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Head of Department, Scientific Computing

Prof. Dr. Bülent Karasözen
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Department of Mathematics, Atılım University

Assoc. Prof. Dr. Murat Manguoğlu
Computer Engineering, METU

Assist. Prof. Dr. Fikriye Nuray Yılmaz
Department of Mathematics, Gazi University

Date:





I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: TUĞBA AKMAN
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ABSTRACT

LOCAL IMPROVEMENTS TO REDUCED-ORDER APPROXIMATIONS OF
PDE-CONSTRAINED OPTIMIZATION PROBLEMS

Akman, Tuğba

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

August 2015, 152 pages

Optimal control problems (OCPs) governed partial differential equations (PDEs) arise
in environmental control problems, optimal control of fluid flow, petroleum reservoir
simulation, laser surface hardening of steel, parameter estimation and in many other
applications. Although the OCPs governed by elliptic and parabolic problems are
investigated theoretically and numerically in several papers, the studies concerning
the optimal control of evolutionary diffusion-convection-reaction (DCR) equation and
Burgers equation are quite rare.

In this study, we consider the optimal control problem governed by the unsteady
diffusion-convection-reaction equation and Burgers equation without control constraints.
These problems gain importance, especially when the diffusive term is small. In such
cases, the numerical solution exhibit interior/boundary layers and classical finite ele-
ment method (FEM) is not efficient for derivation of an accurate numerical solution
and methods requiring higher regularity of the solution might not be practical. There-
fore, we solve these problems using variational time discretization method, which is
a stable, superconvergent technique requiring less regularity when compared to the
methods of the same order; and symmetric interior penalty Galerkin (SIPG) with up-
winding in space, which flexes inter element continuity of the solution. We provide
a priori error estimates for space-time discontinuous Galerkin method and present nu-
merical findings.
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An accurate and stable numerical solution requires a fine grid/mesh, which increases
the dimension of the discrete problem, so the computational time. In case of pertur-
bations in the data, full-order model (FOM) is required to be solved for each new
parameter in the data set. In case of optimization problems, FOM associated to the
differential equations must be resolved after updating the control. Therefore, we use
a model-order reduction (MOR) technique that eliminates the necessity of the solu-
tion of the FOM for each parameter and that enables us to solve the problem in a fast
way. We use one of the most popular and successful MOR techniques, namely the
proper orthogonal decomposition (POD) method. The idea behind the POD method is
to derive a new basis spanning the space whose dimension is lower than the finite ele-
ment space. Then, the FOM is projected onto the low-dimensonal space using the new
optimal POD basis as we proceed in Galerkin projection. In addition, a priori error
estimates associated to reduced-order model (ROM) based on space-time dG method
are proven and numerical results are shown.

The POD basis is computed using the snapshots of a particular problem which is inter-
preted by a mathematical model and data. Because there is a link between the data and
the snapshots, some perturbation in the data may lead to larger changes in the snap-
shots depending on the problem at hand. This leads the nominal/baseline POD basis,
which depends on the nominal/baseline parameters, not to approximate the perturbed
problem accurately. In such cases, one has to solve the full problem for each param-
eter in the data set again and regenerate the POD basis. This approach is expensive
especially for nonlinear problems or optimal control problems which requires the so-
lution of a set of differential equations. Thus, POD sensitivities are used to enrich the
low-dimensional subspace for a wider range of parameters and the quantity of interest
is the diffusion term ε, the convection term β and the reaction term r. We generate
two new bases, i.e. extrapolated POD (ExtPOD) and expanded POD (ExpPOD) and
compare these bases in terms of advantages and discuss the main drawbacks of them.

Keywords : Optimal control problems, proper orthogonal decomposition method, space-
time discontinuous Galerkin method, sensitivity analysis, a priori error estimates
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ÖZ

KISMİ DİFERANSİYEL DENKLEMLERİN ENİYİLEMELİ KONTROL
PROBLEMLERİNİN İNDİRGENMİŞ MERTEBEDEN YAKLAŞIMLARI İÇİN

YEREL GELİŞTİRMELER

Akman, Tuğba

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ağustos 2015, 152 sayfa

Ekolojik kontrol problemleri, akışkanların eniyilemeli kontrol problemleri, petrol birikim
simülasyonu, çelik yüzeyinin sertleştirilmesi, değişken tahminleri gibi birçok matem-
atiksel problem, kısmi diferansiyel denklemlerin eniyilemeli kontrol problemleri şeklinde
ifade edilmektedir. Eliptik ve parabolik diferansiyel denklemlerin eniyilemeli kontrol
problemleri ile ilgili çok sayıda çalışma olmasına karşın, zamana bağlı difüzyon kon-
veksiyon ve reaksiyon terimleri içeren diferansiyel denklemlerin ve Burgers denklem-
inin eniyilemeli kontrol problemleri ile ilgili çalışma az sayıdadır.

Bu tezde, zamana bağlı difüzyon konveksiyon ve reaksiyon terimleri içeren diferan-
siyel denklemlerin ve Burgers denkleminin kontrol kısıtı olmayan eniyilemeli kontrol
problemleri çalışılmıştır. Bu problem, difüzyon terimi küçük olduğunda önem kazan-
maktadır. Bu durumda, çözüm, tanım kümesi içinde veya tanım kümesinin sınırına
yakın bölgelerde katmanlar içermektedir. Sürekli sınırlı elemanlar yöntemi bu tip
problemlerde iyi sonuçlar vermemektedir. Bu nedenle, kararlı, çok yakınsak ve aynı
dereceden yöntemlere göre çözümün daha az türevlenebilir olmasının yeterli olduğu
bir yöntem olan varyasyonel zaman ayrıklaştırılması yöntemi ile çözümün elemanlar
arasında sürekli olması kısıtını kaldıran simetrik kesintili Galerkin yöntemi bir arada
kullanılmıştır. Uzay-zaman kesintili Galerkin yöntemi için, önceden hata tahminleri
elde edilmiş ve nümerik sonuçlar gösterilmiştir.
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Kesin ve kararlı sayısal çözüm elde edebilmek için, problemin sık bir ağ üzerinde
çözülmesi gerekmektedir. Bu da ayrık problemin boyutunu artırır ve daha geç çözülmesine
yol açar. Verideki her bozunumda, tam dereceli modelin yeniden çözülmesi gerek-
mektedir. Eniyileme problemlerinde ise, yeni kontrol bulunduktan sonra, tam dereceli
modelle ilişkili birden fazla diferansiyel denklemin nümerik çözümüne gerek duyul-
maktadır. Bu nedenle, tam dereceli modelin çözülmesi ihtiyacını ortadan kaldıran ve
problemin daha hızlı çözülmesini sağlayan, modelin derecesini azaltma yöntemleri ter-
cih edilmektedir. Bu çalışmada, en yaygın model indirgeme yöntemlerinden biri olan,
öz dik ayrışım yöntemi kullanılmaktadır. Bu yöntem ile boyutu indirgenmiş ve kısıtlı
elemanlar uzayının içinde kalan yeni bir uzayı üreten tabanlar bulunmaktır. Bu ta-
ban kullanılarak, tam dereceli model, boyutu indirgenmiş uzaya Galerkin yöntemi ile
izdüşürülür. Buna ek olarak, indirgenmiş model için uzay-zaman kesintili Galerkin
yöntemine dayanarak, önceden hata tahminleri hesaplanmış ve nümerik sonuçlarla
güçlendirilmiştir.

Öz dik ayrışım yöntemi, üretildiği sayısal çözüm ile ilgili bilgi taşımaktadır. Bu sayısal
çözümün elde edildiği verideki bozunumlar, öz dik ayrışım yöntemi ile elde edilen ta-
banın iyi sonuç vermemesine yol açar. Bu durumda, verideki her değişim için tam
boyutlu problemin yeniden çözülmesi ve tabanın yeniden üretilmesi gerekmektedir.
Özellikle lineer olmayan problemler için pahalı olan bu seçenek yerine, çözümün
difüzyon, adveksiyon ve reaksiyon değişkenine göre hassasiyeti kullanılarak, boyutu
indirgenmiş uzay zenginleştirilebilir. Bu bilgiyi kullanarak iki yeni taban, dışdeğerbiçim
tabanı ve genişletilmiş taban, üretilmiştir. Sayısal sonuçlar kullanılarak, bu bazların
faydaları ve eksikleri incelenmiştir. Her bir problem için, en uygun baza karar verilmiştir.

Anahtar Kelimeler : Eniyilemeli kontrol problemleri, öz dik ayrışım yöntemi, uzay-
zaman kesintili Galerkin yöntemi, hassasiyet analizi, önceden hata tahminleri
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CHAPTER 1

INTRODUCTION

Optimal control problems (OCPs) governed partial differential equations (PDEs) arise
in environmental control problems [38], optimal control of fluid flow [69, 126], petroleum
reservoir simulation [78], laser surface hardening of steel [106], parameter estimation
[125], biology [90] and in many other applications. In addition to real-life applica-
tions, OCPs governed by elliptic and parabolic problems are investigated theoretically
and numerically in several studies [1, 17, 29, 34, 68, 97, 101, 142]. However, studies
concerning the optimal control of evolutionary diffusion-convection-reaction (DCR)
equation and Burgers equation are quite rare [5, 57, 141, 131, 132]. Therefore, in this
study, firstly, we consider the following distributed optimal control problem governed
by unsteady diffusion-convection-reaction equation

minimize
u∈L2(0,T ;L2(Ω))

J(y, u) :=
1

2

∫ T

0

(
‖y − yd‖2

L2(Ω) + α ‖u‖2
L2(Ω)

)
dt, (1.1a)

subject to ∂ty − ε∆y + β · ∇y + ry = f + u (x, t) ∈ Ω× (0, T ], (1.1b)
y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ], (1.1c)
y(x, 0) = y0(x) x ∈ Ω, (1.1d)

where Ω = (0, 1)× (0, 1) and I = (0, T ). The source function and the desired state are
denoted by f ∈ L2(0, T ;L2(Ω)) and yd ∈ L2(0, T ;L2(Ω)), respectively. The initial
condition is also defined as y0(x) ∈ H1

0 (Ω). The diffusion and reaction coefficients
are ε > 0 and r ∈ L∞(Ω), respectively. The velocity field β ∈ (W 1,∞(Ω))2 satisfies
the incompressibility condition, i.e. ∇ · β = 0. Furthermore, we assume the existence
of the constant C0 such that r ≥ C0 a.e. in Ω so that well-posedness of the optimal
control problem (1.1) is guaranteed.

Secondly, we solve the following distributed optimal control problem governed by
viscous Burgers equation without control constraints

minimize
u∈L2(0,T ;L2(Ω))

J(y, u) :=

∫ T

0

(1

2

∥∥y − yd∥∥2

L2(Ω)
+
α

2
‖u‖2

L2(Ω)

)
dt, (1.2a)
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subject to

∂ty − εyxx + yyx = f + u, x ∈ Ω, t ∈ I, (1.2b)
y(0, t) = y(1, t) = 0, t ∈ I, (1.2c)
y(x, 0) = y0(x), x ∈ Ω, (1.2d)

where Ω = (0, 1) and I = (0, T ). Here, f, yd ∈ L2(0, T ;L2(Ω)), y0(x) ∈ L2(Ω) are
the source function, the desired state and the initial condition with ε > 0.

Here, the state and the control are denoted by y and u, respectively. The aim is to min-
imize the difference between the state y and the desired state yd by finding a minimum
control u. Optimal control of evolutionary DCR equation has been investigated numer-
ically and theoretically, especially when the convective term is more dominant than the
diffusive term. In such cases, numerical solution exhibit interior/boundary layers and
classical finite element method (FEM) is not efficient for derivation of an accurate nu-
merical solution. To tackle such problems, several methods have been developed. For
example, symmetric stabilization strategies [23], characteristic finite element method
[57], streamline Petrov/Galerkin method [34], discontinuous Galerkin (DG) method
[91] and adaptive mesh refinement strategies [142] are employed for this problem to
substitute with the FEM. As a different strategy, we investigate these problems us-
ing variational time discretization combined with symmetric interior penalty Galerkin
(SIPG) with upwinding in space [3].

Numerical treatment of OCPs consists of two ingredients. One of them is the op-
timization algorithm, which is used to find the optimum control; the other one is
the discretization method which converts the continuous/infinite dimensional problem
into a discrete/finite dimensional one. In [16], continuous and discontinuous Galerkin
method are applied to continuous OCPs and optimization techniques for an efficient
solution of parabolic OCPs are compared. A posteriori error estimates are given in
[100] for parabolic optimization problems using space-time FEM. In [101, 102, 117],
a priori error estimates are derived for this problem for unconstrained and control-
constrained problems. Discontinuous in time and conforming elements in space are
used for discretization of the parabolic OCPs in [29, 30] and theoretical estimates are
proven. As a different and accurate strategy [3], we utilize variational time discretiza-
tion method and symmetric interior penalty Galerkin (SIPG) with upwinding in space
[13, 14, 112].

Discontinuous Galerkin method flexes the continuity condition of the approximate so-
lution, that is, the trail space and the test space consist of polynomials which are dis-
continuous at the end points of each interval for one-dimensional case or discontinuous
along the edges of the triangles/rectangles for two-dimensional case [112]. In addition,
the boundary conditions can be imposed weakly which is not the case for continuous
finite element method. On the other hand, this method can be applied to complicated
meshes with unstructured grids or hanging nodes. As opposed to the finite difference
or finite element methods, DG method are locally mass conservative which gains im-
portance solving coupled flow and transport problems in porous media.
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Variational time discretization technique is based on Galerkin projection on the time
domain where the test functions are piecewise polynomials which are discontinuous
at the endpoints of each time interval. Depending on the choice of the trial space,
method is called differently. For continuous Galerkin-Petrov (cGP(q+1)) method, so-
lution space consists of continuous piecewise polynomials of degree q+1 and test func-
tions are piecewise discontinuous polynomials of degree q. For discontinuous Galerkin
dG(q) methods, both of the test and the trial spaces are piecewise discontinuous poly-
nomials of degree q [120, Chap. 12]. Advantages of variational time discretization
are stability, nodal superconvergence, and applicability of space-time adaptivity. Both
continuous and discontinuous Galerkin methods are A-stable; discontinuous Galerkin
methods are even L-stable (strongly stable). Convergence order of cGP(q+1) methods
are of one order higher than dG(q) methods. A priori error estimates of optimal or-
der can be obtained with respect to the size of time steps and regularity requirements
of the solutions [49], whereas dG methods require less regular solutions than the cG
methods. dG(q) methods are superconvergent at the nodal points of order 2q+ 1 when
the order of the method is q and the solution of the problem is sufficiently regular. For
dG method, long-time integration is achievable without accumulating the error on the
current time interval [49].

There exist two different approaches for solving OCPs: optimize-then-discretize (OD)
and discretize-then-optimize (DO). In the OD approach, through continuous Lagrangian,
infinite dimensional optimality system is derived containing the state and the adjoint
equations and the variational inequality. Then, optimality system is discretized by
using a suitable discretization method in space and time. In DO approach, infinite di-
mensional OCP is discretized and then finite-dimensional optimality system is derived
by constructing the discrete Lagrangian. DO and OD approaches do not commute in
general for OCPs governed by diffusion-convection-reaction equation [34]. However,
commutativity is achieved in the case of SIPG discretization for steady state problems
[91]. For discontinuous Galerkin time discretization, where both trial and test spaces
are discontinuous, we show that OD and DO approaches commute, i.e. the adjoint
state is discretized as we do for the state variable. For continuous Galerkin time dis-
cretization, where trial spaces are continuous and test spaces are discontinuous, OD
and DO approaches do not commute.

An accurate and stable numerical solution requires a fine grid/mesh, which increases
the dimension of the discrete problem, so the computational time. In case of pertur-
bations in the data, full-order model (FOM) is required to be solved for each new
parameter in the data set. In case of optimization problems, FOM associated to the dif-
ferential equations must be resolved after updating the control. Therefore, a method,
that eliminates the necessity of the solution of the FOM for each parameter or that
enables us to solve the problem in a fast way, is required. Here, model-order reduc-
tion (MOR) techniques are used to replace the FOM with the reduced-order model
(ROM). In the literature, there are several MOR techniques and each of them has dif-
ferent advantages and disadvantages depending on the problem at hand. One of the
most popular and successful MOR techniques is the proper orthogonal decomposition
(POD) method, also known as Karhunen-Loève decomposition or principal component
analysis [71, 83, 133]. The idea behind the POD method is to derive a new basis span-
ning the subspace whose dimension is lower than the finite element space. Then, FOM
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is projected onto the low-dimensonal subspace using the new optimal POD basis as we
proceed in Galerkin projection. POD basis is computed using the full-order solution
at discrete time steps, which are called as the snapshots. Because the snapshots might
be linearly dependent or almost linearly dependent, they cannot be directly used as a
basis. Therefore, we construct a snapshot matrix and employ singular value decompo-
sition or eigenvalue decomposition to derive the POD basis. In the literature, there are
several studies concerning the reduced solution of the PDE-constrained optimization
based on POD. However, the studies on the optimal control of diffusion-convection-
reaction equation, compared to parabolic PDEs, or Burgers equation are not so popular
cases. Although there are some studies analysing the error in the reduced solution for
continuous finite element method and finite difference approximation in time, a priori
error estimates based on space-time dG method is a new topic, where several differ-
ences arise during the derivation of the estimates and in the resulting error bound.

POD basis is computed using the snapshots of a particular problem which is interpreted
by a mathematical model and data. Because there is a link between the data and the
snapshots, some perturbation in the data may lead to larger changes in the snapshots
depending on the problem at hand. This leads the nominal/baseline POD basis, which
depends on the nominal/baseline parameters, not to approximate the perturbed prob-
lem accurately. In such cases, one has to solve the full problem for each parameter in
the data set again and regenerate the POD basis. This approach is expensive especially
for nonlinear problems or optimal control problems which requires the solution of a
set of differential equations. Another choice is to use the sensitivities of the trajec-
tories which require the solution of the sensitivity equations. They can be obtained
by applying continuous sensitivity equation (CSE) method or finite difference (FD)
approximation. Because sensitivity equations are always linear, the former method is
especially preferable for nonlinear problems. The latter one requires the computation
of the full problem at least one more time, so it is expensive for nonlinear case. In this
study, motivated by the papers [62, 63, 64], POD sensitivities are used to enrich the
low-dimensional subspace for a wider range of parameters and the quantity of interest
is the diffusion term ε, the convective term β and the reactive term r. We generate
two new bases, i.e. extrapolated POD (ExtPOD) and expanded POD (ExpPOD) and
compare these bases in terms of advantages and discuss the main drawbacks of them.

The goal of this thesis is to develop a new discretization scheme for optimal control
of evolutionary diffusion convection reaction equation and Burgers equation, derive
error estimates for the error between the exact and the fully-discrete solution requir-
ing less regularity of the exact solution. In addition, these problems are solved using
a different basis, called proper orthogonal decomposition basis, which enables us to
solve the problem in a fast way. Then, error estimates for the error between the exact
and the reduced-order solution are proven based on space-time discontinuous Galerkin
discretization. In addition, sensitivity information is used to increase the accuracy of
nominal POD basis in case of perturbation of the data. To the best of our knowledge,
this is the first study combining the sensitivity analysis techniques and model-order re-
duction strategies for PDE-constrained optimization problems. This thesis is organized
as follows:

In Chapter 2, we explain how to derive the optimality conditions of the associated
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problems, after stating the spaces and norms used in the study. Then, we proceed with
the optimization algorithm by writing the OCPs in an abstract setting and explain the
derivation of the first-order and second-order derivatives. Then, the computation of
the gradient and the Hessian-times-vector product are formulated. Newton conjugate
gradient method, which is employed to find the optimum control, is explained step by
step.

In Chapter 3, we explain the symmetric interior penalty Galerkin method, which is
used for spatial discretization, for one and two-dimensional problems separately. For
linear problem, the upwind scheme is used to discretize the convection term; for non-
linear case, Lax-Friedrichs flux is employed. Then, we derive semi-discrete optimality
system in weak form and in matrix-vector form.

In Chapter 4, variational time discretization methods, namely continuous Galerkin-
Petrov and discontinuous Galerkin methods, are introduced. Fully-discrete optimality
systems are derived and the differential equations which must be solved to compute
the gradient and the Hessian-times-vector product are specified. Then, we discuss
similarities and differences of these two time discretization methods in terms of two
approaches, namely OD and DO. We proceed with a priori error estimates for DCR
equation, particularly for space-time DG method. The resulting error bound is subop-
timal in space and optimal in time. The linear systems associated to the fully-discrete
optimality system are computed and numerical results are presented. Then, we derive
a priori error estimates for OCP of Burgers equation, which are suboptimal in space
and optimal in time. The matrix systems for linearised state equation and the adjoint
equation are formulated, and numerical results are given.

In Chapter 5, we use model-order reduction technique to reduce the dimension of the
OCPs using proper orthogonal decomposition method. Here, solution of the full-order
model is used and a new basis depending on the baseline parameters is computed.
Then, Galerkin projection leads to weak form of each equation in the optimality system
in a low-dimensional subspace. We explain continuous and discrete POD method and
mention POD truncation error. Semi-discrete and fully-discrete optimality systems
are written in this space and associated matrix forms are given, firstly, for linear PDE
constraint. Then, a priori error estimates for reduced-order solution is derived based on
space-time DG method and numerical results are presented to test the resulting error
bound. Then, we proceed with the discrete empirical interpolation method, which is
used to increase the efficiency of POD in case of nonlinear state equation. A priori error
estimates for reduced solution of the Burgers equation follow and numerical results are
discussed.

In Chapter 6, the aim is to increase the robustness of POD method in case of parameter
perturbation. We utilize the sensitivity information of the snapshot matrix and compute
POD basis sensitivities. Then, two new bases, namely extrapolated and expanded POD
basis, are computed. Numerical results indicate the efficiency of this approach for
PDE-constrained optimization.

Lastly, we draw a conclusion to underline vital parts of each study and comment on
possible future work.
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CHAPTER 2

OPTIMAL CONTROL PROBLEMS

Optimal control problems have several applications, such as petroleum reservoir simu-
lation [78], environmental modeling [38], control of fluid flow [69, 126] and parameter
estimation [125]. They are formulated through an optimization problem governed by
a PDE. Numerical treatment of PDE-constrained optimization problems requires an
optimization algorithm and a discretization method. Since we have a PDE-constrained
optimization problem, one firstly attempts to construct the Lagrangian of the prob-
lem. Depending on the structure of the Lagrangian, i.e. continuous or discrete; two
approaches, namely optimize-then-discretize (OD) and discretize-then-optimize (DO),
are employed to find a numerical solution of the OCPs. The type of PDE constraint
and the symmetric properties of the numerical discretization method might result in
the same variational formulations [34, 91]. Depending on the problem, differences of
these approaches might affect the accuracy and the rate of convergence.

OCPs governed by parabolic PDEs have gained interest, recently [12]. For exam-
ple, this problem is solved by space-time multigrid techniques while discretization is
performed with finite difference scheme in [21]. A nested multigrid method is uti-
lized for time-periodic parabolic OCPs in [1]. OCP of one-dimensional heat equation
with pointwise control constraints is investigated theoretically in [113], while opti-
mal control of two-dimensional parabolic problems is studied in [93]. In addition to
these, unconstrained and control-constrained OCPs governed by parabolic PDEs are
solved with different types of control discretizations and error estimates are derived in
[101, 102]. Finite volume method is combined with backward Euler time discretization
and error estimates in different norms are derived in [97]. A variational discretization
scheme is suggested in [68] where the relation between the adjoint and the control is
used and the space of controls is not discretized which leads to an increase in the rate
of convergence. A priori error estimates for discontinuous Galerkin time discretization
for unconstrained parabolic OCPs are proposed in [29].

In case of optimal control of steady diffusion-convection-reaction (DCR) equation,
symmetric stabilization has been integrated with finite element method and approaches
OD and DO lead to the same optimality condition in [17]. Variational discretization
concept is applied to this problem in [73]. Numerical result of this problem is derived
using symmetric interior penalty Galerkin discretization in [92, 139], while streamline
upwind Petrov/Galerkin method is used in [137]. When the convective term dominates
the diffusion term, the problem becomes highly convection dominated and it might
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contain boundary or interior layers. For such cases, adaptive refinement strategies
can be used to find an accurate numerical solution. For example, local DG method is
employed for this problem in [142] and a posteriori error estimates are proven, while
a residual type error estimator with symmetric interior penalty Galerkin method is
derived in [140].

Studies on OCPs governed by evolutionary DCR equations are quite rare when com-
pared to steady-state case. For example, local DG approximation of the OCP which is
discretized by backward Euler in time is studied in [141] and a priori error estimates
for semi-discrete OCP is provided in [119]. In [57, 58], characteristic finite element
solution of the OCP is discussed and numerical results are provided using uniform and
adaptive refinement strategies, respectively. Crank-Nicolson time discretization with
symmetric stabilization is applied in [23]. Control-constrained case is investigated in
one of our previous study [5] for SIPG method combined with backward Euler dis-
cretization, while we investigated variational time discretization methods in [3].

In addition, OCP governed by Burgers equation is studied numerically and theoreti-
cally. For example, distributed and boundary control problem are solved using dis-
continuous Galerkin method in space and the fourth order accurate Runge-Kutta time
integration in [28], while finite element method combined with Crank-Nicolson time
discretization is used in [65]. In addition, augmented Lagrangian sequential quadratic
programming (SQP) method is investigated by combining the theoretical analysis with
some numerical results in [131, 132]. Lagrange-Newton SQP method is discussed for
control-constrained OCP and the convergence of the method is proven and the study is
enriched with numerical examples in [123]. Three different algorithms for control of
Burgers equation with point-wise constraints are investigated in [35], while different
adjoint techniques for Neumann boundary control are discussed in [104] and two time
discretization methods, i.e. backward Euler and Crank-Nicolson, are compared.

In this chapter, we firstly mention the spaces and the norms used in this study in
Sec. 2.1. Then, we derive the optimality conditions for OCP governed by DCR equa-
tion and Burgers equation, respectively in Sec. 2.2. Then, we explain the optimization
method and the equations solved in each step in an abstract form in Sec. 2.3.

2.1 Preliminaries

Let Ω be a bounded domain in R1 for one-dimensional problems and let it be a convex
polygonal domain in R2 with Lipschitz boundary ∂Ω for two-dimensional problems.

Lebesgue space Lp(Ω) for 1 ≤ p <∞ is defined as

Lp(Ω) =
{
v Lebesgue measurable : ‖v‖Lp(Ω) <∞

}
,

where

‖v‖Lp(Ω) =

(∫
Ω

|v(x)|p
)1/p

.
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In this study, particularly for p = 2, inner product in L2(Ω) is denoted by (·, ·) and
L2-norm is written as ‖ · ‖L2(Ω) = ‖ · ‖.

The space L∞(Ω) is defined as

L∞(Ω) =
{
v Lebesgue measurable : ‖v‖L∞(Ω) <∞

}
,

where
‖v‖L∞(Ω) = ess sup {|v(x)| : a .e. x ∈ Ω} .

We introduce L2 inner product on the inflow or outflow boundaries as follows

(w, v)Γ− =

∫
Γ−

|β · n|wv ds

with analogous definition of (·, ·)Γ+ and associated norms ‖ · ‖Γ− and ‖ · ‖Γ+ .

We proceed with Sobolev space denoted by W k,p(Ω). Let k ≥ 0 be an integer and
1 ≤ p ≤ ∞ be a real number. Sobolev space is defined as

W k,p(Ω) =
{
v ∈ Lp(Ω) : ∀α ∈ Dk

d , ∂
αv ∈ Lp(Ω)

}
,

whereDk
d =

{
α ∈ Nd : |α| ≤ k

}
. Equivalently, functions with derivatives up to order

k in Lp(Ω) span the space W k,p(Ω).

Sobolev space W k,p(Ω) is a Banach space equipped with the norm

‖v‖Wk,p(Ω) =

∑
α∈Dkd

‖∂αv‖pLp(Ω)

1/p

, 1 ≤ p <∞,

and ‖v‖Wk,∞(Ω) maxα∈Dkd ‖∂
αv‖pL∞(Ω).

We define the semi-norm | · |Wk,p by fixing the condition D̄k
d =

{
α ∈ Nd : |α| = k

}
,

which means that only the derivative of order k is needed.

In particular, for p = 2, Hk(Ω) = W k,2(Ω), which is a Hilbert space, is written as

Hk(Ω) =
{
v ∈ L2(Ω) : ∀α ∈ Dk

d , ∂
αv ∈ L2(Ω)

}
.

On this space, we define the norm and semi-norm as follows:

‖v‖Hk(Ω) =

∑
α∈Dkd

‖∂αv‖2

1/2

, |v|Hk(Ω) =

∑
α∈D̄kd

‖∂αv‖2

1/2

.

The broken Sobolev space is defined as

Hk(Ω, Th) =
{
v : v |K∈ Hk(K) ∀K ∈ Th

}
,
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with the semi-norm defined by

|v|Hk(Ω,Th) =

(∑
K∈Th

|v|2Hk(K)

)1/2

, v ∈ Hk(Ω, Th).

We use DG energy norm given in [130, Section 4]

|||v|||2DG = |v|2H1(Ω,Th) + Jσ(v, v). (2.1)

Further, we consider the space of functions mapping the time interval (0, T ) to a
normed space X in which the norm ‖ · ‖X is defined. For r ≥ 1, we define

Lr(0, T ;X) = {z : [0, T ]→ X measurable :

∫ T

0

‖z(t)‖rX dt <∞}

with

‖z(t)‖Lr(0,T ;X) =


(∫ T

0
‖z(t)‖rX dt

)1/r

, if 1 ≤ r <∞,
ess sup

t∈(0,T ]

‖z(t)‖X , if r =∞.

Bochner space of functions whose kth time derivative is bounded almost everywhere
on (0, T ) with values in X is denoted by W k,∞(0, T ;X).

We need the discrete time-dependent norms for 1 ≤ q <∞,

‖v‖Lq(0,T ;L2(Ω)) =

(
1

N

N∑
i=1

‖vi|‖qL2(Ω)

)1/q

, ‖v‖L2(0,T ;DG) =

(
1

N

N∑
i=1

|||vi|||2DG

)1/2

.

(2.2)

We give the multiplicative trace inequality for all K ∈ Th, for all v ∈ H1(K) as
follows:

‖v‖2
L2(∂K) ≤ CM

(
‖v‖L2(K)|v|H1(K) + h−1

K ‖v‖
2
L2(K)

)
, (2.3)

where CM is a positive constant independent of v, h and K. We refer the reader to the
study [43, Lemma 3.1] for the proof.

In addition, generalization of Poincaré inequality to the broken Sobolev spaceH1(Ω, Th)
is given as [112, Section 3.1.4]

‖v‖2
L2(Ω) ≤ CS

(
|v|2H1(Ω,Th) +

∑
E∈Eh

1

hE
‖[[y]]‖2

L2(E)

)
. (2.4)

We mention the discrete trace inequality for allK ∈ Th, for all v ∈ Vh,p in [40, Lemma
1.46]:

‖v‖L2(∂K) ≤ Ctrh
−1/2‖v‖L2(K), (2.5)
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where Ctr is a constant independent of v, h and K, but it depends on the polynomial
degree p.

We mention Cauchy-Schwarz’s and Young’s inequalities which are frequently used for
the derivation of the error estimates.

• Cauchy-Schwarz’s inequality:

∀f, g ∈ L2(Ω), |(f, g)| ≤ ‖f‖‖g‖.

• Young’s inequality:

∀ε > 0, ∀ α, β, αβ ≤ ε

2
α2 +

1

2ε
β2.

We recall continuous and discrete Gronwall inequalities:

• Continuous Gronwall inequality:
Suppose that f, g, h are piecewise continuous nonnegative functions defined on
(a, b) and let g be nondecreasing. If there is a positive constant C independent
of t such that

∀t ∈ (a, b), f(t) + h(t) ≤ g(t) + C

∫ t

a

f(s) ds,

then

∀t ∈ (a, b), f(t) + h(t) ≤ expC(t− a)g(t).

• Discrete Gronwall inequality:
Suppose that ∆t, B, C > 0 and (an)n, (bn)n, (cn)n, (dn)n are sequences with
nonnegative numbers satisfying the relation

∀n ≥ 0, an + ∆t
n∑
i=0

bi ≤ B + C∆t
n∑
i=0

ai + ∆t
n∑
i=0

ci.

Then, under the condition C∆t ≤ 1,

∀n ≥ 0, an + ∆t
n∑
i=0

bi ≤ expC(n+ 1)∆t

(
B + ∆t

n∑
i=0

ci

)
.

2.2 Optimality Conditions

In this section, we obtain the optimality conditions for OCP of DCR equation and
Burgers equation, respectively.
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2.2.1 Optimality Conditions for Diffusion Convection Reaction Equation

Firstly, we consider the problem (1.1). We fix trial and test spaces as Y = V =
H1

0 (Ω), ∀t ∈ (0, T ]. We construct the continuous Lagrangian as follows:

L(y, u, λ) =

∫ T

0

(1

2

∥∥y − yd∥∥2

L2(Ω)
+
α

2
‖u‖2

L2(Ω)

)
dt

+ (∂ty, λ) + a(y, λ)− (f + u, λ) + (y(x, 0)− y0, λ(x, 0)).

By differentiating the Lagrangian with respect to λ, y and u, we obtain the following
(the first order necessary) optimality condition or Karush-Kuhn-Tucker conditions:

(∂ty, v) + a(y, v) = (f + u, v) ∀v ∈ V, y(x, 0) = y0, (2.6a)
−(∂tλ, ψ) + a(ψ, λ) = −(y − yd, ψ) ∀ψ ∈ V, p(x, T ) = 0, (2.6b)

αu = λ, (2.6c)

with

a(y, v) =

∫
Ω

(ε∇y · ∇v + β · ∇yv + ryv) dx, (w, v) =

∫
Ω

wv dx.

It is well known that the functions (y, u) ∈ H1(0, T ;L2(Ω))∩L2(0, T ;Y )×L2(0, T ;L2(Ω))
solve (1.1) if and only if there is an adjoint λ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;Y ) such
that (y, u, λ) is the unique solution of the following optimality system [122].

In this optimality system (2.6), the first equation is the weak form of the state equation
in (1.1). The second one is the adjoint equation which is also a PDE with the negative
convection field. In addition, initial condition of this equation is defined at t = T and
it is solved backward in time. PDE corresponding to (2.6b) is written as follows:

−∂tλ− ε∆λ− β · ∇λ+ rλ = −(y − yd) (x, t) ∈ Ω× (0, T ], (2.7a)
λ(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ], (2.7b)
λ(x, T ) = 0 x ∈ Ω. (2.7c)

2.2.2 Optimality Conditions for Burgers Equation

Secondly, we proceed with OCP of Burgers equation (1.2). We fix state and test space
are Y = V = H1

0 (Ω) and we define the space

W (0, T ) = {v ∈ L2(0, T ;V ) : vt ∈ L2(0, T ;V ′)}.

We construct the continuous Lagrangian as follows:

L(y, u, λ) =

∫ T

0

(1

2

∥∥y − yd∥∥2

L2(Ω)
+
α

2
‖u‖2

L2(Ω)

)
dt

+ (∂ty, λ) + a(y, λ) + n(y, λ)− (f + u, λ) + (y(x, 0)− y0, λ(x, 0)).
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By differentiating the Lagrangian with respect to λ, y and u, we obtain the following
(the first order necessary) optimality condition:

(∂ty, v) + a(y, v) + n(y, v) = (f + u, v), ∀v ∈ V, y(x, 0) = y0, (2.8a)

− (∂tλ, q) + a(q, λ)− nλ(λ, y, v) = −(y − yd, q), ∀q ∈ V, p(x, T ) = 0, (2.8b)
αu = λ, (2.8c)

where

a(y, v) =

∫
Ω

εyxvx dx, n(y, v) =

∫
Ω

yyxv dx, nλ(λ, y, v) =

∫
Ω

yλxv dx.

In the optimality system (2.8), the first equation is the weak form of the state equation
in (1.2). The second one is the adjoint equation which is written as follows:

−∂tλ− ελxx − yλx = −(y − yd) (x, t) ∈ Ω× (0, T ], (2.9a)
λ(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ], (2.9b)
λ(x, T ) = 0 x ∈ Ω. (2.9c)

The pair (y, u) ∈ W (0, T ) together with an adjoint λ ∈ W (0, T ) must satisfy the first-
order necessary optimality conditions [123]. To guarantee that the pair (y, u) is a local
solution to (1.2), we assume that the second order optimality condition holds.

Therefore, we obtain the second Fréchet derivative of the Lagrangian with respect to
x = (y, u) in the direction of hi = (yi, ui) for i = 1, 2 as

L′′(y, u, λ)(h1, h2) =

∫ T

0

(
y1y2 + u1u2 − λxy1y2) dxdt.

The second-order sufficient optimality condition assures that [123]

L′′(y∗, u∗, λ∗)((y, u), (y, u)) ≥ κ‖u‖2
L2(0,T ;L2(Ω)),

for all (y, u) ∈ W (0, T ) × L2(0, T ;L2(Ω)) where the state y solves the following
linearised PDE:

∂ty − εyxx + (y∗y)x = u, x ∈ Ω, t ∈ I,
y(0, t) = y(1, t) = 0, t ∈ I,
y(x, 0) = y0(x), x ∈ Ω.

2.3 Optimization Algorithm

We write the OCP (1.1) and (1.2) in an abstract form as in (2.10). The cost functional J
is minimized over the control u where the relation between the state y and the control
u is satisfied through a partial differential equation c(y, u):

min
u∈U

J(y, u), (2.10a)

subject to c(y, u) = 0. (2.10b)
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Alternatively, the minimization problem (2.10) can be rewritten as an unconstrained
optimization problem as follows:

min
u∈U

Ĵ(u) = J(y(u), u). (2.11)

The solution of the optimization problem (2.11) can be achieved through different
solvers (see, e.g. [39, 80, 105]). Apart from those, Newton-Conjugate Gradient
method enables us to find an approximate solution to Newton equation ∇2Ĵ(uk)sk =

−∇Ĵ(uk) by applying conjugate gradient (CG) method with initiating a control, i.e.
u0. The terms sk, ∇Ĵ(uk), ∇2Ĵ(uk) correspond to the search direction, the gradient
and the Hessian of the reduced cost functional, respectively. CG method is applied
until the residual of the Newton system is small enough, namely,

‖∇2Ĵ(uk)sk +∇Ĵ(uk)‖2 ≤ ηk‖∇Ĵ(uk)‖2

with ηk ∈ (0, 1) or a direction of negative curvature is found. After determining a
search direction sk, the step size α is computed through Armijo line-search method.
Then, the control is updated as uk+1 = uk +αsk [105]. We give the details of Newton-
CG method with Armijo line-search in Algorithm 2.1.

Following [65], we explain how to derive the gradient and perform Hessian times vec-
tor multiplication.

2.3.1 First-order Derivatives

For an efficient computation of the gradient, we construct the Lagrangian of the prob-
lem (2.10) so that we have an unconstrained optimization problem at hand.

L(y, u, λ) := J(y, u) + λT c(y, u), (2.12)

with Lagrange multiplier λ. The first order necessary optimality condition in terms of
the reduced cost functional Ĵ(u) guarantees the existence of a triple (y, u, λ) which
solves the optimality system:

Lλ(y, u, λ)|(y:=y(u),λ:=λu) = 0, (State equation), (2.13a)
Ly(y, u, λ)|(y:=y(u),λ:=λu) = 0, (Adjoint equation), (2.13b)
Lu(y, u, λ)|(y:=y(u),λ:=λu) = 0, (Gradient equation). (2.13c)

The first equation (2.13a) gives the PDE-constraint, i.e., c(y, u) = 0. Differentiating
the state equation, we obtain the relation

cy(y(u), u)yu(u) + cu(y(u), u) = 0. (2.14)

From this relation, the derivative yu(u) or the sensitivity of y with respect to u is
represented by

yu(u) = −cy(y(u), u)−1cu(y(u), u). (2.15)
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Algorithm 2.1 Newton-Conjugate Gradient Method with Armijo Line-Search
Require: Initial control u0, tolerance εgtol > 0.

1: for k = 0 to kmax do
2: Compute∇Ĵ(uk).
3: if ‖∇Ĵ(uk)‖ < εgtol then return
4: end if
5: Compute∇2Ĵ(uk).
6: Solve the Newton equation∇2Ĵ(uk)sk = −∇Ĵ(uk) using CG method:

Require: Set ηk ∈ (0, 1), sk = 0 and pk,0 = rk,0 = −∇Ĵ(uk).
7: for i = 0, 1, 2, . . . to imax do
8: if ‖rk,i‖2 < ηk‖rk,0‖2 then
9: go to Line (21).

10: end if
11: Compute qk,i = ∇2Ĵ(uk)pi.
12: if pTk,iqk,i < 0 then
13: go to Line (21).
14: end if
15: γk,i = ‖rk,i‖2/pTk,iqk,i.
16: sk = sk + γk,ipk,i.
17: rk,i+1 = rk,i − γk,iqk,i.
18: βk,i = ‖rk,i+1‖2/‖rk,i‖2.
19: pk,i+1 = rk,i+1 + βk,ipk,i.
20: if i = 0 then
21: set sk = −∇Ĵ(uk).
22: end if
23: end for
24: Perform Armijo line-search.
Require: Set αk = 1 and evaluate f(uk + αksk)

25: while f(uk + αksk) > f(uk) + 10−4αks
T
k∇Ĵ(uk) do

26: Set αk = αk/2 and evaluate f(uk + αksk).
27: end while
28: Set uk+1 = uk + αksk.
29: end for
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The second equation (2.13b) is equivalent to

cy(y(u), u)Tλ+∇yJ(y(u), u) = 0. (2.16)

The third equation (2.13c) can be written as

∇Ĵ(u) = ∇uJ(y(u), u) + yu(u)T∇yJ(y(u), u)

(2.15)
= ∇uJ(y(u), u)− cu(y(u), u)T cy(y(u), u)−T∇yJ(y(u), u)

(2.16)
= ∇uJ(y(u), u) + cu(y(u), u)Tλ(u). (2.17)

In Algorithm 2.2, the gradient computation for given control u is explained.

Algorithm 2.2 Gradient Computation Using Adjoints
1: Given u, solve c(y, u) = 0 for y := y(u).
2: Solve the adjoint equation cy(y(u), u)Tλ = −∇yJ(y(u), u) for λ := λ(u).
3: Compute∇Ĵ(u) = ∇uJ(y(u), u) + cu(y(u), u)Tλ(u).

2.3.2 Second-order Derivatives

After deriving an expression for∇Ĵ(u), we proceed with

∇2Ĵ(u) = Luy(y(u), u, λ(u))yu(u)

+ Luu(y(u), u, λ(u)) + Luλ(y(u), u, λ(u))λu(u). (2.18)

Now, the steps required to compute Hessian times vector multiplication through ad-
joints is explained. Firstly, we differentiate the adjoint equation (2.13b) with respect to
u to obtain

Lyy(y(u), u, λ(u))yu(u) + Lyu(y(u), u, λ(u)) + Lyλ(y(u), u, λ(u))λu(u) = 0.
(2.19)

Then, we note that

Luλ(y(u), u, λ(u)) = cu(y(u), u)T , (2.20a)

Lyλ(y(u), u, λ(u)) = cy(y(u), u)T . (2.20b)

In addition,

λu(u) = −Lyλ(y(u), u, λ(u))−1(Lyy(y(u), u, λ(u))yu(u) + Lyu(y(u), u, λ(u))

(2.20b)
= cy(y(u), u)−T (−Lyy(y(u), u, λ(u))yu(u)− Lyu(y(u), u, λ(u))

(2.15)
= cy(y(u), u)−TLyy(y(u), u, λ(u))(cy(y(u), u)−1cu(y(u), u))

− cy(y(u), u)−TLyu(y(u), u, λ(u) (2.21)
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We consider the Hessian again

∇2Ĵ(u) = Luy(y(u), u, λ(u))yu(u) + Luu(y(u), u, λ(u)) + Luλ(y(u), u, λ(u))λu(u)

(2.20a)
= Luy(y(u), u, λ(u))yu(u) + Luu(y(u), u, λ(u)) + cu(y(u), u)Tλu(u)

(2.21)
= Luy(y(u), u, λ(u))yu(u) + Luu(y(u), u, λ(u))

+ cu(y(u), u)T cy(y(u), u)−TLyy(y(u), u, λ(u))(cy(y(u), u)−1cu(y(u), u))

− cu(y(u), u)T cy(y(u), u)−TLyu(y(u), u, λ(u))

(2.15)
= −Luy(y(u), u, λ(u))(cy(y(u), u)−1cu(y(u), u)︸ ︷︷ ︸

:=w

) + Luu(y(u), u, λ(u))

+ (cu(y(u), u)T cy(y(u), u)−TLyy(y(u), u, λ(u))(cy(y(u), u)−1cu(y(u), u)︸ ︷︷ ︸
:=w

)

− (cu(y(u), u)T cy(y(u), u)−T )Lyu(y(u), u, λ(u))

(2.15)
= −Luy(y(u), u, λ(u))w + Luu(y(u), u, λ(u))

+ (cu(y(u), u)T cy(y(u), u)−T (Lyy(y(u), u, λ(u))w − Lyu(y(u), u, λ(u)))︸ ︷︷ ︸
:=p

= −Luy(y(u), u, λ(u))w + Luu(y(u), u, λ(u)) + cu(y(u), u)Tp. (2.22)

The equality (2.22) reveals that the Hessian times vector multiplication, namely∇2Ĵ(u)ν
can be computed without computing the Hessian which requires less computational
time. In Algorithm 2.3, the computation of Hessian vector multiplication is given step
by step.

Algorithm 2.3 Hessian-Times-Vector Computation
1: Given u, solve c(y, u) = 0 for y := y(u).
2: Solve the adjoint equation cy(y(u), u)Tλ = −∇yJ(y(u), u) for λ := λ(u).
3: Solve the equation cy(y(u), u)w = cu(y, u)ν for w.
4: Solve the equation

cy(y(u), u)Tp = ∇yyL(y(u), u, λ(u))w −∇yuL(y(u), u, λ(u))ν

for p.
5: Compute

∇2Ĵ(u)ν = cu(y(u), u)Tp−∇uyL(y(u), u, λ(u))w +∇uuL(y(u), u, λ(u))ν.

We note that the Hessian times vector multiplication requires the solution of the state
equation, which might be a linear and nonlinear constraint. Other unknowns λ,w and
p are derived through three linear equations. If one has the solution of the state and the
adjoint equation at hand, then only the solutions of two linear equation are required.
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CHAPTER 3

DISCONTINUOUS GALERKIN METHODS

Discontinuous Galerkin (dG) methods was firstly introduced by Reed and Hill in 1973
[110] for hyperbolic problems. Then, there has been an increasing trend in the studies
discussing dG methods for elliptic and parabolic problems and some variations of this
method have been invented. For example, local dG (LDG) method converts the original
second order equation into a systems of first order equations and discretize it [33]. A
variation of LDG method is compact dG method (CDG) where these two methods
are equivalent for one-dimensional problem, while for high dimensional problems,
computation of the approximate gradient differs. CDG is more stable and less sensitive
to element orientation than LDG [108]. Bubble stabilized dG method is derived in
[24]. Another scheme is explicit DG with local time stepping [96] where a space-
time weak formulation and an explicit approximate solver is used as a predictor. For
nonlinear problems, an implicit and explicit Runge-Kutta method and nonsymmetric
interior penalty method is combined in [129]. For DCR equation, this method has been
successfully applied to PDEs in [25, 14, 42, 46, 54, 75, 130].

The idea behind DG method is to flex the continuity condition of the approximate so-
lution, that is, trail space and test space are discontinuous at the end points of each
spatial interval in one-dimension or along the edges of the triangles/rectangles in two-
dimension [112]. In addition, boundary conditions can be imposed weakly which is
not the case for continuous finite element method. On the other hand, this method can
be applied to complicated meshes with unstructured grids or hanging nodes. The order
of approximation on each element might differ, so it is possible to use hp refinement
strategies, that is, size of each element and the order of the finite element approxi-
mation can be decided adaptively on each element [25, 75]. As opposed to the finite
difference or finite element methods, DG method are locally mass conservative which
gains importance solving coupled flow and transport problems in porous media. On
the other hand, size of the coefficient matrices is higher than the ones obtained from
continuous FEM and the condition number of these matrices gets higher as we increase
the order of the finite element approximation [112].

In this chapter, one-dimensional dG method is explained in Sec. 3.1. Then, two-
dimensional case follows in Sec. 3.2. Associated semi-discrete variational formula-
tions and matrix-vector systems are derived.
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3.1 Discontinuous Galerkin Methods in One-Dimension

In this section, we briefly describe the interior penalty Galerkin semi-discretization in
space for viscous Burgers equation:

∂ty − εyxx +
1

2
(y)2

x = f, x ∈ Ω, t ∈ I, (3.1a)

y(0, t) = y(1, t) = 0, t ∈ I, (3.1b)
y(x, 0) = y0(x), x ∈ Ω, (3.1c)

where Ω = (0, 1), I = (0, T ). Here, f, yd ∈ L2(0, T ;L2(Ω)), y0(x) ∈ L2(Ω) are
given source function, desired state and initial condition with ε > 0.

Let Ω be divided into M subintervals as 0 = x0 < x1 < · · · < xM = 1. We denote
each partition by Th, each subinterval by K := Kn = (xn, xn+1) and the length of
these subintervals by

hn = xn+1 − xn, hn−1,n = max(hn−1, hn), h = max
0≤n≤M−1

hn .

The jump and average of v can be defined for the endpoints of the subintervals as

[[v(xn)]] = v(x−n )− v(x+
n ), {{v(xn)}} =

1

2
(v(x−n ) + v(x+

n )) ∀ n = 1, . . . ,M − 1,

where v(x+
n ) = lim

ε→0, ε>0
v(xn + ε) and v(x−n ) = lim

ε→0, ε>0
v(xn − ε). Similarly, for a

piecewise continuous v′, the jump and the average for the endpoints of the subintervals
are given by

[[v′(xn)]] = v′(x−n )− v′(x+
n ), {{v′(xn)}} =

1

2
(v′(x−n ) + v′(x+

n )).

These definitions can be extended to the end points of Ω as

[[v(x0)]] = −v(x+
0 ), {{v(x0)}} = v(x+

0 ), [[v(xM)]] = v(x−M), {{v(xM)}} = v(x−M).

We use discontinuous piecewise finite element spaces to define the discrete test, state
and control spaces

Vh,p = Yh,p = Uh,p = {v : v|K ∈ Pp(K) ∀K ∈ Th}. (3.2)

Here, Pp(K) denotes the set of all polynomials of degree p on the interval K.

The diffusion term in the state equation (3.1) is discretized by the symmetric inte-
rior penalty method (SIPG) [13] and the nonlinear term is discretized by local Lax-
Friedrichs flux [67, Sect. 2.3] in space for fixed control u. Then, the semi-discrete
OCP is written as

minimize
uh∈Ṽh,p

1

2

∫ T

0

(∑
K∈Th

(
‖yh − ydh‖2

L2(K) + α‖uh‖2
L2(K)

))
dt, (3.3a)

subject to (∂tyh, vh) + ash(yh, vh) = (fh + uh, vh), ∀vh ∈ Vh,p,
yh,0 = (y0)h , (3.3b)
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with the (bi-)linear forms

ah(y, v) =
M−1∑
n=0

xn+1∫
xn

εy′(x, t)v′(x)dx (3.4a)

−
M∑
n=0

{{εy′(xn, t)}}[[v(xn)]]− κ{{εv′(xn)}}[[y(xn, t)]]− ε

Jσ(y,v)︷ ︸︸ ︷
σ

h
[[y(xn, t)]][[v(xn)]]

 ,

nsh(y, v) =
M−1∑
n=0

− xn+1∫
xn

1

2
y2
hv
′(x)dx+ vn+1n̂(y−n+1, y

+
n+1)− vnn̂(y−n , y

+
n )

 ,

=
M−1∑
n=0

− xn+1∫
xn

1

2
y2
hv
′(x)dx+ n̂s(y−n+1, y

+
n+1)[[v]]

 , (3.4b)

ash(y, v) = ah(y, v) + nsh(y, v), (3.4c)

(f, v) =
M−1∑
n=0

xn+1∫
xn

f(x, t)v(x)dx, (3.4d)

where the term n̂(y−n , y
+
n ) is the flux associated to the nth step. The penalty parameter

σ > 0 should be sufficiently large to ensure the stability of the dG discretization [112,
Sec. 2.7.1] with a lower bound depending only on the polynomial degree.

The semi-discrete optimality system associated to the OCP (3.3) is written as follows:

(∂tyh, vh) + ash(yh, vh) = (fh + uh, vh) ∀vh ∈ Vh,p, t ∈ (0, T ], (3.5a)

− (∂tλh, qh) + aah(λh, qh) = −(yh − ydh, qh) ∀qh ∈ Vh,p, t ∈ (0, T ], (3.5b)

αuh = λh, t ∈ (0, T ], (3.5c)

where

aah(λδ, φδ)

=
M−1∑
n=0

xn+1∫
xn

εy′(x, t)v′(x) dx

+
M−1∑
n=0

− xn+1∫
xn

y(x, t)λ
′
(x, t)v(x) dx+ vn+1n̂

a(λ−n+1, λ
+
n+1)− vnn̂a(λ−n , λ+

n )︸ ︷︷ ︸
nλh(λn+1,yn+1,vn+1)


=

M−1∑
n=0

 xn+1∫
xn

εy′(x, t)v′(x) dx−
xn+1∫
xn

y(x, t)λ
′
(x, t)v(x) dx+ nsy(y

−
n+1, y

+
n+1)[[λ]]v(x)

 .

The choice of the parameter κ leads to three different DG schemes:
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• For κ = −1, the method is called symmetric interior penalty Galerkin (SIPG).
With a large penalty term σ, the convergence is achieved.

• For κ = 1, the method is called nonsymmetric interior penalty Galerkin (NIPG).
With a nonnegative penalty term σ, the convergence is achieved.

• For κ = 0, the method is called incomplete interior penalty Galerkin (IIPG).
With a large penalty term σ, the convergence is achieved as in SIPG method.

• An extra stabilization term J̆σ(y, v) can be added to the bilinear form ash(y, v) so
that the jump of the derivative is penalized.

J̆σ(y, v) =
M∑
n=0

σ̆

|h|β1
[[εy′(xn, t)]][[εv

′(xn)]].

In this study, σ̆ has been taken zero, for simplicity.

Finite Element Discretization

To facilitate the construction of finite element matrices, all computations are carried on
the reference interval K̂. Then, we map the physical elements K with the endpoints
xn, xn+1 to the reference element K̂ whose endpoints are −1 and 1.

The invertible affine map FE can be defined from the reference element to the physical
one and it is written as

FE

(
x̂
ŷ

)
=

(
x
y

)
, x =

2∑
i=1

xiφ̂i(x̂, ŷ), y =
2∑
i=1

yiφ̂i(x̂, ŷ),

where

φ̂1(x̂, ŷ) =
1− x̂

2
, φ̂2(x̂, ŷ) =

1 + x̂

2
.

For fast computation of the finite element matrices, calculations are carried on the
reference interval K̂ = [−1, 1]. Therefore, we need to represent each coordinate x in
the physical element K in terms of the local coordinate x̂ as follows:

x = FK(x̂) = BK(x̂) + bK =
hn
2
x̂+ (xn +

hn
2

).

We have mentioned that the test functions are discontinuous at the endpoints of each
interval. Then, the support of the basis functions of Vh,p is contained in one element.
We write the DG subspace Vh,p using basis φKi associated to an interval K:

Vh,p = span {φKi : 1 ≤ i ≤ Nloc, K ∈ Th}
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with

φKi (x) =

{
φ̂i ◦ FK(x), x ∈ K
0, x /∈ K. (3.6)

Here, φ̂i represents the local basis functions and the local dimension is computed as
Nloc = p+ 1 where p is the degree of the finite element approximation.

The integrals obtained by the (bi)linear forms are computed on the reference element.
The numerical quadrature rule can be used to approximate the integral in DG formula-
tion ∫

Kn

υ dx =
hn
2

∫
K̂n

υ̂ dx̂ ≈ hn
2

QD∑
j=1

ωj υ̂(sj).

where ωj are the weights and sj ∈ K̂n are the nodes.

3.1.1 Semi-discrete Optimal Control Problem

The semi-discrete solution is written using the global basis functions (3.6), in particular
for the state solution, as follows:

yh(x, t) =
∑
K∈Th

Nloc∑
i=1

yKh,i(t)v
K
i (x), ∀x ∈ Ω, ∀t ∈ (0, T ). (3.7)

The coefficients yKh,i are functions of time and the number of elements in the domain Ω
are denoted by Nel. The basis functions and the coefficients can be written as

{vKi (t), 1 ≤ i ≤ Nloc, K ∈ Th}, {yKh,i(t), 1 ≤ i ≤ Nloc, K ∈ Th}.

In order to write the semi-discrete OCP in matrix form, we substitute the semi-discrete
solution into (3.5a) with

yh(t) = (y1
h,1(t), y1

h,2(t), . . . , y1
h,Nloc

(t), · · · , yNelh,1 (t), yNelh,2 (t), . . . , yNelh,Nloc
(t)),

λh(t) = (λ1
h,1(t), λ1

h,2(t), . . . , λ1
h,Nloc

(t), · · · , λNelh,1 (t), λNelh,2 (t), . . . , λNelh,Nloc
(t)),

u(t) = (u1
h,1(t), u1

h,2(t), . . . , u1
h,Nloc

(t), · · · , uNelh,1 (t), uNelh,2 (t), . . . , uNelh,Nloc
(t)),

as follows:

minimize
uh∈Vh,p

1

2

∫ T

0

(
(yh(t)− ydh(t))TM(yh(t)− ydh(t)) + α(uh(t))

TMuh(t)
)
dt,

(3.8a)

subject to M
dyh(t)

dt
+ Ayh + N(yh(t)) = Fh(t) + Muh(t), ∀vh ∈ Vh,p (3.8b)

Myh(0) = yh,0, (3.8c)

23



where

Mij = (vj, vi)Ω, Aij = ah(vj, vi)Ω, Fh,i = (fh(x, t), vi),

Ni(y(t)) = nsh(yh(x, t), vi), Nλ
i (λh(t),yh(t)) = nλh(λh(x, t), yh(x, t), vi),

(Mydh(t))i = (ydh(x, t), vi), (yh,0)i = (yh,0(x, t), vi). (3.9)

Then, the semi-discrete optimality system in matrix-vector form is read as:

M
dyh(t)

dt
+ Ayh + N(yh(t)) = Fh(t) + Muh(t), (3.10a)

Myh(0) = yh,0, (3.10b)

−M
dλh(t)

dt
+ ATλh − Nλ(λh(t),yh(t)) = −(Myh(t)− Yd

h(t)), (3.10c)

Mλh(T ) = 0, (3.10d)

αMuh(t) = Mλh(t). (3.10e)

3.2 Discontinuous Galerkin Methods in Two-Dimension

In this section, we briefly describe the symmetric interior penalty Galerkin semi-
discretization in space for time-dependent diffusion-convection-reaction equation in
two-dimension:

∂ty − ε∆y + β · ∇y + ry = f, (x, t) ∈ Ω× (0, T ], (3.11a)
y(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (3.11b)
y(x, 0) = y0(x), x ∈ Ω. (3.11c)

The source function is denoted by f ∈ L2(0, T ;L2(Ω)). The initial condition is also
defined as y0(x) ∈ H1

0 (Ω). The diffusion and reaction coefficients are ε > 0 and
r ∈ L∞(Ω), respectively. The velocity field β ∈ (W 1,∞(Ω))2 satisfies the incompress-
ibility condition, i.e. ∇ ·β = 0. Furthermore, we assume the existence of the constant
C0 such that r ≥ C0 a.e. in Ω so that the well-posedness of the problem (3.11) is
guaranteed.

Let {Th}h be a family of shape regular meshes such that Ω = ∪K∈ThK,Ki∩Kj = ∅ for
Ki, Kj ∈ Th, i 6= j. The diameters of elements K are denoted by hK . The maximum
diameter is h = max

K∈Th
hK . In addition, the length of an edge E is denoted by hE .

We split the set of all edges Eh into the set E0
h of interior edges and the set E∂h of

boundary edges so that Eh = E∂h ∪ E0
h . Let n denote the unit outward normal to ∂Ω.

We define the inflow boundary

Γ− = {x ∈ ∂Ω : β · n(x) < 0}
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and the outflow boundary Γ+ = ∂Ω \ Γ−. The boundary edges are decomposed into
edges E−h =

{
E ∈ E∂h : E ⊂ Γ−

}
that correspond to the inflow boundary and edges

E+
h = E∂h \ E−h that correspond to the outflow boundary. The inflow and outflow

boundaries of an element K ∈ Th are defined by

∂K− = {x ∈ ∂K : β · nK(x) < 0} , ∂K+ = ∂K \ ∂K−,
where nK is the unit normal vector on the boundary ∂K of an element K.

Let the edge E be a common edge for two elements K and Ke. For a piecewise
continuous scalar function y, there are two traces of y along E, denoted by y|E from
interior of K and ye|E from interior of Ke. Then, the jump and average of y across the
edge E are defined by:

[[y]] = y|EnK + ye|EnKe , {{y}} =
1

2

(
y|E + ye|E

)
.

Similarly, for a piecewise continuous vector field ∇y, the jump and average across an
edge E are given by

[[∇y]] = ∇y|E · nK +∇ye|E · nKe , {{∇y}} =
1

2

(
∇y|E +∇ye|E

)
.

For a boundary edge E ∈ K ∩ Γ, we set {{∇y}} = ∇y and [[y]] = yn where n is the
outward normal unit vector on Γ.

We use discontinuous piecewise finite element spaces to define the discrete test, state
and control spaces

Vh,p = Yh,p = Uh,p =
{
y ∈ L2(Ω) : y |K∈ Pp(K) ∀K ∈ Th

}
. (3.12)

Here, Pp(K) denotes the set of all polynomials on K ∈ Th of degree p.

The DG formulation of the state equation (3.11) upwinding the convection term for
fixed control u is written as follows [13, 14]:

(∂tyh, vh) + ash(yh, vh) = (fh + uh, vh) ∀vh ∈ Vh,p, t ∈ (0, T ], (3.13)

with the (bi-)linear forms

ad(y, v) =
∑
K∈Th

∫
K

ε∇y · ∇v dx

−
∑
E∈Eh

∫
E

(
{{ε∇y}} · [[v]]− κ{{ε∇v}} · [[y]]− ε

Jσ(y,v)︷ ︸︸ ︷
σ

hE
[[y]] · [[v]]

)
ds (3.14)

and

ash(y, v) = ad(y, v) +
∑
K∈Th

∫
K

(
β · ∇yv + ryv

)
dx

+
∑
K∈Th

∫
∂K−\Γ−

β · n(ye − y)v ds−
∑
K∈Th

∫
∂K−∩Γ−

β · nyv ds.(3.15)
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The penalty parameter σ > 0 should be sufficiently large to ensure the stability of the
dG discretization [112, Sec. 2.7.1] with a lower bound depending only on the polyno-
mial degree.

The semi-discrete optimality system associated to the OCP (1.1) is written as follows:

(∂tyh, vh) + ash(yh, vh) = (fh + uh, vh) ∀vh ∈ Vh,p, t ∈ (0, T ], (3.16a)

− (∂tλh, qh) + aah(λh, qh) = −(yh − ydh, qh) ∀qh ∈ Vh,p, t ∈ (0, T ], (3.16b)

αuh = λh, t ∈ (0, T ]. (3.16c)

Here, since the problem is linear; nsh(yh, vh) = 0. Moreover, the bilinear form in the
adjoint equation is read as

aah(p, ψ) =
∑
K∈Th

∫
K

ε∇p · ∇ψ dx

−
∑
E∈Eh

∫
E

(
{{ε∇p}} · [[ψ]] + {{ε∇ψ}} · [[p]]− σε

hE
[[p]] · [[ψ]]

)
ds

+
∑
K∈Th

∫
K

(
− β · ∇pψ + rpψ

)
dx

−
∑
K∈Th

∫
∂K+\Γ+

β · n(pe − p)ψ ds+
∑
K∈Th

∫
∂K+∩Γ+

β · npψ ds.

Finite Element Discretization

We mention the discontinuous piecewise finite element spaces

Vh,p =
{
y ∈ L2(Ω) : y |K∈ Pp(K) ∀K ∈ Th

}
.

which is a subspace of Hs(ξh) for s > 3/2. The test functions are discontinuous along
the edges of each finite element.

To facilitate the construction of finite element matrices, all computations are carried
on the reference element Ê. Then, we map the physical elements E with vertices
Vi(xi, yi) for i = 1, 2, 3 to the reference element Ê whose vertices are V̂1(0, 0), V̂2(1, 0)

and V̂3(0, 1).

The invertible affine map FE can be defined from the reference element to the physical
one and it is written as

FE

(
x̂
ŷ

)
=

(
x
y

)
, x =

3∑
i=1

xiφ̂i(x̂, ŷ), y =
3∑
i=1

yiφ̂i(x̂, ŷ),

where

φ̂1(x̂, ŷ) = 1− x̂− ŷ, φ̂2(x̂, ŷ) = x̂, φ̂2(x̂, ŷ) = ŷ.
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This map can be written using an invertible matrix BE and a translation vector bE as
follows (

x
y

)
= FE

(
x̂
ŷ

)
= BE

(
x̂
ŷ

)
+ bE

where

BE =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
, bE =

(
x1

y1

)
.

Passing to the reference element from the physical elements via the mapping FE can
be seen as a change of variables. By υ̂ = υ ◦ FE , we have υ̂(x̂, ŷ) = υ(x, y). In
addition, the gradient is mapped as ∇̂υ̂ = BT

E∇υ ◦ FE .

We have mentioned that the test functions are discontinuous along the edges. Then,
the support of the basis functions of Vh,p is contained in one element. We write the DG
subspace Vh,p using basis φEi associated to an element E:

Vh,p = span {φEi : 1 ≤ i ≤ Nloc, E ∈ ξh}

with

φEi (x) =

{
φ̂i ◦ FE(x), x ∈ E,
0, x /∈ E. (3.17)

Here, φ̂i represents the local basis functions and the local dimension is computed as
Nloc = (k+1)(k+2)

2
where k is the degree of the finite element approximation.

As we have mentioned before, the integrals obtained by the (bi)linear forms are com-
puted on the reference element. The numerical quadrature rule can be used to approx-
imate the integral in DG formulation

∫
Ê

υ̂dx ≈
QD∑
j=1

ωj υ̂(sx,j, sy,j),

where ωj are the weights and (sx,j, sy,j) ∈ Ê are the nodes.

By the following equality, we can observe how the map FE is used to transfer the
physical element to the reference element:

∫
E

υ dx =

∫
Ê

υ ◦ FE det(BE) dx = 2|E|
∫
Ê

υ̂ dx ≈ 2|E|
QD∑
j=1

ωj υ̂(sx,j, sy,j).
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3.2.1 Semi-discrete Optimal Control Problem

The semi-discrete solution is written using the global basis functions (3.17), in partic-
ular for the state solution, as follows:

yh(x, t) =
∑
K∈Th

Nloc∑
i=1

yKh,i(t)v
K
i (x), ∀x ∈ Ω, ∀t ∈ (0, T ). (3.18)

In order to write the semi-discrete OCP in matrix form, we substitute the semi-discrete
solution into (3.5a) with

yh(t) = (y1
h,1(t), y1

h,2(t), . . . , y1
h,Nloc

(t), · · · , yNelh,1 (t), yNelh,2 (t), . . . , yNelh,Nloc
(t)),

λh(t) = (λ1
h,1(t), λ1

h,2(t), . . . , λ1
h,Nloc

(t), · · · , λNelh,1 (t), λNelh,2 (t), . . . , λNelh,Nloc
(t)),

uh(t) = (u1
h,1(t), u1

h,2(t), . . . , u1
h,Nloc

(t), · · · , uNelh,1 (t), uNelh,2 (t), . . . , uNelh,Nloc
(t)),

as follows:

minimize
uh∈Vh,p

1

2

∫ T

0

(
(yh(t)− ydh(t))TM(yh(t)− ydh(t)) + α(uh(t))

TMuh(t)
)
dt,

(3.19a)

subject to M
dyh(t)

dt
+ Ayh = Fh(t) + Muh(t), ∀vh ∈ Vh,p, (3.19b)

Myh(0) = yh,0. (3.19c)

Then, the semi-discrete optimality system in weak form is read as in (3.10) with
Ns(yh(t)) = 0 and Nλ(λh(t),yh(t)) = 0.
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CHAPTER 4

VARIATIONAL TIME DISCRETIZATION METHODS

Variational time discretization method appeared first in [77] and developed by various
papers. For continuous Galerkin-Petrov (cGP(q+1)) method, solution space consists
of continuous piecewise polynomials of degree q + 1 and test functions are piecewise
discontinuous polynomials of degree q. For discontinuous Galerkin (dG(q)) methods,
both of the test and the trial spaces are piecewise discontinuous polynomials of de-
gree q [120, Chap. 12]. Advantages of variational time discretization are stability,
nodal superconvergence, and applicability of space-time adaptivity. Both continuous
and discontinuous Galerkin methods are A-stable; discontinuous Galerkin methods
are even L-stable (strongly stable). Convergence order of cGP(q+1) methods are of
one order higher than the dG(q) methods. A priori error estimates of optimal order
can be obtained with respect to the size of time steps and the regularity requirements
of the solutions [49], whereas dG methods require less regular solutions than the cG
methods. The dG(q) methods are superconvergent at the nodal points of order 2q + 1
when the order of the method is q and the solution of the problem is sufficiently regu-
lar. For dG method, long-time integration is achievable without accumulating the error
on the current time interval [49]. Time-space adaptivity can be easily implemented
because time and space discretizations are treated similarly [25]. Using a posteriori
error estimates, adaptive hp time stepping and dynamic meshes (the use of different
spatial discretization for each time step) can be directly incorporated in the discrete
formulation [111, 114].

DG methods have one more advantage in terms of discretization of the Lagrangian
of the optimization problem. As we mentioned before, there exist two different ap-
proaches for solving OCPs: optimize-then-discretize (OD) and discretize-then-optimize
(DO). In the OD approach, first infinite dimensional optimality system is derived con-
taining the state and the adjoint equations and the optimality condition. Then, optimal-
ity system is discretized by using a suitable discretization method in space and time.
In DO approach, infinite dimensional OCP is discretized and then finite-dimensional
optimality system is derived. DO and OD approaches do not commute in general for
OCPs governed by diffusion-convection-reaction equation [34]. However, commuta-
tivity is achieved in the case of SIPG discretization for steady state problems [91]. For
discontinuous Galerkin time discretization, where both trial and test spaces are discon-
tinuous, we show that OD and DO approaches commute [3], i.e. the adjoint state is
discretized as we do for the state variable. For continuous Galerkin time discretiza-
tion, where the trial spaces are continuous and the test spaces are discontinuous, OD
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and DO approaches do not commute.

In the literature, there are several studies concerning this method for a single PDE.
For example, space-time dG method is applied to time-dependent domains in [127]
and stability and error estimates are proven. Compressible Navier-Stokes equation is
solved numerically and local grid adaptation is utilised in [81]. For evolutionary DCR
equation, this method is employed separately in space and time using nonconforming
meshes for each time step [52]. A quasi-linear boundary value problem is solved in
[26]. In the studies [26, 42, 44, 52], problems with nonlinear convective term are inves-
tigated numerically and a priori error estimates are derived. On the other hand, adaptive
time refinement strategies are developed for linear problems [48, 49] and for nonlin-
ear problems [47]. Continuous and discontinuous Galerkin methods are compared and
dynamic mesh refinement techniques is employed [114]. In [136], hp refinement both
in spatial and temporal domain is presented.

Although the number of studies concerning a single PDE is numerous, variational
time discretization methods have not been discussed much for optimal control prob-
lems when compared to finite difference approximation in time. In [16], continuous
and discontinuous Galerkin method is applied to continuous OCPs and optimization
techniques for an efficient solution of parabolic OCPs are compared. A posteriori er-
ror estimates are given in [100] for parabolic optimization problems using space-time
FEM. In [101, 102, 117], a priori error estimates are derived for this problem for un-
constrained and control-constrained problems. Discontinuous in time and conforming
elements in space are used for discretization of the parabolic OCPs in [29, 30] and the-
oretical estimates are proven. A velocity tracking problem for Navier-Stokes equation
is discussed in [45] using space-time FEM. In the studies above, spatial discretiza-
tion is performed using continuous finite element method. In our previous study [3],
variational time discretization method combined with discontinuous Galerkin spatial
discretization is discussed for optimal control of DCR equation, and error estimates
and numerical findings are presented.

In this chapter, we discuss continuous Galerkin-Petrov and discontinuous Galerkin
methods in Sec. 4.1 and Sec. 4.2, respectively, by discussing the commutativity ap-
proaches of these methods. In addition, we derive the associated weak forms, gradient
and Hessian-times-vector computations. Then, we mention some auxiliary results and
derive a priori error estimates for OCP of DCR equation in Sec. 4.3 and explain the
derivation of the associated linear system of equations in Sec. 4.4. Then, numerical
results follow in Sec. 4.4.1. In Sec. 4.5, a priori error estimates for OCP of Burg-
ers equation are proven and associated weak forms in matrix-vector form for dG time
discretization is given in Sec. 4.6. Then, numerical results are presented in Sec. 4.6.1.

Let 0 = t0 < t1 < . . . < tNT = T be a subdivision of I = (0, T ] with time in-
tervals Im = (tm−1, tm] and time steps km = tm − tm−1 for m = 1, . . . , NT and
k = max1≤m≤NT km. We note that the same mesh is used at each time level tm for
m = 0, . . . , NT . Let fδ and ydδ be approximations of the source function f and the
desired state function yd on each interval Im.
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The fully-discrete solution is written, in particular for the state solution, as follows:

yδ(x, t) =

NlocNel∑
i=1

yδ,i(t)vi(x), ∀x ∈ Ω, ∀K ∈ T , ∀t ∈ (0, T ).

We proceed with the fully-discrete OCP and associated weak forms.

4.1 Continuous Galerkin-Petrov (cGP(q+1)) Method

We define the discontinuous test space

V k,q
h,p =

{
v ∈ L2(I;Vh,p) : v|Im ∈ Pq(Im, Vh,p),m = 1, . . . , NT , vm(0) ∈ L2(Ω)

}
,

(4.1)

and the continuous trial space as follows

Ṽ k,q+1
h,p =

{
v ∈ C(Ī;Vh,p) : v|Im ∈ Pq+1(Im, Vh,p),m = 1, . . . , NT

}
,

where Pq(Im, Vh,p) denotes the space of polynomials of degree q defined on Im with
values on Vh,p. Then, the fully-discrete optimal control problem is written as

minimize
uδ∈Ṽ k,q+1

h,p

1

2

∫ T

0

(∑
K∈Th

(
‖yδ − ydδ‖2

L2(K) + α‖uδ‖2
L2(K)

))
dt, (4.2a)

subject to
∫ T

0

((∂tyδ, vδ) + ash(yδ, vδ)) dt =

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p ,

yδ,0 = (y0)δ . (4.2b)

The OCP (4.2) has a unique solution (yδ, uδ) and that pair (yδ, uδ) ∈ Ṽ k,q+1
h,p × Ṽ k,q+1

h,p is
the solution of (4.2) if and only if there is an adjoint λδ ∈ Ṽ k,q+1

h,p such that (yδ, uδ, λδ) ∈
Ṽ k,q+1
h,p × Ṽ k,q+1

h,p × Ṽ k,q+1
h,p is the unique solution of the fully-discrete optimality system

[122] ∫ T

0

((∂tyδ, vδ) + ash(yδ, vδ)) dt =

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p ,

yδ,0 = (y0)δ, (4.3a)∫ T

0

(−(∂tλδ, φδ) + aah(λδ, φδ)) dt = −
∫ T

0

(yδ − ydδ , φδ) dt, ∀φδ ∈ V k,q
h,p ,

λδ,N = 0, (4.3b)
αuδ = λδ. (4.3c)

We note that the term aah(λδ, φδ) in the variational formulation (4.3b) corresponds to
ash(yδ, λδ) if the PDE constraint c(y, u) = 0 models the diffusion-convection-reaction
equation.
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We write Algorithm 2.2 in terms of the variational forms arising due to (cGP(q+1))
method.

Algorithm 4.1 Gradient Computation in Algorithm 2.2 Using (cGP(q+1)) Method
1: Given uδ, solve the state equation∫ T

0

((∂tyδ, vδ) + ash(yδ, vδ)) dt =

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p ,

yδ,0 = (y0)δ, (4.4)

for yδ := yδ(uδ).
2: Solve the adjoint equation

∫ T

0

(−(∂tλδ, φδ) + aah(λδ, φδ)) dt = −
∫ T

0

(yδ − ydδ , φδ) dt, ∀φδ ∈ V k,q
h,p ,

λδ,N = 0, (4.5)

for λδ := λδ(uδ).
3: Compute

∇Ĵ(u) =

∫ T

0

(αuδ − λδ, φδ) dt, ∀φδ ∈ V k,q
h,p .

Commutativity Properties

We derive the optimality system arising from DO approach, that also appears in [16,
Sec.3], and compare it with the optimality system (4.3). For simplicity, we take
c(y, u) = 0 as the diffusion-convection-reaction equation. We consider the discrete
Lagrangian defined on Ṽ k,q+1

h,p × Ṽ k,q+1
h,p × V k,q

h,p as follows

L(yδ, uδ, λδ) =
1

2

∫ T

0

(∑
K∈Th

(
‖yδ − ydδ‖2

L2(K) + α‖uδ‖2
L2(K)

))
dt

+

NT∑
m=1

{∫
Im

((∂tyδ, λδ) + ash(yδ, λδ)) dt−
∫
Im

(fδ + uδ, λδ)dt

}
+ ((y0)δ − yδ,0, λδ,0).

We differentiate L with respect to yδ, apply integration by parts. We add and subtract
(φδ,NT , λ

+
δ,NT

). Then, on each subinterval Im, the adjoint equation reads as∫
Im

(−(∂tλδ, φδ) + ash(φδ, λδ)) dt− ([λδ]m, φ
m
δ )

= −
∫
Im

(yδ − ydδ , φδ) dt, ∀λδ ∈ V k,q
h,p , φδ ∈ Ṽ

k,q+1
h,p , (4.10)
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Algorithm 4.2 Hessian-Times-Vector Computation in Algorithm 2.3 Using
(cGP(q+1)) Method

1: Given uδ, solve the state equation∫ T

0

((∂tyδ, vδ) + ash(yδ, vδ)) dt =

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p ,

yδ,0 = (y0)δ, (4.6)

for yδ := yδ(uδ).
2: Solve the adjoint equation

∫ T

0

(−(∂tλδ, φδ) + aah(λδ, φδ)) dt = −
∫ T

0

(yδ − ydδ , φδ) dt, ∀φδ ∈ V k,q
h,p ,

λδ,N = 0, (4.7)

for λδ := λδ(uδ).
3: Solve the equation∫ T

0

((∂twδ, φδ) + ash(wδ, φδ)) dt =

∫ T

0

(u, νδ) dt, ∀φδ ∈ V k,q
h,p ,

wδ,0 = 0. (4.8)

4: Solve the equation

∫ T

0

(−(∂tpδ, φδ) + aah(pδ, φδ)) dt = −
∫ T

0

(w, φδ) dt, ∀φδ ∈ V k,q
h,p ,

pδ,N = 0. (4.9)

5: Compute

∇2Ĵ(u)νδ =

∫ T

0

(ανδ − p, φδ) dt, ∀φδ ∈ V k,q
h,p .
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with λ+
δ,N = 0. We observe that the temporal jump terms appear in (4.10), while it is not

the case for the adjoint equation in (4.3b). In addition, in OD approach λδ ∈ Ṽ k,q+1
h,p ,

while in DO approach λδ ∈ V k,q
h,p . Therefore, OD and DO approaches do not commute

for cGP-method.

4.2 Discontinuous Galerkin (dG(q)) Methods

We use (4.1) as discontinuous test and trial space. We define the temporal jump of
v ∈ V k,q

h,p as [v]m = vm+ − vm− , where wm± = lim
ε→0±

v(tm + ε). Then, the fully-discrete

optimal control problem is written as

minimize
uδ∈V k,qh,p

1

2

∫ T

0

(∑
K∈Th

(
‖yδ − ydδ‖2

L2(K) + α‖uδ‖2
L2(K)

))
dt, (4.11a)

subject to
NT∑
m=1

∫
Im

(∂tyδ, vδ)dt+

∫ T

0

ash(yδ, vδ)dt+

NT∑
m=1

([yδ]m−1, v
m−1
δ,+ )

=

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p , y−δ,0 = (y0)δ. (4.11b)

The OCP (4.11) has a unique solution (yδ, uδ) and that pair (yδ, uδ) ∈ V k,q
h,p × V

k,q
h,p is

the solution of (4.11) if and only if there is an adjoint λδ ∈ V k,q
h,p such that (yδ, uδ, λδ) ∈

V k,q
h,p × V

k,q
h,p × V

k,q
h,p is the unique solution of the fully-discrete optimality system [122]

NT∑
m=1

∫
Im

(∂tyδ, vδ)dt+

∫ T

0

ash(yδ, vδ)dt+

NT∑
m=1

([yδ]m−1, v
m−1
δ,+ )

=

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p , y−δ,0 = (y0)δ, (4.12a)

NT∑
m=1

∫
Im

(−∂tλδ, φδ)dt+

∫ T

0

aah(λδ, φδ) dt−
NT∑
m=1

([λδ]m, φ
m
δ,−)

= −
∫ T

0

(yδ − ydδ , φδ) dt, ∀φδ ∈ V k,q
h,p , λ+

δ,N = 0, (4.12b)

αuδ = λδ. (4.12c)

We write Algorithm 2.2 in terms of the variational forms arising due to (dG(q)) method.

Commutativity Properties

We derive the optimality system arising from DO approach and compare it with the op-
timality system (4.12). For simplicity, we take c(y, u) = 0 as the diffusion-convection-
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Algorithm 4.3 Gradient Computation in Algorithm 2.2 Using (dG(q)) Method
1: Given uδ, solve the state equation

NT∑
m=1

∫
Im

(∂tyδ, vδ)dt+

∫ T

0

ash(yδ, vδ)dt+

NT∑
m=1

([yδ]m−1, v
m−1
δ,+ )

=

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p , y−δ,0 = (y0)δ, (4.13)

for yδ := yδ(uδ).
2: Solve the adjoint equation

NT∑
m=1

∫
Im

(−∂tλδ, φδ)dt+

∫ T

0

aah(λδ, φδ) dt−
NT∑
m=1

([λδ]m, φ
m
δ,−)

= −
∫ T

0

(yδ − ydδ , φδ) dt, ∀φδ ∈ V k,q
h,p , λ+

δ,N = 0, (4.14)

for λδ := λδ(uδ).
3: Compute

∇Ĵ(u) =

∫ T

0

(αuδ − λδ, φδ) dt, ∀φδ ∈ V k,q
h,p .
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Algorithm 4.4 Hessian-Times-Vector Computation in Algorithm 2.3 Using (dG(q))
Method

1: Given uδ, solve the state equation

NT∑
m=1

∫
Im

(∂tyδ, vδ)dt+

∫ T

0

ash(yδ, vδ)dt+

NT∑
m=1

([yδ]m−1, v
m−1
δ,+ )

=

∫ T

0

(fδ + uδ, vδ) dt, ∀vδ ∈ V k,q
h,p , y−δ,0 = (y0)δ, (4.15)

for yδ := yδ(uδ).
2: Solve the adjoint equation

NT∑
m=1

∫
Im

(−∂tλδ, φδ)dt+

∫ T

0

aah(λδ, φδ) dt−
NT∑
m=1

([λδ]m, φ
m
δ,−)

= −
∫ T

0

(yδ − ydδ , φδ) dt, ∀φδ ∈ V k,q
h,p , λ+

δ,N = 0, (4.16)

for λδ := λδ(uδ).
3: Solve the equation

NT∑
m=1

∫
Im

(∂twδ, φδ) dt+

∫ T

0

ash(wδ, φδ) dt+

NT∑
m=1

([wδ]m−1, φ
m−1
δ,+ )

=

∫ T

0

(u, νδ) dt, ∀φδ ∈ V k,q
h,p , w−δ,0 = 0. (4.17)

4: Solve the equation

NT∑
m=1

∫
Im

−(∂tpδ, φδ) dt+

∫ T

0

aah(pδ, φδ) dt−
NT∑
m=1

([pδ]m, φ
m
δ,−)

= −
∫ T

0

(w, φδ) dt, ∀φδ ∈ V k,q
h,p , p+

δ,N = 0. (4.18)

5: Compute

∇2Ĵ(u)νδ =

∫ T

0

(ανδ − p, φδ) dt, ∀φδ ∈ V k,q
h,p .
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reaction equation. We construct the discrete Lagrangian defined on V k,q
h,p ×V

k,q
h,p ×V

k,q
h,p

as follows

L(yδ, uδ, λδ)

=
1

2

∫ T

0

(∑
K∈Th

(
‖yδ − ydδ‖2

L2(K) + α‖uδ‖2
L2(K)

))
dt

+

NT∑
m=1

{∫
Im

((∂tyδ, λδ) + ash(yδ, λδ)) dt+ ([yδ]m−1, λ
m−1
δ,+ )−

∫
Im

(fδ + uδ, λδ)dt

}
+ ((y0)δ − y−δ,0, λ

−
δ,0).

Differentiating L with respect to yδ and applying the same technique in (4.10), we
obtain the adjoint equation on each time interval Im∫

Im

(−(∂tλδ, φδ) + ash(φδ, λδ)) dt− ([λδ]m, φ
m
δ,−)

= −
∫
Im

(yδ − ydδ , φδ) dt, ∀λδ, φδ ∈ V k,q
h,p .

Similar to cGP(q+1)-method, λ+
δ,N = 0. Now, we use commutativity of DG bilin-

ear form provided in [91], i.e., ash(φδ, λδ) = aah(λδ, φδ). Thus, we arrive at (4.12b).
Therefore, OD and DO approaches commute.

For Burgers equation, the difference might arise from the nonlinear term. Thus, we
consider the nonlinear term in the Lagrangian∫

Im

nsh(y, v)λ

=
M−1∑
n=0

− xn+1∫
xn

1

2
y2
hv
′(x)dx+ vn+1n̂(y−n+1, y

+
n+1)− vnn̂(y−n , y

+
n )

λ. (4.19)

Differentiating (4.19 with respect to y and applying integration by parts, we obtain

(nsh)y(λ, y, v) =
M−1∑
n=0

− xn+1∫
xn

yhλ
′(x)v(x)dx+ vn+1n̂(λ−n+1, λ

+
n+1)− vnn̂(λ−n , λ

+
n )

 .

(4.20)

For the adjoint equation in OD approach, if we apply integration by parts on each
element and use upwinding for this term, we arrive at the same expression. Thus, OD
and DO approaches commute.

4.3 A Priori Error Estimates for Optimal Control of Diffusion-Convection-Reaction
Equation

In this section, firstly, we give some a priori error estimates in the literature and then
we present the discrete characteristic function that provides error estimates at arbitrary
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time points. Then, we prove some useful lemmas and state the main estimate of this
study, particularly for discontinuous Galerkin time discretization.

4.3.1 Some Auxiliary Results

We proceed with the standard estimates derived for finite element methods [32]. Con-
sider the L2-projection Πh : L2(Ω)→ Vh,p so that

‖Πhv − v‖L2(K) ≤ CΠh
p+1|v|Hp+1(K), |Πhv − v|H1(K) ≤ CΠh

p|v|Hp+1(K),(4.21)

for all v ∈ Hp+1(K), K ∈ Th where CΠ is a positive constant and independent of v
and h. In addition, as suggested in [130, Section 4], using the study [44], the following
estimate holds for all v ∈ Hp+1(Ω, Th)

|||Πhv − v|||DG ≤ (2CM + 1)CΠh
p|v|Hp+1(Ω,Th), (4.22)

where CM and CΠ are positive constants from (2.3) and (4.21), respectively. In the
following we introduce the parabolic projection for m = 0, . . . , NT and mention the
properties given in [130]. Suppose that X ⊂ L2(Ω) is a Hilbert space. Let us denote
the space of polynomial functions depending on time as follows:

Pα(Im, X) =

{
v ∈ L2(0, T ;L2(Ω)) : v =

α∑
s=0

tsφs,m, t ∈ Im, φs,m ∈ X

}
.

A space-time projection π of y ∈ C(0, T ;H1(Ω)) into V k,q
h,p is employed for the con-

vergence estimates. Time projection P of y ∈ C(0, T ;H1(Ω)) is defined as

Py ∈
{
v ∈ L2(QT ) : v|Im ∈ P q(Im, L

2(Ω))
}
,∫

Im

(Py − y, tjv)dt = 0, ∀v ∈ L2(Ω), j = 0, . . . , q − 1,

(Py)m− = y(tm).

In addition, for m = 0, . . . , NT , with y ∈ C(0, T ;H1(Ω)), πy ∈ V k,q
h,p is defined as

πy = Πh(Py)⇐⇒ ((πy)(t), v) = ((Py)(t), v) , ∀v ∈ Vh,p,∀t ∈ Im,∫
Im

(πy − y, v)dt =

∫
Im

((Py, v)− (y, v))dt = 0, ∀v ∈ V k,q−1
h,p , (4.23)

((πy)m− − y(tm), v) = (((Py)m− , v)− (y(tm), v)) = 0, ∀v ∈ Vh,p.
We note that the definition of the projection π is likewise in the study [115].

We give some estimates from [130, Lemma 4.3, 4.5], which we need in the proofs.

Lemma 4.1. Suppose that y ∈ W q+1,∞(Im, H
1(Ω)) such that y = 0 on ∂Ω. Then,

‖y(t)− Py(t)‖ ≤ CPk
q+1
m |y|W q+1,∞(Im,L2(Ω)) ∀t ∈ Im,

|y(t)− Py(t)|H1(Ω) ≤ CPk
q+1
m |y|W q+1,∞(Im,H1(Ω)) ∀t ∈ Im, (4.24)

|||y(t)− Py(t)|||DG ≤ CPk
q+1
m |y|W q+1,∞(Im,H1(Ω)) ∀t ∈ Im.
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Lemma 4.2. Suppose that y ∈ W q+1,∞(Im, H
1(Ω)) ∩ L∞(Im, H

p+1(Ω)) such that
y = 0 on ∂Ω. Then,

‖y(t)− πy(t)‖ ≤ Cπ(hp+1 + kq+1
m )‖y‖R ∀t ∈ Im,

|||y(t)− πy(t)|||DG ≤ Cπ(hp + kq+1
m )‖y‖R ∀t ∈ Im, (4.25)

where ‖y‖R = max(|y|W q+1,∞(Im,H1(Ω)), |y|L∞(Im,Hp+1(Ω))) and Cπ is a positive con-
stant independent of h, km,m and y.

Lemma 4.3. There exists a positive constant CA which is independent of h, vh, wh, ε
such that

ad(y(t)− Πhy(t), vh) ≤ CAεh
p‖y(t)‖Hp+1(Ω)|||vh|||DG,

a.e. t ∈ (0, T ), y ∈ L2(0, T ;Hp+1(Ω)), vh ∈ Vh,p, (4.26)

ad(vh, wh) ≤ CAε|||vh|||DG|||wh|||DG, vh, wh ∈ Vh,p.

Proof. The proof in [41, Lemma 3.8] is adapted to the bilinear form (3.14) using the
estimate (4.22).

Remark 4.1. A similar estimate for the bilinear form arising from the non-symmetric
interior penalty Galerkin method can be found in [130, Lemma 4.2].

Lemma 4.4. The bilinear form ad(·, ·) satisfies the coercivity inequality

ad(vh, vh) ≥
ε

2
|||vh|||2DG, ∀vh ∈ Vh,p. (4.27)

Proof. The proof in [41, Corollary 3.10] is adopted to the bilinear form (3.14) using
the norm (2.1).

4.3.2 Discrete Characteristic Function

We use the discrete characteristic function in order to provide error estimates at arbi-
trary time points as suggested in [31]. We can work on [0, k) instead of Im, since the
construction of the discrete characteristic function is invariant under translation. We
consider polynomials s ∈ Pq(0, k) and the discrete approximation of χ[0,t)s of s which
is a polynomial

s̃ ∈ {s̃ ∈ Pq(0, k) : s̃(0) = s(0)} such that
∫ k

0

s̃z =

∫ t

0

sz, ∀z ∈ Pq−1(0, k).

This definition can be extended from Pq(0, k) to V k,q
h,p . The discrete approximation of

χ[0,t)v for v ∈ V k,q
h,p is written as ṽ =

∑q
i=0 s̃i(t)vi. On account of these inequalities,

the following estimate is given in [130]∫
Im

|||w̃|||2DGdt ≤ CD

∫
Im

|||w|||2DGdt, CD = CD(q). (4.28)
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A suitable discrete approximation χ(t,tn]vh must be constructed for the adjoint problem,
as it is noted in the proof of [29, Theorem 3.8]. The discrete approximation of χ(t,tNT ]s
is a polynomial

s̃ ∈ {s̃ ∈ Pq(tNT−1, tNT ) : s̃(tNT ) = s(tNT )} such that
∫ tNT

tNT−1

s̃z =

∫ tNT

t

sz,

∀z ∈ Pq−1(tNT−1, tNT ). This definition can be extended from Pq(tNT−1, tNT ) to V k,q
h,p

and the estimates above can be modified for the adjoint [29, Theorem 3.8].

4.3.3 Main Result

We proceed with the derivation of convergence estimates for the optimality system
and its space-time dG approximation. Firstly, we take c(y, u) = 0 as the diffusion-
convection-reaction equation. We define the auxiliary state and adjoint equation which
are needed for a priori error analysis

NT∑
m=1

∫
Im

(∂ty
u
δ , vδ)dt+

∫ T

0

ash(y
u
δ , vδ)dt+

NT∑
m=1

([yuδ ]m−1, v
m−1
δ,+ ) =

∫ T

0

(fδ + u, vδ) dt,

yu,0δ,− = (y0)δ, (4.29a)
NT∑
m=1

∫
Im

(−∂tλuδ , φδ)dt+

∫ T

0

aah(λ
u
δ , φδ)dt−

NT∑
m=1

([λuδ ]m, φ
m
δ,−) = −

∫ T

0

(yuδ − ydδ , φδ) dt,

λu,Nδ,+ = 0. (4.29b)

Following [54], we assume that the reaction term satisfies |r| ≤ Cr a.e. in Ω; the
velocity field is bounded by a constant Cβ a.e. in Ω.

We shall prove some useful lemmas before stating the main theorem of this study.

Lemma 4.5. Let (yδ, λδ) and (yuδ , λ
u
δ ) be the solutions of (4.12) and (4.29), respec-

tively. Then, there exists a constant C independent of h and k such that

sup
t∈In
‖yuδ (t)− yδ(t)‖+ sup

t∈In
‖λuδ (t)− λδ(t)‖ ≤ C

∫ tn

0

‖u− uδ‖dt. (4.30)

Proof. Firstly, we shall study the fully discrete state equation on each subinterval Im.
We subtract (4.12a) from (4.29a) to obtain∫

Im

(∂tθ, vδ)dt+ ([θ]m−1, v
m−1
δ,+ ) +

∫
Im

ash(θ, vδ)dt =

∫
Im

(u− uδ, vδ)dt, (4.31)

where θ = yuδ − yδ. We substitute vδ = 2θ in (4.31). Then,∫
Im

2(∂tθ, θ)dt+ 2([θ]m−1, θ
m−1
+ ) = ‖θm−‖2 − ‖θm−1

− ‖2 + ‖[θ]m−1‖2, (4.32)
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is achieved. For the right-hand side, we employ Cauchy-Schwarz, Young inequalities,
Poincaré inequality (2.4) and the definition of dG norm (2.1). For the left-hand side,
we use (4.27) for diffusion term and follow the technique in (see [54, Theorem 5.1]) for
convection and reaction terms. Then, we derive the following estimate in the middle
of (4.33)

‖θm−‖2 − ‖θm−1
− ‖2 +

ε

2

∫
Im

|||θ|||2DGdt+ 2C0

∫
Im

‖θ‖2dt

+
ε

2

∫
Im

(∑
K∈Th

(
‖θ‖2

∂K−∩Γ− + ‖[[θ]]‖2
∂K−\Γ− + ‖θ‖2

∂K+∩Γ+

))
dt

≤ ‖θm−‖2 − ‖θm−1
− ‖2 +

ε

2

∫
Im

|||θ|||2DGdt+ 2C0

∫
Im

‖θ‖2dt

+

∫
Im

(∑
K∈Th

(
‖θ‖2

∂K−∩Γ− + ‖[[θ]]‖2
∂K−\Γ− + ‖θ‖2

∂K+∩Γ+

))
dt

≤ C

∫
Im

‖u− uδ‖2dt. (4.33)

We note that the lower bound on the left-hand side of (4.33) has been added after
deriving the estimate in the middle for the clearance of the proof and will be used
later. Now, we proceed by substituting vδ = 2θ̃ into (4.31). We employ the discrete
characteristic function as in the proof of [130, Theorem 5.2] to obtain an estimate at
arbitrary points and use the properties given there. With z = arg supĪm ‖θ(t)‖, the
discrete characteristic function defined in Section 4.3.2 leads to∫

Im

(∂tθ, θ̃)dt =

∫ z

tm−1

(∂tθ, θ)dt, θ̃m−1
+ = θm−1

+ , [θ̃]m−1 = [θ]m−1, (4.34)∫
Im

2(∂tθ, θ̃)dt+ 2([θ]m−1, θ̃
m−1
+ ) = ‖θ(z)‖2 − ‖θm−1

− ‖2 + ‖[θ]m−1‖2..(4.35)

We use (4.34)-(4.35) and the inequality ‖θm−1
− ‖ ≤ supt∈Im−1

‖θ(t)‖ to bound the terms
arising in the time derivative. We proceed by moving 2

∫
Im
ah(θ, θ̃)dt to the right-

hand side. We employ (4.26) for the diffusion term, the proof of [54, Theorem 5.1]
for the convection term. The reaction term and the control on the right-hand side
is bounded by using Cauchy-Schwarz and Young inequalities (2.4) and (2.1) such that
‖·‖2 ≤ C||| · |||2DG is satisfied for a positive constantC. We eliminate the term |||θ̃|||2DG
on the right-hand side by using (4.28). Then, we obtain the following inequality

sup
t∈Im
‖θ(t)‖2 − sup

t∈Im−1

‖θ(t)‖2

≤ Cb

∫
Im

|||θ|||2DGdt+

∫
Im

∑
K∈Th

(
‖θ‖2

∂K+∩Γ+ + ‖[[θ]]‖2
∂K−\Γ−

)
dt+ C

∫
Im

‖u− uδ‖2dt

≤ C
′

b

∫
Im

(
|||θ|||2DG +

∑
K∈Th

(
‖θ‖2

∂K+∩Γ+ + ‖[[θ]]‖2
∂K−\Γ−

))
dt+ C

∫
Im

‖u− uδ‖2dt,

(4.36)
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where Cb = C(1+CD)(εCA+CS(Cr+Cβ)), C
′

b = max{1, Cb}. In order to eliminate
the terms θ on the right-hand side of (4.36), we use (4.33) multiplying it by C ′′b = 2

ε
C
′

b.
By adding these inequalities and denoting Θm = supt∈Im ‖θ(t)‖2 + C

′′

b ‖θm−‖2, we
arrive at

Θm −Θm−1 ≤ C(1 + C
′′

b )

∫
Im

‖u− uδ‖2dt. (4.37)

We sum (4.37) over m = 1, . . . , n ≤ NT and use θ = 0 at t = 0 to derive the estimate

sup
t∈In
‖θ(t)‖2 = sup

t∈In
‖yuδ (t)− yδ(t)‖2 ≤ C

∫ tn

0

‖u− uδ‖2dt. (4.38)

Secondly, we proceed with the adjoint equation subtracting (4.12b) from (4.29b) and
using ζ = λuδ − λδ. A discrete approximation to χ(t,tm]vh specified for the adjoint
problem must be used, as we discussed in Section 4.3.2. Then, this leads to∫

Im

2(−∂tζ, ζ̃)dt− 2([ζ]m, ζ̃
m
− ) = ‖ζ(z)‖2 − ‖ζm‖2 + ‖[ζ]m‖2, (4.39)

where z = arg supĪm ‖ζ(t)‖. In addition, the inequalities ‖ζm‖2 ≤ supINT−m+2
‖ζ(t)‖2

and ‖ζ(z)‖2 = supINT−m+1
‖ζ(t)‖2 are needed. Then, we follow the same idea used to

derive (4.38) to reach the inequality

sup
t∈INT−m+1

‖ζ(t)‖2 − sup
t∈INT−m+2

‖ζ(t)‖2 ≤ Ckm

∫
t∈Im
‖u− uδ‖2dt. (4.40)

We shall sum (4.40) over m = NT , . . . , n ≥ 1 and use ζ = 0 at t = tNT . The final
result (4.30) follows from standard algebra, (4.38) and (4.40).

We shall proceed with the estimate between the exact and the approximate control.
Lemma 4.6. Let (y, λ, u) and (yδ, λδ, uδ) be the solutions of (2.6) and (4.12), respec-
tively. Then, we have

‖u− uδ‖L2(0,T ;L2(Ω)) ≤
1

α
‖λ− λuδ‖L2(0,T ;L2(Ω)). (4.41)

Proof. We apply the technique used for the steady-state optimal control problem in
[91, Section 4.2]. We start using the continuous and fully-discrete optimality condi-
tions (2.6c)-(4.12c) to obtain the following equation

α‖u− uδ‖2
L2(0,T ;L2(Ω)) = α

T∫
0

(u− uδ, u− uδ)dt

=

T∫
0

(αu− λ, u− uδ)dt−
T∫

0

(αuδ − λδ, u− uδ)dt+

T∫
0

(λ− λδ, u− uδ)dt

=

T∫
0

(λ− λuδ , u− uδ)dt+

T∫
0

(λuδ − λδ, u− uδ)dt = J1 + J2. (4.42)
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We use Cauchy-Schwarz and Young inequalities to show that

0 ≤ J1 ≤
1

2α
‖λ− λuδ‖2

L2(0,T ;L2(Ω)) +
α

2
‖u− uδ‖2

L2(0,T ;L2(Ω)). (4.43)

We proceed with J2 and use the auxiliary state equation (4.29) to obtain

J2 =

T∫
0

(λuδ − λδ, u− uδ) dt

=

NT∑
m=1

∫
Im

(∂t(y
u
δ − yδ), λuδ − λδ) dt+

T∫
0

ash(y
u
δ − yδ, λuδ − λδ) dt

+
N∑
m=1

(
[yuδ − yδ]m−1, (λ

u
δ − λδ)m−1

+

)
.

We proceed applying integration by parts in time and use the auxiliary adjoint equation
(4.29) to arrive at

J2 = −
NT∑
m=1

∫
Im

(
λuδ − λδ, ∂t(yuδ − yδ)

)
dt+

N∑
m=1

(
yuδ − yδ, λuδ − λδ

)
|tmtm−1

+

T∫
0

ash(y
u
δ − yδ, λuδ − λδ) dt+

N∑
m=1

(
[yuδ − yδ]m−1, (λ

u
δ − λδ)m−1

+

)

= −
NT∑
m=1

∫
Im

(
λuδ − λδ, ∂t(yuδ − yδ)

)
dt+

T∫
0

ash(y
u
δ − yδ, λuδ − λδ) dt

−
N∑
m=1

(
(yuδ − yδ)m− , [λuδ − λδ]m

)
= −

T∫
0

(
yuδ − yδ, yuδ − yδ

)
dt ≤ 0. (4.44)

Then, using (4.42)-(4.44), we derive the final result (4.41).

Lemma 4.7. Let (y, λ) ans (yuδ , λ
u
δ ) be the solutions of (2.6) and (4.29), respectively.

Assume that y, λ ∈ W q+1,∞(0, T ;H1(Ω)) ∩ L∞(0, T ;Hp+1(Ω)). Then, there exists a
constant C independent of h and k such that

sup
t∈In
‖y − yuδ ‖+ sup

t∈In
‖λ− λuδ‖ ≤ O(hp + kq+1). (4.45)
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Proof. Firstly, we integrate (2.6a) over Im and subtract the result from (4.29a) in order
to obtain the following equation

∫
Im

(∂tξ, vδ)dt+ ([ξ]m−1, v
m−1
δ,+ ) +

∫
Im

ash(ξ, vδ)dt

= −
(∫

Im

(∂tη, vδ)dt+ ([η]m−1, v
m−1
δ,+ )

)
−
∫
Im

ah(η, vδ)dt, (4.46)

where y − yuδ = (y − πy) + (πy − yuδ ) = η + ξ.

Since we use the same mesh on each time interval, (4.23) leads to the following iden-
tity. ∫

Im

(∂tη, vδ)dt+ ([η]m−1, v
m−1
δ,+ ) = 0, ∀vδ ∈ V k,q

h . (4.47)

We proceed as in the proof of Lemma 4.5 and the proof of [54, Theorem 5.1] by
inserting the estimate (4.25) to obtain

∫
Im

(∂tξ, vδ)dt+ ([ξ]m−1, v
m−1
δ,+ ) +

∫
Im

ash(ξ, vδ)dt

≤ ε

4

∫
Im

|||vδ|||2DGdt+
C0

2

∫
Im

‖vδ‖2dt+
1

2

∫
Im

∑
K∈Th

(
‖vδ‖2

∂K+∩Γ+ + ‖[[vδ]]‖2
∂K−\Γ−

)
dt

+kmCACπ(h2p + k2q+2)|y|2R + km2CβCπCM(h2p+1 + k2q+2)|y|2R

+kmCπ
CβCr
C0

(h2p+2 + k2q+2)|y|2R, (4.48)

where |y|R = max(|y|W q+1,∞(Im;H1(Ω)), |y|L∞(Im;Hp+1(Ω))).

Firstly, we shall substitute vδ = 2ξ into (4.48) to obtain

‖ξm− ‖2 − ‖ξm−1
− ‖2 +

ε

2

∫
Im

|||ξ|||2DGdt+ C0

∫
Im

‖ξ‖2dt

+

∫
Im

∑
K∈Th

(
‖ξ‖2

∂K−∩Γ− +
1

2
‖[[ξ]]‖2

∂K−\Γ− +
1

2
‖ξ‖2

∂K+∩Γ+

)
dt

≤ kmCb(h
2p + h2p+1 + h2p+2 + k2q+2)|y|2R, (4.49)

where Cb = max{CACπ, 2CβCπCM , Cπ CβCr
C0
}.
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Secondly, we substitute vδ = 2ξ̃ into (4.48) to obtain

sup
t∈Im
‖ξ(t)‖2 − sup

t∈Im−1

‖ξ(t)‖2

≤ C
′

b

∫
Im

|||ξ|||2DGdt+

∫
Im

∑
K∈Th

(
‖[[ξ]]‖2

∂K−\Γ− + ‖ξ‖2
∂K+∩Γ+

)
dt

+ kmCb(h
2p + h2p+1 + h2p+2 + k2q+2)|y|2R

≤ C
′′

b

∫
Im

(
|||ξ|||2DG +

∑
K∈Th

(
‖[[ξ]]‖2

∂K−\Γ− + ‖ξ‖2
∂K+∩Γ+

))
dt

+ kmCb(h
2p + h2p+1 + h2p+2 + k2q+2)|y|2R, (4.50)

where C ′b = C(1 + CD)(εCA + CS(Cβ + Cr)), C
′′

b = max{1, C ′b}. Now, we proceed
as in the proof of Lemma 4.5. We multiply (4.49) by C ′′′b = 2

ε
C
′′

b in order to eliminate
the terms ξ on the right-hand side of (4.50). Then, we add it to (4.50) and denote
Θm = supt∈Im ‖ξ(t)‖2 + C

′′′

b ‖ξm− ‖2 in order to obtain

Θm −Θm−1 ≤ km2C
′′′

b (h2p + h2p+1 + h2p+2 + k2q+2)|y|2R. (4.51)

We sum (4.51) over m = 1, . . . , n ≤ NT to obtain

sup
t∈In
‖ξ(t)‖2 ≤ O(h2p + k2q+2). (4.52)

Thirdly, we integrate (2.6b) over Im and subtract it from (4.29b) and denote λ− λuδ =
(λ− πλ) + (πλ− λuδ ) = ϕ + µ. Then, we use the idea in the proof of (4.52) in order
to derive

sup
t∈IN−m+1

‖µ(t)‖2− sup
t∈IN−m+2

‖µ(t)‖2 ≤ Ckm sup
t∈Im
‖ξ(t)‖2dt+O(h2p+k2q+2), (4.53)

for C > 0. The resulting inequality is summed over m = NT , . . . , n ≥ 1. Then, it is
combined with (4.52) to derive the final result (4.45).

Remark 4.2. For guaranteeing the assumptions on the exact solution, it is necessary to
require a higher regularity of the data of the problem.

We state the main estimate of this study by combining Lemmas 4.5-4.7.

Theorem 4.8. Suppose that (y, λ, u) and (yδ, λδ, uδ) are the solutions of (2.6) and
(4.12), respectively. We assume that all conditions of Lemmas 4.5-4.7 are satisfied.
Then, there exists a constant C independent of h and k such that

‖y−yδ‖L∞(0,T ;L2(Ω)) +‖λ−λδ‖L∞(0,T ;L2(Ω)) +‖u−uδ‖L2(0,T ;L2(Ω)) ≤ C
(
hp + kq+1

)
.

(4.54)

In Theorem 4.8, the error in the state and control is measured with respect to the norm
L∞(0, T ;L2(Ω)) and L2(0, T ;L2(Ω)), respectively. The same norms are used, for ex-
ample, in [56], too. The former norm is due to the discrete characteristic function

45



which is used to provide error estimates at arbitrary time points. The latter norm arises
from the optimality condition which is shown in Lemma 4.6. On the other hand, we ob-
serve that Theorem 4.8 is optimal in time, suboptimal in space in the L∞(0, T ;L2(Ω))
norm for the state and L2(0, T ;L2(Ω)) for the control, i.e. O(hp, kq+1), using p-degree
spatial, q-degree temporal polynomial approximation. However, for example, opti-
mal spatial convergence rate for SIPG discretization combined with backward Euler is
achieved using an elliptic projection in [5]. The first reason behind the order reduction
in this study is the estimate (4.25) for the space-time projection which is employed
to bound the continuity estimate of the bilinear form in Lemma 4.3. The convection
term also has an influence on the spatial order reduction since we follow the proof
of [54, Theorem 5.1]. In order to improve this suboptimal estimate, the effect of the
space-time projector in the bilinear form of the diffusion term must be eliminated.

4.4 Computational Aspects

In this section, we apply cGP(2) and dG(1) methods [99, 135] to the OCP (2.6) and
derive the fully discrete formulations of the adjoint equation. cGP(2) and dG(1) meth-
ods are convergent of order 3 and 2, respectively. cGP(2) method is super-convergent
of order 4, and dG(1) is of order 3 at the nodal points, i.e. at the endpoints of the time
intervals [120, 99].

cGP(2)-method

In cG(2)-method, the state yδ and the control uδ are approximated in the time interval
Im = (tm−1, tm] by

yδ := yδ(t) =

q∑
i=0

Y i
mφm,i(t), uδ := uδ(t) =

q∑
i=0

U i
mφm,i(t), ∀t ∈ Im.

Equivalently, we have

yδ = Y 0
mφm,0(t) + Y 1

mφm,1(t) + Y 2
mφm,2(t), ∀t ∈ Im,

uδ = U0
mφm,0(t) + U1

mφm,1(t) + U2
mφm,2(t), ∀t ∈ Im,

where φm,j ∈ P2(Im) are the orthogonal quadratic Lagrange basis functions on Īm.

Discrete time steps on Īm are chosen according to the 3-point Gauss-Lobatto rule on
Im,

tm,0 = tm−1, tm,1 = (tm−1 + tm)/2, tm,2 = tm,

with the reference weights ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3.

The test functions are chosen as ψsm,i ∈ P1(Im) such that

ψ̂si (t̂µ) = (ŵµ)−1δi,µ i, µ = 1, 2, ⇐⇒ ψ̂s1 =
3

4
(1− t̂), ψ̂s2 = 3t̂.
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Using the transformation Tn : Î → Im where Î = (−1, 1]

t = Tn(t̂) =
tm−1 + tm

2
+
km
2
t̂ ∈ Im, ∀t̂ ∈ Î , m = 1, . . . , NT ,

they are transformed to the interval Im.

The initial conditions on each time interval Im are

Y 0
m = yδ(tm−1) if m ≥ 2 or Y 0

m = y0 if m = 0.

For the state equation, on each time interval Im, the following linear system has to be
solved for Y 1

m, Y
2
m(

M + km
2

A 1
4
M

−4M 2M + km
2

A

)(
Y 1
m

Y 2
m

)
=

(
(5

4
M− km

4
A)Y 0

m + km
2

M(1
2
U0
m + U1

m) + km
2

(1
2
Fh(tm,0) + Fh(tm,1))

(−2M + km
2

A)Y 0
m + km

2
M(U2

m − U0
m) + km

2
(Fh(tm,2)− Fh(tm,0))

)
. (4.55)

The solution of state at the t = tm is given by yh,m = Y 2
m.

cGP(2) method for solving the adjoint equation is constructed in a similar way as for
the state equation, but by integrating backwards.

λδ := λδ(t) =

q∑
i=0

λimφm,i(t), ∀t ∈ Im.

Equivalently, we have

λδ = λ0
mφm,0(t) + λ1

mφm,1(t) + λ2
mφm,2(t), ∀t ∈ Im.

Discrete time steps on Īm are chosen according to the 3-point Gauss-Lobatto rule on
Im,

tm,0 = tm−1, tm,1 = (tm−1 + tm)/2, tm,2 = tm,

with the reference weights ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3.

The test functions are chosen as ψam,i ∈ P1(Im) such that

ψ̂ai (t̂µ) = (ŵµ)−1δi,µ i, µ = 0, 1, ⇐⇒ ψ̂a1 = −3t̂, ψ̂a2 =
3

4
(1 + t̂).

The initial conditions on each time interval Im are

λ2
m = λδ|Im−1(tm) if m ≤ 2NT − 1 or P 2

m = 0 if m = 2NT − 1.
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The system of equations to be solved for the adjoint equation becomes(
M + km

2
A 1

4
M

−4M 2M + km
2

A

)(
λ1
m

λ0
m

)
=

(
(5

4
M− km

4
A)λ2

m − km
2

M(1
2
Y 2
m + Y 1

m) + km
2

(1
2
Yd
h(tm,2) + Yd

h(tm,1))
(−2M + km

2
A)λ2

m − km
2

M(Y 0
m − Y 2

m) + km
2

(Yd
h(tm,0)− Yd

h(tm,2))

)
. (4.56)

The solution at the t = tm−1 is given as λh,m−1 = λ0
m.

dG(1)-method

For dG(1)-method, the state yδ and the control uδ are approximated in the time interval
Im = (tm−1, tm] by

yδ := yδ(t) =

q∑
i=1

Y i
mφ

s
m,i(t), uδ := uδ(t) =

q−1∑
i=0

U i
mφ

a
m,i(t), ∀t ∈ Im.

Equivalently, we have

yδ = Y 1
mφ

s
m,1(t) + Y 2

mφ
s
m,2(t), ∀t ∈ Im,

uδ = U0
mφ

a
m,0(t) + U1

mφ
a
m,1(t), ∀t ∈ Im,

using Gauss-Radau quadrature rule, where φsm,j ∈ P1(Im) are the linear Lagrange basis
functions on Īm.

Discrete time steps on Īm are chosen according to the right-handed 2-point Gauss-
Radau rule on Im

tsm,1 = tm−1 +
km
3
, tsm,2 = tm,

we use the reference weights

ŵs1 = 3/2, ŵs2 = 1/2.

The test functions are chosen as ψsm,i ∈ P1(Im) such that

ψ̂si (t̂µ) = (ŵsµ)−1δi,µ i, µ = 1, 2, ⇐⇒ ψ̂s1 =
1− t̂

2
, ψ̂s2 =

3t̂+ 1

2
.

The initial conditions for state equation on each time interval Im are

Y 0
m = (yδ)

−
m−1 if m ≥ 2 or (yδ)

−
m−1 = y−0 if m = 0.
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On each time interval Im = (tm−1, tm], we solve the following linear system for
Y 1
m, Y

2
m(

3
4M + km

2 A 1
4M

− 9
4M 5

4M + km
2 A

)(
Y 1
m

Y 2
m

)
=

(
MY 0

m + km
2 Fh(tm,1) + km

4 M(U0
m + U1

m)

−MY 0
m + km

2 Fh(tm,2) + km
4 M(3U1

m − U0
m)

)
.

(4.57)

Again the discrete state at t = tm is given as yh,tm = Y 2
m.

Let λδ be the approximate solution of the adjoint

λδ := λδ(t) =

q−1∑
i=0

U i
mφ

a
m,i(t), ∀t ∈ Im.

Equivalently, we have

λδ = λ0
mφ

a
m,0(t) + λ1

mφ
a
m,1(t), ∀t ∈ Im,

using linear orthogonal Lagrange functions and Gauss-Radau points. We note that the
integrals in the variational formulation of the state equation are approximated using
the right-handed 2-point Gauss-Radau rule whereas left-handed Gauss-Radau points
are used for the adjoint equation.

Discrete time steps on Īm are chosen according to the left-handed 2-point Gauss-Radau
rule

tam,0 = tm−1, tam,1 = tm−1 +
km
3
,

we use the corresponding reference weights

ŵa0 = 1/2, ŵa1 = 3/2.

The test functions are chosen ψam,i ∈ P1(Im) such that

ψ̂a0 =
1− 3t̂

2
, ψ̂a1 =

1 + t̂

2
.

The initial conditions for the adjoint equation on each time interval Im are

λ2
m = (λδ)

+
m if m ≤ NT or λ2

m = 0 if m = NT .

On each time interval Im = (tm−1, tm], we solve the following linear system for
λ1
m, λ

0
m(

3
4M + km

2 A 1
4M

− 9
4M 5

4M + km
2 A

)(
λ1m
λ0m

)
=

(
Mλ2m + km

2 Ydh(tm,1)− km
4 M(Y 1

m + Y 2
m)

−Mλ2m + km
2 Ydh(tm,0)− km

4 M(3Y 1
m − Y 2

m)

)
.

(4.58)
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Similar to the cGP(q+1) method, the discrete adjoint at tm−1 is given as λh,m−1 = λ0
m.

The main drawback of dG time discretization is the solution of large coupled linear sys-
tems in block form. Because we are using constant time steps, the coupled matrices on
the right-hand sides of (4.55)-(4.58) have to be decomposed (LU block factorization) at
the beginning of the integration. Then, the state and the adjoint equations are solved at
each time step by forward elimination and back substitution using the block factorized
matrices. Advantage of the variational time integration methods above is that only one
of the variables is needed in the coupled system of equations (4.55)-(4.58) to determine
the discrete state and the adjoint. The form of the linear systems (4.55)-(4.58) are the
same, which is not the case when arbitrary test functions ψs and ψa are used. Using
this technique, the preconditioner given in [135] can be applied both to the state and the
adjoint equations. Additionally, the orthogonal test functions lead to sparse matrices
with approximately half of the non-zero entries than of variational time discretization
methods with nodal basis test functions [50].

4.4.1 Numerical Results

In this section, we present some numerical results, which are presented in our work [3].
We measure the error in the state and control approximation in terms ofL∞(0, 1;L2(Ω))
and L2(0, 1;L2(Ω)) norm, respectively. We have used discontinuous piecewise linear
polynomials in space. In all numerical examples, we have taken h = O(k). We follow
optimize-then-discretize approach.

Example 1: The first test problem is a convection dominated problem with smooth
solutions depending implicitly on the diffusion term

Q = (0, 1]× Ω, Ω = (0, 1)2, ε = 10−5, β = (1, 1)T , r = 1 and α = 1.

The source function f , the desired state yd and the initial condition y0 are computed
from (2.6) using the following exact solutions of the state and control, respectively,

y(x, t) = 50 exp(−t)xy(x− 1)(y − 1) cos(5x− 5y − 5),

u(x, t) = 100 exp(−t)(1− t)xy(x− 1)(y − 1) sin(5x+ 5y − 5).

In Figures (4.1-4.2), we present the numerical solutions and the errors for the state and
the control at t = 0.5. We observe that the problem is approximated well and the error
is equally-distributed over the whole domain.

In Table 4.1, we give the errors for cGP(2) and dG(1) methods; cGP(2) method yields
smaller error than dG(1) method. For cGP(2) method, theoretical convergence rate
O(h2, k3) leads to O(h2) with h = k. We achieve this rate numerically. For dG(1)
method, the numerical results indicate a higher order experimental order of conver-
gence, i.e. O(h2), than the one shown in Theorem 4.8, which is O(h) with h = k.
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Figure 4.1: DCR Eqn: Numerical solution of the state (left), error (right) for Example
1 at t=0.5 with h = k = 1/80 by dG(1) method

Figure 4.2: DCR Eqn: Numerical solution of the control (left), error (right) for Exam-
ple 1 at t=0.5 with h = k = 1/80 by dG(1) method

Table 4.1: DCR Eqn: Example 1 by cGP(2) and dG(1) (in parenthesis) method.

h = k ‖y − yδ‖ Rate ‖u− uδ‖ Rate
1
5

7.43e-2(8.01e-2) -(-) 1.59e-1(2.66e-1) - (-)
1
10

1.98e-2(2.16e-2) 1.91(1.89) 4.84e-2(6.21e-2) 1.71(2.10)
1
20

5.18e-3(5.63e-3) 1.93(1.94) 1.31e-2(1.57e-2) 1.88(1.98)
1
40

1.35e-3(1.43e-3) 1.94(1.98) 3.41e-3(3.63e-3) 1.94(2.11)
1
80

3.43e-4(3.61e-4) 1.97(1.99) 8.90e-4(9.18e-4) 1.94(1.98)
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Example 2: This example is a convection dominated OCP constructed from Example
2 in [56] by adding the reaction term.

Q = (0, 1]× Ω, Ω = (0, 1)2, ε = 10−5, β = (0.5, 0.5)T , r = 3, α = 1.

The source function f , the desired state yd and the initial condition y0 are computed
from (2.6) using the following exact solutions of the control and state, respectively,

u(x1, x2, t) = sin(πt) sin(2πx1) sin(2πx2) exp

(
−1 + cos(tx)√

ε

)
,

y(x1, x2, t) = u

(
1

2
√
ε

sin(tx) + 8επ2 +

√
ε

2
cos(tx)−

1

2
sin2(tx)

)
− π cos(πt) sin(2πx1) sin(2πx2) exp

(
−1 + cos(tx)√

ε

)
,

where tx = t − 0.5(x1 + x2). As opposed to the previous example, the exact solu-
tion of PDE constrained depends on the diffusion explicitly and the problem is highly
convection dominated.

In Figures (4.3-4.4), we present the numerical solution and the error between the exact
and the numerical solution for state and control at t = 0.5. We observe that the problem
is approximated well. As expected, the error is more prominent on the regions where
the gradient of the solution is higher.

Figure 4.3: DCR Eqn: Numerical solution of the state (left), error (right) for Example
2 at t=0.5 with h = k = 1/80 by dG(1) method

In Table 4.2, we present the error for cGP(2) and dG(1) methods. cGP(2) method yields
smaller error than dG(1) method because its rate of convergence is cubic in time. The
second order convergence rates are achieved with both methods. For dG(1) method,
the numerical results indicate a higher order experimental order of convergence than
the one shown in Theorem 4.8; it is even higher than quadratic for the control.
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Figure 4.4: DCR Eqn: Numerical solution of the control (left), error (right) for Exam-
ple 2 at t=0.5 with h = k = 1/80 by dG(1) method

Table 4.2: DCR Eqn: Example 2 by cGP(2) and dG(1) (in parenthesis) method.

h = k ‖y − yδ‖ Rate ‖u− uδ‖ Rate
1
5

8.08e-1(1.18) -(-) 7.44e-2(1.04e-1) - (-)
1
10

2.96e-1(4.08e-1) 1.45(1.54) 2.46e-2(3.50e-2) 1.60(1.58)
1
20

8.95e-2(1.10e-1) 1.72(1.89) 6.90e-3(1.12e-2) 1.83(1.65)
1
40

2.39e-2(2.60e-2) 1.91(2.08) 1.41e-3(2.05e-3) 2.29(2.44)
1
80

6.09e-3(6.25e-3) 1.97(2.06) 3.07e-4(3.67e-4) 2.20(2.48)
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4.5 A Priori Error Estimates for Optimal Control of Burgers Equation

In this section, we derive error estimates for optimal control of Burgers equation, i.e.
c(y, u) = 0 denotes the Burgers equation. We follow the approach in [29] and [130].
We write the error in the state and the adjoint as

e = y − yδ = (πy − yδ) + (y − πy) = ξ + η,

r = λ− λδ = (πλ− λδ) + (λ− πλ) = ϕ+ φ,

where π denotes the space-time projection which is explained in Sec.4.3.

4.5.1 Some Auxiliary Results

We assume that the numerical flux n̂s(y−n+1, y
+
n+1) is consistent such that n̂s(y, y) =

n(y), conservative and locally Lipschitz continuous [94, Chap. 5].

We make the following assumptions using the study [53, Sec.4.2]:

|nsh(y, v)− nsh(yδ, v)| (4.59)

≤ ε

8
|||v|||2DG + C(‖yδ − πy‖2 + h2p|y|2L2(Ij ;Hp+1(Ω)) + k2q+2|y|2Hq+1(Ij ;H1(Ω))).

Moreover, we mention some estimates given in [53].∫
Im

‖ξ‖2 dt ≤ Ckm

(
‖ξ−m−1‖2 + ‖η−m−1‖2 +

∫
Im

Rm(η) dt

)
, (4.60a)

‖η−m−1‖2 ≤ Ch2p|y(tm)|2Hp+1(Ω), (4.60b)
m∑
j=1

‖η−j ‖2 ≤ C
m∑
j=1

kjh
2p|y(tj)|2Hp+1(Ω) ≤ CTh2p|y|2C([0,T ];Hp+1(Ω)), (4.60c)∫

Im

Rm(η) dt ≤ C

(
ε+

1

ε

)∫
Im

(
h2p|y|2L2((Im);Hp+1(In)) + k2q+2|y|2Hq+1((Im),H1(In))

)
dt.

(4.60d)

For the first and the second parts of convective term of the adjoint equation, using the
definition of the DG-norm and the boundedness of the exact and the discrete solution,
we show that there is a constant C independent of h and k such that the following
inequalities hold with v = 1

α
φ:∣∣∣∣(yλx, 1

α
φ)− (yδ(λδ)x,

1

α
φ)

∣∣∣∣
≤
∣∣∣∣((y − πy)λx,

1

α
φ) + ((πy)λx,

1

α
φ)− (yδ(λδ − πλ)x,

1

α
φ) + (yδ(πλ)x,

1

α
φ)

∣∣∣∣
≤ ε

8α
|||λδ − πλ|||2DG + C(‖y − πy‖2 + ‖φ‖2), (4.61)
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∣∣∣∣nsh,y(y−n+1, y
+
n+1)[[λ]]

1

α
φ− nsh,y(y−δ,n+1, y

+
δ,n+1)[[λδ]]

1

α
φ

∣∣∣∣
≤
∣∣∣∣nsh,y(y−δ,n+1, y

+
δ,n+1)[[λδ]]

1

α
φ

∣∣∣∣
≤
∣∣∣∣nsh,y(y−δ,n+1, y

+
δ,n+1)[[λδ − πλ]]

1

α
φ

∣∣∣∣+

∣∣∣∣nsh,y(y−δ,n+1, y
+
δ,n+1)[[πλ]]

1

α
φ

∣∣∣∣
≤ ε

8α
|||λδ − πλ|||2DG + C

2

ε
‖φ‖2. (4.62)

Therefore, we obtain the following estimate

|nah(λ, y,
1

α
φ)− nah(λδ, yδ,

1

α
φ)| ≤ ε

4α
|||λδ − πλ|||2DG + C(‖y − πy‖2 + (1 +

2

ε
)‖φ‖2).

(4.63)

4.5.2 Main Result

Lemma 4.9. Let (y, λ) and (yδ, λδ) be the solutions of (2.8) and (4.12), respectively.
Assume that y, λ ∈ Hq+1(0, T ;H1(Ω))∩L2(0, T ;Hp+1(Ω)). Then, there is a constant
C independent of h and k such that the following inequalities hold:

‖en‖2 +
ε

2

∫ tn

0

|||ξ|||2DG dt ≤ C

(
‖e−0 ‖2 − 2

α

n∑
m=1

∫
Im

(λ− λδ, ξ) dt

)
+O(h2p, k2q+2),

(4.64a)

‖rn‖2 +
ε

2

∫ tn

0

|||ϕ|||2DG dt ≤ C

(
2

α

n∑
m=1

∫
Im

(y − yδ, ϕ) dt

)
+O(h2p, k2q+2).

(4.64b)

Proof. The local error equation for the state equation can be written as follows:∫
Im

((∂tξ, v) + ash(ξ, v)) dt+ ([ξ]m−1, v
m−1
+ ) (4.65)

= −
(∫

Im

(∂tη, v) dt+ ([η]m−1, v
m−1
+ )

)
−
∫
Im

ash(η, v) dt

+

(∫
In

nsh(y, v)dt−
∫
In

nsh(yδ, v) dt

)
− 1

α

∫
Im

(λ− λδ, v) dt, ∀v ∈ V k,q
h,p .

We choose v = 2ξ in (4.65). Then, we use coercivity of DG-bilinear form (4.27), the
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equality (4.32) and (4.47) and we arrive at

‖ξm− ‖2 − ‖ξm−1
− ‖2 + ε

∫
Im

|||ξ|||2DG dt

≤ ε

2

∫
Im

|||ξ|||2DG dt+

(
(1 +

C

ε
km)‖ξ−m−1‖2 + C‖η−m−1‖2 + C

∫
Im

Rm(η) dt

)
+O(h2p, k2q+2)− 2

α

∫
Im

(λ− λδ, ξ) dt. (4.66)

We proceed with the estimates (4.59-4.60) and simplify the common terms. Then, we
sum from m = 1 to n to derive the following inequality

‖ξm− ‖2 +
ε

2

n∑
m=1

∫
Im

|||ξ|||2DG dt (4.67)

≤ C

(
‖ξ−0 ‖2 +

n∑
m=1

C

ε
km‖ξm−1

− ‖2 − 2

α

n∑
m=1

∫
Im

(λ− λδ, ξ) dt

)
+O(h2p, k2q+2).

By applying the discrete Gronwall’s lemma, we obtain the desired result (4.64a).

We proceed with the local error equation for the adjoint equation.∫
Im

(−(∂tϕ, q) + aah(ϕ, q)) dt− ([ϕ]m, q
m
− )

= −
∫
Im

(∂tφ, q) dt− ([φ]m, q
m
− )−

∫
Im

aah(ϕ, q) dt

− (

∫
Im

nah(λ, q) dt−
∫
Im

nah(λδ, q)) dt+

∫
Im

(y − yδ, q) dt, ∀q ∈ V k,q
h,p . (4.68)

We choose v = 2
α
ξ in (4.68). Similar to the state equation, we use coercivity of DG-

bilinear form (4.27), the equality (4.32) and (4.47). Then, we sum from m = n to
m = 1 to arrive at

1

α
‖ϕn‖2 +

ε

2α

n∑
m=1

∫
Im

|||ϕ|||2DG dt

≤ C
1

α

(
n∑

m=1

‖ϕm‖2

)
+O(h2p, k2q+2) +

2

α

n∑
m=1

∫
Im

(y − yδ, ξ) dt. (4.69)

By applying the discrete Gronwall’s lemma and using the properties of the space-time
projection in Sec.4.3.1, we obtain the desired result (4.64b).

Now, we proceed with the estimates at arbitrary time steps using the previous estimate
and the discrete characteristic function (4.3.2).
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Lemma 4.10. Let (yδ, λδ) be the solution of (4.12). Assume that y, λ ∈ Hq+1(0, T ;H1(Ω))∩
L2(0, T ;Hp+1(Ω)). Then, there is a constant C independent of h and k such that the
following inequalities hold:

sup
t∈Im
‖ξ(t)‖2 + sup

t∈Im
‖ϕ(t)‖2 ≤ C‖e−0 ‖2 +O(h2p, k2q+2). (4.70)

Proof. The proof is similar to the case in Lemma 4.9. To do this, for any fixed t ∈
[tn−1, tn), we set vδ = ẽh in (4.65).

sup
t∈Im
‖ξ(t)|2 − ‖ξm−1

− ‖2 (4.71)

≤ ε

2

∫
Im

|||ξ̃|||2DG dt+
C

ε

∫
Im

‖yδ − πy‖2 dt− 2

α

∫
Im

(λ− λδ, ξ̃) dt+O(h2p, k2q+2).

Here, we use the properties of the discrete characteristic functions which has been
explained in Sec.4.3.2. We choose t ∈ (tn−1, tn] such that

‖e(t)‖2 = sup
tn−1≤s≤tn

‖eh‖2.

We note that the term
‖en−1

h ‖2 ≤ sup
tn−2≤s≤tn−1

‖e(s)‖2.

Then, we have ∫
In

‖eh‖2 dt ≤ kn sup
tn−1≤s≤tn

‖eh‖2 ≡ kn‖e(t)‖2.

For the adjoint equation, for any fixed t ∈ (tN−1, tN ], we set vδ = 1
α
r̃h in (4.68) and

proceed similarly.

sup
t∈Im
‖ϕ(t)|2 − ‖ϕm‖2 (4.72)

≤ ε

2

∫
Im

|||ϕ̃|||2DG dt+
C

ε

∫
Im

‖y − πy‖2 dt+
2

α

∫
Im

(y − yδ, ξ̃) dt+O(h2p, k2q+2).

In order to eliminate the terms p − pδ and y − yδ in the estimates 4.71 and 4.72, we
follow the approach in [29] and write the coupling terms as follows:

− 1

α

∫
Im

(r, ξ̃) dt+
1

α

∫
Imn

(e, ϕ̃) dt

≤ C

∫
Im

(
2

εα2
‖φ‖2 +

2

εα
‖η‖2

)
dt +

∫
Im

( ε
8
|||ξ̃|||2DG +

ε

8α
|||ϕ̃|||2DG

)
dt,

≤ O(h2p+2, k2q+2) + CD

∫
Im

( ε
8
|||ξ|||2DG +

ε

8α
|||ϕ|||2DG

)
dt. (4.73)
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We add the resulting inequalities for the state and the adjoint equation and sum from
m = 1 to n. Then, we apply discrete Gronwall’s inequality to arrive at the estimate
(4.70).

Using the estimates in Lemma 4.9-4.10, we state the main estimate for optimal control
of Burgers equation.

Theorem 4.11. Let (y, λ, u) and (yδ, λδ, uδ) be the solutions of (2.8) and (4.12), re-
spectively. Assume that all the conditions in Lemma 4.9-4.10 hold. Then, there exists
a constant C independent of h and k such that

‖y − yδ‖L∞(0,T ;L2(Ω)) + ‖λ− λδ‖L∞(0,T ;L2(Ω)) + ‖u− uδ‖L∞(0,T ;L2(Ω))

≤ C
(
hp+1‖y0‖+O(hp, kq+1)

)
. (4.74)

4.6 Computational Aspects

In Section 4.4, the derivation of the linear systems associated to the state and the adjoint
equation are explained. Now, we derive the corresponding systems optimal control of
Burgers equation.

dG(1)-method

For the dG(1)-method, the state yδ and the control uδ are approximated in the time
interval Im = (tm−1, tm] by

yδ = Y 1
mφ

s
m,1(t) + Y 2

mφ
s
m,2(t), ∀t ∈ Im,

uδ = U0
mφ

a
m,0(t) + U1

mφ
a
m,1(t), ∀t ∈ Im,

using the Gauss-Radau quadrature rule, where φsm,j ∈ P1(Im) are the linear Lagrange
basis functions on Īm.

The discrete time steps on Īm are chosen according to the right-handed 2-point Gauss-
Radau rule on Im

tsm,1 = tm−1 +
km
3
, tsm,2 = tm,

we use the reference weights

ŵs1 = 3/2, ŵs2 = 1/2,

ψ̂s1 =
1− t̂

2
, ψ̂s2 =

3t̂+ 1

2
.
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The initial conditions for state equation on each time interval Im are

Y 0
m = (yδ)

−
m−1 if m ≥ 2 or (yδ)

−
m−1 = y−0 if m = 0.

For the state equation, on each time interval Im, we have the following systems of
equations(

3

4
M +

k

2
A
)
Y 1
m +

k

2
Ns((Y 1

m)2) +
1

4
MY 2

m

= MY 0
m +

k

2
Fh(tm,1) +

k

4
M(U0

m + U1
m), (4.75a)

−9

4
MY 1

m +

(
5

4
M +

k

2
M
)
Y 2
m +

k

2
Ms((Y 2

m)2)

= −MY 0
m +

k

2
Mh(tm,2) +

k

4
M(3U1

m − U0
m). (4.75b)

This system can be linearised using Newton’s method for Y 1,α
m , Y 2,α

m and solved for
δY 1

m, δY
2
m on each time interval Im = (tm−1, tm].(

3
4M + km

2 (As + kNsy(Y 1,α
m )) 1

4M
− 9

4M 5
4M + km

2 (As + kNsy(Y 2,α
m ))

)(
δY 1

m

δY 2
m

)
=

( (
3
4M + k

2A
)
Y 1
m + k

2Ns((Y 1
m)2) + 1

4MY 2
m −MY 0

m − k
2Fh(tm,1)− k

4M(U0
m + U1

m)
− 9

4MY 1
m +

(
5
4M + k

2A
)
Y 2
m + k

2Ns((Y 2
m)2) + MY 0

m − k
2Fh(tm,2)− k

4M(3U1
m − U0

m).

)
.

(4.76)

The solution is updated as
Y 1,α+1
m = Y 1,α

m − δY 1
m

and
Y 2,α+1
m = Y 2,α

m − δY 2
m

up to a given tolerance. Then, we denote Y 1
m := Y 1,α+1

m and Y 2
m := Y 2,α+1

m .

Let λδ be the approximate solution of the adjoint

λδ = λ0
mφ

a
m,0(t) + λ1

mφ
a
m,1(t), ∀t ∈ Im,

using linear orthogonal Lagrange functions and Gauss-Radau points.

The discrete time steps on Īm are chosen according to the left-handed 2-point Gauss-
Radau rule

tam,0 = tm−1, tam,1 = tm−1 +
km
3
,

we use the corresponding reference weights and test functions

ŵa0 = 1/2, ŵa1 = 3/2,

ψ̂a0 =
1− 3t̂

2
, ψ̂a1 =

1 + t̂

2
.
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The initial conditions for the adjoint equation on each time interval Im are

λ2
m = (λδ)

+
m if m ≤ NT or λ2

m = 0 if m = NT .

On each time interval Im = (tm−1, tm], we solve the following linear system for λ1
m, λ

0
m(

3
4
M + km

2
(Aa − Na(Y

1
m+Y 2

m

2
)) 1

4
M

−9
4
M 5

4
M + km

2
(Aa − Na(3Y

1
m−Y 2

m

2
))

)(
λ1
m

λ0
m

)
=

(
Mλ2

m + km
2

Yd
h(tm,1)− km

4
M(Y 1

m + Y 2
m)

−Mλ2
m + km

2
Yd
h(tm,0)− km

4
M(3Y 1

m − Y 2
m)

)
. (4.77)

Similar to the cGP(q+1) method, the discrete adjoint at tm−1 is given as λh,m−1 = λ0
m.

4.6.1 Numerical Results

In this section, we present some numerical results. We measure the error in the ap-
proximate cost functional at two successive space-time meshes. We have used discon-
tinuous piecewise linear polynomials in space and in time. In all numerical examples,
we have taken h = O(k).

We consider the optimal control problem in [82] with

Q = (0, 1]× Ω, Ω = (0, 1), ε = 10−2, and α = 0.05.

We take the source function f = 0, the desired state yd and the initial condition y0 are
defined as

yd(x, t) =

{
1 in (0, 1/2],

0 otherwise .

In Figure 4.5, we presented the numerical results for the state, the adjoint and the
control. It is observed that the solutions are similar the ones in [65]. Finding a suitable
control, the discontinuity at x = 1/2 is smoothed and the state is pushed left as time
passes so that the difference between the state and the desired state becomes small.
The relation (2.8c) between the adjoint and the control is realised in the figures.

In Table 4.3, we give the errors for dG(1) method. We observe that numerical results
indicate better convergence rates, that is around 1.6, than the theoretical one which is
O(h) with h = k.
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Figure 4.5: Burgers Eqn: Numerical solution of the state (top-left), the adjoint (top-
right) and the control (bottom) for Example 1 with h = k = 1/128 by dG(1) method

Table 4.3: Burgers Eqn: Example 1 by dG(1) method.

h = k J(yδ, uδ) J(y2δ, u2δ)− J(yδ, uδ) Rate
1
8

0.1781574 - -
1
16

0.1678330 1.0324e-2 -
1
32

0.1611209 6.7121e-3 0.62
1
64

0.1584206 2.7003e-3 1.31
1

128
0.1574704 9.5020e-4 1.51

1
256

0.1571551 3.1530e-4 1.59
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CHAPTER 5

MODEL REDUCTION USING PROPER ORTHOGONAL
DECOMPOSITION METHOD

Spatial discretization techniques, for example finite difference, discontinuous Galerkin,
finite volume or spectral method, are used to convert the continuous problem to a lin-
ear/nonlinear ordinary differential equation. Then, temporal discretization follows.
Resulting fully-discrete problem is called as full-order model (FOM), which is dis-
cussed in Sec. 4. In order to achieve an accurate and stable numerical solution, one
should use a fine grid/mesh, which increases the dimension of the discrete problem,
so the computational time. In case of perturbations in the data, FOM is required to
be solved for each new parameter in the data set or in case of optimization problems,
FOM associated to the differential equations in the Algorithm 4.4 must be resolved
after updating the control. Therefore, a method, that eliminates the necessity of the so-
lution of the FOM for each parameter or that enables us to solve the problem in a fast
way, is required. Here, model-order reduction (MOR) techniques are used to replace
the FOM with the reduced-order model (ROM).

In the literature, there are several MOR techniques and each of them has different ad-
vantages and disadvantages depending on the problem at hand. For an overview of
the methods, we refer the reader to the study [19]. For example, balanced truncation
method is employed for linear time invariant systems with many input or many out-
put [11], because the error between the input-output map associated to full-order and
reduced-order systems can be estimated in case of a homogeneous initial condition.
On the other hand, in order to apply the balanced truncation method, the system must
be balanced. In other words, two Lyapunov equations corresponding to the control-
lability and observability Gramian of the system must be solved [61]. Unfortunately,
this method is not efficient for large-scale problems since dense matrix factorizations
must be obtained for exact balanced truncation; so, approximate balanced truncation
methods are preferred [60]. For inhomogeneous initial condition, the study [66] is
suggested. This method is advantageous because ROM is kept to be asymptomatically
stable. Although there are some promising results [18], there are still open issues in
order to apply this method to time invariant or nonlinear systems.

One of the most popular MOR techniques is Krylov subspace method or moment
matching approximation [60]. This time, FOM is projected on to Krylov subspace
where Arnoldi or Lanczos process are used to derive the Krylov subspace. Effi-
ciency of this method lies on the fact that the matrix-vector multiplication is sufficient
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throughout the procedure [55].

In addition, reduced-basis method is a rapid and reliable technique based on Galerkin
projection and it is especially preferable for parametrized PDEs [107]. To apply this
method, FOM is projected onto a low-ordered subspace which is constructed using
precomputed finite element solutions. Offline-online decomposition of the model is
utilized where parameter independent but expensive parts of the model are computed
offline, while parameter-dependent and inexpensive parts are taken into account in
the online step in order to accelerate the solution procedure [89]. Basis selection is
performed using a posteriori error estimation. After deriving the low-dimensional sub-
space, an approximate solution of the problem depending on another set of parameters,
which can model geometrical or physical properties of the system, is derived. In ad-
dition, one can check the accuracy of the reduced-order solution using the mentioned
a posteriori error estimator [103, 109, 89]. This method has been applied to optimal
control of elliptic problems in [103] and parabolic problems in [36, 37, 79]. Moreover,
reduced-basis methods on space-time domain have started to gain interest, too [138].

MOR techniques can be formulated as a goal-oriented scheme where the aim is to
choose the reduced basis so that the difference between FOM and the output associ-
ated to ROM is minimized over a set of input and a time interval [22]. Quality of this
approach, of course, depends on the information contained in the snapshot ensemble
and the method can be applied to optimal control, optimal design and inverse problems.
On the other hand, domain decomposition methods can be employed as a MOR tech-
nique [15] where this idea has been applied to PDE constrained optimization problems
in [9, 10].

Apart from these methods, one of the most popular and successful MOR techniques is
the proper orthogonal decomposition (POD) method, also known as Karhunen-Loève
decomposition or principal component analysis [71, 83, 133]. The idea behind the
POD method is to derive a new basis spanning the space whose dimension is lower
than the finite element space. Then, FOM is projected onto the low-dimensonal sub-
space using the new optimal POD basis as we proceed in Galerkin projection. POD
basis is computed using the full-order solution at discrete time steps, which are called
as the snapshots. Because the snapshots might be linearly dependent or almost linearly
dependent, they cannot be directly used as a basis. Therefore, we construct a snap-
shot matrix and employ singular value decomposition or eigenvalue decomposition to
derive the POD basis, which is explained in Sec. 5.2. Quality of the reduced-order
solution depends on how much information is contained in the snapshot matrix [84] or
the location of each snapshot [85]. Order of the POD basis must be sufficiently large
to approximate the problem accurately. On the other hand, it shouldn’t be too large,
for example not larger than the full-order space, in order not to lose the efficiency.

In the literature, there are several studies concerning the reduced solution of the PDE-
constrained optimization based on POD. However, studies on the optimal control of
diffusion-convection-reaction equation, compared to parabolic PDEs, or Burgers equa-
tion are not so popular cases. For example, adaptive time step method is applied to op-
timal control of one-dimensional diffusion-convection equation in [6]. Another adap-
tive scheme is employed for reacting flows in order to derive the local information
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and to reduce the cost of the solution process in [116]. A comparison of two differ-
ent space discretization methods are given in [95] to compute the POD basis functions
for optimal control of diffusion-convection-reaction processes. For optimal control of
Burgers equation, we refer the reader to the study [82] where open-loop and closed-
loop OCPs are solved using POD. In [86, 87], optimal boundary feedback control of
Burgers equation is discussed by utilizing the Hamilton-Jacobi-Bellman equation for
infinite horizon OCPs. In the presence of control constraints, a posteriori error analysis
is utilized in order to measure the difference between the suboptimal control computed
from the POD basis and the optimal control; then, the number of POD basis is decided
[124]. The state-constrained case is discussed in [59].

In this study, we use POD method as a MOR technique where the fully-discrete snap-
shots are derived by space-time dG method. To the best of our knowledge, this is the
first study where a priori error analysis based on POD for space-time dG discretization
is presented.

In this chapter, firstly, continuous POD method is presented, namely the trajectories
are continuous in time and space (see, Sec. 5.1). Then, in Sec. 5.2, discrete version
of the POD is explained for space-time dG method. In Sec. 5.2.4, optimality system
based on POD and the associated linear systems are derived. Then, numerical results
are given in Sec. 5.3.3. A priori error estimates based on POD follows in Sec. 5.3
for OCP of DCR eqn. In Sec. 5.4, discrete empirical interpolation method, which is
used to increase the efficiency of POD in case of nonlinear state equation, is explained.
Error estimates for OCP of Burgers equation is proven in Sec. 5.5. Then, theoretical
analysis is compared with the numerical results in Sec. 5.5.3.

5.1 Continuous POD Method

In this section, we briefly explain the POD method following [133] and its generaliza-
tion to Galerkin type spatial discretization [51, Sec. 3]. The associated error bound
and the semi-discrete optimality system based on POD are presented additionally.

Let y = y(u) denote the weak solution of the state associated the control u. We assume
the data is given as

V = {y(t) : t ∈ [0, T ]} ⊆ V,

with d := dimV ≤ ∞.

Definition 5.1. A POD basis {ψj}lj=1 of rank l is computed by solving the following
optimization problem [82]

min
{ψj}lj=1

∫ T

0

∥∥∥∥∥y(t)−
l∑

j=1

(y(t), ψj)ψj

∥∥∥∥∥
2

dt s.t. (ψj, ψk) = δjk for 1 ≤ j, k ≤ l,

(5.1)
where (φ, ψ) denotes the L2(Ω) inner product; δjk is the Kronecker symbol, that is,
δjk = 0 for i 6= j and δjj = 1.
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The minimization problem in (5.1) can be solved by constructing the Lagrangian and
deriving the first and the second order optimality conditions. Then, we define the
operatorR := V → V such that

Rψ =

∫ T

0

(y(t), ψ)y(t) dt for ψ ∈ V. (5.2)

The operator R is self-adjoint, linear, bounded and nonnegative [133]. The solution
of the problem (5.1) is the eigenfunctions {ψi}li=1 associated to the eigenvalues λ1 ≥
λ2 ≥ . . . ≥ λl ≥ 0 such that

Rψi =

∫ T

0

(y(t), ψi)y(t) dt = λiψi, (ψi, ψj) = δij, i, j = 1, . . . , l. (5.3)

We define the operator K := L2(0, T )→ L2(0, T ) such that

Kφ =

∫ T

0

(y(t), y(·))φ(t) dt for ψ ∈ L2(0, T ). (5.4)

We note that the equation (5.4) is equivalent to (5.2) and they have the same eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ 0. Then, an alternative formula to (5.3), which is called as method
of snapshots, can be stated as follows:

Kφi =

∫ T

0

(y(t), y(·))φi(t) dt = λiφi, (ψi, ψj) = δij, i, j = 1, . . . , l. (5.5)

The following approximation error and a detailed proof can be found in [133].

Proposition 5.1. Let λ1 ≥ λ2 ≥ . . . ≥ λd > 0 denote the positive eigenvalues of K
with λi 6= 0. Then, the POD basis of rank l ≤ d is given by

ψj =
1√
λj

∫ T

0

φi(t)y(t) dt for j = 1, . . . , l. (5.6)

The POD approximation error is given by∫ T

0

∥∥∥∥∥y(t)−
l∑

j=1

(y(t), ψj)ψj

∥∥∥∥∥
2

dt =
d∑

j=l+1

λj. (5.7)

After computing the orthonormal POD basis of rank l < d, namely {ψ1, . . . , ψl}, we
can write the state, the adjoint and the control trajectories for t ∈ [0, T ] as

y(t) =
d∑
i=1

(y(t), ψi)ψi, λ(t) =
d∑
i=1

(λ(t), ψi)ψi, u(t) =
d∑
i=1

(u(t), ψi)ψi. (5.8)
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Then, an approximation to (5.8) with l < d for t ∈ [0, T ] is written as

yl(t) =
l∑

i=1

(y(t), ψi)︸ ︷︷ ︸
:=yli(t)

ψi, λ
l(t) =

l∑
i=1

(λ(t), ψi)︸ ︷︷ ︸
:=λli(t)

ψi, u
l(t) =

l∑
i=1

(u(t), ψi)︸ ︷︷ ︸
:=uli(t)

ψi. (5.9)

After deriving the POD basis, low-dimensional optimality system corresponding to
(1.1) or (1.2) is derived by applying Galerkin projection. In addition, the initial con-
dition y0, the desired state yd and the source function f are also projected onto the
low-dimensional subspace. Then, POD based optimality system associated to (2.6) or
(2.8) is written as

(∂ty
l, ψj) + a(yl, ψj) + n(yl, ψj) = (f l + ul, ψj), ∀ψj ∈ V l, t ∈ (0, T ], (5.10a)

− (∂tλ
l, ψj) + aa(λl, ψj)− nλ(λl, ψj) = −(yl − yd,l, ψj), ∀ψj ∈ V l, t ∈ (0, T ],

(5.10b)
αul = λl, t ∈ (0, T ]. (5.10c)

We note that for optimal control of DCR equation (1.1) , the terms n(yl, ψj) and
nλ(λl, ψj) are zero.

5.2 Discrete POD Method

In this section, we explain the discrete POD starting with the spatial discretization.
Then, the temporal discretization based on space-time dG method follows.

5.2.1 Spatial Discretization of POD Method

We suppose that the semi-discrete trajectories, namely yh(t), are at hand. Then, using
the trajectories, POD basis coefficients are derived as follows:

Definition 5.2. POD basis coefficients {Ψ:,j}lj=1 associated to the POD basis of rank l
are computed by solving the following optimization problem [82]

min
{Ψ:,j}lj=1

∫ T

0

∥∥∥∥∥yh(t)−
l∑

j=1

(yh(t),Ψ:,j)MΨ:,j

∥∥∥∥∥
2

M

dt, (5.11)

s.t. (Ψ:,j,Ψ:,k)M = δjk for 1 ≤ j, k ≤ l.

where (Φ,Ψ)M = ΦTMΨ with the finite element mass matrix M and δjk is the Kro-
necker symbol, that is, δjk = 0 for i 6= j and δjj = 1.
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After deriving the coefficients Ψ, l-many POD basis functions are expressed as a linear
combination of the discontinuous finite element basis functions ϕi(x) as follows

ψj(x) =
dof∑
i=1

Ψijϕi(x), j = 1, . . . , l. (5.12)

The solution of the problem (5.11) is the eigenvectors {Ψ:,i}li=1 associated to the eigen-
values λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0 such that

RhΨ:,i =

∫ T

0

(yh(t),Ψ:,i)yh(t)M dt = λiΨ:,i,with (Ψ:,i,Ψ:,j)M = δij, i, j = 1, . . . , l.

(5.13)

Proposition 5.2. The POD approximation error associated to the POD basis of rank
l ≤ d with λ1 ≥ λ2 ≥ . . . ≥ λd > 0 is given by∫ T

0

∥∥∥∥∥yh(t)−
l∑

j=1

(yh(t),Ψ:,j)MΨ:,j

∥∥∥∥∥
2

M

dt =
d∑

j=l+1

λj. (5.14)

An approximation to (5.8) with l < d for t ∈ [0, T ] is written as

ylh(t) =
l∑

i=1

(yh(t), ψi)︸ ︷︷ ︸
:=ylh,i(t)

ψi, λ
l
h(t) =

l∑
i=1

(λh(t), ψi)︸ ︷︷ ︸
:=λlh,i(t)

ψi, u
l
h(t) =

l∑
i=1

(uh(t), ψi)︸ ︷︷ ︸
:=ulh,i(t)

ψi.

(5.15)

Remark 5.1. After computing the POD basis coefficients, i.e., the matrix Ψ ∈ Rdof×l,
the POD approximation of the state, the adjoint and the control in (5.9) can be written
as [88]

ylh(t) =
l∑

i=1

ylh,i(t)ψi =
l∑

i=1

ylh,i(t)
dof∑
j=1

Ψjiϕj(x) =
dof∑
j=1

(Ψylh(t))jϕj(x),

λlh(t) =
dof∑
j=1

(Ψλlh(t))jϕj(x), ulh(t) =
dof∑
j=1

(Ψulh(t))jϕj(x).

5.2.2 Semi-discrete Optimality System Based on POD

The semi-discrete optimality system associated to (5.10) is written in matrix vector-
form as

Mldy
l
h(t)

dt
+ Alylh + Nl(ylh(t)) = Flh(t) + Mlulh(t), (5.16a)

Mlylh(0) = yl,0, (5.16b)
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−Mldλ
l
h(t)

dt
+ (Al)

T
λlh − Nλ,l(λlh(t)) = −(Mlylh(t)− Yd,l

h (t)), (5.16c)

Mlλlh(T ) = 0, (5.16d)∫ T

0

(αMlulh(t)−Mlλlh(t), wh) = 0. (5.16e)

where

Ml
ij = (ψj, ψi)Ω, Al

ij = ah(ψj, ψi)Ω, Fli = (fh(x, t), ψi),

Nl
i = nh(y

l(x, t), ψi), Nλ,l
i = nλh(λ

l(x, t), ψi), (5.17)

(Y d,l(t))i = (ydh(x, t), ψi), (yl,0)i = (yh,0(x, t), ψi),

for 1 ≤ i, j ≤ l, t ∈ (0, T ].

Then, the matrices in (5.17) can be computed as follows

Ml = ΨTMΨ, Al = ΨTAΨ, Fl = ΨTF, Yd,l = ΨTYd,

Nl = ΨTN(ΨTyl), Nλ,l = ΨTN(ΨTλl). (5.18)

We note that the terms Nl(ylh(t)) and Nλ,l(λlh(t)) in (5.16) are zero for DCR equation.

5.2.3 Temporal Discretization POD Method

In order to solve the optimization problem (5.1) numerically, we need the discrete
solution corresponding to y(t) at discrete time steps. We suppose that the snapshots
yδ,i := yδ|Ii on each time interval Ii, arising from space-time dG discretization are
available. We consider the following snapshot ensemble Yl = {yδ,1, . . . , yδ,N}. We
assume that at least one of the snapshots in Yl is non-zero. For an orthonormal basis of
Yl, namely {ψj}dj=1, with d = dim Yl; each member in the snapshot ensemble Yl can
be written as

yδ,i =
d∑
j=1

(yδ,i, ψj)M︸ ︷︷ ︸
:=yδ,j

ψj =
d∑
j=1

yδ,iψj for i = 1, . . . , N.

On the other hand, POD approximation for the state, the adjoint and the control for
t ∈ Ii are written as

ylδ,i =
l∑

j=1

ylδ,iψj, λ
l
δ,i =

l∑
j=1

λlδ,iψj, u
l
δ,i =

l∑
j=1

ulδ,iψj, for i = 1, . . . , N.

where l << d.
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Definition 5.3. POD basis coefficients associated to the POD basis of rank l, which
represents the snapshot ensemble as well as possible, is the solution of the following
optimization problem [82]

min
{Ψ:,j}lj=1

N∑
i=1

∫
Ii

∥∥∥∥∥yδ,i −
l∑

j=1

(yδ,i,Ψ:,j)MΨ:,j

∥∥∥∥∥
2

M

dt s.t. (Ψ:,j,Ψ:,k)M = δjk, for 1 ≤ j, k ≤ l,

(5.19)
where (Φ,Ψ)M = ΦTMΨ with the finite element mass matrix M.

In order to compute the POD basis, or equivalently to solve (5.19), there are three ways
of which advantages depends on the snapshot matrix.

We define the matrix Ȳl = M1/2Yl ∈ Rdof×N and Cholesky decomposition of the
symmetric positive definite mass matrix gives M = M1/2 (M1/2)T . Then,

• POD basis can be computed using the singular value decomposition (SVD). To
do this, SVD of Ȳl is written as Ȳl = UΣV T where U ∈ Rdof×dof, V ∈ RN×N

are orthogonal matrices and Σ ∈ Rdof×N collects the singular values σ2
i = λi

on its diagonal in a descending order. Then, the i-th column of Ψ is given by

Ψ:,i = M−1/2ui, (5.20)

where ui is the i-th column of U .

• If N < dof, then we define the correlation matrix K̄ ∈ RN×N associated to
the snapshot ensemble Yl as K̄ = Ȳ T

l Ȳl. We solve the symmetric eigenvalue
problem

K̄vi = λivi, 1 ≤ i ≤ l, vTi vj = δij, 1 ≤ i, j ≤ l.

Then, the i-th column of Ψ is given by

Ψ:,i = Ylvi/
√
λi,

where vi is the i-th column of V .

• If dof < N , then we define the matrix R̄ ∈ Rdof×dof associated to the snapshot
ensemble Yl as R̄ = ȲlȲ

T
l . We solve the symmetric eigenvalue problem

R̄ui = λiui, 1 ≤ i ≤ l, uTi uj = δij, 1 ≤ i, j ≤ l.

Then, the i-th column of Ψ is given by

Ψ:,i = M−1/2ui/
√
λi,

where ui is the i-th column of U .

For the solution of (5.19), we refer the reader to the studies [74, 83]. We mention the
following proposition [83].
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Proposition 5.3. Let λ1 ≥ λ2 ≥ . . . ≥ λd > 0 denote the positive eigenvalues of K̄.
Then, the approximation error associated to the POD basis of rank l ≤ d is given by

N∑
i=1

∫
Ii

∥∥∥∥∥yδ,i −
l∑

j=1

(yδ,i,Ψ:,j)MΨ:,j

∥∥∥∥∥
2

M

dt =
d∑

j=l+1

λj. (5.21)

Accuracy of the reduced solution depends on how much information about the full-
order solution is contained in this basis. More accurate solutions can be found by
increasing the number of POD basis functions. However, this increases the computa-
tional cost. Therefore, basis dimension is decided by balancing the accuracy and the
number of the truncated POD basis. Specifically, the most energetic POD modes are
chosen by measuring the ratio between the eigenvalues of the retained POD basis and
the sum of the whole eigenvalues. To do this, the number of POD basis functions l is
decided according to the ratio between the modelled and the total energy,

E(l) =
l∑

i=1

σ2
i /

d∑
i=1

σ2
i , (5.22)

where σi’s denote the singular values of the data matrix Ỹl and d = rank(Ỹl).

Remark 5.2. We note that each column of POD basis coefficients, namely Ψ:,1, . . . ,Ψ:,l

are orthonormal with respect to the mass matrix M; while the POD basis functions are
orthonormal in L2(Ω) norm.

5.2.4 Fully-discrete Optimality System Based on POD

We define the discontinuous test space for the reduced-order model:

V k,q
h,l =

{
v ∈ L2(I;Vh,l) : v|Im ∈ Pq(Im, Vh,l),m = 1, . . . , NT , vm(0) ∈ L2(Ω)

}
.

(5.23)

We discretize the semi-discrete reduced-order optimality system in (5.16) in time using
dG method. Then, POD Galerkin model of the optimality system associated to DCR
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equation is written as follows:
NT∑
m=1

∫
Im

(∂ty
l
δ, ψ)dt+

∫ T

0

ash(y
l
δ, ψ)dt+

NT∑
m=1

([ylδ]m−1, ψ
m−1
+ )

=

∫ T

0

(f lδ + ulδ, ψ) dt, ∀ψ ∈ V k,q
h,l , yl,−δ,0 = (y0)lδ, (5.24a)

NT∑
m=1

∫
Im

(−∂tλlδ, ψ)dt+

∫ T

0

(ash,y(y
l
δ, ψ))Tλδ dt−

NT∑
m=1

([λlδ]m, ψ
m
− )

= −
∫ T

0

(ylδ − y
l,d
δ , ψ) dt, ∀ψ ∈ V k,q

h,l , λl,+δ,N = 0, (5.24b)∫ T

0

(αulδ − λlδ, ψ − ulδ) dt = 0, ∀ψ ∈ V k,q
h,l . (5.24c)

We proceed by projecting the linear systems given in Sec.4.4 onto the low-dimensional
subspace for DCR equation. We note that the initial conditions for state equation on
each time interval Im must be projected on to the low-dimensional space as follows:

Y l,0
m = ΨT (yδ)

−
m−1 if m ≥ 2 or (yδ)

l,−
m−1 = ΨTy−0 if m = 0.

Then, for dG(1)-method, the reduced-order system associated to state equation is writ-
ten as: (

3
4
Ml + km

2
Al 1

4
Ml

−9
4
Ml 5

4
Ml + km

2
Al

)(
Y l,1
m

Y l,2
m

)
(5.25)

=

(
MlY l,0

m + km
2

Flδ(tm,1) + km
4

Ml(U l,0
m + U l,1

m )
−MlY l,0

m + km
2

Flδ(tm,2) + km
4

Ml(3U l,1
m − U l,0

m )

)
,

on each time interval Im = (tm−1, tm]. Again the discrete state at t = tm is given as
yl,tm = Y l,2

m .

To derive the reduced-order system associated to adjoint equation, the initial condi-
tions for the adjoint equation on each time interval Im must be projected onto the
low-dimensional space as:

λl,2m = ΨT (λδ)
+
m if m ≤ NT or λl,2m = 0 if m = NT .

On each time interval Im = (tm−1, tm], the reduced-order system for the adjoint equa-
tion is read as (

3
4
Ml + km

2
Al 1

4
Ml

−9
4
Ml 5

4
Ml + km

2
Al

)(
λl,1m
λl,0m

)
(5.26)

=

(
Mlλl,2m + km

2
Yl,d
δ (tm,1)− km

4
Ml(Y l,1

m + Y l,2
m )

−Mlλl,2m + km
2

Yl,d
δ (tm,0)− km

4
Ml(3Y l,1

m − Y l,2
m )

)
.

In Alg. 5.1, we summarize the derivation of the reduced-order solution of the OCP
based on POD step by step.
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Algorithm 5.1 Reduced-order approximation for the OCP based on POD
1: if Snapshots of the state and the adjoint are not given then
2: Solve the full-order problem and keep the solutions of the state and the adjoint

equation.
3: end if
4: Construct the snapshot matrix W (using the state W := Y ; the adjoint W := P or

a combination of them W := Y ∪ P .)
5: Compute the POD basis ψ(x) using the snapshot matrix W .
6: if The state equation is nonlinear. then
7: Compute a new basis for the nonlinear term using DEIM.
8: end if
9: Solve the reduced-order model of the OCP.

10: Increase the number of POD basis function measuring (5.22).

5.3 A Priori Error Estimates for Optimal Control of Diffusion-Convection-Reaction
Equation

In this section, we prove some useful lemmas and state the main estimate of this study
for DCR equation, particularly for dG time discretization. Firstly, in Sec. 5.3.1, we
prove some useful lemmas. Then, in Sec. 5.3.2, we derive the main estimate of this
study for POD method.

5.3.1 Auxiliary Results

We use the mass matrix as a weight matrix in the computation of POD basis functions,
soMl is the identity matrix of size l × l. We define the reduced stiffness matrix S l as

Slij =
∑
K∈Th

(∇ψj,∇ψi)K .

We mention the following bounds given in [83, Lemma. 2]:∑
K∈Th

|y|2H1(K) ≤ ‖S l‖2 ‖y‖2, ∀ y ∈ V h,l
k,q , (5.27)

where ‖ · ‖2 denotes the spectral norm for symmetric matrices.

Lemma 5.4. For all y ∈ V k,q
h,l , we have ‖y‖2

∂K ≤ ‖y‖2
K .

Proof. The proof is motivated by the study [134, Thm. 3]. For any element y ∈ V k,q
h,l ,

we have

y|∂K =
d∑
j=1

(y|∂K , (ψj)|∂K )(ψj)|∂K :=
d∑
j=1

xj(ψj)|∂K = xTMl
|∂Kx,
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whereMl
|∂K is the reduced-order edge mass matrix. Suppose that we have the snap-

shots of y|∂K , namely the solution along the edge ∂K on the time interval In for
n = 1, · · · , N . Then, POD basis (ψj)|∂K of order l̃ (with respect to L2-norm) can be
computed in order to write a reduced-order approximation of y|∂K . Then, the reduced-
order edge mass matrix, namely the identity matrix of size l̃, can be found. Thus,
‖y‖2

∂K ≤ xTx = ‖y‖2
K , where the last inequality follows from Parseval’s inequal-

ity.

Lemma 5.5. The following inequalities are satisfied:∑
K∈Th

‖vh(β · ∇wh)‖L2(K) ≤ Cβ
√
‖S l‖2 ‖vh‖‖wh‖, vh, wh ∈ Vh,l, (5.28a)

∑
K∈Th

(
‖vh‖2

∂K+∩∂Ω+ + ‖veh‖2
∂K−\∂Ω−

)
≤ Cβ ‖vh‖2, vh ∈ Vh,l, (5.28b)

where ‖β‖2 ≤ Cβ and S l is the reduced stiffness matrix.

Proof. To prove (5.28a), we write the following upper bound∑
K∈Th

‖vh(β · ∇wh)‖L2(K) ≤
∑
K∈Th

Cβ‖vh‖L2(K)|wh|H1(K).

The rest of the proof follows from (5.27). For the inequality (5.28b), we have

‖vh‖2
∂K+∩∂Ω+ + ‖veh‖2

∂K−\∂Ω−

[54,Eqn. (5.21)]

≤ Cβ‖y‖2
∂K .

Then, Lemma (5.4) is used.

Lemma 5.6. The bilinear form ad(·, ·) satisfies the following inequality.

acr(vh, wh)

[54,Thm. 5.1]

≤ r‖vh‖‖wh‖+
1

4

∑
K∈Th

(
‖wh‖2

∂K+∩Γ+ + ‖[[wh]]‖2
∂K−\Γ−

)
+
∑
K∈Th

(
‖vh‖2

∂K+∩Γ+ + ‖veh‖2
∂K−\Γ−

)
+
∑
K∈Th

‖β − π̃β‖L∞(K)‖vh‖L2(K)|wh|H1(K)

(5.28)

≤ r‖vh‖‖wh‖+
1

4

∑
K∈Th

(
‖wh‖2

∂K+∩Γ+ + ‖[[wh]]‖2
∂K−\Γ−

)
+ Cβ‖vh‖2 + Cβ

√
‖S l‖2 ‖vh‖‖wh‖, vh, wh ∈ Vh,l. (5.29)

Proof. The proof is adapted from [54, Thm. 5.1] using the inequalities (5.28).

In order to approximate ‖yn−1 − P lyn−1‖, we make the following definition.
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Definition 5.4. We define the following minimization problem associated to yiδ,

min
{ψj}lj=1

N∑
i=1

∥∥∥∥∥yiδ −
l∑

j=1

(yiδ, ψj)Mψj

∥∥∥∥∥
2

M

s.t. (ψj, ψk)M = δjk, for 1 ≤ j, k ≤ l, (5.30)

such that the following error bound holds

N∑
i=1

∥∥∥∥∥yiδ −
l∑

j=1

(yiδ, ψj)Mψj

∥∥∥∥∥
2

M

=
d∑

j=l+1

λj. (5.31)

L2-norm of the POD projection error is given by (5.21). DG energy norm of the
POD projection error is proved in the following lemma where the spatial discretiza-
tion, namely SIPG method, leads to the term |||ψj|||2DG on the right-hand side of the
estimate.

Lemma 5.7. POD projection error in dG energy norm satisfies

∫ T

0

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ yh − l∑

j=1

(yh, ψj)Mψj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

DG

dt ≤ 2CA

d∑
j=l+1

λj|||ψj|||2DG, (5.32a)

N∑
i=1

∫
Ii

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ yδ − l∑

j=1

(yδ, ψj)Mψj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

DG

dt ≤ 2CA

d∑
j=l+1

λj|||ψj|||2DG, (5.32b)

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ yiδ − l∑

j=1

(yiδ, ψj)Mψj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

DG

≤ 2CA

d∑
j=l+1

λj|||ψj|||2DG, . (5.32c)

Proof. We use the idea in the proof of [76, Lemma 3.2]. In particular, we give the
proof of (5.32b). Other proofs follow the same idea. Let Yl = [yδ|I1 , . . . , yδ|IN ] be
the M × N snapshot matrix. The POD basis can be found by solving the following
eigenvalue problem

YlY
T
l ψj = λjψj ∈ RM , j = 1, . . . , l, (5.33)
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with the snapshot matrix Y . The POD projection error in dG norm satisfies

N∑
i=1

∫
Ii

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ yδ|Ii − l∑

j=1

(yδ|Ii , ψj)Mψj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

DG

dt =
N∑
i=1

∫
Ii

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ d∑
j=l+1

(yδ|Ii , ψj)Mψj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

DG

dt

(4.27)

≤ 2

ε

N∑
i=1

∫
Ii

ad

(
d∑

j=l+1

(yδ|Ii , ψj)Mψj,

d∑
k=l+1

(yδ|Ii , ψk)Mψk

)
dt

=
2

ε

N∑
i=1

∫
Ii

d∑
j=l+1

d∑
k=l+1

(yδ|Ii , ψj)M(yδ|Ii , ψk)M dt ad(ψj, ψk)

=
2

ε

d∑
j=l+1

d∑
k=l+1

(
N∑
i=1

∫
Ii

(yδ|Ii , ψj)M yδ|Ii , ψk dt

)
M

ad(ψj, ψk)

=
2

ε

d∑
j=l+1

d∑
k=l+1

(Y Y Tψj, ψk)Ma
d(ψj, ψk)

(5.33)
=

2

ε

d∑
j=l+1

d∑
k=l+1

(λjψj, ψk)Ma
d(ψj, ψk)

=
2

ε

d∑
j=l+1

d∑
k=l+1

λjδjka
d(ψj, ψk)

(4.26)

≤ 2CA

d∑
j=l+1

λj|||ψj|||2DG, (5.34)

which proves (5.32b).

We define the dG-elliptic projection P h : V −→ Vh,p (if P h is restricted to the
dG-elliptic projection from Vh,p to Vh,l, it is written as P l) such that P h |Vh,p= P l :

Vh,p −→ Vh,l and P h : V \ Vh,p −→ Vh,p \ Vh,l denoted by

ad(y − P hy, vh) = 0, ∀vh ∈ Vh,p, ∀y ∈ V, ∀t ≥ 0. (5.35)

The projection operator P l satisfies the following bounds.

Lemma 5.8. For every l (1 ≤ l ≤ d), the projection operator P l satisfies

N∑
i=1

∫
Ii

|||y − P ly|||2DG dt ≤ C

(
h2p +

d∑
j=l+1

λj|||ψj|||2DG

)
, (5.36a)

N∑
i=1

∫
Ii

‖y − P ly‖2 dt ≤ C

(
h2(p+1) + h2

d∑
j=l+1

λj|||ψj|||2DG

)
, (5.36b)

N∑
i=1

‖yi − P lyi‖2 ≤ C

(
h2p+1 + h

d∑
j=l+1

λj|||ψj|||2DG

)
. (5.36c)

Proof. We start with (5.36a). For any v ∈ V , we deduce from (5.35),(4.27) that

|||v − P hv|||2DG ≤
2

ε
ad(v − P hv, v − P hv) =

2

ε
ad(v − P hv, v − vh)

≤ 2CA|||v − P hv|||DG |||v − vh|||DG, ∀vh ∈ Vh,p. (5.37)
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Then, we obtain that |||v − P hv|||DG ≤ 2CA|||v − vh|||DG, ∀vh ∈ Vh,p. If P h is
restricted to dG-elliptic projection from Vh,p to Vh,l, i.e., P hy = P ly ∈ Vh,l, then we
obtain

|||v − P lv|||DG ≤ 2CA|||v − vh|||DG, ∀vh ∈ Vh,l. (5.38)

We choose v = y with y = y(·, t) and decompose the right-hand side of (5.38) as
y − vh = (y − yh) + (yh − vh), where yh is the solution of the semi-discrete problem.

We choose vh =
l∑

j=1

(yh, ψj)Mψj ∈ Vh,l ⊂ Vh,p. Using the estimates [5, Lemma 5] and

5.32), we prove (5.36a).

In order to prove (5.36b), we follow the approach given in the proof of [42, Lemma
4.2]. Let us mention the techniques in that study. Firstly, the following problem is
considered:

−∆w = v − P hv, in Ω, w = 0, on ∂Ω. (5.39)

With V̄ = {v ∈ C∞(Ω) : supp v ⊂ Ω}, the weak formulation of (5.39) is written as
follows: Find w ∈ H1(Ω) such that w|∂Ω = 0 and

(∇w,∇q) = (v − P hv, q), ∀q ∈ V̄ . (5.40)

Suppose that w ∈ H2(Ω) and there is a constant C > 0, independent of v−P hv, such
that

‖w‖H2(Ω) ≤ C‖v − P hv‖. (5.41)

As the domain Ω is convex, this is true. In addition, H2(Ω) ⊂ C(Ω̄). Secondly, let
w ∈ H2(Ω) be the solution of the problem (5.39) satisfying (5.41), wh be the piecewise
Lagrange interpolant of w satisfying wh ∈ C(Ω̄) ∩ Vh,p and w|∂Ω = 0. Then,

|||w − wh|||2DG = |w − wh|2H1(Ω,Th) ≤ Ch2|w|2H2(Ω), (5.42)

(see, for example, [32, Thm. 3.1.6]). Due tow ∈ H2(Ω) [42], we have [[v]] = 0 = [[∇v]],
∀E ∈ Eh. Now, we continue as in [98, Lem. 3.3] by taking q = v − P hv in (5.40)

‖v − P hv‖2 = (∇w,∇(v − P hv)) = (∇(w − wh),∇(v − P hv)) ∀wh ∈ Vh,p
≤ |w − wh|H1(Ω,Th) |||v − P hv|||DG (5.43)
(5.42)

≤ Ch|w|H2(Ω) |||v − P hv|||DG
(5.41)

≤ Ch‖v − P hv‖ |||v − P hv|||DG.

Then, we obtain
‖v − P hv‖ ≤ Ch|||v − P hv|||DG.

If P h is restricted to dG-elliptic projection from Vh,p to Vh,l, i.e., P hy = P ly ∈ Vh,l,
then we obtain

‖v − P lv‖ ≤ Ch|||v − P lv|||DG.
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The rest of the proof follows from (5.38). For (5.36a), we have

N∑
i=1

‖yi − P lyi‖2 = C

N∑
i=1

h2|||yi − P lyi|||2DG

≤ CNh2

(
CPh

2p + CA

d∑
j=l+1

λj|||ψj|||2DG

)

≤ C

(
CPh

2p+1 + CAh
d∑

j=l+1

λj|||ψj|||2DG

)
.

Since we use space-time discontinuous Galerkin method as a discretization technique,
we adapt the interpolant given in [49, Sec.3] as follows: πly ∈ V k,q

h,l of y as πly =

Πk,n(P ly), n = 1, . . . , N . For a function v(t), Πk,nv is the unique polynomial of
degree q determined by (Πk,nv)n = vn. For q ≥ 1,∫

In

Πk,nv t
j dt =

∫
In

v tj dt, j = 0, · · · , q − 1, n = 1, · · · , N. (5.44)

Lemma 5.9. For every l (1 ≤ l ≤ d), the projection operator πl satisfies

N∑
i=1

∫
Ii

|||y − πly|||2DG dt ≤ Cπ(k2(q+1) + h2p)‖y‖2
∗,I + CA

d∑
j=l+1

λj|||ψj|||2DG,

(5.45a)
N∑
i=1

∫
Ii

‖y − πly‖2 dt ≤ Cπ(k2(q+1) + h2(p+1))‖y‖2
∗,I + CAh

2

d∑
j=l+1

λj|||ψj|||2DG,

(5.45b)
N∑
i=1

‖yi−1 − πlyi−1‖2 ≤ CPh
2p+1‖y‖2

L∞(I;Hp+1(Ω)) + CAh
d∑

j=l+1

λj|||ψj|||2DG.

(5.45c)

Proof. We apply triangle inequality as follows

‖y − πly‖ ≤ ‖y − πhy‖+ ‖Πk,n(P h − I)y‖+ ‖Πk,n(I − P l)y‖.

Then, we use the properties of the operators P h,Πk,n, π
h and the estimate (5.36). For

the last term, we use the properties of πly which leads to the following relation

‖yn−1 − πlyn−1‖2 ≤ ‖yn−1 − P lyn−1‖2.

Then, the rest follows from (5.36c).
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Corollary 5.10. For every l (1 ≤ l ≤ d), the projection operator πl satisfies

N∑
i=1

∫
Ii

|||yδ − πlyδ|||2DG dt ≤ CA

d∑
j=l+1

λj|||ψj|||2DG, (5.46a)

N∑
i=1

∫
Ii

‖yδ − πlyδ‖2 dt ≤ CAh
2

d∑
j=l+1

λj|||ψj|||2DG, (5.46b)

N∑
i=1

‖yi−1
δ − πlyi−1

δ ‖
2 ≤ CAh

d∑
j=l+1

λj|||ψj|||2DG. (5.46c)

5.3.2 Main Result

We define auxiliary state and adjoint equation which are needed for a priori error anal-
ysis

NT∑
m=1

∫
Im

(∂ty
l,u
δ , vδ)dt+

∫ T

0

ash(y
l,u
δ , vδ)dt+

NT∑
m=1

([yl,uδ ]m−1, v
m−1
δ,+ )

=

∫ T

0

(f lδ + uδ, vδ) dt, yu,l,0δ,− = (y0)lδ, (5.47a)

NT∑
m=1

∫
Im

(−∂tλl,uδ , φδ)dt+

∫ T

0

ah(λ
l,u
δ , φδ)dt−

NT∑
m=1

([λl,uδ ]m, φ
m
δ,−)

= −
∫ T

0

(yl,uδ − y
d
δ , φδ) dt, λu,l,Nδ,+ = 0. (5.47b)

We shall derive some useful lemmas before stating the main estimate of this study.

Lemma 5.11. Let (ylδ, λ
l
δ) be the reduced solution in (5.24) and (yl,uδ , λ

l,u
δ ) be the aux-

iliary solution in (5.47). Then, there exists a constant C independent of h, k, l such
that

‖ylδ − y
l,u
δ ‖L∞(0,T ;L2(Ω)) + ‖λlδ − λ

l,u
δ ‖L∞(0,T ;L2(Ω)) ≤ C‖uδ − ulδ‖L2(0,T ;L2(Ω)).

(5.48)

Proof. Firstly, we consider the state equation. We subtract (5.24a) from (5.47a) to
obtain the local error equation with θ = yl,uδ − ylδ:∫

Im

((∂tθ, v) + ash(θ, v)) dt+ ([θ]m−1, v
m−1
+ ) =

∫
Im

(uδ − ulδ, v) dt, ∀v ∈ V k,q
h,l .

(5.49)

We substitute vδ = 2θ in (5.49). We know that∫
Im

2(∂tθ, θ)dt+ 2([θ]m−1, θ
m−1
+ ) = ‖θm−‖2 − ‖θm−1

− ‖2 + ‖[θ]m−1‖2, (5.50)
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is valid. For the right-hand side, we employ Cauchy-Schwarz, Young inequalities,
Poincaré inequality (2.4) and the definition of dG norm (2.1). For the left-hand side,
we use (4.27) for diffusion term and follow the technique in (see [54, Theorem 5.1])
for convection and reaction terms. Then, we derive the following estimate

‖θm−‖2 − ‖θm−1
− ‖2 +

ε

2

∫
Im

|||θ|||2DGdt+ 2C0

∫
Im

‖θ‖2dt

+

∫
Im

(∑
K∈Th

(
‖θ‖2

∂K−∩Γ− + ‖[[θ]]‖2
∂K−\Γ− + ‖θ‖2

∂K+∩Γ+

))
dt

≤ C

∫
Im

‖uδ − ulδ‖2dt. (5.51)

Then, we sum the resulting inequality from m = 1 to n to arrive at

‖θn−‖2 +
ε

2

∫ tn

0

|||ξ|||2DGdt

+

∫ tn

0

∑
K∈Th

(
‖ξ‖2

∂K−∩Γ− + ‖[[ξ]]‖2
∂K−\Γ− + ‖ξ‖2

∂K+∩Γ+

)
dt

≤ ‖θ0
−‖2 + C

∫ tn

0

‖uδ − ulδ‖2dt. (5.52)

Then, (5.52) yields that

‖θ‖2
L∞(0,T ;L2(Ω)) ≤ C‖uδ − ulδ‖2

L2(0,T ;L2(Ω)). (5.53)

Secondly, we consider the adjoint equation. We subtract (5.24b) from (5.47b) to obtain
the local error equation with ϕ = pl,uδ − plδ:∫

Im

(−(∂tϕ, v) + ah(ϕ, v)) dt− ([ϕ]m, v
m
− ) = −

∫
Im

(yl,uδ − y
l
δ, v) dt, ∀v ∈ V k,q

h,l .

(5.54)

Apply the same idea above to find

‖ϕ‖2
L∞(0,T ;L2(Ω)) ≤ C‖ylδ − y

l,u
δ ‖

2
L2(0,T ;L2(Ω)) ≤ C‖uδ − ulδ‖2

L2(0,T ;L2(Ω)). (5.55)

The final result (5.48) is obtained through the inequalities (5.53,5.55).

We shall proceed with the estimate associated to the control.

Lemma 5.12. Let (y, λ, u) and (ylδ, λ
l
δ, u

l
δ) be the solutions of (2.6) and (5.24), respec-

tively. Then, we have

‖uδ − ulδ‖L2(0,T ;L2(Ω)) ≤
1

α
‖λ− λl,uδ ‖L2(0,T ;L2(Ω)). (5.56)
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Proof. We apply the technique used for the steady-state optimal control problem in
[91, Section 4.2]. We start using the continuous and reduced optimality conditions
(2.6c)-(5.24c) to obtain the following equation

α‖uδ − ulδ‖2
L2(0,T ;L2(Ω)) = α

T∫
0

(uδ − ulδ, uδ − ulδ)dt

=

T∫
0

(αuδ − λ, uδ − ulδ)dt−
T∫

0

(αulδ − λlδ, uδ − ulδ)dt+

T∫
0

(λ− λlδ, uδ − ulδ)dt

=

T∫
0

(λ− λl,uδ , uδ − u
l
δ)dt+

T∫
0

(λl,uδ − λ
l
δ, uδ − ulδ)dt = J1 + J2. (5.57)

We use Cauchy-Schwarz and Young inequalities to show that

0 ≤ J1 ≤
1

2α
‖λ− λl,uδ ‖

2
L2(0,T ;L2(Ω)) +

α

2
‖uδ − ulδ‖2

L2(0,T ;L2(Ω)). (5.58)

We proceed with J2 and use the auxiliary state equation (5.47a) to obtain

J2 =

T∫
0

(λl,uδ − λ
l
δ, u− ulδ) dt

=

NT∑
m=1

∫
Im

(∂t(y
l,u
δ − y

l
δ), λ

l,u
δ − λ

l
δ) dt+

T∫
0

ash(y
l,u
δ − yδ, λ

l,u
δ − λ

l
δ) dt

+
N∑
m=1

(
[yl,uδ − y

l
δ]m−1, (λ

l,u
δ − λ

l
δ)
m−1
+

)
.

We proceed applying integration by parts in time and use the auxiliary adjoint equation
(5.47b) to arrive at

J2 = −
NT∑
m=1

∫
Im

(
λl,uδ − λ

l
δ, ∂t(y

l,u
δ − y

l
δ)
)
dt+

N∑
m=1

(
yl,uδ − y

l
δ, λ

l,u
δ − λ

l
δ

)
|tmtm−1

+

T∫
0

ash(y
l,u
δ − y

l
δ, λ

l,u
δ − λ

l
δ) dt+

N∑
m=1

(
[yl,uδ − y

l
δ]m−1, (λ

l,u
δ − λ

l
δ)
m−1
+

)

= −
NT∑
m=1

∫
Im

(
λl,uδ − λ

l
δ, ∂t(y

l,u
δ − y

l
δ)
)
dt+

T∫
0

ash(y
l,u
δ − y

l
δ, λ

l,u
δ − λδ) dt

−
N∑
m=1

(
(yuδ − yδ)m− , [λuδ − λδ]m

)
= −

T∫
0

(
yuδ − yδ, yuδ − yδ

)
dt ≤ 0. (5.59)
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Then, using (5.57)-(5.59), we derive the final result (5.12).

Lemma 5.13. For every l (1 ≤ l ≤ d), Then, the error between dG solution (yδ, λδ) in
(4.12) and the auxiliary solution (yl,uδ , λ

l,u
δ ) in (5.47) satisfies

‖yδ − yl,uδ ‖L∞(0,T ;L2(Ω)) + ‖λδ − λl,uδ ‖L∞(0,T ;L2(Ω)) ≤ C

√√√√ d∑
j=l+1

λj|||ψj|||2DG

 .

(5.60)

Proof. We consider the following local error equation of the state:

(en, vn) +

∫
Im

(−(e, ∂tv) + ah(e, v)) dt− (en−1, vn−1
+ ) = 0, ∀v ∈ V k,q

h,l . (5.61)

Step I Now, we decompose the error as e = yδ−yl,uδ = (yδ−πlyδ) + (πlyδ−yl,uδ ) =
η+θ. The aim is to find an upper bound for θ, since estimates associated to η are given
in (5.46). We choose v = θ ∈ V k,q

h,l in (5.61). Then, we use the estimates (4.26) for
diffusion term and ()5.29) for convection and reaction terms. Then, we apply Young’s
inequality to obtain

1

2
‖θn‖2 +

1

2
‖θn−1 − θn−1

+ ‖2 − 1

2
‖θn−1‖2 +

∫
Im

ε

2
|||θ|||2DG dt

+

∫
Im

(
r‖θ‖2 +

1

2

∑
K∈Th

(
‖θ‖2

∂K−∩Γ− + ‖[[θ]]‖2
∂K−\Γ− + ‖θ‖2

∂K+∩Γ+

))
dt

≤
∣∣∣∣−∫

Im

ah(η, θ) dt

∣∣∣∣+ ‖ηn−1
− ‖2 +

1

4
‖θn−1 − θn−1

+ ‖2

≤
∫
Im

(CAε|||η|||DG|||θ|||DG + r‖η‖‖θ‖) dt

+

∫
Im

1

4

∑
K∈Th

(
‖θ‖2

∂K+∩∂Ω+ + ‖[[θ]]‖2
∂K−\∂Ω−

)
dt

+

∫
Im

(
Cβ‖η‖2 + Cβ

√
‖S l‖2‖η‖‖θ‖

)
dt+ ‖ηn−1‖2 +

1

4
‖θn−1 − θn−1

+ ‖2. (5.62)

We put θ terms onto the right-hand side after applying Youngs inequality and sum the
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resulting inequality from n = 1 to n = s. Then, use the estimates (5.46) to obtain

1

2
‖θs‖2 − 1

2
‖θ0‖2 +

1

4

s∑
n=1

‖θn−1 − θn−1
+ ‖2 +

∫ ts

0

(r
2
‖θ‖2 +

ε

4
|||θ|||2DG

)
dt

+
1

4

∫ ts

0

(∑
K∈Th

(
2‖θ‖2

∂K−∩∂Ω− + ‖[[θ]]‖2
∂K−\∂Ω− + ‖θ‖2

∂K+∩∂Ω+

))
dt

≤ C3
Aε

d∑
j=l+1

λj|||ψj|||2DG +

(
Cβ +

C2
β ‖S l‖2

r

)
CAh

2

d∑
j=l+1

λj|||ψj|||2DG

+ CAh

d∑
j=l+1

λj|||ψj|||2DG. (5.63)

Step II We choose v = θ̃ ∈ V k,q
h,l in (5.61). We use the properties of discrete charac-

teristic function defined in Sec. 4.3.2 which leads to

‖θ(s)‖ = sup
s∈In
‖θ(s)‖ and − sup

s∈In−1

‖θ(s)‖ ≤ −‖θn−1‖.

Then, we sum the resulting inequality from n = 1 to n = s and use the estimates
(5.46) to obtain

1

2
sup
s∈Ir
‖θ(s)‖2 − 1

2
‖θ0‖2 +

1

2

s∑
n=1

‖θn−1 − θn−1
+ ‖2

≤
∫ ts

0

3

2
CACDε|||θ|||2DG dt+

∫ ts

0

CD

(
Cβ +

3r + 3CDCβ
√
‖S l‖2

2

)
‖θ‖2 dt

+

∫ ts

0

CD
2

∑
K∈Th

(
‖θ‖2

∂K+∩∂Ω+ + ‖[[θ]]‖2
∂K−\∂Ω−

)
dt

+

∫ ts

0

CACDε

2
|||η|||2DG dt+

∫ ts

0

(
Cβ +

CD(r + Cβ
√
‖S l‖2)

2

)
‖η‖2 dt

+
s∑

n=1

‖ηn−1‖2 +
1

2

s∑
n=1

‖θn−1 − θn−1
+ ‖2. (5.64)

Then, by bounding ‖θ‖ terms on the right-hand side of (5.64) using (5.63), we find the
following estimate for state:

‖θ‖2
L∞(0,T ;L2(Ω)) ≤ C

√√√√ d∑
j=l+1

λj|||ψj|||2DG

 . (5.65)

We continue with the adjoint equation and write the local error equation as follows

−(rn+, v
n) +

∫
Im

((r, ∂tv) + ah(v, r)) dt+ (rn−1
+ , vn−1

+ ) = −(ξ, v), ∀v ∈ V k,q
h,l .
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We write the error as

r = (λδ − πlλδ) + (πlλδ − λl,uδ ) = ψ + µ

with the projection πl defined above. We proceed as we do for the state equation to
obtain

‖µ‖2
L∞(0,T ;L2(Ω)) ≤ C‖ξ‖2

L∞(0,T ;L2(Ω)). (5.66)

Then, an upper bound for the adjoint follows from (5.65). The final result (5.60) is
obtained by combining (5.65) and (5.66).

We estimate the error between dG and POD solution of the OCP by combining Lem-
mas 5.11-5.13.

Theorem 5.14. Suppose that (yδ, λδ, uδ) and (ylδ, λ
l
δ, u

l
δ) are the solutions of (2.6) and

(5.24), respectively. We assume that all conditions of Lemmas 5.11-5.13 are satisfied.
Then, there exists a constant C independent of h, k and l such that

‖yδ − ylδ‖L∞(0,T ;L2(Ω)) + ‖λδ − λlδ‖L∞(0,T ;L2(Ω)) + ‖uδ − ulδ‖L2(0,T ;L2(Ω))

≤ C

√√√√ d∑
j=l+1

λj|||ψj|||2DG

 . (5.67)

We estimate the error between the exact and the POD solution of the OCP by combin-
ing Theorems 4.8-5.14.

Theorem 5.15. Suppose that (y, λ, u) and (ylδ, λ
l
δ, u

l
δ) are the solutions of (2.6) and

(5.24), respectively. We assume that all conditions of Theorems 5.14-4.8 are satisfied.
Then, there exists a constant C independent of h, k and l such that

‖y − ylδ‖L∞(0,T ;L2(Ω)) + ‖λ− λlδ‖L∞(0,T ;L2(Ω)) + ‖u− ulδ‖L2(0,T ;L2(Ω))

≤ C

kq+1 + hp +

√√√√ d∑
j=l+1

λj|||ψj|||2DG

 . (5.68)

The estimate (5.68) reveals that the error between the exact and the numerical results
is of order q in time, of order p in space and of order one with respect to the POD

truncation error

√
d∑

j=l+1

λj|||ψj|||2DG.

5.3.3 Numerical Results

In this section, we present some numerical results to investigate the experimental order
of convergence associated to the reduced-order model. Full-order problem is solved
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using piecewise linear discontinuous finite elements on a uniform mesh with h = k =
1/80 leading to linear systems of size 38400. Three different snapshot sets for W are
used to generate the POD basis functions, namely the state Y , the adjoint P and the
combination of them Y ∪P , as in [72]. POD basis is computed using the singular value
decomposition (SVD), because it is more stable than the eigenvalue decomposition, i.e.
the singular values decay to machine precision, whereas the eigenvalues stagnate above
[118]. We measure the error in the state, in the adjoint and control approximation in
terms of L∞(0, 1;L2(Ω)) and L2(0, 1;L2(Ω)) norm, respectively.

We consider the optimal control problem with

Q = (0, 1]× Ω, Ω = (0, 1)2,

ε = 10−2, β = (y − 1/2,−x+ 1/2)T , r = 1, α = 1.

We take the source function f , the desired state yd and the initial condition y0 as

f(x, t) = yd(x, t) = 1, y0(x, t) = 0.

The exact solution of this problem is not known and the convection field is not a con-
stant vector. In Figures 6.2-6.1, we plot the convection field of the state and the adjoint
equation for p = 0.1, 0.5, 0.9.
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Figure 5.1: Convection field of the state and the adjoint, respectively

In Figure 5.2, we present the numerical solutions of the state at the time instances
t = 0.2, 0.6, 1 from left to right. In Figure 5.3, numerical solution of the adjoint are
given at the time instances t = 0.8, 0.4, 0 from left to right. Due to the convection field
β, state rotates clockwise as t −→ T = 1, while adjoint follows the counter-clockwise
direction as t −→ t0 = 0.

In Figure 5.4, we present the decay of the eigenvalues for three different snapshot sets.
We observe that the eigenvalues decrease rapidly showing that POD can be success-
fully applied.

In Figure 5.5, we plot the error in the state, the adjoint and the control with respect to
the number of POD basis functions. Firstly, we comment on the state solution. Snap-
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Figure 5.2: DCR Eqn: Numerical solution of the state at t = 0.2, 0.6, 1, respectively

Figure 5.3: DCR Eqn: Numerical solution of the adjoint at t = 0.8, 0.4, 0, respectively
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Figure 5.4: DCR Eqn: Eigenvalues for snapshot ensemble Y , P and Y ∪ P
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shot set P fails to predict the state, because adjoint and state have different character-
istics as shown in Figures 5.2-5.3. For small values of POD basis functions, snapshot
set Y gives the best results. However, as we increase the number of basis functions,
the results obtained through the snapshot set Y and Y ∪ P become almost the same.
Although the snapshot set Y ∪P contains information about the adjoint, the best results
are achieved through this basis. It is because the control, which acts on the right-hand
side of the state equation as a forcing term, is approximated well using this snapshot
set.

We proceed with the solutions of the adjoint and the control. Their results are almost
the same because of the Tikhonov regularization parameter α = 1 and the optimality
condition (2.6c), as expected. Snapshot set Y cannot predict the adjoint and the control
well, because their numerical solutions are totally different from each other. Although
snapshot set P reveals the properties of the adjoint and the control up to four POD basis
functions, snapshot set Y ∪ P leads to the best results as we increase the number of
POD basis functions. Since the state equation is solved accurately using the snapshot
set Y ∪ P , this accuracy reflected not only to the adjoint but also to the control.

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

State

Number of POD basis functions

L∞
(0

,T
;L

2 (Ω
))

 e
rr

or

 

 

Y
P
Y+P

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

Adjoint

Number of POD basis functions

L∞
(0

,T
;L

2 (Ω
))

 e
rr

or

 

 

Y
P
Y+P

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

Control 

Number of POD basis functions

L2 (0
,T

;L
2 (Ω

))
 e

rr
or

 

 

Y
P
Y+P

Figure 5.5: DCR Eqn: Error versus number of POD basis functions for state (top-left),
adjoint (top-right) and control (bottom)

We continue to discuss the rate of convergence associated to the reduced-order model.
We make a comparison between the numerical results and the theoretical convergence
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rate with respect to Λε =

√
d∑

j=l+1

λj|||ψj|||2DG given in Theorem 5.14.

In Figure 5.6, we present the error in the state, the adjoint and the control with respect
to the POD truncation error Λε. For the state and the adjoint ensembles, the errors
associated to 1, the first 2, 3 and 4 POD basis functions are plotted using the linear
regression. For the set Y ∪P , the first 2, 4, 6, and 7 POD basis functions are chosen in
order to equate Λε in the x-axis as much as possible. This difference in the adjoint and
in the control is because of the use of different norms, namely L∞(0, 1;L2(Ω))-norm
for the adjoint and L2(0, 1;L2(Ω))-norm for the control.

The highest convergence rate for the state is achieved through the snapshot set Y ,
namely around 0.63, which is also the case in the Figure 5.5. Snapshot ensemble
Y ∪ P leads to the order 0.58. Dynamics of the state solution cannot be predicted
using the adjoint information at all. The best rate associated to the snapshot set Y is
less than the theoretical estimate, which means that the temporal and spatial terms in
the estimate (5.67) are more dominant than Λε and the error decays slower than the
predicted rate.

For the adjoint, theoretical convergence rate is achieved using the snapshot set Y ∪ P .
For the control, the best order, namely 0.89, is obtained using the same snapshot set,
too. This results are compatible with the Figures 5.5. We note that the snapshot set Y
leads to poor results, because the error decays very slowly.
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Figure 5.6: DCR Eqn: Order convergence for state (top-left), adjoint (top-right) and
control (bottom) h = k = 1/80
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5.4 Discrete Empirical Interpolation Method

In this section, we discuss the reduced-order model for optimal control of Burgers
equation. Then, discrete empirical interpolation method (DEIM), which is used to
increase the efficiency of POD when applied to nonlinear problems, will be explained
[27].

We proceed by projecting the systems given in Sec.4.6 onto the low-dimensional space
for Burgers equation. We note that the initial conditions for state equation on each time
interval Im must be projected on to the low-dimensional space as follows:

Y l,0
m = ΨT (yδ)

−
m−1 if m ≥ 2 or (yδ)

l,−
m−1 = ΨTy−0 if m = 0.

Then, for dG(1)-method, the reduced-order system associated to state equation, which
is the linearised using Newton’s method, is written as

(
3
4

Ml + km
2

(Al + kNly(Y
1,α
m )) 1

4
Ml

− 9
4

Ml 5
4

Ml + km
2

(Al + kNly(Y
2,α
m ))

)(
δY l,1m
δY l,2m

)

=

 (
3
4

Ml + k
2

Al
)
Y l,1m + k

2
Nl((Y 1

m)2) + 1
4

MlY l,2m − MlY l,0m − k
2

Flh(tm,1)−
k
4

Ml(Ul,0m + Ul,1m )

− 9
4

MlY l,1m +
(

5
4

Ml + k
2

Al
)
Y l,2m + k

2
Nl((Y 2

m)2) + MlY l,0m − k
2

Flh(tm,2)−
k
4

Ml(3Ul,1m − Ul,0m ).

 . (5.69)

This system is solved up to a given tolerance for δY l,1
m , δY l,2

m on each time interval
Im = (tm−1, tm]. Then, the solution is updated as

Y l,1,α+1
m = Y l,1,α

m − δY l,1
m

and
Y l,2,α+1
m = Y l,2,α

m − δY l,2
m .

Then, we denote Y l,1
m := Y l,1,α+1

m and Y l,2
m := Y l,2,α+1

m .

To derive the reduced-order system associated to adjoint equation, the initial condi-
tions for the adjoint equation on each time interval Im must be projected onto the
low-dimensional space as:

λl,2m = ΨT (λδ)
+
m if m ≤ NT or λl,2m = 0 if m = NT .

On each time interval Im = (tm−1, tm], we solve the following linear system for
λl,1m , λ

l,0
m(
3
4
Ml + km

2
(Al − Nλ,l(Y

1
m+Y 2

m

2
)) 1

4
Ml

−9
4
Ml 5

4
Ml + km

2
(Al − Nλ,l(3Y

1
m−Y 2

m

2
))

)(
λl,1m
λl,0m

)
=

(
Mlλ2

m + km
2

Yl,d
h (tm,1)− km

4
Ml(Y l,1

m + Y l,2
m )

−Mlλ2
m + km

2
Yl,d
h (tm,0)− km

4
Ml(3Y l,1

m − Y l,2
m )

)
. (5.70)

Similar to the cGP(q+1) method, the discrete adjoint at tm−1 is given as λl,m−1 = λl,0m .
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Dimension of the reduced-order model obtained from the POD method is several times
smaller than the full-order problem. However, for nonlinear problems, computational
complexity of the terms such asN l andN l

y in (5.69) still depend on the degrees of free-
dom. To overcome this drawback of POD and increase the efficiency of this method,
DEIM proposed in [27] can be used.

The idea behind this method is to project the nonlinear term (5.71)

Nl = ΨTN, Nl
y = ΨTNyΨ, (5.71)

onto a subspace of dimension lD ≈ l << dof that approximates the space generated
by the nonlinear function. For nonlinear structural analysis, unassembled DEIM is
proposed in order to decreases the number of function calls to calculate the contribu-
tion of each finite element associated to the DEIM points in [121]. Now, we explain
the method briefly and discuss the details arising due to the discontinuous Galerkin
discretization following [27].

Remark 5.3. Since we use the mass matrix M as a weighting matrix in the computation
of the POD basis (see, Defn 5.19), we follow the same idea in order to compute a new
basis for the nonlinear term N before applying the DEIM. Therefore, we proceed the
following vector and the matrices:

N̂
l
= ΨTMN, N̂

l

y = ΨTMNyΨ.

Firstly, let us consider the nonlinear term and its Jacobian in the reduced-order system

N̂
l
= ΨTM︸ ︷︷ ︸

l×dof
N̂
l
(Ψyl,m)︸ ︷︷ ︸
dof×1

, N̂
l

y = ΨTM︸ ︷︷ ︸
l×dof

∂N(Ψyl,m)

∂y︸ ︷︷ ︸
dof×dof

Ψ︸︷︷︸
dof×l

. (5.72)

For ease of notation, we denote the nonlinear term by fN . The aim is to find an ap-
proximation to fN by projecting it onto a subspace spanned by {ψD1 , . . . , ψDlD} ⊂ Rdof
as follows

fN ≈ ΨDc,

where {ΨD
1 , . . . ,Ψ

D
lD
} ∈ Rdof is the space of the first lD POD basis functions of

the space spanned by the nonlinear snapshots {N(yδ,1), . . . ,N(yδ,N)} associated to the
largest singular values and c is the corresponding coefficient vector. To find c, we
choose lD distinct rows from the overdetermined system fN ≈ ΨDc. Let us define a
matrix P = [e℘1 , . . . , e℘lD ] ∈ Rdof×lD , where e℘i = [0, · · · , 0, 1, 0, · · · , 1]T ∈ Rdof

is the ℘ith column of the identity matrix Idof. If P TΨD is singular, then c can be
determined uniquely through the relation

P TfN = (P TΨD)c =⇒ fN ≈ ΨDc = ΨD(P TΨD)−1P TfN . (5.73)

DEIM algorithm can be found in Algorithm 5.2.
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Algorithm 5.2 Discrete Empirical Interpolation Method
1: procedure DEIM(lD,ΨD)
2: [|ρ|, ℘1] = max{|ΨD

1 |}
3: ΨD = [ΨD

1 ], P = [e℘1 ], ~℘ = [℘1]
4: for i = 2 to lD do
5: Solve (P TΨD)c = P TΨD

i for c
6: r = ΨD

i −ΨD
i c

7: [|ρ|, ℘i] = max{|r|}

8: ΨD ← [ΨD,ΨD
i ], P ← [P, e℘l ], ~℘←

[
~℘
℘1

]
9: end for

10: return ~℘ = [℘1, . . . , ℘lD ]T ∈ RlD

11: end procedure

DEIM approximates the projected terms (5.72) as

N̂
l ≈ ΨTMΨD(P TΨD)−1︸ ︷︷ ︸

:=Z

P TN(Ψyl,m) = Z︸︷︷︸
l×lD

P TN(Ψyl,m)︸ ︷︷ ︸
lD evaluations

, (5.74a)

N̂
l

y(yl,m) ≈ Z︸︷︷︸
l×lD

∂P TN(Ψyl,m)

∂y︸ ︷︷ ︸
lD×dof, sparse

Ψ︸︷︷︸
dof×l

. (5.74b)

However, the computation of the terms like Ψyl,m still depends on the degrees of
freedom. Therefore, only the necessary terms of yl,m in the matrix multiplication
P TN(Ψyl,m) are selected so that the dependency of the reduced-order model on dof
is eliminated. A similar argument can also be found in [70, Sec. 3].
Remark 5.4. In discontinuous Galerkin framework, DEIM indices are connected with
the right y(x+

n ) or left approximations y(x−n ) instead of the value of the functions y(xn)
at a node x = xn as in the continuous finite element method. In particular for linear
finite element approximation, let the matrix of the indices and the nonlinear term be
given as P = [e3, e1, e15, e16, edof/2] ∈ Rdof×5 and

fN = [f+
1 , f

−
2 , f

+
2 , · · · , f−dof/2, f

+

dof/2, f
−
dof/2+1

]T

, for an approximation of dof/2 subintervals. Then, P TfN = [f+
2 , f

+
1 , f

+
8 , f

−
9 , f

−
dof/2]T .

Therefore, the values of yl,m on the 2nd, 1st, 8th and (dof/2 − 1)th elements are re-
quired, instead of dof/2 elements which is the case without using DEIM.

5.5 A Priori Error Estimates for Optimal Control of Burgers Equation

In this section, we derive a priori error estimates for reduced-order solution of Burgers
equation based on space-time DG and POD method.
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5.5.1 Auxiliary Results

We make the following assumptions using the study [53, Sec.4.2]:

|nsh(yδ, v)− nsh(ylδ, v)| ≤ ε

8
|||v|||2DG + C

(
‖ylδ − πlyδ‖2 +

d∑
j=l+1

λj|||ψj|||2DG

)
.

(5.75)

Therefore, we obtain the following estimate

|nah(λδ, yδ,
1

α
φ)− nah(λlδ, ylδ,

1

α
φ)|

≤ ε

4α
|||λlδ − πlλδ|||2DG + C(‖yδ − πlyδ‖2 + (1 +

2

ε
)‖φ‖2) (5.76)

≤ ε

4α
|||λlδ − πlλδ|||2DG + C

(
(1 +

2

ε
)‖φ‖2 + h2

d∑
j=l+1

λj|||ψj|||2DG

)
.

5.5.2 Main Result

Theorem 5.16. Let (yδ, λδ) and ylδ, λ
l
δ be the solutions of (4.12) and the associated

reduced-order solution, respectively. Then, there is a constant C independent of h, k
and l such that the following inequalities hold:

‖yδ − ylδ‖L∞(0,T ;L2(Ω)) + ‖λδ − λlδ‖L∞(0,T ;L2(Ω)) + ‖uδ − ulδ‖L∞(0,T ;L2(Ω))

≤ C

√√√√ d∑
j=l+1

λj|||ψj|||2DG

 . (5.77)

Proof. Firstly, we write the error in the state and the adjoint as

e = yδ − ylδ = (πlyδ − ylδ) + (yδ − πlyδ) = ξ + η,

r = λδ − λlδ = (πlλδ − λlδ) + (λ− πlλδ) = ϕ+ φ,

where πl denotes the interpolation operator which is explained in Sec.5.3.1.

The local error equation for the state equation can be written as follows:∫
Im

((∂tξ, v) + ash(ξ, v)) dt+ ([ξ]m−1, v
m−1
+ ) (5.78)

= −
(∫

Im

(∂tη, v) dt+ ([η]m−1, v
m−1
+ )

)
−
∫
Im

ash(η, v) dt

+

(∫
In

nsh(yδ, v)dt−
∫
In

nsh(y
l
δ, v) dt

)
− 1

α

∫
Im

(λδ − λlδ, v) dt, ∀v ∈ V k,q
h,l .

93



Step I We choose v = 2ξ in (5.78). Then, we use coercivity of DG-bilinear form
(4.27), the equality (4.32) and (4.47). We proceed with the estimates (5.75) and sim-
plify the common terms. Then, we sum from m = 1 to n to derive the following
inequality

‖ξm− ‖2 +
ε

2

n∑
m=1

∫
Im

|||ξ|||2DG dt (5.79)

≤ C

(
‖ξl,−0 ‖2 +

n∑
m=1

C

ε
km‖ξm−1

− ‖2 − 2

α

n∑
m=1

∫
Im

(λδ − λlδ, ξ) dt

)

+O(
d∑

j=l+1

λj|||ψj|||2DG).

By applying the discrete Gronwall’s lemma, we obtain the desired result (5.80a).

We proceed with the local error equation for the reduced-order adjoint equation. We
proceed similarly and use the properties of the interpolation operator in Sec.5.46, we
obtain the following result:

‖en‖2 +
ε

2

∫ tn

0

|||ξ|||2DG dt (5.80a)

≤ C

(
‖el,−0 ‖2 − 2

α

n∑
m=1

∫
Im

(λδ − λlδ, ξ) dt

)
+O(

d∑
j=l+1

λj|||ψj|||2DG),

‖rn‖2 +
ε

2

∫ tn

0

|||ϕ|||2DG dt (5.80b)

≤ C

(
2

α

n∑
m=1

∫
Im

(yδ − ylδ, ϕ) dt

)
+O(

d∑
j=l+1

λj|||ψj|||2DG).

Step II Now, we proceed with the estimates at arbitrary time steps using the previous
estimate and the discrete characteristic function (4.3.2). The proof is similar to the case
in Lemma 5.16. To do this, for any fixed t ∈ [tn−1, tn), we set vδ = ẽh in (5.78).

sup
t∈Im
‖ξ(t)|2 − ‖ξm−1

− ‖2 (5.81)

≤ ε

2

∫
Im

|||ξ̃|||2DG dt+
C

ε

∫
Im

‖ylδ − πlyδ‖2 dt− 2

α

∫
Im

(λδ − λlδ, ξ̃) dt

+O(
d∑

j=l+1

λj|||ψj|||2DG).
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For the adjoint equation, for any fixed t ∈ (tN−1, tN ], we set vδ = 1
α
r̃h in the local

error equation of the adjoint and proceed similarly.

sup
t∈Im
‖ϕ(t)|2 − ‖ϕm‖2 (5.82)

≤ ε

2

∫
Im

|||ϕ̃|||2DG dt+
C

ε

∫
Im

‖yδ − πlyδ‖2 dt+
2

α

∫
Im

(yδ − ylδ, ξ̃) dt

+O(
d∑

j=l+1

λj|||ψj|||2DG).

In order to eliminate the terms λδ − λlδ and y − ylδ in the estimates 5.81 and 5.82, we
adapt the approach in [29] and write the coupling terms as follows:

− 1

α

∫
Im

(r, ξ̃) dt+
1

α

∫
Imn

(e, ϕ̃) dt (5.83)

≤ O(h2

d∑
j=l+1

λj|||ψj|||2DG) + CD

∫
Im

( ε
8
|||ξ|||2DG +

ε

8α
|||ϕ|||2DG

)
dt.

We add the resulting inequalities for the state and the adjoint equation and sum from
m = 1 to n. Then, we apply discrete Gronwall’s inequality to arrive at the estimate
(5.77).

Using the triangle inequality and the estimate in Lemma 4.11-Theorem5.16, we state
the main estimate for the error between the exact and the reduced-order solution:

Theorem 5.17. Suppose that (y, λ, u) and (yδ, λδ, uδ) are the solutions of (2.8) and
(4.12), respectively. We assume that all conditions of Lemmas 5.16 and 4.11 are satis-
fied. Then, there exists a constant C independent of h and k such that

‖y − ylδ‖L∞(0,T ;L2(Ω)) + ‖λ− λlδ‖L∞(0,T ;L2(Ω)) + ‖u− ulδ‖L∞(0,T ;L2(Ω))

≤ C

hp+1‖yl0‖+O(hp, kq+1,

√√√√ d∑
j=l+1

λj|||ψj|||2DG)

 . (5.84)

5.5.3 Numerical Results

In this section, we present some numerical results to investigate the experimental order
of convergence associated to the reduced-order model. Full-order problem is solved
using piecewise linear discontinuous finite elements on a uniform mesh with h = k =
1/200 leading to linear systems of size 400. Three different snapshot sets for W are
used to generate the POD basis functions, namely the state Y , the adjoint P and the
combination of them Y ∪P , as in [72]. POD basis is computed using the singular value
decomposition (SVD), because it is more stable than the eigenvalue decomposition, i.e.
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the singular values decay to machine precision, whereas the eigenvalues stagnate above
[118]. We measure the error in the state, in the adjoint and control approximation in
terms of L∞(0, 1;L2(Ω))-norm.

We consider the optimal control problem in [82], which has been discussed in Sec. 4.6.1,
with

Q = (0, 1]× Ω, Ω = (0, 1), ε = 10−2, and α = 0.05.

We take the source function f = 0, the desired state yd and the initial condition y0 are
defined as

yd(x, t) =

{
1 in (0, 1/2],

0 otherwise .

In Figure 5.7, we present the decay of the eigenvalues for three different snapshot sets.
We observe that the eigenvalues decrease rapidly showing that POD can be success-
fully applied.
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Figure 5.7: Burgers Eqn: Eigenvalues for snapshot ensemble Y , P and Y ∪ P

In Figure 5.8, we present the error in the state, the adjoint and the control with respect
to the number of POD basis functions.

First of all, the error in the state is decreasing for three different snapshot ensemble
as we increase the number of POD basis functions. The use of adjoint information
leads to poor results of the state solution. For small number of POD basis functions,
the snapshot sets Y and Y ∪ P result in almost the same results. As we increase the
number of POD basis functions, more accurate results are obtained using the snapshot
set Y ∪ P and the error is decreased up to 10−4 with 15 POD basis functions.

The error in the adjoint equation is decreased up to 10−2 using the basis computed with
the snapshot ensemble Y . On the other hand, the snapshot set P gives the best results
until 10 POD basis functions are used. Then, the error stops around 10−3. For the
snapshot set Y ∪ P , the smallest error is achieved.
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We observe that the graphs of the control and the adjoint have the same pattern due
to the optimality condition (2.8c). Since the regularization parameter is fixed as α =
0.05, the error in the adjoint is α-times smaller than the error in the control.
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Figure 5.8: Burgers Eqn: Error versus number of POD basis functions for state (top-
left), adjoint (top-right) and control (bottom)

In Figure 5.9, we plot the error in the state, the adjoint and the control with respect to
the POD truncation error. For the state ensemble Y , the first 7, 9, 10 and 11 POD basis
functions are used; while for the adjoint ensemble P , the first 2, 4, 6 and 7 POD basis
functions are decided. For the snapshot set Y ∪P , the first 8, 11, 13 and 14 POD basis
are chosen for the state solution; the first 9, 10, 13 and 14 POD basis functions are
taken for the adjoint solution in order to equate the POD truncation error in the x-axis.
Since the error in the state obtained using the snapshot ensemble Y and P are parallel
in Figure 5.8, the rate of convergence associated to this sets are the same, namely 0.18.
Using the snapshot ensemble Y ∪ P approximates the state well and the theoretically
estimated convergence rate in Thm 5.16 is achieved.

For the state and the control, the state snapshot Y is unsuccessful to predict both of the
adjoint and the control. Using the snapshot set P , the order of convergence is increased
up to 0.36. On the other hand, the snapshot set Y ∪ P gives the best results and the
theoretical convergence rate is reached for the adjoint and the control.
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CHAPTER 6

LOCAL IMPROVEMENTS TO REDUCED-ORDER SOLUTION

POD basis is computed using the snapshots of a particular problem which is interpreted
by a mathematical model and data. Because there is a link between the data and the
snapshots, some perturbation in the data may lead to larger changes in the snapshots
depending on the problem at hand. This leads the nominal/baseline POD basis, which
depends on the nominal/baseline parameters, not to approximate the perturbed problem
accurately. In such cases, one has to solve the full problem for each parameter in the
data set again and regenerate the POD basis. This approach is expensive especially for
nonlinear problems or optimal control problems which requires the solution of a set of
differential equations.

In the literature, some alternatives are derived for a single PDE. For example, subspace
angle interpolation method motivated from [20] is applied to linearised Euler equations
in [128]. For a robust method, the interpolation method based on Grassman manifold
and its tangent space at a point is employed in [7, 8].

Another choice is to use the sensitivities of the trajectories which require the solution
of the sensitivity equations. They can be obtained by applying continuous sensitivity
equation (CSE) method or finite difference (FD) approximation. Because sensitivity
equations are always linear, the former method is especially preferable for nonlinear
problems. The latter one requires the computation of the full problem at least one
more time, so it is expensive for nonlinear case. This approach, for example, is used in
[64] where the sensitivity of Navier-Stokes equation with respect to Reynolds number
is computed. Sensitivity of the solution is used to compute the POD basis sensitiv-
ities and then the nominal basis is extrapolated or expanded. In [62], the sensitivity
with respect to the angle of inclination of the incoming free-stream flow is utilized. In
[63], Burgers equation is solved on a domain whose shape depends on the parameter α
and the sensitivity with respect to α is derived and used to enrich the low-dimensional
space. The sensitivity of the shallow water equations [143] based on Manning rough-
ness coefficient is consider and utilized using POD. However, to the best of our knowl-
edge, our work [4] is the first study combining the POD sensitivities and the PDE-
constrained optimization. For a comparison of other typers of reduced-order bases, we
refer the reader to the study [2].

In this study, motivated by the papers [62, 63, 64], POD sensitivities are used to en-
rich the low-dimensional subspace for a wider range of parameters and the quantity
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of interest is the diffusion term ε, the convective field β and the reaction term r for
DCR eqaution. For Burgers equation, sensitivity with respect to the diffusion term ε is
computed. We generate two new bases, i.e. extrapolated POD (ExtPOD) and expanded
POD (ExpPOD) and compare these bases in terms of advantages and discuss the main
drawbacks of them.

In this chapter, we explain how to compute the POD sensitivities in Sec. 6.1 and derive
two new bases. Then, we derive sensitivity equations of DCR equation in Sec. 6.2.
We present the numerical results in Sec. 6.2.4. Then, we proceed with the sensitivity
equations associated to Burgers equation in Sec. 6.3 and present the numerical results
in Sec. 6.3.1 and compare two new bases and three different snapshot ensembles.

6.1 Proper Orthogonal Decomposition Sensitivities

Sensitivity of a term is defined as the derivative of that term with respect to a quantity of
interest µ. We assume that the state, the adjoint and the control are functions depending
on space, time and the quantity of interest µ,

y = y(x, t, µ), λ = λ(x, t, µ), u = u(x, t, µ).

We define the sensitivities as

sy =
∂y

∂µ
, sλ =

∂λ

∂µ
, su =

∂u

∂µ
.

After finding the sensitivities of the state sy and the adjoint sλ, POD sensitivities are
obtained. To do so, we treat each POD mode as a function of both space and the
parameter, i.e. ψ = ψ(x, µ). Then, we differentiate the relation (5.20) with respect
to µ and solve the resulting equation for Ψµ. We proceed with the relation (5.12) to
derive the POD basis sensitivities ψµ

(ψj)µ =
m∑
i=1

(Ψij)µϕi(x), j = 1, . . . , l.

We summarize the computation of POD basis sensitivities following [64, Sec. 3.2].
Computation of U l

µ, which appears after differentiating (5.20) with respect to µ, is
realised through the relation

U l
µ = (W̃V lΣ†)µ = W̃µV

lΣ† + W̃V l
µΣ† + W̃V lΣ†µ.

The term W̃µ denotes the sensitivity of the snapshot matrix which is obtained by
CSE or FD approximation. Computational details regarding the sensitivities will be
explained in the next section. For the computation of V l

µ and Σ†µ, we consider the
eigenvalue problem BV l = V lλl with the lth column of V . Assume that B, V and
Λ = diag(λ1, . . . , λk) are smooth with respect to µ. After differentiation, we arrive at

BµV
k +BV k

µ = λkµV
k + λkV k

µ → (B − λkI)V k
µ = −(Bµ − λkµI)V k. (6.1)
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V k
µ is the solution of (6.1) only if (Bµ − λkµI)V k ∈ Range(B − λkI). Equivalently,

(V l)T (Bµ − λlµI)V l = 0. (6.2)

The orthonormal matrix V l has already been computed via SVD. Then, the eigenvalue
sensitivities are given by

λlµ = (V l)TBµV
l.

Each term of Σ†µ is computed due to the relation between the singular values σµ and
the eigenvalues λµ, i.e. σ2

µ = λµ.

The equation (6.2) is solved in the least-squares sense and we denote one particular
solution by sl. The general solution to (6.2) is expressed as sl + γV l for γ ∈ R with
a simple λl. In addition, we differentiate the normalization condition V l(V l)T = 1
leading to V l

µ(V l)T = 0. Then, the sensitivity of V l and γ are determined by

V l
µ = sl − ((sl)TV l)V l, γ = −(sl)TV l.

In ExtPOD, POD basis depending on µ is written using the first-order Taylor expansion
as follows

ψ(x, µ) = ψ(x, µ0) + ∆µ
∂ψ

∂µ
(x, µ0) +O((∆µ)2).

The reduced-order solution is expressed as

wδ,i =
l∑

j=1

wj
δ,i(ψj(x, µ0) + ∆µ(ψ(x, µ0)µ)).

In ExpPOD, POD basis sensitivities are also added to the original POD basis as follows

[ψ1, . . . , ψl, (ψ1)µ, . . . , (ψl)µ]

and the reduced-order solution is written as

wδ,i =
l∑

j=1

wj
δ,iψj(x, µ0) +

2l∑
j=l+1

wj
δ,i(ψj−l(x, µ0))µ,

where the dimension of the reduced basis is doubled.

In Alg. 6.1, we summarize the derivation of the reduced-order solution of the OCP
using POD sensitivities step by step.
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Algorithm 6.1 Reduced-order approximation for the OCP associated to the perturbed
parameter µ = µ0 ±∆µ using POD basis sensitivities

1: if Snapshots of the state and the adjoint associated to the nominal/reference pa-
rameter µ = µ0 are not given then

2: Solve the full-order problem and keep the solutions of the state and the adjoint
equation .

3: end if
4: Construct the snapshot matrix W (using the state W := Y ; the adjoint W := P or

a combination of them W := Y ∪ P .)
5: Compute the POD basis ψ(x, µ) associated to the nominal parameter µ = µ0 using

the snapshot matrix W and denote it by BPOD.
6: if The state equation is nonlinear. then
7: Compute a new basis for the nonlinear term using DEIM.
8: end if
9: Compute the sensitivity of the snapshot matrix Wµ (using the state Wµ := Yµ; the

adjoint Wµ := Pµ or a combination of them Wµ := Yµ ∪ Pµ).
10: Compute the POD basis sensitivities ψµ(x, µ) using the matrix Wµ.
11: Construct new POD bases, namely ExtPOD and ExpPOD.
12: Solve the reduced-order model of the OCP assicated to µ = µ0 ±∆.µ.

6.2 Sensitivity Equations for Optimal Control of Diffusion-Convection-Reaction
Equation

6.2.1 Sensitivity with respect to the diffusion term ε

In this section, the parameter is fixed as µ = ε. Sensitivity equations are obtained
by differentiating the continuous state (1.1b) and the adjoint equation associated to
(2.7a) and the optimality condition (2.6c) with respect to ε. The subscript ε denotes the
derivative with respect to ε. The corresponding optimality system with sy, sλ and su is
written as follows,

(∂tsy, v) + a(sy, v) + (∇y,∇v) = (fε + su, v), ∀v ∈ V,
sy(x, 0) = (y0)ε, (6.3a)

−(∂tsλ, ψ) + a(ψ, sλ) + (∇ψ,∇λ) = −(sy − ydε , ψ), ∀ψ ∈ V,
sλ(x, T ) = 0, (6.3b)

αsu = sλ. (6.3c)

We note that the homogeneous Dirichlet boundary conditions are imposed to (6.3) after
differentiating in the same way. The optimality system (6.3) is discretized using the
same numerical method, i.e., space-time discontinuous Galerkin discretization, as for
(2.6).
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Sensitivity equations are always linear, so CSE would be especially promising for non-
linear problems. On the other hand, FD approximation can also be used to find the
sensitivities. It requires the evaluation of the OCP depending on the perturbed param-
eters. In particular, sensitivity of the state can be computed via the centred difference
as follows:

sy(ε0) ≈ y(ε0 + ∆ε)− y(ε0 −∆ε)

2∆ε
. (6.4)

The increment ∆ε is chosen sufficiently small for an accurate FD approximation and
it is chosen sufficiently large for the difference between two nearby POD vectors to be
larger than the discretization error by one order of magnitude [64].

6.2.2 Sensitivity with respect to the convective term β

The quantity of interest is the parameter µ = p in the convection field β = [y −
0.5,−x + p]. In Figures 6.1-6.2, we plot the convection field of the state and the
adjoint equation for p = 0.1, 0.5, 0.9. Such changes lead to different convective field
and they results in the changes in the perturbed problem.
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Figure 6.1: Convection field of the state β = [y − 0.5,−x + p] with p = 0.1, 0.5, 0.9,
respectively
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Figure 6.2: Convection field of the adjoint β = [−y+0.5, x−p] with p = 0.1, 0.5, 0.9,
respectively

Sensitivity equations are obtained by differentiating the continuous state (1.1b) and the
adjoint equation associated to (2.7a) and the optimality condition (2.6c) with respect
to p. The subscript p denotes the derivative with respect to p. The corresponding
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optimality system with sy, sλ and su is written as follows,

(∂tsy, v) + a(sy, v) +

([
∂β1

∂p
,
∂β2

∂p

]
· ∇y, v

)
= (fp + su, v), ∀v ∈ V,

sy(x, 0) = (y0)p, (6.5a)

−(∂tsλ, ψ) + a(ψ, sλ)−
([

∂β1

∂p
,
∂β2

∂p

]
· ∇p, ψ

)
= −(sy − ydp , ψ), ∀ψ ∈ V,

sλ(x, T ) = 0, (6.5b)

αsu = sλ. (6.5c)

We note that the homogeneous Dirichlet boundary conditions are imposed to (6.5) after
differentiating in the same way. The optimality system (6.5) is discretized using the
same numerical method, i.e., space-time discontinuous Galerkin discretization, as for
(2.6).

6.2.3 Sensitivity with respect to the reaction term r

In this section, the parameter is fixed as µ = r. Sensitivity equations are obtained
by differentiating the continuous state (1.1b) and the adjoint equation associated to
(2.7a) and the optimality condition (2.6c) with respect to r. The subscript r denotes
the derivative with respect to r. The corresponding optimality system with sy, sλ and
su is written as follows,

(∂tsy, v) + a(sy, v) + (y, v) = (fr + su, v), ∀v ∈ V,
sy(x, 0) = (y0)r, (6.6a)

−(∂tsλ, ψ) + a(ψ, sλ) + (ψ, λ) = −(sy − ydr , ψ), ∀ψ ∈ V,
sλ(x, T ) = 0, (6.6b)

αsu = sλ. (6.6c)

We note that the homogeneous Dirichlet boundary conditions are imposed to (6.6) after
differentiating in the same way. The optimality system (6.6) is discretized using the
same numerical method, i.e. space-time discontinuous Galerkin discretization, as for
(2.6).

6.2.4 Numerical Results

In this section, we present some numerical results to investigate the performance of
different bases. The full-order problem is solved using piecewise linear discontinuous
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finite elements on a uniform mesh with h = k = 1/80 leading to linear systems of
size 9600. Three different snapshot sets for W are used to generate the POD basis
functions, namely the state Y , the adjoint P and the combination of them Y ∪ P , as in
[72]. Sensitivities derived from CSE method are calculated at the same time steps with
FD approximation and we use the latter in the bases generation step. Computation
times are obtained on a 2.13 GHz PC. The error between the DG and the reduced
solution is measured with respect to L2(0, T ;L2(Ω)) norm.

We consider the optimal control problem in Sec. 5.3.3 with

Q = (0, 1]× Ω, Ω = (0, 1)2,

ε = 10−2, β = (y − 1/2,−x+ 1/2)T , r = 1, α = 1.

We take the source function f , the desired state yd and the initial condition y0 as

f(x, t) = yd(x, t) = 1, y0(x, t) = 0.

The total energy E(l) in the formula (5.22) is fixed up to 100(1− γ)% by keeping the
most energetic POD modes. In this study, we present the results for 7 and 14 POD basis
functions setting γ = 10−2 for comparison purposes. We proceed with the sensitivities
with respect to the diffusion term ε, the convection term β and the reaction term r.

Case I: Sensitivity with respect to the diffusion term ε

We note that the nominal value for the diffusion term is ε = ε0 = 10−2. We generate
POD basis once using the snapshots associated to this nominal/baseline value and de-
note the corresponding results by BPOD in the figures. We choose the parameter range
as 1/ε = 80 : 5 : 120.

Sensitivities of the state and the adjoint are depicted in Figures 6.3 and 6.4, respec-
tively. For comparison purposes, we present the results obtained using CSE method
and FD approximation and the results are almost the same. Since the convection field is
fixed, the associated sensitivities rotate in the same direction. The state and the adjoint
are highly sensitive where their solutions change mostly.

In Figure 6.5, we present the decay of the eigenvalue sensitivities. They decrease
rapidly showing that POD can be successfully applied. Sensitivities are computed by
CSE method and FD approximation for comparison purposes. We observe that both
approaches give almost the same results. In addition, the eigenvalues (see, Figure 5.4)
decay following the same pattern as the sensitivities do which means that the ordering
will remain in case of parameter perturbations [64].

We present the computational time for the full-order model, CSE method and FD ap-
proximation in Table 6.1. In total, the full-problem and the sensitivity equations are
solved in 63 and 70 seconds, respectively. The sensitivities are computed using FD
approximation in 118 seconds.
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Figure 6.3: DCR Eqn - Case I: State sensitivities computed with CSE method (first
row) and FD approximation (second row) at t = 0.2, 0.6, 1, respectively

Table 6.1: DCR Eqn - Case I: Computation times in seconds for the full-order problem

Computing the FE mesh and matrices ≈ 2 s
FE element solution ≈ 15 s
Sensitivity solution using CSE method ≈ 18 s
Sensitivity solution using FD approximation ≈ 2 × 15 s

In Table 6.2, we compare the computational cost of the reduced problem in terms
of different bases and the snapshot ensemble. For each case, the reduced problem
is solved less than 11 seconds, which is faster than for the full-problem. Using the
snapshot set P , the problem is solved faster than with the snapshot set Y . It is because
a better approximation of the control is achieved and led to fast convergence in the
optimization step. On the other hand, the size of the set Y ∪ P is twice as large as Y
or P . Therefore, it takes longer to compute the POD basis and the reduced solution. In
terms of POD sensitivities, ExpPOD is slower than ExtPOD; because, its dimension is
doubled. We note that the speed of POD gains importance when we have to solve the
full-problem several times in case of parameter perturbations.

Table 6.2: DCR Eqn - Case I: Computation times in seconds for the computation of
POD basis functions

Y P Y ∪ P
BPOD ≈ 1.90 1.87 2.80
POD basis sensitivities ≈ 2.00 1.96 2.84
ExtPOD ≈ 3.90 3.83 5.64
ExpPOD ≈ 3.90 3.83 5.64
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Figure 6.4: DCR Eqn - Case I: Adjoint sensitivities computed with CSE method (first
row) and FD approximation (second row) at t = 0.2, 0.6, 1, respectively

In Table 6.3, speed-up of the reduced problem in terms of different bases is shown. We
note that the speed-up is defined as the ratio of the computational time of the full-order
model to the computational time of the reduced-order model. It is observed that the
reduced-order model is solved faster than the full-order model, as expected. There is
not a significant difference between the snapshot ensembles, whereas the dimension of
the reduced-basis doubles the computation time, namely for ExpPOD basis.

Table 6.3: DCR Eqn - Case I: Computational speedup for the reduced-order model

Y P Y ∪ P
BPOD ≈ 6.00 5.90 4.42
ExtPOD ≈ 3.28 3.38 2.41
ExpPOD ≈ 2.75 2.79 2.09

Now, we compare the reduced-order solutions obtained by 3 different snapshot sets. In
Figure 6.6, we present the error for the control with respect to the diffusion term using 7
and 14 POD basis functions. The control approximated with the POD bases generated
from the state solution is poor because the characteristics of the control are totally
different from the state solution. It is observed that the choice of the snapshot ensemble
affects the approximation depending on whether it contains information about the term
which will be approximated or not. The best result for the control is derived with
the snapshot set P and Y ∪ P with 14 POD basis functions. Inclusion of the adjoint
information in the POD basis generation step improves the performance of the method,
because the relation between the adjoint and the control is determined through the
optimality condition (4.12c). Therefore, the snapshot ensemble Y ∪ P leads to the
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Figure 6.5: DCR Eqn - Case I: Eigenvalue sensitivities for snapshot ensemble Y , P
and Y ∪ P

smallest error. We observe that the baseline and ExtPOD obtained from the snapshot
set Y fails to predict the control in case of parameter perturbations since the error
remains the same and they gives almost the same results. For each cases, ExpPOD
improves the results. However, as we increase the size of the bases, ExpPOD, whose
size is doubled, and ExtPOD with snapshot set P and Y ∪ P give almost the same
result, while a poor approximation to the control can be improved by using ExpPOD.

In Figure 6.7, we present the error for the state with respect to the diffusion term using
7 and 14 POD basis functions. Similarly, the error in the state approximated by the
snapshots of the adjoint is higher due to the different properties of the adjoint solution
than the state solution. In addition, a good approximation to the control influences
the state solution directly due to acting on the right-hand side of (4.12a). For the
state solution, the snapshot set Y and Y ∪ P outperforms the snapshot set P . It is
because the former set contains information about state and the latter offers a good
approximation to the control which influences the state solution directly due to the
optimality condition. For this example, the best results for both of the state and the
control are achieved through the snapshot set Y ∪ P with ExtPOD. On the other hand,
ExpPOD of size 14 and the other bases of the same size give almost the same poor
results with the snapshot set P . Doubling the size of ExpPOD does not lead to better
results than the other bases using the snapshot set Y and Y ∪ P . Thus, ExtPOD is the
best choice.

In Figure 6.8, we present the results of the control for negative and positive changes
in ε, particularly for ε = 1/80 and ε = 1/120. The results obtained from the snapshot
set Y , the bases BPOD and ExtPOD give almost the same results since state solution
cannot approximate the control well. For the snapshot ensemble P and Y ∪ P , up
to 5 POD basis functions, ExtPOD leads to worse results than BPOD, while ExtPOD
surpass the BPOD as we increase the number of POD basis functions. For control
approximation, with the snapshot set P and Y ∪ P , ExtPOD approximates the state
worse than ExpPOD. However, it catches the ExpPOD computed from the snapshot
set Y ∪P as we increase the number of POD bases. We note that ExtPOD cannot beat
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ExpPOD. For each case, ExpPOD gives the best results.

In Figure 6.9, we present the results of the control error for negative and positive
changes in ε, particularly for ε = 1/80 and ε = 1/120. The results obtained from
the snapshot set Y , the bases BPOD and ExtPOD give almost the same results since
state cannot approximate the control well. For the snapshot ensemble P and Y ∪P , up
to 5 POD basis functions, ExtPOD leads to worse results than BPOD, while ExtPOD
and ExpPOD give the same results for a larger set of POD basis functions.
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Figure 6.6: DCR Eqn - Case I: Local improvements in the error of the control with 7
(first column) and 14 (second column) POD basis functions
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Figure 6.7: DCR Eqn - Case I: Local improvements in the error of the state with 7 (first
column) and 14 (second column) POD basis functions
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Figure 6.8: DCR Eqn - Case I: Error versus number of POD basis functions for control
with ε = 1/80 (first column) and ε = 1/120 (second column)
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Figure 6.9: DCR Eqn - Case I: Error versus number of POD basis functions for state
with ε = 1/80 (first column) and ε = 1/120 (second column)
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Case II: Sensitivity with respect to the convective term β

The nominal value for the convective term is β = β0 = [y− 0.5,−x+ p] with p = 0.5.
We generate POD basis once using the snapshots associated to this nominal/baseline
value and denote the corresponding results by BPOD in the figures. We choose the
parameter range as p = 0.1 ∗ [1 : 1 : 9].

Sensitivities of the state are depicted in Figure 6.10 at t = 0.2, 0.6, 1, respectively. For
comparison purposes, we present the results obtained from CSE and FD approximation
and the results are almost the same. A small difference occur as t → 1 in the state,
while this difference is observe in the adjoint as t → 0. The state solution is highly
sensitive close the boundary y = 1 positively and close the boundary y = 0 negatively.
It is because the fact that as we perturb the parameter p, the convective field shifts
upward or downwards (see, Figure .6.1).

Figure 6.10: DCR Eqn - Case II: State sensitivities computed with CSE method (first
row) and FD approximation (second row) at t = 0.2, 0.6, 1, respectively

Sensitivities of the adjoint are depicted in Figure 6.11 at t = 0.8, 0.4, 0, respectively.
Since the convective term of the state is the negative of the convective term of the
adjoint (see, Figure .6.2), the adjoint sensitivities are negative of the state sensitivities.

In Figure 6.12, we present the decay of the eigenvalue sensitivities. We observe that
they follow the same pattern as eigenvalues do (see, Figure 5.4). They decrease rapidly
showing that POD can be successfully applied. The sensitivities are computed by CSE
method and FD approximation for comparison purposes. We observe that a small
difference occur for the snapshot set P and it is reflected to the set Y ∪ P .

In Figure 6.13, we present the error for the control with respect to the parameter pertur-
bations using 7 and 14 POD basis functions. We realize that the sensitivity of the con-
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Figure 6.11: DCR Eqn - Case II: Adjoint sensitivities computed with CSE method
(first row) and FD approximation (second row) at t = 0.8, 0.4, 0, respectively

trol with respect to p is observed in each figure, since error increases as we moved from
the baseline value p = 0.5. The snapshot ensemble Y cannot approximate the control.
After increasing the number of POD basis functions to 14, a small improvement is
observed. The effect of expanding the POD basis appears in the figure positively. For
the snapshot set P , increasing the number of POD basis functions results in a smaller
error, especially around the nominal value p = 0.5. For the snapshot ensemble Y ∪ P ,
increasing the number of basis functions, improves the results of ExtPOD most and it
surpass the BPOD. For each case, the best results are derived from ExpPOD. However,
in terms of computational speed and the accuracy, ExtPOD obtained from the snapshot
set P gives the best results.

In Figure 6.14, we present the error for the state with respect to the parameter perturba-
tions using 7 and 14 POD basis functions. For each figure, the sensitivity of the error
with respect to the parameter p is obvious. Among these 6 figures, the largest error
is computed using the snapshot set P , since the adjoint and the state have different
characteristics. The results obtained from the snapshot set Y and Y ∪P are almost the
same and ExpPOD leads to the best accuracy. As we increase the number of POD ba-
sis functions, ExtPOD and ExpPOD lead to the same results. Thus, the most accurate
results are derived from the snapshot set Y with ExtPOD in a fast way.

In Figure 6.15, we present the results of the control error for negative and positive
changes in p, particularly for ε = 0.1 and ε = 0.9. For each case, the error computed
from BPOD is the same. For the snapshot set Y , ExtPOD cannot predict the dynamics
of the control, because the state and its derivative are totally different from the control.
For small values of basis functions, ExtPOD leads to worse results than BPOD for
snapshots P and Y ∪ P ; associated errors decrease for larger POD bases. The most
improvement is observed with ExpPOD. For this example, poor results of BPOD can
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Figure 6.12: DCR Eqn - Case II: Eigenvalue sensitivities for snapshot ensemble Y , P
and Y ∪ P

be improved with the combination of the snapshot set Y and ExpPOD.

In Figure 6.16, we present the results of the state error for negative and positive changes
in p, particularly for ε = 0.1 and ε = 0.9. The error of the BPOD is the same for each
POD basis function. After the sixth POD basis function, the results of the BPOD can be
improved with ExtPOD or ExtPOD. For larger POD basis set, ExtPOD and ExpPOD
give almost the same results. The most accurate solution is derived from the snapshot
set Y with ExtPOD in a fast way.
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Figure 6.13: DCR Eqn - Case II: Local improvements in the error of the control with
7 (first column) and 14 (second column) POD basis functions
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Figure 6.14: DCR Eqn - Case II: Local improvements in the error of the state with 7
(first column) and 14 (second column) POD basis functions
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Figure 6.15: DCR Eqn - Case II: Error versus number of POD basis functions for
control with p = 0.1 (first column) and p = 0.9 (second column)
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Figure 6.16: DCR Eqn - Case II: Error versus number of POD basis functions for state
with p = 0.1 (first column) and p = 0.9 (second column)
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Case III: Sensitivity with respect to the reaction term r

The nominal value for the reaction coefficient is r = r0 = 1. We generate POD
basis once using the snapshots associated to this nominal/baseline value and denote
the corresponding results by BPOD in the figures. We choose the parameter range as
r = 0.1 ∗ [6 : 1 : 14].

Sensitivities of the state are depicted in Figure 6.17 at t = 0.2, 0.6, 1, respectively. The
state solution is sensitive close to the boundary of the domain; as t→ 1, the sensitivity
of the solution starts to distribute into the interior of the domain.

Figure 6.17: DCR Eqn - Case III: State sensitivities computed with CSE method (first
row) and FD approximation (second row) at t = 0.2, 0.6, 1, respectively

The sensitivities of the adjoint are depicted in Figure 6.18 at t = 0.8, 0.4, 0, respec-
tively. The adjoint is highly sensitive in the center of the domain and the solution
becomes sensitive along the boundaries as t→ 0. We compare the results of CSE and
FD approximation and observe that both results are almost the same.

In Figure 6.19, we present the decay of the eigenvalue sensitivities. We observe that
they follow the same pattern as eigenvalues do (see, Figure 5.4). They decrease rapidly
showing that POD can be successfully applied. The sensitivities are computed by CSE
method and FD approximation are the same.
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Figure 6.18: DCR Eqn - Case III: Adjoint sensitivities computed with CSE method
(first row) and FD approximation (second row) at t = 0.8, 0.4, 0, respectively
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Figure 6.19: DCR Eqn - Case III: Eigenvalue sensitivities for snapshot ensemble Y , P
and Y ∪ P

In Figure 6.20, we present the error for the control with respect to the parameter per-
turbations using 7 and 14 POD basis functions. For this example, the sensitivity of the
error with respect to the reaction term is not observed, because the error remains the
same for each parameter value. The state snapshot Y leads to poor results and ExtPOD
cannot beat BPOD. On the other hand, expanding the POD basis improves the results.
For snapshot set P , increasing the number of POD basis functions cause the results of
three bases become almost equal; while for the set Y ∪ P , it does not affect the error
and the results are the same with the ones obtained with the set P . Thus, the most
effective combination is the snapshot set P with 14 POD basis functions.

In Figure 6.21, we present the error for the state with respect to the parameter perturba-
tions using 7 and 14 POD basis functions. Snapshot ensemble P leads to poor results,
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while the sets Y and Y ∪ P lead to the same error. The effect of expanding the basis
can be observed for the snapshot set P . However, BPOD cannot be improved using
ExtPOD or ExpPOD.

In Figure 6.22, we present the results of the control error for negative and positive
changes in p, particularly for ε = 0.6 and ε = 1.4. For each case, the error computed
from BPOD and ExtPOD are the same. The results of BPOD obtained from the set
Y are improved with ExpPOD. The error computed with ExpPOD and the set P and
Y ∪ P stuck. The smallest error is obtained with the set Y ∪ P where the results of
ExtPOD and ExpPOD become equal as we increase the number of basis functions.
Thus, for perturbed problem, ExpPOD computed from the snapshot Y improves the
results of BPOD.

In Figure 6.23, we present the results of the state error for negative and positive changes
in p, particularly for ε = 0.6 and ε = 1.4. For each case, the error computed from
BPOD and ExtPOD are the same. This time, the results of BPOD obtained from the
set P are improved with ExpPOD. The results of ExtPOD and ExpPOD computed from
the set Y and Y ∪P are almost the same as we increase the number of basis functions.
Thus, for perturbed problem, ExpPOD computed from the snapshot P surpass BPOD.
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Figure 6.20: DCR Eqn - Case III: Local improvements in the error of the control with
7 (first column) and 14 (second column) POD basis functions
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Figure 6.21: DCR Eqn - Case III: Local improvements in the error of the state with 7
(first column) and 14 (second column) POD basis functions
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Figure 6.22: DCR Eqn - Case III: Error versus number of POD basis functions for
control with p = 0.6 (first column) and p = 1.4 (second column)
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Figure 6.23: DCR Eqn - Case III: Error versus number of POD basis functions for state
with p = 0.6 (first column) and p = 1.4 (second column)
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6.3 Sensitivity Equations for Optimal Control of Burgers Equation

Now, we consider the Burgers equation. Sensitivity equations are obtained by differ-
entiating the continuous state (1.2) and the adjoint equation associated to (2.9a) and
the optimality condition (2.8c) with respect to ε. The corresponding optimality system
with sy, sp and su is written as follows,

(∂tsy, v) + a(sy, v) + (syx + ysx) = (fε + su, v), ∀v ∈ V,
sy(x, 0) = (y0)ε, (6.7a)

−(∂tsλ, ψ) + a(ψ, sλ)− (syλx + y(sλ)x) = −(sy − ydε , ψ), ∀ψ ∈ V,
sλ(x, T ) = 0, (6.7b)

αsu = sλ. (6.7c)

We note that the homogeneous Dirichlet boundary conditions are imposed to (6.7) after
differentiating in the same way. The optimality system (6.7) is discretized using the
same numerical method, i.e. space-time discontinuous Galerkin discretization, as for
(2.8).

Sensitivity equations are always linear, so CSE would be especially promising for non-
linear problems. On the other hand, FD approximation can also be used to find the sen-
sitivities. It requires the evaluation of the OCP depending on the perturbed parameters.
In particular, the sensitivity of the state can be computed via the centred difference as
follows:

sy(ε0) ≈ y(ε0 + ∆ε)− y(ε0 −∆ε)

2∆ε
. (6.8)

The increment ∆ε is chosen sufficiently small for an accurate FD approximation and
it is chosen sufficiently large for the difference between two nearby POD vectors to be
larger than the discretization error by one order of magnitude [64].

6.3.1 Numerical Results

In this section, we present some numerical results to investigate the performance of
different bases. The Computation times are obtained on a 2.13 GHz desktop PC. The
full-order problem is solved using piecewise linear discontinuous finite elements on a
uniform mesh with h = k = 1/200. Three different snapshot sets for W are used to
generate the POD basis functions, namely the state Y , the adjoint P and the combina-
tion of them Y ∪P , as in [72]. The sensitivities derived from CSE are calculated at the
same time steps with FD approximation and we use the former in the bases generation
step. The error between the DG and the reduced solution is measured with respect to
L2(0, T ;L2(Ω)) norm.

We note that the nominal value for the diffusion term is ε0 = 10−2. We generate POD
basis once using the snapshots associated to this nominal/baseline value and denote
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the corresponding results by BPOD in the figures. We choose the parameter range as
1/ε = 80 : 5 : 120.

We consider the optimal control problem in Sec. 5.5.3 with

Q = (0, 1]× Ω, Ω = (0, 1), ε = 10−2, and α = 0.05.

We take the source function f = 0, the desired state yd and the initial condition y0 are
defined as

yd(x, t) =

{
1 in (0, 1/2],

0 otherwise .

In Figure 6.24, we present the numerical solutions of the state and the adjoint sensitivi-
ties, respectively. We observe that the state is highly sensitive along the path, where the
state is tried to be kept on the left-half of the domain, starting at x = 1/2. The adjoint,
which is solved backward in time, becomes sensitive in a negative way as t→ 0 at the
points close the left boundary.

Figure 6.24: Burgers Eqn: State (left) and adjoint (right) sensitivities

In Figure 6.25, we present the decay of the eigenvalue sensitivities. They decrease
rapidly showing that POD can be successfully applied. Sensitivities are computed
by CSE and FD approximation for comparison purposes. We observe that both ap-
proaches give almost the same results. In addition, the eigenvalues (see, Figure 5.7)
decay following the same pattern as the sensitivities do which means that the ordering
will remain in case of parameter perturbations [64].

As we discussed in Sec. 5.4, we applied DEIM algorithm and choose 20 DEIM points,
see Fig.6.26. We observe that the points are mostly located on the left-half of the
domain where the most of the information about the state solution is contained.

We present the computational time for the full-problem, CSE and FD approximation
in Table 6.4. In total, the full-problem and the sensitivity equations are solved in 220
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Figure 6.25: Burgers Eqn: Eigenvalue sensitivities for snapshot ensemble Y , P and
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Figure 6.26: DEIM interpolation points

Table 6.4: Burgers Eqn: Computation times for the full-order problem

FE element solution ≈ 220 s
Sensitivity solution using CSE method ≈ 100 s
Sensitivity solution using FD approximation ≈ 2 × 220 s
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and 100 seconds, respectively. The sensitivities are computed using FD approximation
in 440 seconds. Here, the efficiency of CSE is revealed.

The total energy E(l) in the formula (5.22) is fixed up to 100(1 − γ)% by setting
γ = 10−2 in order to keep the most energetic POD modes, namely the first 5 POD
basis functions. In Table 6.5, the computational time for the POD basis functions are
presented. The derivation of the POD basis sensitivities, except the DG approximation
of the state and the adjoint sensitivities, is quite fast; so each new bases are computed
in less than one second.

Table 6.5: Burgers Eqn: Computation times in seconds for the computation of POD
basis functions

Y P Y ∪ P
BPOD ≈ 0.06 0.10 0.1
POD basis sensitivities ≈ 0.08 0.11 0.21
ExtPOD ≈ 0.14 0.21 0.31
ExpPOD ≈ 0.14 0.21 0.31

In Table 6.6, the speedup of the reduced problem in terms of different bases and the
snapshot ensemble with/out DEIM is shown. We note that the speedup is defined as the
ratio of the computational time of the full-order model to the computational time of the
reduced-order model. It is observed that the reduced-order model is solved faster than
the full-order model, as expected. DEIM method is required to speed up the process
by computing the nonlinear term N l(yl,m) at interpolation points to approximate this
term in an efficient way. This necessity is revealed in Table 6.6, because the speedup
of the POD model obtained with DEIM is almost 3 times larger than the speedup of
the POD model. There is not a significant difference between the snapshot ensembles,
whereas the dimension of the reduced-basis doubles the computation time, namely for
ExpPOD basis. We note that the speed of POD gains importance when we have to
solve the full-problem several times in case of parameter perturbations.

Table 6.6: Burgers Eqn: Computational speedup for the reduced-order model with/out
DEIM

Y P Y ∪ P Y D PD Y ∪ PD

BPOD ≈ 4.10 4.17 4.00 12.22 12.48 11.58
ExtPOD ≈ 4.01 4.12 4.11 11.58 11.58 10.48
ExpPOD ≈ 2.22 2.29 2.20 6.29 6.30 5.95

In Fig. 6.27, we present the error for the state with respect to the diffusion term us-
ing five and ten POD basis functions. Using five POD bases, which are generated
from three different snapshot ensembles, the sensitivity of the state with respect to the
diffusion term cannot be captured and the error remains unchanged. Increasing the
ExpPOD basis functions, which are derived from the snapshots set Y and Y ∪ P , to
ten; sensitivity of the state is revealed and the error is decreased. The state, which
is approximated with ten POD bases generated from the adjoint solution, is also poor
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because the characteristics of the state are totally different from the adjoint solution.
On the other hand, the snapshot set Y and Y ∪ P outperform the snapshot set P . It is
because the former set contains information about the state and the latter offers a good
approximation to the control which acts on the right-hand side of the state equation
(2.8a). The best result is achieved at the baseline parameter using ExpPOD generated
with the snapshot set Y . As we move away from the nominal value, the error increases;
but, the results of BPOD and ExtPOD are improved using ExpPOD without solving
the full-problem depending on the perturbed parameters again.
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Figure 6.27: Burgers Eqn: Local improvements in the error of the state with 5 (first
column) and 10 (second column) POD basis functions
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In Fig. 6.28, we present the error for the control with respect to the diffusion term using
five and ten POD basis functions. Using five ExpPOD bases which are generated from
the snapshot set P approximates the problem best due to the relation (2.8c) between
the adjoint and the control. Use of the state solution in the POD basis generation step
leads to inaccurate solutions because the control and the state have different character-
istics. Increasing the POD basis functions to ten, poor solutions arising from BPOD
and ExtPOD cannot be improved; while ExpPOD which is generated from three dif-
ferent snapshot sets increases the accuracy. The most accurate result for the control is
achieved using ExpPOD generated from the snapshot set P . The best result is achieved
at the baseline parameter using ExpPOD and the error increases as we move away from
the baseline value, as expected.
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Figure 6.28: Burgers Eqn: Local improvements in the error of the control with 5 (first
column) and 10 (second column) POD basis functions
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CHAPTER 7

CONCLUSION

In this study, optimal control problem governed by diffusion-convection-reaction equa-
tion and Burgers equation are investigated and the problem is discretized by symmetric
interior penalty Galerkin method in space and variational time discretization method.
A priori error estimates for space-time discretization are derived. It is observed that the
resulting error bound is suboptimal in space and optimal in time in L∞(0, T ;L2(Ω))
norm. We compute the linear systems associated to the optimality system where we use
Gauss-Radau points to approximate the resulting temporal integrals for dG method and
we approximate these integrals using the trapezoidal rule for cGP method. DG method
requires less regularity of the solution than the cG method. We observe that for OCP
of DCR equation, resulting linear systems of the state and the adjoint equations have
the same structure and it might be easy to use a preconditioner of the same form for
each system. For Burgers equation, a priori error estimates are proven and the result-
ing error bound is suboptimal in space and optimal in time in L∞(0, T ;L2(Ω)) norm.
As opposed to DCR equation, the matrix system associate to linearised state equation
and the adjoint equation are quite different from each other due to the nonlinearity in
Burgers equation.

In addition to the full-order solution of the OCPs, we have computed the reduced-order
solution using proper orthogonal decomposition method. For each case, the reduced-
order solution is computed much faster then the full-order solution. Here, we use three
different snapshot sets, namely the state Y , the adjoint P and a combination of them
Y ∪ P . A priori error estimates indicate that the error for the reduced solution is of
first order accurate with respect to the POD truncation error Λε. This result is indicated
for the error in the adjoint and the control. The best rate associated to the snapshot
set Y is less than the theoretical estimate, which means that the temporal and spatial
terms pollute the solution and they are more dominant than Λε and the error decays
slower than the predicted rate. For optimal control of DCR equation, the snapshot set
P fails to predict the state. For small values of POD basis functions, the snapshot set
Y gives the best results. However, as we increase the number of basis functions, the
results obtained through the snapshot set Y and Y ∪ P become almost the same. The
snapshot set Y cannot predict the adjoint and the control well. Although the snapshot
set P reveals the properties of the adjoint and the control for small number of basis
functions, the snapshot set Y ∪ P leads to the best results as we increase the number
of POD basis functions. Using the snapshot set P , the problem is solved faster than
with the snapshot set Y . It is because a better approximation of the control is achieved
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and led to fast convergence in the optimization step. On the other hand, the size of the
set Y ∪ P is twice as large as Y or P . Therefore, it takes longer to compute the POD
basis and the reduced solution. POD is not a robust method. Therefore, the nominal
basis might not approximate the perturbed problem well. We use the sensitivity of
the snapshot and compute the POD basis sensitivities. In terms of POD sensitivities,
ExpPOD is slower than ExtPOD; because, its dimension is doubled. For this example,
the best results for both of the state and the control are achieved through the snapshot
set Y and P with ExtPOD, respectively.

For optimal control of Burgers equation, using small number of POD basis functions,
the snapshot sets Y and Y ∪ P result in almost the same results of the state. As we
increase the number of POD basis functions, more accurate results are obtained using
the snapshot set Y ∪P . For the control, the snapshot set P gives the best results until 10
POD basis functions are used. For the snapshot set Y ∪P , the smallest error is achieved
as we increase the number of POD basis functions. It is observed that the reduced-
order model is solved faster than the full-order model, as expected. For nonlinear state
equation, DEIM method is required to speed up the process. A priori error estimates
indicate that the error for the reduced solution is of first order accurate with respect to
the POD truncation error Λε. The snapshot ensemble Y ∪P approximates the state well
and the theoretically estimated convergence rate is achieved for the state, the adjoint
and the control. For small values of the POD basis functions, the sensitivity of the state
with respect to the diffusion term cannot be captured and the error remains unchanged.
Increasing the ExpPOD basis functions, which are derived from the snapshots set Y
and Y ∪ P , to ten; sensitivity of the state is revealed and the error is decreased. The
best result is achieved at the baseline parameter using ExpPOD generated with the
snapshot set Y . For the control, five ExpPOD bases which are generated from the
snapshot set P approximates the problem best. Increasing the POD basis functions
to ten, poor solutions arising from BPOD and ExtPOD cannot be improved; while
ExpPOD which is generated from three different snapshot sets increases the accuracy.
The most accurate result for the control is achieved using ExpPOD generated from the
snapshot set P .

As a future work, other model-order reduction techniques can be used, compared with
these results and other types of nonlinearities can be incorporated.
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• T. Akman and B. Karasözen, Reduced order optimal control using proper or-
thogonal decomposition sensitivities, Numerical Mathematics and Advanced Ap-
plications - ENUMATH 2013, Lecture Notes in Computational Science and En-
gineering, Vol. 103, Springer International Publishing Switzerland, 409–417,
2015.

150

http://dx.doi.org/10.1016/j.camwa.2015.04.017
http://dx.doi.org/10.1016/j.camwa.2015.04.017
http://dx.doi.org/10.1016/j.cam.2014.05.002
http://dx.doi.org/10.1016/j.cam.2014.05.002
http://dx.doi.org/10.1007/s10589-013-9601-4
http://dx.doi.org/10.1007/s10589-013-9601-4
http://dx.doi.org/10.1007/s10589-013-9601-4
http://dx.doi.org/10.1007/978-3-319-10705-9_40
http://dx.doi.org/10.1007/978-3-319-10705-9_40


Papers submitted to international journals

• T. Akman, Sensitivity analysis approach for reduced-order approximations of
optimal control problems governed by Burgers equation, 2014.

• T. Akman, Error estimates for space-time discontinuous Galerkin formulation
based on proper orthogonal decomposition, 2014.

INTERNATIONAL SCIENTIFIC MEETINGS

• Conference on Computational and Experimental Science and Engineering, 25-
29 October 2014, Antalya, TURKEY
Contributed talk: Variational Time Discretization Methods for Semilinear Parabolic
Optimal Control Problems

• Conference on Computational and Experimental Science and Engineering, 25-
29 October 2014, Antalya, TURKEY
Contributed talk: Proper Orthogonal Decomposition Sensitivities for Schlögl
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