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ABSTRACT

NUMERICAL SOLUTION OF THE FISHER’S EQUATION WITH
DISCONTINOUS GALERKIN METHOD

Özsoy, Fehmi

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

December 2015, 28 pages

In this thesis, the Fisher’s equation is discretized in space with the symmetric interior
point discontinuous Galerkin (SDIPG). As time integrator Kahan’s method is used,
which is n efficient linearly implicit time integrator for PDE with quadratic nonlin-
earities like the Fisher’s equation. Numerical results for the SIPG method, Kahan’s
method and mid-point method confirm the theoretically predicted convergence orders
in space and time. Travelling waves with steep fronts are numerically well resolved in
reaction dominated regimes.

Keywords : Diffusion reaction equation, Fisher’s equation, Discontinuous Galerkin
method, Kahan’s method

vii



viii



ÖZ

FISHER DENKLEMİNİN KESİNTİLİ GALERKİN YÖNTEMİYLE NÜMERİK
ÇÖZÜMÜ

Özsoy, Fehmi

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Aralık 2015, 28 sayfa

Bu tezde, Fisher Denklemi uzayda sürekli olmayan simetrik iç nokta kesintili Galerkin
yöntemi (SIPG) kullanılarak ayrıklaştırılmıştır. Zaman ayrıklaştırılması için de Fisher
denklemi gibi ikinci dereceden doğrusal olmayan terimleri difarensiyel denklemlerin
çözümünde uygun Kahan yöntemi kullanılmıştır. Kahan ve orta nokta yöntemi kul-
lanılarak elde edilen sayısal sonuçlar da teorik olan beklenen yaklaşım oranlarını
doğrulamıştır. Reaksiyon kısmı ağır basan denklemlerde, dik cepheli hareket halindeki
dalgalar sayısal açıdan düzgün sonuçlar vermistir.

Anahtar Kelimeler : Difüzyon reaksiyon denklemi, Fisher denklemi, Süreksiz Galerkin
yöntemi, Kahan yöntemi
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CHAPTER 1

INTRODUCTION

In many branches of science such as biology and chemistry, non-linear reaction dif-
fusion equations are used as a standard model to describe the evolution of natural
phenomena such as a mutant gene dispersion, flame propagation or pattern formation.
These equations are semi-linear reaction-diffusion partial differential equations (PDEs)
of the following form:

∂u

∂t
= ε∆u+ r(u) (1.1)

where the first part linear diffusion part, the second part r(u), is the non-linear reaction
part. In many models, u denote the concentration of the molecules such as genes or
chemicals, ε is the diffusion constant, ∆ the Laplace operator.

One of the most popular reaction-diffusion equations is the Fisher’sa equation or Fisher-
Kolmogorov equation which was introduced by Fisher in the [6]in 1937 as a model of
propagation of genes :

ut = εuxx + ρu(1− u

K
) ∀x ∈ (0, L) and t ∈ (0, τ) (1.2)

where ε is the diffusion constant, ρ is the growth rate and K is the carrying capacity of
the habitat. u(x, t)is considered as the mutant population in the space x and at the time
t. It is also used as the logistic population growth models, chemical wave propagation
models and neutron population models in nuclear reactors.

The Fisher’s equation (1.2) can be reduced to non-dimensional form with the scaling
factors

t̃ = ρt, x̃ =
x

L
, ũ =

u

K
.

ut = uxx + u(1− u), (1.3)

where u is the ratio of mutant population to the carrying capacity.

The boundary conditions are generally in form of [12]:
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lim
x→−∞

u(x, t) = 1 and lim
x→∞

u(x, t) = 0, (1.4)

or
lim

x→−∞
u(x, t) = 0 and lim

x→∞
u(x, t) = 0. (1.5)

The boundary conditions (1.4) are referred to as nonlocal conditions, while conditions
(1.5) are called local conditions [12].

The Fisher equation (1.3) exhibits traveling wave solutions of the form u(x − ct) =
u(x, t), where c is the speed of the wave solution. Kolmogorov showed that the trav-
elling wave solutions u(x − ct) are descending monotonically with cmin = 2 when
t→∞ in [10]. Since the traveling wave solutions have the fixed shapes with the fixed
speed, the aim in this thesis to construct numerically stable wave solutions to resolve
the sharp travelling wave fronts.

Many studies were devoted to find travelling wave solutions of Fisher’s equation ana-
lytically and numerically The earliest one is the Larson’s study [11] to find analytical
solutions of Fisher’s equation. He discovered that the stability of wave dispersion as
t → ∞ is highly correlated with the initial data. He showed that it was too difficult
to find an analytical solution of the non-dimensionless Fisher’s equation (1.3) due to
complex non-linear reaction part.

The first numerical study was conducted by the Gazdag and Canosa in [7] with using
pseudo-spectral method. Later, Finite Difference methods [13], Finite Element meth-
ods [15], Sinc Collacation method [1] and Modified Cubic B-spline method [14] are
applied to solve the Fisher’s equation numerically. In recent years, Galerkin meth-
ods [22], B-spline Galerkin methods [5] and Wavelet Galerkin methods [16], Local
discontinuous Galerkin method [12] are also applied.

In this study, we use the interior point discontinuous Galerkin method for space dis-
cretization and Kahan’s method for time discretization.

In this thesis, the discontinuous Galerkin (DG) methods are chosen as a finite ele-
ment method for the Fisher equation since DG Methods have the efficient properties
that is a combination of good properties of both Finite Volume methods and continu-
ous Galerkin methods. The DG method also damps out the non-physical oscillations,
whereas the standard continuous finite elements can not do.

The DG methods are firstly defined by Reed and Hill in 1973 to study [17] neutron
transportation for a first-order hyperbolic case. Later on, similar studies such as [2]
for the Navier-Stokes equations. Cockburn and Shu developed some model to the
time-dependent hyperbolic equations[4]. Operator splitting methods are applied to
biological diffusion-reaction equations for modeling pattern formation of embryos. In
this thesis,the Fisher’s equation is used with the interior point discontinuous Galerkin
method [18]. We use the MATLAB programs for the DG discretization in space [23]
developed for semi-linear convection-reaction-diffusion equations.

In this thesis, we use the Kahan’s reflexive formula as a time integrator to solve the
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system of ordinary differential equation (ODEs) arising from semi-discretization of
Fisher’s equation by DG method. Kahan’s method was introduced by William Ka-
han [9] for solving the Riccati and Lotka-Volterra equations. Serna applied Kahan’s
method to Hamiltionian systems [21] and showed that it preserves the symplectic for
of the Lotka-Volterra equations. Kahan’s method was applied in a general form to the
Korteweg De-Vries equation in [24]. In [20] it was applied to the Lotka-Volterra equa-
tions and concluded that this method is preferable to the other methods since it keeps
the solutions in a closed curve near the fixed points of the equations. Celledoni et all.
proved in the study [3] that Kahan method is in the family of Runge Kutta methods.
In other words, midpoint and trapezoidal methods are strongly connected to Kahan’s
method with respect to numerical stability and conservation properties. The most im-
portant feature of Kahan’s method is that it is a linearly implicit method for differential
equations with quadratic non-linear terms like Fisher’s equation. Kahan’s method re-
quires only one Newton iteration at each time step in contrast to the mid-point rule or
trapezoidal method.

The thesis organized as follows. In Chapter 2 we briefly describe the interior point dis-
continuous Galerkin method. Time discretization methods are introduced in Chapter
3 and applied to Fisher’s equation. In Chapter 4, some numerical test examples are
presented to compare the convergence rates of the DG discretization space and of the
time integrators. Numerical results for different demonstrate the accuracy of the DG
discretization space combined with the Kahan’s method as an effective time integrator.
The thesis ends with some conclusions in Chapter 5.
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CHAPTER 2

DISCONTINUOUS GALERKIN METHOD

The Diffusion-Reaction equations are hard to solve with the conventional methods such
as Least Squares or Standard Finite Element Methods due to some variations of the
physical attributes of the nature. Therefore,it is needed to construct some other method
to eliminate these inconsistencies generated by changing variables. The Discontinuous
Galerkin (DG) Finite Element Method is one of the additional method which was firstly
served with Reed and Hill [17] in 1973 in their steady-state neutron transportation case
with 1st order hyperbolic equations.After this study,several studies on DG FEM are
presented for both Elliptic and Parabolic equations such as Navier-Stokes equations
case in the Bassi study [2].The notable usage is presented by Cockburn and Shu in
the study [4] with constructing some framework for the solutions of the nonlinear time
dependent hyperbolic conservative laws.

The DG Method is one of the favorite methods in the numerical solutions of various
equations defining the structures of the chemical reaction processes, nuclear reactors
etc. since it combines the positive parts of both Finite Volume Method which can be
used only with lower degree polynomials and the continuous Finite Element Methods
which gives the higher regularities due to the continuity. The DG method also provides
good approximate solutions having effective properties such as flexibility, stability and
consistency. Firstly, the flexibility property of the DG method can make the unstruc-
tured meshes and their hanging nodes usable on the inter-element boundaries on which
the functions are discontinuous, so the non-physical oscillations can be reduced. Sec-
ondly, since the jump values of the solutions on the interior boundaries must be penal-
ized by the DG method, the stability generated by the adapted polynomials obtained
by p-refinement process, can pass one element from the another element without any
extra effort on adaptivity. Thirdly, the consistency is provided by the Galerkin Orthog-
onality property of the FEM. In spite of these advantages, there are weak points of
the DG FEM such as higher degree of freedoms or ill-conditioned matrices which gets
larger linearly with the order of the basis functions.

In this chapter, the construction of the interior penalty Galerkin methods, a special DG
methods, on a simple Poisson equation. After, SIPG semi-discretization of the Fisher’s
equation (1.2) is given.
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2.1 Interior Penalty Galerkin Method

In this section, we present the application of the interior penalty Galerkin (IPG) method
[19] to the general Poisson equation

−ε∆u = f in Ω, (2.1)
u = gD on ∂ΩD,

ε∇u · n = gN on ∂ΩN ,

with ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅.

We first give some basic definitions used in the construction of IPG methods. The
spaces Lp(Ω) are defined on the polygonal domain in Rd, for 1 < p <∞,by

Lp(Ω) = {w Lebesgue measurable : ‖w‖2
Lp(Ω) <∞},

with the norms

‖w‖Lp(Ω) =
(∫

Ω
|w(x)|pdx

)1/p
, 1 ≤ p <∞,

‖w‖L∞(Ω) = esssup{|w(x)| : x ∈ Ω} , p =∞.

The L2(Ω) space which is a Hilbert space given with the usual L2-inner product

(u,w)Ω =

∫
Ω

u(x)w(x)dx , ‖w‖L2(Ω) =
√

(w,w)Ω.

LetD(Ω) denotes the subspace of the space C∞ having compact support in Ω. For any
multi-index γ = (γ1, . . . , γd) ∈ Nd with |γ| =

∑d
i=1 γi, the distributional derivative

Dγw is defined by

Dαw(ψ) = (−1)|γ|
∫

Ω

w(x)
∂|γ|ψ

∂xγ11 · · · ∂x
γd
d

, ∀ψ ∈ D(Ω).

Then, the Sobolev space W (s,p) is introduced as

W (s,p)(Ω) = {w ∈ Lp(Ω) : Dγw ∈ Lp(Ω) , ∀ 0 ≤ |γ| ≤ s}.

Our main interest along this thesis is the Sobolev space given as Hs(Ω) = W (s,2)(Ω)
for an integer s with the associated Sobolev norm

‖w‖Hs(Ω) =

 ∑
0≤|γ|≤s

‖Dγw‖2
L2(Ω)

1/2

,

and the associated Sobolev seminorm

|w|Hs(Ω) = ‖∇sw‖L2(Ω) =

∑
|γ|=s

‖Dγw‖2
L2(Ω)

1/2

.
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The Sobolev spaces with vanishing functions on the domain boundary are defined by

Hs
0(Ω) = {w ∈ Hs(Ω) : w|∂Ω = 0},

and we have for s = 1

H1(Ω) = {w ∈ L2(Ω) : ∇w ∈ (L2(Ω))d},

For a partition of triangles Th of Ω the broken Sobolev spaces are defined by

Hs(Th) = {w ∈ L2(Ω) : w|E ∈ Hs(E) , ∀E ∈ Th},

with the associated broken Sobolev norm

‖w‖Hs(Th) =

(∑
E∈Th

‖w‖2
Hs(E)

)1/2

,

and the associated broken gradient semi–norm

|w|H0(Th) =

(∑
E∈Th

‖∇w‖2
L2(E)

)1/2

.

Let {Th} be a family of shape regular meshes with triangular elements, i.e., there exists
a constant c0 such that

max
E∈Th

h2
E

|E|
≤ c0

where hE is the diameter and |E| is the area of E, and also the elements Ei ∈ Th
satisfies Ω = ∪E and Ei ∩ Ej = ∅ for Ei, Ej ∈ Th. We split the set of all edges Eh
into the set of interior edges E0

h, the set of Dirichlet boundary edges ED
h and the set of

Neumann boundary edges EN
h , so that Eh = E∂

h ∪E0
h with E∂

h = ED
h ∪EN

h . Then, set
the finite dimensional solution and test function space by

Vh =
{
u ∈ L2(Ω) : u|E ∈ Pq(E), ∀E ∈ Th

}
6⊂ H1

0 (Ω),

where Pq(E) denotes the set of all polynomials on E ∈ Th of degree at most q. Note
that the space of solution and test functions are chosen to be the same since the bound-
ary conditions in DG methods are imposed weakly. In contrast to continuous finite
element method, discontinuous Galerkin methods are suitable to use non–conforming
spaces in which case the functions in Vh /∈⊂ H1

0 are allowed to be discontinuous along
the inter-element boundaries.

Because of the discontinuity of the functions in Vh along the inter element boundaries,
there are two different traces from the neighboring elements sharing that edge. Ac-
cordingly, let us first give some notations before the construction of IPG methods. Let
the edge e be a common edge for two elements Ei and Ej (i < j), (see Figure 2.1).
Then for a scalar function u, there are two common traces of u along e, denoted by
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Figure 2.1: Left: two neighbour elements sharing an edge, Right: an element adjacent
to boundary of the domain

u|Ei
from inside Ei and u|Ej

from inside Ej . Then, the jump and average of u across
the edge e are defined as

[u] = u|Ei
ne − u|Ej

ne, {u} =
1

2
(u|Ei

+ u|Ej
),

where ne is the unit normal to the edge e oriented from Ei to Ej . Similarly, we set the
jump and average values of a vector field∇u on e

[∇u] = ∇u|Ei
· ne −∇u|Ej

· ne, {∇u} =
1

2
(∇u|Ei

+∇u|Ej
),

Observe that [u] is a vector for a scalar function u, while, [∇u] is scalar for a vector
field∇u. On the other hand, for a boundary edge e ⊂ Ei ∩ ∂Ω, we set

[u] = u|Ei
n, {u} = u|Ei

, [∇u] = ∇u|Ei
· n, {∇u} = ∇|Ei

where n is the unit outward normal to the boundary at e.

When we multiply the continuous equation (2.1) by a test function v ∈ Vh, integrate
over Ω and split the integrals, we obtain

−
∑
E∈Th

∫
E

ε∆uvdx =
∑
E∈Th

∫
E

fvdx.

Applying the divergence theorem on every element integral gives∑
E∈Th

∫
E

ε∇u · ∇vdx−
∑
E∈Th

∫
∂E

ε(∇u · n)vds =
∑
E∈Th

∫
K

fvdx+
∑
e∈EN

h

∫
e

gNvds

Using the jump definitions (v ∈ Vh are element-wise discontinuous), we get∑
E∈Th

∫
E

ε∇u · ∇vdx−
∑

e∈E0
h∪E

D
h

∫
e

[εv∇u]ds =
∑
E∈Th

∫
E

fvdx+
∑
e∈EN

h

∫
e

gNvds

It can be easily verified that [εv∇u] = {ε∇u} · [v] + [ε∇u] · {v}. Also, using the fact
that [∇u] = 0 (u is assumed to be smooth enough so that∇u is continuous), we get∑
E∈Th

∫
E

ε∇u · ∇vdx−
∑

e∈E0
h∪E

D
h

∫
e

{ε∇u} · [v]ds =
∑
E∈Th

∫
E

fvdx+
∑
e∈EN

h

∫
e

gNvds
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However, the left hand side is not coercive, even not symmetric. To handle this and to
penalize the solutions, using the fact that [u] = 0 along the interior edges (u is assumed
to be continuous), we reach at∑

E∈Th

∫
E

ε∇u · ∇vdx−
∑

e∈E0
h∪E

D
h

∫
e

{ε∇u} · [v]ds−
∑
e∈E0

h

∫
e

{ε∇v} · [u]ds

+
∑
e∈E0

h

σ

he

∫
e

[u] · [v]ds =
∑
E∈Th

∫
K

fvdx+
∑
e∈EN

h

∫
e

gNvds

where he denotes the length of the edge e and σ is called the penalty parameter. It
should be sufficiently large to ensure the stability of the DG discretization with a lower
bound depending only on the polynomial degree such that for 1D problems σ = 5

2
(q+

1)2 and σ = 3q(q + 1) for 2D problems.

Finally, by keeping unknown on the left hand side and imposing Dirichlet boundary
condition on the right hand side, we add to the both sides the edge integrals on the
Dirichlet boundary edges∑

E∈Th

∫
E

ε∇u · ∇vdx−
∑

e∈E0
h∪E

D
h

∫
e

{ε∇u} · [v]ds+K
∑

e∈E0
h∪E

D
h

∫
e

{ε∇v} · [u]ds

+
∑

e∈E0
h∪E

D
h

σ

he

∫
e

[u] · [v]ds =
∑
E∈Th

∫
E

fvdx+
∑
e∈ED

h

∫
e

gD

(
σ

he
v − ε∇v · n

)
ds

+
∑
e∈EN

h

∫
e

gNvds.

which gives the IPG formulation. In this formulation, the parameter κ determines the
type of the IPG method. It takes the values on K ∈ {−1, 0, 1} giving that

• K = −1: symmetric interior penalty Galerkin (SIPG) method

• K = 0: incomplete interior penalty Galerkin (IIPG) method

• K = 1: non–symmetric interior penalty Galerkin (NIPG) method

In this thesis, symmetric interior penalty Galerkin (SIPG) method is considered.

2.2 SIPG Discretization of Fisher’s Equation

In this section, we describe the DG discretization based on SIPG method applied to the
diffusion part of the Fisher’s equation (1.2) with Dirichlet boundary conditions. Using
the definitions and notations from the previous section, the solution of (1.2) reads as:
for each t ∈ (0, T ] find uh(t) ∈ Vh such that
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(∂tuh, υh)Ω + ah(uh, υh) + bh(uh, υh)Ω = Ih(υh), ∀υh ∈ Vh (2.2)

where bh(u, v)Ω = (ρu2/K, v) and the bilinear form is ah is given by

ah(u, υ) =
∑
E∈Th

∫
E

(ε∇u · ∇υ − ρu)dx−
∑

e∈E0
h∪E

D
h

∫
e

{ε∇u} · [υ]ds

−
∑

e∈E0
h∪E

D
h

∫
e

{ε∇υ} · [u]ds+
∑

e∈E0
h∪E

D
h

σε

he

∫
e

[u] · [υ]ds

bh(u, υ)Ω =
∑
E∈Th

∫
E

ρ

K
u2υdx

Ih(υ) =
∑
e∈ED

h

∫
e

(
σε

he
υ − ε∇υ · n

)
gDds

2.2.1 Semi–Discrete System in Matrix–Vector Form

The approximate solution of the semi–problem (2.2) has the form

uh(t) =
N∑
m=1

nq∑
j=1

Um
j (t)ψmj (2.3)

where ψmj are the basis functions of Vh and Um
j are the unknown coefficients, nq is

local dimension with nq = q + 1 for 1D problems, nq = (q+1)(q+2)
2

for 2D problems,
and N is the number of intervals for 1D problems or the number of triangular elements
for 2D problems. In DG methods, the basis functions ψmj ’s are chosen in such a way
that each piecewise basis polynomial has only one triangle as a support, i.e., on a
specific triangle Ee, e ∈ {1, 2, . . . , N}, the basis polynomials ψej are zero outside Ee.
This construction makes the stiffness matrix in DG methods block structure, each of
which related to a triangle. The product dof := N ∗ nq gives the degree of freedom
in DG methods. Inserting the approximate solution uh in (2.2) and choosing the test
functions as vh = ψmj , j = 1, 2, . . . , nq, m = 1, 2, . . . , N , the semi–discrete system
(2.2) in matrix vector form is given by

MUt + AU + r(U) = L, (2.4)

where U ∈ Rdof is the vector of unknown coefficients Um
j ’s, M ∈ Rdof×dof is

the mass matrix, A ∈ Rdof×dof is the stiffness matrix corresponding to the bilinear
form ah(uh, vh), r ∈ Rdof is the vector function of U related to the non-linear form
rh(uh, vh) and L ∈ Rdof is the load vector related to the linear term Ih(υh). The

10



explicit definitions are given by

M =


M11 M12 · · · M1,N

M21 M22
...

... . . .
MN,1 · · · MN,N

 , A =


A11 A12 · · · A1,N

A21 A22
...

... . . .
AN,1 · · · AN,N



U =


U1

U2
...

UN

 , r(U) =


r1

r2
...
rN

 , L =


L1

L2
...

LN


where all the block matrices have dimension nq:

Mji =


(φi1, φ

j
1) (φi2, φ

j
1) · · · (φinq

, φj1)

(φi1, φ
j
2) (φi2, φ

j
2)

...
... . . .

(φi1, φ
j
nq

) · · · (φinq
, φjnq

)

 ,

Aji =


ah(κ;φi1, φ

j
1) ah(κ;φi2, φ

j
1) · · · ah(κ;φinq

, φj1)

ah(κ;φi1, φ
j
2) ah(κ;φi2, φ

j
2)

...
... . . .

ah(κ;φi1, φ
j
nq

) · · · ah(κ;φinq
, φjnq

)

 ,

Ui =


U i

1

U i
2

...
U i
nq

 , ri =


rh(uh, φ

i
1)

rh(uh, φ
i
2)

...
rh(uh, φ

i
nq

)

 , Li =


Ih(φ

i
1)

Ih(φ
i
2)

...
Ih(φ

i
nq

)

 .
Under the coercivity condition for the bilinear form ah(u, v) and monotonicity of the
nonlinear reaction term, there exist a unique solution of (2.4).
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CHAPTER 3

TIME DISCRETIZATION

In this Chapter the fully discrete form of Fisher’s equation in space by dG method
and in time by the linearly implicit Kahan’s method presented. Kahan’s method [9]
was applied for the Riccati and Lotka-Volterra equations, as symplectic integrator for
Hamiltonian systems [21], to the Korteweg De-Vries equation [24]. Kahan’s method
was applied In [20] to the Lotka-Volterra equations and it was shown that the local
stability of fixed points are preserved. It was applied to various biological models with
quadratic nonlinearities in [8].

3.1 Kahan’s Method

For time integration we use the ”unconventional” method of Kahan’s [9] for ordinary
differential equations (ODEs) with quadratic terms like the semi-discretized form of
the Fisher equation (2.4). We consider the following system of ODEs with quadratic
vector fields

dU

dt
= BU +Q(U) + q (3.1)

where Q and B are quadratic and the linear forms, respectively, and q is the constant
term. Kahan’s method, then, is given as

Un+1 − Un
∆t

= Q(Un, Un+1) +B
Un+1 + Un

2
+ q (3.2)

where Q(Un, Un+1) is symmetric bilinear form:

Q(Un, Un+1) =
1

2
[Q(Un + Un+1)−Q(Un)−Q(Un+1)] (3.3)

More specifically, the linear terms are approximated as the average of the approximate
solutions

U i =
U i
n + U i

n+1

2
,

the quadratic terms by [8, 9, 3]

U ij =
U i
nU

j
n+1 + U j

nU
i
n+1

2
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The right hand side of (3.2) depends linearly on Un+1. Therefore, Kahan’s method is
a linearly implicit method since Un+1 can be computed by solving a linear system of
equations at each time step. The system of nonlinear equations are solved iteratively
by Newton’s method in other implicit methods like, the implicit mid-point method and
implicit Runge Kutta methods.

Kahan’s method is second order and symmetric, yielding a time reversible birational
map φ : Un −→ Un+1 for the discrete solution of the ODE system [8]. (3.1)

U̇ = f(U).

where f(U) is a quadratic vector field.

φ : Un+1 = Un + ∆t

(
I − ∆t

2
f ′(Un)

)−1

f(Un) + gd(t),

φ−1 : Un = Un−1 −∆t

(
I +

∆t

2
f ′(Un+1)

)−1

f(Un+1) + gd(t),

where I denotes the identity matrix and f ′(U) the Jacobian.

It was shown in [3] that Kahan’s Method belongs to the following family of Runge-
Kutta methods

Un+1 − Un
∆t

= af(Un) + (1− 2a)f(
Un + Un+1

2
) + af(Un+1) (3.4)

• If a = −1
2
: Kahan’s method.

• If a = 0: the midpoint method.

• If a = 1
2
: the trapezoidal method.

• If a = 1
6
: the Simpson method.

3.2 Time Discretization of Fisher’s Equation

In this section, the fully discrete formulation of Fisher’s equation in matrix–vector
notation is given by using the Kahan’s method through the semi–discrete formulation
(2.4).

The semi-discrete form of the Fisher’s equation (1.2) by SIPG method is given as the
following system of ODE’a

MUt + AU + r(U) = f(t), (3.5)

where M and A are mass and stiffness matrices, respectively, r(U) the semi-discrete
quadratic nonlinearity and f(T9 contains the semi-discrete non-homogeneuous terms
of the boundary conditions.

14



Let consider the uniform partition 0 = t0 < t1 < . . . < tJ = T of the time interval
[0, T ] with the uniform time step-size ∆t = tk − tk−1, k = 1, 2, . . . , J . Denote by
Un ≈ U(tn) the coefficient vector of the approximate solution at t = tn. For t = 0,
let uh(0) ∈ Vh be the projection (orthogonal L2-projection) of the initial condition u0

onto Vh, and let U0 be the corresponding coefficient vector satisfying (2.3). Then, the
Kahan’s method applied to the semi linear system (3.5) reads as: for n = 0, 1, . . . , J −
1, solve

M
Un+1 − Un

∆t
+

1

2
A(Un+1 + Un) + r(Un+1, Un) = f(tn), (3.6)

which is the fully discretized system that we will solve for Un+1. In (3.6), r(Un+1, Un)
refers to the form related to the quadratic nonlinearity, and it is given by

r(Un+1, Un) =


r1

r2
...
rN

 , ri =


ri,1
ri,2

...
ri,nq

 , ri,j =

∫
Ei

uh,nuh,n+1φ
i
jdx

where uh,n ≈ u(x, tn) is the approximate solution at the discrete time t = tn satisfying
the linear expansion (2.3). Note that the the for r(Un+1, Un) is linear in the argument.
As a result the system (3.6) is linear system for Un+1, and can be solved in an efficient
way. In the computational point of view, the known approximation uh,n behaves as a
variable (non-constant) linear reaction coefficient for the unknown uh,n+1.

Algorithm 1 Kahan’s Method
Given U0

for n = 0, 1, 2, . . . , J − 1 do
Compute the reaction matrixR which takes Un as the variable reaction coefficient
Solve the linear system (3.6) by setting r(Un+1, Un) = RUn+1

end for

15
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we demonstrate the effectiveness of Kahan’s method by several numer-
ical test examples. The dimensionless analysis of Fisher equation (1.2) shows for the
case of D = 1 and ρ = 1, 1the minimal speed of the self similar traveling wave is
c > 2 [12]. Similarly, in [10] it was shown that travelling waves exits for c > 0 which
are decreasing monotonically. At the minimum wave speed c = 2 travelling waves
propagate into shock-like waves [12]. For reaction dominated, i.e. larger ratios of ρ/ε,
the velocity is preserved, but the maximal gradient is multiplied by a factor ρ which
introduces stiffness in the equation. In the following examples, we investigate for dif-
ferent values of the diffusion ε and reaction ρ parameters, how accurately the travelling
waves are resolved in time and space. We give also the convergence rates in space for
the SIPG discretization, in time for Kahan’s method and the mid-point method.

4.1 Example 1

We consider the Fisher equation in [12, 14] on t ∈ [0, 1] and with the diffusion coeffi-
cient ε = 1.

with the Dirichlet boundary conditions

lim
x→−∞

u(x, t) = 1, lim
x→∞

u(x, t) = 0,

and the initial condition

u(x, 0) =
1[

1 + exp
(√

ρ
6

)
x)
]2 .

The exact solution is given by

u(x, t) =
1[

1 + exp
((√

ρ
6

)
x−

(
5ρ
6

)
t
)]2 .

In the following, we compare numerical numerical errors, convergence orders in time
for Kahan’s method with the midpoint method by taking the step size in space as ∆x =
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0.01 at the final time T = 0.1 by taking x ∈ [−30, 30] as the truncated computational
domain. We observe from the Tables 4.1-4.4 that the convergence rate of the mid-
point method is about two as expected. Convergence rate of Kahan’s method is about
one which is due to the linearly implicit nature of the method. We can conclude that
Kahan’s method has the same order as the implicit Euler method but it requires only
one solution of a linear system of equations at each time step.

Table 4.1: Kahan’s method ρ = 10

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
1.00e-2 1.24e-1 - 2.28e-1 -
5.00e-3 5.96e-2 1.06 1.09e-1 1.06
2.50e-3 2.92e-2 1.03 5.36e-2 1.03
1.25e-3 1.44e-2 1.02 2.65e-2 1.02

Table 4.2: Midpoint method ρ = 10

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
1.00e-2 2.28e-3 - 4.41e-3 -
5.00e-3 5.64e-4 2.02 1.09e-3 2.02
2.50e-3 1.36e-4 2.06 2.57e-4 2.08
1.25e-3 2.86e-5 2.24 4.97e-5 2.37

Table 4.3: Kahan’s method ρ = 100

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
5.00e-3 1.59e-1 - 8.83e-1 -
2.50e-3 6.30e-2 1.34 3.63e-1 1.28
1.25e-3 2.82e-2 1.16 1.64e-1 1.15
6.25e-4 1.34e-2 1.08 7.76e-2 1.08

Table 4.4: Midpoint method ρ = 100

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
5.00e-3 1.07e-2 - 6.53e-2 -
2.50e-3 2.56e-3 2.06 1.56e-2 2.06
1.25e-3 6.24e-4 2.04 3.79e-3 2.04
6.25e-4 1.46e-4 2.10 8.62e-4 2.13
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In the following tables, we compare numerical numerical errors, convergence orders
in space for linear DG polynomials integrated in time by Kahan’s method and by the
midpoint method for the time steps ∆t = 5 ∗ 10−5 inn the computational domain
x ∈ [−30, 30] final time T = 0.1.

Table 4.5: Kahan’s method ρ = 10

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
2.00 2.54e-2 - 1.02e-1 -
1.00 4.94e-3 2.36 1.62e-2 2.66
0.50 1.11e-3 2.15 3.70e-3 2.13
0.25 2.71e-4 2.03 9.15e-4 2.02

Table 4.6: Midpoint method ρ = 10

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
2.00 2.54e-2 - 1.02e-1 -
1.00 4.94e-3 2.36 1.62e-2 2.66
0.50 1.11e-3 2.16 3.69e-3 2.13
0.25 2.70e-4 2.04 9.02e-4 2.03

The convergence rates of the SIPG method with linear polynomials in the Tables 4.5-
4.6, are two as expected for both time discretizations.
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The plots of the numerical solutions computed by Kahan’s method, mid-point method
and exact solutions for increasing values of the reaction coefficients ρ in Figs. 4.1-4.3.
We observe that the sharp fronts for larger values of the reaction coefficient ρ can be
resolved accurately by taking smaller meshes in space and time.

Figure 4.1: Comparison of solutions for ∆t = ∆x = 0.01, ρ = 1

Figure 4.2: Example 1: Comparison of solutions for ∆t = ∆x = 0.01, and ρ = 10
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Figure 4.3: Example 1: Comparison of solutions for ∆t = 0.005, ∆x = 0.01, and
ρ = 100

4.2 Example 2

We consider the modified Fisher equation in [14]

∂u

∂t
= ε

∂2u

∂x2
+ ρ1u− ρ2u

2, (4.1)

with the Dirichlet boundary conditions

lim
x→−∞

u(x, t) = 0.5, lim
x→∞

u(x, t) = 0, (4.2)

.

The exact solution is given

u(x, t) = −1

4

−ρ1

ρ2

[
sech2(−

√
ρ1

24
x)− 2 tanh(−

√
ρ1

24
x)− 2

]
. (4.3)

In the Tables 4.7-4.8, convergence rates for Kahan’s method and mid-point method are
given, by taking ε = 10, ρ1 = 0.5, ρ2 = 1. Numerical solutions re computed in the
computational domain x ∈ [−30, 30] at the final time t ∈ [0, 5] with the step length
∆x = 0.1. In Fig. 4.4, numerical solutions obtained by Kahan’s method and exact
solutions are plotted which are in good agreement.
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Table 4.7: Kahan’s method

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
1.00e-1 4.83e-2 - 3.56e-2 -
5.00e-2 2.38e-2 1.02 1.76e-2 1.02
2.50e-2 1.18e-2 1.01 8.73e-3 1.01
1.25e-2 5.88e-3 1.01 4.35e-3 1.00

Table 4.8: Midpoint method

∆t L2 error L2 convergence rate L∞ error L∞ convergence rate
1.00e-1 4.03e-4 - 2.98e-4 -
5.00e-2 1.02e-4 1.99 7.53e-5 1.98
2.50e-2 2.64e-5 1.94 1.98e-5 1.93
1.25e-2 8.11e-6 1.71 6.08e-6 1.70

Figure 4.4: Example 2: Kahan’s method

4.3 Example 3

We consider as example the Fisher equation in [14]

with the initial condition

u0(x) = sech2(10x)
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with the homogeneous Dirichlet boundary conditions

lim
x→−∞

u(x) = lim
x→∞

u(x) = 0

with ε = 0.1 and ρ = 1 in the time interval t ∈ [0, 0.2] and in the computational domain
x ∈ [−4, 4] with spatial step is as ∆x = 0.05 and time step is taken as ∆t = 0.005.
The plots in Figs. 4.5-4.6 reveal that the numerical results of mid-point method and
Kahan’a method’s are very close.

Figure 4.5: Example 3: Midpoint method

Figure 4.6: Example 3: Kahan’s method
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CHAPTER 5

CONCLUSION

In this thesis, the the travelling wave solutions of the one dimensional Fisher’s equation
is studies. Numerical convergence results confirm the second order accuracy of the
SIPG discretization in space. The predicted orders of convergence of the two time
integrators used in this thesis, namely Kahan’s method and mid-point method were also
validated by the numerical results. Due its special structure Kahan’s method requires
less computation time than the mid-point method for semi-linear PDEs with quadratic
nonlinear terms like the Fisher’s equation. In all numerical experiments, travelling
waves with steep fronts are well resolved in the reaction dominated regimes due to the
less diffusive nature of the SIPG method.

25



26



REFERENCES

[1] K. Al-Khaled, Numerical study of Fisher’s reaction–diffusion equation by the
Sinc collocation method, Journal of Computational and Applied Mathematics,
137(2), pp. 245–255, 2001.

[2] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method
for the numerical solution of the compressible Navier-Stokes equations, J. Com-
put. Phys., 131(2), pp. 267–279, 1997.

[3] E. Celledoni, R. McLachlan, B. Owren, and G. Quispel, Geometric properties of
Kahan’s method, J. Phys. A: Math. Theor., 46(2), pp. –, 2013.

[4] B. Cockburn and C.-W. Shu, The local discontinuous galerkin method for time-
dependent convection-diffusion systems, SIAM Journal on Numerical Analysis,
35(6), pp. 2440–2463, 1998.
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