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ABSTRACT

ON THE EFFICIENT IMPLEMENTATION OF RSA

Güner, Hatice Kübra
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

August 2015, 38 pages

Modular exponentiation is an essential operation for many asymmetric key cryptosys-
tems such as RSA in which encryption and decryption are based on modular exponen-
tiation. Therefore, efficiency of the system is effected with running time of the modular
exponentiation algorithm. At the same time, key sizes also influence the efficiency of
the algorithm. Over the years key sizes had to be increased to provide security. To
make RSA practical, one of usable choices is acceleration of the modular exponen-
tiation algorithm. There are many methods for fast modular exponentiation, but all
of them are not suitable for RSA. To find the most suitable one, we need to examine
running time of the algorithms. In this thesis, we have studied some of the proposed
fast modular exponentiation methods. They were implemented with using MPIR li-
brary and their running time results were compared with the repeated squaring and
multiplication algorithm. Moreover, some efficient methods were recommended for
RSA. In these methods, at least 23% improvement was obtained for each key sizes on
decryption.

Keywords : RSA, modular exponentiation, efficiency, running time
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ÖZ

RSA’İN VERİMLİ UYGULAMASI ÜZERİNE

Güner, Hatice Kübra
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Ağustos 2015, 38 sayfa

Modüler üst alma RSA gibi şifreleme ve şifre çözmenin modüler üst almaya dayandığı
birçok asimetrik anahtarlı kriptosistemler için temel işlemdir. Bu nedenle sistemin
verimliliği modüler üst alma algoritmasının çalışma süresinden etkilenir. Aynı za-
manda anahtar boyutları da algoritmanın verimliliğini etkilemektedir. Yıllar geçtikçe
güvenliği sağlamak için anahtar boyutları artırılmak zorundaydı. RSA’yi kullanışlı
yapmak için elverişli çözümlerden birisi modüler üst alma algoritmasını hızlandırmaktır.
Hızlı modüler üst almak için birçok yöntem var, ancak onların hepsi RSA için uy-
gun değil. En uygun olanını bulmak için algoritmaların çalışma sürelerini irdelem-
eye ihtiyacımız var. Bu tezde biz önerilen bazı hızlı modüler üst alma yöntemlerini
çalıştık. Bu yöntemler MPIR kütüphanesi kullanarak uygulandı ve onların çalışma
süreleri tekrarlayan kare alma ve çarpma algoritması ile karşılaştırıldı. Dahası, RSA
için bazı verimli yöntemler önerildi. Bu yöntemlerde, herbir anahtar boyutu için en az
%23 iyileştirme elde edildi.

Anahtar Kelimeler : RSA, modüler üst alma, verimlilik, çalışma süresi
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CHAPTER 1

INTRODUCTION

1.1 Modern Cryptography and RSA

With developing technology, security of the information and transaction of the data
without being acquired by unauthorized parts became crucial for every moment of
life. To provide confidentiality, cryptography turns out to be indispensable in both
governmental and public areas.

Basically, modern cryptography is divided into two branches which are symmetric key
cryptosystems such as block cipher and asymmetric key cryptosystems such as RSA
[21]. In symmetric key cryptosystems, the same key is used to encrypt the message
and decrypt the ciphertext. At the same time, the key must be kept secret in order to
provide confidentiality, since key is obtainable from third part [20]. In asymmetric key
cryptosystems, two different keys are used for encryption and decryption, separately.

RSA algorithm is preferable in many public areas (e.g message authentication) in or-
der to overcome key distribution and key secrecy problem, efficiently, according to
symmetric key systems. On the other hand, it has some disadvantages such as running
time, power consumption, using memory size [21].

1.2 Importance of Modular Exponentiation in RSA

Even though RSA provides simplicity for key distribution and key secrecy, it is the
slowest system with respect to DES, 3DES and AES [21]. RSA is approximately 1000
times slower than symmetric key systems with big key sizes [21]. Moreover, to reach
the same security level with symmetric systems, bigger RSA keys are needed [1].

RSA algorithm’s reliability comes from intractability of the integer factorization prob-
lem [16]. However, it is still not totally a secure system because of discovery of faster
factoring techniques [7]. With the years passing, recommended key sizes became in-
sufficient to keep confidentiality for RSA. To overcome this problem, key sizes had
to be increased. Today, we have to work with 1024-bit or bigger key sizes to provide
security [15]. This causes much more running time especially for decryption and make
the system impractical.
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To make RSA is practical, the most common operation which is modular exponen-
tiation should be accelerated. In the original paper [18] the repeated squaring and
multiplication algorithm was recommended for modular exponentiation. In spite of
providing efficiency, the algorithm is still too slow with big key sizes. In Table 1.1,
there are some results about how to change running time of decryption procedure with
the repeated squaring and multiplication algorithm when key sizes are increased. Pri-
vate key d was calculated according to choosing of public key e as 65537 in every case.

key sizes running time (sec)

1024-bit 452.868·10−5

2048-bit 3255.445·10−5

3072-bit 9946.095·10−5

4096-bit 21496.218·10−5

Table 1.1: Running time of decryption with different sizes in RSA

Ratios of the data in Table 1.1 are tabulated in Table 1.2.

row/column 1024-bit 2048-bit 3072-bit 4096-bit

1024-bit 1 0.13911 0.04553 0.02107
2048-bit 7.18851 1 0.32731 0.15144
3072-bit 21.96246 3.05522 1 0.46269
4096-bit 47.46685 6.60316 2.16127 1

Table 1.2: Ratios

According to Table 1.2, if we increase key size from 1024-bit to 2048-bit, running time
for decryption goes up approximately 7 times. If we rise size of the key to 3072-bit,
then running time increases almost 22 times. If we choose the key as 4096-bit, this
time decryption running time gets much worse and increases more than 47 times with
respect to 1024-bit.

These results show us RSA becomes impractical with growing key sizes. On the other
hand, we have to increase them because of security issues. Under these circumstances,
we need more efficient algorithms than the repeated squaring and multiplication algo-
rithm for modular exponentiation to accelerate running time of RSA.

1.3 About the Thesis

Using method for modular exponentiation is determinant to define efficiency of the
using procedure. In Knuth’s book [9], many fast modular exponentiation methods
were studied. In this thesis we investigated some of these methods to find efficient
choices for RSA.

In Chapter 2, first, RSA was introduced with construction of the system, usage schema
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of the algorithm, and mathematical background. After that, some modular exponen-
tiation methods which are practicable for RSA were discussed. Requiring number of
operations and needing memory sizes were calculated.

In Chapter 3, implementation results of studied methods were tabled. Comparisons
were made according to the repeated squaring and multiplication algorithm. The m-
ary method and the reducing precomputation multiplications were observed for en-
cryption. According to obtained results, we saw that the m-ary method is not applicable
when encryption key is chosen as 65537. With the reducing precomputation multipli-
cations, we could not get any considerable efficiency. But, we found alternatives for
the repeated squaring and multiplication algorithm. The m-ary and the modified m-
ary method were implemented for decryption. With respect to these results, efficient
cases were proposed with obtained savings and using memory sizes. When the m-ary
method was used, at least 23% improvement was observed. With using the modified
m-ary method, obtained improvement increased to at least 25% and using memory
sizes decreased according to the m-ary method. At the end, side channel attacks were
discussed for the m-ary method, briefly.

3



4



CHAPTER 2

PRELIMINIARS

2.1 Definition of RSA

RSA cryptosystem was invented by R.L Rivest, A. Shamir, L. Adleman in the 1970s,
they inspired from Diffie and Hellman’s [5] public-key cryptosystem [18]. RSA is an
essential asymmetric key cryptosystem. Its usage area includes common daily life do-
mains such as message authentication, e-shopping, etc. Its practical usability in these
important domains comes from fundamental idea of asymmetric key cryptosystems
using two different keys for encryption and decryption, respectively. Furthermore, de-
cryption key is known only by receiver that is the only authorized part to get the key.
There is no need to make a preliminary discussion to define keys; moreover parties do
not need to care any more about key distribution and key secrecy [20]. Therefore, RSA
cryptosystem can be used in public domains, securely.

2.1.1 RSA Schema

To construct an RSA cryptosystem [18], one should follow the given steps:

1. Choose two big random prime numbers p and q. These primes should have the
same length but they shouldn’t be close each other in order to provide security of
the system against Fermat’s Factorization Algorithm [10]. Moreover, p∓ 1 and
q∓ 1 should have large prime factors in order to avoid Polard’s p− 1 attack and
William’s p + 1 attack [25]. In today’s system p and q must be at least 512-bit
[7] primes. Furthermore, these primes must be hidden from unauthorized part,
strictly, since security of the system is provided with secrecy of p and q.

2. Compute n, such as
n = p · q.

Here n is a public information. Making it public does not cause any vulnerability
because of difficulty of factorization of big numbers [16]. Then compute Euler
totient function φ(n) such as

φ(n) = (p− 1) · (q− 1).
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3. Select public key e satisfying gcd(e, φ(n)) = 1 and e should be between 3 and n
- 1 [7] .

4. Define private key d as the inverse of e in modulo φ(n).

e · d = 1 mod φ(n)

The Extended Euclidean Algorithm is used to calculate such d [16]. Note that
d cannot be obtained from e and n. Such functions are called trapdoor func-
tions which are easy to compute one way, but calculation of the inverse is quite
difficult [22].

2.1.2 RSA Algorithm

Power of RSA comes from using two different keys for encryption and decryption. The
requirement information for encryption key is public, which means that it is known by
everyone and it is denoted as (e, n). Similarly, decryption key is private, which is
known only by receiver and it is denoted as (d, n). To obtain original message from
ciphertext with using public information is quite difficult [7], so there is no leakage
about making (e, n) public.

Before beginning the encryption step, message is converted to integer form M which
must be between 0 and n - 1. If M is bigger than n, it should be divided into blocks.
Each block size must be less than n, and these blocks are encrypted, separately [18].

To encrypt a message M, we compute

C =M e mod n

where C represents ciphertext which is an integer between 0 and n− 1, since modular
exponentiation keeps size of the message.

To decrypt a ciphertext, we compute

M = Cd mod n.

No one else can decrypt the ciphertext except receiver who owns the private infor-
mation [7]. If an eavesdropper gets a part of the ciphertext, the eavesdropper cannot
acquire any information about the message, since it seems as a meaningless text [18].

Another important procedure is message authentication. Even if the message does
not need protection against eavesdropper, authentication is essential to convince the
recipient about the message which belongs to the sender [18]. This procedure also cuts
all ways for sender to deny the message which is not sent by sender. Moreover it avoids
imitation sign from anyone else. Consequently, signature depends on the message and
any change in the message causes alteration in the sign form [18].

To digitally sign a message M, the authorized part compute

S =M d mod n.
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To verify the correctness of the signature receiver must calculate

M = Se mod n.

2.1.3 Mathematics Behind Decryption

To figure out that ciphertext is decrypted to message truly, we need to understand
mathematics behind the process which is based on Fermat’s Theorem [16].

Fermat’s Theorem. Let p be a prime. If gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Seeing that d is chosen as e · d ≡ 1 mod φ(n), there is an integer t satisfying

e · d = 1 + t · φ(n).

If message M is relatively prime with p, according to Fermat’s Theorem

Mp−1 ≡ 1 mod p.

In the last expression, when computed t · (q− 1)-th power of both sides of the congru-
ence and multiplied with M, expression turns out

M1+t·φ(n) ≡M mod p.

This is equivalent to
M e·d ≡M mod p.

If gcd(M, p) = p, we get M ≡ 0 mod p and

M1+t·φ(n) ≡ 0 mod p.

Again this is equivalent to
M e·d ≡M mod p.

Since q is a prime number, all above expressions are valid in modulo q, and

M e·d ≡M mod q.

At the end, last expression can be written in modulo n because p and q are different
primes. So, we have,

M e·d ≡M mod n.

Consequently, ciphertext is decrypted to message as

Cd = (M e)d ≡M mod n.

7



2.2 Modular Exponentiation

In this section, some modular exponentiation methods which have importance for cryp-
tographic algorithms especially for RSA were studied. Many of these algorithms were
defined in Knuth’s book [9]. Their efficiencies were discussed according to required
number of operations. If there was memory usage, holding memory space were also
calculated.

All given algorithms are based on modular exponentiation. Therefore, after every
squaring and multiplication there is a reduction. These reduction operations can be
seen in the algorithms, but we do not write them making analysis for simplicity. When
analyses are made, S represents squaring and M represents multiplication.

2.2.1 Naive Approach

Naive approach is the first way to compute M d mod n. Procedure is in Algorithm 1.

Algorithm 1 Naive approach
Input: M,d, n
Output: C =Md mod n

1: C ←M
2: for i from 1 to d− 1 do
3: C ← C ·M mod n
4: end for
5: return C

In this algorithm, there is a multiplication in every step and the algorithm includes ex-
actly d-1 steps. Therefore, total number of required operations is (d−1)·Multiplication.

We can also compute M d mod n with the following way:

for i from 1 to d - 1 do
C ← C ·M

C ← C mod n

But this way is not usable, practically, because of needing extra time and space to
complete the for loop [13].

Naive approach is also unsuitable for RSA since many multiplications are needed to
compute exponentiation. Multiplication and especially division (needing for reduc-
tion) are time consuming operations. At the same time, chosen key sizes are very large
in RSA, message M and private key d correspond at least 1024-bit numbers. Therefore,
naive approach becomes costly for RSA [16].

Furthermore, many multiplications are applied to compute given exponentiation with
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naive approach, but such number of operations is not needed, generally[9]. For exam-
ple, suppose that try to compute M32 mod n. With naive approach, 31 multiplications
are required. But, to calculate M32 mod n only 5 squarings are enough. M32 can be
obtained with squaring previous result, successively, such as M2,M4,M8,M16,M32.
In RSA, numbers are very large, this means that if we apply naive approach, we cal-
culate many unnecessary intermediate values. This is another reason that why naive
approach is unsuitable for RSA.

2.2.2 Repeated Squaring and Multiplication Algorithm

The repeated squaring and multiplication algorithm, is also called the binary method
or the square and multiply method [6], is the known as primary algorithm to compute
M d mod n for big M and d, efficiently. This ancient method and its history were
analysed by Knuth [9], deeply. This algorithm was proposed for both encryption and
decryption steps of RSA in the original paper [18].

The repeated squaring and multiplication algorithm is based on binary expansion of
d [6] and basic properties of the exponential numbers. There are two versions of the
algorithm. First one is left-to-right version in which the procedure begins from the
most significant bit of binary form of d. Second one is right-to-left version in which
the procedure begins from the least significant bit of binary form of d and extra space
be needed to hold powers of M [13].

Let represent d as

d = (dkdk−1 . . . d1d0)2 =
k∑
i=0

di · 2i ,where di ∈ {0, 1}

The left-to-right version is given in the Algorithm 2

Algorithm 2 left-to-right version

Input: M, n, (dkdk−1 . . . d1d0)2
Output: C =Md mod n

1: if dk = 1 then
2: C ←M
3: else
4: C ← 1
5: end if
6: for i from k − 1 to 0 do
7: C ← C2 mod n
8: if di = 1 then
9: C ← C ·M mod n

10: end if
11: end for
12: return C

9



In this version, a squaring is applied in every step and if di = 1, then one multiplication
is also applied. There are exactly dlog(d)e steps, so total number of operations [13] is

(dlog(d)e − 1) · S + (H(d)− 1) ·M
,where H(d) is Hamming weight of d. If we examine this analysis for common situa-
tions, we get

• In worst case: (dlog(d)e − 1)·(S + M)

• In average case: (dlog(d)e − 1)·(S + 1
2
·M)

• In best case: (dlog(d)e − 1)·S

In above analysis, we wrote squaring and multiplication operations separately since
squaring is more fast than multiplication [4].

If we examine the repeated squaring and multiplication algorithm for encryption when
public key e is chosen as 65537 = 216 + 1 = (10000000000000001)2, the required
number of operations are 16 times squaring and a multiplication. In the procedure, no
multiplication is applied until reaching the least significant bit of e. This means that the
best case is obtained for encryption. Such a public key is chosen to accelerate running
time of encryption, intentionally, and this is not cause any vulnerability for the system
[2]. There is no better case which are needed less operations to applied procedure.(The
case which the most significant bit is only 1 cannot be taken because e and φ(n) must
be relatively prime.) With the same idea, 3 and 17 provides the same efficiency on
encryption, but they are not suitable because of security issues [2]. Making such an
improvement is also not possible over decryption because of possibility of getting the
private key by unauthorized parts, easily.

Example: Let compute 199832711678 mod 20718393 with the repeated squaring and
multiplication algorithm. Binary representation of d = 11678 = (10110110011110)2.
Number of digits is 14 and the most significant bit is d13 = 1. So, firstly C is assigned
as C← 1998327, then the procedure is applied.

After these calculations, 199832711678 mod 20718393 = 14020776. We found this
result with applying 13 squarings and 8 multiplications.

The right-to-left version of the algorithm was defined by Knuth [9]. Procedure is given
in the Algorithm 3

If we analyse the right-to-left version according to total number of operations, we get
the same result with the left-to-right version [16] except needing extra space to hold
powers of M. In the right-to-left version, because of independence of multiplication
and squaring in for loop, multiplication and squaring can be computed in parallel [23]
and this accelerates the algorithm.

The repeated squaring and multiplication algorithm is quite efficient for modular ex-
ponentiation [6]. In rest of the chapter, some other algorithms are discussed which
compute modular exponentiation more efficiently, since the required number of opera-
tions decreases to considerable amounts for big exponents, especially.

10



i di Squaring Multiplication

12 0 6295323 -
11 1 17216244 6348354
10 1 14698572 4659372
9 0 47727 -
8 1 19561692 1394211
7 1 3962868 18357411
6 0 14522853 -
5 0 18519609 -
4 1 14072106 8915622
3 1 4752726 2872665
2 1 6115146 956661
1 1 6694932 9719730
0 0 14020776 -

Algorithm 3 right-to-left version

Input: M, n, (dkdk−1 . . . d1d0)2
Output: C =Md mod n

1: S ←M
2: C ← 1
3: for i from 0 to k − 1 do
4: if di = 1 then
5: C ← C · S mod n
6: end if
7: S ← S2 mod n
8: end for
9: C ← C · S mod n

10: return C

2.2.3 m-ary Method

The m-ary method is the most general form of the left-to-right version of the repeated
squaring and multiplication algorithm [6]. This method was stated in Knuth’s book
[9] and it is based on base m expansion of d [13].

The repeated squaring and multiplication algorithm is a special case of the m-ary
method in which m is taken 2. If m is chosen as 4, two bits are read at a time, it is
called the quaternary method. If m is chosen as 8, three bits are read at a time, then it
is called the octal method [13].

In the m-ary method, there is a look-up table to hold all power of M such that M i mod
nwhere i ∈ {2, 3, . . ., m-1}. By the reason of look-up table and decreasing digits num-
ber in the m-ary expansion, an appreciable improvement is provided over the repeated
squaring and multiplication algorithm with choosing suitable m.

The procedure is applied from the most significant digit to the least significant digit
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of the m-ary expansion of d. In every step, first, m-th powering of partial value is
calculated. After that, if the digit is different from 0, powering result is multiplied by
a number which is taken from the look-up table according to the digit’s value.

Representation of base m expansion of d is

d = (dldl−1 . . . d1d0)m =
l∑

i=0

di ·mi

,where di ∈ {0, 1, . . . ,m− 1}. The algorithm is given in Algorithm 4.

Algorithm 4 m-ary method

Input: M, n, (dldl−1 . . . d1d0)m
Output: Md mod n

1: pc[0]←M2 mod n
2: for i from 1 to m− 3 do
3: pc[i]← pc[i− 1] ·M mod n {look-up table multiplications}
4: end for
5: if dl = 0 then
6: C ← 1
7: else
8: if dl = 1 then
9: C ←M

10: else
11: C ← pc[dl − 2]
12: end if
13: end if
14: for i from l − 1 to 0 do
15: C ← Cm mod n
16: if di = 1 then
17: C ← C ·M mod n
18: else
19: if di > 1 then
20: C ← C · pc[di − 2] mod n
21: end if
22: end if
23: end for
24: return C

The required number of operations to compute Md mod n is found with the following
analysis. To prepare look-up table, one square and (m - 3) multiplications are applied.
In every step of for loop, an m-th powering and a multiplication which depends on the
digit value are applied. There are exactly dlogm(d)e steps, and therefore total number
of operations are

• For precomputation: S + (m− 3)·M

• For powering: (dlogm(d)e − 1)·P ,where P represents the m-th powering
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• For multiplications: c · (dlogm(d)e − 1)·M

where c = # di, di 6= 0. In average case, we expect to see c as m−1
m

, since all base m
numerals have equal probability to seem in the base m expansion of d.

Choosing m as a power of 2 makes the execution of the method more easy, by reason
of getting the digits in m-ary expansion from the collection of blog2(m)c subsequent
bits of binary form of d [14]. Assume that d is k-bit integer. If above analysis is made
for m = 2r (Rest of the chapter, m is usually taken as 2r), average number of operations
is [13]

• For precomputation: S +(m− 3)·M

• For powering: (k
r
− 1) · r·S

• For multiplication: m−1
m
· (k

r
− 1)·M

Look-up table has a great importance in the algorithm to accelerate modular exponen-
tiation. At the same time it requires some memory. Memory usage is given in Table
2.1 for different d sizes and m values.

4 8 16 32 64 128 256 512 1024

1024-bit 0.25 0.75 1.75 3.75 7.75 15.75 31.75 63.75 127.75
2048-bit 0.5 1.5 3.5 7.5 15.5 31.5 63.5 127.5 255.5
3072-bit 0.75 2.25 5.25 11.25 23.25 47.25 95.25 191.25 383.25
4096-bit 1 3 7 15 31 63 127 255 511

Table 2.1: Memory Usage-KB (1 KB=1024-byte)

Example: Let compute 199832711678 mod 20718393 with the m-ary method choosing
m as 4 and compare the required number of operations with binary method. Base 4
representation of d is (2312132)4. Before applying the procedure, we need to prepare
the look-up table.

i M i mod n

2 6295323
3 9286986

Since d6 = 2, C is assigned as C← M2 mod n = 6295323. After the following steps
are applied, we get the result as 199832711678 mod 20718393 = 14020776.

Required number of operations to found above result is following. Firstly, to prepare
look-up table, a squaring and a multiplication are applied. After that, 6 times 4-th pow-
ering of partial value and 6 multiplications are performed in the procedure. Calculation
of 4-th powering of a number means two times squaring, successively. Hence, number
of operations without look-up table multiplications is obtained as:

6 · 2 · S + 6 ·M
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i di 4-th Power Multiplication

5 3 7582917 4659372
4 1 19561692 1394211
3 2 8793747 14522853
2 1 14072106 8915622
1 3 10715682 956661
0 2 5223603 14020776

Total number of operations is
13 · S + 7 ·M

This result is better than the repeated squaring and multiplication algorithm with one
multiplication and for this example, memory usage is only 50-bit.

At the viewpoint of efficiency, we cannot generalize one m value for all cases. For each
d size, there is a different m to get the minimum number of operations [13]. In Table
2.2, there are required number of operations for different m values.

m 1024-bit 2048-bit 3072-bit 4096-bit

2 1023·S+512·M 2047·S+1024·M 3071·S+1536·M 4095·S+2048·M
4 1023·S+384·M 2047·S+768·M 3071·S+1152·M 4095·S+1536·M
8 1022·S+303·M 2046·S+604·M 3070·S+900·M 4094·S+1199·M

16 1021·S+252·M 2045·S+492·M 3069·S+732·M 4093·S+972·M
32 1020·S+226·M 2044·S+425·M 3068·S+588·M 4092·S+822·M
64 1019·S+228·M 2043·S+396·M 3067·S+564·M 4091·S+732·M

128 1018·S+269·M 2042·S+414·M 3066·S+559·M 4090·S+705·M
256 1017·S+380·M 2041·S+507·M 3065·S+635·M 4089·S+762·M
512 1016·S+622·M 2040·S+735·M 3064·S+849·M 4088·S+962·M

1024 1015·S+1122·M 2039·S+1225·M 3063·S+1327·M 4087·S+1429·M

Table 2.2: Average number of operations

According to Table 2.2, when working with 1024-bit, we should choose m as 32, for
2048-bit we should take m as 64, for 3072-bit and 4096-bit we should choose m as 128
to get minimum number of operations.

The m-ary method is not suitable for the right-to-left version of binary method since a
look-up table cannot be prepared according to the algorithm. All operations must be
applied during the procedure. As a consequence, the algorithm becomes more slow
instead of accelerating the procedure. But there are some other techniques to make the
right-to-left version more efficient [23].

2.2.4 Modified m-ary Method

In the m-ary method, when m increases, preparation of look-up table becomes costly
in both time and memory usage. In Table 2.2, number of multiplications becomes to
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increase after an m value for all d’s. Reason of this increment is that required look-up
table multiplications raise almost two times when m is doubling. To overcome this
increment, precomputation multiplications can be modified with the following idea.

If the digit’s value is even, then at least one of the last bits of the digit is 0 in binary
expansion. These zero bits correspond squaring in binary method, so number of zero
times squaring is applied, subsequently. Therefore, if the exponent is factored to odd
and even parts, exponentiation can be computed via odd parts, easily. For example, to
compute M6 mod n, we can apply (M3)2 mod n.

In the light of this idea, even digits are factored to even and odd parts, and therefore
exponentiation is computed via odd parts easily with some modifications in the algo-
rithm [16, 24]. Thus, even powers of M are not needed any more in the look-up table.
With this improvement, precomputation multiplications decrease to half, required time
and memory usage for look-up table also decrease nearly half. Algorithm is given in
the Algorithm 5.

Average number of operations is:

• For precomputation: S + m−2
2
·M

• For powering: (k
r
− 1) · r·S

• For multiplication: m−1
m
· (k

r
− 1)·M

• For division by 2: k
m·r · (m− r − 1)(Division by 2)

Needing memory space for the modified m-ary method to different m values and dif-
ferent d sizes are given in Table 2.3:

4 8 16 32 64 128 256 512 1024

1024-bit 0.125 0.375 0.875 1.875 3.875 7.875 15.875 31.875 63.875
2048-bit 0.25 0.75 1.75 3.75 7.75 15.75 31.75 63.75 127.75
3072-bit 0.375 1.125 2.625 5.625 11.625 23.625 47.625 95.625 191.625
4096-bit 0.5 1.5 3.5 7.5 15.5 31.5 63.5 127.5 255.5

Table 2.3: Memory Usage-KB (1 KB=1024-byte)

If we compare Table 2.3 with Table 2.1, difference in the memory usage can be seen,
clearly. Running time results of the modified m-ary method with using MPIR library
will be discussed in the next chapter.

The method which process is shaped according to input is called data-dependent or
adaptive method [13]. For the m-ary method, in some cases computation of all look-
up table values can be unnecessary. In some cases, multiplication number is also
decreased with partitioning the exponent to zero and nonzero windows [13]. Such
adaptive methods are studied in the following titles.
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2.2.5 Reducing Precomputation Multiplications

In some cases computing all precomputation multiplications are unnecessary, since all
base m numerals do not seen in the m-ary expansion of d. We can disregard such values
and reduce the number of required operations for look-up table.

To see the difference, let calculate 199832711678 mod 20718393 with the m-ary method
for m = 8. Base 8 representation of d is (26636)8 and look-up table is the following:

i M i mod n

2 6295323
3 9286986
4 17216244
5 6348354
6 7985928
7 8305455

To prepare the look-up table, 1 squaring and 5 multiplications are applied. If we look at
base 8 representation of d, we do not need all of them in the table. Only M2,M3,M6

are enough to apply the process. To compute these needing three values, only 2 squar-
ings and 1 multiplication are required. Therefore, number of operations to prepare
look-up table decreases from

S + 5 ·M
to

2 · S +M

Both time and memory usage get better nearly half with this improvement. Using
memory space decreases from 150-bit to 75-bit. In the following of the procedure, C
is assigned as C← 6295323, because of d4 = 2.

i di 8-th Power Multiplication

3 6 3963483 47727
2 6 15000801 14522853
1 3 4567680 2872665
0 6 14387133 14020776

In above table, 4 times 8-th powering of partial value is calculated. Note that 8-th
powering of a number means that 3 times squaring, successively. 4 times multiplication
are also applied. Total number of operations without look-up table is

4 · 3 · S + 4 ·M

Total number of operations is
14 · S + 5 ·M

So, this method is better than both the repeated squaring and multiplication algorithm
and 4-ary method for this example.
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The reducing precomputation multiplications is probably not applicable for big d val-
ues [13], since all base m numerals are expected to seen in base m expansion of d.
In RSA, private key is at least 1024-bit, so it is invalid for decryption especially with
small m values. On the other hand, public key is generally taken as 65537 [2], and
therefore this adaptive method can be used in encryption, effectively. Moreover for
some m values, we do not need a look-up table any more. Experimental results of
these cases are considered in the Chapter 3.

2.2.6 The Sliding Window Methods

In the m-ary method, exponent d is represented as a dlogm(d)e-digit sequence of base
m numerals. During the procedure, if the digit is 0, only m-th powering is applied.
So, getting 0 digits in the expansion reduces the number of required multiplications.
With increasing size of m, probability of getting zero digit decreases, since all base
numerals have equal probability to be in the expansion. Thus, probability of applying
multiplication after m-th powering increases [13].

The sliding window methods provide efficiency with decreasing the required number
of multiplications using nonzero digits in the m-ary method (number of squarings does
not change) [14]. We can represent a digit as subsequent blog2(m)c-bit in binary ex-
pansion and it is called a window [6].

The aim of the sliding window methods are based on defining nonzero windows as
the most significant and/or least significant bit must be 1. Therefore, even nonzero
windows cannot seen in the base m expansion of d. For zero windows, only number of
zero times squaring are applied in the procedure.

Furthermore, the sliding window methods offer an improvement over look-up table
with the same idea in the modified m-ary method. Even powers of M are not computed
and not held any more. Only half of the precomputation values (only odd values) are
needed [13]. This provides an important efficiency over both time and memory usage.
In addition, the sliding window methods can be used with the reducing precomputation
multiplications to make the algorithm more efficient [6].

There are some different approaches to define nonzero windows. These methods are
examined in the following.

2.2.6.1 Constant Length Nonzero Windows Method

The constant length nonzero windows (CLNW) method was defined in Knuth’s book
[9]. In this method, window partitioning process is beginning from the least signifi-
cant bit of the expansion. Nonzero window’s length is a fix number l and there is no
restriction for length of zero windows. Defining window process is following [13]:

• Read the least significant bit of the expansion.
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• If the bit is 0, then put it in zero window and go to the next bit.

• If the bit is 1, then collect subsequent l-bit and call them as a nonzero window.

• Continue with the same way until reach the most significant bit of the expansion.

In a window, if only least significant bit is 1 and rest of the window are 0, it is still a
nonzero window [13].

As we see from the definition, two contiguous zero windows cannot be seen in the
expansion [14] and two nonzero windows do not need to be contiguous any more [6].

For instance, d = 11678 is partitioned into windows with the CLNW method for l = 3.
Windows are obtained as

d = 1 011 011 001 111 0

When the reducing rprecomputation multiplications are applied with the CLNW, we
only need to hold M3 and M7 in look-up table to compute M11678 mod n. Number of
required operations is

15 · S + 6 ·M
We can say choosing window length as l = 3 is a bad choice according to 4-ary method.

With the similar idea of the m-ary method, there is a different l value for every d sizes
to apply the CLNW method, efficiently [14].

2.2.6.2 Variable Length Nonzero Windows Method

The variable length nonzero windows (VLNW) method was defined by Bos and Coster
in [3]. Window partitioning process is based on two integer parameters [13]. These
are:

• l: upper bound for nonzero window length

• r: needing minimum number of zeros to change nonzero window to zero window

Partitioning process is following [13]:

• Scan the current bit. If it is 0, then remain in zero window, else hold the bit in
nonzero window.

• Control the incoming r bits. If all of them are zero, finish the nonzero window
and put these r bits in zero window, else stay in nonzero window.

• Continue with controlling the next r bits. If any subsequent r bits are 0 then
finish the nonzero window. Else continue to procedure until reach d bits in the
window.
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According to window partitioning process, a nonzero window’s least significant and
most significant bits must be 1. If two nonzero windows are adjacent, then right win-
dow must have l bits [14]. Again two zero windows cannot be contiguous.

There are two different ways to start the window partitioning process which are the
left-to-right method, the process begins with the most significant bit of the expansion,
and the right-to-left method, the process begins with the least significant bit of the
expansion [17]. We will get nonzero windows, differently, but partitioning process is
still the same.

For example, let d = 56284088173, l = 3 and r = 2. If partitioning process is started
from the most significant bit, windows are obtained as

11 0 1 000 11 0 101 1 00 101 1 00000 111 0 11 0 11 0 1

If partitioning process is started from the least significant bit, this time windows are
obtained as

1 101 000 1 101 0 11 00 1 0 11 00000 11 101 101 101

Bos and Coster [3] offer using big size windows to decrease the number of multiplica-
tions. Instead of computing all look-up table values, only needing intermediate values
are calculated [6].

2.2.7 Addition Chains

Until now, in given algorithms fundamental aim is to find the minimum number of
operations to compute Md mod n, efficiently. Addition chains give a general approach
for this idea. To find minimum number of multiplication to compute exponentiation,
only allowing operation is multiplication of already calculated two values [6]. Addition
chains were introduced by Knuth [9].

An addition chain is a sequence of positive integers

a0 = 1, a1, · · · , ar = d

such that for all 1 ≤ i ≤ r, there are j and k such as 0 ≤ j ≤ k < i satisfying
ai = aj + ak as Mai =Maj ·Mak .

Let l(d) be the fewest number of operations. This value can be found only for small d
values, exactly. For big d values, l(d) is found as [6]

l(d) = log(d) + (1 + o(1)) · log(d)

log(log(d))
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Finding the best addition chain for given d is an NP-Complete problem [13]. Thus,
especially for big d values finding the shortest chain is inapplicable, since impracti-
cability of controlling all possible situations [13]. In this case, instead of finding the
best one, we try to to find the best close addition chain [6]. To get the the best close
chain, some algorithms are used such as the repeated squaring and multiplication, the
m-ary method, the sliding window methods and some other techniques which are not
mentioned in this thesis.

In RSA, public key is usually chosen as e = 65537. As an example, let try to find the
shortest addition chain for e with given algorithms.

Binary representation of e is (10000000000000001)2 and obtained addition chain is

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
65537

l(e) = 17 and required operations are 16 squarings and one multiplications.

If the m-ary method is used with m = 4, base 4 representation of e is (100000001)4 and
corresponding addition chain is

1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
65537

l(e) = 18 and required number of operations are 16 squarings and 2 multiplications. If
the reducing precomputation multiplications is used, length of the chain is obtained as
l(e) = 17.

If the m-ary method is used with m = 8, then base 8 representation of e is (200001)8
and the chain is

1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
65536, 65537

l(e) = 21 and required operations are 14 squarings and 7 multiplications. If the reducing
precomputation multiplications is used, length of the chain is found as l(e) = 17.

We do not need to examine the sliding window methods, since there are only two 1-bit
in binary expansion of e and nonzero windows are clear for all choices.

After comparisons, the shortest chain is obtained with the repeated squaring and mul-
tiplication algorithm and l(e) = 17. Therefore, it is the most suitable algorithm for
encryption in RSA.

To find the shortest addition chain, all possible methods are needed to be applied. For
all that upper and lower bounds are defined [13]. An upper bound is equal to

dlog2(d)e − 1 + H(d)− 1

20



,where H(d) is Hamming weight of d. This means that the repeated squaring and
multiplication algorithm gives an upper bound for the shortest addition chain. The
lower bound [13] is

log2(d) + log2(H(d))− 2.13.

This means that all shortest addition chains’s length cannot be less than above value.
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Algorithm 5 modified m-ary method

Input: M, n, (dldl−1 · · · d0)m
Output: Md mod n

1: pc[0]←M3 mod n
2: for i from 1 to m−4

2
do

3: pc[i]← pc[i− 1] ·M2 mod n { look-up table multiplications }
4: end for
5: if dl = 0 then
6: C ← 1
7: else
8: t← 1
9: while (dl mod 2) = 0 do

10: dl ← dl/2
11: t← 2 · t
12: end while
13: if dl = 1 then
14: C ←M
15: else
16: C ← pc[dl−3

2
]

17: end if
18: C ← Ct mod n
19: end if
20: for i from l − 1 to 0 do
21: if di = 0 then
22: C ← Cm mod n
23: else
24: t← 1
25: while (di mod 2) = 0 do
26: di ← di/2
27: t← 2 · t
28: end while
29: C ← C

m
t mod n

30: if di = 1 then
31: C ← C ·M mod n
32: else
33: C ← C · pc[di−3

2
] mod n

34: end if
35: C ← Ct mod n
36: end if
37: end for
38: return C
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CHAPTER 3

IMPLEMENTATION RESULTS

3.1 Implementation Results of Some Modular Exponentiation Methods

In this section, we presented implementation results of some modular exponentiation
methods which were studied in Chapter 2. To get these results, we used MPIR library
with Microsoft Visual Studio on Intel Core i7 2.00 GHz. We examined the algorithms
for encryption and decryption, separately.

In encryption, firstly, the m-ary method was implemented and according to running
time results, usability of the algorithm was discussed. After that, the reducing precom-
putation multiplications was examined. In both methods, m was chosen as power of
2.

In decryption, the m-ary method was examined and efficient m values were proposed
for different key sizes. After that, the modified m-ary method and the m-ary method
running times were compared to define which are faster in which cases. According to
running time results of the modified m-ary method, the most suitable m values were
proposed. Moreover, the m-ary method was implemented for choosing m as power of
3, power of 5 and power of 7.

In this thesis, modular exponentiation was studied to find efficient methods for RSA,
so RSA parameters were taken according to [1].

3.1.1 Encryption

Encryption key e is chosen as e = 216 + 1 = 65537 [2], since in many cases e is used
such as.

3.1.1.1 m-ary Method

In Table 3.1, there are base m representations of e.

In Table 3.2, there are running time results of the m-ary method for different size of
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m base m form

2 (10000000000000001)2
4 (100000001)4
8 (200001)8
16 (10001)16
32 (2001)32
64 (1601)64

128 (401)128
256 (101)256
512 (1281)512

1024 (641)1024

Table 3.1: Base m representation of 65537

plaintext M. According to Table 3.2, none of m values are preferable to m = 2 (re-
peated squaring and multiplication algorithm), since ratios increase rapidly especially
for big m values. Reason of this raising is calculation of many unnecessary precom-
putation multiplications. For instance, if we choose m as 256, we do not need any
precomputation multiplications, since all entries are 0 and 1 in base 256 expansion
of e. But we calculate 254 unneeded precomputation multiplications because of the
algorithm. These multiplications make the system impractical.

As a result, using the m-ary method is improper when m is bigger than 2 on encryption
for e = 65537. To overcome this slowdown, unneeded precomputation multiplications
must be thrown away from look-up table.

3.1.1.2 Reducing Precomputation Multiplications

As we see in Chapter 2, the reducing precomputation multiplications provides im-
provement when exponent is small and base m is big. Therefore, better running times
are obtained for public key e=65537, since many unneeded precomputation multipli-
cations are not calculated.

In Table 3.3, we can see the reducing precomputation multiplications results for dif-
ferent m values and different M sizes. With this method, we got better results than the
m-ary method, but not better than binary method. Running time results are very close
to choosing m = 2 case.

Consequently, the reducing precomputation multiplications does not make the running
times better than binary method, but it provides many alternative ways with using some
memory on encryption.
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3.1.2 Decryption

Decryption consumes more time than encryption in RSA, since size of d is very big
according to public key e. Therefore, making some improvements over running times
for decryption is crucial for RSA algorithm’s efficiency. In the following, there are
implementation results of some efficient methods for decryption.

3.1.2.1 m-ary Method

In Table 2.2, we see that the m-ary method provides an effective improvement over
the repeated squaring and multiplication algorithm according to required number of
operations. Here, we examine implementation results of the m-ary method. In Table
3.4, there are running time results, ratios of comparison with m = 2 case and savings.
For 1024-bit key size, choosing m = 32 makes 28% improvement over running time
with using only 3.75 KB memory. For 2048-bit key size, the most suitable m value
is 64 which provides approximately 23% improvement over running time and using
memory is 15.5 KB. If we choose key size as 3072-bit, then efficient m value is 64.
Obtained improvement over running time is nearly 23%, using memory is 23.25 KB.
For 4096-bit key size, the most suitable m is 128. In that case, 23% improvement is
obtained with using 63 KB memory.

In Table 3.5, 3.6 and 3.7 , there are implementation results of the m-ary method when
m is chosen as power of 3, power of 5 and power of 7, respectively. All of these cases
do not provide any efficiency over running time except a few values, since computing
cube, fifth and seventh power are needed more operations than square [8]. We can only
get some small progress when m is chosen as 25, 49 or 81.

3.1.2.2 Modified m-ary Method

The m-ary method provides considerable improvements over running time with using
some memory. To decrease using memory size nearly half, we can consider the modi-
fied m-ary method. Procedure is run as the m-ary method with some modifications.

In Table 3.8, there are running times for the modified m-ary and the m-ary methods,
comparison as modified m-ary / m-ary for different key sizes. According to Table 3.8
when m is bigger than 16, the modified m-ary is faster than the m-ary. If we remember
recommended m values for the m-ary method, the modified m-ary is more suitable in
view of running time and memory usage.

In Table 3.9, there are running times for the modified m-ary method, comparison results
with m = 2 case, and savings seconds for different key sizes. From the table’s informa-
tion, m = 32 is the most suitable choice for 1024-bit key size with 28% improvement
and 1.875 KB memory usage. For 2048-bit key size, 64 gives the best result and in
that case running time improvement is 26%, memory usage is 7.75 KB. If we increase
key size to 3072-bit, we should choose m as 128, then we get 28% improvement over
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running time with using only 23.625 memory size. For 4096-bit key size, the most
suitable m value is 128 with 25% improvement over running time and memory usage
decreases to 31.5 KB.

3.2 Side-Channel Attacks

In this section, we studied side-channels attacks which are also named implementation
attacks [26] for the m-ary method, briefly. These attacks are not related with structure
of RSA, or underlying mathematics, or choosing of exponents. But, these are related
with implementation of the RSA algorithm [2, 26].

3.2.1 Timing Attack

Timing attack, is described by Kocher in [11], is based on measuring the time of de-
cryption process to gain the bits of private key d one by one. In the repeated squaring
and multiplication algorithm, applying only square is caused by 0 in the bit and ap-
plying square plus multiplication is caused by 1 [19]. To prevent timing attack, some
methods such as delay or blinding are needed [2].

In the m-ary method, according to the algorithm if a multiplication is applied after the
powering this means that the related digit is different from 0. When timing attack is
applied, attacker can obtain the digits which are dissimilar with 0, but cannot detect
exact value of the digit. Therefore, we can get an advantage with the m-ary method
over the repeated squaring and multiplication algorithm when attacker assaults with
timing attack.

3.2.2 Power Analysis Attacks

Power analysis attacks are based on power consumption [12] of decryption (or digital
signing) process to obtain private key d. Basically, these types of attacks are exam-
ined in two different methods which are simple power analysis and differential power
analysis [26].

Value of the bit can be detected with these methods, since there is a high difference
between power consumption of squaring and multiplication [2]. In the m-ary method
only obtainable information with these attacks are that related bit is zero or nonzero.

As a result, the m-ary method does not only accelerate modular exponentiation also
makes an improvement over side channel attacks.
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M m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 223.6 · 10−6 1 0
4 263.516 · 10−6 1.179 -179
8 338.224 · 10−6 1.513 -513

16 524.02 · 10−6 2.344 -1344
32 862.23 · 10−6 3.856 -2856
64 152.661 · 10−5 6.827 -5827

128 357.272 · 10−5 15.978 -14978
256 94.911 · 10−4 42.447 -41447
512 2833.121 · 10−5 126.705 -125705

1024 951.722 · 10−4 425.636 -424636

2048-bit

2 983.925·10−6 1 0
4 1092.486·10−6 1.11 -110
8 1277.236·10−6 1.298 -298

16 1816.733·10−6 1.846 -846
32 2735.886·10−6 2.781 -1781
64 473.211·10−5 4.809 -3809

128 1000.289·10−5 10.166 -9166
256 2352.828·10−5 23.913 -22913
512 6216.299·10−5 63.179 -62179

1024 1895.918·10−4 192.689 -191689

3072-bit

2 208.634 · 10−5 1 0
4 234.313 · 10−5 1.123 -123
8 273.031 · 10−5 1.309 -309

16 387.677 · 10−5 1.858 -858
32 584.876 · 10−5 2.803 -1803
64 99.824 · 10−4 4.785 -3785

128 201.927 · 10−4 9.679 -8679
256 448.517 · 10−4 21.498 -20498
512 1100.987 · 10−4 52.771 -51771

1024 312.11 · 10−3 149.597 -148597

4096-bit

2 351.619 · 10−5 1 0
4 398.869 · 10−5 1.134 -134
8 452.158 · 10−5 1.286 -286

16 628.387 · 10−5 1.787 -787
32 933.943 · 10−5 2.656 -1656
64 158.511 · 10−4 4.508 -3508

128 316.4 · 10−4 8.998 -7998
256 686.339 · 10−4 19.519 -18519
512 1626.459 · 10−4 46.256 -45256

1024 381.623 · 10−3 108.533 -107533

Table 3.2: Running time results for the m-ary method on encryption
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M m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 536.86 · 10−7 1 0
4 526.562 · 10−7 0.981 19
8 583.254 · 10−7 1.086 -86

16 525.786 · 10−7 0.979 21
32 578.762 · 10−7 1.078 -78
64 583.222 · 10−7 1.086 -86

128 579.384 · 10−7 1.079 -79
256 526.22 · 10−7 0.98 20
512 581.448 · 10−7 1.083 -83
1024 585.062 · 10−7 1.09 -90

2048-bit

2 180.585·10−6 1 0
4 176.218·10−6 0.976 24
8 180.103·10−6 0.997 3

16 174.346·10−6 0.965 5
32 178.932·10−6 0.991 9
64 179.244·10−6 0.993 7

128 177.513·10−6 0.983 17
256 173.145·10−6 0.959 41
512 178.23·10−6 0.987 13
1024 178.355·10−6 0.988 12

3072-bit

2 370.649 · 10−6 1 0
4 365.743 · 10−6 0.988 12
8 368.8 · 10−6 0.995 5

16 364.151 · 10−6 0.982 18
32 363.278 · 10−6 0.980 20
64 366.523 · 10−6 0.989 11

128 368.301 · 10−6 0.997 3
256 361.905 · 10−6 0.976 24
512 364.822 · 10−6 0.984 16
1024 361.899 · 10−6 0.976 24

4096-bit

2 578.102 · 10−6 1 0
4 576.265 · 10−6 0.997 3
8 581.866 · 10−6 1.007 -7

16 576.67 · 10−6 0.998 2
32 582.817 · 10−6 1.008 -8
64 580.805 · 10−6 1.005 -5

128 581.132 · 10−6 1.005 -5
256 575.22 · 10−6 0.995 5
512 580.961 · 10−6 1.005 -5
1024 580.991 · 10−6 1.005 -5

Table 3.3: Running time results for the reducing precomputation multiplication on
encryption
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d m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 236.326·10−4 1 0
4 202.442·10−4 0.857 143
8 186.888·10−4 0.791 209

16 175.953·10−4 0.745 255
32 170.882·10−4 0.723 277
64 173.894·10−4 0.736 264

128 194.392·10−4 0.823 177
256 254.873·10−4 1.078 -78
512 513.101·10−4 2.171 -1171

1024 1480.381·10−4 6.264 -5264

2048-bit

2 1737.675·10−4 1 0
4 1561.405·10−4 0.899 101
8 1459.54·10−4 0.84 160

16 1394.405·10−4 0.802 198
32 1353.385·10−4 0.779 221
64 1344.955·10−4 0.774 226

128 1389.105·10−4 0.799 221
256 1560.08·10−4 0.898 102
512 1777.7·10−4 1.023 -23

1024 3012.365·10−4 1.734 -734

3072-bit

2 980.056·10−4 1 0
4 888.437·10−4 0.907 93
8 825.866·10−4 0.843 157

16 789.236·10−4 0.805 195
32 766.399·10−4 0.782 218
64 756.024·10−4 0.771 229

128 775.134·10−4 0.791 209
256 869.077·10−4 0.887 113
512 1233.916·10−4 1.259 -259

1024 2631.372·10−4 2.685 -1685

4096-bit

2 1219.61·10−3 1 0
4 1108.288·10−3 0.909 91
8 1037.402·10−3 0.85 150

16 990.694·10−3 0.812 188
32 962.834·10−3 0.789 211
64 947.358·10−3 0.777 223

128 944.52·10−3 0.774 226
256 977.716·10−3 0.802 198
512 1043.298·10−3 0.855 145

1024 1256.364·10−3 1.03 -30

Table 3.4: Running time results for the m-ary method with power of 2
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d m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 226.949·10−4 1 0
3 262.08·10−4 1.155 -155
9 221.957·10−4 0.978 22

27 246.606·10−4 1.087 -87
81 214.906·10−4 0.947 53

243 318.412·10−4 1.403 -403
729 733.279·10−4 3.231 -2231
2187 4114.18·10−4 18.128 -17128

2048-bit

2 1701.88·10−4 1 0
3 1894.55·10−4 1.113 -113
9 1740.335·10−4 1.023 -23

27 1888.855·10−4 1.11 -110
81 1641.745·10−4 0.965 35

243 2047.815·10−4 1.203 -203
729 2846.615·10−4 1.673 -673
2187 6426.745·10−4 3.776 -2776

3072-bit

2 567.49·10−4 1 0
3 647.525·10−4 1.141 -141
9 591.397·10−4 1.042 -42

27 639.368·10−4 1.127 -127
81 551.055·10−4 0.971 29

243 662.018·10−4 1.167 -167
729 783.013·10−4 1.38 -380
2187 124.67·10−4 2.186 -1186

4096-bit

2 1233.588·10−3 1 0
3 1362.414·10−3 1.104 -104
9 1242.104·10−3 1.006 -6

27 1345.752·10−3 1.091 -91
81 1150.814·10−3 0.933 67

243 1372.678·10−3 1.113 -113
729 1525.964·10−3 1.237 -237
2187 1889.382·10−3 1.532 -532

Table 3.5: Running time results for the m-ary method with power of 3
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d m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 2378.89·10−5 1 0
5 2432.905·10−5 1.023 -23

25 2199.29·10−5 0.925 75
125 2808.32·10−5 1.181 -181
625 6097.895·10−5 2.563 -1563

3125 61453.425·10−5 25.833 -24833

2048-bit

2 1677.08·10−4 1 0
5 1826.765·10−4 1.089 -89

25 1678.405·10−4 1.001 -1
125 1991.035·10−4 1.187 -187
625 2505.675·10−4 1.494 -494

3125 9522.41·10−4 5.678 -4678

3072-bit

2 568.09·10−3 1 0
5 608.182·10−3 1.071 -71

25 556.172·10−3 0.979 21
125 649.71·10−3 1.144 -144
625 696.792·10−3 1.227 -227

3125 1379.51·10−3 2.428 -428

4096-bit

2 1207.38·10−3 1 0
5 1304.268·10−3 1.08 -80

25 1199.3·10−3 0.993 7
125 1395.828·10−3 1.156 -156
625 1409.93·10−3 1.168 -168

3125 2186.78·10−3 1.811 -811

Table 3.6: Running time results for the m-ary method with power of 5
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d m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 228.477·10−4 1 0
7 258.492·10−4 1.314 -314

49 210.491·10−4 0.921 79
343 382.419·10−4 1.674 -674
2401 4885.96·10−4 21.385 -20385

2048-bit

2 1756.64·10−4 1 0
7 1977.85·10−4 1.126 -126

49 1633.87·10−4 0.93 70
343 2218.48·10−4 1.263 -263
2401 6947.235·10−4 3.955 -2955

3072-bit

2 591.948·10−3 1 0
7 657.9·10−3 1.111 -111

49 529.48·10−3 0.894 106
343 676.215·10−3 1.142 -142
2401 1168.957·10−3 1.975 -975

4096-bit

2 1231.184·10−3 1 0
7 1378.762·10−3 1.12 -120

49 1142.234·10−3 0.928 72
343 1415.984·10−3 1.15 -150
2401 1961.828·10−3 1.593 -593

Table 3.7: Running time results for the m-ary method with power of 7
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d m modified m-ary(sec) m-ary(sec) ratio

1024-bit

4 413.613 · 10−5 398.549 · 10−5 1.038
8 372.373 · 10−5 365.119 · 10−5 1.02

16 344.417 · 10−5 342.577 · 10−5 1.005
32 335.073 · 10−5 339.02 · 10−5 0.988
64 332.031 · 10−5 354.089 · 10−5 0.938

128 355.915 · 10−5 452.322 · 10−5 0.787
256 448.127 · 10−5 800.359 · 10−5 0.56
512 798.581 · 10−5 2093.508 · 10−5 0.381
1024 2095.583 · 10−5 7045.082 · 10−5 0.297

2048-bit

4 2994.465 · 10−5 2949.09 · 10−5 1.015
8 2742.63 · 10−5 2643.58 · 10−5 1.037

16 2528.22 · 10−5 2512.58 · 10−5 1.005
32 2450.53 · 10−5 2457.71 · 10−5 0.997
64 2392.185 · 10−5 2443.59 · 10−5 0.979

128 2413.555 · 10−5 2606.845 · 10−5 0.926
256 2589.525 · 10−5 3253.075 · 10−5 0.796
512 3254.01 · 10−5 5712.96 · 10−5 0.57
1024 5715.07 · 10−5 15089.13 · 10−5 0.379

3072-bit

4 882.712 · 10−4 878.968 · 10−4 1.004
8 828.174 · 10−4 828.44 · 10−4 1

16 792.2 · 10−4 792.435 · 10−4 1
32 767.162 · 10−4 768.52 · 10−4 0.998
64 749.582 · 10−4 760.875 · 10−4 0.985

128 747.117 · 10−4 780.142 · 10−4 0.957
256 770.095 · 10−4 873.882 · 10−4 0.881
512 869.764 · 10−4 1245.335 · 10−4 0.698
1024 1242.356 · 10−4 2643.362 · 10−4 0.47

4096-bit

4 1930.378 · 10−4 1920.77 · 10−4 1.005
8 1799.276 · 10−4 1786.576 · 10−4 1.007

16 1713.196 · 10−4 1707.174 · 10−4 1.004
32 1651.606 · 10−4 1651.606 · 10−4 1
64 1611.732 · 10−4 1623.994 · 10−4 0.992

128 1597.662 · 10−4 1641.34 · 10−4 0.973
256 1622.34 · 10−4 1766.892 · 10−4 0.918
512 1750.666 · 10−4 2259.476 · 10−4 0.775
1024 2252.614 · 10−4 3680.358 · 10−4 0.612

Table 3.8: Running time results for comparison over m-ary method & modified m-ary
method
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d m running time(sec) comparison with m=2 saving(per mille sec)

1024-bit

2 469.577 · 10−5 1 0
4 407.02 · 10−5 0.867 133
8 366.944 · 10−5 0.781 219

16 349.659 · 10−5 0.745 255
32 337.849 · 10−5 0.719 281
64 338.63 · 10−5 0.721 279

128 359.487 · 10−5 0.766 234
256 453.992 · 10−5 0.967 33
512 806.647 · 10−5 1.718 -718
1024 2109.778 · 10−5 4.493 -3493

2048-bit

2 3231.83·10−5 1 0
4 2902.71·10−5 0.898 101
8 2620.495·10−5 0.811 189

16 2493.74·10−5 0.772 228
32 2413.795·10−5 0.747 253
64 2373.855·10−5 0.735 265

128 2390.08·10−5 0.74 260
256 2557.545·10−5 0.791 209
512 3215.01·10−5 0.995 5
1024 5661.485·10−5 1.752 -752

3072-bit

2 1039.602·10−4 1 0
4 934.828·10−4 0.899 101
8 870.758·10−4 0.838 162

16 817.888·10−4 0.787 213
32 773.262·10−4 0.744 256
64 760.19·10−4 0.731 269

128 753.17·10−4 0.724 276
256 776.256·10−4 0.747 253
512 875.224·10−4 0.842 158
1024 1259.11·10−4 1.211 -211

4096-bit

2 2137.905·10−4 1 0
4 1945.87·10−4 0.91 90
8 1821.54·10−4 0.852 148

16 1731.055·10−4 0.81 190
32 1682.395·10−4 0.787 213
64 1631.54·10−4 0.763 237

128 1612.495·10−4 0.754 246
256 1640.735·10−4 0.767 233
512 1774.895·10−4 0.83 170
1024 2280.72·10−4 1.067 -67

Table 3.9: Running time results for the modified m-ary method with power of 2

34



CHAPTER 4

CONCLUSION

Asymmetric key cryptosystem has a great significance in modern cryptography espe-
cially in public areas. Firstly, it was defined by Diffie and Hellman in [5]. After that,
with this inspiration RSA was proposed by Rivest, Shamir and Adleman [18]. RSA
was admitted as a very secure system in its contemporary. Nevertheless, it is the slow-
est system according to symmetric key systems. Over the years, recommended key
sizes also became insufficient because of security issues. Therefore, the key sizes had
to be increased and with increasing key the system becomes more slow. To overcome
slow running time in RSA, one of the applicable solution is acceleration of the most
common operation of the algorithm. Hence, fast modular exponentiation methods are
important for RSA.

In this thesis some modular exponentiation methods which are suitable for RSA are
examined. Accordingly obtained experimental results, appropriate choices are rec-
ommended. With developing technology, using memory size until reaching particular
length is negligible to get fast algorithms. Here studied methods are generally based
on using memory to accelerate running time.

The m-ary method does not provide any efficiency when public key is taken as 65537
on encryption. But the reducing precomputation multiplications makes little amend-
ments using small memory over the repeated squaring and multiplication algorithm.

According to comparison with the repeated squaring and multiplication algorithm,
the m-ary method gives more efficient results with a look-up table choosing suitable
m depending on working key sizes on decryption. With this method at least 23%
improvement is provided for every key sizes. The modified m-ary method is a bit faster
than the m-ary method after a particular m value. Obtained improvement is increased
at least 25% for each cases. With using the modified m-ary method, needing memory
space is also decreased to definitely half according to the m-ary method.
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