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Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. A. Sevtap Selçuk-Kestel
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ABSTRACT

CPPI STRATEGY ON DEFINED CONTRIBUTION PENSION SCHEME UNDER
CUSHION OPTION AND DISCRETE TIME TRADING SETTING

Gülveren, Anıl
M.S., Department of Actuarial Sciences

Supervisor : Assoc. Prof. Dr. A. Sevtap Selçuk-Kestel

August 2016, 43 pages

A Defined Contribution (DC) pension plan requires periodic contributions for a certain
time in order to aggregate funds for the old ages. It enables the participant to pay a
monthly/yearly premium whose valuation is done in financial markets. The choice of
the market products (assets, bonds etc.) is processed by a centralized system at which
a pension company/government has authority to manage the fund. Therefore, a risk
management on the fund has to be taken into account. Such long term investment
schemes are sensitive and prone to market risks. Additionally, a long-term planned
funding might be distorted when premature terminations occur. For such cases, it is
benefical for both parties (insurer and insured) to secure the fund in such a way that its
return remains within the expected margins. We consider Constant Proportion Portfo-
lio Insurance (CPPI) strategy in a DC pension plan. We examine a model that the price
dynamics of a risky asset and labor income process are defined by a continuous-time
stochastic process and trading is restricted to discrete time scheme. An exotic option is
proposed as cushion option to reduce the risk that the portfolio value comes under the
floor which is known as gap risk in the literature. We analyze the effectiveness of de-
rived cushion option on CPPI strategy in a DC pension plan by measuring its sensivity
with respect to the parameters through Monte Carlo Simulation.

Keywords : CPPI strategy, Defined Contribution Pension Plan, Exotic (cushion) option
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ÖZ

KESİKLİ İŞLEM TARİHLERİ VE YASTIK OPSİYON VARSAYIMI ALTINDA
BELİRLENMİŞ KATKI PAYI ESASLI EMEKLİLİK PLANLARININ SABİT

ORANLI PORTFÖY SİGORTASI METODU İLE YÖNETİMİ

Gülveren, Anıl
Yüksek Lisans, Aktüerya Bilimleri Bölümü

Tez Yöneticisi : Doç. Dr. A. Sevtap Selçuk-Kestel

Ağustos 2016, 43 sayfa

Yaşlılık dönemi için fonlar toplamak için belirlenmiş katkı payı esaslı emeklilik planı
belirli zamanda periyodik katkılar gerektirir. Bu katılımcıya finansal piyasalarda değer-
lenen aylık/yıllık prim ödemeleri olanağı tanır. Piyasa ürünlerinin seçmi (varlıklar,
tahviller v.b.) emeklilik şirketinin /hükümetin fon yönetiminde yetkisi olduğu merkezi-
leştirilmiş sistem tarafindan işlem görür. Bu yüzden, fona ilişkin risk yönetimi dikkate
alınmalıdır. Böyle uzun dönem yatırım planları hassas ve piyasa risklerine eğilimlidir.
Buna ek olarak, erken ayrılma gerçekleştiği zaman uzun dönem planlanmış fonlama
tahrif edilebilir. Böyle durumlarda, fonun gelirinin beklenen marj içinde kalmasını
sağlayan bir yolla fonu güvenceye almak her iki taraf (sigortalı ve sigortacı) içinde
yararlı olacaktır. Belirlenmiş katkı payı esaslı emeklilik planlarında Sabit Oranlı Portföy
Sigortası (SOPS) stratejisi ele alınmıştır. Emek gelirinin ve riskli varlığın fiyat di-
namiklerinin sürekli-zaman stokastik süreç ile tanımlanmış ve alım-satımın kesikli-
zaman çerçevesinde kısıtlandırılmış olan model incelenmiştir. Literatürde boşluk riski
olarak bilinen portföy değerinin zeminin altına geçme riskini azaltmak için yastık op-
siyon olarak bir egzotik opsiyon önerilmiştir. Belirlenmiş katkı payı esaslı emeklilik
planlarında SOPS stratejisinde türetilmiş yastık opsiyonunun etkinliği Monte Carlo
simulasyonları ile parametrelere göre onun hassaslığı ölçülerek analiz edilmiştir.
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CHAPTER 1

Introduction

Pension planning might be the longest and important financial decisions of a lifetime
for individuals. Contribution and investment decision during this accumulation phase
are the important issues in pension plan due to the fact that induviduals want to guaran-
tee to maintain their standard of living at least after the retirement. Since contributions
are invested in financial markets the pension system faces many risks especially, the
financial market risk. Therefore, the downside protection strategies become outstand-
ing topics in the literature. This thesis investigates a well-konwn downside protection
strategy called Constant Proportion Portfolio Insurance (CPPI) in Defined Contribu-
tion (DC) pension fund modeling. Under discrete time trading, this strategy faces risk
of portfolio value hits the floor. In this thesis, we examine the way that deals with so
called gap risk.

A pension plan which has significant influence on maintaining indivuduals’ standard
of living after the retirement, become prominent issue in the literature due to the life
expectancy which has raised over last decades.

Basically, there are two types of pension plans: Defined Benefit (DB) and Defined
Contribution (DC). The benefits received by participant at retirement are fixed in ad-
vance in DB pension plans. Benefits are computed in relation to factors such as final
salary, the length of pensionable service and the age of the member. Participants’ con-
tributions initially are set, but subsequently adjusted in order to accure the amount of
the defined benefit at retirement [2]. On the contrary, participants’ contributions are
defined in advance and retirement benefits of a participant is a function of the contri-
butions made to his account and fund’s investment return during, and at the end of the
period in DC pension scheme. The participant in a DC plan bears the investment risk
in the sense that the amount of pension might be high or low depending on success of
the fund management [10].

Defined Benefit pension scheme has been more prominent historically, but nowadays
pension plans mostly is based on defined contribution scheme which transfers equity
market risk to participants because of increasing life expectancy and structure of equity
market [16]. Since all participants in both DB and DC pension scheme need to con-
tribute a similar part of labor income, participants in DC plan will be more concerned
about the performance of their pension fund investments. In related literature, Blake et
al [11] examines the optimal dynamic asset allocation strategy for DC plan taking into
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account stochastic process for labor income including a non-hedgable risk component.
Considering stochastic behaviour of labor income and stochastic inflation rate, closed
form solution is given by Battochio et al [2] for the optimal portfolio in complete fi-
nancial market. In the discrete-time trading framework, Haberman et al [18] and [19]
investigate optimal investment strategy in DC plan by using dynamic programming
techniques.

The main risk in DC pension plan for participants is the investment risk during accu-
mulation phase in which their pension wealth have been built up. To moderate invest-
ment risk, a minimum guarantee is introduced as a lower bound for pension wealth
that will be paid out to the participants in retirement. With respect to this, Bouiler et al
[12] study the optimal management of a defined contribution plan with deterministic
contribution and the guarantee in retirement depending on the level of stochastic in-
terest rate which follows Vasicek [33] model. In their setup, the guarantee has a form
that is annuity paid out from retirement time till the date of death which is also deter-
ministic. Deelstra et al [15] investigates optimal investment problem for DC plan that
allows for minimum guarantee with stochtastic contribution and assumes that interest
rate dynamics are given as Duffie et al [17] in its one-dimensional version. It includes
CIR [13] and Vasicek [33] models. Although authors make various assumptions, their
aim is to provide the minimum guarantee. Appropriate investment strategies providing
minimum guarantee are so-called portfolio insurance strategies.

Portfolio insurance is a trading strategy designed to protect portfolio value. A trading
strategy allows for the guarantee of an acceptable terminal portfolio value in falling
markets while taking a potential gain on the upwards market move. The Constant Pro-
portion Portfolio Insurance (CPPI) strategy and the Option-Based Portfolio Insurance
(OBPI) strategy are prominent examples of portfolio insurance strategies.

Bertnard and Prigent [5] compares the performances of CPPI and OBPI strategy when
the volatility of the risky asset is stochastic. They also examine both strategies under
first-order stochastic dominance criteria that is related to increasing utility functions
[6]. Considering various stochastic dominance criteria up to third order Zagst and
Kraus [34] compare the two portfolio insurance strategies. They conclude that CPPI
strategy is likely to dominate OBPI strategy at third order. Péizer et al [26] show that
CPPI strategy is superior to OBPI strategy under discrete trading and asset prices that
might jump.

An outstanding example of the portfolio insurance strategies is Constant Proportion
Portfolio Insurance (CPPI). The concept of CPPI strategy is introduced by Perold [25]
for fixed-income instruments and by Black et al [8] for equity instruments. In CPPI
strategy, the investor initially sets a floor which is the lowest acceptable portfolio value.
The cushion is calculated as the excess value of current wealth over the floor. Cushion
multiplied by pre-determined multiplier, defined as exposure, is allocated to risky asset.
Remaining funds are invested in the riskless asset. The properties of CPPI strategies
in continous time are studied by Black et al [9]. Assuming HARA utiliy funciton they
show that CPPI strategy can maximize expected utility. This study is extended by
Horsky [21] with the interest rate that follows Vasiček model and stock modeled by
Heston process. Temoçin [32] studies CPPI strategy in DC pension fund with different
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floor assumption under continous time and discrete time trading. The gap risk and
cash-lock risk which is the risk that portfolio wealth ends up fully invested in the risk-
free asset without recovering are analyzed for discrete time trading.

In Black and Scholes framework which is the basis for most academic studies on CPPI,
there is no gap risk due to the fact that probability of portfolio value above the floor at
any time equals to one in CPPI settings. However, Balder et al [1], Cont and Tankov
[14] , Paulot and Laucraze [23] show that portfolio value crashes through the floor in
the incomplete market in which asset price jumps may occur or in which portfolio may
only be rebalanced at a finite number of trading days. Balder et al [1] investigates CPPI
strategy under trading restriction. The multiplier can not be changed between instant
trading dates. So that, investor will not have an opportunity to rebalance the portfolio,
which then crashes through the floor between trading dates on the downwards market
move. Cont and Tankov [14] quantify the gap risk that comes from instantaneous
price jumps analytically for CPPI strategy under continuous-time trading. Paulot and
Laucraze [23] show that if the underlying has independent increments, the dynamics
of the portfolio at trading dates is described by a discrete-time Markov process in a
single variable. Extreme value approach is also used by Bernard et al [4] to estimate
gap risk of CPPI strategy.

1.1 Aim of Thesis

The insufficiency of the CPPI strategy before the end of the termination of the policy
(such as withdrawal and retirement) remains still as a risk. To reduce such risk the
investor may improve the course of the asset growth by considering a financial tool,
such as a put option. In other words, considering that CPPI strategy is applied in DC
plan under discrete time trading setting, investors encounter the risk of the portfolio
value hits the floor value since investors can not trade instantly against stock changes in
the discrete trading scenario. If portfolio value drops below floor value, entire portfolio
value is invested in the riskless asset. Hence, the potential gain of the risky asset is
missed on the upwards market move and portfolio value may not meet the guarantee
at the termination date.

For such case, we propose an exotic option to cope with this risk called ”gap risk”.
When there is no arbitrage opportunity we can price this exotic option uniquely as
an expectation of discounted claim with its boundary under the equivalent martingale
measure in a complete market. However, trading restriction causes incomplete mar-
ket. Due to that, there is a class of equivalent martingale measure to price the exotic
option. Applying Schweizer[31]’s variance-optimal criterion we attain explicit price
of that exotic option based on minimal martingale measure. That exotic option shall
be henceforth called as cushion option. Through sensitivity analyses, we examine the
effectiveness of exotic option on CPPI strategy in DC pension plan to deal with gap
risk. We also analyse the optimal Strike price interval of the exotic option under pre-
determined market parameter.

The plan of this thesis is as follows. In Chapter 2, the basic concepts from finance

3



and classical CPPI strategy are presented. Chapter 3 gives an overview of variance-
optimal pricing methodologies. The results presented here are taken from research
papers: [31],[28] and [24]. CPPI strategy for DC pension plan is presented in Chap-
ter 4. The cushion option is also proposed and CPPI strategy for DC pension scheme
under cushion option is derived. In Chapter 5, a graphic illustration of the evolution
of wealth in pension fund with and without cushion option till given withdrawal time.
The effectiveness of cushion insurance for CPPI strategy is also discussed. We con-
clude with a brief discussion of the observations and suggestions for further research
in Chapter 6.
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CHAPTER 2

Preliminaries

In this chapter, we introduce some basic concepts from finance, providing relevant
definitions and theorems that are used in following chapters. We refer to [22], [27] and
[7]. CPPI strategy is also introduced as described in [14].

2.1 Concepts from Finance

Definition 2.1. (Self-financing portfolio) A portfolio is called self-financing when all
the changes in the portfolio are due to realized gains from investment. In a sense, no
fund are borrowed or withdrawn from the portfolio at any time

Vt = V0 +
t∑
i=1

(ai4 Si + bi4Bi) (2.1)

where t = 1, 2, .., T and trading strategy (at, bt) denotes the number of shares of stock
and bond units held during [t− 1, t), respectively.

Definition 2.2. (Admissible strategy) A strategy π is called H-admissible if V π
T = H

P-almost surely (as).

Definition 2.3. (Arbitrage opportunity) An arbitrage opportunity is an admissible trad-
ing strategy such that initial portfolio value V0 = 0, but

E[VT ] > 0.

The market is said to be arbitrage-free if there are no arbitrage opportunities.

Definition 2.4. A claim X is called attainable if there exists self financing strategy π
replicating the claim. In fact, Vt satisfies (2.1) , Vt ≥ 0 and

V π
T = X.

The market is called complete if every claim is attainable.
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Definition 2.5. Q is equivalent to P if they have same null sets, i.e Q(A) = 0 ⇔
P(A) = 0.

Definition 2.6. A probability measure Q on (Ω,F) equivalent to P is called a mar-
tingale measure for S if the process S follows a Q-martingale with respect to filtration
F .

Theorem 2.1. The market is arbitrage-free if and only if there exists a probability mea-
sure Q equivalent to P under which the discounted d-dimensional asset price process
S is a Q-martingale.

Proposition 2.2. The price process of any attainable claim X is given by

ΠX(t) = β−1
t EQ[XβT |Ft] ∀t = 0, 1, .., T.

Definition 2.7. (Ito process) Let Wt, t ≥ 0, be a Brownian motion, and let Ft, t ≥ 0,
be an associated filtration. An Ito process is a stochastic process of the form

Xt = X0 +

∫ t

0

4(u)dWu +

∫ t

0

Θ(u)du, (2.2)

where X0 is constant and4(u) and Θ(u) are adapted stochastic processes.

Definition 2.8. (Ito formula) LetXt, t ≥ 0, be an Ito process as described in Definition
2.7, and let f(t, x) be a function for which the partial derivatives ft(t, x), fx(t, x) and
fxx(t, x) exist and are continuous. Then, for every T ≥ 0,

f(T,XT ) = f(0, X0) +

∫ T

0

ft(t,Xt)dt+

∫ T

0

fx(t,Xt)4 (t)dXt

+

∫ T

0

fx(t,Xt)Θ(t)dt+
1

2

∫ T

0

fxx(t,Xt)42 (t)dXt.

Theorem 2.3. Let (Ω,F ,P) be a probability space and let Z be an almost surely posi-
tive random variable with E[Z] = 1. Define

Q(A) = EQ[IAZ] =

∫
A

Z(w)dP(w) ∀A ∈ F ,

then Q is a probability measure.

Moreover, if X is a positive random variable, then

EQ[X] = E[XZ].
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Definition 2.9. (Radon-Nikodym derivative) Let (Ω,F ,P) be a probability space, let
Q be another probability measure on the space (Ω,F) which is equivalent to P and let
Z be an almost surely nonnegative random variable as Theorem 2.3. Then Z is called
the Radon-Nikodym derivative of Q with respect to P, and is denoted as

Z =
dQ
dP

.

Suppose that Z satisfies Definition 2.9 with a filtration Ft, defined for 0 ≤ t ≤ T ,
where T is fixed final time. Then, we can define the Radon-Nikodym derivative process
as

Zt = E[Z|Ft], 0 ≤ t ≤ T.

Lemma 2.4. Given t, 0 ≤ t ≤ T , let X be an Ft−measurable random variable. Then

EQ[Y ] = E[Y Zt].

Theorem 2.5. (Girsanov Theorem) Let Wt, 0 ≤ t ≤ T , be a Brownian motion on a
probability space (Ω,F ,P), and let Ft, 0 ≤ t ≤ T , be a filtration for this Brownian
motion.

Let Θ(t), 0 ≤ t ≤ T , be an adapted process. Define

Zt = exp

{
−
∫ t

0

Θ(u)dWu −
1

2

∫ t

0

Θ2(u)du

}
,

WQ
t = Wt +

∫ t

0

Θ(u)du

and assume that

E
∫ T

0

Θ2(u)Z2(u)du <∞.

Set Z = ZT , then E[Z] = 1 and under the probability measure Q given by

Q(A) =

∫
A

Z(w)dP (w) ∀A ∈ F ,

the process WQ
t , 0 ≤ t ≤ T , is a Brownian motion.
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2.2 CPPI Strategy

The CPPI strategy is a self financing strategy whose aim is to take potential gain on
upward market move while guaranteeing at least an specified fixed amount of money
at maturity time T . In classic Black-Scholes market, where two basic assets are traded
continuously in time during time horizon [0, T ], the fund manager invests into two as-
sets: riskless asset (money market account), Bt, and risky asset (stock or stock index),
St, with price dynamics given by

dBt = rBtdt, B0 = b, (2.3)

dSt
St

= µsdt + σsdWt, S0 = s, (2.4)

where b, s, µs and σs are constant and Wt is a Brownian process defined on complete
probability space (Ω,F ,P). Here, P is real world probability measure and the filtration
F = (Ft)[t≥0] represents the history of the Brownian motion up to time t.

The basic idea of CPPI approach is that terminal portfolio value, VT , at the end of
the investment horizon T stays above an investor-defined floor given as a percentage
ϕ ≥ 0 of initial value V0, i.e.

FT = ϕTV0.

Since the market is arbitrage-free, it is impossible to find an investment that returns
more than the risk-free rate of return, r , with no risk. Hence, the maximum guaranteed
portfolio value at maturity time, T , is limited by

ϕT ≤ erT .

The floor Ft, 0 ≤ t ≤ T , denotes the present value of guarantee. By discounting with
respect to deterministic interest rate r

Ft = ϕtV0, ϕt = ϕT e
−r(T−t).

Hence, the floor has following dynamics

dFt = rFtdt.

The surplus of current portfolio value Vt above the floor Ft is called cushion, denoted
by Ct and its price at any time t ∈ [0, T ] is given as

8



Ct = max{Vt − Ft, 0}.

At any time t,

(1) if Vt > Ft , wealth invested into the risky asset called exposure is given by

et = mCt = m(Vt − Ft),

where m > 1 is a constant multiplier and the remaining part of portfolio

Rt = Vt − et

is invested in the riskless asset.

(2) if Vt ≤ Ft , the entire portfolio is invested into the riskless asset.

Proposition 2.6. The t-value of the cushion Ct in time period [0, T ] is

Ct = C0exp{rt+m(

∫ t

0

µSds− rt)−
1

2
m2

∫ t

0

σ2
SdS +m

∫ t

0

σSdWS}.

Proof. The value at time t of the CPPI portfolio is given as [6]

dVt = et
dSt
St

+ (Vt − et)
dBt

Bt

.

As we can see from definition of strategy, the cushion must satisfy the Black-Scholes
stochastic differential equation

dCt
Ct

= d(Vt − Ft).

dCt
Ct

= (Vt − et)
dBt

Bt

+ et
dSt
St
− dFt

Ft

dCt
Ct

= (Ct + Ft −mCt)
dBt

Bt

+mCt
dSt
St
− dFt

Ft

dCt
Ct

= (Ct −mCt)
dBt

Bt

+mCt
dSt
St

dCt
Ct

= (mµS + (1−m)r)dt+mσSdWt
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Thus, the process Ct is the Doléans−Dade exponential of the process Zt defined by

Zt =

(
rt+m(

∫ t

0

µSds− rt) +m

∫ t

0

σSdWS

)
.

By using Ito formula, we obtain

Ct = C0exp{rt+m(

∫ t

0

µSds− rt)−
1

2
m2

∫ t

0

σ2
SdS +m

∫ t

0

σSdWS}.
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CHAPTER 3

Option Valuation at Fixed Trading Dates

The contingent claim is perfectly replicated in well-known Black Scholes model under
the assumption that market is complete and arbitrage free. The claim is priced by tak-
ing expectation of discounted contingent claim under equivalent martingale measure
which is unique in Black Scholes market. However, the finite number of trading dates
causes incomplete market. The price or hedging strategy of contingent claim is not
unique in incomplete market in the sense that there is a set of equivalent martingale
measure. According to different optimality criteria, choice of an equivalent martingale
measure called ’pricing measure’ differs. An outstanding approach is Schweizer [31]
(or Schäl[28])’s variance-optimal criteration among the existing theories for pricing
and hedging in incomplete markets. The idea of this approach is to seek an initial capi-
tal and a strategy which minimize the variance of hedging cost related to discretization
of the hedging strategy for a given claim. We refer to [28], [29], [30] and [31] for the
exhaustive explanation of this theory.

3.1 Basic Definitions and Assumptions

We consider that risky asset (stock) and riskless asset (bond) are traded in financial
market. Given finite time horizon T ∈ N, the set of possible trading dates is repre-
sented by τ = {t0 = 0 < t1 < ... < tM−1 < tM = T} where M ∈ N is a fixed natural
number and a probability space (Ω,F ,P) with a filtration Ft(t = t0, t1, ..., tM−1, tM).
The discounted price process S of risky asset is assummed to be Ft-adapted square-
integrable with respect to the objective measure P:

St ∈ L2(Ω,Ft,P) ∀ t,

and we define

∆Stk = Stk − Stk−1
with St−1 = 0 for k = 0, ...,M − 1.

We set money market account process equals to one. This setting does not cause any
loss of generality. The results obtained still hold after a change of numeraire [20]. In
order to change a numeraire, all the prices in the formula can be substituted by their
discounted values.
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Definition 3.1. A trading strategy π is a pair of two process (η, ξ) such that η = (ηt)t∈τ
is adapted, and such that ξ = (ξt)t∈τ is a predictable process.

It satisfies the following:

(i) ξt0 = 0; ξtk∆Stk ∈ L2

(ii)ξtkStk + ηtk ∈ L2

ξtk is interpreted as the number of share held during the time interval (tk−1, tk] while
ηtk denotes the amount invested in bond during time interval (tk, tk+1].

The value process V of π(η, ξ) is defined as

Vt0 = ηt0 and Vtk := ηtk + ξtkXtk for k = 0, 1, ...,M .

The gain process associated with a trading strategy π :

Gtk(π) = Σk
j=1ξtj∆Stj for k = 0, 1, ...,M

where Gtk(π) = 0.

Furthermore, we define the cost process associated with a trading strategy π :

Ctk(π) = Vtk(π)−Gtk(π) = Vtk(π)− Σk
j=1ξtj∆Stj for k = 0, 1, ...,M .

Let H ∈ L2 be a square integrable contingent claim representing payoff of option
at maturity time. We can not find a self financing strategy replicating the claim, H ,
perfectly by definition of incomplete market. The aim is to find an initial endowment
x ∈ R and self financing strategy π, such that VT (π) = H P-as,
satisfying

minE[(H − x−GT (π))2] over all x ∈ R and ξ ∈ π. (3.1)

Definition 3.2. Given a trading strategy π we define [24] :

(i) The process conditional remaining risk R(π) by:

Rtk(π) := E
[
(CtM (π)− Ctk(π))2|Ftk

]
k = 0, ...,M − 1
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(ii) The process local risk r(π) by:

rtk(π) := E
[
(Ctk+1

(π)− Ctk(π))2|Ftk
]

k = 1, ...,M − 1

= E
[
(Vtk+1

(π)− ξtk∆Stk − Vtk(π)2|Ftk
]

For the purpose of minimizing hedging error, we consider following problems related
to claim H [24] :

(i) Minimize the local risk rtk(π) by choosing Vtk(π) and ξtk+1
for each

k = 0, ...,M − 1,

(ii) Minimize the remaining risk Rtk(π) for each k = 0, ...,M−1, over all π, such that
VT (π) = H P-as,

(iii) (a) Minimize E[(H−x−GT (π))2] over all ξ ∈ π with x a given real number

(iii) (b) Minimize E[(H − x−GT (π))2] over all ξ ∈ π and x ∈ R

To solve local risk minimizing problem, set VM = H as a starting point and choose
ξtk+1

and Vtk , recursively for k = 0, 1, ...,M − 1 to minimize local risk rtk(π). Then
the admissible trading strategy πL(ξL, ηL) is given by

ξLtk =
Cov

[
H −

∑M
j=k+1 ξ

L
tj

∆Stj ,∆Stk |Ftk−1

]
V ar

[
∆Stk/Ftk−1

] (3.2)

and

ηLtk = E

[
H −

M∑
j=k+1

ξLtj∆Stj |Ftk−1

]
− ξLtkStk . (3.3)

The problem of minimizing the remaining risk has no obtainable solution in general
settings. IfM = 1, then this problem resembles the local risk minimizing problem and
the solution exists. The problem (iii)(a) and (iii)(b) have a solution if S has a bounded
mean-variance trade off defined by [31]

(
E
[
∆Stk | Ftk−1

])2

V ar
[
∆Stk | Ftk−1

] . (3.4)

In the case that mean-variance trade off is deterministic, the explicit solutions of the
problem (iii)(a) and (iii)(b) are given by ([28] or [31])
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ξtk = ξ
(0,x̂t0 )
tk

:= ξLtk + αtk

(
Ê(H|Ftk−1

)− x−
∑k−1

j=1 ξ
L
tj

∆Stj

)
k = 1, ...,M

(3.5)

and

ξk = ξ
(0,x̂t0 )

k k = 1, ...,M,

x = x̂t0 := Ê(H),

(3.6)

respectively. Here, Ê is the expectation under the minimal martingale measure P̂ de-
fined by

dP̂
dP

:= ẐM =
k∏
j=1

1− αtj∆Stj
1− αtjE

[
∆Stj | Ftj−1

] (3.7)

where

αtk =
E
[
∆Stk | Ftk−1

]
E
[
∆S2

tk
| Ftk−1

] .
Let discounted price St of the stock be described by the geometric Brownian motion

St = Se(µ−σ
2

2
)t+σWt , S0 = S (3.8)

and the observed Stock price follows

Stk = Stk−1
e(µ−σ

2

2
)4tk+σ4Wtk , S0 = S k = 1, ..,M (3.9)

where

4tk = tk − tk−1 and4Wtk = Wtk −Wtk−1
.
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Proposition 3.1. The explicit formula for the fair value of the claim is [24]

x̂ = Ê [h(St1 , ..., StM )]

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

h(St1 , ..., StM )
k∏
i=1

A(xi)f(xi)dx1 · · · dxM (3.10)

where ∀i = 1, ...,M

h(St1 , ..., StM ) := h(Se(µ−σ
2

2
)∆t1+σx1

√
∆t1 , ..., Se(µ−σ

2

2
)T+σ

∑M
i=1 xi

√
∆ti)

A(xi) :=
(1− eµ∆ti)e−

σ2

2
∆ti+σxi

√
∆ti + e(µ+σ2)∆ti − 1

eµ∆ti(eσ2∆ti−1)

and

f(xi) :=
1√
2π
e−

x2i
2 .
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CHAPTER 4

CPPI Strategy in DC Pension Plan under Discrete Time Trading
Setting

In this chapter, we use the similar discrete time setting as suggested in [32]. Let τ be
set of equidistant trading dates along time period [0, T ],i.e.

τ = {t0 = 0 < t1 < ... < tn−1 < tn = T},

where t0 is the inception date of DC pension plan, T is retirement date and

tk+1 − tk = T/n := 4t for k = 0, 1, .., n− 1.

4.1 Market Model

For simplicity, we consider two assets in the financial market for investing pension
contributions: risky asset (stock or stock index) and riskless asset (money market ac-
count). Money market account, denoted by Bt, grows with constant interest rate r and
its price dynamic is given in equation 2.3

dBt = rBtdt, B0 = b,

where b is constant.

Price dynamics of risky asset, denoted by St, is defined as in equation 2.4

dSt = St(µsdt + σsdWt), S0 = s,

where s, µs and σs are positive constants and Wt is a Brownian process defined on a
probability space (Ω,F ,P). Here, P is real world probability measure and the filtration
F = (Ft)[0≤t≤T ] represents the history of the Brownian motion up to time t.

Since trading takes place at equidistant trading dates, the observed stock price follows
as
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Stk+1
= Stke

(µS−
σ2S
2

)4t+σS4Wtk k = 0, ..., n− 1

where St0 = s and4Wtk = Wtk+1
−Wtk for k = 0, ..., n− 1.

4.2 Defined Contribution Fund Modeling

DC fund modeling has two key aspects that there is no consumption before retiremet
date and labor income plays a central role in the wealth accumulated phase. Labor
income is hard to model realistically due to its stochastic components such as financial
and political crisis, disability and mortality. Here, labor income, denoted by Lt, is
assumed to have stochastic process reflecting the risk of financial market.

The participants contribute into the pension fund every equidistant trading dates as a
certain proportion, γ , of labor income. Here, we define the labor income dynamics as
a stochastic differential equation as follows

dLt = Lt(µLdt+ σLdWt) , L0 = l (4.1)

with constant l, µL and σL andWt is a Brownian process defined on a probability space
(Ω,F ,P) as described in Section 4.1.

The observed labor income becomes

Ltk+1
= Ltke

(µL−
σ2L
2

)4t+σL4Wtk k = 0, ..., n− 1 (4.2)

where Lt0 = l and4Wtk = Wtk+1
−Wtk for k = 0, ..., n− 1.

Therefore, defined contribution with respect to labor process and the value of propor-
tion, γ, is defined as

γtk = γLtk (4.3)

for all k = 0, 1, .., n with dynamics

dγt = γdLt. (4.4)

4.2.1 Replicating Strategy

We assume that there is a portfolio which has same dynamics as labor income so labor
income can be replicated perfectly between equidistant trading dates by using assets in
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the market. In order to prove this, we need to show the relevant replicating portfolio.

When we consider self financing replicating strategy π = (πB, πS, πL) and choose
πL = −1, we set the fund

dV π
t = πBdBt + πSdSt − dLt (4.5)

dV π
t = πB(rBtdt) + πS(Stµsdt+ StσsdWt)− Lt(µLdt+ σLdWt) (4.6)

dV π
t = (πBrBt + πSStµs − LtµL)dt+ (πSStσs − LtσL)dWt (4.7)

Equating the diffusion terms and the drift terms to zero, we obtain the number of assets
as

πS(t) =
LσL
SσS

and πB(t) =
L

rBσS
(σSµL − σLµS).

4.3 CPPI strategy with random-growth floor

We consider CPPI strategy with random-growth floor on DC pension plan. Unlike the
floor in classical CPPI strategy, floor evolves not only with interest rate but also with
the portion of each contribution. In such case, floor has stochastic process due to the
stochastic labor income process.

Floor at time t is defined as [32]

Ft =


∑k

i=0 e
r(t−ti)cγti , tε(tk, tk+1) k = 0, 1, ..., n− 1

F−tk+1
+ cγtk+1

, t = tk+1

(4.8)

where 0 < c < 1 is constant and F0 = cγt0 .

The wealth process for all k = 0, 1, .., n− 1 is given as [32]

Vtk+1
=

{
(Vtk −mCtk)er4t +mCtk

Stk+1

Stk
+ γ(tk+1), Ctk > 0

Vtke
r4t + γ(tk+1), Ctk ≤ 0

(4.9)

and for tε(tk, tk+1)

Vt =

{
(Vtk −mCtk) Bt

Btk
+mCtk

St
Stk
, Ctk > 0

Vtk
Bt
Btk

, Ctk ≤ 0
(4.10)
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As cushion is defined by Ct = Vt − Ft for all t, the cushion process can be written as
[32]

Ctk+1
=

{
Ctk(m

Stk+1

Stk
+ (1−m)er4t) + (1− c)γ(tk+1), Ctk > 0

Ctke
r4t + (1− c)γ(tk+1), Ctk ≤ 0

(4.11)

for all k = 0, 1.., n− 1 and

Ct =

{
Ctk(m

St
Stk

+ (1−m) Bt
Btk

), Ctk > 0

Ctk
Bt
Btk

, Ctk ≤ 0

for tε(tk, tk+1).

After describing CPPI-DC design we introduce the implementation of a cushion insur-
ance by employing an exotic option.

4.3.1 Cushion option

There is a risk of cushion becoming negative between trading dates due to the fact that
rebalancements are done only at trading dates. Considering cushion dynamics we can
define probability of gap risk between trading dates just before contribution payment
as follows:

Pgap = P
(
C−tk+1

< 0 | Ctk > 0
)

= P

(
Ctk(m

St
Stk

+ (1−m)er4t) < 0 | Ctk > 0

)

= P

(
St
Stk

<
(m− 1)

m
er4t

)
.

For the purpose of dealing with gap risk, we propose an exotic option with payoff
defined by

(K − (1− c)γLtk+1
)+I{Stk+1

Stk
<(1− 1

m
)er4t

}.

We name the exotic option as ”cushion option” from now on, in regard to structure of
our setup. The main aim of this custom-made option is to generate additional gains in
case of a sudden decrease in the portfolio value. As it will be illustrated in Section 5.1,
the option will especially benefit when the cushion becomes negative and will function
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as a guarantee in the event of an early withdrawal. Here, the strike price K represents
the fixed part of the payoff and is determined by the seller. Since this is a theoretical
derivative, our primary assumption is that there are parties in the market who sell these
options with various strike prices. Then, based on the position of the pension fund
the beneficiary can select and buy the relevant option. To be able provide an intuitive
idea on the selection of K, we conduct a sensitivity analysis and present the results in
Section 5.1.

In order to obtain fair value of the cushion option, we refer to Proposition 3.1.

Recall that

Stk+1
= Stkexp

(
(µS −

σ2
S

2
)4t+ σS(Wtk+1

−Wtk)

)

(Wtk+1
−Wtk) =

ln
Stk+1

Stk
− (µS −

σ2
S

2
)4t

σS
(4.12)

Substituting (Wtk+1
−Wtk) into the expression for Ltk+1

leads to:

Ltk+1
= Ltkexp

(µL −
σ2
L

2
)4t+ σL

ln
Stk+1

Stk
− (µS −

σ2
S

2
)4t

σS



Ltk+1
= Ltk

(
Stk+1

Stk

)σL
σS

exp

(
(µL −

σ2
L

2
− µSσL

σS
+
σLσS

2
)4t

)
(4.13)

(K − (1− c)γLtk+1
)+I{Stk+1

Stk
<(1− 1

m
)er4t

} =

(
K − (1− c)γLtk

(
Stk+1

Stk

)σL
σS exp

(
(µL −

σ2
L

2
− µSσL

σS
+ σLσS

2
)4t

))+

I{Stk+1
Stk

<(1− 1
m

)er4t
}

(K− (1−c)γLtk+1
)+I
{
Stk+1
Stk

<(1− 1
m

)er4t}
= ζ(K∗−S

σL
σS
tk+1

)+I
{
Stk+1
Stk

<(1− 1
m

)er4t}
(4.14)

where

ζ =
(1− c)γLtk

S
σL
σS
tk

exp

((
µL −

σ2
L

2
− µSσL

σS
+
σLσS

2

)
4t
)

and
K∗ =

K

ζ
.
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Proposition 4.1. The cushion option under CPPI-DC design with payoff defined by

(K − (1− c)γLtk+1
)+I{Stk+1

Stk
<(1− 1

m
)er4t

}

can be priced, Ptk as

Ptk =

∫ ∞
−∞

A(z)ζ(K∗ − S
σL
σS
tk+1

)+I{Stk+1
Stk

<(1− 1
m

)er4t
} 1√

2π
e−

z2

2 dz. (4.15)

where

A(z) :=
(1− eµS4t)e−

σ2S
2
4t+σSz

√
4t + e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

Proof. see Proposition 3.1.

Proposition 4.2. The explicit price of cushion option is derived as

Ptk = λ

[
K∗Φ

(
min(A,B)− σS

√
4t
)
− S

σL
σS
tk
eβ4tΦ

(
min(A,B)− (σS + σL)

√
4t
)]

+ ψ

[
K∗Φ (min(A,B))− S

σL
σS
tk
e(β−σLσS

2
)4tΦ

(
min(A,B)− σL

√
4t
)]

(4.16)

where

β =
µSσL
σS

+
σ2
L

2
+
σLσS

2
,

λ = ζ
(1− eµS4t)

eµS4t(eσ
2
S4t − 1)

,

ψ = ζ
e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

,

A :=

ln

(
K∗

S

σL
σS
tk

)
− σL

σS
(µS −

σ2
S

2
)4t

σL
√
4t

,
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B :=
ln(m−1

m
) + (r − µS + σ2

S/2)4t
σS
√
4t

and Φ(.) denotes the cumulative distribution function of the standard normal distribu-
tion.

Proof. In order to get payoff, two conditions (A and B) need to be satisfied :

Condition A :

K∗ − S
σL
σS
tk+1

> 0

K∗ > S
σL
σS
tk
e
σL
σS

(µS−σ2
S/2)4t+σL(Wtk+1

−Wtk
)

ln

 K∗

S
σL
σS
tk

 >
σL
σS

(µS −
σ2
S

2
)4t+ σL(Wtk+1

−Wtk)

Z4t√
4t

<

ln

(
K∗

S

σL
σS
tk

)
− σL

σS
(µS −

σ2
S

2
)4t

σL
√
4t

:= A (4.17)

where Z4t = Wtk+1
−Wtk and Z4t√

(4t)
= z ∼ N(0, 1).

Condition B :

Stk+1

Stk
< (1− 1

m
)er4t

Stke
(µS−σ2

S/2)4t+σS(Wtk+1
−Wtk

)

Stk
< (1− 1

m
)er4t

(µS − σ2
S/2)4t+ σS(Wtk+1

−Wtk) < ln(
m− 1

m
) + r4t
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Z4t√
4t

<
ln(m−1

m
) + (r − µS + σ2

S/2)4t
σS
√
4t

:= B (4.18)

where Z4t = Wtk+1
−Wtk and Z4t√

(4t)
= z ∼ N(0, 1).

Under these conditions :

Ptk =

∫ B

−∞

(1− eµS4t)e−
σ2S
2
4t+σSz

√
4t + e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

ζ(K∗ − S
σL
σS
tk+1

)+ 1√
2π
e−

z2

2 dz

=

∫ min(A,B)

−∞

(1− eµS4t)e−
σ2S
2
4t+σSz

√
4t + e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

ζ(K∗−S
σL
σS
tk+1

)
1√
2π
e−

z2

2 dz

Right hand side of the equation can be decomposed into two part as follows:

Ptk =

∫ min(A,B)

−∞

(1− eµS4t)e−
σ2S
2
4t+σSz

√
4t

eµS4t(eσ
2
S4t − 1)

ζ(K∗ − S
σL
σS
tk+1

)
1√
2π
e−

z2

2 dz (4.19)

+

∫ min(A,B)

−∞

e(µS+σ2
S)4t − 1

eµS4t(eσ
2
S4t − 1)

ζ(K∗ − S
σL
σS
tk+1

)
1√
2π
e−

z2

2 dz (4.20)

(4.19) =
(1− eµS4t)ζ

eµS4t(eσ
2
S4t − 1)

∫ min(A,B)

−∞
(K∗ − S

σL
σS
tk+1

)
1√
2π
e−

σ2S
2
4t+σSz

√
4t− z

2

2 dz

=
(1− eµS4t)ζ

eµS4t(eσ
2
S4t − 1)

∫ min(A,B)

−∞
K∗

1√
2π
e−

(z−σS
√
4t)2

2 dz

− (1− eµS4t)ζ
eµS4t(eσ

2
S4t − 1)

∫ min(A,B)

−∞
S
σL
σS
tk

1√
2π
e
σL
σS

(µS−
σ2S
2

)4t+σLz
√
4t−σ

2
S
2
4t+σSz

√
4t− z

2

2 dz
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= λK∗
∫ min(A,B)

−∞

1√
2π
e−

(z−σS
√
4t)2

2 dz

− λS
σL
σS
tk
e

(
σLµS
σS
−σLσS

2
−σ

2
S
2

)4t
∫ min(A,B)

−∞

1√
2π
e−

z2

2
+(σS+σL)z

√
4tdz

where

λ =
(1− eµS4t)ζ

eµS4t(eσ
2
S4t − 1)

.

By change of variable y = z − σS
√
4t, adding and substracting (σS+σL)2

2
4t , we de-

duce

= λK∗Φ
(
min(A,B)− σS

√
4t
)

−λS
σL
σS
tk
e

(
σLµS
σS
−σLσS

2
−σ

2
S
2

+
(σS+σL)2

2
)4t
∫ min(A,B)

−∞

1√
2π
e−

(z−(σS+σL)
√
4t)2

2 dz

By change of variable h = z − (σS + σL)
√
4t ,

= λK∗Φ
(
min(A,B)− σS

√
4t
)
− λS

σL
σS
tk
eβ4tΦ

(
min(A,B)− (σS + σL)

√
4t
)

where

β =
µSσL
σS

+
σ2
L

2
+
σLσS

2
,

(4.20) =
e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

∫ min(A,B)

−∞
ζ(K∗ − S

σL
σS
tk+1

)
1√
2π
e−

z2

2 dz

=
e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

ζ

∫ min(A,B)

−∞
K∗

1√
2π
e−

z2

2 dz
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− e(µS+σ2
S)4t − 1

eµS4t(eσ
2
S4t − 1)

ζ

∫ min(A,B)

−∞
S
σL
σS
tk+1

1√
2π
e−

z2

2 dz

= ψK∗
∫ min(A,B)

−∞

1√
2π
e−

z2

2 dz − ψ
∫ min(A,B)

−∞
S
σL
σS
tk

1√
2π
e
σL
σS

(µS−
σ2S
2

)4t+σLz
√
4t− z

2

2 dz

where

ψ =
e(µS+σ2

S)4t − 1

eµS4t(eσ
2
S4t − 1)

ζ,

which leads to

= ψK∗Φ (min(A,B))− ψS
σL
σS
tk
e

(
σLµS
σS
−σSσL

2
)4t
∫ min(A,B)

−∞

1√
2π
eσLz

√
4t− z

2

2 dz

By adding and substracting σ2
L

2
4t to the right side,

= ψK∗Φ (min(A,B))−ψS
σL
σS
tk
e

(
σLµS
σS
−σSσL

2
+
σ2L
2

)4t
∫ min(A,B)

−∞

1√
2π
e−

σ2L
2
4t+σLz

√
4t− z

2

2 dz

= ψK∗Φ (min(A,B))− ψS
σL
σS
tk
e(β−σLσS)4t

∫ min(A,B)

−∞

1√
2π
e−

(z−σL
√
4t)2

2 dz.

Using change of variable u = z − σL
√
4t , we obtain

= ψK∗Φ (min(A,B))− ψS
σL
σS
tk
e(β−σLσS)4tΦ

(
min(A,B)− σL

√
4t
)

Finally, we deduce the result which yields the price, Ptk as follows:

Ptk = λK∗Φ
(
min(A,B)− σS

√
4t
)
−λS

σL
σS
tk
eβ4tΦ

(
min(A,B)− (σS + σL)

√
4t
)

+ψK∗Φ (min(A,B))− ψS
σL
σS
tk
e(β−σLσS)4tΦ

(
min(A,B)− σL

√
4t
)
.
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Cushion option is assumed to be bought at time tk for all k = 0, 1, ..., n − 1 if the
cushion value at time tk, Ctk is higher than the price of the cushion option at time tk,
Ptk . Since Ctk > Ptk , new portfolio value and cushion value at time tk are given by

V ∗tk = Vtk − Ptk
and

C∗tk = max{V ∗tk − Ftk , 0},

respectively. Therefore, the wealth process can be written as follows :

Since Ctk > 0 for all k = 0, 1, .., n− 1

Vtk+1
=

[
(V ∗tk −mC

∗
tk

)er4t +mC∗tk
Stk+1

Stk
+ γLtk+1

+ (K − (1− c)γLtk+1
)+

]
I{Stk+1

Stk
≤(1− 1

m
)er4t,Ctk>Ptk

}

+

[
(V ∗tk −mC

∗
tk

)er4t +mC∗tk
Stk+1

Stk
+ γLtk+1

]
I{Stk+1

Stk
>(1− 1

m
)er4t,Ctk>Ptk

}

+

[
(Vtk −mCtk)er4t +mCtk

Stk+1

Stk
+ γLtk+1

]
I{Ctk≤Ptk}

and since Ctk ≤ 0 for all k = 0, 1, .., n− 1

Vtk+1
= Vtke

r4t + γLtk+1
yields the value of the pension fund at tk+1.

For Ctk > 0, the wealth process between equidistant trading dates is defined as

Vt =

[
(V ∗tk −mC

∗
tk

)
Bt

Btk

+mC∗tk
St
Stk

]
I{Ctk>Ptk}+

[
(Vtk −mCtk)

Bt

Btk

+mCtk
St
Stk

]
I{Ctk≤Ptk}

and since Ctk ≤ 0 for all k = 0, 1, .., n− 1

Vt = Vtk
Bt

Btk

yields the value of the pension fund at tε(tk, tk+1).
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CHAPTER 5

Implementation

In order to indicate the influence of exotic option on CPPI-DC plans under certain as-
sumptions, we perform simulation analyses as the realization of real data requires long
years and market conditions, plan and country-specify characteristics may change. By
means of Monte Carlo simulation, CPPI strategy with cushion option and CPPI strat-
egy without cushion option are simulated and the performance levels of both strategies
are investigated under various market and DC plan assumptions. All analysis and runs
are coded via MATLAB.

In more detail, the scenarios of the simulations depending on many factors are expected
to expose sensivity analyses according to varying parameter values. As exotic options
can be short-term leverage in financial markets, their contributions are evaluated in two
basic terms :

(i) short-term which corresponds to the earliest time to terminate the pension plan
(T=3 years)

(ii) long-term at which the participants fulfill the retirement conditions (T=20 years).

The comparisons with respect to terms, parameters are perfomed based on the value of
the fund with exotic option (namely cushion option) and without cushion option.

Figure 5.1 and Figure 5.2 give us the outlook and the algorithm of proposed study, re-
spectively. In the main setup we define contributing parameters with selected constant
values except Strike price, K. We define two stochastic processes (Figure 5.1) to de-
termine the labor income and stock price. Then the algorithm determines the price of
the cushion option for different Strike prices, K at each fixed trading date. Next step
considers a CPPI scheme for each fixed trading date without and with cushion option
for each Strike price and finds the wealth for each case. Strike price, K which gives
the highest final wealth is chosen for the last step. The process ends with a compar-
ison of the setup with respect to cushion option and different values of contributing
parameters.
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Figure 5.1: The framework of developed methodology
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Define contributing parameters:
µS, σS,m, γ, c, µL, σL

Determine Labor income, Lt, and
Stock price, St, till termination date, T

Determine the price of cushion option
at each fixed trading date for different K

Set up CPPI scheme without and with cushion option
for different K and find the final wealth for each case

Compare results with respect to cushion option
and different values of contributing parameters

Figure 5.2: Alghoritm of the framework
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5.1 Numerical Implementation and Results

The portfolio strategies are numerically simulated for the set of parameters whose
values are summarized in Table 5.1. To keep the consistency with the study [32],
we choose the same valuse of the parameters except some adjustments on the interest
rate, r and market volatility, σS in order to be more realistic in cushion-option setup.

Table 5.1: Assumed values of parameters under discrete-time trading setting

Value
Interest rate, r 0.03
Stock parameters
Drift, µS 0.12
Volatility, σS 0.3
Labor income parameters
Drift, µL 0.06
Volatility, σL 0.09
Strike price, K 28
Contribution rate, γ 0.1
Guarantee rate, c 0.8
Multiplier, m 8
Time horizon , T (year) 3

It is required to determine optimal Strike price, K to take the advantage of cushion
option on CPPI strategy. In line with this requirement, Table 5.2 and 5.3 are obtained
for long term period of T=20 and short term period of T=3, respectively. The choice
of three years for short-term is made with respect to the most commonly official with-
drawal duration set by the life and pension insurance companies. Those tables show
the means and standard deviations of final wealth for CPPI strategy without cushion
option and CPPI strategy with cushion option under the various Strike prices, K for
a three-year period and a twenty-year period. According to Table 5.2, cushion option
is not a profitable choice for T = 20. Mean, E(VT ) and standard deviation, σ(VT ) of
final wealth for CPPI strategy are always higher than the mean, E(V c

T ) and standard
deviation, σ(V c

T ) of final wealth for CPPI strategy under cushion option for each Strike
price, K. Since CPPI strategy provides a downside protection, another protection for
shortfall risk is not effective for a long period such as 20-year.

At first glance, it is noticeable in the Table 5.3 that the means, as well as the standard
deviations, of CPPI portfolio under cushion option exceed the mean and standard de-
viation of CPPI portfolio. Overall, the mean of terminal value has an increasing trend
till Strike price, K equals to 26 and there is no significant difference on the mean of
terminal value between K = 26 and K = 28 and it decreases afterwards. This states
that the terminal value for short-term withdrawal profits the implementation of cush-
ion option for a certain strike price increment which reverses its impact after a certain
break-even point.
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Coefficient of variation (CV) of CPPI portfolio value under cushion option has the
highest value in the case of K = 28. Considering downside protection is provided by
CPPI strategy, higher standard deviation indicates a longer right tail of terminal wealth
distribution in spite of general consideration as a negative indicator of performance.
Therefore, we choose K = 28 for following analyses as a break-even point. It should
be noted that the CPPI-DC under cushion option set up performs well for short term
period. For this reason, the sensitivity to change in parameters is done for the case
when T=3 years.

Table 5.4 presents the sensitivity on strategy basis for T=3. Higher market volatility, σS
decreases the mean and standard deviation of terminal wealth under cushion option but
it has a positive effect on moments of terminal wealth for CPPI strategy. An increase
on the market drift, µS raise the terminal wealth for CPPI strategies. However, we
can not observe accurate information about its effect on the terminal wealth for CPPI
strategy under cushion option. A rise on labor income drift, µL, as well as labor income
volatility, σL, increases the moments of terminal wealth for CPPI strategy. Also, σL
enhances standard deviation of CPPI portfolio under cushion option. Increasing on
guarantee rate, c resulting in the higher floor has a negative effect on moments of both
strategies in the sense that small amount of wealth is invested in the risky asset and take
fewer potential gains on the upwards market move. By contrast, a raise on contribution
rate, γ enhances moments of both strategies. When the more amount of money is
invested in the risky asset, you can take more gains from increasing market. Higher
multiplier, m goes up the moments of CPPI portfolio but on the other hand higher m
decreases moments of CPPI strategy under cushion option. The gap risk increases in
the case of the high multiplier, m and therefore the value of cushion option depending
on gap risk raises. As expected, the high price of cushion option lower the profits.
Inversely, smaller multiplier, m decreases the gap risk in line with the price of cushion
option. For a small multiplier such as m = 4, the cushion option has no significant
effect on CPPI strategy.

It should be pointed out that the sensivity to parameters for long-run term (T=20) is not
presented here, as the scheme under with and without cushion options does not show
a significant improvement in the performance as mentioned before.
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Table 5.4: Distributional properties and sensitivity to parameters of CPPI portfolio
with and without cushion option under certain parameter values (T=3 years)

Parameter Value CPPI with cushion option CPPI without cushion option
E(V c

T ) σ(V c
T ) E(VT ) σ(VT )

σS

0.2 431.508 113.726 412.741 104.552
0.3 433.976 167.594 419.447 145.204
0.4 316.021 28.818 429.064 193.162

µS

0.06 440,022 160,056 409,316 137,258
0.12 433.976 167.594 419.447 145.204
0.24 492.873 185.398 443.149 162.276

σL

0.05 460.311 153.237 418.453 133.031
0.09 433.976 167.594 419.447 145.204
0.18 446.127 202.540 424.447 178.757

µL

0.03 448.795 167.489 413.301 143.476
0.06 433.976 167.594 419.447 145.204
0.1 465.646 170.197 427.774 147.566

c
0.7 464.508 168.321 423.167 154.487
0.8 433.976 167.594 419.447 145.204
0.9 356.907 32.644 413.288 119.968

γ
0.05 157.605 14.019 209.724 72.602
0.1 433.976 167.594 419.447 145.204
0.2 879.259 308.290 838.894 290.409

m

4 416.976 132.652 417.534 132.995
6 430.250 154.930 419.265 142.132
8 433.976 167.594 419.447 145.204

10 315.689 28.112 419.926 146.977
12 316.249 28.527 420.126 148.673
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(a) (b)

(c) (d)

Figure 5.3: Illustrative trajectories of CPPI portfolio-scheme
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Figure 5.3 presents trajectories of each strategy to illustrate the evolution of the portfo-
lio for both strategies. Taking a glance at graphs, portfolio value under cushion option
initially stands below the portfolio value of CPPI strategy due to hedging cost (a, b,
c, d). When the portfolio value drops below the floor, it recovers quickly by means of
cushion option and make benefits from increasing in the market (a, b, c). However,
portfolio value for CPPI strategy needs time to recover and can not make use of an
advantage of potential gains on the upwards move in the market (b, d).

(a) (b)

Figure 5.4: Short-term estimated kernel densities of final wealth for CPPI (a) under
cushion option; (b) under no cushion option

Figure 5.4 illustrates the tail properties and the distributional behaviour of terminal
portfolio value for both strategies. As clearly seen, CPPI strategy under cushion option
has longer right tail and higher frequency of higher terminal wealth value than CPPI
strategy. This illustrative distributional behaviour of both strategies supports the results
depicted on Table 5.4.
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CHAPTER 6

Conclusion

Fund management for DC pension plan is crucial topics for individuals and social
security systems. With respect to this, portfolio insurance is studied in the literature to
provide a downside protection for portfolio value. CPPI strategy with the random floor
is introduced by [32] is applied to DC pension plan under discrete-time trading setting.
Considering trading only takes place at predefined dates, the portfolio value can drop
below the floor between trading dates. Additionally, contribution at trading dates may
not be enough to push up the floor. Therefore, we propose a cushion option to reduce
this gap risk in this thesis. By means of Monte Carlo simulation, the effectiveness of
the cushion option on CPPI strategy is tested by comparing portfolio performance for
CPPI strategy with and without cushion option. To support the effectiveness of cushion
option, kernel densities are estimated for terminal wealth for both strategies.

This thesis has following contributions:

• The price of proposed cushion option is derived explicitly under discrete-time
setting with respect to the variance-optimal criterion.

• Numerical results obtained by Monte Carlo simulation indicates that CPPI strat-
egy under cushion option outperforms CPPI strategy in a short period such as
3-year in the sense that the moments of terminal wealth for CPPI strategy under
cushion option are higher than the moments of terminal wealth for CPPI strategy.

Even though CPPI strategy provides downside protection, a sudden drop in the market
may cause the portfolio value to drop below the floor. If remaining time before ter-
mination date is not enough for the portfolio value to recover, the investor faces the
risk that the portfolio value stays under the floor representing the acceptable minimum
portfolio value. Cushion option which is introduced in this thesis is shown to be a
profitable choice on DC pension plan such a long period for an investor who considers
early withdrawal.

As a future study our setup can be applied to hybrid pension scheme for reducing
funding shortfall which is prominent risk on calculation of reserve with respect to
Solvency II framework. Another research development would study how guarantee
rate, c may become optimal.

39



40



REFERENCES

[1] Balder, S., Brandl, M., Mahayni, A. (2009). Effectiveness of CPPI strategies under
discrete-time trading, Journal of Economic Dynamics and Control, 33, 204-220.

[2] Battochio, P., and Menoncin, F., (2004). Optimal pension management in a
stochastic framework. Insurance: Mathematics and Economics, 34, 79-95.

[3] Battocchio, P., Menoncin, F., and Scaillet, O., (2007). Optimal asset allocation
for pension funds under mortality risk during the accumulation and decumulation
phases,Annals of Operations Research,152 (1), p. 141-165.

[4] Bertrand, P., Prigent, J.-L. (2002). Portfolio insurance: the extreme value approach
to the CPPI. Finance 23 (2), 68-86 .

[5] Bertrand, P., Prigent,J.-L. (2003). Portfolio insurance strategies:a comparison of
standard methods when the volatility of the stock is stochastic. International Jour-
nal of Business 8 (4), 15-31.

[6] Bertrand, P., Prigent, J. L. (2005). Portfolio insurance strategies: OBPI versus
CPPI. Finance, 26, 5-32.

[7] Bingham, N., H. and Kiesel, R. (2004). Risk-neutral valuation:Pricing and Hedg-
ing of Financial Derivatives,2nd edition.

[8] Black, F., Jones, R. (1987). Simplifying portfolio insurance, The Journal of Port-
folio Management, p.48-51.

[9] Black, F., Perold, A. (1992). Theory of constant proportion portfolio insurance,
Journal of Economic Dynamics and Control, Volume 16, Issue 1992, Pages 403-
426.

[10] Blake, D. (1998). Pension schemes as options on pension fund assets: implica-
tions for pension fund management. Insurance: Mathematics and Economics, 23,
263-286.

[11] Blake, D., Cairns, A.J.G., Dowd, K., (2000). Optimal dynamic asset allocation
for defined-contribution pension plans. The Pension Institute, London, Discussion
Paper PI 2003.

[12] Boulier, J.F., Huang, S.J., and Taillard, G., (2001). Optimal management under
stochastic interest rates: the case of a protected defined contribution pension fund.
Insurance: Mathematics and Economics 28: 173-189.

[13] Cox, J., Ingersoll, J.E. and Ross, S.A. (1985). A theory of the term structure of
interest rates. Econometrica, 53, 385-408.

41



[14] Cont, R., Tankov, P., (2009). Constant proportion portfolio insurance in the pres-
ence of jumps in asset prices. Mathematical Finance 19 (3) , 379-401.

[15] Deelstra, G., Grasselli, M., Koehl, P.F., (2003). Optimal investment strategies in
the presence of a minimum guarantee. Insurance: Mathematics and Economics 33,
189–207.

[16] Deelstra, G., Grasselli, M. and Koehl, P.F. (2004). Optimal design of the guar-
antee for defined contribution funds. Journal of Economic Dynamics and Control,
28, 2239-2260.

[17] Duffie, D. and Kahn, R. (1996). A yield-factor model of interest rates. Mathemat-
ical Finance, 6, 379-406.

[18] Haberman, S. and Vigna, E. (2001). Optimal investment strategy for defined con-
tribution pension schemes. Insurance: Mathematics and Economics, 28 (2), 233-
262.

[19] Haberman, S. and Vigna, E. (2002). Optimal investment strategies and risk mea-
sures in defined contribution pension schemes. Insurance: Mathematics and Eco-
nomics, 31 (1), 35-69.

[20] Harrison, J., M., and Kreps, D., M. (1979). Martingales and Arbitrage in Multi-
period Securities Markets, Journal of Economic Theory, 20, 381-408.

[21] Horsky, R. (2012). Barrier option pricing and CPPI-optimization. unpublished
PhD thesis, TU Kaiserslautern.

[22] Klebaner, F., C. (2005). Introduction to Stochastic Calculus with Applications,
Imperial College Press.

[23] Lacroze, X., Paulot, L. (2011). One-dimensional pricing of CPPI, 18 (3), 207-
225.

[24] Mercurio, F., Vorst, T., C., F. (1996). Option pricing with hedging at fixed trading
dates, Applied Mathematical Finance, 3, 135-158.

[25] Perold, A., (1986). Constant Portfolio Insurance, Harvard Business School, un-
published manuscript.
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