
1





ON CONSTRUCTIONS AND ENUMERATION OF BENT AND SEMI-BENT
FUNCTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
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ABSTRACT

ON CONSTRUCTIONS AND ENUMERATION OF BENT AND SEMI-BENT
FUNCTIONS

Koçak, Neşe

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Assoc. Prof. Dr. Zülfükar Saygı

August 2015, 60 pages

Bent and semi-bent functions play an important role in cryptography and coding the-
ory. They are widely studied as parts of building blocks in symmetric key cryptosys-
tems because they provide resistance to fast correlation attacks and linear cryptanalysis
due to their high nonlinearity. Besides, they can possess other desirable cryptographic
properties such as low autocorrelation, propagation criteria, resiliency and high alge-
braic degree. Therefore, parallel to the advances in cryptanalysis techniques, the need
for finding and constructing such functions increases day by day. However, as the num-
ber of inputs gets higher, it becomes impossible to search exhaustively all bent/semi-
bent functions on the entire space. This limitation prompts researchers to deduce new
methods to obtain bent/semi-bent functions with reasonable amount of computation
power. A lot of research has been devoted to construction, characterization or enu-
meration of bent/semi-bent functions. For these reasons, we aim to contribute to the
knowledge of bent and semi-bent functions by presenting new results on constructions,
characterization and enumeration of these functions.

In this thesis, characterization of a class of quadratic Boolean functions for semi-
bentness is given and it is proved that semi-bent functions exist only when the input
number is a multiple of 6. Furthermore, a generic method for enumeration of semi-bent
and bent functions in certain classes is presented. Using this method, exact number of
characterized semi-bent functions is found. Moreover, with this method some previ-
ous partial and incomplete enumeration results for three other classes of semi-bent/bent
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functions in the literature are completed.

Explicit constructions of bent and semi-bent functions of Maiorana-McFarland class
via linear structures and linear translators are proposed. Also, by using these explicit
constructions as well as other algebraic structures like derivatives, certain quadratic
and cubic functions, new secondary constructions of bent and semi-bent functions are
obtained.

Keywords : Boolean functions, Bent functions, Semi-bent functions, Polynomial form,
Linear Translators
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ÖZ

BÜKÜK VE YARI-BÜKÜK FONKSİYONLARIN İNŞAASI VE SAYMASI
ÜZERİNE

Koçak, Neşe

Doktora, Kriptografi

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Doç. Dr. Zülfükar Saygı

Ağustos 2015, 60 sayfa

Bükük ve yarı-bükük fonksiyonlar kriptografi ve kodlama teorisinde önemli bir rol oy-
namaktadır. Bu fonksiyonlar yüksek nonlineeriteye sahip olmaları sebebiyle hızlı ko-
relasyon saldırılarına ve lineer kriptanalize dayanıklı olduklarından simetrik anahtarlı
kriptosistemlerde yapıtaşları olarak yaygın bir şekilde kullanılmışlardır. Bunun yanında,
düşük otokorelasyon, yayılma kriteri, dayanıklılık ve yüksek cebirsel derece gibi iste-
nen kriptografik özelliklere de sahip olabilirler. Bu nedenle, kriptanaliz tekniklerindeki
gelişmelere paralel olarak bu tür fonksiyonları bulma ve inşa etme ihtiyacı gün geçtikçe
artmaktadır. Bununla birlikte, girdi sayısı arttıkça tüm bükük ve yarı-bükük fonksiy-
onları bütün uzayda aramak imkansız hale gelmektedir. Bu kısıtlılık araştırmacıları
bükük ve yarı-bükük fonksiyonlar elde etmek için makul bir hesaplama gücüne sahip
yeni metotlar bulmaya sevk etmiştir. Bükük ve yarı-bükük fonksiyonların inşaası,
sınıflandırılması ve sayılması konusunda oldukça çok araştırma yapılmıştır. Bu sebe-
plerden dolayı, bükük ve yarı-bükük fonksiyonların bilgi birikimine bunların inşaası,
sınıflandırılması ve sayılması konusunda sonuçlar sunarak katkıda bulunulması amaç-
lanmıştır.

Bu tezde, ikinci derece bir Boole fonksiyon sınıfının yarı-büküklük açısından sınıflan-
dırılması verilmiş ve yarı-bükük fonksiyonların girdi sayısı sadece 6’nın bir katı iken
var olabileceği ispatlanmıştır. Ayrıca, belirli sınıflardaki bükük ve yarı-bükük fonksiy-
onların sayımı için genel bir yöntem önerilmiştir. Bu yöntem kullanılarak sınıflandırıl-
ması yapılan yarı-bükük fonksiyonların tam olarak sayısı bulunmuştur. Buna ek olarak,
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literatürde var olan bazı bükük/yarı-bükük fonksiyon sınıflarının sayıları ile ilgili sonuç-
lar genellenmiştir.

Doğrusal yapılar ve çeviriciler kullanılarak Maiorana-McFarland sınıfına ait bükük ve
yarı-bükük fonksiyonların inşaaları verilmiştir. Ayrıca, bu inşaalar ve türev gibi diğer
cebirsel yapılar ile belirli ikinci ve üçüncü dereceden fonksiyonlar da kullanılarak
bükük ve yarı-bükük fonksiyonlar için yeni ikincil inşa sınıfları elde edilmiştir.

Anahtar Kelimeler : Boole fonksiyonlar, Bükük fonksiyonlar, Yarı-bükük Fonksiyon-
lar, Polinom formu, Doğrusal çeviriciler
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Zülfükar Saygı for his advices and guidance.

I also would like to thank Prof. Dr. Sihem Mesnager for her valuable advices which
helped me a lot in my research.

My sincere thanks go to all my friends for their close friendship and motivation. I
would like to thank committee members, academic and administrative staff of the In-
stitute of Applied Mathematics.

I am also grateful to my supervisors Bikem Temürcü and Hamdi Erkan and to my
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CHAPTER 1

INTRODUCTION

1.1 Overview

Boolean functions are nice and well practiced combinatorial objects. They play an
essential role not only in cryptography and coding theory but also in combinatorics,
complexity theory, probability theory and other areas of mathematics and computer
science. Boolean functions can be defined simply as mappings from F2n (Finite field
with 2n elements) to F2 , that is for each input they output 0 or 1. An indigenous gen-
eralization of Boolean functions known as vectorial Booelan functions are the multi-
output Boolean functions. In cryptography, Boolean functions are considered as sig-
nificant objects since they are used in the construction of building blocks in symmetric
cryptosystems. For instance, the so-called Substitution boxes (S-boxes) which are fun-
damental parts of block ciphers are constituted of vectorial Boolean functions.

Theory of Boolean functions is an important and widely studied research area. Ac-
companied with the developments in cryptanalysis techniques, the need for the design
and analysis of Boolean functions have increased significantly in the last decades.

Designing a symmetric cipher scheme and analyzing its security margins are directly
related to the construction of Boolean functions with desirable cryptographic proper-
ties. This forces the designers to choose “cryptographically good” Boolean functions
to be used in the cipher. These choices may depend on several cryptographic features
such as nonlinearity, balancedness, algebraic degree, correlation immunity, algebraic
immunity, propagation criteria etc. However, a Boolean function satisfying all of these
criteria simultaneously seems impossible since there is a conflict between these cryp-
tographic criteria. For instance, according to Siegenthaler’s bound [44], algebraic de-
gree of an n-variable m-th order correlation immune Boolean function can be at most
n −m. This indicates that a Boolean function cannot have high algebraic degree and
the maximum possible correlation immunity at the same time. Also, a function with
even number of inputs and having maximum nonlinearity can be neither balanced nor
of maximal degree. Similarly, a function with maximal algebraic immunity cannot
have algebraic degree greater than half of the number of inputs. Therefore, it is obvi-
ous that compromises have to be made, and trade-offs need to be evaluated. Indeed,
finding the best trade-offs between all criteria and proposing concrete constructions of
Boolean functions comprising a good combination of these properties become more
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challenging both in theoretical and practical cryptographic purposes.

One of the most significant cryptographic criteria of a Boolean function is the nonlin-
earity. Bent functions possess the maximum nonlinearity among Boolean functions.
They were defined only for even dimensions and first studied by Dillon [20] in 1974
but first introduced by Rothaus [43] in 1976. Especially in the last 20 years, bent
functions have been a very actively studied research area since they have applications
in cryptography (symmetric key cryptosystems), algebraic coding theory, sequence
theory and design theory. A book devoted especially to binary bent functions and con-
taining a complete survey on bent functions is [41]. Open problems on binary bent
functions can be found in [7].

Bent functions play a crucial role in the design of stream and block ciphers since they
provide confusion in these cryptosytems due to their high nonlinearity. In block ci-
phers, bent functions are involved in the substitution boxes (S-boxes) in order to add
nonlinearity to the cipher and hence to resist differential and linear attacks. On the
other hand, bent functions cannot be balanced. Hence, with some modifications, bent
functions can be employed in the pseudo-random generator of a stream cipher in order
not to leak statistical correlation between the plaintext and the ciphertext.

Bent functions are particular plateaued functions. The notion of plateaued function has
been introduced in 1999 by Zheng and Zhang as good candidates for designing cryp-
tographic functions since they possess desirable various cryptographic characteristics.
They are defined in terms of the Walsh-Hadamard spectrum. Plateaued functions bring
together various nonlinear characteristics and include two important classes of Boolean
functions defined in even dimension: the well-known bent functions and the semi-bent
functions. Very recently, the study of semi-bent functions has attracted the attention of
several researchers. Many progresses in the design of such functions have been made.

A complete classification and enumeration of bent and semi-bent functions are still
open problems. Table 1.1 shows the exact number of bent functions for n ≤ 8 together
with the lower and upper bounds on the number of bent functions for n ≤ 10 in
order to emphasize that how difficult to give estimations on these bounds when the
dimension gets higher. Therefore, not only the characterization, but also enumeration
and construction of bent and semi-bent functions are challenging problems.

Table 1.1: Number of bent functions [32, 48]

n lower bound # of bent functions upper bound
2 8 8 = 23 8
4 29 896 ≈ 29.8 211

6 228.3 ≈ 232.3 242

8 287.4 ≈ 2106.3 2163

10 2262 unknown 2638
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1.2 Outline of the Thesis

This thesis consists of five chapters including this introduction chapter.

Chapter 2 contains some concepts, notations and definitions which will be used through-
out the thesis. The notions related to the representations of Boolean functions namely
algebraic normal form, numerical normal form, trace representation and bivariate rep-
resentations are recalled. Also, properties of bent and semi-bent functions within the
scope of this thesis are mentioned.

In Chapter 3, we give a characterization of a class of semi-bent quadratic Boolean
functions and specify the necessary and sufficient conditions for this class of functions
to be semi-bent. We also present a generic method for enumeration and complement
some previous results on enumeration of semi-bent and bent functions for all n. Addi-
tionally, some results on bent functions given in [34] are corrected.

Chapter 4 is devoted to explicit constructions of bent and semi-bent functions via lin-
ear translators. We first consider such functions in Maiorana-McFarland type and
obtain bent and semi-bent functions Boolean functions having linear structures (lin-
ear translators) systematically. Also, using these results we modify many secondary
constructions. herefore, we obtain new secondary constructions of bent and semi-bent
functions not belonging to the Maiorana-McFarland class. Instead of using bent (semi-
bent) functions as ingredients, our secondary constructions use only Boolean (vecto-
rial Boolean) functions with linear structures (linear translators) which are very easy
to choose. Moreover, all of them are very explicit and we also determine the duals of
the bent functions in our constructions. We show how these linear structures should be
chosen in order to satisfy the corresponding conditions coming from using derivatives
and quadratic/cubic functions in our secondary constructions.

Finally, Chapter 5 concludes the thesis by summarizing the work and emphasizing the
contributions.
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CHAPTER 2

PRELIMINARIES

This chapter provides the necessary background and notation used in this thesis. Rep-
resentations of Boolean functions, namely algebraic normal form, numerical normal
form, trace (polynomial) and bivariate representations are described. The definitions
of bent and semi-bent functions and the notions related to them are given. The inter-
ested reader is referred to [6] and [41] for excellent treatments on these subjects.

2.1 Boolean Functions and Their Representations

Let F2 denote the Galois field with two elements. A Boolean function is a function
from the n-dimensional vector space Fn2 to F2 and a function from the vector-space Fn2
to Fm2 is called vectorial Boolean function.

The n-dimensional vector space Fn2 can also be endowed with the structure of the finite
field with 2n elements, F2n :
F2n = F2[x]/

(
p(x)

)
where p(x) is an irreducible polynomial of degree n over F2.

Let α be a root of p(x) in F2n . Then, fix a basis {1, α, α2, . . . , αn−1}. Every element
x ∈ F2n can be written as x = c0 +c1α+. . .+cn−1α

n−1 where (c0, c1, . . . , cn−1) ∈ Fn2 .
This identification gives an isomorphism between Fn2 and F2n and allows us to define
Boolean functions over finite fields as well.

For a given Boolean function there exists several representations. We will only give a
brief description of these representations for reasons of completeness.

2.1.1 Algebraic Normal Form

Algebraic Normal Form (ANF) is the classical and the most well known representation
of Boolean functions. ANF is a multivariate representation. For a Boolean function
f : Fn2 → F2, its Algebraic Normal Form is given in [6] as

f(x1, x2, · · · , xn) =
⊕

I∈P(N)

aI

(∏
i∈I

xi

)
=
⊕

I∈P(N)

aIx
I , (2.1)
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where P(N) denotes the power set of N = {1, · · · , n}. Every coordinate xi appears
in this polynomial with exponents at most 1 since every bit in F2 equals its own square.
This representation belongs to F2 [x1, · · · , xn] / (x1

2 ⊕ x1, · · · , xn2 ⊕ xn).

Another possible representation of this same ANF uses indexation by means of vectors
of Fn2 instead of N :

f(x1, x2, · · · , xn) =
⊕
u∈Fn

2

aux
u, (2.2)

where xu =
∏n

j=1 xj
uj for which uj = 1 and au ∈ F2. Algebraic Normal Form exists

for every Boolean function f and is unique [6]. The algebraic degree of the Boolean
function f denoted by deg(f) is the maximum degree corresponding to a nonzero
coefficient:

maxu∈Fn
2
{wt(u) : au 6= 0} .

As an example, we can represent all Boolean functions f : F3
2 → F2 in the Algebraic

Normal form as

f(x1, x2, x3) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ a4x1x2 ⊕ a5x1x3 ⊕ a6x2x3 ⊕ a7x1x2x3

where ai ∈ F2 for 0 ≤ i ≤ 7. If a7 6= 0, then deg(f) = 3. If a7 = 0 and one of
a4, a5, a6 is nonzero then deg(f) = 2.

2.1.2 Numerical Normal Form

Numerical Normal Form (NNF) [8] is a very similar multivariate representation which
takes the coefficients from integers. Any integer-valued mapping f can be uniquely
represented as multivariate polynomial over Z :

f(x) =
∑
u∈Fn

2

λux
u, (2.3)

where xu =
∏n

j=1 xj
uj and λu ∈ Z.

The coefficients in the ANF corresponds to the coefficients in NNF reduced to modulo
2. We can switch off from NNF to ANF by using the conversion between binary and
integer arithmetic :

a⊕ b = a+ b− 2ab.

Example 2.1. Let f : F4
2 → F2 and its ANF is given as f(x1, x2, x3, x4) = x1 ⊕ x4 ⊕

x2x3x4. NNF of f can be computed as follows:

f(x1, x2, x3, x4) = (x1 + x4 − 2x1x4)⊕ x2x3x4

= (x1 + x4 − 2x1x4) + (x2x3x4)− 2(x1 + x4 − 2x1x4)(x2x3x4)

= x1 + x4 − 2x1x4 − x2x3x4 + 2x1x2x3x4
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2.1.3 Trace Representation and Polynomial Form

Boolean function as a polynomial in one variable x ∈ F2n of the form f(x) =∑2n−1
j=0 ajx

j where the aj’s are elements of the field. Such function f is Boolean if
and only if a0 and a2n−1 belong to F2 and a2j = a2

j for every j 6∈ {0, 2n−1} (where 2j
is taken modulo 2n − 1). This leads to a unique representation which we call the poly-
nomial form. First, recall that for any positive integers k, and r dividing k, the trace
function from F2k to F2r , denoted by Trkr , is the mapping defined for every x ∈ F2k

as:

Trkr (x) :=

k
r
−1∑
i=0

x2ir = x+ x2r + x22r + · · ·+ x2k−r

.

In particular, the absolute trace over F2 of an element x ∈ F2n is defined as Trn1 (x) =∑n−1
i=0 x

2i . Some of the properties of the trace function can be given as:

1. Trn1 (x) = Trn1 (x2), for all x ∈ F2n .

2. Trkr (x) = Trkr (x
2r), for all x ∈ F2k .

3. Trk1(x) = Trr1(Trkr (x)), for all x ∈ F2k .

4. Trkr (ax+ by) = aTrkr (x) + bTrkr (y), for all a, b ∈ F2r , x, y ∈ F2k .

Now, the polynomial form[41] of a Boolean function defined on F2n is the expression
of f as

f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajx

j) + ε(1 + x2n−1)

where

• Γn is the set of integers obtained by choosing one element in each cyclotomic
class of 2 modulo 2n − 1 (the most usual choice for j is the smallest element in
its cyclotomic class, called the coset leader of the class),

• o(j) is the size of the cyclotomic coset of 2 modulo 2n − 1 containing j,

• aj ∈ F2o(j) ,

• ε = wt(f) modulo 2 where wt(f), is the Hamming weight of the image vector
of f , that is, the cardinality of its support supp(f) := {x ∈ F2n | f(x) = 1}.

The algebraic degree of f is then equal to the maximum 2-weight of an exponent j
for which aj 6= 0 if ε = 0 and to n if ε = 1. Recall that the 2-weight of an integer j
denoted by w2(j) equals the number of 1’s in its binary expansion.
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Example 2.2. Let n = 4, then f : F24 → F2,

f(x) =
∑
j∈Γ4

Tr
o(j)
1 (ajx

j) + ε(1 + x15),

Cj : the cyclotomic coset of 2 modulo 2n − 1 = 15 containing j,
Cj =

{
j, j · 2, j · 22, j · 23, . . . , j · 2o(j)−1

}
where o(j) is the smallest positive integer

such that j2o(j) ≡ j mod(2n − 1).

The cyclotomic cosets modulo 15 are :
C0 = {0}
C1 = {1, 2, 4, 8}
C3 = {3, 6, 12, 9}
C5 = {5, 10}
C7 = {7, 14, 11, 13}
We find Γ4 = {0, 1, 3, 5, 7}, then

f(x) = Tr
o(1)
1 (a1x

1) +Tr
o(3)
1 (a3x

3) +Tr
o(5)
1 (a5x

5) +Tr
o(7)
1 (a7x

7) +a0 + ε(1 +x15);

f(x) = Tr4
1(a1x) + Tr4

1(a3x
3) + Tr2

1(a5x
5) + Tr4

1(a7x
7) + a0 + ε(1 + x15)

where a1, a3, a7 ∈ F24 , a5 ∈ F22 and a0, ε ∈ F2.

2.1.4 Bivariate Representation

The bivariate representation[38] of Boolean functions makes sense only when n is an
even integer. It plays an important role for defining bent functions and is defined by
identifying F2n (where n = 2m) with F2m ×F2m . Let f be a Boolean function defined
on F2m × F2m . Then, bivariate representation of f can be shown as

f(x, y) =
∑

0≤i,j≤2m−1

ai,jx
iyj

where x, y ∈ F2m . The algebraic degree of f equals max(i,j) | ai,j 6=0(w2(i)+w2(j)). The
function f being Boolean, its bivariate representation can be written in the (non unique)
form f(x, y) = Trm1 (P (x, y)) where P (x, y) is some polynomial in two variables over
F2m .

Throughout the thesis we will use trace representation and bivariate representation.

2.2 Bent and Semi-bent Functions

The classes of bent and semi-bent functions are special subclasses of the so-called
plateaued functions [52]. They are actively studied topics because of their important
applications in cryptography, coding theory, combinatorics and information theory.
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In cryptography, bent and semi-bent functions are very crucial because having low
Hadamard transform values makes these functions suitable for construction of cipher
elements that are resistant to linear and fast correlation attacks.

Bent functions were first introduced by Rothaus[43] in 1976, but Dillon[20] also stud-
ied these functions in his Ph.D. thesis. Bent functions are nice combinatorial objects
which have maximum nonlinearity among Boolean functions. A book devoted espe-
cially to binary bent functions and containing a complete survey on bent functions is
[41]. Another recent book on bent functions which is brings together all known results
and constructions is [49]. Also, an interested reader can find open problems on binary
bent functions in [7].

Another family, semi-bent functions, also have low Hadamard transform values. First,
Chee, Lee and Kim [19] introduced the notion of semi-bent functions in 1994. In fact,
Canteaut et al.[3] had previously investigated these functions known as three-valued
almost optimal Boolean functions. Semi-bent functions exist for both even and odd n.
For even n, semi-bent functions are also called 2-plateaued functions and for odd n,
they are named as 1-plateaued functions. These functions have the highest nonlinearity
among quadratic Boolean functions. Besides, they are balanced up to the addition of
a linear function, and may possess other desired cryptographic properties like propa-
gation criterion of high order, low autocorrelation and resiliency. A survey containing
open problems on semi-bent functions can be found in [39].

In order to give the definitions of bent and semi-bent functions, we need to recall the
notions such as nonlinearity and Walsh-Hadamard transform.

Let Bn denote the set of all Boolean functions of n variables and An denote the set of
all affine functions (the functions having degree at most 1). The nonlinearity nl(f) of
a Boolean function f ∈ Bn is defined as

nl(f) = ming∈An(dH(f, g))

where dH(f, g) is the Hamming distance between f and g, i.e.,

dH(f, g) = # {x ∈ Fn2 | f(x) 6= g(x)} .

Nonlinearity can also be expressed by the Walsh-Hadamard transform of f . To explain
the relation between nonlinearity and the Walsh-Hadamard transform, we introduce
some notations. Let x = (x1, x2, . . . , xn) and α = (α1, α2, . . . , αn) both belong to
Fn2 . The usual inner product of x and α is x · α = x1α1 ⊕ x2α2 ⊕ . . . ⊕ xnαn. For a
Boolean function f on Fn2 , the Walsh-Hadamard transform of f is the discrete Fourier
transform of the sign function χf := (−1)f of f , whose value at α ∈ Fn2 is defined as

χ̂f (α) =
∑
x∈Fn

2

(−1)f(x)+α·x.

The identification of the vector space Fn2 with the finite field F2n allows us to choose
the isomorphism such that the canonical scalar product “ · ” in Fn2 coincides with the

9



canonical scalar product in F2n , which is the trace of the product : x · y = Trn1 (xy).
Then, for a Boolean function f ∈ F2n , the Walsh-Hadamard transform of f at α ∈ F2n

is

χ̂f (α) =
∑
x∈F2n

(−1)f(x)+Trn1 (αx).

The set of Walsh transform values of f for every α ∈ F2n is called the Walsh spectrum
of f .

Hamming weight of a Boolean function f ∈ Bn is denoted wt(f) and defined as
wt(f) = # {x ∈ F2n | f(x) 6= 0}. If wt(f) = 2n−1, then we say that f is balanced.
Obviously, f is balanced if and only if χ̂f (0) = 0. Then, by the Walsh transform, the
nonlinearity of a Boolean function f can be computed as

nl(f) = 2n−1 − 1

2
maxα∈F2n

|χ̂f (α)| .

A Boolean function has higher nonlinearity when the value of the maxα∈F2n
|χ̂f (α)|

is lower. Parseval’s equality states that
∑

α∈F2n
χ̂f (α)2 = 22n. The maximum abso-

lute value of Walsh coefficients can be minimized when all coefficients have the same
magnitude : ∑

α∈F2n

χ̂f (α)2 = 22n

2nχ̂f (α)2 = 22n

|χ̂f (α)| = 2n/2

Consequently, nl(f) ≤ 2n−1 − 2n/2−1 for any Boolean function f . The functions
achieving the upper bound 2n−1−2n/2−1 are called bent functions, which only exist for
even n. One can give another definition of bent functions in terms of Walsh transform
values as follows.

Definition 2.1. Let n be an even integer. A Boolean function f on F2n is said to be
bent if its Walsh transform satisfies χ̂f (α) = ±2

n
2 for all α ∈ F2n .

From this definition, we see that Walsh-Hadamard Transform provides a basic charac-
terization for bentness. An efficient technique for computing the Walsh spectrum of
a Boolean function is Fast Walsh Transform. The complexity of the fast Walsh trans-
form isO(2nn2) bit operations andO(2nn) memory [1]. Therefore, for large n values,
characterization by Walsh transform is not efficient and hence other characterization
and also construction methods should be found.

Properties of bent functions:

• For a bent function f on F2n , its dual function f̃ is defined as a Boolean function
on F2n satisfying the equation : (−1)f̃(x)2

n
2 = χ̂f (x) for all x ∈ F2n . The dual

f̃ of a bent function is also bent.

10



• Algebraic degree of any bent Boolean function on F2n is at most n/2.

• Bent functions have Walsh transform values±2n/2, hence they are not balanced.

Another family, semi-bent functions, also have low Hadamard transform values. First,
Chee, Lee and Kim [19] introduced the notion of semi-bent functions in 1994. They
are defined both even and odd n values.

Definition 2.2. Let n be an even integer. A Boolean function f on F2n is said to be
semi-bent if its Walsh transform satisfies χ̂f (a) ∈ {0,±2

n+2
2 } for all a ∈ F2n .

Properties of semi-bent functions:

• Nonlinearity of a semi-bent function is 2n−1− 2n−1/2 when n is odd and 2n−1−
2n/2 when n is even. Semi-bent functions have the maximal nonlinearity among
balanced plateaued functions (see Definition 2.3 for the definition of plateaued
functions).

• Walsh transform of a semi-bent function can take the value 0, hence they are
balanced (up to the addition of a linear function).

• Algebraic degree of any semi-bent Boolean function on F2n is at most n/2.

Bent and semi-bent functions are subclasses of the so-called plateaued functions. The
term of plateaued functions has been introduced by Zheng and Zhang [52] in 1999.

Definition 2.3. A Boolean function f on F2n is said to be k-plateaued if its Walsh
transform satisfies χ̂f (a) ∈ {0,±2

n+k
2 } for all a ∈ F2n and for some fixed k, 0 ≤ k ≤

n.

When n is even, bent functions correspond to 0-plateaued functions and semi-bent
functions correspond to 2-plateaued functions.
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CHAPTER 3

CHARACTERIZATION AND ENUMERATION OF A CLASS OF
QUADRATIC SEMI-BENT BOOLEAN FUNCTIONS

This chapter presents our results on characterization and enumeration of a class of
quadratic semi-bent Boolean functions. First we study characterization of these func-
tions and specify the necessary and sufficient conditions for this class of functions to
be semi-bent in Section 3.2. Afterwards, we correct some results on bent functions
given in [34]. In Section 3.3, a generic method for enumeration is presented and some
previous results on enumeration of semi-bent and bent functions are complemented for
all n. The work described here is based on the results of the publication [28].

3.1 Introduction

Quadratic Boolean functions are the ones having algebraic degree 2. They can be
expressed in terms of trace functions. A quadratic Boolean function from F2n to F2

can be represented

when n is even:

f(x) =

n
2
−1∑
i=1

Trn1 (cix
1+2i) + Tr

n/2
1 (cn/2x

1+2n/2

) (3.1)

where ci ∈ F2n ∀i, 0 < i < n
2

and cn/2 ∈ F2n/2 ,

when n is odd:

f(x) =

n−1
2∑
i=1

Trn1 (cix
1+2i) (3.2)

where ci ∈ F2n .

If f(x) is a quadratic Boolean function with f(0) = 0, then its rank can be computed
by the bilinear form

Qf (x, y) = f(x) + f(y) + f(x+ y).
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For the quadratic form,

Ker(f) = Ker(Qf ) = {x ∈ F2n : Qf (x, y) = 0,∀y ∈ F2n} .

If the dimension of Ker(f) is n− 2h, that is, rank of f(x) is 2h, then

Qf (x, y) = 0, for any y ∈ F2n

has 2n−2h solutions in x.

There is a relation between the rank of quadratic Boolean functions and the distribution
of its Walsh-Hadamard transform values. The following theorem gives the distribution
of the Walsh-Hadamard transform values of quadratic Boolean functions.

Theorem 3.1. [24]
Let f(x) be a function from F2n to F2 with algebraic degree 2. If the rank of f(x) is
2h, 1 ≤ h ≤ n/2, then the distribution of the Hadamard transform values of f(x) is
given by

χ̂f (ω) =


0, 2n − 22h times
2n−h, 22h−1 + 2h−1 times
−2n−h, 22h−1 − 2h−1 times.

Corollary 3.2. A quadratic Boolean function f(x) is semi-bent if and only if

rank(f) =

{
n− 1, if n is odd
n− 2, if n is even.

Known quadratic semi-bent functions on F2n , n = 2m:

• f(x) = Trn1 (x1+2i), gcd(m, i) = 1

• f(x) = Trn1 (αx1+2i), α ∈ F∗2n , m odd, i even

• f(x) = Trn1 (αx1+2i), m odd, i odd, gcd(m, i) = 1, α ∈ {x3, x ∈ F∗2n}

• f(x) = Trn1 (αx1+2i), m even, i odd, α ∈ {x3, x ∈ F∗2n}

• f(x) =
∑n

2
−1

i=1 ciTr
n
1 (x1+2i), ci ∈ F2, gcd(

∑n
2
−1

i=1 ci(x
i + xn−i), xn+1) = x2 +1

• f(x) =
∑m−1

2
i=1 Trn1 (cix

1+4i), ci ∈ F4, m even, gcd(
∑m−1

2
i=1 ci(x

i + xm−i), xm +
1) = x+ 1

14



3.2 Characterization of a Class of Semi-bent Quadratic Boolean Functions

Semi-bent Boolean functions are used to generate maximum length sequences known
as m-sequences. [23] used the function f(x) = Trn1 (x1+2i) where n is odd and
gcd(i, n) = 1 to form a family of m-sequences with low cross correlation, namely
Gold sequences. Subsequently, [2] proposed a new construction of binary sequences

from Gold-like functions, f(x) =
∑n−1

2
i=1 Tr

n
1 (x1+2i), having identical correlation with

Gold sequences. Both Gold function and Boztas-Kumar function are quadratic semi-
bent functions defined for odd n. In [26, 27], Khoo et al. generalized Boztas-Kumar
function to the functions of the form

f(x) =

n−1
2∑
i=1

ciTr
n
1 (x1+2i), ci ∈ F2, n odd. (3.3)

They proved that f(x) is semi-bent if and only if gcd(c(x), xn + 1) = x + 1 where

c(x) =
∑n−1

2
i=1 ci(x

i + xn−i). [17] generalized Khoo et al.’s results to even n and
showed that

f(x) =

n
2
−1∑
i=1

ciTr
n
1 (x1+2i), ci ∈ F2, n even (3.4)

is semi-bent if and only if gcd(c(x), xn+1) = x2+1 where c(x) =
∑n

2
−1

i=1 ci(x
i + xn−i).

They also examined the conditions on the choice of ci for odd n leading to new fami-
lies of quadratic semi-bent functions consisting of three and four trace terms. Recently,
[35] presented the number of semi-bent functions of the form (3.4) for n = 2m,m odd.

On the other hand, by combining the construction methods proposed by [26, 27, 50],
[34] studied a new class of bent functions of the form

f(x) =

n
2
−1∑
i=1

ciTr
n
1 (x1+2i) + Tr

n/2
1 (x1+2n/2

), ci ∈ F2, i = 1, 2, . . . , n/2− 1. (3.5)

They proved that f(x) is a bent function if and only if gcd(c(x), xn + 1) = 1 where
c(x) =

∑n
2
−1

i=1 ci(x
i + xn−i) + xn/2.

[51] presented the construction of all quadratic bent functions of the form (3.5) for
n = 2vpr with v, r ≥ 1 by giving necessary and sufficient conditions on ci’s and gave
enumeration results for n = 2vp and n = 2vp2 for some special prime p. After that,
[25] improved the enumeration results for n = 2vpr.

In this section, we consider the semi-bentness of quadratic Boolean functions for even
n of the form

f(x) =

n
2
−1∑
i=1

ciTr
n
1 (x1+2i) + Tr

n/2
1 (x1+2n/2

), ci ∈ F2, x ∈ F2n (3.6)
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and show that f is semi-bent if and only if 6 | n and gcd(c(x), xn + 1) = x2 + x + 1,
where c(x) =

∑n
2
−1

i=1 ci(x
i + xn−i) + xn/2. Furthermore, we present a generic enumer-

ation method for certain classes of semi-bent and bent functions. Using this method,
we give the number of semi-bent functions of the form (3.6) and complement the ear-
lier enumeration results for semi-bent functions given by [47] and the enumeration
results for bent functions given by [25] and [46]. The interested reader is referred to
[36, 37, 39] containing surveys devoted to semi-bent and bent functions. In this sec-
tion, we examine a class of semi-bent quadratic functions and give a characterization
for semi-bentness. These are stated in the following theorem.

Theorem 3.3. Let n be an even integer. Then

f(x) =

n
2
−1∑
i=1

ciTr
n
1 (x1+2i) + Tr

n/2
1 (x1+2n/2

), ci ∈ F2, x ∈ F2n ,

is a semi-bent function if and only if 6 | n and gcd(c(x), xn + 1) = x2 + x+ 1, where
c(x) =

∑n
2
−1

i=1 ci(x
i + xn−i) + xn/2.

Proof. In order to prove semi-bentness of f(x), we will examine Ker(Qf ).

Qf (x, y) = f(x) + f(y) + f(x+ y)

=

n
2
−1∑
i=1

ciTr
n
1 (x1+2i) + Tr

n/2
1 (x1+2n/2

) +

n
2
−1∑
i=1

ciTr
n
1 (y1+2i) + Tr

n/2
1 (y1+2n/2

)

+

n
2
−1∑
i=1

ciTr
n
1 ((x+ y)1+2i) + Tr

n/2
1 ((x+ y)1+2n/2

)

=

n
2
−1∑
i=1

ciTr
n
1 (xy2i + x2iy) + Tr

n/2
1 (xy2n/2

+ x2n/2

y)

=

n
2
−1∑
i=1

ciTr
n
1

(
x
(
y2i + y2n−i

))
+ Tr

n/2
1

(
Trnn/2

(
xy2n/2

))

=

n
2
−1∑
i=1

ciTr
n
1

(
x
(
y2i + y2n−i

))
+ Trn1 (xy2n/2

)

= Trn1

x
n

2
−1∑
i=1

ci

(
y2i + y2n−i

)
+ y2n/2


= Trn1 (xL (y))

where L(y) =
∑n

2
−1

i=1 ci

(
y2i + y2n−i

)
+ y2n/2 . By Corollary 3.2, we know that f(x) is

semi-bent if and only if rank(f) = n− 2 which means dim(Ker(Qf )) = 2.
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Now,

Ker(Qf ) =

x ∈ F2n|
n
2
−1∑
i=1

ci

(
x2i + x2n−i

)
+ x2n/2

= 0

 = Ker (L(x))

In order to prove that dim(Ker(Qf )) = 2, we need to show that L(x) = 0 has 4
solutions. By [33, Defn. 3.58], the polynomials

l(x) =
n∑
i=0

aix
i and L(x) =

n∑
i=0

aix
qi

over Fqm are called q-associates of each other. Then, one can define 2-associate of
L(x) by c(x) =

∑n
2
−1

i=1 ci(x
i + xn−i) + xn/2. Hence, by [33, Thm. 3.62],

deg
(
gcd

(
L(x), x2n + x

))
= 4

if and only if
deg (gcd (c(x), xn + 1)) = 2.

As xn + 1 is not divisible by x, gcd(c(x), xn + 1) can be either x2 + 1 or x2 + x+ 1.
However, x2 + 1 does not divide c(x) =

∑n
2
−1

i=1 ci (x
i + xn−i) + xn/2 since 1 is a not

root of c(x). Therefore, f(x) is semi-bent if and only if gcd(c(x), xn+1) = x2 +x+1.
Also, we know that (x+ 1)(x2 + x+ 1) | (x3k + 1), k ≥ 1 an integer. So, (x2 + x+ 1)
divides xn + 1 when 3 | n, but since in our case n is even, we should have 6 | n.

Corollary 3.4. Let n = 2m be an even integer and fi(x) be the function

fi(x) = Trn1 (x1+2i) + Trm1 (x1+2m), 1 ≤ i ≤ m− 1. (3.7)

Then, fi is semi-bent if and only if 6 | n, (m− i) is odd and gcd(m, i) = 1.

Proof. By Theorem 3.3, fi is semi-bent if and only if gcd(c(x), xn + 1) = x2 + x+ 1
where c(x) = xi + xn−i + xm. Let

g(x) = gcd
(
xi + xn−i + xm, xn + 1

)
= gcd

(
xi
(
1 + xm−i + x2(m−i)) , xn + 1

)
= gcd

((
1 + xm−i + x2(m−i)) , xn + 1

)
Since gcd(1 + xm−i, 1 + xm−i + x2(m−i)) = 1,

g(x) = gcd
((

1 + xm−i + x2(m−i)) , xn + 1
)

=
gcd

((
x3(m−i) + 1

)
, xn + 1

)
gcd ((xm−i + 1) , xn + 1)

=
xgcd(3(m−i),n) + 1

xgcd(m−i,n) + 1
.
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Let gcd (m− i, n) = d. Then, gcd (3 (m− i) , n) is either d or 3d. However, if
gcd (3 (m− i) , n) = d, then

g(x) =
xgcd(3(m−i),n) + 1

xgcd(m−i,n) + 1

=
xd + 1

xd + 1
= 1

in which case f cannot be semi-bent. Hence, if gcd (3 (m− i) , n) = 3d, then we have

g(x) =
xgcd(3(m−i),n) + 1

xgcd(m−i,n) + 1

=
x3d + 1

xd + 1

= x2d + xd + 1.

In this case, g(x) = x2 + x + 1 if and only if d = 1 which means gcd (m− i, n) = 1
and gcd (3 (m− i) , n) = 3. These conditions imply that 3 | n, but since n is even,
we have 6 | n. Also, gcd (m− i, n) = gcd (m− i, 2m) = 1 shows that m − i is odd.
Then, we have gcd (m− i, 2m) = gcd (m− i, 2i) = gcd (m, i).

Remark 3.1. If n
gcd(n,i)

is even for 1 ≤ i < n/2, then the Gold function Trn1 (x1+2i)

is bent. Also, Trm1 (x1+2m) is a Niho bent function. However, since the restric-
tion of Trn1 (x1+2i) to the spread {uF2m ;u ∈ U} where U is the multiplicative group{
u ∈ F2n ;u2m+1 = 1

}
is not constant, the function fi in Corollary 3.4 is not involved

in [9, Thm.1].

3.2.1 Correction of Some Previous Results in [34]

In Section 3.2, we investigated semi-bentness of the functions in the following form

fi(x) = Trn1 (x1+2i) + Tr
n/2
1 (x1+2n/2

), 1 ≤ i ≤ n/2− 1

as a corollary to Theorem 3.3. Bentness of the functions having exactly the same form
were considered by [34]. They gave a characterization for bentness and stated the
following corollary.

Corollary 3.5. [34, Cor. 5] Let n = 2m. The function

f(x) = Trn1 (x1+2i) + Trm1 (x1+2m), 1 ≤ i ≤ m− 1

is a bent function if and only if gcd(3i,m) = 1.
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However, it is easy to check that this condition is not sufficient and may led to false
positives. [25] pointed out that the result in [34] is not quite right and indicated that
when n is a power of 2, f is bent. But, for the other values of n, the assertion given in
[34, Cor. 5] is still not completely right. In the following remark, we give the necessary
and sufficient condition for f to be bent for all even n values.

Remark 3.2. Let n = 2m and m0 be the maximum odd positive divisor of m. Then,
the function

f(x) = Trn1 (x1+2i) + Trm1 (x1+2m), 1 ≤ i ≤ m− 1

is a bent function if and only if gcd(i,m0) = gcd(3i,m0).

Proof. We know that f is bent if and only if gcd(c(x), xn + 1) = 1 where c(x) = xi +
xn−i+xm [34]. Now, gcd(c(x), xn+1) = gcd(xic(x), xn+1) and gcd(xic(x), xn+1) =
1 if and only if gcd(xic(x), xm0 + 1) = 1.

xic(x) mod (xm0 + 1) ≡
(
xn + xm+i + x2i

)
mod (xm0 + 1)

≡
(
1 + xi + x2i

)
mod (xm0 + 1) .

gcd
(
1 + xi + x2i, xm0 + 1

)
=
gcd (x3i + 1, xm0 + 1)

gcd (xi + 1, xm0 + 1)

=
xgcd(3i,m0) + 1

xgcd(i,m0) + 1

We have gcd(c(x), xn + 1) = 1 if and only if xgcd(3i,m0)+1
xgcd(i,m0)+1

= 1, i.e., gcd(i,m0) =

gcd(3i,m0).

As an example, for m = 6 and i = 3, f(x) = Tr12
1 (x9) + Tr6

1(x65) is a bent function.
However, Cor. 5 of [34] implies that it is not bent since gcd(3i,m) 6= 1.

Moreover, similar case applies to Corollary 6 of [34] as it shares the same miscalcu-
lation with Corollary 5 of [34]. In the following, [34, Cor.6] is stated as given in the
paper.

Corollary 3.6. [34, Cor. 6] Let n = 2m,

f(x) = Trn1

(
x1+21 + x1+22 + · · ·+ x1+2i−1

+ x1+2i+1

+ · · ·+ x1+2m−1
)

+Trm1 (x1+2m)

on F2n , i.e., f consists of all but one trace term i. Then f is a bent function if and only
if gcd(3i,m) = 1.

We give the corrected characterization for these functions to be bent as follows.
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Remark 3.3. Let n = 2m and m0 be the maximum odd positive divisor of m. Then,
the function

f(x) = Trn1

(
x1+21 + x1+22 + · · ·+ x1+2i−1

+ x1+2i+1

+ · · ·+ x1+2m−1
)

+Trm1 (x1+2m)

is bent if and only if gcd(i,m0) = gcd(3i,m0).

3.3 Enumeration

In this section, we present a general method to obtain the number of quadratic semi-
bent and bent functions in certain classes. The main idea is to modify and extend the
idea employed in [21, 22]. This method was also used in [35] rather directly. For
various classes of quadratic semi-bent or bent functions, the characterization of semi-
bent or bent functions involves extra conditions. These extra conditions do not allow
the idea of [21, 22] to apply directly in many cases. However, we could modify and
extend the idea of [21, 22] in all the classes we worked in order to obtain correct
enumeration results for all n. These results give the exact enumeration result for the
semi-bent functions studied in Theorem 3.3, and moreover they complement partial
enumeration results obtained by [25], [46] and [47].

We believe in that by modifying the idea of [21, 22] accordingly, it should be possible
to obtain exact enumeration results for special s-plateaued functions in various classes
of quadratic functions. Therefore, we introduce our rather generic method in detail in
Section 3.3.1 which leads to Theorem 3.14. We apply this method in Section 3.3.2 to
complement the partial enumeration results of [25], [46] and [47].

3.3.1 A Generic Method for Enumeration

We first introduce some necessary definitions and notations.

Definition 3.1. The reciprocal f ∗(x) of a polynomial f(x) of degree n is defined by
f ∗(x) = xnf

(
1
x

)
. A polynomial is called self-reciprocal if f ∗(x) = f(x).

Some properties of self-reciprocal polynomials which will be used throughout this
section are stated in the following lemma.

Lemma 3.7. Let f ∈ Fq[x].

(i) If f is self-reciprocal and g ∈ Fq[x], then fg is self-reciprocal if and only if g is
self-reciprocal.

(ii) If f, g are self-reciprocal polynomials, then gcd (f, g) is also self-reciprocal.
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Proof. (i) If f is a self-reciprocal polynomial of degree s, then by definition we have
xs · f

(
1
x

)
= f (x). Let deg (g) = t. Reciprocal of fg is equal to

xs+t · fg
(

1

x

)
= xs · xt · f

(
1

x

)
· g
(

1

x

)
= f (x) · xt · g

(
1

x

)
= f (x) · g (x)

= fg (x)

if and only if xt · g
(

1
x

)
= g (x), i.e., g is self-reciprocal.

(ii) Let f, g are self-reciprocal polynomials and gcd (f, g) = d. We know that if α is
a nonzero root of f , then α−1 is also a root of f . Assume that αi, 1 ≤ i ≤ r, are
common roots of f and g. Then, since f and g are self-reciprocal polynomials,
α−1
i , 1 ≤ i ≤ r, are also roots of f and g. Since d is the greatest common divisor

of f and g, αi and α−1
i , 1 ≤ i ≤ r, are roots of d. Hence, d is self-reciprocal.

For a monic polynomial f ∈ Fq[x] with deg(f) ≥ 1, we define the following.

S := {f ∈ Fq[x] : f is monic, self-reciprocal and f(1) 6= 0}.

For f, d ∈ S and k a nonnegative even integer,

Ck(f) := {c ∈ S : deg (c) ≤ deg (f) + k},

Rk(f) := {h ∈ Ck(f) : gcd (h, f) = 1},

φk(f) := |Rk(f)|,

Tk(f, d) := {h ∈ Ck(f) : gcd (h, f) = d}.

Note thatRk(f) = Tk(f, 1).

Our aim is to derive a general formula for φk(f).
Remark 3.4. One of the differences of our method with the methods of [21, 22] and
[35] is already apparent at this point. Because of the extra conditions of semi-bentness
in the class of Theorem 3.3, we need to introduce and study φk(f) for all integers
k ≥ 0. It was enough to study φk(f) only for k = 0 in [21, 22] and [35].
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We begin with the following lemma.

Lemma 3.8. Let f ∈ S and k be a nonnegative even integer. Then,

|Ck(f)| = q
deg(f)+k

2 .

Proof. First note that Ck(f) = Ck+deg(f)(1). Let u = deg(f)+k
2

. Then,

∣∣Ck+deg(f)(1)
∣∣ = 1 + (q − 1) + q(q − 1) + · · ·+ qu−1(q − 1) = qu.

Lemma 3.9. Let f ∈ S and k be a nonnegative even integer. Then,

Ck(f) =
⊔
d|f

Tk(f, d)

where the disjoint union is taken over all polynomials d ∈ S with d | f .

Proof. For every d dividing f , Tk(f, d) ⊆ Ck(f) by definition of Tk(f, d). Hence, it
follows that

⋃
d|f Tk(f, d) ⊆ Ck(f). Conversely, let h ∈ Ck(f) and d = gcd (h, f).

Now, f ∈ S and by definition of Ck(f), h ∈ S . From Lemma 3.7, d ∈ S and clearly
d | f . Hence, Ck(f) ⊆

⋃
d|f Tk(f, d). If d1 6= d2 with d1 | f and d2 | f , then it is

obvious that Tk(f, d1) 6= Tk(f, d2).

Lemma 3.10. Let f, d ∈ S, d | f and k be a nonnegative even integer. Then,

|Tk(f, d)| =
∣∣∣∣Rk

(
f

d

)∣∣∣∣ = φk

(
f

d

)
.

Proof. To complete the proof, we need to show that there is a one-to-one correspon-
dence between Tk(f, d) andRk

(
f
d

)
. First, let us define a map

Ψ1 : Tk(f, d)→ Rk

(
f

d

)
h 7→ h1.

h ∈ Tk(f, d) means gcd(f, h) = d. We can write h = dh1 and f = df1 for some h1

and f1. Then, h1, f1 ∈ S by Lemma 3.7 and gcd(f1, h1) = 1. Hence, h1 ∈ Rk (f1) as
h1 ∈ Ck (f1) and deg (h1) ≤ deg (f1) + k. Now, define another map

Ψ2 : Rk

(
f

d

)
→ Tk(f, d)

h1 7→ h.
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h1 ∈ Rk

(
f
d

)
implies by definition that h1 ∈ Ck

(
f
d

)
and gcd

(
f
d
, h1

)
= 1. Then,

gcd (f, dh1) = d and dh1 = h ∈ Tk(f, d).

Thanks to Lemma 3.7, Lemma 3.8 and Lemma 3.10, one can prove the following
corollary.

Corollary 3.11. Let f ∈ S and k be a nonnegative integer. Then,

q
deg(f)+k

2 = |Ck (f)| =
∑
d|f

φk(d)

where the summation is over all d ∈ S with d | f .

Lemma 3.12. Let f ∈ S, r is a monic irreducible polynomial dividing f and r∗ is the
reciprocal of r such that r∗ 6= r. Then, rr∗ divides f .

Let f ∈ S and deg(f) ≥ 1. The unique factorization of f is as follows:

f = ge11 g
e2
2 . . . gess

[
hf11 h

f2
2 . . . hftt

] [
h∗

f1

1 h∗
f2

2 . . . h∗
ft

t

]
where s ≥ 0, t ≥ 0, e1, . . . , es ≥ 1, f1, . . . , ft ≥ 1, g1, g2, . . . gs are distinct, monic,
self-reciprocal, irreducible polynomials, hi, h∗i are distinct, monic, irreducible polyno-
mials for 1 ≤ i ≤ t and h∗i is the reciprocal polynomial of hi.

Now, we define the Möbius function µ on the set of monic, self-reciprocal polynomials
from Fq[x] as follows. For f ∈ S with deg (f) ≥ 1, we define

µ(f) =


1 if f = 1,

(−1)s+t if deg(f) ≥ 1 and e1 = · · · = es = f1 = · · · = ft = 1,

0 if deg(f) ≥ 1 and ei ≥ 2 or fj ≥ 2.

An argument similar to that for the classical Möbius function on the set of positive
integers [33, Lemma 3.23] implies that for f ∈ S, we have

∑
d|f

µ(d) =

{
1 if f = 1,

0 otherwise.

In the following lemma, we give the general formula for φk(f).

Lemma 3.13. Let f ∈ S, k = 2k1 is a nonnegative even integer. Then,

φk(f) = qk1
∑
d|f

µ(d)q
deg(f)−deg(d)

2

where the summation is over all d ∈ S with d | f .
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Proof. Consider right hand side:

qk1
∑
d|f

µ (d) q
deg(f)−deg(d)

2 = qk1
∑
d|f

µ

(
f

d

)
q

deg(f)−deg(f/d)
2

=
∑
d|f

µ

(
f

d

)
q

deg(d)
2

+k1

=
∑
d|f

µ

(
f

d

)∑
d1|d

φk(d1), by Corollary 3.11

=
∑
d1|f

φk(d1)
∑
g| f

d1

µ(g).

For d1 | f , we have ∑
g| f

d1

µ(g) =

{
1 if f = d1,

0 otherwise.

Hence, qk1
∑

d|f µ(d)q
deg(f)−deg(d)

2 = φk(f).

We now focus on the case p = 2. Our aim is to find the number of c(x) such that
gcd (c(x), xn + 1) = x2 + x + 1, where c(x) =

∑n
2
−1

i=1 ci(x
i + xn−i) + xn/2, n = 2m

and 6 | n. Let c(x) = x · c̃(x) and

N = #
{
c(x) : gcd (c(x), xn + 1) = x2 + x+ 1

}
.

It is obvious that c̃(x) ∈ S and

N = #
{
c̃(x) : gcd (c̃(x), xn + 1) = x2 + x+ 1

}
.

We can write xn + 1 = (1 + x)e · f(x) where e is the greatest integer such that
gcd (f(x), x+ 1) = 1. Note that f ∈ S and e = 2e1 with e1 ≥ 1 since n is even. Now,
deg (f) = 2m−e ≤ 2m−2 and deg (c̃) ≤ 2m−2. Set k = 2m−2−(2m−e) = e−2.

N = #
{
c̃(x) ∈ S : deg (c̃) ≤ deg (f) + k, gcd (c̃, f) = x2 + x+ 1

}
=
∣∣Tk (f, 1 + x+ x2

)∣∣ .
Then, by Lemma 3.10 we get |Tk (f, 1 + x+ x2)| = φk

(
f

1+x+x2

)
. Finally, using

Lemma3.13, we obtain the number of semi-bent functions of the form (3.6) as stated
in the next theorem.

Theorem 3.14. Let n = 2m and xn + 1 = (1 + x)e · f(x) where f is a monic, self-
reciprocal polynomial and e is the greatest integer such that f(1) 6= 0. Then, the
number of semi-bent functions given in Theorem 3.3 is equal to

N = 2
e
2
−1

∑
d| f

1+x+x2

µ (d) 2
deg(f)−deg(d)−2

2 ,

where the summation is over all monic, self-reciprocal polynomials d dividing f
1+x+x2

.
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The following table demonstrates the number of these semi-bent functions.

Table 3.1: Number of semi-bent quadratic functions given in Theorem 3.3

n # functions n # functions

6 1 36 28672

12 8 42 225792

18 56 48 2097152

24 512 54 14651392

30 2880 60 94371840

Example 3.1. As an application of Theorem 3.14, let us find the number of semi-bent
functions given in Theorem 3.3 for n = 18 and n = 24.

For n = 18, we have

x18 + 1 = (x+ 1)2(x2 + x+ 1)2(x6 + x3 + 1)2.

Here e = 2, f(x) = (x2 + x+ 1)2(x6 + x3 + 1)2 and deg(f) = 16. Therefore,
d ∈

{
1, x2 + x+ 1, x6 + x3 + 1, (x6 + x3 + 1)2, (x2 + x+ 1)(x6 + x3 + 1), (x2 + x+ 1)(x6 + x3 + 1)2

}
.

By definition of the Möbius function µ on the set of monic, self-reciprocal polynomi-
als, we have µ ((x6 + x3 + 1)2) = 0 and µ ((x2 + x+ 1)(x6 + x3 + 1)2) = 0. Hence,
there is no need to write them in the following formula.

N = 2
e
2
−1

∑
d| f

1+x+x2

µ (d) 2
deg(f)−deg(d)−2

2

= 20
∑

d|(x2+x+1)(x6+x3+1)2

µ (d) 2
14−deg(d)

2

= µ(1)27 + µ(x2 + x+ 1)26 + µ(x6 + x3 + 1)24

+ µ
(
(x2 + x+ 1)(x6 + x3 + 1)

)
23

= 27 − 26 − 24 + 23 = 56.

For n = 24, we have
x24 + 1 = (x+ 1)8(x2 + x+ 1)8.

Here e = 8, f(x) = (x2 + x+ 1)8 and deg(f) = 16. Therefore,
d ∈ {(x2 + x+ 1)i, 0 ≤ i ≤ 7} and for d = (x2 + x+ 1)i where i ≥ 2, µ(d) = 0.

N = 2
e
2
−1

∑
d| f

1+x+x2

µ (d) 2
deg(f)−deg(d)−2

2

= 23
∑

d|(x2+x+1)7

µ (d) 2
14−deg(d)

2

= 23
[
µ(1) · 27 + µ(x2 + x+ 1) · 26

]
= 23(27 − 26) = 512.
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3.3.2 Complementing Some Partial Enumeration Results

In this section, we complement some earlier partial enumeration results on semi-bent
and bent functions. As a reminder, we first state the original results as given in the
papers and then present our results.

Tang et al.[47] proposed a new class of semi-bent quadratic Boolean functions of the
form

f(x) =

bm−1
2 c∑
i=1

Trn1 (cix
1+4i), ci ∈ F4, x ∈ F2n , n = 2m. (3.8)

They characterized f as a semi-bent function if and only if gcd(c(x), xm + 1) = x+ 1

where c(x) =
∑bm−1

2 c
i=1 ci (x

i + xm−i) and they noted that for m even, f is not semi-
bent. They also gave a formula on the number of functions of the form (3.8) for
n = 2pr where r ≥ 1, p is not a Wieferich prime, p ≡ 3 mod 4, ordp(2) = p − 1 or
p−1

2
. Using the method given in Section 3.3.1, it is possible to extend this result for all

n = 2m with m odd since the number of semi-bent functions for m even is zero. This
result is stated in Theorem 3.15.

Theorem 3.15. Let n = 2m with m odd and xm + 1 = (x+ 1) · f(x). The number of
semi-bent functions of the form (3.8) is

Ns =
∑
d|f

µ (d)
[
4b

deg(f)−deg(d)
2 c − 1

]
.

Proof. Let n = 2m with m odd and xm + 1 = (x+ 1) · f(x).

Ns = # {c(x) : gcd(c(x), xm + 1) = x+ 1}
= # {c̃(x) : gcd(c̃(x), f(x)) = 1}

where c̃(x) = c(x)
x(x+1)

. Hence, deg(c̃) ≤ deg(f)− 2.

Now, we will modify the definitions in Section 3.3.1 according to this case. For a
monic polynomial f ∈ Fq[x] with deg(f) ≥ 1,

S := {f ∈ Fq[x] : f is monic, self-reciprocal}.

For f, d ∈ S,

C−2(2, f) := {c ∈ S : deg (c) ≤ deg (f)− 2, deg(c) : even},

R−2(2, f) := {h ∈ C−2(2, f) : gcd (h, f) = 1},
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φ−2(2, f) := |R−2(2, f)|,

T−2(2, f, d) := {h ∈ C−2(2, f) : gcd (h, f) = d}.

Following the steps in Section 3.3.1, we have

|T−2(2, f, d)| =
∣∣∣∣R−2

(
2,
f

d

)∣∣∣∣ = φ−2

(
2,
f

d

)
, and

qb
deg(f)

2 c − 1

q − 1
= |C−2 (2, f)| =

∑
d|f

φ−2(2, d),

where the summation is over all d ∈ S with d | f . Employing the Möbius function µ
on the set of monic, self-reciprocal polynomials, we obtain

φ−2(2, f) =
∑
d|f

µ (d)

[
qb

deg(f)−deg(d)
2 c − 1

q − 1

]
.

This number gives us the monic, self-reciprocal polynomials c(x) with even degree
such that gcd(c, f) = 1. However, we need to count all c(x) not only monic ones.
Therefore, with q− 1 choices for the leading coefficient, we get the desired number as

(q − 1)φ−2(2, f) =
∑
d|f

µ (d)
[
qb

deg(f)−deg(d)
2 c − 1

]
.

Since q = 4 in this case, we have

Ns =
∑
d|f

µ (d)
[
4b

deg(f)−deg(d)
2 c − 1

]
.

The enumeration method presented in Section 3.3.1 can also be applicable for finding
the number of quadratic bent functions. Now, we complement two results related to
number of bent functions. Ma et al.[34] studied bentness of the functions with the form

f(x) =

n
2
−1∑
i=1

ciTr
n
1 (x1+2i) + Tr

n/2
1 (x1+2n/2

), ci ∈ F2. (3.9)

They showed that f is bent if and only if gcd(c(x), xn + 1) = 1 where c(x) =∑n
2
−1

i=1 ci(x
i + xn−i) + xn/2. Hu and Feng[25] presented numerical results for bent

functions having this form for n = 2vpr with v ≥ 1, r ≥ 1 where p is odd prime with
ordp(2) = p − 1, or ordp(2) = p−1

2
with p−1

2
odd. This result is improved to for all

even n as stated in the following theorem.
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Theorem 3.16. Let n = 2m and xn + 1 = (1 + x)e · f(x) where f is a monic, self-
reciprocal polynomial and e is the greatest integer such that f(1) 6= 0. Then, the
number of bent functions of the form (3.9) is equal to

Nb = 2
e
2
−1
∑
d|f

µ (d) 2
deg(f)−deg(d)

2

where the summation is over all monic, self-reciprocal polynomials d dividing f .

Proof. The proof is similar to that of Theorem 3.14. Since gcd(c(x), xn + 1) = 1, in
this case the sum is over all self-reciprocal polynomials d dividing f , not f

1+x+x2
.

As another class, Tang et al.[46] investigated the bent functions of the form

f(x) =

m
2
−1∑

i=1

Trn1 (cix
1+2ei) + Tr

n/2
1 (cm/2x

1+2n/2

), (3.10)

where n = me, m even, and ci ∈ F2e for 1 ≤ i ≤ m/2. They stated that f is bent if
and only if gcd (c (x) , xm + 1) = 1 where c(x) =

∑m
2
−1

i=1 ci(x
i + xm−i) + cm/2x

m/2

and presented enumeration results for n = 2vpr with v, r ≥ 1 and n = 2vpq, p and q
are special primes. Theorem 3.17 complements this result.

Theorem 3.17. Let n = me, m even. Then, the number of bent functions of the form
(3.10) is equal to

Nb =
∑

d|xm+1

µ (d)
[
2e(b

m−deg(d)
2 c) − 1

]
where the sum is over all monic, self-reciprocal polynomials d dividing xm + 1.

Proof. The proof is analogous to the proof of Theorem 3.15 and taking q = 2e yields
the result.

Finally, we finish this section by presenting the number of semi-bent functions intro-
duced in Corollary 3.4.

Theorem 3.18. Let n = 2m and 6 | n. The number of the semi-bent functions of the
form

fi(x) = Trn1 (x1+2i) + Tr
n/2
1 (x1+2n/2

), 1 ≤ i ≤ n/2− 1

is

#(SBi) =

{
ϕ(m) if m is even,
ϕ(m)/2 if m is odd

where ϕ(m) is the Euler’s totient function.
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Proof. By Corollary 3.4, fi is semi-bent if and only if gcd(i,m) = 1 and m− i is odd.
If m is even, then i values such that gcd(i,m) = 1 should be odd and all of these i
values satisfy the condition m− i is odd. Hence, the number of i values is ϕ(m). If m
is odd, then half of the i values satisfying gcd(i,m) = 1 are even and half of them are
odd. In this case, half of the i values which are even fulfill the condition m− i is odd.
So, the number of i values is ϕ(m)/2 in this case.
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CHAPTER 4

SECONDARY CONSTRUCTIONS OF BENT AND SEMI-BENT
FUNCTIONS VIA LINEAR TRANSLATORS

4.1 Introduction

The concept of a linear translator exists of p-ary function (see for instance [30]) but it
was introduced in cryptography, mainly for Boolean functions (see for instance [12]).
Functions with linear structures are considered as weak for some cryptographic ap-
plications. For instance, a recent attack on hash functions proposed in [4] exploits
a similar weakness of the involved mappings. All Boolean functions using a linear
translator have been characterized by Lai [31]. Further, Charpin and Kyureghyan have
done the characterization for the functions in univariate variables from Fpn to Fp of
the form TrFpn/Fp(F (x)), where F (x) is a function over Fpn and TrFpn/Fp denotes the
trace function from Fpn to Fp. The result of Lai in [31] has been formulated recently
by Charpin and Sarkar [18].

For a Boolean map, linear structures or linear translators are not desirable and are
generally considered as a defect. In this paper, we show that one can recycle such
Boolean functions to get Boolean functions with optimal or very high nonlinearity.
More precisely, we show that one can obtain primary constructions of bent and semi-
bent functions from Boolean maps having linear structures or linear translator in Sec-
tions 4.2, 4.3 and 4.4. All the primary constructions proposed in the paper belong to
the well-known class of Maiorana-McFarland. However, an important feature of the
bent functions presented in this paper is that their dual functions can be explicitly com-
puted. Next, we focus on secondary constructions presented in [11] and in [5] (see also
[40]). Note that several primary constructions have been derived in [40] and in [42]
from a Carlet’s result ([5], Theorem 3) which has been completed in ([40], Theorem
4). We show how to obtain new secondary constructions by reusing bent functions
presented in the paper. Our new secondary constructions are very explicit and they use
Boolean functions (vectorial Boolean functions) with certain linear structures (linear
translators) as ingredients instead of bent or semi-bent functions. The conditions on
such linear structures (linear translators) in our secondary constructions are easily sat-
isfied. Finally, we show that one can construct bent functions from bent functions of
Sections 4.2 and 4.3 by adding a quadratic or cubic function appropriately chosen. The
work described here is based on the results of the publication [29].
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We begin by recalling the definitions of linear translator and linear structure.

Definition 4.1. Let n = rk, 1 ≤ k ≤ n. Let f be a function from F2n to F2k , γ ∈ F∗2n
and b be a constant of F2k . Then γ is a b-linear translator of f if f(x)+f(x+uγ) = ub
for all x ∈ F2n and u ∈ F2k . If f(x) + f(x+ γ) = b for all x ∈ F2n , then γ is called a
b-linear structure of f .

The notion of b-linear translator is well known in the literature (see for example [30]).
The notion of b-linear structure is usually given for functions f : F2n → F2 , that is
k = 1 (see for example [14]).

Remark 4.1. Note that being b-linear translator is stronger than being b-linear structure
if k > 1 and they are the same if k = 1. For example, let f : F24 → F22 be a function
defined as f(x) = Tr4

2(x2 + γx) where γ ∈ F24\F22 . Then, γ is a 0-linear structure of
f but it is not a 0-linear translator of f as f(x+ uγ) 6= f(x) for u ∈ F22\F2 .

The notions of linear structures, linear translators and derivatives are related.

Definition 4.2. Let F : F2n → F2m . For a ∈ F2n , the function DaF given by
DaF (x) = F (x) + F (x + a), ∀x ∈ F2n is called the derivative of F in the direc-
tion of a.

Note that Dγf(x) = b for each x ∈ F2n if and only if γ is a b-linear structure of f .
Similarly, Duγf(x) = ub for each x ∈ F2n and each u ∈ F2k if and only if γ is a
b-linear translator of f .

4.2 Constructions of Bent and Semi-bent Boolean Functions from the Class of
Maiorana-McFarland Using One Linear Structure

A function H : F2m × F2m → F2 is said to be in the class of Maiorana-McFarland if it
can be written in bivariate form as

H(x, y) = Trm1 (xφ(y)) + h(y) (4.1)

where φ is a map from F2m to F2m and h is a Boolean function on F2m . It is well-known
that we can choose φ so that H is bent or H is semi-bent. Indeed, it is well-known that
bent functions of the form (4.1) come from one-to-one maps while 2-to-1 maps lead to
semi-bent functions.

Proposition 4.1. ([6, 20, 38]) Let H be defined by (4.1). Then,

1. H is bent if and only if φ is a permutation and its dual function is H̃(x, y) =
Trm1 (yφ−1(x)) + h(φ−1(x)).

2. H is semi-bent if φ is 2-to-1.
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As a first illustration of Proposition 4.1, let us consider a first class of maps from F2m to
itself: φ : y 7→ y+ γf(y) where γ is a linear structure of f . This class has the property
that it only contains one-to-one maps or 2-to-1 maps. Therefore, by Proposition 4.1,
one can obtain the following infinite families of bent and semi-bent functions.

Proposition 4.2. Let f and h be two Boolean functions over F2m .

Let H be the Boolean function defined on F2m × F2m by

H(x, y) = Trm1 (xy + γxf(y)) + h(y), γ ∈ F2m .

H is bent (resp. semi-bent) if and only if γ is a 0-linear (resp. 1-linear) structure of f .
Furthermore, if H is bent, then its dual is

H̃(x, y) = Trm1
(
yx+ γyf(x))

)
+ h(x+ γf(x)).

Proof. Properties of φ : y 7→ y + γf(y) are well-known and firstly developed in
[13, 14] (see also [15, 30]). Bijectivity is given by Theorem 2 of [13]. For the 2-
to-1 property, see Theorems 3,6 in [14]. The proof is then immediately obtained.
Also, note that since φ is an involution (see also [15, 16, 30]), we have H̃(x, y) =
Trm1

(
yφ(x))

)
+ h(φ(x)).

In order to show that the hypotheses of Proposition 4.2 hold in certain cases, we give
the following examples which are direct applications of Theorems 3, 4 in [13].

Example 4.1. Let γ ∈ F?2m and β ∈ F2m such that Trm1 (βγ) = 0 (resp. Trm1 (βγ) = 1).
Let H : F2m → F2m be an arbitrary mapping and h be any Boolean function on F2m .
Then the function g defined over F2m × F2m by

g(x, y) = Trm1 (xy + γxTrm1 (H(y2 + γy) + βy)) + h(y)

is bent (resp. semi-bent).

Example 4.2. Let 0 ≤ i ≤ m − 1, i 6∈ {0, m
2
} and δ, γ ∈ F2m such that δ2i−1 =

γ1−22i . Let h be any Boolean function on F2m and g be the Boolean function defined
on F2m × F2m by

g(x, y) = Trm1 (xy + γxTrm1 (δy2i+1)) + h(y).

If Trm1 (δγ2i+1) = 0 (resp. Trm1 (δγ2i+1) = 1) then g is bent (resp. semi-bent).

Observe that if we compose φ at left by a linearized permutation polynomial L, any
output has the same number of preimages under φ than under L ◦ φ. Hence, one can
slightly generalize Proposition 4.2 as follows.

Proposition 4.3. Let f and h be two Boolean functions over F2m and γ ∈ F2m . Let L
be a linearized permutation polynomial of F2m . The Boolean function H defined by

H(x, y) = Trm1 (xL(y) + L(γ)xf(y)) + h(y)

is bent (resp. semi-bent) if and only if γ is a 0-linear (resp. 1-linear) structure of f .
Moreover, if H is bent then its dual function H̃ is given by

H̃(x, y) = Trm1 (yL−1(x) + γyf(L−1(x)) + h(L−1(x) + γf(L−1(x))).
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4.3 Constructions of Bent and Semi-bent Boolean Functions From the Class of
Maiorana-McFarland Using Two Linear Structures

In this section we consider the functions H of the form (4.1) :

H(x, y) = Trm1 (xφ(y)) + h(y) with φ(y) = π1 (π2(y) + γf(π2(y)) + δg(π2(y)))
(4.2)

where f , g and h are Boolean functions over F2m , γ, δ ∈ F?2m , γ 6= δ and π1, π2 are
permutations of F2m (not necessarily linear). The class (4.2) contains the functions in-
volved in Proposition 4.1 and in Proposition 4.3 (which corresponds to the case where
f = g). In the line of Section 4.2, we study the cases where γ and δ are linear structures
of the Boolean functions involved in φ. Then one can exhibit conditions of bentness
or semi-bentness as those of Propositions 4.1 and 4.3 that we present in the following
two propositions. We indicate that, despite their similarities with Proposition 4.1 and
4.3, we obtain bent functions that do not fall in the scope of Proposition 4.1 and 4.3.

Proposition 4.4. Let H be defined by equation (4.2). Then H is bent if one of the
following conditions holds:

(i) γ is a 0-linear structure of f , δ is a 0-linear structure of f and g,

(ii) γ is a 0-linear structure of f , δ is a 1-linear structure of f and δ+ γ is a 0-linear
structure of g,

(iii) δ is a 0-linear structure of g, γ is a 0-linear structure of f and g,

(iv) δ is a 0-linear structure of g, γ is a 1-linear structure of g and δ + γ is a 0-linear
structure of f ,

(v) δ is a 1-linear structure of f , γ is a 1-linear structure of f and g,

(vi) γ is a 1-linear structure of g, δ is a 1-linear structure of f and g.

Moreover, if H is bent then its dual is H̃(x, y) = Trm1 (yφ−1(x)) + h(φ−1(x)) where
φ−1 = π2

−1 ◦ρ−1 ◦π1
−1 and ρ−1 is given explicitly in the Appendix as Proposition A.1.

In particular, choosing π1(x) = L(x) as a linearized permutation polynomial and π2

as the identity, we get that

H(x, y) = Trm1 (xL(y) + L(γ)xf(y) + L(δ)xg(y)) + h(y) (4.3)

is bent in the conditions above and H̃(x, y) = Trm1
(
yρ−1(L−1(x))

)
+h(ρ−1(L−1(x)).

Proof. We give the proof for only case (i) since the proofs for the other cases are very
similar. It suffices to show that ρ : y 7→ y + γf(y) + δg(y) is a permutation. Suppose
that ρ(y) = ρ(z), i.e.,

y + γf(y) + δg(y) = z + γf(z) + δg(z). (4.4)

34



Taking f of both sides we obtain f
(
y + γf(y) + δg(y)

)
= f

(
z + γf(z) + δg(z)

)
.

Since γ and δ are 0-linear structures of f , we have

f(y) = f(z). (4.5)

Combining equations (4.4) and (4.5), we get y + δg(y) = z + δg(z). Taking g of both
sides we obtain g(y + δg(y)) = g(z + δg(z)). Since δ is a 0-linear structure of g, we
conclude

g(y) = g(z). (4.6)

Combining equations (4.4), (4.5) and (4.6), we reach that y = z. For the dual function,
ρ−1 is written explicitly in the Appendix as Proposition A.1 and the proof for ρ−1 for
case (i) is given.

Remark 4.2. The converse of Proposition 4.4 is not always true. For example, for
f(x) = Tr3

1(x3 + α5x), g(x) = Tr3
1(αx3 + α5x), γ = α and δ = α3 where α is

a primitive element of F23 , φ is a permutation but none of the conditions given in
Proposition 4.4 is satisfied.

The following result shows in which cases φ is 2-to-1 and hence H is semi-bent.

Proposition 4.5. LetH be defined by (4.2). ThenH is semi-bent if one of the following
conditions holds:

(i) γ, δ are 1-linear structures of f and γ is a 0-linear structure of g,

(ii) δ is a 1-linear structure of f and γ, δ are 0-linear structures of g,

(iii) γ, δ are 0-linear structures of f and δ is a 1-linear structure of g,

(iv) δ is a 0-linear structure of f and γ, δ are 1-linear structures of g,

(v) γ is a 0-linear structure of f , δ is a 1-linear structure of f and γ + δ is a 1-linear
structure of g,

(vi) γ is a 1-linear structure of g, δ is a 0-linear structure of g and γ + δ is a 1-linear
structure of f .

In particular, choosing π1(x) = L(x) as a linearized permutation polynomial and π2

as the identity, we get that

H(x, y) = Trm1 (xL(y) + L(γ)xf(y) + L(δ)xg(y)) + h(y)

is semi-bent in the conditions above.

Proof. We give the proof for case (i) only since the proofs for other cases are similar.
Now, we need to show that ρ(y) : y 7→ y + γf(y) + δg(y) is 2-to-1. Let ρ(y) = a for
some a ∈ F2m . Then, y ∈ {a, a+ γ, a+ δ, a+ γ + δ}. As γ is a 1-linear structure of
f and 0-linear structure of g, we have ρ(a) = ρ(a + γ) and ρ(a + δ) = ρ(a + γ + δ).
Moreover, ρ(a+δ) = a+δ+γf(a+δ)+δg(a+δ) = a+δ+γ+γf(a)+δg(a+δ) where
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we use that δ is a 1-linear structure of f . We observe that ρ(a) = a+ γf(a) + δg(a) 6=
ρ(a+ δ). Indeed, otherwise if the equality holds, then γ+ δ+ δ

(
g(a) + g(a+ δ)

)
= 0.

This is a contradiction as γ 6= δ and γ 6= 0. This implies that ρ−1(a) = {a, a+ γ} or
ρ−1(a) = {a+ δ, a+ γ + δ} which shows that ρ is 2-to-1.

Remark 4.3. The converse of Proposition 4.5 is not always true. For example, for
f(x) = Tr3

1(α4x3 + α4x), g(x) = Tr3
1(αx3 + α2x), γ = α and δ = α3 where α is

a primitive element of F23 , φ is 2-to-1 but none of the conditions given in Proposition
4.5 is satisfied.

4.4 Constructions of Bent and k-Plateaued Functions Using Linear Translators

In the preceding sections, we have shown that one can construct bent and semi-bent
functions from Boolean functions having linear structures, that is, having constant
derivatives. An extension of these constructions is to consider Boolean maps taking
its values in a subfield of the ambient field instead of Boolean functions in (4.1). In
that case, the natural notion replacing linear structures is the notion of linear transla-
tors. We still adopt the approach of the preceding sections and aim to construct bent
functions in the class of Maiorana-McFarland. To this end, one can apply results on
permutations constructed from Boolean maps having linear translators presented in
[30] and obtain the following infinite families of bent and plateaued functions.

Proposition 4.6. Let m be a positive integer and k be a divisor of m. Let f be a
function from F2m to F2k and h be a Boolean function on F2m . Let H be the function
defined on F2m × F2m by

H(x, y) = Trm1 (xy + γxf(y)) + h(y), γ ∈ F?2m .

(i) If γ is a c-linear translator of f where c ∈ F2m and c 6= 1, then H is bent and its
dual function is given as

H̃(x, y) = Trm1

(
y

(
x+ γ

f(x)

1 + c

))
+ h

(
x+ γ

f(x)

1 + c

)
.

Moreover, H(x, y) = Trm1 (xL(y) + L(γ)xf(y)) + h(y) where L is an F2k-
linearized permutation polynomial, is also bent under these conditions and its
dual is

H̃(x, y) = Trm1

(
y

(
L−1(x) + γ

f(L−1(x))

1 + c

))
+ h

(
L−1(x) + γ

f(L−1(x))

1 + c

)
.

(ii) If γ is a 1-linear translator of f and h = 0 then H is k-plateaued with Walsh
transform values

χ̂H(a, b) =

{
±2m+k if Trmk (bγ) = 0,
0 otherwise.
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Proof. Let φ(y) = y + γf(y). Assume that φ(y) = a where a ∈ F2m . Then y =
a+ γf(y) implies that y ∈ {a+ uγ | u ∈ F2k}.

(i)

y = a+ γf(y)

f(y) = f(a+ γf(y))

f(y) = f(a) + cf(y), since γ is a c-linear translator of f .

This gives that f(y) = f(a)
1+c

. Therefore, number of solutions of y such that φ(y) =

a is one, namely y = a+γ
(f(a)

1+c

)
. This concludes that φ is permutation and hence

g is bent.

(ii) y = a + γf(y) gives f(y) = f(a + γf(y)). Since γ is a 1-linear translator of f ,
f(a + γf(y)) = f(a) + f(y). This results in f(a) = 0. Now, there are at most
2k solutions in y where y ∈ {a+ uγ | u ∈ F2k}.

φ(a+ uγ) = a+ uγ + γf(a+ uγ)

= a+ uγ + γ(f(a) + u)

= a

Hence, a+ uγ ∈ φ−1(a) and φ is 2k − to− 1.

Walsh transform of g at (a, b) is:

χ̂g(a, b) = 2m
∑

y∈φ−1(a)

(−1)Tr
m
1 (by)

= 2m
∑
u∈F

2k

(−1)Tr
m
1 (b(a+uγ))

= 2m(−1)Tr
m
1 (ba)

∑
u∈F

2k

(−1)Tr
m
1 (buγ).

Thus,

χ̂g(a, b) =

{
±2m+k if Trmk (bγ) = 0
0 otherwise.

Note that Proposition 4.6 generalizes partially Proposition 4.2 (extending the condition
0-linear structure to c-linear translator with c 6= 1). Furthermore, one can derive from
Proposition 4.4 and Proposition 4.5 similar statements if f : F2m → F2k instead of
being a Boolean function. Indeed, it suffices to change the 0-linear structures (resp.
1-linear structures) with 0-linear translators. (resp. 1-linear translators). This is stated
in the following proposition.
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Proposition 4.7. Let m be a positive integer and k be a divisor of m. Let f, g be
functions from F2m to F2k and γ, δ ∈ F?2m . Set φ(y) := y + γf(y) + δg(y). φ(y) is a
permutation if one of the following conditions holds:

(i) γ is a 0-linear translator of f , δ is a 0-linear translator of f and g,

(ii) γ is a 0-linear translator of f , δ is a 1-linear translator of f and δ+γ is a 0-linear
translator of g,

(iii) δ is a 0-linear translator of g, γ is a 0-linear translator of f and g,

(iv) δ is a 0-linear translator of g, γ is a 1-linear translator of g and δ+γ is a 0-linear
translator of f ,

(v) δ is a 1-linear translator of f , γ is a 1-linear translator of f and g,

(vi) γ is a 1-linear translator of g, δ is a 1-linear translator of f and g.

Proof. We will give only the proof for the first case. Proofs for other cases are similar.
Assume that γ is a 0-linear translator of f , δ is a 0-linear translator of f and g. Let
φ(y) = φ(z), then

y + γf(y) + δg(y) = z + γf(z) + δg(z)

y = z + γ [f(y) + f(z)] + δ [f(z) + g(z)]

f(y) = f (z + γ [f(y) + f(z)] + δ [f(z) + g(z)])

f(y) = f (z + γ [f(y) + f(z)]) , since δ is 0-linear translator of f
f(y) = f (z) , since γ is 0-linear translator of f .

This gives us

y + δg(y) = z + δg(z)

g(y + δg(y)) = g(z + δg(z))

g(y) = g(z), since δ is 0-linear translator of g.

Therefore, y = z and φ is a permutation.

4.5 Bent Functions not Belonging to the Class of Maiorana-McFarland Using
Linear Translators

In the following we are now interested in investigating constructions of bent func-
tions that do not necessary belong to the class of Maiorana- McFarland contrary to the
preceding sections. To this end, we are particularly interested in the secondary con-
struction of the form f(x) = φ1(x)φ2(x) + φ1(x)φ3(x) + φ2(x)φ3(x) presented in [5]
and next completed in [40]. More precisely, it is proven in [5] that if φ1, φ2 and φ3 are
bent, then if ψ := φ1 + φ2 + φ3 is bent and if ψ̃ = φ̃1 + φ̃2 + φ̃3, then f is bent, and
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f̃ = φ̃1φ̃2 + φ̃1φ̃3 + φ̃2φ̃3. Next, it is proven in [40] that the converse is also true: if
φ1, φ2, φ3 and ψ are bent, then f is bent if and only if ψ̃ + φ̃1 + φ̃2 + φ̃3 = 0 ( where
ψ := φ1 + φ2 + φ3). In this section, we show that one can reuse Boolean functions of
the shape presented in the preceding sections in the construction of [40, 42].

Firstly, one can derive easily bent functions f , whose dual functions are very simple, by
choosing functions Hi in the class of Maiorana-McFarland such that the permutation
involving in each Hi is built in terms of an involution and a linear translator. More
explicitly, each Hi is a Boolean function over F2m defined by Hi(y) = Trm1

(
L(y) +

L(γi)h(g(y))
)

where L is a F2k-linear involution on F2m (k being a divisor of m);
carefully chosen according to the hypothesis of [16, Corollary 2], g is a function from
F2m to F2k , h is a mapping from F2k to itself, and γ1, γ2 and γ3 are three pairwise
distinct elements of F?2m which are 0-linear translators of g such that γ1 + γ2 + γ3 6= 0.
Bent functions f are therefore obtained from a direct application of [40, Theorem 4]
and [16, Corollary 2].

Secondly, we extend a result from [42] by considering two linear structures instead of
one. This result uses linear structures as in the first case of Proposition 4.4. Similarly,
for the other five cases we can construct bent functions and their duals. These results
are presented in the Appendix as Propositions A.2, A.3, A.4, A.5, A.6.

Proposition 4.8. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) δ1, δ2, δ3 are elements of F?2m which are 0-linear structures of f and g;

(ii) γ1, γ2 and γ3 are elements of F?2m which are 0-linear structures of f ;

(iii) γ1 + γ2 and γ1 + γ3 are 0-linear structures of g.

Then the function h defined on F2m × F2m by

h(x, y) = Trm1

(
xφ1(y)

)
Trm1

(
xφ2(y)

)
+ Trm1

(
xφ1(y)

)
Trm1

(
xφ3(y)

)
+Trm1

(
xφ2(y)

)
Trm1

(
xφ3(y)

)
is bent and the dual of h is given by

h̃(x, y) = Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

2 (x)
)

+ Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

3 (x)
)

+Trm1

(
yφ−1

2 (x)
)
Trm1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x+ γif(x) + δi

[
g(x)

(
1 + f(x)

)
+ g(x+ γi)f(x)

]
.

Proof. Let ψi(x, y) = Trm1

(
xφi(y)

)
. Then by Proposition 4.4, ψi is bent for i =

1, 2, 3. Let γ = γ1 + γ2 + γ3 and δ = δ1 + δ2 + δ3. Then, ψ(x, y) = Trm1

(
x(y +
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γf(y) + δg(y))
)

is bent since γ is a 0-linear structure of f and δ is a 0-linear structure

of f and g. Now, it remains to show that ψ̃ = ψ̃1 + ψ̃2 + ψ̃3. ψ̃ = Trm1

(
xφ−1(y)

)
and

φ−1(x) is given in Proposition A.1 in the Appendix.

Note that ψ̃ = ψ̃1 + ψ̃2 + ψ̃3 if and only if g(x+ γ1)=g(x+ γ2)=g(x+ γ3)=g(x+ γ1 +
γ2 + γ3) which means γ1 + γ2 and γ1 + γ3 are 0-linear structures of g.

4.6 A Secondary Construction of Bent and Semi-bent Functions Using Deriva-
tives and Linear Translators

In this section, we consider a new kind of secondary construction. That construction
has been proposed by Carlet and Yucas [11] and is presented below.

Theorem 4.9. Let f and g be two bent functions over F2n . Assume that there exists
a ∈ F2n such that Daf = Dag. Then the function h : F2n → F2 defined by h(x) =

f(x) + Daf(x)
(
f(x) + g(x)

)
is bent and its dual is h̃(x) = f̃(x) + Trn1 (ax)(f̃(x) +

g̃(x)).

In the line of Theorem 4.9 and of the preceding sections, we shall derive from Theorem
4.9 new secondary constructions of bent and semi-bent functions in Theorem 4.11 and
Theorem 4.12. To this end, we will use the following lemma.

Lemma 4.10. Let b ∈ F2m andW ⊆ F2m be an m − 1 dimensional linear subspace
with b /∈ W . Let µ : F2m → F2 be a Boolean function such that b is a 0-linear
structure of µ. Choose arbitrary functions h1 : F2m → F2 and u :W → F2 and define
the Boolean function h2 : F2m → F2 by h2(w) = u(w) + h1(w) and h2(w + b) =
u(w) + h1(w + b) + µ(w) for w ∈ W . Then Dbh1(y) + Dbh2(y) = µ(y) for all
y ∈ F2m .

Proof. We observe that h2(w + b) + h2(w) = h1(w + b) + h1(w) + µ(w) for all
w ∈ W by definition. Using the fact that b is a 0-linear structure of µ we complete the
proof.

Note that Lemma 4.10 gives a construction of a Boolean function h2 : F2m → F2

with the property Dbh1(y) + Db(h2(y) = µ(y) for all y ∈ F2m for given b ∈ F2m ,
h1 : F2m → F2 and µ having b with 0-linear structure. The construction uses m − 1
free variables in the form of the function u :W → F2 .

Using Lemma 4.10, Theorem 4.9 and results from Section 4.4, we present below a new
secondary construction of bent functions.

Theorem 4.11. Let 1 ≤ k < m be integers with k | m. Let f , g be functions from
F2m to F2k . Assume that γ, δ ∈ F?2m are 0-linear translators of f and g, respectively.
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Further assume that b ∈ F2m is a 0-linear structure of f and g. Let a ∈ F2m be an
arbitrary element. For arbitrary function h1 : F2m → F2 construct h2 : F2m → F2

satisfying Dbh1(y) = Dbh2(y)+Trm1
(
a(γf(y+ b)+δg(y+ b))

)
for all y ∈ F2m using

Lemma 4.10. Set F (x, y) := Trm1 (xy + γxf(y)) + h1(y) and G(x, y) := Trm1 (xy +
δxg(y)) + h2(y). The function defined by

H(x, y) = F (x, y) +Da,bF (x, y)
(
F (x, y) +G(x, y)

)
is bent and its dual is

H̃(x, y) = Trm1
(
yx+ γyf(x)

)
+ h1(x+ γf(x))

+Trm1 (ax+ by)
[
Trm1

(
y(γf(x) + δg(x))

)
+ h1(x+ γf(x)) + h2(x+ δg(x))

]
.

Proof. First, recall that Da,bF (x, y) = F (x, y) + F (x + a, y + b). Now, F and G are
bent by Proposition 4.6. Using the fact that b is a 0-linear structure of f and g we get
that Da,bF (x, y) = Trm1

(
xb + a(y + b + γf(y + b))

)
+ Dbh1(y) and Da,bG(x, y) =

Trm1
(
xb + a(y + b + δg(y + b))

)
+ Dbh2(y). Hence Da,bF (x, y) = Da,bG(x, y) and

the proof follows from Theorem 4.9 and Proposition 4.6.

Using [45, Theorem 16] instead of Theorem 4.9 we obtain the following secondary
construction of semi-bent functions.

Theorem 4.12. Under notation and assumptions of Theorem 4.11 we construct h2 :
F2m → F2 satisfying Dbh1(y) = Dbh2(y) + Trm1

(
a(γf(y + b) + δg(y + b))

)
+ 1

(instead of Dbh1(y) = Dbh2(y) + Trm1
(
a(γf(y + b) + δg(y + b))

)
) for all y ∈ F2m .

Set F and G in the same way. Then the function defined by

H(x, y) = F (x, y) +G(x, y) +Da,bF (x, y) +Da,bFG(x, y)

is semi-bent.

Note that Theorem 4.12 gives a secondary construction of semi-bent functions of high
degree by choosing the arbitrary function h1 : F2m → F2 of large degree. Moreover it
gives a different construction than the one given in [39, Section 4.2.5] and hence it is
an answer to Problem 4 of [39].

4.7 A Secondary Construction of Bent Functions Using Certain Quadratic and
Cubic Functions Together with Linear Structures

In this section we consider Boolean functions that are the sum of a bent function of
Section 4.2 or Section 4.3 and a quadratic or cubic function. We show that one can
choose appropriately the quadratic and cubic function so that those Boolean functions
are bent again. Furthermore, the dual functions of those bent functions can be explicitly
computed as in the preceding sections. The main results are Theorems 4.14, 4.15, 4.17
and 4.18.
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Theorem 4.14 is based on [10, Lemma 1]. We note that the bent functions of Theorem
4.14 is different from the two classes of plateaued functions in Section 6 of [10]. First
of all we obtain bent functions while two classes of functions in Section 6 of [10]
produce only plateaued functions.

Theorem 4.17 is a further generalization of Theorem 4.14 using cubic functions instead
of quadratic functions.

Lemma 4.13. [10] Let w1, w2, u ∈ F2m with {w1, w2} linearly independent over F2m .
We have

∑
x∈F2m

(−1)Tr
m
1 (w1x)Trm1 (w2x)+Trm1 (ux) =

 0 if u /∈ 〈w1, w2〉 = {0, w1, w2, w1 + w2},
2m−1 if u ∈ {0, w1, w2},
−2m−1 if u = w1 + w2.

In Lemma 4.13, for any given F2-linearly independent set, the Boolean function on
F2m given by x 7→ Trm1 (w1x)Trm1 (w2x) is a quadratic function.

Theorem 4.14. Let w1, w2, γ ∈ F2m with {w1, w2} linearly independent over F2 . As-
sume that f, h : F2m → F2 are Boolean functions such that w1 and w2 are 0-linear
structures of f and h. Moreover, we assume that γ is a 0-linear structure of f . Then
the Boolean function F defined on F2m × F2m by

F (x, y) = Trm1 (xw1)Trm1 (xw2) + Trm1
(
xy + γxf(y)

)
+ h(y) (4.7)

is bent and its dual function is

F̃ (x, y) = Trm1 (yw1)Trm1 (yw2) + Trm1
(
yx+ γyf(x)

)
+ h(x+ γf(x)).

Moreover, F (x, y) = Trm1 (xw1)Trm1 (xw2)+Trm1
(
xL(y)+L(γ)xf(y)

)
+h(y) where

L is a linearized permutation polynomial of F2m is also bent under the same conditions
and its dual function is

F̃ (x, y) = Trm1 (yw1)Trm1 (yw2)+Trm1
(
yL−1(x)+γyf(L−1(x))

)
+h(L−1(x)+γf(L−1(x))).

Proof. One has for every (a, b) ∈ F2m × F2m ,

χ̂F (a, b) =
∑
y∈F2m

(−1)h(y)+Trm1 (by)
∑
x∈F2m

(−1)Tr
m
1 (xw1)Trm1 (xw2)+Trm1

(
xy+γxf(y)+ax

)

Let φ(y) = y + γf(y) and S =
∑

x∈F2m
(−1)Tr

m
1 (xw1)Trm1 (xw2)+Trm1

(
x(φ(y)+a)

)
. Then

by Lemma 4.13, we have

S =

 0 if φ(y) + a /∈ {0, w1, w2, w1 + w2},
2m−1 if φ(y) + a ∈ {0, w1, w2},
−2m−1 if φ(y) + a = w1 + w2.

Now, f(a) = f(a+ w1) = f(a+ w2) = f(a+ w1 + w2) since w1 and w2 are 0-linear
structures of f . We have two cases, namely f(a) = 0 and f(a) = 1.
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Assume f(a) = 0. Then φ(y) + a ∈ {0, w1, w2} when y ∈ A = {a, a+ w1, a+ w2}
and φ(y) + a = w1 + w2 when y = a+ w1 + w2. Hence,

χ̂F (a, b) = 2m−1

[∑
y∈A

(−1)h(y)+Trm1 (by) − (−1)h(a+w1+w2)+Trm1 (b(a+w1+w2))

]
.

Since w1 and w2 are 0-linear structures of h, we obtain

χ̂F (a, b) = 2m−1
[
(−1)h(a)+Trm1 (ba)

]
S1

where

S1 =
[
1 + (−1)Tr

m
1 (bw1) + (−1)Tr

m
1 (bw2) − (−1)Tr

m
1 (b(w1+w2))

]
. (4.8)

Note that

S1 =

{
2 if Trm1 (bw1)Trm1 (bw2) = 0,
−2 if Trm1 (bw1)Trm1 (bw2) = 1.

Combining these we obtain that F is bent and its dual F̃ satisfies that

F̃ (x, y) = Trm1 (yw1)Trm1 (yw2) + Trm1
(
yx+ yγf(x)

)
+ h(x+ γf(x)).

Assume f(a) = 1. The proof for this case is very similar to that of the first case.
φ(y)+a ∈ {0, u, v}when y ∈ B = {a+ γ, a+ u+ γ, a+ v + γ} and φ(y)+a = u+v
when y = a+ u+ v + γ. Then,

χ̂F (a, b) = 2m−1

[∑
y∈B

(−1)g(y)+Trm1 (by) − (−1)g(a+u+v+γ)+Trm1 (b(a+u+v+γ))

]
.

Similarly, we obtain

χ̂F (a, b) = 2m−1(−1)g(a+γ)+Tr
m
1 (b(a+γ))

[
1 + (−1)Tr

m
1 (bu) + (−1)Tr

m
1 (bv) − (−1)Tr

m
1 (b(u+v))

]
= ±2m.

Remark 4.4. In Theorem 4.14, for given F2-linearly independent subset {w1, w2}, the
Boolean function on F2m ×F2m given by (x, y) 7→ Trm1 (xw1)Trm1 (xw2) is a quadratic
function, which is used as the first summand in the definition of F (x, y) in equation
(4.7). In the proof of Theorem 4.14, we apply Lemma 4.13 for this quadratic function.
Note that if γ 6= 0 and 1+deg(f), deg(h) and 2 are distinct, then the degree of F (x, y)
is max {1 + deg(f), deg(h), 2}, which may be much larger than 2.

In the following we present a straightforward generalization of Theorem 4.14 using
two linear structures instead of one linear structure.

Theorem 4.15. Let w1, w2, γ, δ ∈ F2m with {w1, w2} linearly independent over F2 .
Assume that f, g, h : F2m → F2 are Boolean functions such that w1 and w2 are 0-
linear structures of f , g and h. Moreover, we assume that γ is a 0-linear structure of
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f and δ is a 0-linear structure of f and g. Then the Boolean function F defined on
F2m × F2m by

F (x, y) = Trm1 (xw1)Trm1 (xw2) + Trm1
(
x(L(y) + L(γ)f(y) + L(δ)g(y))

)
+ h(y)

is bent and its dual function is

F̃ (x, y) = Trm1 (yw1)Trm1 (yw2) + Trm1
(
yρ−1(x)

)
+ h(ρ−1(x)) where

ρ−1(x) = L−1(x) + γf(L−1(x))

+ δ
[
g(L−1(x))

(
1 + f(L−1(x))

)
+ g(L−1(x) + γ)f(L−1(x))

]
.

We now give the analogue of Lemma 4.13 which improves Lemma 1 of [10].

Lemma 4.16. Let w1, w2, w3, u ∈ F2m with {w1, w2, w3} linearly independent over
F2m . We have

∑
x∈F2m

(−1)Tr
m
1 (w1x)Trm1 (w2x)Trm1 (w3x)+Trm1 (ux) =


0 if u /∈ 〈w1, w2, w3〉,
3.2m−2 if u = 0,
2m−2 if u ∈ {w1, w2, w3, w1 + w2 + w3},
−2m−2 if u ∈ {w1 + w2, w1 + w3, w2 + w3}.

Proof. Let T denotes the sum in the statement of the lemma. Let T1 and T2 be the
sums as

T1 =
∑

x∈F2m |Trm1 (w1x)=0

(−1)Tr
m
1 (ux)

and
T2 =

∑
x∈F2m |Trm1 (w1x)=1

(−1)Tr
m
1 (w2x)Trm1 (w3x)+Trm1 (ux).

We have that T = T1 + T2. It is clear that

T1 =

{
0 if u /∈ 〈0, w1〉 = {0, w1},

2m−1 if u ∈ {0, w1}.

Using Lemma 4.13 we obtain that

T2 =

 0 if u /∈ 〈w1, w2, w3〉,
2m−2 if u ∈ {0, w1, w2, w3, w1 + w2 + w3},
−2m−2 if u ∈ {w1 + w2, w1 + w3, w2 + w3}.

Combining T1 and T2 we complete the proof.
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Remark 4.5. This remark is analogous to Remark 4.4. In Theorem 4.17, for given F2-
linearly independent subset {w1, w2, w3}, the Boolean function on F2m × F2m given
by

(x, y) 7→ Trm1 (xw1)Trm1 (xw2)Trm1 (xw3)

is a cubic function, which is used as the first summand in the definition of F (x, y) in
equation (4.9). In the proof of Theorem 4.17, we apply Lemma 4.16 for this cubic
function. As in Remark 4.4, the degree of F (x, y) is max {1 + deg(f), deg(h), 3}
under suitable conditions, which may be much larger than 3.

Theorem 4.17. Let f and h be two Boolean functions on F2m . Let w1, w2, w3 ∈ F2m

be linearly independent and γ ∈ F2m . Assume that γ is a 0-linear structure of f ,
and w1, w2, w3 are 0-linear structures of f and h. Then, the function F defined on
F2m × F2m by

F (x, y) = Trm1 (xw1)Trm1 (xw2)Trm1 (xw3)+Trm1
(
x(L(y)+L(γ)f(y))

)
+h(y) (4.9)

is bent and its dual is

F̃ (x, y) = Trm1 (yw1)Trm1 (yw2)Trm1 (yw3) + Trm1
(
y(L−1(x) + γf(L−1(x)))

)
+ h(L−1(x) + γf(L−1(x))).

Proof. Let φ(y) = y + γf(y). For every (a, b) ∈ F2m × F2m ,

χ̂F (a, b) =
∑
y∈F2m

(−1)h(y)+Trm1 (by)
∑
x∈F2m

(−1)Tr
m
1 (w1x)Trm1 (w2x)Trm1 (w3x)+Trm1

(
x(φ(y)+a)

)
.

For the case f(a) = 0,

• φ(y) + a = 0 when y = a,

• φ(y) + a ∈ {w1, w2, w3, w1 + w2 + w3} when
y ∈ A1 = {a+ w1, a+ w2, a+ w3, a+ w1 + w2 + w3}

• φ(y) + a ∈ {w1 + w2, w1 + w3, w2 + w3}
when y ∈ A2 = {a+ w1 + w2, a+ w1 + w3, a+ w2 + w3}.

Then, following the steps in proof of Theorem 4.14 and using Lemma 4.16, we get

χ̂F (a, b) = 3.2m−2(−1)Tr
m
1 (ba)+h(a) + 2m−2

∑
y∈A1

(−1)Tr
m
1 (by)+h(y)

−2m−2
∑
y∈A2

(−1)Tr
m
1 (by)+h(y)

= 2m−2
[
(−1)Tr

m
1 (ba)+h(a)

]
S
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where

S = [3 + S1 + S2] , (4.10)

S1 = (−1)Tr
m
1 (bw1) + (−1)Tr

m
1 (bw2) + (−1)Tr

m
1 (bw3) + (−1)Tr

m
1 (b(w1+w2+w3) and

S2 = (−1)Tr
m
1 (b(w1+w2)) + (−1)Tr

m
1 (b(w1+w3)) + (−1)Tr

m
1 (b(w2+w3)). Let (−1)Tr

m
1 (bwi) =

ci where ci ∈ F2 , for i = 1, 2, 3. Then, 3 + S1 + S2 = ±4 and hence χ̂F (a, b) = ±2m.
The proof for the case f(a) = 1 is very similar.

As in Theorem 4.15, in the following we get a modification of Theorem 4.17 using two
linear structures instead of one linear structure.

Theorem 4.18. Let f , g and h be Boolean functions on F2m . Let w1, w2, w3 ∈ F2m be
linearly independent and γ, δ ∈ F2m , γ 6= δ. Assume that γ is a 0-linear structure of
f , δ is a 0-linear structure of f and g. Moreover, assume that w1, w2, w3 are 0-linear
structures of f , g and h. Then, the function F defined on F2m × F2m by

F (x, y) = Trm1 (xw1)Trm1 (xw2)Trm1 (xw3)+Trm1
(
x(L(y)+L(γ)f(y)+L(δ)g(y))

)
+h(y)

is bent and its dual is

F̃ (x, y) = Trm1 (yw1)Trm1 (yw2)Trm1 (yw3) + Trm1
(
yρ−1(x)

)
+ h(ρ−1(x))

where

ρ−1(x) = L−1(x) + γf(L−1(x))

+ δ
[
g(L−1(x))

(
1 + f(L−1(x))

)
+ g(L−1(x) + γ)f(L−1(x))

]
.
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CHAPTER 5

CONCLUSION

Bent and semi-bent functions are widely studied concepts and have enjoyed a lot of
interest in the literature because of their applications in cryptography. Among Boolean
functions they are very rare and there is not a systematic method for their classification
and enumeration. In this thesis, we studied characterization, enumeration and con-
struction of bent and semi-bent functions. Chapter 1 describes the general overview
and motivation of the thesis. In Chapter 2 preliminary technical information related to
the other chapters is given. The first part of the main work in this thesis is presented
in Chapter 3. We contribute to the knowledge of semi-bent functions by proposing a
characterization for the class of quadratic functions with the form

f(x) =

n
2
−1∑
i=1

ciTr
n
1 (x1+2i) + Tr

n/2
1 (x1+2n/2

), ci ∈ F2, x ∈ F2n . (5.1)

We give a characterization of these functions for semi-bentness by specifying the nec-
essary and sufficient condition on ci’s. Furthermore, we present a generic method for
enumeration of quadratic bent and semi-bent functions and give the number of semi-
bent functions of the form (5.1). The method that we proposed for counting quadratic
functions is rather comprehensive since it is applicable for counting all quadratic func-
tions whose characterization is given via gcd computation. By utilizing this method,
we complement the enumeration results for quadratic semi-bent functions of the form
(3.8) and for quadratic bent functions of the form (A.3) and (3.10). We also correct
some results on bent functions given by Ma et al.[34].

Chapter 4 constitutes the second part of the main work in this thesis by proposing
several constructions of bent and semi-bent functions. Our first motive is to study the
functions belong to the Maiorana-McFarland class which are of the form H(x, y) =
Trm1 (xφ(y)) + h(y). We give explicit constructions of bent and semi-bent functions.
Also, using these constructions and other algebraic structures we obtain secondary
constructions of bent and semi-bent functions. Chapter 4 is composed of six sections
and the contributions are listed as follows.

• In Section 4.2, we first investigate the case where φ(y) = y+γf(y) and construct
bent and semi-bent functions of the form

H(x, y) = Trm1 (xy + γxf(y)) + h(y)
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by identifying the linear structures γ ∈ F?2m of the Boolean function f . Also, we
proved that the results are analogous when we have φ(y) = L(y) + L(γ)f(y)
where L(y) is a linearized polynomial.

• In Section 4.3, we extend the case in Section 4.2 to the case where there are two
linear structures. We present constructions of bent and semi-bent functions of
the form

H(x, y) = Trm1 (xy + γxf(y) + δxg(y)) + h(y)

where γ, δ ∈ F?2m are linear structures of Boolean functions f and g.

• Section 4.4 is a generalization of Section 4.2. It deals with the functions of the
same form as in Section 4.2 but with differences where f is a function from
F2m to F2k and γ is a linear translator of f instead of a linear structure. Then,
it is shown that H(x, y) is bent when γ is a c-linear translator of f , c ∈ F2m

and c 6= 1, and H(x, y) is k-plateaued when γ is a 1-linear translator of f and
h(y) = 0. For the bentness case, the dual of H is given explicitly and for the
k-plateaued case, Walsh-Hadamard transform values of H are computed.

• In Section 4.5, we focus on bent functions of the shape g(x) = f1(x)f2(x) +
f1(x)f3(x) + f2(x)f3(x) studied in [40] where f1, f2 and f3 are three pairwise
distinct bent functions over F2n . We construct bent functions of this form by us-
ing linear translators of the functions f1, f2 and f3 and compute dual functions g̃.
The functions g(x) studied in this section do not belong to the class of Maiorana
Mc-Farland.

• In Section 4.6, a secondary construction of bent and semi-bent functions using
derivatives and linear translators is presented.

• In Section 4.7, a secondary construction of bent functions of the form

F (x, y) = Trm1 (xw1)Trm1 (xw2) + Trm1
(
xy + γxf(y)

)
+ h(y)

using certain quadratic and cubic functions together with linear structures is
shown.
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[22] F. Fu, H. Niederreiter, and F. Özbudak, Joint linear complexity of multisequences
consisting of linear recurring sequences, Cryptography and Communications,
1(1), pp. 3–29, 2009.

[23] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation
functions, Information Theory, IEEE Transactions on, 14(1), pp. 154–156, 1968.

[24] T. Helleseth and P. V. Kumar, Sequences with low correlation, Handbook of cod-
ing theory, 2, pp. 1765–1853, 1998.

[25] H. Hu and D. Feng, On quadratic bent functions in polynomial forms, IEEE
Transactions on Information Theory, 53(7), pp. 2610–2615, 2007.

[26] K. Khoo, G. Gong, and D. Stinson, A new family of gold-like sequences, in
Proceedings IEEE International Symposium on Information Theory, volume 181,
2002.

50



[27] K. Khoo, G. Gong, and D. R. Stinson, A new characterization of semi-bent and
bent functions on finite fields, Des. Codes Cryptography, 38(2), pp. 279–295,
2006.
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APPENDIX A

Results Related to Propositions 4.4 and 4.8

The following proposition is related to Proposition 4.4 in Section 4.3.

Proposition A.1. Let H be defined by equation (4.2), γ and δ be defined as in Propo-
sition 4.4. Then the dual of H is H̃(x, y) = Trm1 (yφ−1(x)) + h(φ−1(x)) where
φ−1 = π2

−1 ◦ ρ−1 ◦ π1
−1 and ρ−1(x) is given as follows.

(i) If γ is a 0-linear structure of f , δ is a 0-linear structure of f and g, then

ρ−1(x) = x+ γf(x) + δ [g(x)(1 + f(x)) + g(x+ γ)f(x)] .

(ii) If γ is a 0-linear structure of f , δ is a 1-linear structure of f and δ+γ is a 0-linear
structure of g, then

ρ−1(x) = x+ γ
[
g(x) + f(x)

(
1 + g(x) + g(x+ γ)

)]
+ δ [g(x)(1 + f(x)) + g(x+ γ)f(x)] .

(iii) If δ is a 0-linear structure of g, γ is a 0-linear structure of f and g, then

ρ−1(x) = x+ γ [f(x)(1 + g(x)) + f(x+ δ)g(x)] + δg(x).

(iv) If δ is a 0-linear structure of g, γ is a 1-linear structure of g and δ+γ is a 0-linear
structure of f , then

ρ−1(x) = x+ γ [f(x)(1 + g(x)) + f(x+ δ)g(x)]

+ δ
[
f(x)(1 + g(x)) +

(
1 + f(x+ δ)

)
g(x)

]
.

(v) If δ is a 1-linear structure of f or δ is a 0-linear structure of g, then

ρ−1(x) = x+ γ
[
f(x)(1 + g(x+ δ)) +

(
1 + f(x)

)
g(x)

]
+ δf(x).

(vi) If γ is a 1-linear structure of g, δ is a 1-linear structure of f and g, then

ρ−1(x) = x+ γg(x) + δ [f(x)(1 + g(x)) + f(x+ γ)g(x)] .
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Proof. We give only the proof for the case (i). Assume that γ is a 0-linear structure of
f , δ is a 0-linear structure of f and g, then we claim that

ρ−1(x) =


x if f(x) = 0 and g(x) = 0

x+ δ if f(x) = 0 and g(x) = 1

x+ γ if f(x) = 1 and g(x+ γ) = 0

x+ γ + δ if f(x) = 1 and g(x+ γ) = 1

(A.1)

Let ρ(y) = a. Then,

y + γf(y) + δg(y) = a (A.2)

Taking f of both sides gives f(y + γf(y) + δg(y)) = f(a). Since γ and δ are 0-linear
structures of f , we get

f(y) = f(a). (A.3)

Note that,
(
f(a), g(a)

)
∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. These four cases correspond

to the cases in equation (A.1). We prove only the first case in equation (A.1) and the
proofs of other cases are similar. Hence, we assume that (f(a), g(a)) = (0, 0). Then,
by equation (A.3), f(y) = 0 and by equation (A.2), y + δg(y) = a. Taking g of both
sides and using that δ is a 0-linear structure of g, we obtain that g(y+δg(y)) = g(y) =
g(a). As g(a) = 0 by our assumption, we get g(y) = 0 and putting f(y) = g(y) = 0
in equation (A.2) we conclude that y = a.
Finally, the equation (A.1) can be written in the form

ρ−1(x) = x+ γf(x) + δ [g(x)(1 + f(x)) + g(x+ γ)f(x)] .

The following five propositions are related to Proposition 4.8 in Section 4.5.

Proposition A.2. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F?2m which are 0-linear structures of f ;

(ii) δ1, δ2 and δ3 are elements of F?2m which are 1-linear structures of f ;

(iii) γ1 + δ1, γ2 + δ2, γ3 + δ3 are 0-linear structures of g;

(iv) γ1 + γ2 and γ1 + γ3 are 0-linear structures of g.

Then the function h defined on F2m × F2m by

h(x, y) = Trm1

(
xφ1(y)

)
Trm1

(
xφ2(y)

)
+ Trm1

(
xφ1(y)

)
Trm1

(
xφ3(y)

)
+ Trm1

(
xφ2(y)

)
Trm1

(
xφ3(y)

)
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is bent and the dual of h is given by

h̃(x, y) = Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

2 (x)
)

+ Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

3 (x)
)

+ Trm1

(
yφ−1

2 (x)
)
Trm1

(
yφ−1

3 (x)
)

where

φ−1
i (x) = x+ γ

[
g(x) + f(x)

(
1 + g(x) + g(x+ γ)

)]
+ δ [g(x)(1 + f(x)) + g(x+ γ)f(x)] .

Proposition A.3. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F?2m which are 0-linear structures of f and g;

(ii) δ1, δ2 and δ3 are elements of F?2m which are 0-linear structures of g;

(iii) δ1 + δ2 and δ1 + δ3 are 0-linear structures of f .

Then the function h defined on F2m × F2m by

h(x, y) = Trm1

(
xφ1(y)

)
Trm1

(
xφ2(y)

)
+ Trm1

(
xφ1(y)

)
Trm1

(
xφ3(y)

)
+ Trm1

(
xφ2(y)

)
Trm1

(
xφ3(y)

)
is bent and the dual of h is given by

h̃(x, y) = Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

2 (x)
)

+ Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

3 (x)
)

+ Trm1

(
yφ−1

2 (x)
)
Trm1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x+ γ [f(x)(1 + g(x)) + f(x+ δ)g(x)] + δg(x).

Proposition A.4. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F?2m which are 1-linear structures of g;

(ii) δ1, δ2 and δ3 are elements of F?2m which are 0-linear structures of g;

(iii) γ1 + δ1, γ2 + δ2, γ3 + δ3 are 0-linear structures of f ;

(iv) δ1 + δ2 and δ1 + δ3 are 0-linear structures of f .

Then the function h defined on F2m × F2m by

h(x, y) = Trm1

(
xφ1(y)

)
Trm1

(
xφ2(y)

)
+ Trm1

(
xφ1(y)

)
Trm1

(
xφ3(y)

)
+ Trm1

(
xφ2(y)

)
Trm1

(
xφ3(y)

)
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is bent and the dual of h is given by

h̃(x, y) = Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

2 (x)
)

+ Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

3 (x)
)

+ Trm1

(
yφ−1

2 (x)
)
Trm1

(
yφ−1

3 (x)
)

where

φ−1
i (x) = x+ γ [f(x)(1 + g(x)) + f(x+ δ)g(x)]

+ δ
[
f(x)(1 + g(x)) +

(
1 + f(x+ δ)

)
g(x)

]
.

Proposition A.5. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F?2m which are 1-linear structures of f and g;

(ii) δ1, δ2 and δ3 are elements of F?2m which are 1-linear structures of f ;

(iii) δ1 + δ2 and δ1 + δ3 are 0-linear structures of g.

Then the function h defined on F2m × F2m by

h(x, y) = Trm1

(
xφ1(y)

)
Trm1

(
xφ2(y)

)
+ Trm1

(
xφ1(y)

)
Trm1

(
xφ3(y)

)
+ Trm1

(
xφ2(y)

)
Trm1

(
xφ3(y)

)
is bent and the dual of h is given by

h̃(x, y) = Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

2 (x)
)

+ Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

3 (x)
)

+ Trm1

(
yφ−1

2 (x)
)
Trm1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x+ γ

[
f(x)(1 + g(x+ δ)) +

(
1 + f(x)

)
g(x)

]
+ δf(x).

Proposition A.6. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F?2m which are 1-linear structures of g;

(ii) δ1, δ2 and δ3 are elements of F?2m which are 1-linear structures of f and g;

(iii) γ1 + γ2 and γ1 + γ3 are 0-linear structures of f .

Then the function h defined on F2m × F2m by

h(x, y) = Trm1

(
xφ1(y)

)
Trm1

(
xφ2(y)

)
+ Trm1

(
xφ1(y)

)
Trm1

(
xφ3(y)

)
+ Trm1

(
xφ2(y)

)
Trm1

(
xφ3(y)

)
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is bent and the dual of h is given by

h̃(x, y) = Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

2 (x)
)

+ Trm1

(
yφ−1

1 (x)
)
Trm1

(
yφ−1

3 (x)
)

+ Trm1

(
yφ−1

2 (x)
)
Trm1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x+ γg(x) + δ [f(x)(1 + g(x)) + f(x+ γ)g(x)].
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