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ABSTRACT

MULTIGRID METHODS FOR OPTIMAL CONTROL PROBLEMS GOVERNED
BY CONVECTION-DIFFUSION EQUATIONS

Arslantaş, Özgün Murat

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Dr. Hamdullah Yücel

June 2015, 46 pages

Linear-quadratic optimal control problems governed by partial differential equations
proved themselves important through their use in many real life applications. In order
to solve the large scale linear system of equations that results from optimality con-
ditions of the optimization problem, efficient solvers are required. For this purpose,
multigrid methods, with an ordering technique to deal with the dominating convection,
can be good candidates. This thesis investigates an application of the multigrid meth-
ods for the linear-quadratic optimal control problems governed by convection-diffusion
equation, discretized by a discontinuous Galerkin method, namely, symmetric interior
penalty Galerkin (SIPG) method. Further, an ordering technique called Downwind
Numbering is proposed to reduce the number of iteration in multigrid approach.

Keywords : Optimal control problems, discontinuous Galerkin method, convection-
diffusion equations, multigrid methods, ordering
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ÖZ

KISITLARI KONVEKSİYON-DİFÜZYON EŞİTLİKLERİ OLAN ENİYİLEMELİ
KONTROL PROBLEMLERİ İÇİN ÇOKLU AĞ YÖNTEMLERİ

Arslantaş, Özgün Murat

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Dr. Hamdullah Yücel

Haziran 2015, 46 sayfa

Kısıtları kısmi türevli diferansiyel denklemlerden oluşan ikinci dereceden doğrusal
eniyilemeli kontrol problemleri, kendi önemlerini gerçek hayat uygulamalarındaki kul-
lanımları yoluyla ispatladılar. Optimizasyon problemininin eniyileme koşullarından
elde edilen büyük ölçekli lineer eşitlikler sistemini çözerken verimli çözüm yöntemlerinin
kullanılması gerekmektedir. Bu amaç için, ağır basan konveksiyon teriminin üstesinden
gelmesi amacıyla bir yeniden sıralama tekniği ile kullanılan çoklu ağ yöntemleri, iyi
bir aday olabilirler. Bu tez, çoklu ağ yöntemlerinin, bir süreksiz Galerkin yöntemi olan
simetrik içten cezalandırma Galerkin yöntemi ile ayrıklaştırılan kısıtları kısmi türevli
diferansiyel denklemlerden oluşan ikinci dereceden doğrusal eniyilemeli kontrol prob-
lemlerine bir uygulamasını incelemektedir. İlaveten, bir sıralama tekniği olan Akış
yönü Sıralaması yöntemini, çoklu ağ yaklaşımının tekrarlama sayısını düşürmesi için
öneriyoruz.

Anahtar Kelimeler : Eniyilemeli kontrol problemleri, süreksiz Galerkin yöntemi, konveksiyon-
difüzyon eşitlikleri, çoklu ağ yöntemi, sıralama
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CHAPTER 1

INTRODUCTION

In recent years, linear-quadratic optimal control problems proved themselves impor-
tant through their use in many real life applications such as the optimal control of
systems [39], the shape optimization of technological devices [58] and flow control
problems [30, 37, 62]. In order to solve the large scale linear system of equations that
results from the optimality conditions of such kind of problems, it is preferable to use
efficient iterative methods instead of direct methods. For this purpose, we consider an
application of the multigrid methods to the linear-quadratic optimal control problems
of the form

minimize J(y, u) :=
1

2

∫
Ω

(y(x)− yd(x))2 dx+
ω

2

∫
Ω

u(x)2 dx (1.1)

subject to

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω,

y(x) = gD(x), x ∈ ΓD,

ε∇y(x) · n(x) = gN(x), x ∈ ΓN .

(1.2)

Simple iterative methods such as Gauss-Seidel method and Jacobi method, fail at
smoothing the low-frequency error components of the approximation even though they
are are known to be effective for smoothing the high-frequency error components in
the approximation. The elegant idea of multigrid methods is to overcome this obstacle
by introducing a sequence of meshes [12, 17, 19, 22, 23, 24, 38, 41, 44, 51, 59, 74, 76].
By doing so, multigrid methods aim to effectively smooth the high-frequency compo-
nents of the approximation on a mesh that correspond to low-frequency components
of the approximation on a coarser mesh. Remaining main ingredients of a multigrid
method are the smoothing operators that are used to remove the high frequency com-
ponents of the error on the mesh, and the transfer operators that provide the connection
between coarse and fine meshes.

The numerical solution of the convection-diffusion PDEs is particularly challenging
and requires special numerical techniques, which take into account the structure of the
convection; for which purpose there mainly exist two approaches. The first approach
mainly considers modifying the transfer operators according to the convection [15],

1



whereas the second approach, which we also focus on in this thesis, considers modify-
ing the smoothing operators, e.g. Gauss-Seidel or Jacobi, according to the convection.
The modification mainly depends on the ordering of the vertices or elements in the
mesh. However, for PDEs with a general convection term it is difficult to determine
appropriate smoothers and vertex orderings [11, 40, 42, 52, 53, 60, 68].

In the optimal control context multigrid solvers are applied successfully to solve el-
liptic optimal control problems in [7, 14, 15, 16, 18, 19, 36, 49, 72], and parabolic
optimal control problems in [12]. One reason why the solution of optimization prob-
lems governed by convection-diffusion PDEs provides additional challenges is that the
optimality system involves two PDEs, the state equation with convection β and the so-
called adjoint equation with convection −β. This leads to different error propagation
properties in the optimization context compared to what one may expect from studying
the solution of a single convection-diffusion PDE. Further, when node ordering strate-
gies are applied to the state PDE, the node ordering of the adjoint PDE would be the
reverse of the state PDE.

In this thesis, we investigate the analysis and application of multigrid methods for
linear-quadratic convection dominated optimal control problems using a discontinuous
Galerkin (DG) method. Especially, we choose a symmetric interior penalty Galerkin
(SIPG) method due to the its symmetric property [46, 69]. For convection problems,
DG methods produce stable discretizations without the need for stabilization strategies,
they work on non-conforming meshes, and they allow different orders of approxima-
tion to be used on each element in a very straightforward manner. These are some of
the features that motivate us to use DG methods for the numerical solution of opti-
mization problems governed by convection dominated PDEs. DG methods have been
successfully applied to a variety of PDEs, in particular convection-diffusion PDEs in
[5, 9, 38, 48], and to optimal control problems governed by convection-diffusion PDEs
in [2, 75, 80, 82, 83, 84, 85]. Further, multigrid methods using DG discretizations have
been applied for single elliptic equations in [38, 61, 65, 77] and for Navier-Stokes
equations in [50].

The rest of the thesis is organized as follows: In Chapter 2 we introduce discontinuous
Galerkin methods, especially the SIPG method, for the convection-diffusion equations.
Multigrid algorithm, in terms of the general context, and then transfer operators and
smoothing techniques are described in Chapter 3. In addition, an ordering technique
called Downwind Numbering algorithm is given to handle the difficulty of the con-
vection term. Further, some numerical results are demonstrated for single convection-
diffusion PDEs. In Chapter 4, we solve the optimal control problem governed by
convection-diffusion PDE, discretized by the SIPG method by applying multigrid algo-
rithm, and then give some numerical results. Throughout this thesis, numerical results
are obtained using the software MATLABr.
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CHAPTER 2

DISCONTINUOUS GALERKIN METHODS

Discontinuous Galerkin (DG) methods were first introduced in 1973 by Reed and Hill
[66], when they used a method to solve first-order hyperbolic problems. Later on, to-
wards the end of seventies, Wheeler [79] and Douglas & Dupont [35] used DG methods
for elliptic and parabolic problems. As the method proved itself efficient and began to
be used widely, works using DG have multiplied; among the works on DG methods,
Arnold, Brezzi, Cockburn & Marini [4], Bassi & Rebay [8], Cockburn & Shu [28]
and Peraire & Persson [63] can be seen as the cornerstones for their contributions in
their respective areas of study. Up to the present day, various DG methods have been
introduced and used for the elliptic problems [6, 25, 70] and for convection-diffusion
problems [5, 9, 38, 48].

As the DG method was introduced to the literature, numerical methods such as the
finite difference method (FDM), the finite volume method (FVM) and the finite ele-
ment method (FEM) were being used to find approximate solutions to the boundary
value problems for partial differential equations (PDEs). Having advantages on their
own, each one of these methods had some drawbacks also. The FDM, which is the
historically oldest method, excels for its simplicity, i.e., the discretization of general
problems and operators is mostly intuitive, leading to efficient schemes. Additionally,
when needed, time stepping methods can be chosen freely via the flexibility that comes
from the explicit semi-discrete form that the FDM yields. However, the drawback of
the FDM reveals when faced with complex geometries, that is, the method cannot cope
with the local order and grid size changes while reflecting these local features to the
general solution. The method that overcomes this obstacles is the FVM. The scheme
yielded by the FVM has no conditions about the grid structure as it is purely local.
This property allows the use of elements with different sizes in a grid. Even though
the use of elements with different sizes is allowed, a grid structure is required for high-
dimensional problems; negating the superiority of the FVM over the FDM by means of
the geometric flexibility. On general unstructured grids, the FVM fails to reach high-
order accuracy, which is its biggest drawback. The method that shines for its ability
to put together the desired properties of both the FDM and the FVM is the FEM. The
FEM not only allows the use of elements with varying sizes, but also has the relatively
simple extension for higher-order approximations. In particular, the FEM possesses
the property known as the hp-adaptivity [32, 33], that is the allowance of different
orders of approximations in each element, that results to changes in size and order
locally. However, the drawbacks for the FEM are basis functions being global and im-
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plicit structure of the semi-discrete scheme. Shortly, a method rises on the point where
another one fails, but there is no method to overcome all the drawbacks at once. As
we have already seen, the geometric flexibility is achieved through the use of element-
based methods. Adding to this information we must look for a method in which the
high-order accuracy is obtained through the local elements, as in the FEM, where the
basis functions are defined locally, instead of globally, as in the FVM. DG method is
the elegant combination of the FEM and the FVM, that offers the desired properties of
every method mentioned above. The price that has to be paid for using the DG method
reveals itself as the increase in the total degrees of freedom. However, the system re-
sulting from the DG method is generally more sparse than the system resulting from
the FEM, albeit being larger, that would potentially lead to a faster solution procedure
when tackled in a smart way. In Table 2.1, we summarize the properties that we have
mentioned so far. It reflects the drawbacks of the methods, however, one can overcome
these drawbacks in different ways.

Table 2.1: The summary of properties of mostly used methods to find approximate
solutions to the boundary value problems. X and × stand for the success and the
drawbacks of the methods, respectively.

Complex High-order accuracy Explicit semi-
geometries and hp-adaptivity discrete form

FDM × X X
FVM X × X
FEM X X ×
DG X X X

In literature there exists various DG methods [6, 8, 9, 25, 28, 35, 63]. Among these
methods, local discontinuous Galerkin (LDG), compact discontinuous Galerkin (CDG)
and interior penalty Galerkin (IPG) methods, which are completely consistent and sta-
ble, converge with optimal order with respect to the L2 and H1 norms. On the other
hand, the inconsistent pure penalty methods, i.e., Babuška-Zlámal [6], Brezzi et al.
[25], fail to achieve the optimal convergence property with respect to the L2 norm.
The method of Baumann-Oden (k ≥ 2) [9], where k is the order of polynomial ap-
proximation, and its stabilized form, nonsymmetric interior penalty Galerkin (NIPG)
[70], while lacking adjoint consistency, stand between the aforementioned two classes
of methods as they have a suboptimal convergence rate. The cure for the suboptimal
rate of convergence of the NIPG is to use a superpenalization approach [69]. However
the drawback of using superpenalization approach reveals itself as the increase in the
condition number of the stiffness matrix [27]. Table 2.2 summarizes the results regard-
ing the consistency, adjoint consistency, stability and rate of convergence inH1 and L2

norms, for various DG methods.

In this chapter we explain how to discretize an elliptic problem using one of the
IPG methods; the symmetric interior penalty Galerkin (SIPG) method, introduced by
Arnold [3] and Wheeler [79], then we explain how to discretize convection part of a
convection-diffusion problem using the upwind discretization method [54, 66].
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Table 2.2: The summary of properties of various DG methods, where k is the order of
polynomial approximation. X and × stand for the success and the drawbacks of the
methods, respectively.

Adjoint
Method Consistency Consistency Stability H1 L2

Brezzi et al. [25] X X X hk hk+1

LDG [28] X X X hk hk+1

CDG [63] X X X hk hk+1

IPG [35] X X X hk hk+1

Bassi et al. [8] X X X hk hk+1

NIPG [70] X × X hk hk

Babuška-Zlámal [6] × × X hk hk+1

Baumann-Oden (k = 1) [9] X × × × ×
Baumann-Oden (k ≥ 2) [9] X × × hk hk

Bassi-Rebay [8] X X × [hk] [hk+1]

2.1 Preliminaries

We first present some definitions which are required to construct DG methods in the
rest of the thesis.

In this thesis, we denote a bounded polygonal domain in Rd by Ω. For 1 ≤ p <∞, the
spaces Lp(Ω) that denotes the p-integrable functions are defined as

Lp(Ω) = {v measurable : ‖v‖2
Lp(Ω) <∞},

where || · ||Lp(Ω) is defined as

Lp(Ω) =

(∫
Ω

|v(x)|p dx
)1/p

, 1 ≤ p <∞,

L∞(Ω) = ess sup{|v(x)| : x ∈ Ω}.

The space L2(Ω), which is the mainly considered space throughout this thesis, is a
Hilbert space with respect to the inner product and the norm that are defined as

(u, v)Ω =

∫
Ω

u(x)v(x) dx, and ||v||L2(Ω) = (v, v)
1/2
Ω ,

respectively.

Definition 2.1. For a continuous function v defined on Rd, the support of v is the
closure of the set of points at which the function is not equal to zero. v is said to have
compact support in the domain Ω, if the support of v is bounded and included in the
interior of Ω.
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Let D(Ω) := {v ∈ C∞ : v has compact support in Ω}. Then for any multi-index
α = (α1, . . . , αd) ∈ Nd, where |α| =

∑d
i=1 αi, the distributional derivative Dαv is

given as

Dαv(ψ) = (−1)|α|
∫

Ω

v(x)
∂αψ

∂xα1
1 , . . . , ∂x

αd
d

, ∀ψ ∈ D(Ω).

Then, the Sobolev space W (k,p) is

W (k,p)(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀ 0 ≤ |α| ≤ k}.

Our interest here focuses on the Sobolev space defined as Hs(Ω) := W (s,2)(Ω), for
s ∈ Z. Then, the Sobolev norm ||·||Hs(Ω) and the Sobolev seminorm |·|Hs(Ω) associated
with the Sobolev space Hs(Ω) are given as

||v||Hs(Ω) =

 ∑
0≤|α|≤s

‖Dαv‖2
L2(Ω)

1/2

, |v|Hs(Ω) =

∑
|α|=s

‖Dαv‖2
L2(Ω)

1/2

.

However, the DG methods also make use of the space Hs(Ω) for s ∈ R, called the
broken Sobolev space, which depend on the partition of the domain Ω. Let Ω be
divided into triangular elements T with the intersection of any two elements is either
empty, a vertex or an edge, and denote this division into elements T by Th. Then, the
broken Sobolev space for s ∈ R is defined as

Hs(Th) = {v ∈ L2(Ω) : v|T ∈ Hs(T ), ∀T ∈ Th}

The broken Sobolev norm || · ||Hs(Th) and the broken gradient seminorm | · |H0(Th)

associated with the broken Sobolev space Hs(Th) are also given as

||v||Hs(Th) =

(∑
T∈Th

||v||2Hs(T )

)1/2

, |v|H0(Th) =

(∑
T∈Th

||∇v||2L2(T )

)1/2

.

2.2 Symmetric Interior Penalty Galerkin (SIPG) Method for Convection-Diffusion
Equations

We here consider the following convection-diffusion-reaction problem:

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f(x), x ∈ Ω,

y(x) = gD(x), x ∈ ΓD,

ε∇y(x) · n(x) = gN(x), x ∈ ΓN ,

(2.1)

where

f ∈ L2(Ω), gD ∈ H3/2(ΓD), gN ∈ H1/2(ΓN), 0 < ε, β(x) ∈ W 1,∞(Ω)2, r ∈ L∞(Ω),
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with the normal vector n to the boundary. Furthermore, for the well-posedness of the
problem (2.1), we need the following coercivity condition:

r − 1

2
∇ · β(x) ≥ r0 ≥ 0. (2.2)

We now begin with the classical weak formulation of the model problem (2.1): find
y ∈ Y such that∫

Ω

(ε∇y · ∇v + β · ∇yv) dx =

∫
Ω

fv dx+

∫
ΓN

gNv ds, ∀v ∈ V, (2.3)

where the solution space Y and the test function space V are defined as

Y = {y ∈ H1(Ω) : y = gD on ΓD},
V = {v ∈ H1(Ω) : v = 0 on ΓD},

(2.4)

respectively.

Let {Th}h be a family of conforming triangulation of the polygonal domain Ω. Each
mesh Th consists of triangular elements T1,...,k ∈ Th such that Ω =

⋃k
i=1 Ti, and the

intersection of two distinct triangles is either empty or consists of two nodes and the
edge connecting these nodes. Let Eh := E0

h ∪ EDh ∪ ENh and E ih ∩ E
j
h = ∅, where E0

h, EDh
and ENh are the interior edges, Dirichlet boundary edges and Neumann boundary edges,
respectively. The diameter of an element T and the length of an edge E are denoted
by hT and hE , respectively. Furthermore, the mesh size h of the triangulation Th is
defined by:

h = max
T∈Th

hT .

The discrete solution space Yh and the discrete test function space Vh are defined as

Vh = Yh = {v ∈ L2(Ω) : v|T ∈ Pk(T ),∀T ∈ Th}, (2.5)

where, for any T ∈ Th, the set Pk(T ) denotes the set of polynomials of degree at most
k on T . Note that the space Yh of discrete solutions and the space Vh of test functions
are chosen to be identical due to the weak treatment of the boundary conditions in DG
framework.

As the functions in Vh are not necessarily continuous, we have two different traces for
two adjacent triangles which share an interior edge. Let Ti and Tj ∈ Th be two adjacent
triangles sharing e ∈ E0

h , see Figure 2.1, vi and vj denote the traces of a scalar function
v on Ti and on Tj , respectively. Then, the jump and average values of v on the edge e
are

[v] = vine − vjne,

{v} =
1

2
(vi + vj),

respectively, where ne is the unit normal vector to the edge e oriented from Ti to Tj .
Similarly, let wi and wj denote the traces of a vector valued function w on Ti and on
Tj , respectively. Then, the jump and average values of w on the edge e are given by

[w] = wi · ne − wj · ne,

{w} =
1

2
(wi + wj),
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respectively. Note that on e ∈ E0, the jump [v] of the scalar function v is a vector which
is parallel to the normal vector of e, and the jump [w] of the vector valued function w
is a scalar value.

For any e ∈ Ti ∩ ∂Ω, we also define

[v] = vin,
{v} = vi,

and
[w] = wi · n,
{w} = wi,

where n is the unit outward normal vector to the boundary of e.

�
�
�
�

@
@
@
@

@
@

@
@

�
�

�
�

Ti

Tj

e

-
ne

�
�
�
�

@
@
@
@

Ti

∂Ω

e

-
n

Figure 2.1: Two adjacent elements sharing an edge (left); an element with an edge on
the boundary of domain (right).

We will now present the derivation of the symmetric discontinuous interior penalty
Galerkin (SIPG) method for the diffusion part of the problem (2.1). Let the following
elliptic problem be given by

−ε∆y = f in Ω,

y = gD on ΓD,

∇y · n = gN on ΓN .

(2.6)

Let us multiply (2.6) by a test function v ∈ Vh and split the integral for each triangle
in T .

−
∑
T∈Th

∫
T

ε∆yv dx =
∑
T∈Th

∫
T

fv dx.

An application of the divergence theorem on every element integral yields∑
T∈Th

∫
T

ε∇y · ∇v dx−
∑
T∈Th

∫
∂T

ε(∇y · n)v ds =
∑
T∈Th

∫
T

fv dx+
∑
e∈ENh

∫
e

gNv ds.

Using the definition of the jump operator and assuming that v ∈ Vh are discontinuous
on the interior edges, we obtain∑

T∈Th

∫
T

ε∇y · ∇v dx−
∑

e∈E0h∪E
D
h

∫
e

[εv∇y] ds =
∑
T∈Th

∫
T

fv dx+
∑
e∈ENh

∫
e

gNv ds.
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As y is assumed to be smooth enough so that ∇y is continuous, we get [∇y] = 0.
Combining this with the fact that [v∇y] = {∇y} · [v] + [∇y] · {v}, we derive∑
T∈Th

∫
T

ε∇y · ∇v dx−
∑

e∈E0h∪E
D
h

∫
e

{ε∇y} · [v] ds =
∑
T∈Th

∫
T

fv dx+
∑
e∈ENh

∫
e

gNv ds.

Since y is continuous on the interior edges, i.e., [y] = 0, we can manipulate the equa-
tion by adding integrals involving [y], as a multiplier, as shown below:∑

T∈Th

∫
T

ε∇y · ∇v dx−
∑

e∈E0h∪E
D
h

∫
e

{ε∇y} · [v] ds−
∑

e∈E0h∪E
D
h

∫
e

{ε∇v} · [y] ds

+
∑

e∈E0h∪E
D
h

σε

he

∫
e

[y] · [v] ds =
∑
T∈Th

∫
T

fv dx+
∑
e∈EDh

∫
e

gD(
σε

he
v −∇v · n) ds

+
∑
e∈ENh

∫
e

gNv ds,

which is called the SIPG formulation of the problem (2.6), where σ is the sufficiently
large nonnegative penalty parameter that guarantees coercivity. The choice of σ affects
the jumps on interior edges, i.e., larger σ values yield to a smaller jump value, that
would eventually have an effect on the DG approximation of the solution. If σ goes
to infinity, then the jump values goes to zero, implying that the discontinuities on the
interior edges of numerical DG approximation start to diminish and the approximation
would converge to the continuous Galerkin approximation [26].

Let n denote the unit outward normal vector to ∂Ω. The inflow boundary edges Γ− and
the outflow boundary edges Γ+ of ∂Ω are defined as

Γ− := {x ∈ ∂Ω : β(x) · n(x) < 0}, and Γ+ := {x ∈ ∂Ω : β(x) · n(x) ≥ 0}.

Similarly, let nT denote the unit normal vector on the boundary ∂T of an element T .
Then, the inflow boundary edges ∂T− and the outflow boundary edges ∂T+ of an
element T are defined as

∂T− := {x ∈ ∂T : β(x) · nT (x) < 0}, and ∂T+ := {x ∈ ∂T : β(x) · nT (x) ≥ 0}.

Additionally, on an interior edge ∂T , the traces of a piecewise continuous scalar func-
tion y from inside and outside of the element T are defined as

yin(x) := lim
δ→0+

y(x+ δβ), and yout(x) := lim
δ→0+

y(x− δβ), respectively.

Then, with the use of the definitions above, the SIPG discretization of the convection-
diffusion problem (2.1), where the convection part is discretized by upwind discretiza-
tion, is given as follows: find yh ∈ Yh such that

ah(yh, vh) = lh(vh) ∀vh ∈ Vh, (2.7)
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where

ah(yh, vh) =
∑
T∈Th

∫
T

ε∇yh · ∇vh dx+
∑
T∈Th

∫
T

(β · ∇yhvh + ryhvh) dx

−
∑

e∈E0h∪E
D
h

∫
e

{ε∇vh} · [yh] ds−
∑

e∈E0h∪E
D
h

∫
e

{ε∇yh} · [vh] ds

+
∑
T∈Th

∫
∂T−\∂Ω

(β · n)(youth − yinh )vinh ds−
∑
T∈Th

∫
∂T−∩Γ−

(β · n)yinh v
in
h ds

+
∑

e∈E0h∪E
D
h

σε

he

∫
e

[yh] · [vh] ds

lh(vh) =
∑
T∈Th

∫
T

fvh dx+
∑
e∈EDh

∫
e

gD(
σε

he
vh − ε∇vh · n) ds+

∑
e∈ENh

∫
e

gNvh ds

−
∑
T∈Th

∫
∂T−∩Γ−

(β · n)gDvinh ds.

The existence and uniqueness of the solution yh to the problem (2.7) is guaranteed
by Theorem 4.2 in [48], and an error estimate for this solution is given by Theorem
5.1 in [38], with respect to the norms that are defined in the aforementioned papers,
respectively.
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CHAPTER 3

MULTIGRID METHODS

After the discretization of the problem (2.1), a linear system remains to be solved. For
this purpose, the direct solvers are generally costly and inefficient, and iterative solvers,
such as Gauss-Seidel, Jacobi or Successive Over-Relaxation, lose their efficiency as the
mesh size is decreased, hence, reaching higher accuracy of the approximate solution
solely with an iterative solver is a rough task. However, there are also methods that
can preserve their convergence speed for decreasing mesh size, one of these methods
being multigrid methods [22, 41, 44, 76], which this thesis focuses on.

We here consider the geometric multigrid approach, based on the hierarchy of meshes
for our linear model. However, algebraic multigrid method (AMG) [67, 74, 76] can
also be thought of especially for nonlinear problems, where the application of the geo-
metric multigrid method is too difficult. For a (geometric) multigrid scheme, we need
a hierarchy of nested meshes and the two main ingredients: the smoothing operators
and the coarse-grid correction step.

The simple iterative solvers, such as Gauss-Seidel, Jacobi or Successive Over Relax-
ation, are known to be effective solvers for smoothing the high frequency error in
the approximation, however these methods lack the desired convergence rates for low
frequency components of the error [49]. The simple yet elegant idea of multigrid meth-
ods is to eliminate the high frequency and the low frequency error components via the
smoothing operators and coarse-grid correction steps, respectively.

The traditional way to understand the multigrid method is to first realize how a two-
grid method works, as the former is the recursive implementation of the latter. Main
ingredients of a two-grid algorithm are the two meshes, namely a coarse mesh and
a fine mesh, the transfer operations between these two meshes, and the smoothing
operators on these meshes. The fine grid is obtained by the uniform triangulation of
the coarse grid. The operator that transfers information from the fine grid to coarse
grid is called the restriction operator, and the operator that transfers information from
the coarse grid to fine grid is called the prolongation operator. Note that, in a multigrid
scheme, two-grid scheme is named as the aforementioned coarse-grid correction step.

In this chapter, we firstly define the operators needed for coarse-grid correction step
and the smoothing operators. Afterwards, we present an ordering algorithm introduced
by Bey and Wittum [11], that we will use to fasten our multigrid scheme. We conclude
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this chapter by giving some numerical examples.

3.1 Restriction and Prolongation operators

The aim of the transfer operators, namely restriction and prolongation operators, is
to form a relation between two nested interpolation spaces, Vh and VH , where VH is
coarser than Vh, satisfying VH ⊆ Vh. These spaces are defined in terms of equation
(2.5) as

Vh = {vh ∈ L2(Ω) : vh|T ∈ Pk(T ), ∀T ∈ T h},
VH = {vH ∈ L2(Ω) : vH |T ∈ Pk(T ), ∀T ∈ T H},

respectively. Additionally, T h and T H are the fine and coarse triangulations of Ω with
the set of triangular elements {T hi } and {THI }, respectively. Figure 3.1 illustrates two
different triangulations of a domain Ω = [0, 1]2 with 8 and 32 triangular elements.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

Figure 3.1: A coarse triangulation with 8 triangular elements (left), and a fine triangu-
lation with 32 triangular elements (right) of a domain Ω = [0, 1]2.

Let the equation (2.1) be discretized on T h and let yh be the discrete solution that
belongs to Vh. Then, the discrete solution can be defined by

yh =

p∑
i=1

nloc∑
m=1

Yh
i,mϕ

h
i,m, (3.1)

where p = |{T hi }|, i.e., the number of elements in the fine space triangulation T h,
{{ϕi,m}nlocm=1}

p
i=1 is the basis functions of the space Vh, and nloc is the local dimension.

Similarly, let the equation (2.1) be discretized on T H and let yH be the discrete solution
that belongs to VH . Then, we have

yH =
P∑
I=1

nloc∑
M=1

YH
I,Mϕ

H
I,M , (3.2)

where P = |{THI }|, i.e., the number of elements in the coarse space triangulation T H ,
and and {{ϕI,M}nlocM=1}PI=1 is the basis for the space VH .
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The purpose of the restriction operator is to project yh ∈ Vh onto VH , such that

(yh − yH , ϕHI,M)TH
I

= 0, ∀I ∈ {1, . . . , P} and ∀M ∈ {1, . . . , nloc}, (3.3)

Suppose a triangle THI in the coarse triangulation of Ω is decomposed into n triangles
in the fine triangulation of the same domain Ω. Then it follows from (3.3) that

n∑
i=1

nloc∑
m=1

Yh
i,m(ϕhi,mϕ

H
I,S)Th

i
=

nloc∑
M=1

YH
I,M(ϕHI,M , ϕ

H
I,S)TH

I
∀S ∈ {1, . . . , nloc}. (3.4)

Writing the above equality in matrix form gives

YH
I =

n∑
i=1

M−1
HI

MHI
hi

Yh
i , where

(
MHI

hi

)
S,M

= (ϕhi,m, ϕ
H
I,S)Th

i
(3.5)

with MHI
being the coarse triangle mass matrix. Moving from one triangle of the

coarse triangulation to the all triangles gives the global restriction operator IHh that
satisfies

YH = IHh Yh, (3.6)

where Uh and UH are the vectors of degrees of freedom in the fine and coarse spaces,
respectively, and IHh is given explicitly as

IHh =


. . . 0 0
0 IHI

h 0
0 0 . . .

 , (3.7)

where IHI
h =

[
. . .M−1

HI
MHI

hi
. . .
]
, which is called the local restriction operator. Notice

that the global restriction operator is a p× P block matrix where each block is of size
nloc× nloc.

Once the computation of the global restriction matrix, restriction matrix from now on,
is complete, it is easy to get the global prolongation matrix, prolongation matrix from
now on, as it is defined to be the transpose of the restriction matrix:

IhH :=
(
IHh
)T
. (3.8)
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3.2 Smoothing Operators

As we have already mentioned, the second important ingredient of a multigrid algo-
rithm is the smoothing operators. Splitting methods such as Jacobi method and Gauss-
Seidel method [71, 78] can be used as the smoothing operators.

3.2.1 Splitting Methods

Let the following linear system be given

Ax = b, (3.9)

where A ∈ Rn×n, x, b ∈ Rn×1, and assume that A is nonsingular with all diagonal
entries being nonzero.

The idea of a splitting method is to split the any given matrixA such that forD,L, U ∈
Rn×n, A = D + L + U , where D is the diagonal part of A, and U , L are the strictly
upper triangular and the strictly lower triangular parts of A, respectively.

Then, (3.9) can be written as

(D + L+ U)x = b (3.10)

or,
Dx = −(L+ U)x+ b. (3.11)

Furthermore, (3.11) can be explicitly written as

For i = 1 : n

D(i, i)x(m+1)(i) = b(i)−
i−1∑
j=1

L(i, j)x(m)(j)−
n∑

j=i+1

U(i, j)x(m)(j)

End
(3.12)

where m ≥ 0 is the iteration number and x(0) is the initial guess for the solution of the
system (3.9). As the diagonal entries ofA are assumed to be nonzero,D is nonsingular,
then (3.12) can be written as

For i = 1 : n

x(m+1)(i) =
1

D(i, i)

(
b(i)−

i−1∑
j=1

L(i, j)x(m)(j)−
n∑

j=i+1

U(i, j)x(m)(j)

)
End

(3.13)
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which in matrix form corresponds to

x(m+1) = D−1(b− (L+ U)x(m)). (3.14)

This iterative method is called the pointwise Jacobi method. As seen from (3.13), at
(m+1)st smoothing step, we need to keep all the components of the initial vector x(m)

until the calculation of the last entry of the updated vector x(m+1), and the updated
entries of x(m+1) are not used until the (m+2)nd smoothing step. However, if we were
to use the entries of x(m+1) as soon as they are updated, we would get the iterative
method

For i = 1 : n

x(m+1)(i) =
1

D(i, i)

(
b(i)−

i−1∑
j=1

L(i, j)x(m+1)(j)−
n∑

j=i+1

U(i, j)x(m)(j)

)
End

(3.15)
which in matrix form corresponds to

x(m+1) = (D + L)−1(b− Ux(m)). (3.16)

Notice that, as D is nonsingular, D + L is also nonsingular, hence (D + L)−1 ex-
ists. Further, the iterative method (3.15) requires only one vector to be kept for any
smoothing step, which makes it more efficient than the pointwise Jacobi method.

The iterative method (3.15) defined by the splitting (3.16) is called the pointwise for-
ward Gauss-Seidel iteration, as the iteration starts from the 1st entry and ends at the
nth entry of the vector x(m+1). Alternatively, if the iteration were to start from the nth
entry and end at the 1st entry of x(m+1), it would be called the pointwise backward
Gauss-Seidel iteration defined as

For i = n : 1

x(m+1)(i) =
1

D(i, i)

(
b(i)−

i−1∑
j=1

L(i, j)x(m)(j)−
n∑

j=i+1

U(i, j)x(m+1)(j)

)
End

(3.17)

3.3 Multigrid V-cycle

As we have already defined the transfer operators and smoothing operators, we are
ready to define the multigrid method.

Let equation (2.1) be discretized by SIPG method and the resulting linear system be

Ahyh = bh, (3.18)

where Ah ∈ R(nel∗nloc×nel∗nloc), yh, bh ∈ R(nel∗nloc), and nel is the number of elements
in T h, i.e., |T h|.
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The core of a multigrid method is the so called two-grid method, which involves a
coarse level mesh and a fine level mesh, see Algorithm 1.

Algorithm 1 Two-Grid Method
1: Given an initial guess y0, smooth y0 vpre times: y = S(Ah, bh, y0, vpre).
2: Compute the residual with the smoothed approximation y: rh = bh − Ahy.
3: Restrict the residual rh to the coarse mesh: rH = IHh ∗ rh.
4: Restrict the stiffness matrix Ah to the coarse mesh: AH = IHh ∗ Ah ∗ IhH .
5: Solve the coarse grid linear system: AHe = rH .
6: Prolongate the error and update the approximation u: y = y + IhH ∗ e.
7: Smooth the updated approximation vpost times: y = S(Ah, bh, y, vpost).

As soon as the principle idea of two-grid method is understood fully, first thing that
comes to mind is to add more levels, coarser or finer meshes, to the method. Instead of
naming the method according to the number of levels, e.g. three-grid method, four-grid
method, the name ”multigrid” is used to define such a method. We will here use the V-
cycle type of multigrid methods, that the algorithm starts from the finest level, say level
`, for ` > 1, and step by step goes to the coarsest one, say level 1, after directly solving
the problem on the coarsest level, the algorithm starts to climb up until reaching the
finest level again. This process is visualized at Figure 3.2. For the multigrid algorithm,
we will denote the stiffness matrix, the approximate solution vector and the right hand
side vector on level k by Ak, yk and bk, respectively. Additionally, let nelk denote the
number of triangles in the triangulation of level k. Then, for a given initial approximate
solution y` ∈ Rnel`∗nloc, the single iteration of a multigrid V-cycle algorithm computes
the updated approximate solution y∗` for the linear system A`y` = b` as

y∗` = MG`(A`, b`, y`),

whereMG` : Rnel`∗nloc×nel`∗nloc×(Rnel`∗nloc)2 → Rnel`∗nloc is defined by the following
recursive algorithm:

Algorithm 2 Multigrid V-cycle: y∗ = MGk(A, b, y)
Define MG1(A, b, ·) = A−1F , where MG1 : Rnel1∗nloc×nel1∗nloc × (Rnel1∗nloc)2 →
Rnel1∗nloc. For k > 1 define MGk : Rnelk∗nloc×nelk∗nloc × (Rnelk∗nloc)2 → Rnelk∗nloc as:

1: Given an initial guess yk, smooth yk vpre times: yk = S(Ak, bk, yk, vpre).
2: Compute the residual with the smoothed approximation yk: rk = bk − Akyk.
3: Restrict the residual rk: rk−1 = Ik−1

k ∗ rk.
4: Restrict the stiffness matrix Ak: Ak−1 = Ik−1

k ∗ Ak ∗ Ikk−1.
5: ek−1 := 0.
6: Apply multigrid to the restricted residual: ek−1 = MGk−1(Ak−1, rk−1, ek−1).
7: Prolongate the error and update yk: yk = yk + Ikk−1 ∗ ek−1.
8: Smooth the updated approximation vpost times: yk = S(Ak, bk, yk, vpost).

When a multigrid method is used as an iteration solver for a linear system, the iter-
ation described on Algorithm 2 is used consecutively until the residual drops below
the prescribed tolerance. However, similar to any other iterative solvers, the multigrid
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Figure 3.2: Multigrid V-cycle scheme, where T h and T 16h are the coarsest and finest
triangulations of the domain Ω.

method is not always convergent. In order to give the theorem for the convergence of
the multigrid method, we need to rewrite the multigrid iteration y∗k = MGk(Ak, bk, yk)
as

y∗k = Gkyk +Bkbk,

where Gk and Bk are called the iteration matrix and the preconditioner for the matrix
Ak, respectively. These matrices are defined by Howard in [49, Theorem 3.1.1.] as
given below:

Theorem 3.1. Let yk ∈ R(nelk∗nloc) be an initial approximation of the solution to the
system Akyk = bk, where Ak ∈ R(nelk∗nloc×nelk∗nloc) and bk ∈ R(nelk∗nloc). Then,
Algorithm 2 can be written in the form

y∗k = Gkyk +Bkbk,

where Gk, Bk ∈ R(nelk∗nloc×nelk∗nloc) are defined as

Gkyk = MGk(Ak, 0, yk),

Bkbk = MGk(Ak, bk, 0),

for k = 2, . . . , `, and
G1y1 = MG1(A1, 0, y1),

= 0,

B1b1 = MG(A1, b1, 0),

= A−1
1 b1.

Then, using the above theorem, the multigrid iteration on the finest level ` is given as

y∗` = G`y` +B`b`. (3.19)

For a given tolerance, we can use the multigrid algorithm as an iterative solver to
solve any problem. However, it can not imply the convergence for any problem. The
following theorem states that the convergence of multigrid algorithm requires that the
iteration matrix G` has a spectral radius strictly less than one [34, 71].
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Theorem 3.2. For any right hand side b` and any initial guess y`, the iteration (3.19)
converges to the solution y`, if and only if the spectral radius of the iteration matrix G`

is strictly less than one. Additionally, if for any matrix norm || · ||, the iteration matrix
satisfies ||G`|| < 1, then the iteration (3.19) converges.

3.4 Ordering

It is a well known fact that the performance of an iterative solution method applied
on a system Ax = b, depends greatly on the placement of the nonzero elements of
the matrix A. For the finite elements, finite difference or finite volume discretization
of the convection-diffusion problem, this placement depends on the numbering of the
vertices, however for the DG discretization, this placement depends on the numbering
of the elements. The sparsity structure of the stiffness matrix for a triangulation with 4
elements, where the order of the polynomial approximation is 2, is illustrated in Figure
3.3.

Figure 3.3: Sparsity structure of the stiffness matrix for a triangulation with 4 elements,
where the order of the polynomial approximation is 2. [64, Fig. 2.1.]

As the convection term starts to dominate the diffusion term, the dominating terms of
the stiffness matrix can be reordered in a way such that they appear in the lower tri-
angular part of the matrix. In the extreme case where ε = 0, this reordering leads to
a lower triangular matrix for which the Gauss-Seidel method is an exact solver. For
the convection term (a, 0)

(
or (0, a)

)
, where a > 0, the horizontal (or vertical) lexico-

graphical numbering is the proper ordering for this purpose, on the other hand for the
convection term (−a, 0)

(
or (0,−a)

)
, the horizontal (or vertical) anti-lexicographical

numbering is the desired one [43].

In [11], Bey and Wittum proposed a robust algorithm called Downwind Numbering.
The main goal of this algorithm is to reorder the vertices in such a way that the terms
for convection part in the stiffness matrix is lower triangular. By doing so, this ordering
yields to a stiffness matrix that has its dominating entries in the lower triangular part,
as desired.
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We here propose a Downwind Numbering for DG method as done in [11] for FVM.
Denote by C = (cij)i,j∈{1,...,nel} andD = (dij)i,j∈{1,...,nel}, the convection and diffusion
components of the corresponding stiffness matrix A = D + C, which results from
the DG discretization of a convection-diffusion equation, where nel is the number
of triangles of the underlying triangulation T . We say that ”triangle i (Ti) is in the
downwind of triangle j (Tj)” if the flow moves from Tj to Ti, i.e., if the edge e is the
common edge for Ti and Tj , we have

β(x) · n(x) < 0, x ∈ e, (3.20)

where n is the unit normal vector to the edge e oriented from Ti to Tj . This is illustrated
in Figure 3.4.
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Figure 3.4: Flow direction.

In the convection component C of the stiffness matrix A, the condition (3.20) corre-
sponds to cij being different from the zero matrix (cij ∈ Rnloc×nloc ∀i, j ∈ {1, . . . , nel}).
Furthermore, let I(j) denote the set of triangles such that for any k ∈ I(j), ”Tj is in
the downwind of Tk”. Then, we can list the main steps of the algorithm as follows: For
every triangle T ∈ T , compute I(T ). The first list L1 of triangles consists of the trian-
gles T with |I(T )| = 0. If there is no cycle1 in the convection graph, it is guaranteed
that there is at least one triangle without incoming flow, implying |I(T )| = 0. Next
step is to find the triangles that are in the downwind of the triangles in the list Lk and
not in any Lj for j < k. Each time a triangle T is in the downwind of a triangle from
the list Lk, |I(T )| is decreased by 1, and if |I(T )| = 0 during the check on list Lk, the
triangle T goes into the list Lk+1. The process stops when for all triangles |I(T )| = 0.
Then, each list is sorted and concatenated to give the new ordering. This process is
shown in Algorithm 3.

In the case of complicated convection, it is not easy to pick the best ordering, especially
when there exists cycles in the convection matrix. In order to deal with the cycles,
techniques using graph theory are presented in [40, 42, 52, 53].

1 For a given triangle Tm, list all the triangles that are in the downwind of Tm. Then, for each of the triangles
in this list, make new lists of triangles that are in the downwind of these triangles. Continue this process until no
triangle has a triangle in its downwind or Tm appears in one of these lists. Notice that these two cases are mutually
exclusive. Then, the convection graph is said to have ”no cycle” if the first case is satisfied.
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Algorithm 3 Downwind Numbering
for T ∈ T do

compute I(T ).
end for
let L = L0 be the list of all triangles with |I(T )| = 0.
k=0.
while Lk 6= ∅ do
Lk+1 = ∅.
for T ∈ Lk do

for all neighbors G of T that are in the downwind of T do
if |I(G)| 6= 0 then
|I(G)| = |I(G)| − 1.
if |I(G)| = 0 then
Lk+1 = Lk+1 ∪ {G}.

end if
end if

end for
end for
sort Lk+1 and add it to the list L.
k = k + 1.

end while
if |L| 6= nel then

display error: Convection graph contains cycles!
end if

3.5 Numerical Results

We now present some numerical demonstration to test the effectiveness of the Down-
wind Numbering algorithm. In numerical examples, we choose the pointwise forward
Gauss-Seidel method as both pre-smoother and post-smoother. The penalty parame-
ter in the SIPG method is chosen as σ = 6 on the interior edges and σ = 12 on the
boundary edges.

We consider the following convection-diffusion equation:

−ε∆y + β · ∇y = f in Ω,

y = g on ∂Ω,
(3.21)

where ε = 10−3, β = (1, 0)T and Ω = (0, 1)2. Further, the analytical solution is given
by

y(x1, x2) = x2
1 + x2

2. (3.22)

Figures 3.5-3.8 present the positioning of the nonzero elements of the stiffness and con-
vection matrices, without and with ordering for various mesh sizes 2−1, 2−2 and 2−5.
Notice that after reordering, convection matrices become lower triangular as intended.
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Figure 3.5: Convection matrices on meshes of size h = 2−1, h = 2−2 and h = 2−5,
from left to right.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 144
0 20 40 60 80

0

20

40

60

80

nz = 648
0 2000 4000 6000

0

1000

2000

3000

4000

5000

6000

nz = 45504

Figure 3.6: Convection matrices after Downwind Numbering on meshes of size h =
2−1, h = 2−2 and h = 2−5, from left to right.
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Figure 3.7: Stiffness matrices on meshes of size h = 2−1, h = 2−2 and h = 2−5, from
left to right.
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Figure 3.8: Stiffness matrices after Downwind Numbering on meshes of size h = 2−1,
h = 2−2 and h = 2−5, from left to right.

To check the efficiency of the Downwind Numbering algorithm, we give the number of
V-cycles required to reach a ratio of 10−8 in terms of relative residual in Tables 3.1-3.2,
where k stands for the number of levels used aside from the finest one, and m stands
for the number of pre- and post-smoothing steps. Further, Figure 3.9 illustrates the
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Table 3.1: Number of iterations required to reach a relative residual of 10−8 with (top)
and without (bottom) reordering.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 10 5 4 3 2 2 2 2 1 1
k=2 10 5 4 3 2 2 2 2 2 1
k=3 10 6 4 3 3 2 2 2 2 2
k=4 19 11 7 6 5 4 3 3 3 3

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 15 6 4 3 3 2 2 2 2 1
k=2 14 7 4 3 3 2 2 2 2 2
k=3 17 8 6 4 4 3 3 2 2 2
k=4 25 14 10 7 6 5 4 4 4 3
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Figure 3.9: The required number of V-cycles to reach the desired relative residual of
10−8 for varying number of smoothing steps with fixed mesh size of 2−5 (left), and
for varying number of levels aside from the finest one with fixed number of smoothing
steps that is given as 2 (right), for β = (1, 0)T .

required number of V-cycles to reach the desired relative residual for varying number
of smoothing steps with fixed mesh size of 2−5, and for varying number of levels aside
from the finest one with fixed number of smoothing steps that is given as 2, left and
right, respectively. As seen in the Table 3.1, the effect Downwind Numbering algorithm
is more evident for smaller number of smoothing steps.

Let us change the convection term as β = (−2,−1)T for the same problem (3.21).
Similarly, the sparsity patterns of the convection and stiffness matrices and the number
of iterations, for with and without the application of Downwind Algorithm are dis-
played in Figures 3.10-3.13 and Table 3.2, respectively. Similarly, Figure 3.14 illus-
trates the required number of V-cycles to reach the desired relative residual for varying
number of smoothing steps with fixed mesh size of 2−5, and for varying number of
levels aside from the finest one with fixed number of smoothing steps that is given as
2, left and right, respectively.
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Figure 3.10: Convection matrices on meshes of size h = 2−1, h = 2−2 and h = 2−5,
from left to right.
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Figure 3.11: Convection matrices after Downwind Numbering on meshes of size h =
2−1, h = 2−2 and h = 2−5, from left to right.
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Figure 3.12: Stiffness matrices on meshes of size h = 2−1, h = 2−2 and h = 2−5,
from left to right.
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Figure 3.13: Stiffness matrices after Downwind Numbering on meshes of size h = 2−1,
h = 2−2 and h = 2−5, from left to right.

In the above applications of multigrid method to solution of the convection-diffusion
equation (3.21) with dominating convection, the Downwind Numbering algorithm was
efficient in decreasing the number of multigrid V-cycle iterations. This was an ex-
pected result as the Downwind Numbering algorithm managed to gather the domi-
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Table 3.2: Number of iterations required to reach a relative residual of 10−8 with (top)
and without (bottom) reordering.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 7 4 3 2 2 2 2 1 1 1
k=2 7 4 3 2 2 2 2 1 1 1
k=3 10 5 4 3 2 2 2 2 2 1
k=4 15 9 6 5 4 3 3 3 2 2

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 9 5 3 2 2 2 2 1 1 1
k=2 11 5 3 3 2 2 2 2 1 1
k=3 16 7 5 4 3 3 2 2 2 2
k=4 25 13 9 7 5 4 4 3 3 3
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Figure 3.14: The required number of V-cycles to reach the desired relative residual of
10−8 for varying number of smoothing steps with fixed mesh size of 2−5 (left), and
for varying number of levels aside from the finest one with fixed number of smoothing
steps that is given as 2 (right), for β = (−2,−1)T .

nating entries in the lower triangular part of the stiffness matrices on each mesh, via
transforming the convection matrices into lower triangular matrices, causing the point-
wise forward Gauss-Seidel smoother to perform more efficiently, especially for smaller
number of smoothing steps.
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CHAPTER 4

OPTIMAL CONTROL PROBLEMS

In recent years, linear-quadratic optimal control problems (OCPs) proved themselves
important through their use in many real life applications such as the optimal control
of systems [39], the shape optimization of technological devices [58] and flow control
problems [30, 37, 62]. In order to solve the linear system of equations that results
from the optimality conditions for these problems, a combined usage of the theory
of optimization, the theory of PDEs and the tools of numerical mathematics, for the
implementation part, is required.

In the last decade, discontinuous Galerkin (DG) methods have became popular for the
optimal control problems governed by convection-diffusion equations due to their su-
periority over other discretization methods, as discussed in Chapter 2. The results in
[56] show that DG discretizations enjoy a better convergence behavior for convection
dominated optimal control problems since optimal convergence orders are obtained if
the error is computed away from boundary or interior layers, in contrast to the stream-
line upwind Petrov Galerkin (SUPG) stabilized finite element discretization [45]. Also,
a DG discretization have been used in [2, 75, 80, 82, 83, 84, 85] for the linear-quadratic
optimal control problems .

In this chapter, we state that the optimal control problem governed by convection-
diffusion-reaction PDE has a unique solution and then discuss the derivation of the
optimality conditions of the optimization problem. Further, we provide the symmetric
interior penalty Galerkin (SIPG) discretization of the optimality conditions. Later on,
we redefine the transfer operators and smoothing operators of a multigrid method for
the optimal control problems governed by convection-diffusion-reaction PDEs, and in
the last part we present numerical results.

4.1 Introduction

We consider the following linear-quadratic optimal control problem:

minimize J(y, u) :=
1

2

∫
Ω

(y(x)− yd(x))2 dx+
ω

2

∫
Ω

u(x)2 dx (4.1)
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subject to

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω

y(x) = gD(x), x ∈ ΓD,

ε∇y(x) · n(x) = gN(x), x ∈ ΓN ,

(4.2)

where Ω is a bounded , open and convex domain in R2 with boundary ∂Ω = ΓD ∪ΓN ,
such that ΓD ∩ ΓN = ∅, and ΓD and ΓN stand for Dirichlet boundary and Neumann
boundary, respectively. Further, let f, β, yd, gD, and gN be given functions, ε, ω > 0 be
given scalars and n be the normal vector to the boundary. The unknowns, y and u, in
(4.1)-(4.2) are referred to as the state and control variables. The equation (4.2) is also
referred as the state equation.

We first define the state space Y , the control space U , and the test functions space V
as

Y = {y ∈ H1(Ω) : y = gD on ΓD},

U = L2(Ω),

V = {v ∈ H1(Ω) : v = 0 on ΓD}.

Then, the weak formulation of the state equation (4.2) can be stated such that: find
y ∈ Y for any fixed u ∈ U

a(y, v) + b(u, v) = (f, v) + (gN , v)ΓN , ∀v ∈ V, (4.3)

where the bi-(linear) forms are defined by

a(y, v) :=

∫
Ω

(ε∇y · ∇v + β · ∇yv + ryv) dx,

b(u, v) := −
∫

Ω

uv dx,

(f, v) :=

∫
Ω

fv dx, (gN , v)ΓN :=

∫
ΓN

gNv ds.

We can now rewrite the optimization problem (4.1)-(4.2) using the weak formulation
(4.3) of the state equation (4.2) as

minimize J(y, u) :=
1

2
||y − yd||2L2(Ω) +

ω

2
||u||2L2(Ω) (4.4)

subject to
a(y, v) + b(u, v) = (f, v) + (gN , v)ΓN , ∀v ∈ V,
(y, u) ∈ Y × U. (4.5)
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In order to ensure the existence and uniqueness of the linear-quadratic optimal control
problem governed by convection-diffusion equation, we make the following assump-
tions for the functions and parameters in the optimization problem (4.1)-(4.2):

f, yd ∈ L2(Ω), gD ∈ H3/2(ΓD), gN ∈ H1/2(ΓN), 0 < ε,

β(x) ∈ W 1,∞(Ω)2, 0 < ω, r ∈ L∞(Ω),
(4.6)

ΓN ⊂ {x ∈ ∂Ω : β(x) · n(x) ≥ 0}, (4.7)
and

r − 1

2
∇ · β(x) ≥ r0 ≥ 0, x ∈ Ω. (4.8)

It can be derived by the standard techniques (see, e.g., [57, Sect. II.1]) that the control
problem (4.4)-(4.5) has a unique solution (y, u) ∈ (Y, U) under the assumptions (4.6-
4.8).

We need the following Lagrangian functional

L(y, u, p) =
1

2
||y−yd||2L2(Ω)+

ω

2
||u||2L2(Ω)+a(y, p)+b(u, p)−(f, p)−(gN , v)ΓN , (4.9)

to provide the necessary and sufficient optimality conditions of the optimization prob-
lem (4.4)-(4.5) as derived in [57, Sect. II.1].

Then, setting the partial Fréchet-derivatives of Lagrangian functional (4.9) with respect
to the state y, control u, and adjoint p equal to zero, we obtain the following optimality
system:

a(ψ, p) = −((y − yd), ψ) ∀ψ ∈ V, (4.10a)
b(w, p) + ω(u,w) = 0 ∀w ∈ U, (4.10b)
a(y, v) + b(u, v) = (f, v) + (gN , v)ΓN ∀v ∈ V, (4.10c)

which consists of the adjoint equation, the optimality condition, and the state equation,
respectively.

Applying Green’s Identities [73] and integration by parts to the adjoint equation (4.10a),
we obtain
−((y − yd), ψ) = a(ψ, p)

=

∫
Ω

(ε∇ψ · ∇p+ β · ∇ψp+ rψp) dx

= −
∫

Ω

εp∆ψ dx+

∫
∂Ω

εp(∇ψ · n) ds+

∫
Ω

(β · ∇ψp+ rψp)dx

= −
∫

Ω

εψ∆p dx+

∫
∂Ω

εψ(∇p · n) ds+

∫
Ω

(β · ∇ψp+ rψp)dx

= −
∫

Ω

εψ∆p dx+

∫
∂Ω

εψ(∇p · n) ds+

∫
∂Ω

(β · n)ψp ds

−
∫

Ω

ψβ · ∇p dx−
∫

Ω

∇ · βpψ dx+

∫
Ω

rψp dx, ∀ψ ∈ V,
(4.11)
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which is the weak form of a convection-diffusion-reaction equation with the convection
term −β given as

−ε∆p(x)− β(x) · ∇p(x) + (r(x)−∇ · β(x))p(x) = −(y(x)− yd(x)) x ∈ Ω,

p(x) = 0, x ∈ ΓD,

ε∇p(x) · n(x) + β(x) · n(x)p(x) = 0, x ∈ ΓN .

Further, the optimality condition (4.10b) corresponds to

p(x) = ωu(x), x ∈ Ω.

Finally, we can state the following theorem given in [56, Sect. 2]:
Theorem 4.1. If the assumptions (4.6)-(4.8) are satisfied, then the optimal control
problem (4.4)-(4.5) has a unique solution (y, u) ∈ Y × U . Further, the pair (y, u) ∈
Y × U solves (4.4)-(4.5) if and only if the triple (y, u, p) ∈ Y × U × V is the unique
solution of the optimality system

a(ψ, p) = −((y − yd), ψ) ∀ψ ∈ V,
b(w, p) + ω(u,w) = 0 ∀w ∈ U,
a(y, v) + b(u, v) = (f, v) + (gN , v)ΓN ∀v ∈ V.

To solve an optimal control problem, there mainly exist two approaches, which are
called the discretize-then-optimize (DO) and the optimize-then-discretize (OD). For
the DO approach, as the name suggests, the optimal control problem is discretized first
and then the finite dimensional optimality system is formed. On the other hand, for
the OD approach, the system of optimality conditions consisting of the state equation,
the adjoint equation, and the optimality condition are firstly formed on the continuous
level, then the resulting system is discretized. Both approaches are studied and com-
pared in [1, 10, 20, 21, 29, 31, 47, 81, 83] for the optimal control problems governed
by the convection-diffusion equation by using different kind of discretization methods.

It is known that for local projection based stabilization [10] and edge stabilization [81]
of continuous Galerkin discretization, the linear systems of equations resulting from
both approaches commute. On the other, there exist other discretization schemes, such
as the streamline upwind Petrov-Galerkin method [29, 56], where the resulting linear
system of equations do not commute. It is recently shown in [83] that the symmetric
discontinuous Galerkin methods, for example SIPG method, yield the same scheme
for both approaches, while the nonsymmetric discontinuous Galerkin methods yield
different schemes. This motivates us to use only the discretize-then-optimize approach
with the SIPG discretization, in the rest of the thesis.

4.2 Discretize-then-Optimize Approach

The discretization of the state equation, based on the symmetric interior penalty Galerkin
(SIPG) method, is described in Chapter 2. We now extend the discussion to the optimal
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control problem by following the discretize-then-optimize approach.

We first define the discrete state space Yh, the discrete control space Uh and the space
of test functions Vh as

Vh = Yh = {y ∈ L2(Ω) : y|T ∈ Pn(T ),∀T ∈ Th},
Uh = {u ∈ L2(Ω) : u|T ∈ Pm(T ),∀T ∈ Th}.

Notice that the orders n,m ∈ N of the finite element approximation need not be equal,
however, in this thesis we will be using n = m, hence, Vh = Yh = Uh. Note that, as in
the Section 2.2, the state function space Yh and the test function space Vh are chosen to
be identical due to the weak treatment of the boundary conditions in DG framework.
Then, the discretized optimal control problem is given as

minimize J(yh, uh) :=
1

2

∑
T∈Th

||yh − yd||2T +
ω

2

∑
T∈Th

||u||2T (4.12)

subject to

ah(yh, vh) + bh(uh, vh) = lh(vh) + (gN , vh)ΓN , ∀vh ∈ Vh,
(yh, uh) ∈ Yh × Uh,

(4.13)

where

ah(yh, vh) =
∑
T∈Th

∫
T

ε∇yh · ∇vh dx+
∑
T∈Th

∫
T

(β · ∇yhvh + ryhvh) dx

−
∑
e∈Eh

∫
e

{ε∇vh} · [yh] ds−
∑
e∈Eh

∫
e

{ε∇yh} · [vh] ds

+
∑
T∈Th

∫
∂T−\∂Ω

(β · n)(youth − yinh )vinh ds−
∑
T∈Th

∫
∂T−∩Γ−

(β · n)yinh v
in
h ds,

+
∑
e∈Eh

σε

he

∫
e

[yh] · [vh] ds

bh(uh, vh) =−
∑
T∈Th

∫
T

uhvh dx,

lh(vh) =
∑
T∈Th

∫
T

fvh dx+
∑
e∈EDh

∫
e

gD(
σε

he
vh − ε∇vh · n) ds

−
∑
T∈Th

∫
∂T−∩Γ−

(β · n)gDvinh ds.

Setting the partial Frechét derivatives of the Lagrangian of the discretized problem
(4.12)-(4.13)

Lh(yh, uh, ph) =
1

2

∑
T∈Th

||yh − yd||2T +
ω

2

∑
T∈Th

||uh||2T + ah(yh, ph) + bh(uh, ph)

− lh(ph)− (gN , ph)ΓN ,
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with respect to discrete state, control and adjoint variables equal to zero,

∇yLh(yh, uh, ph) = 0,

∇uLh(yh, uh, ph) = 0,

∇pLh(yh, uh, ph) = 0,

we obtain the following discrete optimality system

ah(ψh, ph) = −(yh − yd, ψh), ∀ψh ∈ Vh,
bh(wh, ph) + ω(uh, wh) = 0, ∀wh ∈ Uh,
ah(yh, uh) + bh(uh, vh) = lh(vh) + (gN , vh)ΓN , ∀vh ∈ Vh,

that consists of the discrete adjoint equation, the discrete optimality condition and the
discrete state equation, respectively.

To reformulate the optimization problem (4.12)-(4.13) in terms of matrix-vector form,
we can write the discrete state and control spaces as: for each element T ∈ Th,

Yh,T = span{ϕTi : 1 ≤ i ≤ nloc, T ∈ Th},
Uh,T = span{ψTi : 1 ≤ i ≤ nloc, T ∈ Th},

where
{
ϕTi

}nloc
i=1

is the basis functions for the state space,
{
ψTi

}nloc
i=1

is the basis func-
tions for the control space, and nloc is the local dimension. This way of defining the
state and control spaces lets us to rewrite the state y and the control u such that

y(x) =
nel∑
m=1

nloc∑
j=1

ymj ϕ
m
j (x),

u(x) =
nel∑
m=1

nloc∑
j=1

ymj ψ
m
j (x),

(4.14)

where nel is the number of triangles in the underlying triangulation Th of Ω. Inserting
(4.14) into (4.12)-(4.13), we obtain the following discretized optimization problem:

minimize J(−→y ,−→u ) :=
1

2
−→y TM−→y −

−→
b
T−→y +

ω

2
−→u TQ−→u +

∫
Ω

1

2
y2
d dx (4.15)

subject to

A−→y + B−→u =
−→
f , (4.16)

where A and
−→
f correspond to the bilinear form ah(yh, vh) and the linear form lh(vh)

in (4.13), M, Q, B ∈ R(nloc∗nel)×(nloc∗nel),
−→
b ∈ Rnloc∗nel, −→y and −→u are given as

−→y = (y1
1, y

1
2, . . . , y

1
nloc, y

2
1, y

2
2, . . . , y

2
nloc, . . . , y

nel
1 , ynel2 , . . . , ynelnloc)

T ,
−→u = (u1

1, u
1
2, . . . , u

1
nloc, u

2
1, u

2
2, . . . , u

2
nloc, . . . , u

nel
1 , unel2 , . . . , unelnloc)

T .
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Additionally, the matrices M, Q, B and the vector
−→
b are defined as

(M)ij =

∫
T

ϕjϕi dx, (B)ij = −
∫
T

ϕjψi dx, (Q)ij =

∫
T

ψjψi dx,

(
−→
b )i =

∫
T

ydϕi dx.

Then, the necessary and sufficient optimality conditions for the optimal control prob-
lem (4.15)-(4.16) are

M−→y + AT−→p =
−→
b ,

ωQ−→u + BT−→p = 0,

A−→y + B−→u =
−→
f ,

which can be written in the matrix form as M 0 AT

0 ωQ BT
A B 0

−→y−→u
−→p

 =

 −→b0
−→
f

 . (4.17)

Such large systems can not be solved using direct numerical techniques. Therefore, it
is crucial to have efficient iterative methods for solving these optimality systems. We
here investigate multigrid methods applied to the saddle system (4.17) obtained from
a symmetric interior penalty Galerkin discretization of the optimal control problems
governed by convection-diffusion equation.

Multigrid methods have been investigated in [7, 12, 13, 15, 17, 18, 19, 36, 49, 51,
55, 59, 72] for several different types of optimal control problems. However, it is not
always easy to derive an efficient approach for the optimal control problems governed
by convection-diffusion equations due to the structure of the optimality systems. The
optimality system involves two PDEs; the state equation with convection β and the
adjoint equation with convection−β. In the following section, we discuss the multigrid
method for the optimal control problems.

4.3 Multigrid Methods for Optimal Control Problems

We here solve the optimality system (4.17) by using the multigrid approach, as done
in the previous section for the state equation. However, due to the structure of the
optimality system we need to modify the transfer and smoothing operators.

The vector x consists of 3 blocks of size (nloc×nel)×1, where nloc is the local dimen-
sion and nel is the number of triangles in the underlying triangulation of the domain.
The block on top corresponds to the state variable, the block in the middle corresponds
to the control variable and the block on the bottom corresponds to the adjoint variable,
which are all discretized on the same mesh. As defined in Section 3.1, the restriction
operator for each of these blocks is IHh , where the subscript h and the superscript H
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stand for the fine and the coarse triangulations of the domain, respectively. Hence, the
optimal control restriction operator can be defined as

IHh =

 IHh 0 0
0 IHh 0
0 0 IHh

 .
As we have done for the prolongation operator, the optimal control prolongation op-
erator is defined to be the transpose of the optimal control restriction operator, that
is,

IhH = (IHh )T .

The system (4.17) that we are trying to solve has zero elements on its diagonal, thus,
we cannot apply the pointwise smoothing operators that were defined in the Section
3.2. In order to overcome this obstacle, we adopt the idea of a block Gauss-Seidel
method described in [49].

We begin with grouping the state, the control and the adjoint variables for any given
triangle to a vector. For the kth triangle, the corresponding state variables start at the
entry (k−1)∗nloc+1 and end at the entry k∗nloc, the corresponding control variables
start at the entry nloc∗N+(k−1)∗nloc+1 and end at the entry nloc∗nel+k∗nloc and
the corresponding adjoint variables start at the entry 2∗nloc∗nel+(k−1)∗nloc+1 and
end at the entry 2 ∗ nloc ∗ nel+ k ∗ nloc. For any triangle,we group the corresponding
entries such that they form a vector of size 3 ∗ nloc × 1, where the state variables are
on the top, the control variables are in the middle and the adjoint variables are on the
bottom, and name this vector xk. Repeating this procedure for all nel triangles, we get
the vectors x1, . . . , xN , and we can form the new block vector xblock defined as

xblock = (x1, x2, . . . , xnel)
T .

Similarly, we can form the block vector gblock defined as

gblock = (g1, g2, . . . , gnel)
T ,

and the block matrix Kblock defined as

Kblock =


K11 K12 . . . K1nel

K21 K22 . . . K2nel
...

... . . . ...
Knel1 Knel2 . . . Knelnel

 ,
where Ki,j is a 3 ∗ nloc× 3 ∗ nloc matrix that is obtained via the same procedure that
we used to define xblock and gblock, but this time for two dimensions at the same time.
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Then, we can define the block forward Gauss-Seidel iteration as

For i = 1 : nel

x
(m+1)
i =

1

Kii

(
gi −

i−1∑
j=1

Kijx
(m+1)
j −

nel∑
j=i+1

Kijx
(m)
j

)
End

As we have done in section 3.2, we can define the block backward Gauss-Seidel itera-
tion as

For i = N : 1

x
(m+1)
i =

1

Kii

(
gi −

i−1∑
j=1

Kijx
(m)
j −

nel∑
j=i+1

Kijx
(m+1)
j

)
End

4.4 Numerical Results

In this section we discuss some numerical results for the optimal control problem gov-
erned by convection-diffusion PDEs by applying the multigrid methods. Then, we
will also apply the Downwind Numbering algorithm discussed in chapter 3 for single
state equations. Although the algorithm works well for single equations, especially
for small smoothing iteration numbers, it does not address the same effectivity for the
optimal control problems due to the structure of the optimality system.

In numerical examples, we use five levels of meshes where the coarsest and finest
meshes have 8 and 2048 triangular elements, respectively. The penalty parameter in
the SIPG method is chosen as σ = 6 on the interior edges and σ = 12 on the boundary
edges. The stopping criterion is chosen as the ratio of the difference in error of the last
two consecutive state variable estimates to the error of the initial state variable being
less than 10−8.

We consider an optimal control problem of the form:

min
1

2
||y − yd||2L2(Ω) +

ω

2
||u||2L2(Ω)

subject to
−ε∆y + β · ∇y + ry = f + u, in Ω,

y = 0, on ∂Ω,

where Ω = (0, 1)2, β = (1/
√

2, 1/
√

2)T , r = 0, and ω = 10−2. The source function f
and the desired state yd are chosen such that the optimal state y, the optimal control u,
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and the optimal adjoint p satisfy

y(x1, x2) = η(x1)η(x2),

u(x1, x2) =
µ(x1)µ(x2)

ω
,

p(x1, x2) = µ(x1)µ(x2),

where

η(z) = z − (exp((z − 1)/ε)− exp(−1/ε))

(1− exp(−1/ε))
,

µ(z) = 1− z − (exp(−z/ε)− exp(−1/ε))

(1− exp(−1/ε))
.

We test the multigrid algorithm for various diffusion parameter ε. In the first scenario,
we chose the parameter as ε = 1. We compare the results from applying different
types of smoothers in the multigrid algorithm. Table (4.1)-(4.2 display the iteration
number of multigrid for different pre- and post-smoothing steps. The refinement level
and number of smoothing steps are denoted by k and m. Block forward Gauss-Seidel
as a pre-smoother and block backward Gauss-Seidel as a post-smoother yields slightly
better results. It is an expected result for symmetric smoothing, i.e., a forward block
Gauss-Seidel as a pre-smoother and a backward block Gauss-Seidel as a post-smoother
[49]. Figure 4.1 illustrates the optimal state solution and the optimal control solution
obtained via multigrid method with 2 steps of forward block Gauss-Seidel as a pre-
smoother and 2 steps of backward block Gauss-Seidel as a post-smoother on the mesh
with 2048 triangular elements, where ε = 1.

Figure 4.1: The optimal state solution and the optimal control solution obtained via
multigrid method with 2 steps of forward block Gauss-Seidel as a pre-smoother and
2 steps of backward block Gauss-Seidel as a post-smoother on the mesh with 2048
triangular elements.
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Table 4.1: The number of V-cycle iterations as functions of refinement level k and
number of smoothing steps m. The pre-smoothing and post-smoothing are chosen as
block forward Gauss-Seidel and block backward Gauss-Seidel, respectively.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 20 13 11 9 8 7 8 7 7 6
k=2 23 14 12 10 9 9 8 8 8 7
k=3 14 14 11 10 9 9 8 8 8 7
k=4 16 12 11 9 9 8 8 7 7 7

Table 4.2: The number of V-cycle iterations as functions of refinement level k and
number of smoothing steps m. Both pre- and post-smoothing are block forward Gauss-
Seidel.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 23 16 15 13 12 10 9 9 8 7
k=2 31 19 16 14 13 12 11 10 9 9
k=3 34 20 16 14 13 12 11 11 10 10
k=4 35 19 16 14 12 11 11 10 10 10

We now apply the Downwind Numbering algorithm [11] for the optimal control prob-
lems. Table (4.3)-(4.4) show the numerical results of the algorithm for different pre-
post-smoothing. However, we observe that there is no gain of the downwind algorithm
for optimal control problems.

Table 4.3: The number of V-cycle iterations for Downwind Numbering as functions
of refinement level k and number of smoothing steps m. The pre-smoothing and
post-smoothing are chosen as block forward Gauss-Seidel and block backward Gauss-
Seidel, respectively.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 27 17 15 13 12 10 9 9 8 7
k=2 37 21 16 13 12 11 10 10 10 9
k=3 43 22 17 14 13 12 11 11 10 10
k=4 44 21 16 14 13 12 11 10 10 10
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Table 4.4: The number of V-cycle iterations for Downwind Numbering as functions of
refinement level k and number of smoothing steps m. Both pre- and post-smoothing
are block forward Gauss-Seidel.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 24 15 15 13 12 10 9 9 8 7
k=2 28 19 16 14 13 10 11 10 10 9
k=3 28 16 15 13 12 12 11 11 10 10
k=4 22 14 14 13 12 11 11 10 10 10

In the second scenario, we chose the diffusion parameter as ε = 10−3. Similar re-
sults are displayed in Table (4.5-4.8) for various pre- post-smoothing. We observe that
the iteration number of multigrid algorithm decreases for small number of diffusion
parameter. There is also a slight benefit of preserving the symmetry in smoothers ap-
plied within multigrid solvers. Further, the proposed downwind algorithm in chapter
3 does not produce better results as expected for the optimal control problems. Figure
4.2 illustrates the optimal state solution and the optimal control solution obtained via
multigrid method with 2 steps of forward block Gauss-Seidel as a pre-smoother and
2 steps of backward block Gauss-Seidel as a post-smoother on the mesh with 2048
triangular elements, where ε = 10−3. Notice that, both the state and the control solu-
tions exhibit boundary layers in Figure 4.2, while being smoother in the interior part.
In order to achieve smoother approximations on the boundary, we need to refine our
mesh even more; however, using uniform refinement also results in refinement for the
triangles that the approximation is close enough to the exact solution, which is unnec-
essary. That is why, for problems with boundary layers, the adaptive mesh refinement
[82, 84] can be an efficient alternative to uniform refinement, in order to prevent the
unnecessary increase in the degrees of freedom.

Table 4.5: The number of V-cycle iterations as functions of refinement level k and
number of smoothing steps m. The pre-smoothing and post-smoothing are chosen as
block forward Gauss-Seidel and block backward Gauss-Seidel, respectively.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 11 7 5 4 4 3 3 3 3 3
k=2 12 9 7 6 5 5 4 4 4 3
k=3 11 6 6 7 7 6 6 5 5 4
k=4 10 6 7 5 7 6 5 6 5 6
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Figure 4.2: The optimal state solution and the optimal control solution obtained via
multigrid method with 2 steps of forward block Gauss-Seidel as a pre-smoother and
2 steps of backward block Gauss-Seidel as a post-smoother on the mesh with 2048
triangular elements, where ε = 10−3.

Table 4.6: The number of V-cycle iterations as functions of refinement level k and
number of smoothing steps m. Both pre- and post-smoothing are block forward Gauss-
Seidel.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 16 9 6 5 4 3 4 3 3 3
k=2 17 12 10 8 6 6 6 5 5 4
k=3 22 12 9 9 9 8 7 7 7 6
k=4 23 14 10 9 9 8 8 8 7 8

Table 4.7: The number of V-cycle iterations for Downwind Numbering as functions
of refinement level k and number of smoothing steps m. The pre-smoothing and
post-smoothing are chosen as block forward Gauss-Seidel and block backward Gauss-
Seidel, respectively.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 13 8 5 5 4 3 3 3 3 2
k=2 19 8 7 6 5 4 4 4 4 4
k=3 100 7 7 6 5 5 5 5 5 5
k=4 30 7 8 6 5 5 5 5 5 4
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Table 4.8: The number of V-cycle iterations for Downwind Numbering as functions of
refinement level k and number of smoothing steps m. Both pre- and post-smoothing
are block forward Gauss-Seidel.

m=2 m=4 m=6 m=8 m=10 m=12 m=14 m=16 m=18 m=20
k=1 17 9 6 5 4 4 4 3 3 3
k=2 30 12 8 7 6 6 5 5 4 4
k=3 22 10 9 7 7 6 5 5 4 4
k=4 16 11 7 7 7 6 6 6 6 6
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this thesis we have studied the development and application of multigrid methods for
linear-quadratic elliptic convection dominated optimal control problems using discon-
tinuous Galerkin (DG) methods. We chose DG methods for their superiority over other
discretization methods in terms of geometric flexibility, the allowance for different or-
der of approximation to be used on different elements in the mesh in a straightforward
manner, and achieving higher-order accuracy through the local elements. However,
the drawback of the DG methods is the increase in the total degrees of freedom, i.e.,
larger systems to be solved. In order to deal with this drawback, we chose multigrid
methods as our solver, as such methods proved themselves as efficient iterative solvers
for elliptic partial differential equations (PDEs).

In order to reduce the required number of multigrid V-cycle iterations for solutions
of convection-diffusion PDEs with dominating convection, we adopted a reordering
technique from [11], called Downwind Numbering. We presented the implementation
of Downwind Numbering algorithm for systems resulting from DG discretizations.
Using Downwind Numbering algorithm we ordered the stiffness matrix of convection-
diffusion equations such that the dominating entries appeared exclusively in the lower
triangular part. It is well known that for a system Ax = b, where A is a lower trian-
gular matrix, one step of Gauss-Seidel iteration is an exact solver for any initial ap-
proximation. That is why Downwind Numbering algorithm performed efficiently for
the solutions of the convection-diffusion equations, as shown in Section 3.5. However,
we did not discuss convection-diffusion equations with cycles in convection matrices
since they also require an implementation of graph theory.

We then extended the discussion of multigrid methods to optimal control problems
by redefining the transfer operators and smoothing operators to suit discrete optimal-
ity systems that result from discretizations of the optimal control problems governed
by convection-diffusion equations. However, for the optimal control problems, the
multigrid method coupled with Downwind Numbering algorithm did not work as ef-
ficiently as they did for single convection-diffusion equations. One of the reason for
this inefficiency was two PDEs appearing in the optimality systems; the state equation
with convection β and the so-called adjoint equation with convection −β, which led
to two different triangular element orderings that are the reverses of each other. Fur-
ther, preserving symmetry in smoothing operators within multigrid iterations, i.e., us-
ing block forward Gauss-Seidel as pre-smoother and block backward Gauss-Seidel as
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post-smoother, proved itself slightly favorable over using block forward Gauss-Seidel
as both pre- and post-smoother. The reason why for this result can be the fact that the
optimality system being symmetric.
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