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ABSTRACT

A SURVEY ON KNOWN ALGORITHMS IN SOLVING GENERALIZATION
BIRTHDAY PROBLEM (K-LIST)

Namaziesfanjani, Mina

M.S., Department of Mathematics

Supervisor : Prof. Dr. Ferruh Özbudak

February 2013, 45 pages

A well known birthday paradox is one the most important problems in cryptographic
applications. Incremental hash functions or digital signatures in public key cryptogra-
phy and low-weight parity check equations of LFSRs in stream ciphers are examples
of such applications which benefit from birthday problem theories to run their attacks.
Wagner introduced and formulated the k-dimensional birthday problem and proposed
an algorithm to solve the problem in O(k.m

1
log k ) . The generalized birthday solutions

used in some applications to break Knapsack based systems or collision finding in hash
functions. The optimized birthday algorithms can solve Knapsack problems of dimen-
sion n which is believed to be NP-hard. Its equivalent problem is Subset Sum Problem
finds the solution over Z/mZ. The main property for the classification of the problem
is density. When density is small enough the problem reduces to shortest lattice vector
problem and has a solution in polynomial time. Assigning a variable to each element
of the lists, decoding them into a matrix and considering each row of the matrix as
an equation lead us to have a multivariate polynomial system of equations and all
solution of this type can be a solution for the k- list problem such as F4, F5, another
strategy called eXtended Linearization (XL) and sl. We discuss the new approaches
and methods proposed to reduce the complexity of the algorithms. For particular cases
in over-determined systems, more equations than variables, regarding to have a single
solutions Wolf and Thomea work to make a gradual decrease in the complexity of F5.
Moreover, his group try to solve the problem by monomials of special degrees and
linear equations for small lists. We observe and compare all suggested methods in this
survey.
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ÖZ

GENEL DOĞUM GÜNÜ PROBLEMİNİ (K-LİSTE) ÇÖZEN BİLİNEN
ALGORİTMALAR ÜZERİNE BİR ARAŞTIRMA

Namaziesfanjani, Mina

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Şubat 2013 , 45 sayfa

Doğum günü paradoksu, kriptografik uygulamalardaki en önemli problemlerdendir.
Doğum günü problemi, artan özet fonksiyonları, açık anahtar kriptografideki e- imza-
ları ve akan şifrelerdeki LFSR’ların az-ağırlıklı pariti kontrol denklemleri gibi sitemlere
atak yapmada kullanılır. Wagner, k-boyutlu doğum günü problemini sunmuş ve for-
müle etmiştir, ayrıca problemi O(k ·m1/ log k) karmaşıklıkta çözen bir algoritma tasar-
lamıþtır. Genel doğum günü çözümleri Knapsack temelli sistemleri kırmada veya özet
fonksiyonlarına çarpıþma bulmada kullanılmıştır. NP- zor olduğuna inanılan n-boyutlu
Knapsack problemi genelleştirilmiş doğum günü algoritmaları ile çözülebilir. Bunun
eş-problemi, Z/mZ kümesinde tanımlanan Altküme Toplam Problemidir. Problemi sı-
nıflandırmadaki temel özellik yoğunluktur. Yoğunluk yeteri kadar küçük olduğunda
problem, en kısa latis problemine dönüşür ve problemin polinom zamanlı çözümü var-
dır. Listenin her elemanýna bir değişken atanmasıyla, bunların matris formunda ay-
rıştırılmasıyla ve matrisin her satırının bir denklem gibi düşünülmesiyle çok-değişkenli
polinom denklem sistemi elde ederiz. Bu çeşit sistemlere bütün çözümler (örneğin:
F4, F5, XL, sl) k-list problemine çözüm olabilir. Bu çalışmada k-list problemine çö-
züm algoritmaların karmaşıklığını azaltmaya yönelik yaklaşımları ve yöntemleri ince-
leyeceğiz. Özellikle değiþken sayısından fazla denklemin bulunduğu sistemlere Wolf
ve Thomea’nın tek çözüm getiren yöntemi F5 algoritmasının karmaşıklığını önemli
ölçüde düşürmüştür. Ayrıca, onların grupları, özel dereceli tek-terimlileri ve küçük lis-
telerin doğrusal denklemlerini kullanarak problemi çözmeye çalışıyor. Bu araştırma
çalışmasşnda bütün önerilen yöntemleri göstereceğiz ve karşılaştıracağız.
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CHAPTER 1

INTRODUCTION

1.1 Birthday Paradox

Imagine there are total number of N people included you in a room. What is the
probability that you have the same birth date with at least one of the other B − 1
people of the room? If we assume that birthdays are uniformly distributed among all
365 days of the year, the above mentioned probability is the so-called birthday paradox
and formulated in the following theorem [13]:

Theorem : Let r1, r2, ..., rn ∈ {1, 2, ..., B} be integers distributed independently and
uniformly,

If n = 1.2×B1/2 then Pr[∃i 6= j : ri = rj ] ≥ 1/2

Proof : (For uniform independent r1, ..., rn)

Pr[∃i 6= j : ri = rj ] = 1− Pr[∀i 6= j : ri = rj ] = 1− (B−1B )(B−2B )...(B−n+1
B )

= 1−
∏n−1
i=1 (1− i/B)

Due to Taylor expansion 1− x ≤ e−x = 1− x+ x2

2 − ... So we have :

1−
∏n−1
i=1 e

− i
B = 1− e−

1
B

∑n−1
i=1 i ≥ 1− e−

n2

2B = 1− e−0.72 ≥ 1/2.

The reason it is called a paradox is because it is very paradoxical that the square
root function grows very slowly. In particular if we try to apply the above theorem
to birth dates, then lets assume that we have a number of people in a room, and
lets assume that their birth dates are independent of each other and are uniform in
their interval one through 365. Then what the Birthday Paradox says is that we need
roughly 1.2 times the square root of 365. Which is something like 23, which says we
need roughly 23 people in a room, and then with probability 1/2, two of them will
actually have the same birth date [13].

Figure 1.1 shows how to graph the behavior of Birthday Paradox. So here we set
B = 106, in other words we are picking random uniform samples in [1, ..., 106]. And
the X axis here, is the number of samples that we are picking, and the Y axis, is the
probability that we get a collision among those N samples. So we see that the proba-
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Figure 1.1: Birthday Paradox Behavior

bility of 1/2 happens around 1.2
√
B. Roughly 12000. And if we look at exactly

√
B,

the probability of a collisions is around 0.4 or 0.41. So we notice that the probability
goes up to 1 extremely fast [13].

1.2 Cryptographic Applications

1.2.1 Birthday Attacks and Hash Functions

Weak and strong collision resistance are hash functions responsibility. we have a hash
value h(x) and can find ω such that h(ω) = h(x) then we can say that the hash function
is broken because we changed weak collision resistance property of the function. If the
hash function generates n-bit output we have to compute 2n hashes before expecting
to find such a ω, the same as brute force. If we want our hash to stay secure it should
be infeasible for adversary to compute 2n hashes. As we discussed above we need 2n/2

hashes in order to find a collision . Nowadays with parallel computing they improve
birthday attacks in hash functions [12].

1.2.2 Digital Signatures

In the next five steps we conduct a birthday attack on digital signature:

2



1. Alice selects an evil message E to send to Bob and ask him to sign but Bob
does not want to sign the message.

2. Also, Alice selects another innocent message I and she is sure that Bob is will-
ing to sign it.

3. Then, Alice generates 2n/2 versions of the innocent messages denoted by Ii witch
differs in a few bits. They are the same as I but as they change in some bits their
hashes also change.

4. Similarly, she does the same for evil message. So, she has 2n/2 versions of E,
they are Ei’s.

5. Alice hashes all Ei’s and Ii’s with expectation of finding a collision h(Ej) = h(Ik).
If Alice has that collision, she sends Ik to Bob to sign the message. He signs and return
Ik and [h(Ik)Bob] to Alice. Since h(Ej) = h(Ik) therefore, [h(Ej)]Bob = [h(Ik)]Bob. So
that, in this way by birthday paradox Alice finds Bob’s signature on evil message Ej
[12].

Furthermore, there are so many attacks in literature on hash functions MD4, MD5
and SHA1. As an illustration Kelsey and Kohno in a attack called Nostradamus at-
tack [14] hired Merkle-Damgard setting to break MD4 or another one is Wang’s method
to attack on MD5 [15].

1.3 Generalized Birthday Problem ( K-List )

K-list problem in word means: choosing xi’s from each given list L1, L2, ..., Lk,
x1 ∈ L1, x ∈ L2, ..., x ∈ Lk, elements drawn uniformly and independently at random
from {0, 1}n, such that x1 ⊕ x2 ⊕ ...⊕ xk = 0 [1].

Dealing with k-list problem mathematically leads us to the following definition:
Definition 1(k-list problem): Let n = kl for two integers k, l ∈ Z+. Denoting
Li = {s(0)i , s

(1)
i , ..., s

(j)
i } be k lists for 0 ≤ i ≤ k − 1 , 0 ≤ j ≤ 2l−1. These elements are

pairwise distinct, i.e. ∀i ∈ {0, 1, ..., k},m, n ∈ {0, ..., n− 1} : s
(m)
i = s

(n)
i ⇔ m = n.

Each s
(j)
i is one element of the list consisting n-bit strings,s(i)j = (x

(i)
j,0, ..., x

(i)
j,n) from

Fn2 drown uniformly and independently at random.
The k-list problem is defined by finding a k-tuple (v(0), ..., v(k−1)) ∈ L0 × ...× Lk−1
such that:

∑k−1
i=0 v

(i) = 0n. (1)

We call (1) the central condition of k-list problem in GF (2). When the list elements
are integers from Z/mZ The problem has another definition and called Subset Sum
problem:

Definition 2(Modular Subset Sum problem): Let a1, a2, ...an and target value t are

3



given from Z/mZ. The goal is to find a subset of ai’s sum to t in Z/mZ, i.e. finding
xi ∈ {0, 1} such that

n∑
i=1

aixi = t mod m. (2)

We call (2) random if n, m and t are fixed parameters but ai’s are drawn uniformly
at random in Z/mZ [35].
A convenient classification was based on density defined below:

Definition 3(Density of MSS): n
log2m

is called density of the modular subset sum
problem instance. The problem falls into sparse range when the density is less than 1
and the other greater densities give us the dense instances of the problem.

Because there were too many algorithms and application that suggest any solution for
different kinds of the problem in this survey I had to be selective and choose some well
known and useful algorithms.

We have general solutions for the problem proposed by Schroeppel-Shamir [9], Wagner
[1], Minder-Sinclair [3], Coron and Joux [18], Augot et, al [5], Bellare et.al [11] and
Flaxman-Przydatek [20].
Dense cases started to be proposed by Chaimovich [19] in 1999, followd by Lyuba-
shevsky (2005) [16] completed by Shallue [35] in 2007.
Sparse cases have density d < 0.654 and decrease the problem to fall into shortest lat-
tice vector problem by Lagarias-Odlyzko [21] in 1985 and for all d < 1/n the problem
solved by polynomial time algorithms using LLL.
All the methods used in PoSSo, polynomial system solving methods, can be used to
solve the k-list problem by considering the problem as a system of polynomial equa-
tions. These methods belonge to Buchberger [31] family to compute the Gröbner bases
of the system such as F4 [25] and F5 [26] algorithms, linearization [33], eXtended Lin-
earization (XL) algorithms [33] and new approaches to decrease the complexity of the
mentioned algorithms to solve the polynomial equation system more efficiently.

1.4 Organization

History and general solutions of the problem is the topic of the second chapter.

In the third chapter of this survey we choose some dense and sparse cases proposed
new algorithms with different time and space complexities to solve the problem.

Fourth chapter is belonged to PoSSo methods .

In the fifth chapter we talk about new approaches for solving the k-list problem as
discussed in non-linear multivariate system of equations in finite fields. In non-binary
fields by modelizing the k-list problem as a set of equations led us to investigates all
polynomial system solving methods.

Last chapter is comparison and conclusion of the survey.
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CHAPTER 2

HISTORY

2.1 First Glance

In 1973, Knuth was the first one used the priority queue in generating pairwise sum
in sorted way for just 2 lists [2].

2.2 Camion and Patarin

In 1991 Paul Camion and Jacques Patarin [8] are first people in the history men-
tioned birthday problem in general for their applications. They were working on hash
functions among a knapsack system introduced in Crypto’89. They hired an algorithm
which worked the same as k-tree algorithm and broke the system in O(232) steps. They
were successful to do a very slight optimization for this complexity and decreased it
to O(230) [8].

2.3 Schroepple and Shamir

In 1981 Schroepple and Shamir [9] combined dynamic programming techniques with
divide - and - conquer algorithm to prove their theorems in solving the problem for
k = 2 and k = 4, named k-table sorted algorithm, a pairwise sum in sorted order, with
less time complexity rather than brute force by the following method:

Definition : Let Ti be the table of k problem/solution with the property of having
O(2n/k) solvable problems in each. By problem P and operator ⊕, the procedure is
based on determining k representatives Pi ∈ Ti s.t :

P = P1 ⊕ P2 ⊕ ...⊕ Pk.

Repeatedly they divide the space into k subspace i.e. sub lists until getting k prob-
lems, each of them should be in size n/k and finish by searching all over the k prob-
lem/solution tables. The 2-table problems discussed by Knuth previously [2]. The
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problem of 4-table is solved in 0(2n/2) time and 0(2n/4) space :
They suggest a 4-table balanced algorithm as follows [9] :
Let store pairs of the problem chosen from T1 and T2 in Q′ and the rest in Q”. In the
second phase they sort T2 into increasing order and T4 into decreasing order and then,
iterate in all Q′ and Q” until one of them became empty. They look for pairs with the
smallest sum P1 ⊕ P2, called them (P1, P2) and the largest sum P3 ⊕ P4, called them
(P3, P4). They define S as the sum of (P1⊕P2)⊕ (P3⊕P4). If this S equals to P the
problem called solvable and they stop here if not, they delete pairs from Q’s.

They decrease the time complexity of the algorithm from brute force O(2n) to O(2n/4)
space and O(2n/2) time for 4- list type of the problem [9].

2.4 Chose, Joux, and Mitton Algorithm

In stream ciphers there is always a linear correlation between the stages inside the
LFSR and it’s nonlinear functions’ output bits. This linearity always exists and should
be as strong as possible because that is the target of cryptanalyses in correlation attacks
[10].
As a result of doing fast correlation attack on stream ciphers, Chose and his colleague
were look for a solution to parity check equations which is the all fast correlation
attacks in common point. On the other word, the linear relations between register
output bits xi. Therefore, They look for all k-weighted parity check equations witch
attacked D target bits of the LFSR. The equations are :

A(x) = xm1 ⊕ xm2 ⊕ ...⊕ xmk−1
⊕
B−1∑
j=0

cjm,ixj

A(x) =
∑L−1

j=0 ajxj , x = [x1, . . . , xL−1] and the values of aj ’s are constant.
A(x) is used just in even cases and for odd cases it is equal to zero. The cm,j are binary
coefficients in parity check and mj ’s are all output bit’s divisions. Their suggested
algorithm was based on match - and - sort algorithm , solved the problem in N2 logN
time for k = 4.
They select k as a parameter for determining the weight of the parity check equations
among all NK

′
combinations, whereas the algorithm suggests to divide the space to

smaller sub-spaces in order to find less restrictive collisions there, sorting and collecting
the result would complete the whole task for the bigger space. They split k among for
integers l1, l2, l3, l4 and solve the equation

l1 + l2 + l3 + l4 = k

and for i = 1, ...4, li = bk/4c or dk/4e.
They calculated the sums of l2 output bits in terms of the L-bit of initial state :

xj1 ⊕ ...⊕ xjl2 =
L−1∑
k=0

ukxk

6



Figure 2.1: The match and sort algorithm in parity check equations finding

Such that u = u0...., uL−1. The algorithms saves all the u entries in U and construct
another table with the same way for sums of l4 output bits, stores them in V . Then,
match the elements from U by sums of l1 and V by l3 output bits. Finding the
partial collision and combining them with already found bits complete the search [10].
The match and sort algorithm in parity check equations finding can be illustrated in
Figure2.1 by chose et.al [10].

Let k′ be the weight of parity check equations then, the complexity of match and sort
algorithm for even cases calculated in O(N dk

′
/2e logN) time and O(N b(k

′
+1)/4c) space.

When k is odd k′ = k − 1 and A(x) represents xi and the algorithm runs D times.
When even cases are issude k = k′ and A(x) = 0. In terms of time complexity it is
more or less the same as square root algorithm but it is very sufficient for memory
complexity.

2.5 Bellare, et al., Algorithm

One of interesting points of view in k-list is what Bellare, et.al., [11] mentioned in their
algorithm. They solve the problem in GF (2n,⊕) in time complexity of O(n3 + kn)
by the following methodology while working on finding collision free hash functions.
Their attack was successful in breaking XHASH with introducing the idea of reducing
the problem to a set of linear equations, and then, applying Gaussian elimination to
peak the attack [11].
The attack is done on a hash random function from {0, 1}l to {0, 1}k.
We have k bit string z, by applying the algorithm we are able to calculate z =
XHASHh(x) where z ∈ {0, 1}k. To mounting the attack they reduced the prob-

7



lem to system of linear equations in (Fn2 ,⊕). By assigning variables and values to the
elements of the equations they had n+k equations in 2n unknowns over the finite field
of size 2. Then they proved a lemma which implied that the probability of existence
of the solution is 1/2. they fixed n = k + 1 and solved the set of the equations by
Gaussian elimination, then they got n+k = 2k+1 equations in 2n = 2k+2 unknowns
which makes the system slightly under - determined [11].

Scientists who worked on solving multivariate quadratic systems (MQ) equations,
has completed the idea used by Bellare. They considered the so-called k-list prob-
lem as a system of equations and variables over finite field, try to introduce algo-
rithms such as Gröbner based algorithms, F4 and F5 [24, 25], or other methods like
eXtended Linearization (XL) strategies [33]. We are going to introduce such systems
in chapter three.

David Wagner was the first one who particularly worked on formally describing the
k- list problem. He had improvement to generalizing his idea for even groups with
operations other than xor [1] but the algorithm failed for small values of k [3].

8



2.6 Wagner’s Algorithm:

The standard technique for classic birthday problem is finding all match elements
between two given lists. Wagner defines a joint operation on [1]. The operation S on T
lists all common elements in both S and T . Therefore, a solution to traditional two
lists birthday problem can be found just by calculating the join L1 on L2 of the two
given lists L1, L2. Join operator has been known as an efficient way in many subjects
in literature such as data base query evaluation. We have merge-join which sorts the
two lists, L1, L2, and finds any matched pairs it detected by scanning via two sorted
lists.
In a hash-join operation, it uses storing one of the lists L1 in hash table, and by
scanning through all elements of the other list L2, checks if it is shown before in
hash table or not. Hash-join table is very efficient in case of having enough memory
available: It requires | L1 | + | L2 | steps and min(| L1 |, | L2 |) storage units [1].

Wagner observed those above operations and came up with the result of solving birth-
day problem with square-root complexity. If the operation is done on n-bit values
and we are free to choose the size of the lists as we desire, the above algorithms will
take O(2n/2) steps of operation. Also, there are techniques for reducing the space
complexity of the mentioned algorithm in particular cases [1].

As an extension of all the above algorithms Wagner has used join operator to solve
4-sum problem. Detection all values x1, x2, x3, x4 from lists L1, ..., L4 such that x1 ⊕
...⊕ x4 = 0 is our main task. It is obvious that if they choose the lists of size at least
2n/4 they will have the solution with high probability. All previous known algorithms
up to Wagner’s time found the solution in at least O(2n/2). But Wagner solved the
4-sum problem in more efficient way by defining an operator named generalized join
operator onl. while lowl(x) defined the least significant l bit of x, so that, L1 on1 L2

agrees in l least significant bits from all pairs in two given lists L1 ×L2. By using the
following operations he suggested a new algorithm for the 4-sum problem. A disad-
vantage of the algorithm is that it just finds the solutions with the property that they
agree with their low l bits just in zero value. Later on they suggest another approach
to eliminate this restriction. I mention the basic observations in the following:
Observation 1: lowl(xi ⊕ xj) = 0⇐⇒ lowl(xi) = lowl(xj).

Observation 2: let Li, Lj be our lists, all pairs like < xi, xj > can easily generate and
satisfy xi ∈ Li, xj ∈ Lj , and by using the join operator onl we have lowl(xi ⊕ xj) = 0.

Observation 3: If x1 ⊕ x2 = x3 ⊕ x4, then x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0.

Observation 4: If lowl(x1 ⊕ x2) = 0 and lowl(x3 ⊕ x4) = 0, then we have lowl(x1 ⊕
x2 ⊕ x3 ⊕ x4) = 0, and the probability of the case equals to 2l

2n .

He extends the list to have 2l elements each. l is the height of the lists and de-
fine later. As we can see in the figure below the algorithm generates pairs from large
list L12 using observation 2 with values x1⊕x2 such that lowl(x1⊕x2) = 0. With the
same way list L34 is generated with values x3 ⊕ x4 while their l least significant bits
xor equals to zero, the algorithm searches to find the matches between L12 and L34.
Observation 3 says that any kind of such matches satisfies x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 and

9



Figure 2.2: Wagner’s Algorithm for k = 4

hence we can extract a solution for 4-sum problem [1]. Figure 2.2 shows the behavior
of the algorithm for k = 4

The algorithm steps can be implemented in O(2n/3) complexity. This is true because
we know that Pr[lowl(x1⊕ x2) = 0] = 1/2l while x1 and x2 are chosen at random and
uniformly so that, by birthday paradox we have :

E[| L12 |] =| L1 | × | L2 | /2l = 22l/2l = 2l.

The same is true for L34. It means we expect the size of 2l for each list. And by ob-
servation 4 we will have a match in pairs of elements from L12 × L34 with probability
2l/2n. By using birthday paradox in second invocation we could find the approximate
number of common elements match between two lists equals to | L12 | × | L34 | /2n−l.
This number equals to 1 when l > n/3. Therefore, by setting l = n/3 at the first steps
of the algorithm we are able to find a non-trivial solution to 4-sum problem [1].
To resolve the disadvantage of the algorithm I mentioned before (It just solves the
problem with the property that the pairs xor just are zero in their least l significant
bits), Wagner suggested to choose a random l-bit value namely α from the set of the
solutions, and try to find pairs (x1, x2) and (x3, x4) such that their low l bits xor to
α. This means we should calculate (L1 on (L2 ⊕ α)) on (L3 on (L4 ⊕ α)).
Moreover, the value 0 in x1 ⊕ x2 ⊕ x3 ⊕ x4⊕ = 0 can be replaced by any constant
value c without loss of generality and increasing the complexity of the algorithm. To
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prove this claim they replace Lk with L∗k = Lk ⊕ c = xk ⊕ c : xk ∈ Lk, therefore, any
solution to x1 ⊕ x2 ⊕ ... ⊕ xk−1 ⊕ x∗k = 0 will be a solution to x1 ⊕ x2 ⊕ ... ⊕ xk = c
and vice versa. then we could imagine c = 0.
Wagner claimed that he could solve the k-sum problem even more faster for larger
values of k while k is a power of two, in illustrated figure he replaced full binary tree
of depth log k. At internal nodes of height h, they used the join operator onlh (where
lh = hn/(1 + log k)), the root is an exception and uses full join operator on. He sug-
gested an algorithm with time and space complexity of O(k.2n/(1 + log k)) whereas he
extended the lists size to be O(2n/(1+log k)). Each internal list’s elements points back
to x′ and x” of the two child lists in forms of Li,...,j , in a way of being x = x

′⊕x”. The
complexity of the algorithm increases slightly by increasing k just in case k becomes
very large the algorithm does not seem very sufficient [1].

Investigating on Wagner’s algorithm on subset sum problem when the two list has
in common elements in their last l bits other than 0. In this case the constructing
L12 from L1 and L2 when the list are in interval {−R2 ,

R
2 ) is after sorting two lists for

b ∈ L1 pick a random c ∈ L2 from interval {−b − Rp
2 ,−b + Rp

2 ) and then the desire
new list L12 is L12 ∪ {b + c}. It outputs the list in at most N elements and at most
one b+ c is enters to the algorithm.

The complexity of the algorithm is O(km1/ log k) [1].
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2.7 Minder and Sinclair Algorithm

Wagner’s algorithm fails when the length of the lists are smaller than 2n/(q+1) [3]. The
algorithm presented in this paper is an interpolation between brute force and Wagner’s
algorithm [3].
Furthermore, They generalized their proposed algorithm to non- binary vectors but
over finite field Fr which means they are looked for solution to λ1x1 + . . .+ λkxk = 0
where λi ∈ F ∗r and xi ∈ Li.

They considered the problem with k = 2q random lists number enter to the prob-
lem while q is the round number of the procedure. Each list contains n-bit vectors,
L1, ..., Lk, each of length m. A necessary condition for having the solution with high
probability in their idea is connected to the size of the list to be grater than 2n/2

q i.e.
the expected number of solutions in this case is at least 1.

In many application we are not allowed to change the values of m, n and q as in
finding a sparse feedback polynomial for a given LFSR. They fixed the value of q while
it calculated the Hamming weight of the polynomial. Increasing the size of the list has
effects on degree of the polynomial have to be determined. In 2009 Minder fixed m,
n and q with the target of finding the answer of the problem as fast as possible with
their special setting [3].

They claim to find the solution for any parameters of k with the property

2n/2
q ≤ m ≤ 2n/(q+1).

When m = 2n/(q+1) it equals to the k-tree algorithm, and at the other hand when
m = 2n/2

q it is the same as brute force algorithm.

The algorithm starts with combining two lists to have a new list, merging L1 and
L2 to peak L′1 in one round. So that in each round it halves the number of the list.
Particularly, the list L′i contains x + y pairs such that x ∈ L2i−1 and y ∈ L2i such
that x + y is zero on the first l1 bits. They select l1 as a parameter for optimization
of the algorithm performance. they eliminate l1 bits in first round. They continue the
same procedure to the second round with merging L′1, . . . , L′2q−1 they come up with
new lists of the form L”

1, . . . L
”
2q−2 . Sequences of l2 bits are eliminating cause to have

vectors are zero in their first l1 + l2 bits. Applying the same idea to the whole lists,
at the end of the q-th round they have one list containing vectors that agree on their
first

∑q
i=1 li bits where each of them is

∑k
i=1 xi and xi ∈ Li. Their target is to find

get sums that are zero in their all n bits, the last list contains that forms of sum lead
to :

q∑
i=1

li ≥ n.

This can be illustrated in binary tree of height q. A list of vectors includes in each list.
Level j of the tree shows the algorithm’s lists after j round. Due to having random
lists as inputs of the algorithm and random variables in internal nodes of the tree they
choose Mj to represent the length of the list at j-th level. by values of m and Li’s the
distribution of Mj can be determined. The total number of the solutions is Mq and
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we discuss about a parameter which is the expected number of founded solutions and
write it as 2c. The goal is satisfying the following inequality for sure :

E[Mq] ≥ 2c.

If we put c = 0 in expectation we will have just a single solution. The probability of
failing the algorithm is connected to making c to get slightly larger. Therefore, the
started point setting changes by contributing the c value in the position to be :

m ≥ 2(n+c)/2
q

and assuming to have the condition :

m ≥ 2(n+c)/(q+1)

and for technical reasons :
c < 2 logm

while Wagner’s algorithm is sufficient for all larger values of m. As they mentioned in
the paper the choice of li fro example increasing that value affects E[Mj ] in contrast
way and decreases it. So that, for optimization they tried to propose a way in how
to choose the initial values such that the whole properties also hold. They reduce the
way of finding li to an integer program. The mail target was finding an optimized li
applied to the 2c expected solution in least possible complexity by given m,n, q and
c. By considering the linear programming relaxation for the integer program they
succeed to prove that the suggested three phases program could find the optimal li
with holding all defined setting as you can see in the following: bi = 2ib0 li =
0, for 1 ≤ i < p;
bp = u lp = 2pb0 − u;
bi = u li = u, for p < i < q;
bq = c lq = 2u− c
where p is the least integer such that

n ≤ (q − p+ 1)2p logm− c,

and u is calculated by
u = n+ c− 2p logm/q − p.

They claim that they algorithm for all values of n, q,m and 2n/2q ≤ m ≤ 2n/(q+1)

works in complexity of O(2q+u
∗(n,m,q)), where u∗(n,m, q) is the optimal value of u.

They generalized the k-list problem to non-binary lists which means finding non-
trivial linear combination of vectors that sum to zero. the formulation is: Let r be
a prime power. We have k = 2q lists L1, . . . , Lk, each of length m, each contains
independent, uniform random vectors from F rn , r is a prime power. They try to find
x1 ∈ L1, ..., xk ∈ Lk and λ1, . . . , λk ∈ F ∗r such that λ1x1 + . . .+ λkxk = 0.

They used the same merging idea over finite fields and find a solution based on linear
algebra which solves the system of the equations in λx = 0 [3].
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2.8 Coron and Joux

A variant version of Wanner’s algorithm [1] is available by what Coron [18] proposed
an attack on provably secure hash functions of Augot et, al. [5] for special parameters
which the Coron’s attack is practical for their mentioned two sets of parameters based
on Wanger’s [1] birthday algorithm.
The hash functions is initialized as follows:
They denoted s as a length of input messages m while s has w blocks of a bits,
s1, . . . , sw, each si has a bits. and r is the length for output message h then Let u = 2a

and produces a random matrix H which divided into w sub-matrices Hi of size r×w.
Now each si should convert into an integer between [1, . . . , u = 2a]. Then they choose
the corresponding column in sub-matrix Hi. To have the output h which is rbit-string
the xored the chosen columns.
To make any attack unpractical Augot et al. set three set of parameters:
1. r = 160, w = 64, u = 256, n = 214 with security level of 262.3.
2. r = 224, w = 96, u = 256, n = 3.213 the security level is 282.3.
3. r = 288, w = 128, u = 64andn = 213.
Coron et, al. attacked the first two set more faster based on the following idea:
The goal is to find the collision in the described hash function i. e. with two messages
m 6= m

′ such that H(m) = H(m
′
).

They selected two columns of per w sub-matrix Hi with u columns such that the
2w columns xor would be zero. With these xor values they generated a list for each
sub-matrix Hi which was roughly u2/2 values xito have:

x1 ⊕ x2 ⊕ ...⊕ xw = 0.

Moreover, they define l as value with 2l = u2/2. they looked among 2l elements with
their l most significant bits equals to zero. There were 22l elements x1 ⊕ x2, x1 ∈ L1

and x2 ∈ L2. Created the same lists with the other L3, L4 in O(2l) time. With the
corresponding tree and applying birthday paradox the collision can be find in O(w.2l)
if:

r ≤ (log2(w) + 1).l

where l = 2log2(u)− 1.
For Generalization they worked with the all 22l elements x1⊕x2 and building the same
tree with depth of 22l−1. The collision would be obtained in O(w.22l) if r ≤ (log2w).l.
They break the first set in time 236 and the second in time 233.
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2.9 Augot,Sendrier and Finiasz [5]

Their algorithm is a following for to attack hash functions like what Coron and Joux
did.
The defined the problem in lists of power 2
Theorem: Let L1, L2, ..., L2a be our 2a lists of r bit-strings and each list has size of
2

r
a+1 . Then the problem x1 ⊕ x2 ⊕ ...⊕ x2a with xi ∈ Li can be solved in O(2a.2

r
a+1 )

time and space.
The idea is as Wagner’s algorithm merging and sorting the lists but in order to extend
the problem to have a general algorithm when the list’s size is not exactly 2

r
a+1 they

solved the problem in two cases.
First case is l < r

a+1 . The procedure is the same as Wagner proposed, zeroing l bits
of the partial sums instead of zeroing 2

r
a+1 bits. The lists size remain constant and at

the end of the procedure they have (a− 1).l bits equal to zero. If the algorithm is not
successful to find a collision chooses another pair to zeroing and starts the procedure
from the beginning. The probability of finding any collision in this method is 2(a+1).l

2a .
The complexity of constructing the two final lists is O(l.2a2l) so, the total complexity
is O(l.2r+a−al) lead to have the lists of size smaller than 2

r
a+1 to hold the complexity.

Secondly dealing with the values of l > r
a+1 . Here they have a precomputation step

to build a new list such that they choose a parameter named α and try to make α
bits equal to zero. This process makes the size of the lists equal to an average 2l−α.
In terms of tackling with the hash functions in this step they had to use two sub-
lists and try to merge them using birthday paradox and finally benefit from Wagner’s
algorithm to zero the remaining r′ = r − α bits. To have an ideal algorithm adapting
with Wagner’s algorithm they must have

l − α =
r
′

a+ 1

. By solving these two equations they have

α =
l(a+ 1)− r

a
r
′

=
a+ 1

a
(r − l).

The cost for recomputing the lists using birthday paradox is O(2a2l/2) and the total

complexity of Wagner’s algorithm here is O(r
′
2a2

r
′

a+1 ).
Solving the equations help us to know that this is only true for l > 2r

a+2 . This means
we are in a step that only could use a+ 1 for the attack.
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CHAPTER 3

DENSE CASE ALGORITHMS

3.1 Lyubashevsky [16]

If we consider the generalized birthday not in binary lists but integers mod t and it is
called subset sum (SS) problem, for a given n integers and a target number t we are
supposed to find a subset of ai’s in a way that the sum equals to t.
In 2004 Lyubashevsky introduced a polynomial time algorithm algorithm for solving
a version of the problem which believed to be in NP-hard, called Random Modular
Subset Sum (RMSS) problem which means the subset ai’s generated in the range of

[0,M ] and the subset sum t is in mod M in time and space complexity of 2
O( nε

logn
)

when the parameter M = 2n
ε .

The problem is defined to pick n random xi ∈ {0, 1} and output

n∑
i=1

xiai(mod M).

They proved a corollary which says for the given list L consist of uniformly distributed
elements in range [0,M) and a target t, there is an algorithm that returns an element
from each list such that their sum equals to t mod M because They did a subtraction
in each list’s element then they convert each integers in lists from interval [0,M) to the
interval [−M

2 ,
M
2 ). this was done simply by subtracting every element in the lists from

every integer greater or equal that M
2 . Now as they used just one element from each

list and totally −t numbers used they applied their theorem which was a modified
version of Wagner’s algorithm. It chose just one element from each list in interval
[−M

2 ,
M
2 ) such that their sum equals to 0 with a good probability. Therefore the sum

of −t numbers in the interval [0,M) equals to t mod M .
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The following algorithm finds completes their proof.
Subset Sum(a1, ..., an, t,M)/HereM = 2n

ε .
(1) Break up the n numbers into 1

2n
1−ε groups each containing 2n

ε numbers.
(2) For group i = 1 to 1/2n1−εdo
(3) List Li =Generate List From Group(aj |aj ∈ groupi},M).
(4) Apply the merge and sort algorithm to L1, ..., L5n1−εt,M .
Generate List From Group ([a1; . . . ; am];M).
(5) L = (), an empty list.

(6) for i = 1 to n22
2nε

log .5n1−ε do:
(7) Generate m random xj ∈ {0, 1}
(8) Add the number

∑m
j=1 ajxj (mod M) to list L.

(9) Return L

The complexity of the algorithm weakened to O(k.m2/ log k) time and space to
preserve the linear independency and uniformity from what Wagner proposed to be
O(k.m1/ log k). By assuming m = 2n

ε
, ε < 1 and k = 1

2n
1−ε the complexity equals to

O(2
2nε

(1−ε) logn ).
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3.2 Shallue [35]

His work inspired by Lyubashevsky [16] to give an improved algorithm solving subset
sum problem in a better time and space complexity.
We recall here Shallue’s subset sum problem definition here with his notations:
Definition(k-set birthday problem:)
We have sets L1, L2, ..., Lk, each set contains αm1/ log k elements from Z/mZ that
are random and uniform, distributed independently. The k-set problem is to find
bi ∈ Li such that

∑k
i=1 bi = 0 mod m. The technical assumptions for the problem is

α > max{1024, k} and logm > 7(logm)(log k).
For large enough randomized problems with large constant densities they use the above
definition and apply the known Wagner algorithm to solve a RMMS problem.
Depending on c and k if we choose m = 2cn/k with k = log k/ log k + 4 in order to
have density greater than k.(1+ 4

log k ) the RMSS problem can be solved in O(m1/ log k).

He changed some parameters of Wagner’s list merging algorithm and reached an algo-
rithm
ListMerge Algorithm:
Input: Lists L1, L2 of integers in interval [−mpλ

2 , mp
λ

2 ) and parameter p < 1
1. Sort two lists
2. For b ∈ L1 find c ∈ L2 in interval [−mpλ+1

2 , mp
λ+1

2 )
3. L12 ∪ b+ c
4. Return L12

Note that by assuming to have |L1| = |L2| = α
p the resources would be used in

O(αp log α
p ).

Now it is time to describe the k-set sum problem of Shallue with assuming t = 0
Input: Lists of size α/p integers in Z/mZ, parameters k < n, p = m−1/ log k

1. treat list elements as in interval [−m
2 ,

m
2 )

2. For level λ = 1 to log k1 do
3. By keeping track of partial sums apply ListMerge algorithm to each pair of the list
4. After level log k1 if we have nonempty list
5. Return (l1, l2, ..., lk)
6. If else Return "No Solution"
This algorithm outputs (l1, l2, ..., lk) such that

∑k
i=1 li = 0 mod m.

As a reason of applying the ListMerge algorithm to the pairs of the list in k-tree method
after log k steps we reach just one list of integers in the interval [−mplog k

2 , mp
log k

2 ) =
[−m

2 ,
m
2 )

The algorithm applied for 2k lists of size at most α/p = αm1/ log k therefore the total
complexity for the problem is O(kα.m1/ log k).

For proving the correctness of the algorithm it is enough to show that there exists
such a c ∈ L from interval [−mpλ

2 , mp
λ

2 ).
The application of the algorithm is to solve RMSS problem.
The idea of algorithm is as follows:
It chooses two parameters α and k, divides all ai’s into k sets and tries to generate
k list of α.m1/ log k random subset sums of that particular partition ai. Last level is
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applying the k-set birthday algorithm to find the solution.
With m = 2n

ε
, ε < 1 and k = 1

2n
1−ε the complexity of the random modular subset

sum algorithm will be equal to O(kα.m1/ log k) = O(2
nε

(1−ε) logn ) time and space.

3.3 Flaxman-Przydatek [20]

In 2005 they proposed a new algorithm which was a completness for Blum’ work on
solving the Subset Sum problem (SSP). The algorithm gets the elements of the lists
from ZM with the inputs aiis and target B. They divides the problem in two sets.
First sets modular are powers of 2 and the other sets have even modular and a com-
bination of two algorithms gives a general solution for the problem in any modular.
l is a parameter set to be log n/2. For any molular M = M̄.M ′ where M̄ = 2m and
M ′ is odd. They use the first case to reduce the problem and solve it with the second
algorithm.
For the first instance of the problem they have tuple (a1, ..., an, B,M) is with M = 2m

and target value B 6= 0. They transfer the information to an equivalent instance with
target value B = 0 and an+1 = B −M . The algorithm for zero target instance of the
problem is
Search among inputs to find the maximum matching number which contains an+1.
Two input ai, aj is matched if their sum ai + aj has l significant bit equals to zero
i.e. (ai + aj) ≡ 0 mod 2l with ais = an+1. Now they have matching size of
s, ((ai1 , aj1), ..., (ais , ajs)) that can generate smaller instance of the problem by tuple
((ai1 , aj1)/2l, ...(ai1 , aj1)/2l, 0, 2m−l. The acceptable solution for the problem must con-
tain the last element. By doing this algorithm recursively even with at most (n+ 1)/2
number of inputs all solution for 2m modular is extracted.
The second case is when M is an odd modular. This time for transforming the in-
formation to other instance they add a value of δ := (−B/2t) where t = dlog2M/le.
Therefore the instance problem constructed by tuple (a

′
1, ..., a

′
n, 0,M) with a′i = ai+δ.

They have to be sure that the odd modular algorithm returns exactly 2t elements by
selecting from the interval [−M−1

2 , M−12 ] and a transformation

a→

{
a if a ≤M − 1/2

a−M otherwise

It finds the maximum matching for their zero target instance of the problem with ai’s
and odd modular.
Combining both algorithms finds the solution for the general modular problem in
O(n3/2) time and complexity whenm = 2O(logn)2), n is the numbers for input integers.
This algorithm is a kind of dynamic algorithm in solving the problem.
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CHAPTER 4

SPARSE CASES ALGORITHMS

It is believed that the general birthday problem falls into sparse instances range when
it has density less than 0.64.With this range Lagarias and Odlyzko [21] proved that
when n goes to infinity almost all subset sum problems reduced shortest lattice vector
problem and when m = Ω(2n

2
) it can be solved by the lattice bases reduction in poly-

nomial time [21].
Lattice of dimention n is a set constructed from all linear combination of integer co-
efficient from b1, ..., bn ∈ Rd, set of linearly independent vectors. Finding the shortest
non-zero lattice vector is the main issue of the problem which has polynomial time
algorithm when n is constant and NP-hard when n is varying[34].

Schnorr extended the Wagner’s generalized birthday algorithm [34] first to a small sum
problem (SSP) when the summation of the elements of the list has small difference
instead of zero and followed in rational numbers to benefit in shortest lattice vector
problem.

Definition(SSP problem):
Let L1, L2, ..., L2t be our 2t lists in rational numbers drown uniformly and indepen-
dently at random in interval [−1

2 ,
1
2 ] ∩ Q. The problem is to find xi ∈ Li such that∑2t

i=1 xi ≤
1
22−m.

4.1 Schnorr

Schnorr first considered the case t = 2 to build the lists for (4,m)-SSP and then extend
the algorithm to a general case (2t,m)-SSP.
Fisrt consider the lists L1, ..., L4. Each list has 4

32m/3 random elements drawn uni-
formly at random from rational numbers. The new list L′i is
L
′
1 := {x1 + x2|, |x1 + x2| ≤ 1

22−m/3}.
L
′
2 := {x3 + x4|, |x3 + x4| ≤ 1

22−m/3}.
L := {x′1 + x

′
2|, |x

′
1 + x

′
2| ≤ 1

22−m.
Applying their mentioned lemma 3 [5] with α = 2−m/3 the average size of the lists L′1
and L′2 is |L′1| ≥ |L1|.|L2|.2−m/3 34 = 4

32m/3.
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And the average list size for L by choosing α = 2−2m/3 is 4
3 .

The Algorithm is based on sorting and searching to build L
′
1, L

′
1 and L. Based on

numerical values for x1 ∈ L1,−x2 ∈ −L2 from the interval [−1
2 ,

1
2 ], they sorted the

two pair and then searches for close elements x1,−x2. The searching process is done
by bucket search algorithm in O(2m/3) steps by dividing the interval [−1

2 ,
1
2 ] into in-

tervals with 1
22−m/3 length and then spread x1,−x2 into these new intervals. The final

procedure is searching for pairs x1,−x2 which fall into the same interval. All of the
above process to solve (4,m)-SSP problem can be done in O(43 .2

m/3) average time and
space.
The complexity for the generalized problem (2t,m)-SSP problem is O(2t 432

m
t+1 ). They

extend the problem from rational numbers to vectors in Qk ∩ [−1
2 ,

1
2 ]k and find the

shortest lattice vector problem for suitable m.

4.2 Blum, Kalai, and wasserman in [7]

In machine learning topics how to learn continent functions from noisy data has a
solution and it is Statistical Query (SQ) model designed by Kearns. The importance
of learning the process of random noise classification algorithms in SQ models are dis-
cussed in provably noise-tolerant learning algorithms. In the representation of random
noise classification the class of parity functions that can not be learned in SQ models
has a polynomial time algorithms. It has applications in shortest lattice vector [38],
and in cryptanalyses [1].
Blum et, al. worked on extracting y in equation y = xA with probability of n < 1/2,
where A is a random k×n{0, 1} and x is a k-bit message, in polynomial time. By brute
force among all 2k messages they found the correct parity function in k = O(logn)
time. They made the algorithm work for k = c log n log log n for some c > 0. Their
algorithm also can be considered as a sub-exponential time algorithm. Their final al-
gorithm needs 2O(n/ logn) samples.
The algorithm depends on the first k = c log n log logn bits of input and the remain-
ing n − k bits equal to zero. With Gaussian elimination they can write their tested
example in sum of k training samples but with their own algorithms they are able to
write as a sum of O(log n) examples included desired bias. By a given set of vectors
the algorithm finding the smallest subset sums to the given target vector the algorithm
time complexity decreases to O(log2 n).
The idea behind the algorithm is for per length of log n log logn they wrote biases
vectors as the sum of O(log n) samples, sum of relatively small number of samples.
With their proved lemma they labeled the samples with Li’s and denoted the samples
by xi’s. x1 . x1 + x2 are their summation vectors mod 2 and l1 + l2 the labels sum
mod2. The lemma says that the correct value of (x1 + ...+ xs).c for labeled examples
with c, (x1, ls), ..., (xs, ls), is (l1 + ... + ls) with high probability. This lemma means
the sum of labels is distinguishable from random for the constant noise. By repeating
the process the yield the correct label which is the first bits of target vector c and the
rest bits with high probability.
For finding the k-length parity function consider we have subspace of {0, 1}ab contains
vectors which their last i bits are zero while in k- parity function problem a denotes
the blocks with b bits long in each (k = ab). The algorithm benefits from labeled
examples from {0, 1}ab and creates i-samples contains the vectors that can be written
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as a sum of 2i, i = 1, ..., a− 1 original sample of size s in O(s) time.
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CHAPTER 5

POLYNOMIAL SYSTEM SOLVING METHODS

Considering the generalized k-list problem as a system of equations all solutions pro-
posed to solve multivariate polynomial equations can be denoted as a solution to our
problem either.
If we have a polynomial system of

f1(x1, ..., xn), ..., fm(x1, ..., xn).

∈ K[x1, ..., xn]

Finding the common zero ∈ Kn is the main question of PoSSo a NP-complete problem.
A particular form of this problem is when we work with quadratic polynomials. It is
called MQ problem and still remains in the NP-complete class.

In 1965 Bruno Buchberger [31] discovered an algorithm in multivariate polynomial
rings F[X] over finite field F to compute a special bases.
The inputs of the Gröbner bases algorithm are finite set of polynomials F ⊆ F[X] and
output a Gröbner bases G ⊆ F[X] in a way that they both generate the same ideal I.
In spite of computing the Gröbner bases was really useful, the computation part was
really inefficient such that it doubled exponentially the degree of the polynomial enters
to the algorithm.

Before we go through the algorithms we need notations and definitions to understand
them better.

Notation:

R is the ring, R[x] = R[x1, x2, ..., xn] is the polynomial ring.
T (x1, x2, ..., xn) or simply T is the set of all terms in these variables.
< is admissible ordering on terms T .

Total degree of a term t = (xα1
1 , xα2

2 , ..., xαnn ) ∈ T is deg(t) =
∑n

i=1 αi.

Degree of polynomial f is
deg(f) = max{deg(t)|t ∈ T (f)}.

Set of monomials are defined as the set
M(f) = {c(α1, ..., αn)xα1

1 , xα2
2 , ..., xαnn |c(α1, ..., αn) 6= 0}.
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The head term HT (f) of f is HT (f) = max(T (f)) the head monomial HM(f) =
max(M(f) and HC(f) = the coefficient of HM(f) and the head coefficient HC(f)
of f .

A critical pair of two polynomials is Pair (fi, fj) := (lcmij , ti, fi, tj , fj) such that
lcm(Pair(fi, fj)) = lcmij = HT (ti, fi) = HT (tj , fj) = lcm(HT (fi), HT (fj))

f reduces to r modulo p by eliminating t means
If f, p ∈ F[X] \ {0} and t ∈ T (f) occur with coefficient c in f . If HT (p)|t, then
r = f − ct

HM(p) .p satisfies t 6∈ T (r), and we say f reduces to r and write

f −→r [t]

. p is the reductor, f the reductee, and r the reductum.

spol(fi, fj) = lcm(LM(f),LM(g))
bLT (f) .f − lcm(LM(f),LM(g))

LT (g) .g

The S-polynomial of g1 and g2 is the polynomial

spol(g1, g2) = HC(g2)u1g1 −HC(g1)u2g2

where uj = lcm(HT (g1), HT (g2))HT (gj) forj = 1, 2.
Degree of regularity [26] of a homogeneous ideal T = 〈p1, ..., pm〉 is

dreg := min{d ≥ 0 : dim({p ∈ T |deg(p) = d}) =

(
n+ d− 1

d

)
}.

Furthermore, G is a Gröbner bases iff has one of the following properties according to
[40]:

1. Every f ∈ 〈G〉 has a unique normal form with respect to →G .
2. For every f ∈ 〈G〉, there is a reduction f →G 0.
3. Every nonzero f ∈ 〈G〉 is reducible modulo G.
4. Every nonzero f ∈ 〈G〉 is top-reducible modulo G.
5. For every s ∈ HT (〈G〉) there exists t ∈ HT (G)witht|s.
6. HT (〈G〉) ⊆ THT (G)
7. The polynomials h ∈ matbbF [X] that are in normal form with respect to →G form
a system of representatives for the partition {f + 〈G〉|f ∈ F [X]} of F [X].

Extracting the solution for multivariate equation system over finite field can be mod-
elized as follows
A solution of the system F = (f1, ..., fm) in Ln is a sequence (a1, ..., am) in Ln such
that f(ai) = 0 for 1 = [i, ...,m].
Where X = x1, ..., xn is a sequence of indeterminate, and f1, ..., fm ∈ F [X], L is the
extension field of F .
It is a very useful application for solving certain type of multivariate equation systems
a so-called MQ problems where the total degree of the polynomial is at most 2.

Now we can describe the Buchbereger algorithm.
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5.1 Buchberger Algorithm

Buchberger Algorithm: [31]
Input: F = f1, ..., fm ∈ F[X] \ 0
Output: a Gröbner basis of < F >

1: n← m
2: gi ← fi for 1 ≤ i ≤ n
3: P ← (gi, gj)|1 ≤ i < j ≤ n
4: while P 6= 0 ; do
5: select some (gi, gj) ∈ P
6: P ← P (gi, gj)
7: s← spol(gi, gj)
8: h← some normal form of s modulo{g1, ..., gn}
9: if h 6= 0 then
10: n← n+ 1
11: gn ← h
12: P ← P [{(gi, gn)|1 ≤ i ≤ n}
13: end if
14: end while
15: return {g1, ..., gn}.

This algorithm returns Gröbner bases of the function F over a finite field. Recall that
P is critical pair of the problem.
The most time consuming part of the algorithm is where polynomial s reduces to a
normal form h. In many examples of theses algorithm most of the time h is zero but
waste a lot of effort.
The Buchberger’s algorithm can have double exponential complexity 22

D where D is
the degree of the
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5.2 F4 Algorithm [24]

There was attempts in history to improve the algorithm discovered by Buchberger.
I choose one of the primitive algorithms described by Faugère [24] to increase the
speed the efficiently computation of the Gröbner bases. He improved the Buchberger
algorithm in polynomial solving methods for solving algebraic systems in various fields
because even very efficient implementations are not able to compute Gröbner bases
for very large problems. First they described the relation between polynomial systems
and matrices in linear algebra then, described their improved algorithm for computing
Gröbner bases.
They represented a polynomial as a matrix and the vectors of a matrix as polynomial
by doing as follows:
LetM be a matrix s×m. Jth element of ith row denoted byMi,j . And TM = [t1...tm]
be an ordered set of terms, let (εi)i=1,...,m be the canonical basis of Rm, They considered
a linear map φ(TM ) : VTM −→ Rm (where VTM is the sub-module of R[x] generated
by TM ) such that φTM (ti) = εi. They denoted the reciprocal function by ψTM . The
vectors of Rn interpret as polynomials by ψTM . Then (M,TM ) is a matrix with such
an interpretation. Now for constructing the set of polynomials from the matrix

Rows(M,TM ) := {ψTM (Row(M, i))|i = 1, ..., s} \ {0}.

While Row(M, i) is an element of Rn is the ith row of M .

Conversely, with list of polynomials l and Tl an ordered set of terms a matrix As×m
can be constructed with s = size(l) and m = size(Tl):

Ai,j := coefficient(l[i], Tl[j]), i = 1, ..., s, j = 1, ...,m.

M =



t1 t2 t2 ...

fi1 ∗ ∗ ∗ ...
fi2 ∗ ∗ ∗ ...
... ... ... ... ...
... ∗ ∗ ∗ ...
... ∗ ∗ ∗ ...
fis ∗ ∗ ∗ ...


If we have new variables such as Y = [Y1, Y2, ..., Ym] and matrix Ms×m then, with a
set of equations of F = Rows(M,Y ) the reduced Gröbner bases of F can be computed
for lexicographical ordering variables Y1 > ... > Ym. They claim to reconstruct the
echelon form of matrix M with these basis.

M =



t1 t2 tk tk+1 ... tm

fj1 1 0 ... 0 ∗ ... ∗
fj2 0 1 ... 0 ∗ ... ∗
... ... ... ... ...
fjl 0 0 ... 1 ∗ ... ∗
fjl+1

0 0 ... 0 0 ... 0
0 0

fjm 0 0 ... 0 0 ... 0


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.
After defining the relation between polynomials and matrices and how to convert them
to each other when it is necessary they formulate the F4 algorithm based on Buch-
berger’s historical algorithm [31] in Gröbner basis.
They had to choose a critical pair as among the list of critical pairs and a redactor
among the list of redactors while reducing the polynomial to adapt themselves with
Buchberger’s criteria [31]. Here is the F4 algorithm exactly with the same levels de-
scribed in [24] with a very simple description and an example to see the algorithm in
real scenario.

Algorithm F4

Input : F a finite subset of R[x]
φ a function List(Pairs) −→ List(Pairs) such that φ(l) 6= 0; if l 6= 0;
Output : a finite subset of R[x]:
G := F ; F̃+

0 := Fandd := 0
P := {Pair(f ; g)|f ; g ∈ Gwithf 6= g}
while P 6= 0, do
d := d+ 1
Pd := φ(P )
P := P/Pd
Ld := Left(Pd) ∪Right(Pd)
d := Reduction(Ld;G)

for h ∈ F̃+
d do

P := P ∪ {Pair(h; g)|g ∈ G}
G := G ∪ {h}
return G

Faugère had a polynomial f and a list of reductor pairs r1, r2, ..., rn. based on these
elements he constructed a matrix A as I described above.
He hired a reduction function inside the algorithm which simply computes the row
echelon form Ã of the matrix A. And finally read off the reduced for of the function
f from Ã [39]. Because the two steps performing in parallel with respect to linear
algebra software, the algorithm is very efficient.

Complexity:
Wolf and Thomea [30] define an upper and lower bound in terms of memory usage
for the algorithm in terms of memory requirement in bits by assuming that they need
dlog qe bit to store one field element.

MemUpperF4(q, n, dreg) = dlog qe
(
n+ dreg − 1

dreg

)2

and the lower bound is computed by

MemlowerF4(q, n, dreg) = dlog qe
(
n+ dreg − 1

dreg

)n(n+1)
2
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However estimating the amount of operation required to perform the algorithm is not
an easy task for generic cases [31] .

Example of F4 : The F4 algorithm is equivalent to polynomial division algorithm to
reduce A. In the following example we can see how F4 performs the same computation.
We will reduce 2X2 − Y by {X − 1, Y + 2} using the lexicographic term order where
Y ≤ X. The steps in the polynomial division algorithm are as follows:

• (2X2 − Y )− 2X(X − 1) = 2X − Y

• (2X − Y )− 2(X − 1) = −Y + 2

• (−Y + 2) + (Y + 2) = 4

The same computation performs by F4 to reduce the below matrix . Columns corre-
spond to monomials and rows correspond to polynomials. Note that the columns are
sorted in descending order to ensure that the first non-zero entry from the left in each
row corresponds to the initial term of the corresponding polynomial.


X2 X Y 1

1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0



First row corresponds to X(X − 1) = X2 −X
Second row corresponds to X − 1
Third row corresponds to Y + 2
Fourth row corresponds to 2X2 − Y

The result is the following matrix. It is the same as polynomial division algorithm in
Gaussian elimination


1 −1 0 0
0 1 0 −1
0 0 1 2
0 0 0 4



Note that the reduced polynomial is on the bottom row corresponds to (0, 0, 0, 4). (X2, X, Y, 1) =
4, the basic way that how F4 works.
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5.3 F5 Algorithm

Faugère followed his own work to improving the F4 algorithm to F5 [25] by using the
ideas of Möller, Mora, and Traversoand. The algorithm avoids extra computation in
calculation of Gröbner bases and speed-up in result.
As mentioned before the more time consuming part of these kind of algorithms is com-
puting zero. Avoiding extra computation during choosing critical pair and reductor
and having powerful criteria led to remove useless critical pair during the algorithm
were challenging questions and can be thought as a motivation behind publishing F5
algorithm in 2002.
Hybrid version of F5 was able to solve many kind of symmetric and asymmetric chal-
lenges [26].
For describing the algorithm we need to get familiar with some definitions:
In a nutshell for solving the system of F[X]-linear equation in finite field modular
polynomials we have a trivial solution helps to detect S-polynomials reducing to zero
called syzygy.
In definitions syzygy is an element s ∈ F[X]m with respect to sequence f1, . . . , fm ∈
F[X] if

∑m
i=0 sifi = 0 i.e. for a pair fi, fj we have a trivial relation fifj − fjfi = 0,

extended to have syzygy of the form πij = fjei− fjej with ek is the k-th bases vector
in F[X]m.

The main part of F5 algorithm is :

global r // array of labeled polynomials global Rules // array of simplification rules
Input: A sequence F = (f1, . . . , fm) of nonzero homogeneous polynomials in F [X]
Output: a Gröbner basis of 〉F 〈

1. m← |F |
2. Rules← (())mj=1

3. r ← ()
4. rm ← (em, HC(fm)−1fm)
5. G← (0)mi=1

6.Gm ← m
7. for i← m− 1, . . . , 1 do
8. Gi ← Algorithm F5(fi, i, G)
9. if (∃k ∈ Gi) poly(rk) = 1 then
10. return {1}
11. end if
12. end for
13. return {poly(rk)|k ∈ G1}.

Simply the algorithm computed the Gröbner bases as follows:
inputs the polynomials fi,
creates S-polynomials from polynomials in 〈F 〉,
divides polynomials in 〈F 〉 by a constant,
subtracts polynomials in 〈F 〉 from others in〈F 〉.
Complexity of the algorithm can be considered to be have the complexity of
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O

(
m.

(
n+ dreg − 1

dreg

)w)
where w, 2 < w ≤ 3 is the exponent of the matrix reduction [37].
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5.4 Linearization Method

Consider the system of polynomial equations of

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

over a field F, fi’s are polynomials in a polynomial ring F[x1, . . . , xn]. Linear combi-
nation of monomials xα1

1 , . . . , xαnn = Xα construct each polynomial. So we have

fi =
∑
α∈N ′

ciαX
α

where ciα are elements of F and N ′ is a subset of multi-indices of Nn. For linearization
we need to construct a new linear system which monomials behaves as new variables
Xα. From new linearized system the matrix AL is obtained by


Xα . . . Xα′

f1 c1α c1
α′

...
...

. . .
...

fm cmα · · · c1
α′


Then reduce the matrix AL to echelon form gives the answer for the original sys-
tem because it computes the basis of vector subspace generated by the polynomials
f1, . . . , fm.
This is a useful technique for the systems that the number of monomial are the same
as the number of linearly independent polynomials [33].

For generic cases with n variables and degree d equations we have
(
n+ d
d

)
distinct

monomilas of degree at most d. In finite fields by using field operations for exam-
ple in GF (2) the number of distinct monomilas of degree at most 2 computed by

N =
∑d

i=0

(
n
d

)
≈ nd . So that the matrix AL has m rows and N columns . This

means to solve a system directly by linearization it should be highly over-defined i.e.
m ≥ N − 1 [33].
The complexity of the method is in order Nw filed operation where w is the expo-
nent of AL matrix reduction.

Example of linearization method
consider the polynomial ring Q[x,y,z] of polynomials in three variables over Q[X] by
[33] Suppose we have the equation system

33



xyz + xz + x+ 2y + z − 3 = 0

2xyz − 4xy + xz + yz − x+ y = 0

xy + xz + yz + y − z − 2 = 0

2xy + y + 7 = 0

2yz + x+ y + z = 0

xyz + x+ 2z − 1 = 0

2xyz − xy − 3yz − 3y = 0.

This system has seven equations and seven non-constant monomials, so it is a candidate
for solution by linearization. We construct the linearization matrix:



xyz xy xz yz x y z 1

1 0 1 0 1 2 1 −3
2 −4 1 1 −1 1 0 0
0 1 1 1 0 1 −1 2
0 2 0 0 0 1 0 7
0 0 0 2 1 1 1 0
1 0 0 0 1 0 2 −1
2 −1 0 −3 0 −3 0 0


Applying row reduction to this matrix gives the matrix



xyz xy xz yz x y z 1

1 0 0 0 0 0 0 6
0 1 0 0 0 0 0 3
0 0 1 0 0 0 0 −6
0 0 0 1 0 0 0 2
0 0 0 0 1 0 0 −3
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 −2



This gives us the solution x = 3, y = −1, z = 2, which is the solution of the original
polynomial equation system.
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5.5 eXtended Linearization

When there are not enough linrearly independent equations the linearization method
fails so that, we need to generate them [33] and the eXtended Linearization had
been invented [26]. Basically in XL algorithm they multiply every polynomial by all
non-zero monomial Xβ up to a certain degree D. The degree D called solving degree
and should be large enough to generate as many equations as monomilas to apply lin-
earization and obtain the solution of the system and called the corresponding degree
D + 2 of the polynomial saturation degree [30].

XL algorithm

Input: Set F = {f1, . . . , fn} ⊂ F [x1, . . . , xn] of polynomials of degree d.
Output: Set S ⊂ F [x1, . . . , xn] of uni-variate linear equations corresponding to the
solution of the system fj = 0.
S := 0;
D := d+ l;
i := 1;
repeat
Generate all products P(β,j) = Xβfj for fj ∈ F and monomials Xβ ∈ variables
x1, . . . , xn of degree at most D := d;

Consider the system consisting of equations P(a,j) = 0 and an order on the monomials
such that the monomials xki are the lowest. Perform Gaussian reduction on the corre-
sponding matrix, that is solve the system by linearization;
if a uni-variate f(xi) is found then
Solve the uni-variate equation to get set of solutions Ai in the algebraic closure of the
field F ;
Take the (unique) ai ∈ Ai contained in the field F ;
Make S := S ∪ {x− ai};
Make P (α, j)(ai) ∈ F [xi+1, . . . , xn], that is substitute xi = ai;
Make i := i+ 1;
else
Make D := D + I;
end if
until i = n+ 1;
return S

The algorithm construct the matrix AL by :



Xα · · · Xα
′

f1 c1α · · · c1
α′

...
...

. . .
...

Xβf1 c1α−β · · · c1
α′−β

...
...

. . .
...

Xβ
′
fm cm

α−β′ · · · cm
α′−β′


And applies the linreaization. Every answer of the extended system gives a solu-
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tion for the linearized system and so that, gives the solution for the original system.

The Complexity of the algorithm for generic random cases has upper and lower
bound regarding to memory consumption [26]. If the algorithm generates m.

MemlowerXL(q, n,D) = dlog qe
(
n+D + 1
D + 2

)n(n+1)
2

bits for saving coefficient matrix and at most

MemupXL(q, n,D) = dlog qe
(
n+D + 1
D + 2

)2

By Thomea and Wolf [30] the XL algorithm is more efficient in computing the solution
of the problem in terms of memory consumption.

There is an example to understand the algorithm performance.
Example of XL method
We consider the equation system over GF (23) given by

x2 + 3xy + 17 = 0 and y2 + 7xy + 22 = 0.

The XL algorithm with D = 4 multiplies the two polynomials by the monomials
{x, y, x2, xy, y2} and the corresponding matrix AXL is



x4 x3y x2y2 xy3 x3 x2y xy2 x2 xy x y4 y3 y2 y 1

0 0 0 0 0 0 0 1 3 0 0 0 0 0 17
0 0 0 0 1 3 0 0 0 17 0 0 0 0 0
0 0 0 0 0 1 3 0 0 0 0 0 0 17 0
1 3 0 0 0 0 0 17 0 0 0 0 0 0 0
0 1 3 0 0 0 0 0 17 0 0 0 0 0 0
0 0 1 3 0 0 0 0 0 0 0 0 17 0 0
0 0 0 0 0 0 0 0 7 0 0 0 1 0 22
0 0 0 0 0 7 1 0 0 22 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0 1 0 22 0
0 7 1 0 0 0 0 22 0 0 0 0 0 0 0
0 0 7 1 0 0 0 0 22 0 0 0 0 0 0
0 0 0 7 0 0 0 0 0 0 1 0 22 0 0



By doing row operations on the matrix we obtain:
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

x4 x3y x2y2 xy3 x3 x2y xy2 x2 xy x y4 y3 y2 y 1

1 0 0 0 0 0 0 0 0 0 0 0 15 0 0
0 1 0 0 0 0 0 0 0 0 0 0 4 0 2
0 0 1 0 0 0 0 0 0 0 0 0 11 0 10
0 0 0 1 0 0 0 0 0 0 0 0 2 0 12
0 0 0 0 1 0 0 0 0 0 0 17 0 2 0
0 0 0 0 0 1 0 0 0 0 0 16 0 1 0
0 0 0 0 0 0 1 0 0 0 0 10 0 13 0
0 0 0 0 0 0 0 1 0 0 0 0 16 0 1
0 0 0 0 0 0 0 0 1 0 0 0 10 0 13
0 0 0 0 0 0 0 0 0 1 0 7 0 20 0
0 0 0 0 0 0 0 0 0 0 1 0 8 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



The penultimate row gives the equation y4+8y2+8 = (y−3)(y−11)(y−12)(y−20) = 0,
which gives {(4, 3), (8, 11), (15, 12), (19, 20)} It seems that among all these algorithms
XL consumes less memory.
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5.6 New Approach

So many efforts were done to speed up the proposed algorithm for solving such a non-
linear equations over finite fields.
There exists family of XL-like algorithms, other versions of XL algorithm to speed
up and improve the efficiency of it. Some important ones like FXL, XFL, MutantXL,
XLF, XL′ , WXL, and XSL, are mentioned in [32].
FXL or fixed extended linearization is based on guessing some variables beforehand.
XLF uses field operations (xq − x) = 0 in Fq, works in inhomogenous case for D gets
greater than q − 2.
MutantXL is useful just for inhomogeneous equations.The number of monomial is
smaller that D + 2. XL follows with D := D + 1 and MutantXL is an step between.

Small Linearization [27] starts with Matrix-F5 (F5 version of XL) and remove all
incremental computation related to Gaussian elimination in Gröbner bases and sub-
stitute the black box algorithm that a function fA(x) provided not need to access the
matrix itself by computing the matrix vector product Ax to reduce the memory usage
of the F5 algorithm whereas speed remains high. There is a new transfer algorithm
which moves the solution of the matrix back to original problem space lead to reduce
the solving degree and work with smaller matrices. Moreover, it is easy to parallelize.
The complexity of the suggested sl algorithm is

O

(( n+D − 1
D

)w)
In terms of memory friendly algorithms there is a comparison in [30]. By the corre-
sponding graph it is obvious that sl algorithm uses very less memory even in caparison
with Hybrid F5.

Hybrid F5 [29] is a mixed algorithm between exhaustive search and Gröbner bases
algorithm. The trivial solution for solving polynomial equation(PoSSo) system which
is NP-hard is searching among all variables n in O(#Kn) time. The idea of Hybrid
approach is fixing k variables and compute the Gröbner bases for #Kk sub-systems.
This choice of k is a trade off which helps to lessen the complexity.
The complexity bound for hybrid approach is :

O

((
m.
( n+ dreg − 1

dreg

))w)
.

Where m is the number of equations and w is the algebraic constant.
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Arnau in his master’s thesis [38] improved the k-list problem solving complexity b
working on special instance of the problem and small range of parameters.
Their system has more equations than variables so that, highly over-determined. They
use a coefficient matrix to represent the polynomial system which has k rows and
columns equal to the number of monomilas. The solution for this system builds a
kernel. They use their own linearization method to extract the solution from from the
constructed kernel. This investigation is done by brute force inside the kernel so, they
have 2rker−1 combination to search. For having the valid solution they enter only one
monomial per list. They use linearization method inside the kernel to reduce the rank
rker and stop when it reduces enough, below a defined upper bound say B.
First they set the degree D = 1 and see if the initial kernel size is below than the
upper bound B. If it is then stop here and return the kernel as an answer. If it does
not have they generate new polynomial to extend the matrix by multiplying a degree
D monomial bu all the polynomials except the zero polynomilas and add these new
polynomials to the system then echelonize the new extended matrix and check again
the rank. After finishing all the monomilas of degree 1 they reduce the degree by 1
and do the procedure recursively.
They do linearization when the cost of using XL is much lower than brute force unless
they use exhaustive search inside the kernel.

The complexity of the suggested algorithm when n and k are close together is n <
k.1+log k

log k where checking the validity of the solution vector is not greater than O(k).
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5.7 In Progress Work

Let L0, ..., Lk−1 be our k-lists including elements in each list defining by s(0)i , s
(1)
i , ..., s

(j)
i

first, second,..., jth element of the list. We have as many s as the number of elements
in each given list. Doing linear algebra we need to track of the information we spread
and the s labels indicate the correct row for our purpose.
By denoting xnm, n-th bit of m-th list, we assign a variable for each bit of the list. So
for i-th list we have bits x0i , ..., x

n
i where n is the number of the corresponding bit in

every element si of the list Li.
We interpret the labels of x and s of the list Li as a matrix B, so that we have k.n
matrices - one for each list, and one for each bit.
We need a set of so-called control equations to be added to the system, these equations
are

x00 + x01 + ...+ x0k−1 = 0

x10 + x11 + ...+ x1k−1 = 0

xn0 + xn1 + ...+ xnk−1 = 0

control equations are all possible conditions of forcing the columns to be equal to zero.
At last, we allocate 1 to the existing bits and the remaining parts fill out with zeros
automatically. 0 means the value of the particular bit is false. Therefore, the difference
between false bits and the bits which does not exist is distinguishable.
For small values of n and k the The algorithm is based on encoding the problem in
truth tables containing s and x labels. Computing the right kernel of each bit with
its corresponding s label, inserting the information into a big matrix and connecting
the small kernels with control equations, the right kernel of the big matrix preserves
the solution for the whole problem beside some parasitic solutions. To eliminate this
parasitic solutions some extra work is required. We will discuss them in section (3).
First of all we build a truth table of s’s and x’s. We use specific way of representing
list’s elements to pick our goal.
The number of variables we get is

k.n+ 2l.k

and the number of equations
n+ k + n.k

As we have more variables than equations parasitic solutions are natural [33].
We have to solve the combined system variables with control equations that give us a
kernel. After echolonizing the kernel we want to reduce the size of the kernel by adding
more equations to have an extended matrix in order to have smaller kernel with the
correct solution inside as previous work done by Arnau but with a small variation.
We know that the rows of the kernel are bases that we can construct all the space with
them. By adding one row of the kernel to the original matrix we obtain smaller kernel
with linear combination of the rows which have the answer inside itself.
Investigating on finding any regularity on adding which linear combination of the kernel
rows to the original problem and how it affects the solution and proofs are in progress.
It seems in case of obtaining reduced kernel size we can reach the solution in less
complexities than the other ones.
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CHAPTER 6

CONCLUSION

We investigate some of the algorithm proposed to solve the generalized birthday prob-
lem (k-list) and its equivalent problems in integer domains like subset sum problems
and shortest lattice vector problem. We discussed the general solution to the problem
and their complexities. As the problem has NP-complete complexity proposing the
solution for the total system seems unlikely so, each algorithm suggest the solution by
bounding parameters or the size of the list due to requirements of the applications.
The comparison between polynomial solving methods we discussed in terms of memory
complexity is in Table 6.1. It concludes that the eXtended Lireaization uses very less
memory than the other ones and among new approaches sl algorithm is very memory
friendly algorithm in Table 6.1.

Table6.1: Polynomial System Solving Algorithms Complexity

PoSSo Algorithm complexity

F4 dlog qe
(
n+ dreg − 1

dreg

)2

F5 O

(
m.

(
n+ dreg − 1

dreg

)2
)

XL algorithm dlog qe
(
n+D + 1
D + 2

)2

Hybrid F5 O

((
m.
( n+ dreg − 1

dreg

))2)
Small linearization O

(( n+D − 1
D

)2)

I set the algebraic constant w = 2 to make a comparison between the mentioned
algorithms. The XL algorithm needs less memory than upper bound for F4 algorithm.
Among new methods sl algorithm is the most memory friendly so that, the fastest
algorithm. In short, we can say

Small Linearization ≥ XL algorithm ≥ HYbrid F5 ≥ F5 Algorithm ≥ F4.

Due to Table 6.2 among general algorithms proposed to solve the k-list problem for
large lists Wagner’s algorithm stays efficient and for smaller list sizes Minder et al.
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Table6.2: Complexity of General, Dense and Sparse algorithms for solving k-list

General Algorithm k Time Space List size
Schroeppel and 4 O(2n/2) O(2n/4)
Shamir
Minder-Sinclair 2q O(2q+u) O(2q+u) ≤ 2u

Coron and Joux 2a O(2a.2n/a+1) O(2a.2n/a+1) 2n/a+ 1

Augot 2q O(r.2q.2
r
a+1 ) - 2

r
a+1

Bellare k O(n3 + kn) O(n3 + kn) -
Wagner 2n O(k.m1/ log k) O(k.m1/ log k) O(2n/(1 + log k))

Sparse cases algorithm
Blum c log n log logn O(log2 n) O(log2 n)

Schnorre 2t O(2t 432
m
t+1 ) O(2t 432

m
t+1 ) -

Dense case algorithm modular complexity

Lyubashevsky m = 2n
ε

O(2
2nε

(1−ε) logn ) O(2
2nε

(1−ε) logn )

Shallue m = 2n
ε

O(2
nε

(1−ε) logn ) O(2
nε

(1−ε) logn ) m(logm)

Flaxman m = 2O((logn)2) O(n3/2)

algorithm runs in less time complexity. Blum algorihm is polynomial time for sparse
cases and Shallue’s solution runs in less time complexity for dense cases algorithms.
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