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ABSTRACT

INVESTIGATION OF FRACTIONAL BLACK SCHOLES OPTION PRICING
APPROACHES AND THEIR IMPLEMENTATIONS

Hergüner, Ecem

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

June 2015, 80 pages

One of the fundamental research areas in the financial mathematics is option pricing.
With the emergence of Black-Scholes model, the partial differential equations (PDE)
for option pricing have started to be used widely. PDEs are adopted for both finding
numerical and analytical solutions and developing new models for option pricing. One
of the significant PDE is fractional Black-Scholes PDE. Essentially, a PDE can become
non-local with fractionalization and this non-localization enables to expand the time
frame of that equation. Several fractional Black Scholes equations are proposed in
literature. The ones relevant to the topic of this thesis are summarized. The main
contribution of this thesis is the development of new fractional Black-Scholes PDE
through fractional heat equation and fractional Brownian motion. The new models are
evaluated for particular cases and correspondence with Black Scholes PDE is noticed.
Moreover, because the valuation of option is as necessary as the derivation of an option
valuation model, the explicit method is expanded to a fractional explicit method. The
new method is to find a numerical solution. The Fractional Black Scholes PDE is
solved by the proposed fractional explicit method and the solutions are compared with
the classical ones.

Keywords : Fractional Calculus, Fractional Brownian Motion, Fractional Black Sc-
holes PDE, Fractional Explicit Method
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ÖZ

KESİRLİ BLACK SCHOLES OPSİYON FİYATLANDIRMA
YAKLAŞIMLARININ İNCELENMESİ VE UYGULAMALARI

Hergüner, Ecem

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Haziran 2015, 80 sayfa

Opsiyon fiyatlama, finansal matematikteki en temel araştırma konularındann birisidir.
Black Scholes modelinden sonra kısmi diferansiyel denklemlerle opsiyon fiyatlamak
daha yaygın hale gelmiştir. Kısmi diferansiyel denklemler hem nümerik ve analitik
çözümle bulunmasına hem de yeni modeller geliştirilmesine olanak sağlamaktadır. En
önemli kısmi diferansiyel denklemlerden biri kesirli Black Scholes denklemidir. Bir
kısmi diferansiyel denklemi zamana göre kesirli hale getirmek onu zaman sınırlamasın-
dan çıkartır; bu da denklemin kısıtlı zaman aralığını genişletir. Literatürde, çeşitli
metotlar kullanılarak çok sayıda kesirli Black Scholes denklemi önerilmiştir. Bu öneri-
lerden tez konusuyla ilgili olanları incelenmiş ve özetlenmiştir. Bu tezin literatüre
katkısı kesirli ısı denklemi ve kesirli Brown hareketinden elde edilen iki yeni kesirli
Black Scholes denklemidir. Önerilen bu modeller, belirli durumlar için Black Scholes
denklemine karşılık gelmiştir. Diğer yandan, opsiyonun değerini bulmak, opsiyon fiy-
atlama modeli elde etmek kadar önemli olduğu için, ileri doğru farklar metodu kesirli
metoda genişletilmiştir. Bu yeni metodun amacı nümerik çözümler bulmaktır. Kesirli
Black Scholes denklemi, önerilen bu kesirli ileri doğru farklar metodu ile çözülmüş ve
çözümler, ileri doğru farklar metodu ile elde edilen çözümlerle karşılaştırılmıştır.

Anahtar Kelimeler : Kesirli Analiz,Kesirli Brown Hareketi, Kesirli Black Scholes Kısmi
Diferansiyel Denklemi, Kesirli İleri Doğru Farklar Metodu
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my education.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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CHAPTER 1

INTRODUCTION

In finance, a derivative is a contract whose value is determined according to an under-
lying asset. The derivatives are widely used especially for hedging which is basically
the insurance of the price movements. Options are one of the fundamental derivatives
which are commonly traded in the derivatives market. An option is a contract that its
buyer may buy or sell the underlying asset at an explicit price on or before the explicit
date. According to the expectations of the buyer, call and put options are traded. For
example, if the buyer has an expectation that the stock will go up, the call options are
traded for the right to buy at a specified price. If the buyer has an expectation that the
stock will go down, the put options are traded for the right to sell at a specified price.
According to the expiration date of the option, European and American options are
traded. A European option may be exercised only at the expiration date of the option.
An American option may be exercised at any time before the expiration date.

Option valuation is a topic of ongoing research in the academic and practical finance.
Although the option valuation has been studied since 19th century, the contemporary
approach is still based on the Black Scholes model, which was first published in 1973
and awarded the 1977 Nobel Prize in economics. [6] The Black Scholes model is used
to calculate the theoretical price of European put and call options where the underlying
stock price follows a geometric Brownian motion.

The Black Scholes equation is a second order partial differential equation in financial
mathematics which is fulfilled by the price of the European option.
The Black Scholes PDE for the European call or put on an underlying stock without
paying dividends is:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where V (S, t) is the price of European option as a function of stock price S and time
t, r is the risk-free interest rate, σ is the volatility of the stock.

For the European call option C(S, t) for S ∈ (0,∞) and t ∈ (0, T ), the initial and
boundary conditions of Black Scholes PDE are C(S, T ) = max(S−E, 0), C(0, t) = 0
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and C(S, t) ≈ S as S →∞ where C(S, T ) is the value of option at T when the option
matures.

In this thesis, fractional calculus is used to derive and analyze the Black Scholes
PDE. The fractional calculus is a branch of mathematics which is applicable for non-
integer powers of the differentiation operator. The arbitrary order derivatives are called
differintegrals. The non-integer order of differential operator was first presented by
Leibniz[19]. Later, Abel[1], Fourier[12], Lioville[20] and Riemann[30] made impor-
tant contributions to the literature. They defined and developed fractional integral and
differentiation. Especially, the integer order derivatives and integrals are widely used
for physical and geometric interpretations. But, an acceptable interpretation for differ-
integrals is missing in literature. Podlubny [29] shows that the geometric interpreta-
tion of fractional integration is “shadows on the walls” and its physical interpretation
is “shadows of the past.” [4]

Several authors proposed new approaches for derivation of fractional Black Scholes
PDE. In literature, Jafari, Khan, Kmar, Sayevand, Wei, Yıldırım [15], Jumarie [16],
Wyss [33] derived fractional Black Scholes PDE.

However, the question is why the fractional derivative is non-local? The fractional or-
der derivatives of a function are based on the values of the function over the entire range
but not on the value of a single point. The space fractional derivate is non-local and
it does not have a local meaning. Therefore, the boundary conditions are necessary to
find a valid interpretation. For time fractional derivatives, non-locality represents that
the properties of the curve should be taken into consideration over a large extend in
time. Hence, the system has a long term memory and the evaluation at a point depends
on the past values of the function. The fractional derivatives can be used for different
physical systems such as, diffusion equations, food engineering, robotics, control the-
ory and econophysics etc.[10]

Fractional calculus is recently used for the finance and stock market analysis. Because,
the historical information about the market can be included in the analysis. Moreover,
the stochastic calculus for fractional Brownian motion (fBm) has been widely used to
develop financial models for the same reason. fBm is an extension of the classical
Brownian motion.

In brief, the fractional order model is based on the historical data of the system. The
financial variables such as stock market prices need more long-term memory to fore-
cast future fluctuations better based on the past fluctuations. In financial markets, the
main aim is making profit by trading through the right estimations. The motivation
of this research is to build a robust financial model to make the right estimations by
employing long-term memory of the fractional calculus efficiently.

2



Chapter 2 gives a detailed introduction to fractional calculus. The definitions and prop-
erties of differintegrals are presented in the first two sections. In the third section,
Mittag-Leffler function is discussed, which is a necessary tool to be able to analyze
differintegrals. In the last section, Brownian motion is for following chapters to be
understood in the right context.

Chapter 3 presents five different approaches to derive fractional Black Scholes partial
differential equations. The preliminaries of Black Scholes PDE are given in the first
section, In between five approaches, we propose two new derivations by using frac-
tional heat equation and using fractional Brownian motion in the last two sections.

Chapter 4 provides the finite difference method. The explicit method is the most useful
one to find numerical solutions for Black Scholes PDE. The explicit method is given in
the first section. The consistency, convergence and stability of the explicit method are
discussed. In the last section, a fractional explicit method is proposed. This method
is applied to fractional Black Scholes PDE. Five different examples with the different
values of the variables in PDE are presented and the results are compared.

Chapter 5 concludes the research and gives an outlook of the future work.
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CHAPTER 2

PRELIMINARIES

Fractional calculus is a branch of mathematics which studies differintegrals. The sub-
ject of fractional calculus has gained popularity especially in the past decade because
mathematics is needed for engineering and scientific applications. In other words, dif-
ferintegrals can find practical solutions for many modern problems. In this chapter,
different definitions of differintegrals and their properties are given.

In addition, Mittag-Leffler function is needed to understand the usage of differintegrals.
In this chapter, Mittag-Leffler function is discussed.

Fractional Brownian motion is given at the end of chapter in order to make a fractional
and financial basis for the following chapters.

2.1 Definitions for Differintegrals

In this section, the most commonly used definitions of differintegrals are given which
are Grünwald-Letnikov definition, Riemann-Liouville definition, Riemann definition,
Laplace transform for differintegral, Caputo definition of fractional derivative and
Riesz definition. For an extensive discussion of differintegrals, see Bayın [5] and Old-
ham and Spanier [26].

2.1.1 Notation for Differintegrals

For n is integer, the common notations for n-th order derivative of a function f(x) at x
are as follows:

dnf(x)

dxn
= f (n)(x) = Dn

xf(x).

Similarly, when the integral considered as inverse of derivative, the notations for n-th
integral of a function f(x) at x are as follows:

d−nf(x)

dx−n
= f (−n)(x) = D−nx f(x).

5



It is common to use q when the power n is real or complex number. Therefore, com-
bining derivative and integral definitions for arbitrary q gives

dqf(x)

dxq
= f (q)(x) = Dq

xf(x).

Remark 2.1. Note that when a is lower limit for a < x, the notation for differintegral
is as follows:

aD
q
xf(x) =

dqf

d(x− a)q

2.1.2 Grünwald-Letnikov Definition of Differintegrals

Grünwald and Letnikov defined fractional differintegral in 1868 as limit of a sum
which is generalized form of definition of differentiation and successive integration
for arbitrary q numbers.

Definition 2.1. [5] Grünwald-Letnikov q-th order differintegral for a continuous func-
tion f(x) is given

aD
q
xf(x) =

dqf

d(x− a)q
= lim

N→∞

{(
x−a
N

)−q
Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f

(
x− j

(
x− a
N

))}
.

(2.1)

Here, the expression a is lower limit for a < x and N represents the number of seg-
ments which the interval (x− a) divided into.

It is worth noting that the number q in the above definition can takes all values. Fur-
thermore, the main property of this definition is consisting only of the values of the
function. There is no need for derivatives and integrals.

Proposition 2.1. The Grünwald-Letnikov definition of differintegral is obtained by ex-
tending integer n to arbitrary q in definitions of derivative and integral.

Proof. Let N be the number of segments which the interval (x − a) divided into by
definition. Then let us define δNx as follows:

δNx =
x− a
N

, for N = 1, 2, 3, .....

The following definition of dnf
d(x−a)n

is derived from the definition of a derivative and
for the coefficients, binomial expansion is considered as:

dnf

d(x− a)n
= lim

N→∞

{
(δNx)−n

N−1∑
j=0

(−1)j
(
n

j

)
f(x− j(δNx))

}
.

6



The following definition of d−nf
d(x−a)−n is derived from the expression for n successive

integrals and Riemann sum as:

d−nf

d(x− a)−n
= lim

N→∞

{
(δNx)n

N−1∑
j=0

(
j + n− 1

j

)
f(x− j(δNx))

}
.

The Binomial expansions in the above definitions can be expressed as follows using
Gamma functions

(−1)j
(
n

j

)
=

(
j + n− 1

j

)
=

Γ(j − n)

Γ(−n)Γ(j + 1)
. (2.2)

Note that Equation (2.2) is valid for integer numbers n and noninteger numbers q and
the proof of the equation is in Appendix B.

It follows easily that a unified definition is possible for both positive and negative
integers. The Grünwald-Letnikov definition can be obtained by extending integer n to
real or even complex numbers q:

dqf

d(x− a)q
= lim

N→∞

{
(δNx)−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f(x− jδNx)

}
.

2.1.3 Riemann-Liouville Definition of Differintegral

Riemann and Liouville defined fractional differintegral in 1832 from an integral defi-
nition.

Definition 2.2. [5] Riemann-Liouville definition of q-th order differintegral for a con-
tinuous function f(x) is expressed as follows:

for ∀q < 0:

aD
q
xf(x) =

dqf

d(x− a)q
=

1

Γ(−q)

∫ x

a

(x− ξ)−q−1f(ξ)dξ,

for q − n < 0 and ∀q > 0:

aD
q
xf(x) =

dqf

d(x− a)q
=

dnf

d(x− a)n

(
1

Γ(n− q)

∫ x

a

(x− ξ)−(q−n)−1f(ξ)dξ

)
.

where the expression a is lower limit for a < x and n is an integer number.
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Remark 2.2. Riemann-Liouville definition of differintegral can be derived by extend-
ing Cauchy’s integral formula for n-th order

f (−n)(x) =

∫ x

a

∫ xn

a

...

∫ x3

a

∫ x2

a

f(x1)dx1...dxn−1dxn =
1

(n− 1)!

∫ x

a

(x− ξ)n−1f(ξ)dξ.

Theorem 2.2. Riemann-Liouville definition and Grünwald-Letnikov definition of dif-
ferintegrals are equal

{
dqf

d(x− a)q

}
Riemann−Liouville

=

{
dqf

d(x− a)q

}
Grunwald−Letnikov

.

Proof. See [5].

It is worth to note that Grünwald-Letnikov and Riemann-Liouville definitions are the
most common and basic definitions in literature. Besides, there are several other defi-
nitions which are stated in following sections.

2.1.4 Riemann Definition of Differintegral

Definition 2.3. Riemann definition of qth order differintegral for functions as f(x) =
xp and p > −1 is

dqxp

dxq
=

Γ(p+ 1)

Γ(p− q + 1)
xp−q,

where q takes all the values.

Remark 2.3. The Riemann definition of differintegrals is a generalization of the for-
mula for positive integer m and n

dnxm

dxn
=

(m)!

(m− n)!
xm−n.

2.1.5 Laplace Transform for Differintegral

Definition 2.4. The qth order differintegral of a function f(x) at a point x can be de-
fined by using Laplace Transform as:

for ∀ q < 0:

dqf

dxq
= L−1(sqf̃(s)),

8



for ∀ q > 0 and n− 1 < q < n:

dqf

dxq
= L−1

(
sqf̃(s)−

n−1∑
k=0

sk
dq−1−kf

dxq−1−k (0)

)
,

where f̃(s) is Laplace transform of f(x).

Theorem 2.3. Riemann-Liouville definition and definition of differintegral by Laplace
Transform are equal{

dqf

d(x− a)q

}
Riemann−Liouville

=

{
dqf

d(x− a)q

}
Laplace

Proof. See [5].

2.1.6 Caputo Definition of Fractional Derivative

Caputo defined fractional derivative in 1960s, using Laplace transform. This definition
is widely used, especially for viscoelasticity problems.

Definition 2.5. Caputo definition of qth order differintegral of a function f(x) at a
point x for 0 < q < 1:

dqf

dxq
=

1

Γ(1− q)

∫ x

0

(x− x́)−q
(
df(x́)

dx́

)
dx́

Note that since it is valid for 0 < q < 1, this definition is given only for derivative.

Theorem 2.4. The relationship between Riemann-Liouville definition and Caputo def-
inition for 0 < q < 1 is as follows:{

dqf

d(x− a)q

}
R−L
− x−q

Γ(1− q)
f(0) =

{
dqf

d(x− a)q

}
Caputo

.

Proof. See [5].

2.1.7 Riesz Definition of Differintegral

Riesz definition of differintegrals is commonly used in applications which is derived
using Fourier transform.
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2.1.7.1 Riesz Definition of Fractional Integral

Definition 2.6. Riesz Definition of qth order fractional integral for a function f(x) at
a point x for q > 0 and q 6= 1, 3, 5, ...:

d−qf

dx−q
=
−∞D

q
x +∞ D

q
x

2 cos
(
qπ
2

) f(x),

where −∞Dq
x and ∞Dq

x are Riemann-Liouville differintegrals for lower limits−∞ and
∞

2.1.7.2 Riesz Definition of Fractional Derivative

Definition 2.7. Riesz definition of qth order fractional derivative for a function f(x) at
a point x for 0 < q ≤ 2 and q 6= 1:

dqf

dxq
= −−∞D

q
x +∞ D

q
x

2 cos
(
qπ
2

) f(x),

where −∞Dq
x and ∞Dq

x are Riemann-Liouville differintegrals for lower limits−∞ and
∞
Theorem 2.5. [5] If Dk

xf(0) = 0 for k = 0, 1, 2, ..., n−1 then definitions of Riemann-
Liouville, Grünwald-Letnikov, Riemann, Laplace, Caputo and Riesz are all agree.

2.2 Properties of Differintegrals

Linearity, homogeneity and scale transformation of differintegrals, differintegral of
a series and composition of differintegrals are the most useful properties and listed
below. Leibniz Rule is a product rule for differintegrals. These properties are widely
used for derivation of new differintegrals.

• Linearity of q-th order differintegrals can be expressed as:

dq(f1 + f2)

dxq
=
dqf1

dxq
+
dqf2

dxq
.

• Homogeneity of q-th order differintegrals can be expressed as:

dq(C0f)

dxq
= C0

dqf

dxq
.

• Scale transformation of a function for q-th order differintegrals can be expressed
as:

dqf(γx)

dxq
= γq

dqf(γx)

d(γx)q
.

10



• In order to differintegrate q-th order of functions with power series, Riemann
definition can be used as:

dq

d(x− a)q

∞∑
j=0

aj(x− a)p+
j
n =

∞∑
k=0

aj
Γ(p+ j

n
+ 1)

Γ(p+ j
n
− q + 1)

(x− a)p+
j
n
−q.

• Composition of q-th order differintegrals is as follows:

dq

d(x− a)q

(
dQf

d(x− a)Q

)
=

dq+Q

d(x− a)q+Q
.

However, it is valid under certain condition that is

f − d−Q

d(x− a)−Q

(
dQf

d(x− a)Q

)
= 0.

Since the general rule for composition of differintegrals for noninteger q and Q
is

dq

d(x− a)q

(
dQf

d(x− a)Q

)
=

dq+Q

d(x− a)q+Q

− dq+Q

d(x− a)q+Q

{
f − d−Q

d(x− a)−Q

(
dQf

d(x− a)Q

)}
.

• Leibniz Rule is to differintegrate of the qth order of the multiplication of two
functions as:

dq(f.g)

d(x− a)q
=
∞∑
j=0

(
q

j

)
dq−j(f)

d(x− a)q−j
dj(g)

d(x− a)j
.

where
(
q
j

)
can be calculated by gamma functions as:(

q

j

)
=

Γ(q + 1)

Γ(q − j + 1)Γ(j + 1)
. (2.3)

2.3 The Mittag-Leffler Function

The Mittag-Leffler function plays an important role for representing solutions of frac-
tional order partial differintegral equations and fractional integral equations. Moreover,
Mittag-Leffler function found widespread usage in applications in many branches of
science.

Definition 2.8. [21] Mittag-Leffler function is defined for α > 0 as follows:

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
.
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Remark 2.4. The Mittag-Leffler function turns out to be exponential function for α =
1. So the exponential function is a specific form of an infinite series

E1(x) =
∞∑
k=0

xk

Γ(k + 1)
=
∞∑
k=0

xk

k!
= ex.

Figure 2.1: Mittag-Leffler function for α = 1

Figure 2.2: Mittag-Leffler function of (−x) for α = 1, 2 and 3.
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Remark 2.5. Extraordinary differential equations (Fractional order differintegral equa-
tions) can be given as follows:

dqf(x)

dxq
= F (x),

where q is any number, F (x) is a given function and f(x) is unknown function.

Proposition 2.6. For constant λ and positive integer n the differential equation is

dnx(t)

dtn
= λnx(t), (2.4)

and has the solution

x(t) = x0En((λt)n),

where (En) is the Mittag-Leffler function.

For constant λ and arbitrary number q extraordinary differential equation is

dqx(t)

dtq
= λqx(t) (2.5)

and has the solution

x(t) = x0Eq((λt)
q).

Note that Equation (2.5) is fractional extension of Equation (2.4).

2.4 Brownian Motion

In order to construct a basis for the fractional Brownian motion and Itô process, the
following section will be useful. Since, not only fractional calculus but also stochastic
calculus for the fractional Brownian motion is used for derivation of the new fractional
financial option pricing models, fractional Brownian motion is needed.

2.4.1 Standard Brownian Motion

Weiner process also called standard Brownian motion plays an important role in math-
ematics, economics, and applied mathematics especially in stochastic calculus.

Definition 2.9. [18] A real valued one dimensional Brownian motion (Wt)t≥0 is a
continuous time stochastic process with the following properties

• W0 = 0,
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• Wt has independent increments

Wt −Ws ≈ N(0, t− s),

where N(µ, σ2) denotes the normal distribution with expected value µ and vari-
ance σ2,

• t→ Wt has a continuous path.

Remark 2.6. Standard Brownian motion is a centered Gaussian process. For Wt is a
standard Brownian motion expectation and variance of (Wt)t≥0 are

E(Wt) = 0,

V ar(Wt) = t.

Figure 2.3: Standard Brownian Motion for drift 0 and diffusion coefficient 1

Stochastic differential equation is a differential equation which has stochastic process.
Also it has a solution which is itself a stochastic process.

Definition 2.10. Let Wt be a standard Brownian motion, Xt is an R-valued Itô process
and a(Xt, t) is drift coefficient and b(Xt, t) is the diffusion term.

Then the definition of stochastic differential equation (SDE) is

dXt = a(Xt, t)dt+ b(Xt, t)dWt.

Definition 2.11. (Geometric Brownian Motion)[18] A stochastic differential equation
under risky probability measure P of the form

dSt = µStdt+ σStdWt. (2.6)

is called geometric Brownian motion where St is stock price and µ and σ are constants.
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Remark 2.7. The solution of geometric Brownian motion is

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
,

where S0 is the initial value of the asset price.
Remark 2.8. The expectation of a geometric Brownian motion St is

E(St) = S0e
µt.

The variance of a geometric Brownian motion St is

V ar(St) = S0
2e2µt(eσ

2t − 1).

Figure 2.4: Geometric Brownian Motion for µ = 1 and σ = 0.1

Brownian motion W̃t under risk neutral probability measure P̃, where r is the risk free
rate, is as follows:

W̃t =
µ− r
σ

t+Wt.

Therefore, Equation (2.6) under P̃ is

dSt = rStdt+ σStdW̃t.

Lemma 2.7. (Itô Lemma) [18] Let Xt be an Itô process where Xt0 = X0

Xt = X0 +

∫ t

t0

Ksds+

∫ t

t0

HsdWs,
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and let f be a twice continuously differentiable function. Then the Itô Lemma is stated
as follows:

f(Xt, t) = f(X0, 0) +

∫ t

0

f
′

s(Xs, s)ds+

∫ t

0

f
′

x(Xs, s)dXs (2.7)

+
1

2

∫ t

0

f
′′

xx(Xs, s)d < X,X >s,

where quadratic variation is

d < X,X >s= H2
sds.

2.4.2 Fractional Brownian Motion

Fractional Brownian motion (fBm) is a generalization of Brownian motion which has
following definition

Definition 2.12. [14] fBm; B(H)(t), for t ≥ 0 and with Hurst index H ∈ (0, 1) is a
centered Gaussian process, and has the following covariance function

E[BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H + |t− s|2H

)
.

Remark 2.9. [27] For different values of H, properties of fBm are as follows:

1. If H = 1
2
, fBm is a standard Brownian Motion.

2. If H > 1
2
, then the increments of the process are positively correlated. In other

words, the times series has persistent behavior. Also, fBm has long-range de-
pendence, implying that it has long memory.

3. If H < 1
2
, then the increments of the process are negatively correlated. In other

words, the times series has antipersistent behavior.

16



Figure 2.5: Fractional Brownian Motion for H = 0.7

Figure 2.6: Fractional Brownian Motion for H = 0.3

Properties of fBm

• BH(0) = 0.

• The expectation of fBm is

E[BH(t)] = 0 ∀t > 0.

17



• The variance of fBm is

V ar[BH(t)] = t2H .

• If H 6= 1
2
, then fBm is non-Markovian and is not a semimartingale.

• The process is self-similar

BH(αt) ≈ |α|HBH(t).

• fBm has stationary increments

BH(t)−BH(s) ≈ BH(t− s).

Proposition 2.8. [27] Fractional stochastic differential equation under P for constant;
x, drift µ and volatility σ is given as with the initial condition S(0) = x > 0

dS(t) = µS(t)dt+ σS(t)dBH(t). (2.8)

Then, the solution of Equation (2.8) is given by

S(t) = x exp

(
σBH(t) + µt− 1

2
σ2t2H

)
:

Remark 2.10. Fractional Brownian motion B̃H(t) under risk neutral probability mea-
sure P̃ where r is the risk free rate is as follows:

B̃H(t) =
µ− r
σ

t+BH(t).

The fractional stochastic differential equation (2.8) under P̃ is

dSt = rStdt+ σStdB̃
H(t).

Theorem 2.9. (Fractional Itô formula)[14] Let H ∈ (0, 1). Let f(S, x) : R× R→ R
belongs to C1,2(R×R) and f(t, BH(t)) ,

∫ t
0
∂f
∂s

(s, BH(s))ds and
∫ t

0
∂2f
∂x2

(s, BH(s))s2H−1ds
belong to L2(P).

Then fractional Itô formula is presented as follows:

f(t, BH(t)) = f(0, 0) +

∫ t

0

∂f

∂s
(s, BH(s))ds+

∫ t

0

∂f

∂x
(s, BH(s))dBH(s)

+H

∫ t

0

∂2f

∂x2
(s, BH(s))s2H−1ds.
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Remark 2.11. For following stochastic differential equation

dSt = µStdt+ σStdB
H(t),

[14] The quadratic variation of St is given by:

d < S, S >t= S2
t 2Hσ

2t2H−1dt.

Note that Brownian motion is presented in detailed in this section. For further details
on the properties of fBm, see [14].
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CHAPTER 3

FRACTIONAL BLACK SCHOLES APPROACHES

3.1 Preliminaries

Black Scholes equation is a second order partial differential equation in financial math-
ematics which estimates the price of the European option under the Black Scholes
Model (1973). The model is awarded Nobel Prize in Economics in 1997 and widely
used in option pricing and risk elimination since then.

Definition 3.1. For European call or put options on an underlying stock paying no
dividends, Black Scholes PDE is stated as follows:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (3.1)

where V (S, t) is the price of European option as a function of stock price S and time
t, and r is the risk-free interest rate, σ is the volatility of the stock.

The main point of the Black Scholes formula is that there is one price of the option.
One can eliminate risk by hedging by buying or selling the underlying asset.

Remark 3.1. Derivation of Black Scholes PDE by using Itô formula in Equation (2.7)
and geometric Brownian motion (2.6) is on Appendix A

Remark 3.2. For European call option initial and boundary condition of Black Scholes
PDE for S ∈ (0,∞) and t ∈ (0, T ) is

C(S, T ) = max(S − E, 0),

C(0, t) = 0,

C(S, t) ≈ S as S →∞,

whereE is the strike price,C(S, T ) is value of the option at T when the option matures.

Proposition 3.1. The solution of Black Scholes PDE in Equation (3.1) for European
call option C(S, t) with the initial and boundary conditions in Remark 3.2 is

C(S, t) = SN(d1)− Ee−r(T−t)N(d2),
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where

d1 =
ln
(
S
E

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

,

d2 =
ln
(
S
E

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

,

and

N(d) =
1√
2π

∫ d

−∞
e−

1
2
x2dx.

Example 3.1. For a European call option with an exercise price of 95. The option has
the underlying stock at price 100$ which pays no dividends, and has a volatility of 50%
and the risk-free rate is 10%. For T = 0.25. By using MATLAB code in Appendix C,
we obtain the call option price as 13.6953$.

Example 3.2. For a European put option with an exercise price of 95. The option has
the underlying stock at price 100$ which pays no dividends, and has a volatility of 50%
and the risk-free rate is 10%. For T = 0.25. By using MATLAB code in Appendix C,
we obtain the put option price as 6.3497$.

In this chapter, different approaches to derive fractional Black Scholes PDE are given.
First of all, definitions of fractional order differintegral were given in previous chapter.
Then in order to fractionalize Black Scholes PDE, the term with time derivative can be
extended to non-integer order q.

Thus one can simply write time fractional Black Scholes PDE as follows

∂qV

∂tq
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Several authors proposed new approaches for derivation of fractional Black Scholes
PDE. In this chapter, three approaches for derivation of fractional Black Scholes PDE
are given. First approach [33] is using the equation of evolution for derivation of PDE.
In second approach [15], Laplace transform and homotopy perturbation method is used
to derive fractional Black Scholes PDE. The third approach [16] use fractional Taylor
series method .

Furthermore, we propose two new derivation of the Black Scholes PDE. First the
derivation of the PDE is by using time fractional heat equation. Second one is deriva-
tion of Black Scholes PDE using fractional Brownian motion and Itô formula.

3.2 Equation of Evolution Approach

In [33], fractional Black Scholes PDE is derived using equation of evolution. More-
over, the relation between the solutions of the classical and fractional equations is
proposed.
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The equation of evolution of U(x, t) with initial condition U(x, 0) = f(x) is as fol-
lows:

∂U(x, t)

∂t
= (L[x]U)(x, t), (3.2)

where L(x) is an operator of x.

We first take the derivative of Equation (3.2) and then restate the equation as;

U(x, t) = U(x, 0) +

∫ t

0

(L[x]U)(x, τ)dτ. (3.3)

Equation (3.3) is derived from the classical equation of evolution. Fractional extension
of Equation (3.3) is proposed in [33] as:

Uq(x, t) = U(x, 0) +
1

Γ(q)

∫ t

0

(t− τ)q−1(L[x]Uq)(x, τ)dτ. (3.4)

Theorem 3.2. [33] For A(S, τ) = C(S, t) where C(S, t) is European call option, τ is
a variable depending on T , σ2 and t, L(x) is an operator and c. Therefore, qth order
time fractional Black Scholes PDE is

∂qA

∂τ q
=
∂qA(S, 0)

∂τ q
+

∂q

∂τ q

(∫ τ

0

(τ − z)q−1

(
S2∂

2Aq
∂S2

+ λ0S
∂Aq
∂S
− λ0Aq

)
(S, z)

)
dz.

Proof. The original Black Scholes equation (3.1) for European call option is restated
with the boundary conditions C(S, T ) = max(S − E, 0):

∂C

∂t
+
σ2

2
S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0.

With the transformation t = T − 2
σ2 τ , C(S, t) = A(S, τ) and λ0 = 2r

σ2 the equation of
evolution is obtained with boundary conditions A(S, 0) = max(S − E, 0):

∂A

∂τ
= S2∂

2A

∂S2
+ λ0S

∂A

∂S
− λ0A = (L[S]A)(S, τ). (3.5)

According to Equation (3.3) A(S, τ) can be stated as:

A(S, τ) = A(S, 0) +

∫ τ

0

(L[S]A)(S, z)dz (3.6)

= A(S, 0) +

∫ τ

0

(
S2∂

2A

∂S2
+ λ0S

∂A

∂S
− λ0A

)
(S, z)dz.
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According to Equation (3.4) Aq(S, τ) is the fractional extension of A(S, τ) which can
be stated as

Aq(S, τ) = A(S, 0) +

∫ τ

0

(τ − z)q−1(L[S]Aq)(S, z)dz (3.7)

= A(S, 0) +
1

Γ(q)

∫ τ

0

(τ − z)q−1

(
S2∂

2Aq
∂S2

+ λ0S
∂Aq
∂S
− λ0Aq

)
(S, z)dz.

Finally, by taking the fractional derivative of Equation(3.7) we get the fractional Black
Scholes PDE

∂qA

∂τ q
=
∂qA(S, 0)

∂τ q
+

∂q

∂τ q

(∫ τ

0

(τ − z)q−1(L[S]Aq)(S, z)

)
dz

=
∂qA(S, 0)

∂τ q
+

∂q

∂τ q

(∫ τ

0

(τ − z)q−1

(
S2∂

2Aq
∂S2

+ λ0S
∂Aq
∂S
− λ0Aq

)
(S, z)

)
dz.

Corollary 3.3. [33] U(x, t) is solution of Equation (3.3) which is equation of evolu-
tion and Uq(x, t) is solution of its fractional extension in Equation (3.4). The relation
between U(x, t) and Uq(x, t) is given by

Uq(x, t) = t−q
∫ ∞

0

fq(t
−qz)U(x, z)dz,

where fq(z) is an entire function and can be represented as follows

fq(z) =
∞∑
k=0

(−1)k
1

Γ(1− q − qk)

zk

k!
,

where 0 < q < 1 and z ∈ R+.

Remark 3.3. The relationship between A(S, τ) in Equation (3.6) and Aq(S, τ) in equa-
tion (3.7) from Corollary 3.3 is

Aq(S, τ) = τ−q
∫ ∞

0

fq(λ
−qτ)A(S, τ)dτ.

Proposition 3.4. The solution of Equation (3.5) isA(S, τ). SinceA(S, τ) also satisfies
the Black Scholes PDE the solution can be obtained by same transformation as:

A(S, τ) = SN(d1)− Ee−λ0τN(d2),
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where

d1 = (2τ)−
1
2

[
ln

(
S

E

)
+ (λ0 + 1)

]
,

d2 = (2τ)−
1
2

[
ln

(
S

E

)
+ (λ0 − 1)

]
,

and

N(d) =
1√
2π

∫ d

−∞
e−

1
2
x2dx.

3.3 Laplace Homotopy Perturbation Approach

In [15], analytical solution of the fractional Black Scholes equation is calculated via
Laplace homotopy perturbation method, which is combined form of the Laplace trans-
form and the homotopy perturbation method.

Theorem 3.5. [15] Fractional Black Scholes PDE for 0 < q ≤ 1 for European option
V (x, t) is considered as:

∂qV

∂tq
=
∂2V

∂x2
+ (k − 1)

∂V

∂x
− kV, (3.8)

where V (x, 0) = max(ex − 1, 0) and k = 2r
σ2

Proposition 3.6. [15] The analytical solution of the Equation (3.8) is found using
Laplace transform and homotopy perturbation method as follows:

V (x, t) = lim
p→1

∞∑
i=0

piVi(x, t) = max(ex − 1, 0)Eq(−ktq) + max(ex, 0)(1− Eq(−ktq)),

where Eq(z) is the Mittag-Leffler function.

Remark 3.4. The solution in Proposition 3.6 is closed form solution and for q = 1 we
get the exact solution of the Black Scholes formula of Equation (3.8)

V (x, t) = max(ex − 1, 0)e−kt + max(ex, 0)(1− e−kt) (3.9)

3.4 Fractional Taylor’s Series Method

The Black Scholes equation is derived and it is claimed that in order to get the suitable
Black Scholes equation it is not sufficient to extend the time derivative to fractional
case [16]. Moreover, the solutions of these Black Scholes equations are obtained using
Lagrange technique.
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Theorem 3.7. [16] Fractional Black Scholes PDE is derived using new fractional Tay-
lor’s series of fractional order and Riemann-Liouville fractional derivative definitions.
The fractional Black Scholes PDE for European call option is

∂qC

∂tq
=

(
rC − rS ∂C

∂S

)
t1−q

(1− q)!
− q!

2
σ2S2∂

2C

∂S2
, (3.10)

with standard boundary conditions C(S, T ) = max(S − E, 0).

Proposition 3.8. The solution of the fractional Black Scholes equation (3.10)

C(x, t) =

∫ ∞
−∞

Ψ(x− v, T − t)C(v, T )dv, (3.11)

where Ψ(x, T − t) =

∫ ∞
−∞

eiξxEq(ξ
2(T − t)q)dξ,

for Eq(x) is Mittag-Leffler function.

Proof. In order to find the solution of Equation (3.10) first fractional heat equation is
obtained from fractional Black Scholes PDE

Ct
q(x, t) = −ρCxx(x, t), (3.12)

where ρ2 = (q!)σ
2

2
and C(x, T ) = E(ex − 1) for E(x) is Mittag-Leffler function.

Equation (3.11) is solution of Equation (3.12).

For detailed proof, see [16].

Note that, the theorems in the previous sections are approaches for derivation of frac-
tional Black Scholes PDE in literature. In the following sections, we propose new
fractional Black Scholes PDEs.

3.5 Heat Equation Approach

Derivation of fractional Black Scholes PDE using fractional heat equation is proposed
in this section. The definitions, properties and rules in previous chapter will be used.
First, heat equation is transformed to Black Scholes PDE by change of variables then
fractional Black Scholes PDE is obtained using same transformations.

3.5.1 Classical Heat Equation

The heat equation is a partial differential equation that is used to determine the change
in a function over time where the function is of space and time.
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Theorem 3.9. [28] Black Scholes PDE can be derived from heat equation using suit-
able transformations as:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

where V (S, t) is European option price, r is risk free rate and σ is volatility of the
stock.

Proof. The main idea of the proof is transformation of the heat equation to Black
Scholes equation. Thus, let us first state the heat equation for function u(x, τ)

∂u

∂τ
=
∂2u

∂x2
.

At first, the transformation is applied to the function u(x, τ) as u(x, τ) = e−(αx+βτ)v(x, τ).
Then we get

∂v

∂τ
=
∂2v

∂x2
− 2α

∂v

∂x
+ (α2 + β)v.

Second change of variables are for coefficients as α = 1−k
2

, β = − (1+k)2

4
and k = 2r

σ2 .
Then we obtain

∂v

∂τ
=
∂2v

∂x2
+

(
2r

σ2
− 1

)
∂v

∂x
− 2r

σ2
v.

Last transformations are for both the functions and variables v(x, τ) = V (S,t)
E

,
τ = σ2

2
(T − t) and x = ln

(
S
E

)
. Then we get

∂v

∂τ
=

1

E

∂V

∂t

(
− 2

σ2

)
,

∂v

∂x
=
S

E

∂V

∂S
,

∂2v

∂x2
=
S

E

∂V

∂S
+
S2

E

∂2V

∂S2
.

Finally, by substitutions and suitable regulations Black Scholes PDE is obtained as in
Equation(3.1)

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Theorem 3.10. Initial and boundary conditions of Black Scholes PDE for European
call option in Remark 3.2 can be obtained from the initial and boundary conditions of
heat equation.
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Proof. The initial and boundary conditions of heat equation for τ ∈
(

0, Tσ
2

2

)
and

x ∈ (−∞,∞) are

u(x, 0) = max (e
k+1
2
x − e

k−1
2
x, 0),

u(x, τ)→ 0 as x→ −∞,

u(x, τ) ≈ e
k+1
2 (x+ k+1

2
τ) as x→∞.

As in the proof of Theorem 3.9 the first change of variables are u(x, τ) = e−(αx+βτ)v(x, τ),
α = 1−k

2
, β = − (1+k)2

4
and k = 2r

σ2 . Then, we obtain for x ∈ (−∞,∞) , τ ∈
(

0, Tσ
2

2

)
:

v(x, 0) = max(ex − 1, 0),

v(x, τ)→ 0 as x→ −∞,
u(x, τ) ≈ ex as x→∞.

Second change of variables are v(x, τ) = C(S,t)
E

, τ = σ2

2
(T − t) and x = ln

(
S
E

)
.

Then, we get initial and boundary conditions of European call option for S ∈ (0,∞)
and t ∈ (0, T ) as in Remark 3.2

C(S, T ) = max(S − E, 0),

C(0, t) = 0,

C(S, t) ≈ S as S →∞,

where C(S, T ) is value of the option at T when option matures.

3.5.2 Fractional Heat Equation

Fractional Black Scholes PDE can be derived from fractional heat equation by us-
ing Riemann definition of differintegral, Liebniz rule and linearity and homogeneity
properties of differintegrals. Especially, this derivation is inspired from the original
derivation of Black Scholes PDE as in Theorem 3.9 since same transformations are
used.

Theorem 3.11. Time fractional Black Scholes PDE for European option price V (S, t)
which is derived from time fractional heat equation as:

−
∞∑
j=0
j 6=q

(
q

j

)
t+ T (j − q)
Γ(2− q + j)

(T − t)j−q
(
σ2

2

)j−q+1(
σ2 + 2r

2σ2

) 2j
q ∂q−jV

∂tq−j
(3.13)

+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.
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Proof. Time fractional heat equation is basically extending the time derivative to qth
order differintegral

∂qu

∂τ q
=
∂2u

∂x2
.

At first, the transformation is applied to function u as before u(x, τ) = e−(αx+βτ)v(x, τ).
Then we get:

∂q

∂τ q
(
e−(αx+βτ)v(x, τ)

)
=

∂2

∂x2

(
e−(αx+βτ)v(x, τ)

)
.

Since, there is a product of functions at the left hand side of the above equation, Liebniz
Rule (2.3) should be used in order to differintegrate. Then we obtain

∞∑
j=0

(
q

j

)
∂q−jv

∂τ q−j
∂j

∂τ j
(
e−αx−βτ

)
= e−αx−βτ

(
α2v − 2α

∂v

∂x
+
∂2v

∂x2

)

∞∑
j=0

(
q

j

)
∂q−jv

∂τ q−j
(−β)j = α2v − 2α

∂v

∂x
+
∂2v

∂x2

∞∑
j=0
j 6=q

(
q

j

)
∂q−jv

∂τ q−j
(−β)j +

∞∑
j=q

(
q

j

)
∂q−jv

∂τ q−j
(−β)j = α2v − 2α

∂v

∂x
+
∂2v

∂x2

∞∑
j=0
j 6=q

(
q

j

)
∂q−jv

∂τ q−j
(−β)j + v(−β)q = α2v − 2α

∂v

∂x
+
∂2v

∂x2

∞∑
j=0
j 6=q

(
q

j

)
∂q−jv

∂τ q−j
(−β)j =

(
α2 − (−β)q

)
v − 2α

∂v

∂x
+
∂2v

∂x2
.

Second change of variables are for coefficients such that −2α = k − 1, k = 2r
σ2 and

α2 − (−β)q = −k. Then, we get

∞∑
j=0
j 6=q

(
q

j

)
∂q−jv

∂τ q−j

(
1

2
+

r

σ2

) 2j
q

=
∂2v

∂x2
+

(
2r

σ2
− 1

)
∂v

∂x
− 2r

σ2
v. (3.14)

Last transformations are for both functions and variables;
v(x, τ) = V (S,t)

E
, τ = σ2

2
(T − t) and x = ln

(
S
E

)
which can be also written as S = Eex.
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In order to simplify the calculations let us start with the term ∂q−jv
∂τq−j on the left hand

side of Equation (3.14)

∂q−jv

∂τ q−j
=

1

E

∂q−jV

∂tq−j
∂q−jt

∂τ q−j
. (3.15)

Then, we need to find the term ∂q−jt
∂τq−j on the right hand side of Equation (3.15). Since

t = T − 2τ
σ2 we have

∂q−jt

∂τ q−j
=

∂q−j

∂τ q−j

(
T − 2τ

σ2

)

=
∂q−j

∂τ q−j
(T ) +

∂q−j

∂τ q−j

(
−2τ

σ2

)
from linearity

= T
∂q−j

∂τ q−j
(τ 0)− 2τ

σ2

∂q−j

∂τ q−j
(τ 1) from homogeneity

= T
Γ(0 + 1)τ 0−q+j

Γ(0− q + j + 1)
− 2

σ2

Γ(1 + 1)τ 1−q+j

Γ(1− q + j + 1)
from Riemann formula

= T
τ j−q

Γ(1− q + j)
− 2

σ2

τ 1−q+j

Γ(2− q + j)

=
T

Γ(1− q + j)

(
σ2

2
(T − t)

)j−q
− 2

σ2

(
σ2

2
(T − t)

)1−q+j

Γ(2− q + j)

=
1

Γ(1− q + j)

(
σ2

2
(T − t)

)j−q (
T − T − t

1− q + j

)
.

Therefore, Equation (3.15) is equal to the following equation

∂q−jv

∂τ q−j
=

1

E

∂q−jV

∂tq−j

(
σ2

2
(T − t)

)j−q
1

Γ(1− q + j)

(
t− Tq + Tj

1− q + j

)
.

Since we obtain the left hand side of Equation (3.14) we focus on the right hand side
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which is same as the one in original Black Scholes PDE.

∂v

∂τ
=

1

E

∂V

∂t

(
− 2

σ2

)
,

∂v

∂x
=
S

E

∂V

∂S
,

∂2v

∂x2
=
S

E

∂V

∂S
+
S2

E

∂2V

∂S2
.

Then, we get Equation (3.14) as follows

∞∑
j=0
j 6=q

(
q

j

)[
∂q−jV

∂tq−j

(
σ2

2
(T − t)

)j−q
t− Tq + Tj

Γ(2− q + j)

(
1

2
+

r

σ2

) 2j
q

]

= S2∂
2V

∂S2
+

2r

σ2
S
∂V

∂S
− 2r

σ2
V.

Finally, by multiplying both sides by −σ2

2
we obtain the proposed fractional Black Sc-

holes PDE as:

−
∞∑
j=0
j 6=q

(
q

j

)
t+ T (j − q)
Γ(2− q + j)

(T − t)j−q
(
σ2

2

)j−q+1(
σ2 + 2r

2σ2

) 2j
q ∂q−jV

∂tq−j

+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Remark 3.5. Fractional Black Scholes PDE of Equation (3.13) can be stated using
Gamma functions in Equation (2.3) as

−
∞∑
j=0
j 6=q

Γ(q + 1)

Γ(q − j + 1)Γ(j + 1)

t+ T (j − q)
Γ(2− q + j)

(T − t)j−q
(
σ2

2

)j−q+1(
σ2 + 2r

2σ2

) 2j
q ∂q−jV

∂tq−j

+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Then for different values q we obtain the following equations;

• For q = 1 we have original Black Scholes PDE of Equation (3.1)

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.
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• For q = 2 we have:(
1 +

2r

σ2

)
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

2r

σ2

∂V

∂t︸ ︷︷ ︸
Extra Term

+
∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV︸ ︷︷ ︸

Black Scholes PDE

= 0.

• For q = 1
2

we have:

−
∞∑
j=0

Γ
(

3
2

)
Γ
(

3
2
− j
)

Γ(j + 1)

t+ T
(
j − 1

2

)
Γ
(

3
2

+ j
) (T − t)j−

1
2

(
σ2

2

)j− 1
2
(
σ2 + 2r

2σ2

)4j
∂

1
2
−jV

∂t
1
2
−j

+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

Remark 3.6. Initial and boundary conditions of fractional Black Scholes PDE for Eu-
ropean call option are as in Theorem 3.10

C(S, T ) = max(S − E, 0),

C(0, t) = 0,

C(S, t) ≈ S as S →∞.

3.6 Fractional Brownian Motion and Itô Formula Approach

Fractional Black Scholes equation is derived by fractional Brownian motion and Itô
formula with the help of the preliminaries in previous chapter.

Theorem 3.12. Fractional Black Scholes PDE for European option price V (S, t) using
fractional Brownian motion B(H)(t) with Hurst index H ∈ (0, 1) and Itô formula with
quadratic variation containing H, as follows:

−rV +
∂V

∂t
+ Str

∂V

∂S
+Hσ2t2H−1S2

t

∂2V

∂S2
= 0,

where r is the risk free rate and σ is the volatility of the stock.

Proof. Initialy, we start derivation by using Itô formula of Equation (2.7) for V (S, t)

V (St, t) = V (S0, 0) +

∫ t

0

∂V

∂u
(Su, u)du+

∫ t

0

∂V

∂S
(Su, u)dSu (3.16)

+
1

2

∫ t

0

∂2V

∂S2
(Su, u)d < S, S >u .
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For quadratic variation in Equation (3.16) the equality d < S, S >t= S2
t 2Hσ

2t2H−1dt
in Remark 2.11 is used

V = V0 +

∫ t

0

(
∂V

∂u
+

1

2
S2
u2Hσ

2u2H−1∂
2V

∂S2

)
du+

∫ t

0

∂V

∂S
(Su, u)dSu. (3.17)

Fractional stochastic differential equation dSt = rStdt+σStdB̃
H(t) can be substituted

in Equation (3.17) as

V = V0 +

∫ t

0

(
∂V

∂u
+ Sur

∂V

∂S
+Hσ2u2H−1S2

u

∂2V

∂S2

)
du+

∫ t

0

∂V

∂S
SuσdB̃

H(u).

After taking the derivative we obtain

dV =

(
∂V

∂t
+ Str

∂V

∂S
+Hσ2t2H−1S2

t

∂2V

∂S2

)
dt+

(
∂V

∂S
Stσ

)
dB̃H(t). (3.18)

Since, Ṽ is the notation for option value for discounted asset price such that

Ṽ = e−rtV,

dṼ = −rte−rtV + e−rtdV.

By substitution of these variables in (3.18) we get

dṼ = e−rt
(
−rV +

∂V

∂t
+ Str

∂V

∂S
+Hσ2t2H−1S2

t

∂2V

∂S2

)
dt+

(
e−rt

∂V

∂S
Stσ

)
dB̃H(t).

Note that Ṽ is the martingale transform of discounted asset prices. Since S̃ is a mar-
tingale under P̃, then Ṽ is also martingale under measure P̃. Hence, by martingale
representation theorem [18], the Fractional Black Scholes PDE is

−rV +
∂V

∂t
+ Str

∂V

∂S
+Hσ2t2H−1S2

t

∂2V

∂S2
= 0.

Remark 3.7. For H = 1
2

we have classical Black Scholes PDE of Equation(3.1)

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
+ rSt

∂V

∂S
− rV = 0.

Proposition 3.13. The solution of fractional stochastic differential equation under risk
neutral measure P̃ is

St = S0 exp

(
rt− 1

2
σ2t2H + σB̃H(t)

)
,

where S(t) is price of a stock at time t.

Therefore for 0 ≤ t ≤ T the solution is

S(T ) = S(t) exp

(
r(T − t)− 1

2
σ2(T 2H − t2H) + σ(B̃H(T )− B̃H(t))

)
.
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Proof. Fractional stochastic differential equation for H ∈ (0, 1) under measure P̃ is

dSt = rStdt+ σStdB̃
H(t).

Itô formula of Equation (2.7) is applied for f(x) = ln(x)

ln(S(t)) = ln(S(0)) +

∫ t

0

1

S(u)
dS(u)− 1

2

∫ t

0

1

S2(u)
d < S, S >u

= ln(S(0)) +

∫ t

0

rdu+ σdB̃H(u)− 1

2

∫ t

0

1

S2(u)
σ22Hu2H−1du

= ln(S(0)) +

∫ t

0

(
r − σ2Hu2H−1

)
du+

∫ t

0

σdB̃H(u)

= ln(S(0)) + rt− 1

2
σ2t2H + σB̃H(t)

ln

(
S(t)

S(0)

)
= rt− 1

2
σ2t2H + σB̃H(t).

Therefore we obtain the solution of fractional stochastic differential equation as:

S(t) = S(0) exp

(
rt− 1

2
σ2t2H + σB̃H(t)

)
.

Furthermore for 0 ≤ t ≤ T the solution is

S(T ) = S(t) exp

(
r(T − t)− 1

2
σ2(T 2H − t2H) + σ(B̃H(T )− B̃H(t))

)
.

Theorem 3.14. For C(t, S(t)) is price of a European call option at time t

C(t, S(t)) = S(t)N(d1)− Ee−r(T−t)N(d2),

where E is strike price, T is maturity and d1 and d2 are as follows:

d1 =
ln( S

E
) + r(T − t) + 1

2
σ2(T 2H − t2H)

σ
√
T 2H − t2H

,

d2 = d1 − σ
√
T 2H − t2H

=
ln( S

E
) + r(T − t)− 1

2
σ2(T 2H − t2H)

σ
√
T 2H − t2H

,

where

N(t) =
1√
2π

∫ t

−∞
exp

(
−x

2

2

)
dx.
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Proof. See [14].

Remark 3.8. For H = 1
2

the solution becomes the one in Proposition 3.1:

d1 =
ln
(
S
E

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

,

d2 =
ln
(
S
E

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

.

Example 3.3. As in Example 3.1 for a European call option; K = 95$,S = 100$,
div = 0, σ = 0.5, r = 0.1 and T = 0.25. When we have the Hurst parameter as
H = 0.5, by using MATLAB code in Appendix C, we obtain the same call option
price as 13.6953$.

Example 3.4. As in Example 3.3 for a European call option; K = 95$,S = 100$,
div = 0, σ = 0.5, r = 0.1 and T = 0.25. When we have the Hurst parameter as
H = 0.7, by using MATLAB code in Appendix C, we obtain the call option price as
11.5116$. Or when we have the Hurst parameter as H = 0.3, we obtain the call option
price as 16.6061$.

Example 3.5. As in Example 3.2 for a European put option; K = 95$,S = 100$,
div = 0, σ = 0.5, r = 0.1 and T = 0.25. When we have the Hurst parameter as
H = 0.5, by using MATLAB code in Appendix C, we obtain the same put option price
as 6.3497$.

Example 3.6. As in Example 3.3 for a European put option; K = 95$,S = 100$,
div = 0, σ = 0.5, r = 0.1 and T = 0.25. When we have the Hurst parameter as
H = 0.7, by using MATLAB code in Appendix C, we obtain the put option price as
4.1661$. Or when we have the Hurst parameter as H = 0.3, we obtain the put option
price as 9.2606$.

Table 3.1: Comparison of European call and European put option prices for different
H values

H = 0.3 H = 0.5 H = 0.7
European Call 16.6061 13.6953 11.5116
European Put 9.2606 6.3497 4.1661
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CHAPTER 4

FINITE DIFFERENCE METHOD

Finite difference methods for derivatives are used to solve differential equations with
the approximation principle. In 1768, L. Euler studied finite difference methods in one
dimension of space, and in 1908, C. Runge extended it to dimension two. In 1950s,
since computers had become useful tools for complex problems, numerical application
of finite difference methods had developed. The principle of the methods is using
approximations of differential operators instead of differential quotients [13].

In this chapter, the most common finite difference method which is called the explicit
method is presented in order to solve the Black Scholes equation [3].

The approximations of differential operator based on Taylor series expansions of deriva-
tives. Suppose that the function f is C2 continuous in the neighborhood of x. For h > 0
the Taylor series expansion is

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +O(h3) (4.1)

Putting in different order the expansion of Equation (4.1) gives the forward difference
since the difference is in the forward direction

f ′(x) =
f(x+ h)− f(x)

h
+O(h2).

Therefore, the forward difference approximation is

∂f(x)

∂x
≈ f(x+ h)− f(x)

h
.

For h > 0, the Taylor series expansion is also written as:

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)−O(h3) (4.2)

Putting in different order the expansion of Equation (4.2) gives the backward difference
since the difference is in the backward direction

f ′(x) =
f(x)− f(x− h)

h
+O(h2).
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Therefore, the backward difference approximation is

∂f(x)

∂x
≈ f(x)− f(x− h)

h
.

In addition, by combining the forward and the backward difference approximations,
the central difference formula is obtained as

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

Therefore, the central difference approximation is

∂f(x)

∂x
≈ f(x+ h)− f(x− h)

2h
.

Then, Taylor series expansion is used also for higher-order central difference approxi-
mations. Making some rearrangements in (4.1) and (4.2) the central difference approx-
imation for second order derivative is

∂2f(x)

∂x2
≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

Moreover, for functions of two variables as f(x, y) for h = ∆x, [28] the forward
difference approximation for partial derivative fx(x, y) is

∂f(x, y)

∂x
≈ f(x+ h, y)− f(x, y)

h
.

The backward difference approximation for partial derivative fx(x, y) is

∂f(x, y)

∂x
≈ f(x, y)− f(x− h, y)

h
.

The central difference approximation for partial derivative fx(x, y) is the combination
of forward and backward difference approximations

∂f(x, y)

∂x
≈ f(x+ h, y)− f(x− h, y)

2h
.

The central difference approximation for second-order partial derivative fxx(x, y) is

∂2f(x, y)

∂x2
≈ f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
.

Finally, the central difference approximation for second-order partial derivative fxy(x, y)
is [3]

∂2f(x, y)

∂x∂y
≈ f(x+ h, y + k)− f(x, y + k) + f(x+ h, y) + f(x, y)

hk
.

where h = ∆x and k = ∆y.
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4.1 Explicit Method

This section mainly proposed to find the solution of Black Scholes PDE using finite
difference method. Explicit method is the most popular one within finite difference
methods. For derivation of explicit method backward difference approximation and
central difference approximation are used [3, 25, 28].

As we have stated, Black Scholes PDE is

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (4.3)

where V (S, t) is the price of European option as a function of stock price S and time
t, and r is the risk-free interest rate, σ is the volatility of the stock.

The boundary conditions for European call option can be given as

C(S, T ) = max (S − E, 0),

C(Smin, t) = 0,

C(Smax, t) = Smax − Ee−r(T−t),

where E is a strike price and Smin and Smax represents the minimum and maximum
values of stock price.

For derivation of explicit method, first domain of S and t will be discretized. The
intervals [Smin, Smax] and [t0, T ] will be divided into M and N parts.

∆t =
T − t0
M

for t0 ≤ t ≤ T ,

∆S =
Smax − Smin

N
for Smin ≤ S ≤ Smax.

Then, making some rearrangements the general notation for S and t are obtained as

ti = t0 + i∆t for i = 0, 1, ...,M,

Sk = Smin + k∆S for k = 0, 1, ..., N.

From now on, for the simplicity of the notation for points (Sk, ti), we denote the ap-
proximation of option price as

V (Sk, ti) ≈ wk,i,

The initial and boundary conditions for European call option in terms of wk,i, M and
N are

wk,M ≈ max(Sk − E, 0),

w0,i ≈ 0,

wN,i ≈ SN − Ee−r(tM−ti).
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Then, the backward and central difference approximations for the partial derivatives
∂V (Sk,ti)

∂ti
, ∂V (Sk,ti)

∂Sk
and the second-order derivative ∂2V (Sk,ti)

∂Sk
2 in Black Scholes PDE can

be written in terms of wk,i, ∆t and ∆S as follows

∂V (Sk, ti)

∂ti
≈ wk,i − wk,i−1

∆t
, (4.4)

∂V (Sk, ti)

∂Sk
≈ wk+1,i − wk−1,i

2∆S
, (4.5)

∂2V (Sk, ti)

∂Sk
2 ≈ wk+1,i − 2wk,i + wk−1,i

(∆S)2 . (4.6)

When we put backward and central difference approximations of partial derivatives of
Equations (4.4), (4.5) and (4.6) in Black Scholes PDE (4.3) we get

wk,i − wk,i−1

∆t
+
σ2

2
Sk

2wk+1,i − 2wk,i + wk−1,i

(∆S)2 + rSk
wk+1,i − wk−1,i

2∆S
− rwk,i = 0.

The terms αk, βk and γk for the simplicity of the notations and the preceding equation
can be written basically as

wk,i−1 = αkwk−1,i + βkwk,i + γkwk+1,i. (4.7)

for i = M,M − 1, ..., 1 and k = 1, ..., N − 1 and where the terms αk, βk and γk are

αk =
1

2
∆t

{
σ2

(
Sk
∆S

)2

− r Sk
∆S

}
,

βk = 1−∆t

{
σ2

(
Sk
∆S

)2

+ r

}
,

γk =
1

2
∆t

{
r
Sk
∆S

+ σ2

(
Sk
∆S

)2
}
.
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Figure 4.1: Molecules of explicit method

This figure shows the principle of the explicit method. The notation i is for time and
k is for stock price. It explains Equation (4.7). Note that on explicit method the
summation of the values of black dots on the i-th row with the coefficients αk, βk and
γk is equal to the value of black dots on the (i− 1)-th row and k-th column.

As in the vector form; w1,i,w2,i,...,wN−1,i can be written

w(i) =

 w1,i
...

wN−1,i


N−1×1

. (4.8)

When the equation (4.7) has been written for each i = M,M − 1, ..., 1, and k =
1, ..., N − 1, M × N equations occur. These can be collected for each i and with the
notation in the matrix of Equation(4.8) as follows:

w(i−1) = Aw(i) + y(i),

where A is a (N − 1×N − 1) matrix consists of the terms αk, βk and γk.

A =



β1 γ1 0 · · · 0 0
α2 β2 γ2 · · · 0 0
0 α3 β3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · βN−2 γN−2

0 0 0 · · · αN−1 βN−1


N−1×N−1

,

and the matrix y(i) is (N − 1× 1) matrix as:

y(i) =


α1w0,i

0
...
0

γN−1wN,i


N−1×1

.
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Example 4.1. As in Example 3.1, a European call option has an exercise price of 95.
The option has the underlying stock at price 100$ which pays no dividends and has a
volatility of 50% and the risk-free rate is 10% and T = 0.25.

Explicit method is used to obtain the call option price. For valuation, the parame-
ters should be chosen suitably as [28]:

Smin = 0,Smax = 150,dS = 2 and dt = 1/1200.

We obtain the call option price by using explicit method is 13.6982$ and closed form
solution is as in example (3.1) is 13.6953$.

Figure 4.2: The exact solution and approximate solution in 2D

Figure 4.3: Explicit method solution for call option price V (S, t) in 3D
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4.1.1 Consistency, Convergence and Stability of Explicit Method

All finite difference approximation of partial differential equations have three proper-
ties

1. Consistency For a finite difference scheme P∆x,∆tv = f is consistent with a
partial differential equation Pu = f if for any smooth function φ(x, t)

Pφ− P∆x,∆tφ→ 0 as ∆x,∆t→ 0,

2. Convergence

If v0
k converges to u0(x) as k∆x converges to x, then vik converges to u(x, t)

as (k∆x, i∆t) converges to (x, t) as (∆x,∆t) converges to 0 where u(x, t) is
the solution of partial differential equation and vik is the solution of finite differ-
ence scheme, then the scheme is convergent.

3. Stability

If for a constant C and some positive integer N and M we have

||vik|| ≤ C||v0
k||∆x for 0 ≤ ∆x ≤ N and 0 ≤ ∆t ≤M,

then finite difference scheme P∆x,∆tv
i
k = 0 is stable.

Note that from now on we use the notation wk,i for vik since V (Sk, ti) ≈ wk,i in Black
Scholes equation.

Proving the stability is hard by using the definition for explicit method for Black Sc-
holes PDE. Then we use Fourier analysis for evolution which is known as Von Neu-
mann Analysis [3, 11, 24, 32]. the basis of the Fourier analysis is the following as-
sumption for the solution of finite difference scheme as:

wk,i = λiezkθ, (4.9)

where z2 = −1, Im(z) = 1 and θ is arbitrary constant.

The condition for von Neumann criteria for stability is |λ| ≤ 1.

Substituting (4.9) into (4.7) we get

λi−1ezkθ = αkλ
iez(k−1)θ + βkλ

iezkθ + γkλ
iez(k+1)θ.

Therefore, using substitutions and rearrangements the sufficient condition for stability
is [24]:

0 ≤ ∆t

(∆S)2
≤ 1

2
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4.2 Fractional Explicit Method

One of the main purposes of this thesis is finding a solution for fractional Black Scholes
PDE. Let us restate the basic derivation of q-th order time fractional Black Scholes
PDE as

∂qV

∂tq
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

where q is arbitrary real or complex number V (S, t) is the price of European option
as a function of stock price S and time t, and r is the risk-free interest rate, σ is the
volatility of the stock with the same boundary condition as in original one.

Since there are partial differences in fractional Black Scholes PDE, finite difference
method can be used for solution. However, it is fundamental to derive a approximation
for fractional derivative ∂qV

∂tq
.

Therefore, in this section, we propose a new technique for the solution of fractional
Black Scholes PDE. For this purpose, first we derive fractional explicit method in
order to approximate fractional derivatives then we find the Black Scholes equation in
terms of wk,i as in previous section. Finally, the solutions for different values of q are
presented.

Fractional explicit method consists of backward difference approximation, central dif-
ference approximation and approximation for fractional derivative which is presented
in the following theorem.

Theorem 4.1. [25] The approximation for q-th order time fractional derivative of
V (Sk, ti) can be stated as the sum differences with the coefficients gj as

dqV

dtqi
≈ 1

(∆t)q

i∑
j=0

gjwk,i−j, (4.10)

where gj is the function of gamma functions of q and j,

gj =
Γ(j − q)

Γ(−q)Γ(j + 1)
. (4.11)

Proof. The Grünwald-Letnikov definition of differintegral was stated in Equation (2.1)

dqf

d(x− a)q
= lim

N→∞

{
(δNx)−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f(x− jδNx)

}
.

Then, this definition of differintegral can be stated as approximation instead of limit
definition and when for a = 0 and gj is as in Equation (4.11):

dqf

dxq
≈ 1

(δNx)q

N−1∑
j=0

gjf(x− jδNx).
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Then by changing notations for f(x) = V (Sk, ti) and then taking the q-th order time
fractional derivative we have

dqf

dxq
=
dqV

dtqi
.

Moreover, for the right hand side of the equation we need following relations which
are obtained from the change of notations δNx = ∆t as follows:

f(x− jδNx) = V (Sk, ti−j) ≈ wk,i−j.

Finally, modifying the equation appropriate to explicit method for dqV
dtqi

in terms of wk,i,
∆t and gj we have

dqV

dtqi
≈ 1

(∆t)q

i∑
j=0

gjwk,i−j.

Proposition 4.2. For q = 1 in equation (4.10) we have the backward difference in
(4.4)

dV

dti
≈ 1

(∆t)

i∑
j=0

Γ(j − 1)

Γ(−1)Γ(j + 1)
wk,i−j

≈ wk,i − wk,i−1

(∆t)
.

Proof. Using Proposition B.1 in Appendix B, the equation (4.10) for q = 1 is as
follows

i∑
j=0

Γ(j − 1)

Γ(−1)Γ(j + 1)
wk,i−j =

i∑
j=0

(−1)j
(

1

j

)
wk,i−j

= (−1)0

(
1

0

)
wk,i−0 + (−1)1

(
1

1

)
wk,i−1

= 1wk,i + (−1)wk,i−1

= wk,i − wk,i−1.

Remark 4.1. The properties of gamma function in Remark 4.2 are in Appendix B.
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Therefore substituting the equations; backward difference approximations of Equation
(4.5), central difference approximations of Equation (4.6) and approximation of frac-
tional derivative in Equation (4.10) of partial derivatives in Black Scholes PDE (4.3)
we get

1

(∆t)q

i∑
j=0

gjwk,i−j +
σ2

2
Sk

2wk+1,i − 2wk,i + wk−1,i

(∆S)2 + rSk
wk+1,i − wk−1,i

2∆S
− rwk,i = 0.

The terms α̃k, β̃k and γ̃k for the simplicity of the notations and the preceding equation
can be written basically as:

i∑
j=1

gjwk,i−j = α̃kwk−1,i + β̃kwk,i + γ̃kwk+1,i, (4.12)

for i = M,M − 1, ..., 1 and k = 1, ..., N − 1 and where the terms α̃k, β̃k and γ̃k are

α̃k = −1

2
(∆t)q

{
σ2

(
Sk
∆S

)2

− r Sk
∆S

}
,

β̃k = (∆t)q

{
σ2

(
Sk
∆S

)2

+ r

}
− 1,

γ̃k = −1

2
(∆t)q

{
r
Sk
∆S

+ σ2

(
Sk
∆S

)2
}
.
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Figure 4.4: Molecules of fractional explicit method

This figure shows the principle of the fractional explicit method for Equation (4.12).
The notation i is for time and k is for stock price as mentioned before. The summation
of the values of black dots on the i-th row with the coefficients α̃k, β̃k and γ̃k is equal
to the summation of the values of black dots on the (i − 1), (i − 2), ..., 0-th rows and
k-th column with the coefficients gi. Note that on explicit method the summation of
the values of black dots on the i-th row with the coefficients αk, βk and γk is equal
to the value of black dots on the (i − 1)-th row and k-th column. As mentioned in
the introduction chapter, fractionalization a partial differential equation makes the pde
non-Markovian. In other words, the fractional Black Scholes PDE has memory. As
it can be seen in the figure, the system has memory in other words the system takes
into consideration the values at the entire time range. Since i is for time and in frac-
tional case the summation includes (i − 1), (i − 2), ..., 0-th rows, the solution of the
fractional Black Scholes PDE by fractional explicit method has affected by the values
of historical data.
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Figure 4.5: Fractional explicit method with boundaries

Note that the black dots shows the data for time T , and stock price Smin and Smax
which are all given information. We aim to find the data when t0 = 0 for S = S0

by using the fractional explicit method. Then in order to solve the system we need
matrices. When for each i = M,M − 1, ..., 1 and k = 1, ..., N − 1 the equation (4.12)
is written, we need a matrix product to collect all the M × (N − 1) equations. The
matrix which consists of coefficients is a block matrix.

g1 g2 g3 | 0 0 0

−β̃1 g1 g2 | −γ̃1 0 0

0 −β̃1 g1 | 0 −γ̃1 0
−− −− −− | −− −− −−
0 0 0 | g1 g2 g3

−α̃2 0 0 | −β̃2 g1 g2

0 −α̃2 0 | 0 −β̃2 g1


︸ ︷︷ ︸

G



w1,2

w1,1

w1,0

−−
w2,2

w2,1

w2,0


︸ ︷︷ ︸

W

=



α̃1w0,3 + β̃1w1,3 + γ̃1w2,3

α̃1w0,2

α̃1w0,1

−−−−−−
α̃2w1,3 + β̃2w2,3 + γ̃2w3,3

γ̃2w3,2

γ̃2w3,1


︸ ︷︷ ︸

B

Here G is a matrix which contains the coefficients. W is a matrix which contains
unknown values. In Figure W matrix represents the dots inside of black dots. Finally,
B is a matrix which contains known values. In Figure B matrix represents the black
dots.
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Example 4.2. Let a European call option have an exercise price of 95. The option
has the underlying stock at price 100$ which pays no dividends, and has a volatility of
50% and the risk-free rate is 10% and T = 0.25 as in Example 3.1.

Fractional explicit method is used to obtain the call option price. For valuation, the
parameters should be chosen suitably as

Smin = 0, Smax = 150, dS = 50 and dt = 0.0833.

Then, we can find as M = 3 and N = 3 and we get following equations for each
i = 3, 2, 1 and k = 1, 2:

g1w1,2 + g2w1,1 + g3w1,0 = α̃1w0,3 + β̃1w1,3 + γ̃1w2,3,

g1w1,1 + g2w1,0 = α̃1w0,2 + β̃1w1,2 + γ̃1w2,2,

g1w1,0 = α̃1w0,1 + β̃1w1,1 + γ̃1w2,1,

g1w2,2 + g2w2,1 + g3w2,0 = α̃2w1,3 + β̃2w2,3 + γ̃2w3,3,

g1w2,1 + g2w2,0 = α̃2w1,2 + β̃2w2,2 + γ̃2w3,2,

g1w2,0 = α̃2w1,1 + β̃2w2,1 + γ̃2w3,1.

When we rewrite these equations as the unknown terms are on the left hand side and
the known terms are on the right hand side we get:

g1w1,2 + g2w1,1 + g3w1,0 = α̃1w0,3 + β̃1w1,3 + γ̃1w2,3,

g1w1,1 + g2w1,0 − β̃1w1,2 − γ̃1w2,2 = α̃1w0,2,

g1w1,0 − β̃1w1,1 − γ̃1w2,1 = α̃1w0,1,

g1w2,2 + g2w2,1 + g3w2,0 = α̃2w1,3 + β̃2w2,3 + γ̃2w3,3,

g1w2,1 + g2w2,0 − α̃2w1,2 − β̃2w2,2 = γ̃2w3,2,

g1w2,0 − α̃2w1,1 − β̃2w2,1 = γ̃2w3,1.

These equations can be written in matrix form where G and B matrices are known:

G×W = B

where

G =



g1 g2 g3 0 0 0

−β̃1 g1 g2 −γ̃1 0 0

0 −β̃1 g1 0 −γ̃1 0
0 0 0 g1 g2 g3

−α̃2 0 0 −β̃2 g1 g2

0 −α̃2 0 0 −β̃2 g1

 ,W =


w1,2

w1,1

w1,0

w2,2

w2,1

w2,0


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and

B =


α̃1w0,3 + β̃1w1,3 + γ̃1w2,3

α̃1w0,2

α̃1w0,1

α̃2w1,3 + β2w2,3 + γ2w3,3

γ̃2w3,2

γ̃2w3,1



Then we can find the matrix W as W = G−1 ×B

Remark 4.2. Instead of using inverse of matrix G, one can apply LU decomposition
not to have computational errors.

Remark 4.3. The purpose of this example is to find the matrix W which consists of
unknown values. However, the solution is the value of w at t = t0 and S = S0. In this
example, the solution is w2,0 for k = 2 and i = 0 since

S = Smin + k∆S = 0 + 2× 50 = 100 = S0,

t = t0 + i∆t = 0 + 0× 0.0833 = 0 = t0.

All the values in the following table and figure are the values of w2,0.

uw2,3uw1,3uw0,3

uw0,2

uw0,1

uw0,0 w1,0 w2,0 u
w1,1 w2,1 u
w1,2 uw2,2

uw3,3

w3,2

w3,1

w3,0

0 1 2

3

3

2

1

0

Smin Smax

Figure 4.6: Fractional explicit method for M = 3 and N = 3
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Figure 4.7: European call option prices for different values of q

This figure shows European Call Option prices which are found by explicit method for
q = 1, fractional explicit method for q = 1.05, q = 1.1, q = 1.15, q = 1.2.

Table 4.1: Comparison of solutions for European call option prices for different values
of q and the solution with explicit method and closed form solution for M = 3 and
N = 3

q = 1.05 q = 1.1 q = 1.15 q = 1.2 PDE Solution Closed-form
14.9293 13.0744 11.4792 10.1044 11.3842 13.6952

Example 4.3. Let a European call option have an exercise price of 95. The option
has the underlying stock at price 100$ which pays no dividends, and has a volatility of
50% and the risk-free rate is 10% and T = 0.25 as in Example 3.1.

Fractional explicit method is used to obtain the call option price. For valuation, the
parameters should be chosen suitably as

Smin = 0, Smax = 150, dS = 37.5 and dt = 0.0833.

Then, we can find as M = 3 and N = 4 and we get following equations for each
i = 3, 2, 1 and k = 1, 2, 3:
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g1w1,2 + g2w1,1 + g3w1,0 = α̃1w0,3 + β̃1w1,3 + γ̃1w2,3,

g1w1,1 + g2w1,0 = α̃1w0,2 + β̃1w1,2 + γ̃1w2,2,

g1w1,0 = α̃1w0,1 + β̃1w1,1 + γ̃1w2,1,

g1w2,2 + g2w2,1 + g3w2,0 = α̃2w1,3 + β̃2w2,3 + γ̃2w3,3

g1w2,1 + g2w2,0 = α̃2w1,2 + β̃2w2,2 + γ̃2w3,2,

g1w2,0 = α̃2w1,1 + β̃2w2,1 + γ̃2w3,1,

g1w3,2 + g2w3,1 + g3w3,0 = α̃3w2,3 + β̃3w3,3 + γ̃3w4,3

g1w3,1 + g2w3,0 = α̃3w2,2 + β̃3w3,2 + γ̃3w4,2,

g1w3,0 = α̃3w2,1 + β̃3w3,1 + γ̃3w4,1.

If we rewrite these equations as the unknown terms are on the left hand side and the
known terms are on the right hand side we get:

g1w1,2 + g2w1,1 + g3w1,0 = α̃1w0,3 + β̃1w1,3 + γ̃1w2,3,

g1w1,1 + g2w1,0 − β̃1w1,2 − γ̃1w2,2 = α̃1w0,2,

g1w1,0 − β̃1w1,1 − γ̃1w2,1 = α̃1w0,1,

g1w2,2 + g2w2,1 + g3w2,0 = α̃2w1,3 + β̃2w2,3 + γ̃2w3,3,

g1w2,1 + g2w2,0 − α̃2w1,2 − β̃2w2,2 − γ̃2w3,2 = 0,

g1w2,0 − α̃2w1,1 − β̃2w2,1 − γ̃2w3,1 = 0,

g1w3,2 + g2w3,1 + g3w3,0 = α̃3w2,3 + β̃3w3,3 + γ̃3w4,3

g1w3,1 + g2w3,0 − α̃3w2,2 − β̃3w3,2 = γ̃3w4,2,

g1w3,0 − α̃3w2,1 − β̃3w3,1 = γ̃3w4,1.

These equations can be written in matrix form, where G and B matrices are known:

G×W = B

where

G =



g1 g2 g3 0 0 0 0 0 0

−β̃1 g1 g2 −γ̃1 0 0 0 0 0

0 −β̃1 g1 0 −γ̃1 0 0 0 0
0 0 0 g1 g2 g3 0 0 0

−α̃2 0 0 −β̃2 g1 g2 −γ̃2 0 0

0 −α̃2 0 0 −β̃2 g1 0 −γ̃2 0
0 0 0 0 0 0 g1 g2 g3

0 0 0 −α̃3 0 0 −β̃3 g1 g2

0 0 0 0 −α̃3 0 0 −β̃3 g1


,W =



w1,2

w1,1

w1,0

w2,2

w2,1

w2,0

w3,2

w3,1

w3,0


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and

B =



α̃1w0,3 + β̃1w1,3 + γ̃1w2,3

α̃1w0,2

α̃1w0,1

α̃2w1,3 + β̃2w2,3 + γ̃2w3,3

0
0

α̃3w2,3 + β̃3w3,3 + γ̃3w4,3

γ̃3w4,2

γ̃3w4,1


.

Then we can find the matrix W as W = G−1 ×B

Remark 4.4. Instead of using inverse of matrix G, one can apply LU decomposition
not to have computational errors.

Remark 4.5. The purpose of this example is to find the matrix W which consists of
unknown values. However, the solution is the value of w at t = t0 and S = S0. In this
example, the solution is for i = 0 as:

t = t0 + i∆t = 0 + 0× 0.0833 = 0 = t0.

However, there is not a suitable k value for S = S0, thus linear interpolation method
is used in order to find the option price for S = S0. Linear interpolation method is
commonly used for approximation between two values. In this example, linear inter-
polation method is applied to the values at k = 2 and k = 3.

uw2,3uw1,3uw0,3

uw0,2

uw0,1

uw0,0 w1,0 w2,0 u

u

w1,1 w2,1 u
w1,2 uw2,2

uw3,3

w3,2

w3,1

w3,0

w4,3

w4,2

w4,1

w4,0

0 1 2

3

3 4

2

1

0

Smin Smax

Figure 4.8: Fractional explicit method for M = 3 and N = 4
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Figure 4.9: European call option prices for different values of q

This figure shows European Call Option prices which are found by explicit method for
q = 1, fractional explicit method for q = 1.2, q = 1.25, q = 1.3, q = 1.35.

Table 4.2: Comparison of solutions for European call option prices for different values
of q and the solution with explicit method and closed form solution for M = 3 and
N = 4

q = 1.2 q = 1.25 q = 1.3 q = 1.35 PDE Solution Closed-form
14.9154 13.3843 12.0430 10.8653 16.8140 13.6952

Example 4.4. Let a European call option have an exercise price of 95. The option
has the underlying stock at price 100$ which pays no dividends, and has a volatility of
50% and the risk-free rate is 10% and T = 0.25 as in Example 3.1.

Fractional explicit method is used to obtain the call option price. For valuation, the
parameters should be chosen suitably as:

Smin = 0, Smax = 150, dS = 50 and dt = 0.0625.

Then, we can find as M = 4 and N = 3 and we get following equations for each
i = 4, 3, 2, 1 and k = 1, 2:
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g1w1,3 + g2w1,2 + g3w1,1 + g4w1,0 = α̃1w0,4 + β̃1w1,4 + γ̃1w2,4,

g1w1,2 + g2w1,2 + g3w1,0 = α̃1w0,3 + β̃1w1,3 + γ̃1w2,3,

g1w1,1 + g2w1,0 = α̃1w0,2 + β̃1w1,2 + γ̃1w2,2,

g1w1,0 = α̃1w0,1 + β̃1w1,1 + γ̃1w2,1,

g1w2,3 + g2w2,2 + g3w2,1 + g4w2,0 = α̃2w1,4 + β̃2w2,4 + γ̃2w3,4,

g1w2,2 + g2w2,2 + g3w2,0 = α̃2w1,3 + β̃2w2,3 + γ̃2w3,3,

g1w2,1 + g2w2,0 = α̃2w1,2 + β̃2w2,2 + γ̃2w3,2,

g1w2,0 = α̃2w1,1 + β̃2w2,1 + γ̃2w3,1.

If we rewrite these equations as the unknown terms are on the left hand side and the
known terms are on the right hand side we get:

g1w1,3 + g2w1,2 + g3w1,1 + g4w1,0 = α̃1w0,4 + β̃1w1,4 + γ̃1w2,4,

g1w1,2 + g2w1,2 + g3w1,0 − β̃1w1,3 − γ̃1w2,3 = α̃1w0,3,

g1w1,1 + g2w1,0 − β̃1w1,2 − γ̃1w2,2 = α̃1w0,2,

g1w1,0 − β̃1w1,1 − γ̃1w2,1 = α̃1w0,1,

g1w2,3 + g2w2,2 + g3w2,1 + g4w2,0 = α̃2w1,4 + β̃2w2,4 + γ̃2w3,4,

g1w2,2 + g2w2,2 + g3w2,0 − α̃2w1,3 − β̃2w2,3 = γ̃2w3,3,

g1w2,1 + g2w2,0 − α̃2w1,2 − β̃2w2,2 = γ̃2w3,2,

g1w2,0 − α̃2w1,1 − β̃2w2,1 = γ̃2w3,1.

These equations can be written in matrix form where G and B matrices are known:

G×W = B

G =



g1 g2 g3 g4 0 0 0 0

−β̃1 g1 g2 g3 −γ̃1 0 0 0

0 −β̃1 g1 g2 0 −γ̃1 0 0

0 0 −β̃1 g1 0 0 −γ̃1 0
0 0 0 0 g1 g2 g3 g4

−α̃2 0 0 0 −β̃2 g1 g2 g3

0 −α̃2 0 0 0 −β̃2 g1 g2

0 0 −α̃2 0 0 0 −β̃2 g1


,W =



w1,3

w1,2

w1,1

w1,0

w2,3

w2,2

w2,1

w2,0


,
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and

B =



α̃1w0,4 + β̃1w1,4 + γ̃1w2,4

α̃1w0,3

α̃1w0,2

α̃1w0,1

α̃2w1,4 + β̃2w2,4 + γ̃2w3,4

γ̃2w3,3

γ̃2w3,2

γ̃2w3,1


.

Then we can find the matrix W as W = G−1 ×B

Remark 4.6. Instead of using inverse of matrix G, one can apply LU decomposition
not to have computational errors.

Remark 4.7. The purpose of this example is to find the matrix W which consists of
unknown values. However, the solution is the value of w at t = t0 and S = S0. In this
example, the solution is w2,0 for k = 2 and i = 0, since

S = Smin + k∆S = 0 + 2× 50 = 100 = S0,

t = t0 + i∆t = 0 + 0× 0.0625 = 0 = t0.

All the values in the following table and figure are the values of w2,0.

u
w2,3

w2,4u
w1,3

w1,4

u
u
w0,3

w0,4

uw0,2

uw0,1

uw0,0 w1,0 w2,0 u

u

w1,1 w2,1 u
w1,2 uw2,2

uw3,3

w3,4

w3,2

w3,1

w3,0

0 1 2

3

4

3

2

1

0

Smin Smax

Figure 4.10: Fractional explicit method for M = 4 and N = 3
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Figure 4.11: European call option prices for different values of q

This figure shows European Call Option prices which are found by explicit method for
q = 1, fractional explicit method for q = 1.05, q = 1.1, q = 1.15, q = 1.2.

Table 4.3: Comparison of solutions for European call option prices for different values
of q and the solution with explicit method and closed form solution for M = 4 and
N = 3

q = 1.05 q = 1.1 q = 1.15 q = 1.2 PDE Solution Closed-form
15.7167 13.5481 11.7092 10.1464 11.3341 13.6952

Example 4.5. Let a European call option have an exercise price of 95. The option
has the underlying stock at price 100$ which pays no dividends, and has a volatility of
50% and the risk-free rate is 10% and T = 0.25 as in the preceding examples.

Fractional explicit method is used to obtain the call option price. In order to obtain
accurate valuations, the parameters are chosen to have higher M and N values:

Smin = 0, Smax = 150, dS = 10 and dt = 0.00625.

Then we can find as M = 40 and N = 15.
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Figure 4.12: European call option prices for different values of q

This figure shows European Call Option prices which are found by explicit method for
q = 1, fractional explicit method for q = 1.05, q = 1.1, q = 1.15, q = 1.2.

Table 4.4: Comparison of solutions for European call option prices for different values
of q and the solution with explicit method and closed form solution for M = 40 and
N = 15

q = 1.001 q = 1.005 q = 1.008 q = 1.01 PDE Solution Closed-form
10.4853 10.2825 10.1330 10.0346 13.7353 13.6952

Example 4.6. Let a European call option have an exercise price of 95. The option
has the underlying stock at price 100$ which pays no dividends, and has a volatility of
50% and the risk-free rate is 10% and T = 0.25 as in the preceding examples.

Fractional explicit method is used to obtain the call option price. In order to obtain
accurate valuations, the parameters are chosen to have higher M and N values:

Smin = 0, Smax = 150, dS = 5 and dt = 0.0025.

Then we can find as M = 100 and N = 30.
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Figure 4.13: European call option prices for different values of q

This figure shows European Call Option prices which are found by explicit method for
q = 1, fractional explicit method for q = 1.05, q = 1.1, q = 1.15, q = 1.2.

Table 4.5: Comparison of solutions for European call option prices for different values
of q and the solution with explicit method and closed form solution for M = 100 and
N = 30

q = 0.86 q = 0.88 q = 0.9 q = 0.91 PDE Solution Closed-form
11.0186 10.1236 9.2781 8.8801 13.6581 13.6952

To summarize, the following table compare all the European call option values which
are obtained by solution of q-th order time fractional Black Scholes PDE using frac-
tional explicit method.

Table 4.6: Comparison of European call option prices for different values of M and N
for different values of q

q = 0.9 M = 3 M = 4
N = 3 22.5812 24.9289
N = 4 30.3504 32.4841

q = 0.95 M = 3 M = 4
N = 3 19.6189 21.3183
N = 4 26.7554 28.2423
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q = 1.05 M = 3 M = 4
N = 3 14.9293 15.7167
N = 4 20.9921 21.5463

q = 1.1 M = 3 M = 4
N = 3 13.0744 13.5481
N = 4 18.6784 18.9030

q = 1.2 M = 3 M = 4
N = 3 10.1044 10.1464
N = 4 14.9154 14.6748

q = 1.3 M = 3 M = 4
N = 3 7.8890 7.6794
N = 4 12.0430 11.521

According to the table it can be seen that when q increases, the value of the European
option decreases. When q is in a close neighborhood of 1, European option price is
considerably close to closed-form solution which is 13.6952.

In this chapter, finite difference method is restated and explicit method is reviewed
with example. Fractional Black Scholes PDE is presented. In order to solve frac-
tional Black Scholes PDE, fractional explicit method is proposed and applied to the
PDE. Different examples are solved for different values of variables and the results are
compared with tables and figures.
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CHAPTER 5

CONCLUSION AND OUTLOOK

Investigation and application of fractional Black Scholes partial differential equation
is mainly purposed in this thesis. At first, the problem of how to derive fractional
Black Scholes PDE is considered. For this reason, in chapter 2 a detailed notations
and definitions of fractional order derivatives and integrals, also called differintegrals,
are investigated. Most of the definitions of differintegrals are derived by extending the
definition of derivative or integral. It is also noticed that all the definitions; Grünwald-
Letkinov, Riemann-Liouville, Riemann, Laplace Transform, Caputo and Riesz are all
agree [5]. It is fundamental to use Mittag-Leffler function for calculations in differ-
integrals. Therefore, properties of Mittag-Leffler function are stated. Moreover, in a
different point of view, stochastic calculus is also used to derive fractional Black Sc-
holes PDE. Therefore, Brownian motion is reviewed in order to construct a basis for
derivation.

Derivation of fractional Black Scholes PDE is investigated in chapter 3. For this rea-
son, first Black-Scholes equation is given in detailed afterwards approaches for deriva-
tion fractional Black-Scholes PDE are stated. At the beginning, equation of evolution
[33] approach is given which is derived by Wyss M. and Wyss W., then Laplace trans-
form and homotopy perturbation method [15] is presented, then fractional Taylor series
method [16] is stated. It is emphasized that there is a wide range of aspects for deriva-
tion of fractional PDEs. After revising approaches in literature, we proposed a new
fractional Black-Scholes PDE using fractional heat equation. In order to derive the
formula first derivation of Black Scholes PDE by classical heat equation is restated
[17, 28]. Then, the definitions and properties of differintegrals are used for derivation.
It is essential to notice that for q = 1 classical and fractional Black-Scholes equations
are agree. Moreover, using stochastic calculus is another way to study fractional PDEs.
First fractional Brownian motion [14] is considered and then by Itô formula we derived
fractional Black-Scholes equation.

On the other hand, we focus on finding the solution of fractional Black Scholes PDE.
Therefore, numerical methods are considered and finite difference method is examined.
One of the finite difference methods; the explicit method is stated which is commonly
used to solve classical partial differential equations. Then, solution of classical Black
Sholes PDE using explicit method is found. It is noticed that, closed form solution and
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the PDE solution are almost equal to each other. Additionally, consistency, conver-
gence and stability analysis of explicit method are discussed. Furthermore, fractional
explicit method is proposed for PDEs which contains fractional order differintegrals.
The fundamental idea of fractional explicit method is adjusting the Grünwald-Letkinov
definition for differintegrals. It is noticed that for q = 1 explicit method and fractional
explicit method agree. Therefore, fractional explicit method is used to solve fractional
Black-Scholes equation. Numerical solutions for fractional Black Scholes PDE are
found for different M , N and q values. Moreover, the solutions of Black Scholes PDE
via explicit method and fractional explicit method for different fractional order q is
compared in tables and figures. It is an undeniable fact that fractional explicit method
is derived using explicit method and Grünwald-Letkinov definition for differintegrals.
It is noticed that for the suitable choice of variables, the solutions of Black Sholes PDE
with the two different methods are found close to each other. However, we proposed
that the solutions with fractional explicit method affected by the contribution of the
previous data.

The future work may be on stability analysis of fractional explicit method and the
choice of variables. Moreover, one can may take the fractional derivative not only
for time but also stock price S. For Black Sholes PDE, one should also consider
the fractional explicit method for higher order, since the PDE contains second order
derivative with respect to stock price. Furthermore, fractional explicit method may be
applied to other fractional PDEs and can be used to find solutions of other problems.
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APPENDIX A

DERIVATION OF BLACK SCHOLES PDE

Theorem A.1. For European call or put options on an underlying stock paying no
dividends, Black Scholes PDE is stated as follows;

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0,

where V (S, t) is the price of European option as a function of stock price S and time
t, and r is the risk-free interest rate, σ is the volatility of the stock.

Proof. For derivation of Black Scholes PDE Itô formula of Equation 2.7 is used for
V (S, t);

V (St, t) = V (S0, 0) +

∫ t

0

∂V

∂u
(Su, u)du+

∫ t

0

∂V

∂S
(Su, u)dSu

+
1

2

∫ t

0

∂2V

∂S2
(Su, u)d < S, S >u .

The quadratic variation is d < S, S >t= S2
t σ

2dt, then we have;

V = V0 +

∫ t

0

(
∂V

∂u
+

1

2
S2
uσ

2∂
2V

∂S2

)
du+

∫ t

0

∂V

∂S
(Su, u)dSu.

Under risk neutral measure P̃ geometric Brownian motion is dSt = rStdt + σStdWt.
Then by substitution we obtain;

V = V0 +

∫ t

0

(
∂V

∂u
+ Sur

∂V

∂S
+

1

2
σ2S2

u

∂2V

∂S2

)
du+

∫ t

0

∂V

∂S
SuσdWu.

Then by taking derivative with respect to t, the following equation is obtained;

dV =

(
∂V

∂t
+ Str

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2

)
dt+

(
∂V

∂S
Stσ

)
dWt.
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Since, Ṽ is the notation for option value for discounted asset price such that;

Ṽ = e−rtV,

dṼ = −rte−rtV + e−rtdV.

By substitution we obtain dṼ as;

dṼ = e−rt
(
−rV +

∂V

∂t
+ Str

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2

)
︸ ︷︷ ︸

0

dt+

(
e−rt

∂V

∂S
Stσ

)
dWt.

Note that, Ṽ is martingale transform of discounted asset prices. Since S̃ is a martingale
under risk neutral measure P̃, the Ṽ is also martingale under measure P̃. Hence, by
martingale representation theorem [17], Black Scholes PDE is;

−rV +
∂V

∂t
+ Str

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
= 0.
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APPENDIX B

GAMMA FUNCTION

B.1 Properties of Gamma Function

Definition B.1. The Gamma function is defined for z ∈ C, z 6= 0,−1,−2, ... and for
x > 0 to be;

Γ(z) =

∫ ∞
0

xz−1e−xdx. (B.1)

Remark B.1. Properties of Gamma function functions;

1. One of the most important properties of Gamma function is valid for positive
integer n;

Γ(n+ 1) = nΓ(n) = n!. (B.2)

Note that, this property can be extended to noninteger values q as;

Γ(q + 1) = qΓ(q).

2. Using the property 1, we can obtain the following property for all integers. Note
that, even though Gamma function gives infinity for the values 0,−1,−2, ... their
ratios are finite [5].

Γ(−n)

Γ(−N)
= (−1)N−n

N !

n!
. (B.3)

3. Binomial coefficients lead us to obtain the following property for integer n;(
n

k

)
=

n!

k!(n− k)!
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
. (B.4)

Note that, for noninteger values q this property can be extended as;(
q

j

)
=

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
(B.5)

69



For some n values, the values of gamma function are;

Γ(1) = 1 Γ(2) = 1 Γ(3) = 1,

Γ

(
1

2

)
=
√
π Γ

(
3

2

)
=

1

2

√
π Γ

(
5

2

)
=

3

4

√
π,

Γ(0) = ±∞ Γ(−1) = ±∞.

Γ

(
−1

2

)
= −2

√
π Γ

(
−3

2

)
=

4

3

√
π

Proposition B.1. Gamma function satisfies the following relation for integer n which
is used to obtain Grünwald-Letnikov definition of differintegral of Equation (2.1).

(−1)j
(
n

j

)
=

(
j + n− 1

j

)
=

Γ(j − n)

Γ(−n)Γ(j + 1)

Proof. Let us restate Equation (B.4) in property 3 as;(
n

k

)
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
.

Thus, first applying this relation to
(
j+n−1

j

)
, then using (B.3) in order to find the ratio

of Gamma functions we get the result as;(
j + n− 1

j

)
=

Γ(j − n)

Γ(−n)Γ(j + 1)
=

Γ(−(n− j))
Γ(−n)Γ(j + 1)

= (−1)(n−j)−(n) (n)!

(n− j)!(j)!

= (−1)j
(
n

j

)
.

Remark B.2. This relation is valid not only for integers n but also non-integers q.

(−1)j
(
q

j

)
=

(
j + q − 1

j

)
=

Γ(j − q)
Γ(−q)Γ(j + 1)

.

70



APPENDIX C

MATLAB CODES

1. MATLAB code for Figure 2.1. The plot of E1(x) [8];

function f = ml_func(aa,z,n,eps0)
aa=[aa,1,1,1]; a=aa(1); b=aa(2);c=aa(3); q=aa(4);
f=0; k=0; fa=1; aa=aa(1:4);
if nargin<4, eps0=eps; end
if nargin<3
n=0

end
if n==0
while norm(fa,1)>=eps0
fa=gamma(k*q+c)/gamma(c)/gamma(k+1)/...
gamma(a*k+b)*z.ˆk
f=f+fa; k=k+1;
end

else
aa(2)=b+n*a; aa(3)=c+q*n;
f=gamma(q+n*c)/gamma(c)*ml_func(aa,z,0,eps0)

end
end

t=0:0.1:5;
a1=ml_func(1,t)
plot(t,a1)
title(’E_{1}(x)=eˆx’)
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2. MATLAB code for Figure 2.2. The plot of E1(−x), E2(−x) and E3(−x) [8];

t=0:0.1:5;
b1=ml_func(1,-t);
b2=ml_func(2,-t);
b3=ml_func(3,-t);
plot(t,b1, ’m-x’), hold on,
plot(t,b2), hold on, plot(t,b3,’c-d’),hold on
legend(’E_1(-x)’,’E_2(-x)’, ’E_3(-x)’,’Location’,’southwest’)
hold off

3. MATLAB code for Figure 2.3. The plot of Standard Brownian Motion[34];

function [B] = brownian(N,b,sigma,T)
t = (0:1:N)’/N;
W = [0; cumsum(randn(N,1))]/sqrt(N);
t = t*T;
W = W*sqrt(T);
B = b*t + sigma*W;
plot(t,B);
hold on
plot(t,b*t,’:’);
axis([0 T min(-sigma,(b-2*sigma)*T) ...
max(sigma,(b+2*sigma)*T)])
title([int2str(N) ’-step version of ...
Brownian motion and its mean’])
xlabel([’Drift ’ num2str(b) ’,
diffusion coefficient ’ num2str(sigma)])
hold off

brownian(1000,0,1,1)
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4. MATLAB code for Figure 2.4. The plot of Geometric Brownian Motion[34];

function [X] = geometric_brownian(N,r,alpha,T)
t = (0:1:N)’/N;
W = [0; cumsum(randn(N,1))]/sqrt(N);
t = t*T;
W = W*sqrt(T);
Y = (r-(alphaˆ2)/2)*t + alpha * W;
X = exp(Y);
plot(t,X);
hold on
plot(t,exp(r*t),’:’);
axis([0 T 0 max(1,exp((r-(alphaˆ2)/2)*T+2*alpha))])
title([int2str(N) ’-step geometric Brownian ...
motion and its mean’])
xlabel([’r = ’ num2str(r) ’ and ...
alpha = ’ num2str(alpha)])
hold off

geometric_brownian(1000,1,0.1,1)

5. MATLAB code for Figure 2.5 and 2.6. The plot of Fractional Brownian Motion;

function [deltafBm,Sigma]=fBm(H,N)
Sigma=zeros(N,N);
for i=1:N
for j=1:N
Sigma(i,j)=0.5*(abs(i-j+1)ˆ(2*H) +abs(i-j-1)ˆ...
(2*H)-2*abs(i-j)ˆ(2*H));
end
end
mu=zeros(N,1);
deltafBm=mvnrnd(mu,Sigma); fBm(1)=0;
for i=1:N-1
fBm(i+1)=fBm(i)+deltafBm(i);
end
t=0:N-1;
plot(t,fBm)

fBm(0.7,1000)
fBm(0.3,1000)
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6. • MATLAB code for Example 3.1, 3.2;

[Call, Put] = blsprice(100, 95, 0.1, 0.25, 0.5)

• A more detailed MATLAB code for Example 3.1, 3.2[28];

function [C, P] = CallPut_Delta(S,K,r,tau,...
sigma,div)% tau = time to expiry (T-t)
if nargin < 6
div = 0.0;
end
if tau > 0
d1 = (log(S/K) + (r + 0.5*sigmaˆ2)*(tau)*...
ones(size(S)))/(sigma*sqrt(tau));
d2 = d1 - sigma*sqrt(tau);
N1 = 0.5*(1+erf(d1/sqrt(2)));
N2 = 0.5*(1+erf(d2/sqrt(2)));
C = exp(-div*tau) * S.*N1-K*exp(-r*(tau))*N2;
P = C + K*exp(-r*tau) - exp(-div*tau)*S;
else
C = max(S-K,0);
P = max(K-S,0);
end

[C, P]= CallPut_Delta(100, 95, 0.1, 0.25, 0.5)
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7. MATLAB code for Examples 3.3, 3.4, 3.5 and 3.6;

function [C, P] = CallPut_Delta_Frac(S,K,r,...
tau,sigma,div,H)
% tau = time to expiry (T-t)
if nargin < 7
div = 0.0;
end
if tau > 0
d1 = (log(S/K) + (r + 0.5*sigmaˆ2)*(tauˆ(2*H))*...
ones(size(S)))/(sigma*sqrt(tauˆ(2*H)));
d2 = d1 - sigma*sqrt(tauˆ(2*H));
N1 = 0.5*(1+erf(d1/sqrt(2)));
N2 = 0.5*(1+erf(d2/sqrt(2)));
C = exp(-div*tau) * S.*N1-K*exp(-r*(tau))*N2;
P = C + K*exp(-r*tau) - exp(-div*tau)*S;
else
C = max(S-K,0);
P = max(K-S,0);
end

[C, P]= CallPut_Delta_Frac(100, 95, 0.1, 0.25, 0.5, 0.5)\\
[C, P]= CallPut_Delta_Frac(100, 95, 0.1, 0.25, 0.5, 0.7)\\
[C, P]= CallPut_Delta_Frac(100, 95, 0.1, 0.25, 0.5, 0.3)

8. MATLAB code for the solution of explicit method and the plots of Explicit
Method 2D and 3D in Figure 4.2 and 4.3 can be found in detailed in [28].
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9. MATLAB code for Example 4.2 and Figure 4.6

Note that the first part of the MATLAB code is for calculating the solution of
fractional Black Scholes price.

function[N,M,price,B]=BlackScholes_fExplicit(S0,...
K, r, div, sigma, T, f, alpha, beta, Smin, Smax,...
dS, dt ,q)

N = round((Smax-Smin)/dS);
M = round(T/dt);
Nv=0:N;
Mv=0:M;
S = Smin + dS*Nv;
t = dt*Mv;

Timet = feval(f,S,K); % t = T
StockSmin = (feval(alpha, t,T,r,K,Smin,div))’;
% S = Smin
StockSmax = (feval(beta, t,T,r,K,Smax,div))’;
% S = Smax

for j=1:M
g(j)=(gamma(j-q)/(gamma(-q)*gamma(j+1)));
end

mS = S/dS;
a = -0.5*(dtˆq)*(mS.*(sigmaˆ2*mS - r));
b = (dtˆq)*( sigmaˆ2*mS.ˆ2 + r)-1;
c = -0.5*(dtˆq)*(mS.*(sigmaˆ2*mS + r));

p=M*(N-1);
G=zeros(p);
G=diag(g(1)*ones(1,p));

beta=zeros(1,p-1);
j=1;
for i=1:M:(p-2)

if(j-1)*M < i <j*M
beta(i:i+(M-2))=-b(j)*ones(1,M-1);
j=j+1;

end
end
G=G+diag(beta,-1);
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alpha=zeros(1,p-M-1);
j=1;
for i=1:M:p-(M+1)

if(j-1)*M < i <j*M
alpha(i:i+(M-2))=-a(j)*ones(1,M-1);
j=j+1;

end
end

G=G+diag(alpha,-(M+1));

gamma2=g(M)*ones(1,p-M+1);
j=1;
for i=2:M:(p-M+1)

if(j-1)*M < i <j*M
gamma2(i:i+(M-2))=-c(j)*ones(1,M-1);
j=j+1;

end
end
G=G+diag(gamma2, M-1);

for k=2:M-1
gam=zeros(1,p-k+1);
j=1;
for i=1:M:p-k+1

if(j-1)*M < i <j*M
gam(i:i+(M-k))=g(k)*ones(1,M-k+1);
j=j+1;

end
end

G=G+diag(gam,k-1);
end

K=zeros(p,1);
j=1;
for i=1:M:p-M+1
K(i)=a(j)*Timet(j)+b(j)*Timet(j+1)+c(j)*Timet(j+2);
j=j+1;
end

j=0;
for i=2:M

K(i)=a(1)*StockSmin(M-j);
j=j+1;

end
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j=0;
for i=p-M+2:p

K(i)=c(end)*StockSmax(M-j);
j=j+1;

end

[L U] = lu(G);
A = U \ ( L \ (K));

B=zeros(N+1,1);
B(1)=StockSmin(1);
B(end)=StockSmax(1);

j=M;
for i=1:N-1

B(i+1)=A(j);
j=j+M;

end

%linear interpolation
down = floor((S0-Smin)/dS); up = ceil((S0-Smin)/dS);
if (down == up)

price = B(down+1);
else

price = B(down+1)+(B(up+1) - B(down+1))*...
(S0-Smin - down*dS)/dS;
end

Note that, the second part of the MATLAB code is for presenting and plotting
the solutions for different q values. Therefore, except from the beginning part of
the code, it is same for each example.

clear all, close all,
S0 = 100; K = 95; sigma = 0.5; r = 0.1; T = 0.25;
Smin = 0; Smax = 150; div=0;
dS = 50; dt = 0.0833;
q1=1.25; q2=1.35; q3=1.2; q4=1.5;

f = @BlackScholes_Payoff;
alpha = @BlackScholes_LeftBoundary;
beta = @BlackScholes_RightBoundary;
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[a,b,c1,d1] = BlackScholes_fExplicit(S0, K, r,...
div, sigma, T, f, alpha, beta, Smin, Smax,...
dS, dt ,q1);
fprintf(’Solution: %f\n for: %f\n’,c1,q1);
[a,b,c2,d2] = BlackScholes_fExplicit(S0, K, r,...
div, sigma, T,f, alpha, beta, Smin, Smax,...
dS, dt ,q2 );
fprintf(’Solution: %f\n for: %f\n’,c2,q2);
[a,b,c3,d3] = BlackScholes_fExplicit(S0, K, r,...
div, sigma, T, f, alpha, beta, Smin, Smax,...
dS, dt ,q3 );
fprintf(’Solution: %f\n for: %f\n’,c3,q3);
[a,b,c4,d4] = BlackScholes_fExplicit(S0, K, r,...
div, sigma, T, f, alpha, beta, Smin, Smax,...
dS, dt ,q4);

fprintf(’Solution: %f\n for: %f\n’,c4,q4);
fprintf(’N...........: %d\n’, a);
fprintf(’M...........: %d\n’, b);

S = Smin + dS*[0:a];
[call, Cdelta, P, Pdelta] = ...
CallPut_Delta(S,K,r,sigma,T,div);
[w,p] = BlackScholes_Explicit(S0, K, r,...
div, sigma, T, f, alpha, beta, Smin,...
Smax, dS, dt);
[m,n] = size(w);
S = linspace(Smin,Smax,m);
t = linspace(0,T,n);

plot(S, w(:,1), ’m-x’), hold on,
plot(S, call),hold on, plot(S,d1,’c-d’),hold on,
plot(S,d2,’r--o’),hold on, plot(S,d3,’k-.’),
hold on, plot(S,d4,’g:’),hold on
xlabel(’S’,’FontSize’, 12),
ylabel(’V(S,0)’,’FontSize’, 12),

legend({’Explicit Method (q=1)’,...
’Fractional Explicit q=1.05’,...
’Fractional Explicit q=1.1’,...
’Fractional Explicit q=1.15’...
’Fractional Explicit q=1.2’},’Location’,...
’northwest’)

hold off
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10. MATLAB code for Example 4.3 and Figure 4.8

clear all, close all,
S0 = 100; K = 95; sigma = 0.5; r = 0.1; T = 0.25;
Smin = 0; Smax = 150; div=0;
dS = 37.5; dt = 0.0833;
q1=1.25; q2=1.35; q3=1.2; q4=1.5;

11. MATLAB code for Example 4.4 and Figure 4.10

clear all, close all,
S0 = 100; K = 95; sigma = 0.5; r = 0.1; T = 0.25;
Smin = 0; Smax = 150; div=0;
dS = 50; dt = 0.0625;
q1=0.9; q2=0.95; q3=1.05; q4=1.1;

12. MATLAB code for Example 4.5 and Figure 4.10

clear all, close all,
S0 = 100; K = 95; sigma = 0.5; r = 0.1; T = 0.25;
Smin = 0; Smax = 150; div=0;
dS = 10; dt = 0.00625;
q1=0.9; q2=0.95; q3=1.05; q4=1.1;

13. MATLAB code for Example 4.6 and Figure 4.10

clear all, close all,
S0 = 100; K = 95; sigma = 0.5; r = 0.1; T = 0.25;
Smin = 0; Smax = 150; div=0;
dS = 5; dt = 0.0025;
q1=0.9; q2=0.95; q3=1.05; q4=1.1;
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