability distributionsf(x),
g(x) and for a discrete random variableX the Kullback-Leibler Divergence is defined
as:

D(f ||g) =
∑

x∈X

f(x) ln
f(x)

g(x)
.

It is a measure for comparison of entropy of two distributions over same random vari-
able.

Theorem 5.1. Normal distribution has the largest entropy amongst all random vari-
ables of equal variance.

Proof. Let g(x) ∼ N(µ, σ2). Letf(x) be an arbitrary pdf with the same variance. The
differential entropy (entropy for continuous random variables) is translation invariant
sinceh(X + c) = h(X), c ∈ R. Therefore we can assumeE[f(x)] = µ. Now consider
the Kullback-Liebler divergence between the above mentioned distributions

0 ≤ D(f ||g) =
∫ ∞

−∞

f(x) ln

(
f(x)

g(x)

)
dx =

∫ ∞

−∞

f(x) ln(f(x))dx

= −
∫ ∞

−∞

f(x) ln(g(x))dx = −h(f)−
∫ ∞

−∞

f(x) ln(g(x))dx
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The last term can be expressed as follows
∫ ∞

−∞

f(x) ln(g(x))dx =

∫ ∞

−∞

f(x) ln

(
1√
2πσ2

× e
(x−µ)2

2σ2

)
dx

=

∫ ∞

−∞

f(x) ln

(
1√
2πσ2

)
dx ln(e)

∫ ∞

−∞

f(x)

(
−(x− µ)2

2σ2

)
dx

= −1

2
ln(2πσ2)− ln(e)

σ2

2σ2
= −1

2

(
ln(2πσ2) + ln(e)

)
= −1

2
ln(2πσ2) = h(g).

Thus we haveh(g)− h(f) ≥ 0 , and from the third property we geth(g)− h(f) = 0
if and only if f(x) = g(x).

Definition 5.11(Maximum Likelihood Estimation). LetXi, i = 1, 2, ..., n be random
variables with a joint density

fθ(x1, x2, . . . , xn) = f(x1, x2, . . . , xn|θ),

whereθ denotes true state of nature. The maximum likelihood principle is findingθ̂ as
the estimator ofθ which makes the observed data most probable. IfXi, i = 1, 2, . . . , n
are i.i.d., then the likelihood function becomes

n∏

i=1

f(xi|θ).

Since the structure of the maximization problem is preserved under strictly increasing
transformations, for convention, usually the function to be maximized becomes

n∑

i=1

ln(f(xi|θ)).

Definition 5.12 (Akaike Information Criterion). [1] The Kullback-Leibler divergence
for continuous random variables is

D(f ||g) =
∞∫

−∞

f(x)ln f(x)dx−
∞∫

−∞

f(x)ln g(x|θ)dx.

This in fact can be expressed as

D(f ||g) = Ef [ln f(x)]− Ef ln [g(x|θ)] ,

where expectations are taken with respect to true statef .

∞∫

−∞

f(x)ln f(x) dx = c,

wherec is a constant from the definition of entropy although the truedistribution func-
tion is not known.
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Now the only expression to be estimated is

Ef (ln [g(x|θ)])

which is the main work of Akaike’s Information Criterion (AIC)[1]. This estimator is
found as

AIC(k) = −2lkl(θ̂) + 2k.

where lkl is log likelihood for model,̂θ is maximum likelihood estimate of the param-
eters andk denotes number of variables in the model.

Intuitively, minimum AIC value gives us the preferred modelamong the candidates for
a given data. The value which minimizes the AIC gives us the lag length[12].

5.5 Statistical Tests

In this sub-section we briefly give the statisticals test utilized in our model. For the
test of stationarity, unit root tests are given. Later the Box-Jenkins methodology is in-
troduced for the determination ofp andq coefficients in the underlyingARMA(p, q)
process. Finally Jarque-Bera normality test is given for thediagnostic check of resid-
uals.

5.5.1 Unit Root Tests (Linear)

This subsection analyses basic unit root tests in a linear framework.

5.5.1.1 Dickey Fuller Test

In order to test whether

yt = α1yt−1 + εt

follows a random walk i.e. has unit root we set the null hypothesisH0 : α1 = 1 versus
alternative hypothesisH1 : α1 < 1. The unit root testing procedure offered by Dickey
and Fuller [13] takes into accountt-statistics ratio of the least-squares estimation of
α1. The least square estimation of mean and variance becomes:

α̂1 =

T∑
t=1

yt−1yt

T∑
t=1

y2t−1

, σ̂2
e =

T∑
t=1

(yt − α̂1yt−1)
2

T − 1
,
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whereT is the sample size. Thet-statistics ratio is:

DF =
α̂1 − 1

std.dev.(α̂1)
=

T∑
t=1

yt−1et

σ̂e

√
T∑
t=1

y2t−1

.

If the sample size is increased then DF in the limit is a function of standard Wiener
process. In case ofα1 = 1 then it converges to another nonstandard asymptotic dis-
tribution. Critical values are computed via simulation and presence of unit root is
determined.[13]

5.5.1.2 Augmented Dickey Fuller Test

Wide usage ofAR(p) processes lead to testing the unit root for lagged models. Aug-
mented Dicker Fuller Test (ADF) verifies the existence of unit root in anAR(p) frame-
work by performing hypothesis testingH0 : β = 1 versusH1 : β < 1 for the regression

yt = µ+ βt+ γyt−1 +

p−1∑

i=1

αi∆yt−i + εt, εt ∼ N(0, σ2),

where,µ, β are constants and∆ is the difference operator. The ADFt-statistics is
given by

ADF =
β̂ − 1

std.dev.(β̂)
;

hereβ̂ , is the least-squares estimator ofβ.

5.5.2 Unit Root Tests (Non-Linear)

This section analyzes more general unit root tests. First, tests with threshold are intro-
duced. Then, more general models are taken into consideration including non-linear
trends together with smooth changes also included within those trends.

5.5.2.1 Enders and Granger (EG) TAR Type Test

Enders and Granger[18] use threshold autoregressive (TAR) models to offer tests of the
null hypothesis of a unit root allowing under the alternative hypothesis for stationary
asymmetric threshold to a constant expectation or deterministic linear trend.

yt − yt−1 = α + β1Ityt−1 + β2 (1− It) yt−1 +
k∑

j=1

δ̂j∆yt−j + λ̂t , (5.1)
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It =

{
1 , if yt−1 > 0
−1 , if yt−1 < 0

andλ̂t is a white noise. ifβ1 = β2 = 0 in (5.1) thenyt exhibits a unit root, while ifβ1 =
β2 < 0, yt is a stationary TAR process with symmetric change, and ifβ1 < 0, β2 < 0
andβ1 6= β2, yt is a stationary TAR process showing asymmetric alteration.Enders
and Granger[18] suggest testing for whetheryt has a unit root using theF -statistic for
testingβ1 = β2 = 0 in (5.1) and/or the most significant of thet−statistics from those
for testingβ1 = 0 andβ2 = 0.

5.5.2.2 Leybourne Newbold and Vougos (LNV) Smooth Break Test

Leybourne, Newbold and Vougas [35] build up unit root tests where the alternative is
stationary around a linear trend with a smooth break, and give their small sample prop-
erties. Letyt be process with changing trend function together by smooth transition on
the time domaint = 1, 2, . . . , T.

yt = α + α2St(γ, τ) + εt (5.2)

yt = α + β1t+ α2St(γ, τ) + εt (5.3)

yt = α + β1t+ α2St(γ, τ) + β2tSt(γ, τ) + εt (5.4)

whereεt is a zero mean stationary process andSt(γ, τ) is the logistic smooth transition
function, defined by:

St(γ, τ) = [1 + exp {−γ(t− τT )}]−1 , γi > 0.

In this strategy, structural change is modeled as smooth shift between different regimes
rather than an instant structural break. The transition function St(γ, τ) is continu-
ous and bounded between 0 and 1. Thus the STR model can be regarded as regime-
switching model which renders for two regimes, connected with extreme values of the
shift function,St(γ, τ) = 0 andSt(γ, τ) = 1, while shift from one regime to other is
stable. Here,γ determines smoothness of the transition. Two regimes are associated
with small and large values of the transition variablest = t relative to thresholdc = τ .
For the large values ofγ, St(γ, τ) passes through the interval (0,1) very quickly, and
asγ reaches+∞ this function changes value from 0 to 1 in an instant manner attime
t = τT . Therefore, if it is assumed thatεt is a white noise, then (5.2) is a stationary
process around a mean which changes from initial valueαi to final valueαi + α2.
Leybourne et al.[35] also give similar conditions for models stated in (5.2) and (5.3).
In these specifications no change and one instantaneous structural change are limit-
ing cases whereas this specification is more general which covers gradual structural
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changes as well. Leybourne et al.[35] establish the hypotheses for unit root testing
based on (5.2), (5.3) and (5.4) as follows

H0: Unit Root (Linear Non stationary)
Ha: Stationary (Stationary around smoothly changing trend and intercept)

Following Leybourne et al.[35] the test statistics proposed here is calculated with a
two-step procedure

Step 1Usage of a nonlinear least-squares (NLS) algorithm, estimates only the pre-
dictable component of the ideal model and calculate the NLS residuals

Model 1 : ε̂t = yt − α̂− α̂2St(γ, τ),

Model 2 : ε̂t = yt − α̂− β̂1t− α̂2St(γ, τ),

Model 3 : ε̂t = yt − α̂ + β̂1t+ α̂2St(γ, τ) + β̂2tSt(γ, τ).

Step 2Work out the ADF statistic, the t ratio connected withβ̂1 in the ordinary least-
squares (OLS) regression.

5.5.2.3 Kapetanios Shin and Snell (KSS) ESTAR Test

Let yt follow a single variable exponential smooth transition autoregressive (ESTAR)
model of level 1

yt = βyt−1 + γyt−1 [1 − exp(−θy2t−d )] + εt,

which after reparameterising can be written suitably as

∆yt = ϕyt−1 + γyt−1 [1 − exp(−θy2t−d )] + εt,

whereϕ = β − 1.

Overall stationarity of the processyt can be found by testing null hypothesisH0 :
θ = 0 against alternativeH1 : θ > 0. However, testing null hypothesis straightly
is not possible sinceγ is not known under value of the null. To solve this difficulty,
Kapetanios et al.[31] use the method of Luukkonen et al.[40]to restore the transition
function by its appropriate Taylor approximation to get at-type test statistic. By using
Taylor approximation, the following supplementary regression is obtained

∆yt = δy3t−d + et,

whereet contains original shocksεt as well as the error term arising from Taylor ap-
proximation. The test statistic forδ = 0 againstδ < 0 is tNL = δ̂/s.e.(δ̂), whereδ̂ is
the OLS estimate and s.e.(δ̂) is the standard error of̂δ.

In a wide framework when errors are serially correlated, theauxiliary regression is
improved bypth order lag of dependent variable. The extended model can be seen as
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follows

∆yt =

p∑

j=1

ρj∆yt−j + δy3t−d + et,

From here one can obtain thet-statistics forδ = 0 againstδ < 0 as:

t =
δ̂

st.dev(δ̂)

d−→

{
1
4
W (1)4 − 3

2

1∫
0

W (r)2dr

}

√∫
W (r)6dr

,

whereW (r) is a standard Wiener process defined onr ∈ [0, 1].

5.5.2.4 Sollis Smooth Break with TAR Type Test

Sollis [49] developed a unit root test by combining Enders and Granger [18] and Ley-
bourne, Newbold and Vougas [35]. Enders and Granger [18] used threshold autore-
gressive (TAR) models to propose tests of the null hypothesisof a unit root that let
under alternative hypothesis for stationary asymmetric change to a constant mean or
a deterministic linear trend. In Sollis [49], the EG tests are generalized to the case of
a nonlinear trend. In particular, smooth transition technique employed by Leybourne,
Newbold and Vougas [35], is together with a TAR method of EG tobuild up unit-root
tests that permits under the alternative hypothesis a transition between deterministic
linear trends, about which stationary asymmetric change might happen. The resem-
blance of the EG and LNV techniques for testing for existenceof a unit root in original
series both eliminating deterministic parts of the data before unit root test claims that
models used by these authors might be united. Letyt be generated by Model 1, Model
2 or Model 3 withε̂t formed by the following TAR model. Combining (5.1) and Model
1, Model 2 or Model 3, Sollis test is obtained by

∆ε̂t = α + β1Itε̂t−1 + β2(1− It)ε̂t−1 +
k∑

j=1

δ̂j∆ε̂t−j + λ̂t, (5.5)

where

It =

{
1 , if ˆǫt−1 > 0
−1 , if ˆǫt−1 < 0

andλ̂t is a white noise. Thusyt is a smooth transition TAR (ST-TAR) process. Without
taking into consideration of which model from Model 1, Model2 or Model 3 is used
to explain the deterministic parts ofyt, if β1 = β2 = 0 in (5.5) thenε̂t and thusyt
exhibits a unit root, while ifβ1 = β2 < 0, yt is a stationary ST-TAR process with
symmetric, and ifβ1 < 0, β2 < 0 andβ1 6= β2, yt is a stationary ST-TAR process
showing asymmetric change. The testing ifyt has a unit root using theF -statistic for
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the test ofβ1 = β2 = 0 in (5.5) and/or the highest significant of thet-statistics from
those for testingβ1 = 0 andβ1 = 0.

H0 : βi = 0, for all i, (Linear Non stationary)

H0 : βi < 0, for somei. (Stationary around nonlinear trend and intercept)

5.5.2.5 Omay and Yıldırım (OY) Smooth Break with ESTAR Test

This test by Omay and Yıldırım [46, 56] is for unit root null hypothesis by mixing
KSS and LNV techniques make use of exponential smooth transition autoregressive
(ESTAR) models for offering tests of null hypothesis of a unitroot that allow under
alternative hypothesis for stationary non-linear shift towards a constant expectation.
Here, the KSS tests are generalized to the case of non-lineartrend. In this approach,
again a transition function is considered which is exactly the same as described in LNV
framework.

The hypotheses for unit root testing based on (5.2), (5.3) and (5.4) become

H0 : Unit Root (Linear and nonstationary)

Ha : Stationary (Nonlinear and stationary around smoothly changing trend and inter-
cept)

Following Leybourne et al.[35] , the test statistics proposed here are calculated with a
two-step procedure:

Step 1Using a nonlinear least-squares (NLS) algorithm, estimateonly a deterministic
component of the preferred model and compute the NLS residuals as done in LNV
setup.

Step 2Calculate the KSS statistic, thet ratio associated witĥρi in the ordinary least-
squares (OLS) regression

∆ε̂t = ρ̂ε̂3t +
k∑

j=1

δ̂j∆ε̂t−j + η̂t.

H0 : βi = 0, for all i, (Linear Non stationary)

H0 : βi < 0, for some i, (Nonlinear and stationary around nonlinear trend and inter-
cept)

5.5.2.6 Box-Jenkins Test

This test proposed by Box and Jenkins [10] focuses on the plot of the ACF and PACF of
the time series. The ACF and PACF ofARMA(p, q) process has typical characteristics
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related to lag operator. Thus the test is applied by looking at the ACF and PACF of
the series. The use of ACF enables us to identify the true data generating process as
stationary including whether the series exhibit a certain seasonality or not. However, as
mentioned earlier one should also have the inevitability condition. Moreover, the Box-
Jenkins testing involves a diagnostic checking to make surethat the residuals from the
estimated model are a white noise. AIC described in Section 5.2.7 is used to identify
p andq. We can define an “identification procedure” for Box-Jenkins test as follows

• Check for Stationarity via ACF

Let’s consider anAR(1) process without drift i.e.

yt = ϕ1yt−1 + εt =ϕ1(ϕ1yt−2 + εt−1) + εt
= εt + ϕ1εt−1 + ϕ2

1εt−2 + ϕ3
1εt−3 + · · ·+ ϕt

1y0.

One can lety0 = 0 and haveE(yt) = 0 without loss of generality. For large
values oft,

Var(yt) =
σ2

(1− ϕ2
1)
,

if ‖φ1‖ < 1 and

Cov(yt, yt−s) =
ϕs
1σ

2

(1− ϕ2
1)

= ϕs
1Var(yt).

If we consider anAR(2) process without drift i.e.

yt = ϕ1yt−1 + ϕ2yt−2 + εt

for stationarity we need to haveϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1 andϕ2 < 1.

Thus, we can infer that certain restrictions on the parameters should be satisfied
in order to meet stationarity criterion.

Now consider anMA(1) process without drift, i.e.,

yt = εt − θ1εt−1.

Then, we have

E(yt) = 0, Var(yt) = σ2(1 + θ21)

and

Cov(yt, yt−s) =

{
−θ1σ

2 , if s = 1
−0 , otherwise

For anMA(2) process described as

yt = εt − θ1εt−1 − θ2εt−2

we similarly haveE(yt) = 0,Var(yt) = σ2(1 + θ21 + θ22) and
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Cov(ytyt−1) =





−θ1σ
2(1− θ2) , if s = 1

−θ2σ
2 , if s = 2

0 , otherwise

Generally speaking, moving average processes are stationary but not necessarily
invertible.From the above discussions we can say that the ACFof a stationary
AR(k) process decreases to zero whenk increases. On the other hand, the ACF
of a MA(1) process cuts-off after l, i.e., the number of lag operation,always
leading to stationarity. For the time series(yi), i = 1, ..., n, the sample auto
correlation at lagk is given by

ρ̂k = rk =

n−k∑
t=1

(
Yt − Ȳ

) (
Yt−k − Ȳ

)

n∑
t=1

(
Yt − Ȳ

)2 , k = 0, 1, 2, . . . ,

whereȳ =
n∑

t=1

yt/n is the sample mean. For vast sample sizesρ̂k is normally

distributed with meanρk and variance

Var(ρ̂k) ≈
1

n

(
1 + 2ρ21 + 2ρ22 + · · ·+ 2ρ2m

)

due to Bartlett. Thus if the linear connection between time series observations
divided by a lag ofk time units is denoted byrk, then the standard deviationSrk

becomes

srk =

√√√√√1 + 2
k−1∑
j=1

r2j

n
.

We finally have thet-statisticstrk = rk/srk which helps us to agree on whether
the series in question has stationarity. If|trk | > 2 thenrk is considered to be
statistically large thus we have non-stationarity. If the series is not stationary, it
can be transformed into a stationary series by the help of thedifference operator.
In practice, we almost never go beyond second order difference since real data
involve at most second degree of non-stationarity.

• Identify the Model by ACF and PACF

In order to choose a model, that is to findp andq for theARMA(p, q) process in
addition to ACF, one should also take into account the PACF. There are different
types of behaviors for ACF and PACF according to the model. For an AR(p)
model the ACF dies down and PACF cuts off after lagp. The roles are reversed
for MA(p) model. In anARMA(p, q) framework both ACF and PACF dies
down. The decay process can be exponential, sine wave or a mixture of both
according to the lag. The sample autocorrelation function at lag k is
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Cov(ytyt−1) =





r1 , if k = 1
(

rk−
k−1
∑

j=1
rk−1,j ·rk−j

)

(

1−
k−1
∑

j=1
rk−1,j ·rk

) , if k = 2, 3, . . .

where
rkj = rk−1,j − rkkrk−1,k−j

for j = 1, 2, ..., k − 1. rkk can be thought as the sample auto correlation of time
series separated by a lag ofkunits with the intervening outcomes are eliminated.
The standard error ofrkk is srk =

√
1/n with t-statisticstrkk = (rkk)/(srkk).

Similar argument applies in determination of stationarity. If |trkk | > 2 for any k,
thenrkk is considered to be statistically large.

• Estimate the Parameters

Although least-squares can be used, since MA processes are involved, maximum
likelihood method is also applicable for parameter estimations. To test whether
a drift term is included in the model,

∣∣∣∣
z̄

sz/
√
n

∣∣∣∣ > 2

should hold. Here,̄z is the mean,sz is the standard deviation and n is the size
for the sample. Now, we have identifiedp andq.

• Diagnostic Checking

Check whether the estimated coefficients are statistically significant undert-
statistics. IfARMA(p, q) fits the model then the residuals should be uncor-
related. In that sense, we should look at the portmanteau test statistics.

Q∗(k) = (n− d)(n− d+ 2)
k∑

l=1

r2l (e)

n− d− l
∼ χ2

(k−p−q).

• Select the Model with the Minimum Entropy

Whenp andq are determined we have 3 possible candidates to fit the data. Those
areARMA(p, q), AR(p) andMA(q). The one with the minimum Akaike Infor-
mation Criterion defined by:

AIC = −2 ln(LKL ) + 2k,

where LKL is the likelihood function andk is the number of parameters that
should be estimated is our model.
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5.5.3 Jarque-Bera Normality Test

This test proposed by Jarque and Bera (1980)[27, 28, 29] mainly concentrates on the
skewness and kurtosis of the sample data. In order for the sample to be generated from
a normal distribution one should expect the skewness and kurtosis to be equal to zero.
In Jarque-Bera test having a kurtosis of zero is equivalent tohave it less than 3. The
Jarque-Bera test statistics is defined as follows

JB=
n

6

(
S2 +

(K − 3)2

4

)
,

wheren is number of observations,S andK denote skewness and kurtosis given by

S=

1
n

n∑
i=1

(xi − x̄)3

(
1
n

n∑
i=1

(xi − x̄)2
)3/2

, ,K =

1
n

n∑
i=1

(xi − x̄)4

(
1
n

n∑
i=1

(xi − x̄)2
)2 .

x̄ being the sample mean.

For sample sizes of 2000 or larger, this test statistic asymptotically converges to a Chi-
squared distribution with 2 degrees of freedom (normality is rejected if test statistic
exceeds Chi-squared value).
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CHAPTER 6

OUR CDS SPREAD MODEL

6.1 Motivation

Enders and Lee[20] constructed a unit root test by usage of Fourier series in order to
approximate smooth breaks. Their approach comes from the fact that exact break time
cannot be known a priory. Therefore, a slight modification ofDickey-Fuller test has
been proposed by the following manner

yt = d(t) + ρyt−1 + γt+ εt.

d(t) is defined by using the Fourier expansion

d(t) = α0 +
n∑

k=1

αksin

(
2πkt

T

)
+

n∑

k=1

βkcos

(
2πkt

T

)
; n ≤ T

2

wheren is frequency andT is number of observations. Becker, Enders and Hurn [7]
showed that structural changes are caught in low frequencies. On the other hand, as
pointed out by Enders and Lee [20] , Becker et al. [7, 8] and Enders and Jones[19],
higher frequencies of the Fourier terms approximates the stochastic components of
the series. Therefore, by using the low frequencies of Fourier terms, we modeled the
structural breaks (pure jumps) and similar issues in deterministic components and with
high frequencies we modeled the other stochastic components of the series such as
seasonality, stochastic volatility, spikes, etc. Hence, by estimating the series in hand,
this approach leads us to obtain a better forecasting equation.

6.2 Our Model

6.2.1 The Algorithm

Our model takes into account very general time series. Any non-linearity, structural
breaks (i.e., pure jumps), any mean reverting breaks (i.e.,spikes, volatility clustering,
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stochastic volatility, etc.), can be considered. Moreover, we let the time series be peri-
odic in the entire real line, thus we do not confine ourselves in a bounded domain. For
forecasting purposes, our algorithm applies only to stationary series. An identification
procedure algorithm is defined as follows

Step 1Apply the linear unit root tests to series defined in Section 5.5.1 If the test fails
then employ more general non linear unit root tests in Section 5.5.2. These tests also
identify the structure of the series in hand with respect to structural break in determin-
istic components, linearity or non linearity in the stochastic component. Notice that by
employing these newly proposed tests, the generality allowed in the testing procedure
increases. If the series are stationary, i.e., one of the tests show that there is no unit
root then follow Step 2.

Step 2Consider the time dependent function[22]

f(t) =
n∑

k=1

(
αksin

(
2πkt

T

)
+ βkcos

(
2πkt

T

))
.

Evaluate the function fork = 1 and estimate the parametersa1 and b1 with least-
squares. Then demean the original series by this moving and fluctuating average.

Step 3Use Box-Jenkins test to determinep andq in anARMA(p, q) framework. Make
diagnostic check for the residuals with Jarque-Bera test. Ifnormality is satisfied then
stop the procedure. Otherwise, go back to Step 2, increase the frequency by one and
demean the original series with this new moving and fluctuating average.

Step 4 If the normality is achieved for the residuals term fromARMA(p, q) model
then the model is ready for forecasting and the transformation from stochastic differ-
ence equation space to stochastic differential equation space by using Hull and White
[23] SDE. Otherwise return to step 2.

Once the process is terminated we end up with the following model

yt = f(t) + εt +

p∑

i=1

ϕiyt−i +

q∑

i=1

θiεt−i .

However, notice that since our series exhibit stationarity, moving average model can be
transformed to anAR(1) process by the ergodicity condition. Moreover, the Fourier
expansion has the capability of mimicking the moving average regardless of the lag.
Therefore, under stationarity, we end up with the followingexpansion as the forthcom-
ing theorem asserts,

yt = f(t) + αyt−1 + εt. (6.1)

Theorem 6.1. Any stationary time series can be represented by anAR(1) process
together with a Fourier series (i.e. can be approximated by a partial Fourier sum).
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Proof. SubtractAR(1) process from any type of seriesyt which includes structural
break, non linearity or any type of anomalies in the data generating process.

yt −
p∑

i=1

ϕiyt−i + εt= f(t).

By Drichlet conditions we can approximate the nonlinear functionf(t) as stated below:

f(t) =

T/2∑

k=1

αk sin

(
2πkt

T

)
+ βk cos

(
2πkt

T

)
.

From the definition ofAR(1), we know that it is stationary and the residual term is
εt ∼ N(0, σ2).

Our aim is to represent the series with a mean reverting process which fluctuates around
our moving and fluctuating average together with normally distributed residual terms.
The normality of the residual terms renders us to transform our process in discrete time
to continuous time in an easy and intuitive manner, as will beexplained below.

6.2.2 Transformation to Continuous Time

From the discussion in Section 5.5.2 (6.1) can be transformed to the following Hull
and White Model

dy(t) = (f(t)− y(t))dt+ σdW (t) (6.2)

whereσ > 0 andW (t) is a standard Wiener process.

The solution of (6.2) is

dy(t) = (f(t)− y(t))dt+ σdW (t),

⇒ d(ety(t)) = ety(t)dt+ etdy(t) = ety(t)dt+ et ((f(t)− y(t))dt+ σdW (t)) ,

= ety(t)dt+ etf(t)dt− ety(t)dt+ σetdW (t) = etf(t)dt+ σetdW (t)

⇒ ety(t) = y(0) +

t∫

0

esf(s)ds+ σ

t∫

0

esdW (s),

⇒ y(t) = e−ty(0) +

t∫

0

et−sf(s)ds+ σ

t∫

0

et−sdW (s).

For further discussion in SDEs see [2, 9, 23, 24, 32, 33, 42, 45, 50].
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CHAPTER 7

APPLICATION OF THE MODEL TO THE CDS SPREAD DATA

7.1 Description of the Data

Our data is obtained from Itraxx 125 index, which is the product name for the family of
CDS index products including the regions of Europe, Australia, Japan and non-Japan
Asia. Itraxx 125 forms a huge sector of the whole credit derivatives. It involves credit
default swap (CDS) premiums for loan payers from seven different sectors namely
automotive, industry, consumer, energy, financial (senior), financial (sub) and non-
financial with a maturity of 10 years. Unlike a CDS traded over the counter the data, we
are dealing forms a CDS index which is completely standardized credit security traded
in an organized liquid market. [4, 26, 47, 58] take into account the determination
of CDS spreads. Our approach, briefly explained in Chapter 6 is acompletely new
approach. The data are daily and quite rich in number (more than 2000 observations).
In the plots the horizontal denotes the day and the vertical axis denotes the CDS spread
premium in terms of bps. The Figures 7.1,7.2,7.3,7.4,7.5,7.6,7.7 below are time series
plotting of the sector based CDS spreads beginning from 6.22.2004 for 2040 days.
Figure 7.8 is the depiction of their simple average.
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Figure 7.1: ITraxx 125 CDS spread for automotive sector.

Figure 7.2: ITraxx 125 CDS spread for industry sector.
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Figure 7.3: ITraxx 125 CDS spread for consumer sector.

Figure 7.4: ITraxx 125 CDS spread for energy sector.
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Figure 7.5: ITraxx 125 CDS spread for financial senior sector.

Figure 7.6: ITraxx 125 CDS spread for financial sub sector.
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Figure 7.7: ITraxx 125 CDS spread for non financial sector.

Figure 7.8: Simple average of the seven sectors comprising Itraxx 125 index.
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Figure 7.9: ITraxx 125 CDS spreads for seven sectors and theiraverage.

Looking at Figure 7.9, we can see certain dates in which the behavior of the series
exhibit “jumps”. Another way of saying that is, there are times where the movement
cannot be explained by Brownian motion.

One can also realize a strong correlation among sectors by looking at the graphs. It is
also likely that the mean has changed after some time. Moreover, at a glance, it seems
probable that certain mean reverting type structures occurred.

The major structural break corresponds to the 2008 financialcrisis. CDSs exhibit sim-
ilar structural break during times of crises despite of the sector. Towards the end,
we see high volatility particularly for financial sub and financial senior sectors. This is
mainly due to the unorthodox expansionary monetary policies namely quantitative eas-
ing applied by FED. Major central banks throughout the worldbegan to follow loose
monetary policies in order to boost up economies. However, this further diminished
the credibility of the financial sector. This is the reason for high CDS spreads pertain-
ing to financial sector. Since, financial sub sector is more vulnerable to shocks than
financial senior sector; its CDS spread was highest. CDSs written on non-financial
sector is the least liquid market compared to other CDSs. Therefore there are times
when lack of demand is at stage. Due to this reason we sometimes see some constant
and then sharp movements.

7.2 Analysis of the Data

We took into account the cross correlation among the series given in Definition 5.6.
The chart below gives the correlation coefficients of the means of CDS spreads com-
prising the CDO:
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Table 7.1: Cross correlation of the series (correlation of the means).

Automotive Industry Consumer Energy Senior Fin. Sub Fin. Non Fin.
Automotive 1.000 0.905 0.872 0.785 0.506 0.486 0.610

Industry 0.905 1.000 0.942 0.842 0.544 0.522 0.768
Consumer 0.872 0.942 1.000 0.837 0.573 0.559 0.774

Energy 0.785 0.842 0.837 1.000 0.833 0.803 0.809
Senior Fin. 0.506 0.544 0.573 0.833 1.000 0.992 0.782
Sub Fin. 0.486 0.522 0.559 0.803 0.992 1.000 0.774
Non Fin. 0.610 0.768 0.774 0.809 0.780 0.774 1.000

Having examined the high correlation coefficients among themeans, we take the av-
erage of the series and considered it as a “representative”.These findings also support
our Lévy copula framework. Now we follow Step 1 and apply certain unit root tests
to the data for checking stationarity. The data passes KSS and OY tests as seen below.
Moreover it almost passes EL test fork =3 which is 3 Fourier series terms. When
Fourier terms are increased beyond 3, EL test is also passed.

Table 7.2: Unit root test results.

ADF EG F EG t KSS LNV Solis F Solis t OY EL
Model 1 -1.155 0.783 -0.389 -3.726* -3.045 4.955 -3.021 -4.919* -1.719
Model 2 -2.989 4.096 -2.762 -5.024* -2.861
Model 3 -3.831* -3.047 4.956 -3.034 -5.035* -2.878
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Table 7.3: Critical values for unit root tests.

10% 5% 1%
ADF -2.580 -2.890 -3.510
EG EG F 3.740 4.560 6.410

EG t 5.150 6.080 8.120
LNV Model 1 -3.797 -4.103 -4.685

Model 2 -4.277 -4.565 -5.141
Model 3 -4.552 -4.825 -5.420

KSS Model 1 -1.920 -2.220 -2.820
Model 2 -2.660 -2.930 -3.480
Model 3 -3.130 -3.400 -3.930

Solis F Model 1 7.706 8.845 11.620
Model 2 9.995 11.309 13.733
Model 3 11.234 12.558 15.392

Solis t Model 1 -3.119 -3.356 -3.820
Model 2 -3.495 -3.731 -4.159
Model 3 -3.671 -3.897 -4.368

OY Model 1 -3.489 -3.801 -4.412
Model 2 -3.879 -4.180 -4.757
Model 3 -4.053 -4.370 -4.969

After achieving stationarity, we move to Step 2 and then Step3. From the unit root
tests, we also identified the structure of the series as well,due to the reason that the
alternative hypothesis of the series included testable hypothesis such as nonlinear sta-
tionarity, structural break and stationarity and nonlinearity around a structural break.
These identifications are helpful for our modeling, becausethese structures are well
approximated by Fourier series as mentioned above. The Matlab code given in the ap-
pendix shows that our data can be represented by an auto regressive 1 process having
a normally distributed error term with constant variance together with a finite number
of Fourier terms.

Here are graphical representations of the moving and fluctuating average obtained by
different number of Fourier series terms given in 7.10,7.11,7.12 and 7.13.

In 7.14,7.15,7.16 and 7.17 below are some graphs of the variance of residuals after de-
meaning certain number of Fourier terms. Notice that although the variance decreases
gradually, normality is achieved at997th iteration with the inclusion of anAR(1) pro-
cess.
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Figure 7.10: Moving and fluctuating average with first Fourier terms.

Figure 7.11: Moving and fluctuating average with first and second Fourier terms.
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Figure 7.12: Moving and fluctuating average with first, second and third Fourier terms.

Figure 7.13: Moving and fluctuating average with 997 Fourierterms together with
AR(1) process.

56



Figure 7.14: Residuals when first Fourier terms are demeaned.

Figure 7.15: Residuals when first 100 Fourier terms are demeaned.
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Figure 7.16: Residuals when first 500 Fourier terms are demeaned.

Figure 7.17: Residuals when first 997 Fourier terms are demeaned.
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Table 7.4: Variances of the Residuals

# of Fourier terms Variance Normality
1 20,926 No

100 14,516 No
500 2,651 No
997 0,06 Yes

Figure 7.18: Pdf of residuals when 997 Fourier terms are demeaned.
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CHAPTER 8

FORECASTING OF THE CDS SPREADS WITH OUR MODEL

8.1 Properties of Forecasts

Consider our model presented in Section 6.2 which is

yt = f(t) + αyt−1 + εt, εt ∼ N(0, σ2).

Iteration of one period yields

yt+1 = f(t) + αyt + εt+1.

Sincef(t) andα are estimated, we are able to forecastyt+1 given information available
at t as

E(yt+1|yt, yt−1, ..., εt, εt−1, ...) = f(t) + αyt.

Similarly since
yt+2 = f(t) + αyt+1 + εt+2

the forecasting function becomes

E(yt+2|yt, yt−1, . . . , ǫt, ǫt−1, . . . )

= f(t) + αE(yt+1|yt, yt−1, . . . , ǫt, ǫt−1, . . . )

= f(t) + α(f(t) + αyt).

Further iteration gives the following forecast function

E(yt+j|yt, yt−1, . . . , εt, εt−1, . . . ) = f(t)(1 + α + α2 + · · ·+ αj−1) + αjyt.

Now since

lim
j→∞

E(yt+j|yt, yt−1, . . . , εt, εt−1, . . . ) = (f(t))/(1− α) + lim
j→∞

αjyt
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we can conclude that the conditional forecast converges to unconditional mean if the
process is a stationary ARMA type. If the stationarity of the series are not obtained the
forecast function diverges or unidentified in the case ofα ≤ 1

lim
j→∞

E(yt+j|yt, yt−1, . . . , εt, εt−1, . . . ) =
f(t)

1− α
+ lim

j→∞
αjyt = ∞. (8.1)

In next subsection, we apply our moving and fluctuating averaging technique to the
CDS data extensively discussed in Chapter 7.

8.2 Forecasting with Our Model

Let us consider the CDS data presented in Chapter 7, which is theaverage of the seven
sectors comprising the CDO. Now, we wish to compare the accuracy and power of
our model for this particular data set. First we take a simpleAR(1) process, then
anAR(1) process together with first two Fourier terms and finally our new technique
which isAR(1) process together with 997 Fourier terms. We take the1800th data point
as a basis and try to forecast the remaining data up to 2040. The results are shown in
Figure 8.1,Figure 8.2 and Figure 8.3

Figure 8.1: Forecasting with anAR(1) process.
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Figure 8.2: Forecasting with anAR(1) process together with the first and second
Fourier terms.

Figure 8.3: Forecasting with anAR(1) process together with 997 Fourier terms.
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Looking at Figure 8.1,Figure 8.2 and Figure 8.3 above, we candeduce the following
for the original and demeaned data

1. TheAR(1) process is too far from accuracy. Discrepancies from real data are
inherited into the model and moreover they get wider as time index increases as
shown in (8.1)

2. TheAR(1) model combined with the first two terms of Fourier series,k is defi-
nitely better in forecasting than the soleAR(1) process. A mean reverting struc-
ture is at stage. However, the oscillations around the mean are still very high.
Therefore, we proceed with the algorithm that we mention in Section 6.2.1.

3. The final model, obtained by usage of our proposed algorithm have better fore-
casting power than the above two models. The obtained model is theAR(1)
process with 997 Fourier termsk=1,. . . ,997 clearly has high accuracy. The vari-
ance around the mean is very low showing us that we can use thismodel for
forecasting purposes. On the other hand, the predicted variables are oscillating
around the moving and fluctuating average with a very small variance, demon-
strating that we obtained a robust model for forecasting theCDS spreads.

In the time series literature, the forecasting power of the model is used for model
selection, as well. Depending on these findings, we can conclude that we have a well
specified and concrete model.
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CHAPTER 9

CONCLUSION

The synthetic CDO market, comprised of CDSs drew quite a lot of attention due to
high returns compared to sure gains. However, the complexity of this derivative and
problems in its pricing caused the 2008 sub prime crisis which had a contagious ef-
fect. Here, the default correlation is assumed to be normally correlated, rendering us
to extract implied correlation parameter from the existingCDO prices. However, due
to this confining assumption, in this thesis, first we aim to correct this mispricing. This
is done by the introduction of the correlation of jumps amongsectors which can be
regarded as the crisis periods. By this new technique, we wereable to obtain better re-
sults compared to the existing pricing still applied by practitioners. The phenomenon,
known as the correlation smile under the pricing via Gaussian copula is corrected in
our model by the introduction of a perfectly dependent Lévy copula.

Later we analyzed the underlying CDS spread processes of the CDO. Here, by the
introduction of our new “moving and fluctuating” average technique comprised of a
partial Fourier sum, we not only introduced a new technique applicable to a specific
data, but also a general model extendable to any stationary time series. The power of
this new technique is the allowance of the modeling in discrete time to be transformed
into a well known and analytically tractable continuous time stochastic differential
equation. Thus, instead of an ad-hoc stochastic differential equation including jump,
spike and/or stochastic volatility components where the parameter estimation is hard
and usually non-solvable, our technique exhibits much easyanalytic solutions. Here,
the crucial thing and the major contribution is trying to finda finite sum of Fourier
series terms where the distribution of the residuals are normal. Therefore, we not only
tried to avoid usage of known filtering techniques but also precluded any over fitting
issues. Moreover, instead of direct computation, we estimated the Fourier coefficients,
which is a complete different approach.

Another contribution is the forecasting with our new methodology. We saw that our
moving and fluctuating average together with anAR(1) process is quite powerful in
forecasting compared to other processes.

Throughout the model, the key is the inclusion ofAR(1) process in the sense that
usage of only partial Fourier sums is not sufficient to achieve normality of the residu-
als. Having established the normality of the residual terms, we transform this discrete
time process to a continuous stochastic differential equation and thus forming a bridge
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between discrete and continuous world.

Moreover, we constructed a model which is not data specific. One can form anAR(1)
process with finite number of Fourier series terms for any arbitrary data. The only as-
sumption we need here is stationarity which is quite plausible in the sense that accurate
forecasting can only be done with it.

We only included original computer codes in the appendix. For the testing of unit root,
selection of lag, determination of the Fourier coefficientsand their significance and
graphical representations, various Matlab and Winrats codes are used. Part of them are
in package form and can be found anywhere. Most are already included in Matlab,
Winrats and Eviews as specific codes. Even one can find some of them in Excel.
However, if still requested, those codes can also be given.

As mentioned before, we proposed a new technique which is notdata specific and has a
very high forecasting power. We believe that our model will give good forecast results
when applied to other time series as well. Our model gives us the flexibility to trans-
form any data in discrete time, into a well known stochastic differential equation. As
a future study, one can generate data from stochastic differential equations, including
jumps and stochastic volatility, then use our technique to express it in the form of Hull
and White model and compare the simulation results.
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APPENDIX A

Normality Test Results

Table A.1: Normality test results

JB value
k without AR with AR
1 1696.66 25697.19
2 1666.95 25372.82
3 1321.40 24951.07
4 971.77 24689.43
5 1137.25 24274.09
6 2753.32 23566.25
7 2530.65 23411.05
8 2218.51 22819.04
9 2396.25 22346.14
10 1797.96 22162.81
... ... ...

100 6416.25 15734.38
101 6506.51 15761.95
102 6632.51 15796.36
103 6791.96 15924.30
104 6957.53 16119.95
105 6992.36 16295.49
106 7425.07 16873.11
107 7593.39 17124.48
108 7692.78 17178.45
109 7848.88 17229.13
... ... ...

200 19314.07 21934.58
201 18782.85 21264.90
202 18381.90 20582.26
203 18102.82 20172.59
204 18049.30 20110.50
205 18874.58 19953.77
206 17639.35 19704.45
207 17904.22 19903.35
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JB value
k without AR with AR

300 20397.13 17252.27
301 20617.44 17588.55
302 20924.96 18037/44
303 20959.53 18067.64
304 21273.48 18217.59
305 21604.30 18431.70
306 21609.17 18436.46
307 21743.30 18516.88
308 21771.01 18594.76
309 21804.50 18660.68
... ... ...

400 37748.76 36605.39
401 37616.82 36347.54
402 37744.45 36635.47
403 37622.41 36356.59
404 37538.81 36123.09
405 37173.60 35709.88
406 37619.54 36209.12
407 38365.10 36890.89
408 38244.38 36689.74
409 39293.48 37867.14
... ... ...

500 26192.25 27396.68
501 25999.09 26987.15
502 25641.55 26387.46
503 25222.65 25629.53
504 24894.70 24930.87
505 24615.60 24268.13
506 24533.73 23849.34
507 24410.54 23377.97
508 24106.60 22923.76
509 23732.27 22319.84
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JB value
k without AR with AR

600 21203.67 19701.37
601 21967.24 20718.63
602 22665.59 21975.61
603 23169.25 22469.14
604 24218.92 24076.64
605 24000.55 23647.69
606 23854.41 23268.31
607 23869.78 23202.91
608 23954.91 23306.35
609 24283.94 23678.35
... ... ...

700 21590.62 16043.39
701 21101.79 15746.76
702 20607.89 15267.12
703 20362.54 15186.81
704 20019.22 14803.39
705 19726.43 14552.50
706 19570.10 14352.26
707 19553.72 14170.40
708 19411.10 13929.74
709 19235.04 13602.34
... ... ...

800 25598.18 6691.66
801 25269.18 6503.55
802 24884.61 6302.83
803 24456.19 6069.20
804 24370.50 6031.54
805 24419.89 6145.07
806 24482.00 6095.74
807 25286.86 6187.15
808 25959.22 6304.02
809 27634.50 6938.01
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JB value
k without AR with AR

900 14502.42 7966.29
901 14519.84 7970.06
902 14392.66 7901.58
903 14302.42 7894.53
904 14254.62 8025.81
905 14083.39 8012.09
906 14028.36 8122.11
907 13789.01 7833.52
908 13746.58 7678.11
909 13607.99 7474.80
... ... ...

990 587.79 373.21
991 526.53 324.38
992 378.43 167.16
993 307.79 158.50
994 211.39 124.87
995 95.15 32.08
996 108.95 27.71
997 62.27 1.65
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APPENDIX B

Sine Fourier Coefficients and Their Significance

Table B.1: Sine Fourier Coefficients and Their Significance

Term Coefficient t-statistics Significance
1 -41.96 -2.80 0.01
2 49.23 6.53 0.00
3 -38.74 -7.77 0.00
4 15.34 4.08 0.00
5 -10.49 -3.50 0.00
6 -22.73 -9.12 0.00
7 8.55 3.98 0.00
8 -11.73 -6.27 0.00
9 11.76 7.02 0.00
10 -5.76 -3.85 0.00
... ... ... ...
100 -1.36 -9.66 0.00
101 0.05 0.34 0.74
102 -0.52 -3.73 0.00
103 -0.88 -6.43 0.00
104 -0.53 -3.91 0.00
105 0.38 2.80 0.01
106 -1.99 -15.06 0.00
107 0.52 3.98 0.00
108 -0.33 -2.50 0.02
109 -0.60 -4.67 0.00
... ... ... ...
200 0.21 3.59 0.00
201 0.45 7.53 0.00
202 -0.35 -6.00 0.00
203 0.48 8.27 0.00
204 -0.30 -5.20 0.00
205 0.43 7.55 0.00
206 -0.05 -0.97 0.34
207 -0.40 -7.10 0.00
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Term Coefficient t-statistics Significance
300 -0.27 -9.80 0.00
301 0.44 15.91 0.00
302 0.13 4.57 0.00
303 -0.03 -1.04 0.30
304 -0.39 -14.29 0.00
305 0.06 2.36 0.02
306 -0.01 -0.37 0.71
307 0.11 4.07 0.00
308 0.00 0.08 0.94
309 -0.01 -0.37 0.71
... ... ... ...
400 0.08 7.18 0.00
401 -0.18 -16.61 0.00
402 -0.25 -23.53 0.00
403 -0.08 -7.81 0.00
404 -0.20 -19.59 0.00
405 0.15 2.80 0.01
406 -1.99 14.17 0.00
407 -0.01 -1.16 0.25
408 -0.05 -4.50 0.00
409 0.28 28.14 0.00
... ... ... ...
500 0.04 14.87 0.00
501 0.11 38.94 0.00
502 -0.32 -119.53 0.00
503 0.16 68.48 0.00
504 -0.25 -108.48 0.00
505 0.20 89.05 0.00
506 -0.07 -32.32 0.00
507 -0.08 -34.70 0.00
508 0.16 69.87 0.00
509 -0.12 -53.20 0.00
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Term Coefficient t-statistics Significance
600 -0.01 -2.54 0.01
601 0.07 12.91 0.00
602 -0.16 -29.56 0.00
603 0.12 23.37 0.00
604 -0.17 -31.76 0.00
605 0.03 5.99 0.00
606 -0.17 -29.63 0.00
607 0.01 1.32 0.19
608 0.06 10.52 0.00
609 -0.16 -27.44 0.00
... ... ... ...
700 -0.07 -9.33 0.00
701 0.24 37.07 0.00
702 -0.19 -25.59 0.00
703 0.16 21.56 0.00
704 -0.04 -6.25 0.00
705 0.00 0.39 0.70
706 0.17 24.23 0.00
707 -0.20 -27.79 0.00
708 0.14 18.50 0.00
709 0.00 0.40 0.69
... ... ... ...
800 -0.01 -2.13 0.04
801 -0.03 -3.87 0.00
802 0.07 10.14 0.00
803 -0.01 -2.22 0.00
804 0.03 4.53 0.00
805 0.04 6.23 0.00
806 0.01 2.24 0.03
807 0.00 0.51 0.62
808 -0.03 -4.47 0.00
809 0.06 8.50 0.00
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Term Coefficient t-statistics Significance
900 0.01 2.36 0.02
901 0.00 0.61 0.54
902 0.01 2.97 0.00
903 0.00 -0.42 0.68
904 -0.01 -1.29 0.20
905 0.02 4.94 0.00
906 -0.01 -2.52 0.02
907 0.01 2.81 0.01
908 0.01 1.81 0.08
909 -0.01 -2.25 0.03
... ... ... ...
990 0.00 0.40 0.69
991 0.00 2.06 0.05
992 0.00 -0.77 0.45
993 0.01 2.34 0.02
994 0.00 -1.64 0.11
995 0.01 3.16 0.00
996 0.00 -0.41 0.69
997 0.01 2.18 0.04

78



APPENDIX C

Cosine Fourier Coefficients and Their Significance

Table C.1: Cosine Fourier Coefficients and Their Significance

Term Coefficient t-statistics Significance
1 0.37 8.12 0.00
2 35.04 307.10 0.00
3 -3.78 -76.39 0.00
4 -6.51 -120.91 0.00
5 22.63 283.31 0.00
6 -15.69 -214.91 0.00
7 -0.70 -14.96 0.00
8 -2.66 -55.22 0.00
9 -6.41 -119.06 0.00
10 1.31 28.69 0.00
... ... ... ...
100 0.17 3.69 0.00
101 -0.18 -4.08 0.00
102 0.24 5.37 0.00
103 1.13 25.26 0.00
104 -1.03 -22.58 0.00
105 1.53 34.21 0.01
106 -0.48 -10.66 0.00
107 -0.92 -20.16 0.00
108 -0.34 -7.54 0.00
109 -0.33 -7.34 0.00
... ... ... ...
200 -0.95 -22.14 0.00
201 0.77 18.42 0.00
202 -0.95 -22.46 0.00
203 0.38 8.97 0.00
204 -0.63 -14.98 0.00
205 0.21 5.04 0.00
206 0.37 8.98 0.00
207 0.35 8.32 0.00
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Term Coefficient t-statistics Significance
300 -0.25 -6.83 0.00
301 -0.50 -13.30 0.00
302 0.47 12.75 0.00
303 0.03 0.83 0.41
304 0.22 6.12 0.00
305 -0.46 -12.28 0.00
306 0.00 -0.09 0.93
307 -0.14 -3.74 0.00
308 -0.15 -3.98 0.00
309 0.09 2.50 0.02
... ... ... ...
400 -0.21 -6.69 0.00
401 0.38 12.26 0.00
402 -0.37 -12.10 0.00
403 -0.36 -11.74 0.00
404 -0.07 2.16 0.04
405 -0.15 -4.93 0.00
406 -0.01 0.45 0.66
407 0.08 2.63 0.01
408 -0.07 -2.40 0.02
409 -0.01 -0.33 0.75
... ... ... ...
500 -0.21 10.65 0.00
501 0.36 15.28 0.00
502 -0.12 -5.23 0.00
503 0.01 0.61 0.55
504 0.04 1.62 0.11
505 -0.25 -10.58 0.00
506 0.24 1.62 0.00
507 -0.20 -8.60 0.00
508 -0.04 -1.76 0.09
509 0.10 4.10 0.00
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Term Coefficient t-statistics Significance
600 -0.01 -0.59 0.56
601 0.16 9.34 0.00
602 -0.02 -1.18 0.24
603 0.09 5.54 0.00
604 0.09 5.47 0.00
605 0.10 5.94 0.00
606 -0.06 -3.55 0.00
607 -0.06 -3.86 0.00
608 0.04 2.63 0.01
609 -0.13 -8.01 0.00
... ... ... ...
700 -0.16 -15.23 0.00
701 0.08 7.59 0.00
702 0.05 4.45 0.00
703 -0.14 -13.01 0.00
704 0.12 11.88 0.00
705 -0.14 -13.89 0.00
706 0.12 11.39 0.00
707 0.07 6.63 0.00
708 -0.13 -8.58 0.00
709 0.16 16.38 0.00
... ... ... ...
800 -0.05 -8.79 0.00
801 -0.01 -1.55 0.13
802 -0.07 -11.56 0.00
803 0.05 8.36 0.00
804 -0.07 -13.53 0.00
805 0.06 10.35 0.00
806 -0.02 -2.99 0.00
807 0.08 15.11 0.00
808 -0.05 -10.40 0.00
809 0.07 12.62 0.00
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Term Coefficient t-statistics Significance
900 -0.02 -8.46 0.00
901 0.00 0.68 0.50
902 -0.01 -3.64 0.00
903 0.02 6.77 0.00
904 -0.04 -13.44 0.00
905 0.01 5.28 0.00
906 -0.01 -4.92 0.00
907 -0.01 -3.37 0.00
908 0.01 2.77 0.01
909 -0.01 -4.32 0.00
... ... ... ...
990 0.00 -1.69 0.10
991 0.00 0.41 0.68
992 0.00 -1.61 0.12
993 0.00 0.32 0.75
994 0.00 -1.13 0.26
995 -0.01 -2.89 0.01
996 0.00 2.24 0.03
997 -0.01 -2.58 0.01
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APPENDIX D

Matlab Codes

Default Times
function Gaussian_Copula = Gauss(n,r)
R=ones(n,n);
i=1:n;
j=1:n;
if i~=j
R(i,j)=r;
end

h=0;

for i=0.025:.025:.975
h=h+1;
k=0;
for j=0.025:.025:.975

X=[i;j];
k=k+1;
U=norminv(X);
block1=1/(det(R)^0.5);
block2=-0.5*U’*(inv(R)-ones(n,n))*U;
gauss_grid(h,k)=block1*exp(block2);

end
end
surf(gauss_grid)

end

Cash Flow
function [ PV_def, PV_premium ]=cash_flow(expiry,def_time,rec,zc_rate,...
capital,C,D)

% Computation of Default and Premium Legs of a CDO
% expiry : CDO maturity
% def_time : simulated default time
% zc_rate : constant zero coupon rate
% capital : notional amount
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% C: attachment
% D: detachment

PV_def=0;
PV_premium=0;
num=size(def_time,2);
loss=zeros(num,1); % default for each credit
tot_loss=0; %cumulative portfolio loss
periodic_loss=zeros(expiry,1); % accumulated loss at each payment
out_capital=zeros(expiry,1); % outstanding tranche capital
fee=zeros(expiry,1);
total_fee=0;
indicator=0;
c=0;
% calculate total loss in k th simulation
for i=1:num

if def_time(1,i)<expiry % there certainly is a loss when simulated
% default time is less than CDO maturity

loss(i)=(1-rec)*capital;
tot_loss=tot_loss+loss(i); % sum of individual losses

end
end

% % DEFAULT LEG SIMULATION % %

% if loss is below the attachment point C there’s no default payment
if tot_loss<C

PV_def=0;
% if loss is above C and below D there’s default payment
elseif tot_loss>C & tot_loss<D

for i=1:num
if def_time(1,i)<expiry

indicator=indicator+loss(i); %cumulative loss is memorized
if indicator>C % tranche begins to absorbe losses above C%

if c==0
disc_fact_def=0;
r=zc_rate;
disc_fact_def=(1+r)^(-def_time(1,i)); % discount factor

% at default
PV_def=PV_def+(indicator-C)*disc_fact_def;

% only the loss exceeding C is absorbed
c=1;

else
disc_fact_def=0;
r=zc_rate;
disc_fact_def=(1+r)^(-def_time(1,i));
PV_def=PV_def+loss(i)*disc_fact_def;

end
end

end
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end
% if portfolio loss is above D, tranche absorb losses only up to D

elseif tot_loss>D
for i=1:num

if def_time(1,i)<expiry
indicator=indicator+loss(i);
if indicator>C & indicator<D % if the losses are in C-D range

if c==0
disc_fact_def=0;
r=zc_rate;
disc_fact_def=(1+r)^(-def_time(1,i));
PV_def=PV_def+(indicator-C)*disc_fact_def;
c=1;

else
disc_fact_def=0;
r=zc_rate;
disc_fact_def=(1+r)^(-def_time(1,i));
PV_def=PV_def+loss(i)*disc_fact_def;

end
elseif indicator>D

if c==1
disc_fact_def=0;
r=zc_rate;
disc_fact_def=(1+r)^(-def_time(1,i));
absorbed_loss=D-(indicator-loss(i));
PV_def=PV_def+(absorbed_loss*disc_fact_def);
c=2;

end
end

end
end

end

% % PREMIUM LEG SIMULATION % %

for i=1:expiry
periodic_loss(i)=0;
for j=1:num

if def_time(i,j)<i
% calculated the accumulated portfolio losses
periodic_loss(i)=periodic_loss(i)+(1-rec)*capital;

end
end
out_capital(i)=min(max(D-periodic_loss(i),0),D-C);
% outstanding capital at each payment
fee(i)=((1+zc_rate)^(-i))*out_capital(i);
PV_premium=PV_premium+fee(i);

end
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CDO Tranches
function [ price_eq,price_mezz,price_sen ] = CDO_tranche(ref_ent,T,k )
% fair price of tranches of a synthetic CDO
% ref_ent : # of reference entities
% T : maturity
% k : # of simulations

tic
% initialize a vector of zeros for each tranche
CDO_P1=zeros(5,5);
CDO_P2=zeros(5,5);
CDO_P3=zeros(5,5);
% initialize a vector of zeros for different recoveries
Recovery =zeros(ref_ent,5);
hazard=zeros(5,1);
% obligors spread is set to 150 bps
spread=150/10000;

% hazard rate=spread/(1-recovery)
% calculate the corresponding hazard rate

for rec_cycle=1:5
Recovery(:,rec_cycle)=(.2*rec_cycle)-.2;

% Recovery(:,rec_cycle)=0.4;
% recovery is from 0% to 80%

hazard(rec_cycle)=spread/(1-Recovery(1,rec_cycle));
end

ZC=0.05; % constant interest rate

Amount=zeros(ref_ent,1); % vector of notional amount for each credit
Amount(:)=100; % each credit has 100 units of notional amount
C=zeros(3,1);
D=zeros(3,1);
% fix three attachment (0%,3%,14%) and detachment (3%,14%,100%) points
C(1)=(0/100)*sum(Amount);
D(1)=(3/100)*sum(Amount);
C(2)=(3/100)*sum(Amount);
D(2)=(14/100)*sum(Amount);
C(3)=(14/100)*sum(Amount);
D(3)=(100/100)*sum(Amount);

time=zeros(ref_ent,1);
index=zeros(ref_ent,1);

R=[0:.2:0.8]; % constant pairwise correlation from 0% to 80%
% correlation loop
for R_cycle=1:5

for xx=1:ref_ent
for yy=1:xx

if xx==yy
corr(xx,yy)=1;

else
corr(xx,yy)=R(R_cycle); % populate correlation matrix
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corr(yy,xx)=R(R_cycle);
end

end
end

def_t=gaussian_time(corr,k,ref_ent);
% generate default times with gaussian copula and constant hazard rate

S_fees=zeros(5,3);
% dummy variable for memorizing the simulated payment leg
S_default=zeros(5,3);
% dummy variable for memorizing the simulated default leg
M_fees=zeros(5,3);
M_default=zeros(5,3);
% variable memorizing the payment leg for each loop of recovery&corr

for n=1:k % simulation loop begins
for rec_cycle=1:5 % recovery loop begins

[time,index]=sort(def_t(n,:));
% sort vector of default times
tau=[time./hazard(rec_cycle);index];

%generate vector of default times by dividing the corr. hazard rate
for u=1:3 % start the loop for each tranche

recovery=0;
fees=0;
% calculate the default and premium legs
[default,fees]=

cash_flow(T,tau,Recovery(1,rec_cycle),ZC,Amount(1),C(u),D(u));
S_fees(rec_cycle,u)=S_fees(rec_cycle,u)+fees;
S_default(rec_cycle,u)=S_default(rec_cycle,u)+default;

end
end

end
for u=1:3

for rec_cycle=1:5
M_fees(rec_cycle,u)=S_fees(rec_cycle,u)/k;
M_default(rec_cycle,u)=S_default(rec_cycle,u)/k
% average default leg

end
end

for rec_cycle=1:5
CDO_P1(R_cycle,rec_cycle)=(M_default(rec_cycle,1)/

(M_fees(rec_cycle,1)))*10000; % spread for 0%-3% tranche
CDO_P2(R_cycle,rec_cycle)=(M_default(rec_cycle,2)/

(M_fees(rec_cycle,2)))*10000; % spread for 3%-14% tranche
CDO_P3(R_cycle,rec_cycle)=(M_default(rec_cycle,3)/

(M_fees(rec_cycle,3)))*10000; % spread for 14%-100% tranche
end

end

price_eq=CDO_P1;
price_mezz=CDO_P2;
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price_sen=CDO_P3;

figure(1)
surf((0:.2:.8),R,price_eq);
title(’Equity Tranche (0%-3%)’)
xlabel(’Recovery’);
ylabel(’Correlation’);
zlabel(’Tranche spread (bps per annum)’);

figure(2)
surf((0:.2:.8),R,price_mezz);
title(’Mezzaine Tranche (3%-14%)’)
xlabel(’Recovery’);
ylabel(’Correlation’);
zlabel(’Tranche spread (bps per annum)’);

figure(3)
surf((0:.2:.8),R,price_sen);
title(’Senior Tranche (14%-100%)’)
xlabel(’Recovery’);
ylabel(’Correlation’);
zlabel(’Tranche spread (bps per annum)’);

toc
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