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ABSTRACT

A UNIFIED EVALUATION OF STATISTICAL RANDOMNESS TESTS AND
EXPERIMENTAL ANALYSIS OF THEIR RELATIONS

Koçak, Onur

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Assist. Prof. Dr. Fatih Sulak

September 2016, 82 pages

Random numbers are used in many applications in our daily life. For instance, when
your mobile phone is registering a base station, base station sends a random num-
ber for authenticating your phone. Moreover, when logging in your e-mail or bank
account your browser and the server exchange random numbers while establishing a
handshake. Besides, encryption keys and IVs should be random so that no one can pre-
dict them without trying all possible values. The number of examples can be increased
from many fields including cryptography, information theory, simulation and quantum
theory.

Random number sequences are generated by the random number generators (RNG)1.
Deterministic RNGs should be tested to make sure that the output sequences are indis-
tinguishable from random sequences. Unfortunately, theoretic testing is not possible if
the output sequences have very obvious relations which is not a usual case. Therefore,
testing process is done statistically by applying randomness tests on the sequences and
the results are evaluated to conclude the non-randomness of the generator. For the de-
cision to be more reliable a set of tests called test suites are applied on the sequences.

Nearly all test suites uses the probabilities derived from the approximations of the
distribution functions of the tests. As the approximations work for longer sequences,

1 Throughout this thesis, random number generator name will also cover random sequence generators.
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testing short sequences like keys or IVs becomes infeasible. Moreover, the relations
among the tests, which affect the decision on the sequence or the generator, are not
measured in any suite.

In this thesis, we examine the statistical randomness tests in the literature. We select
the tests which are based on mathematical background and are important measures for
randomness. Then, we review the distribution functions of these tests to compute the
actual probability values. Moreover, we give recursions for the tests whose probability
values cannot be computed for longer sequences. Afterwards we find the correlations
between the tests and make a classification accordingly. Then, we give some rule of
thumbs for designing a test suite and build a test suite consisting of the examined tests.

Keywords : Statistical Randomness Tests, Distribution Functions, Test Suites, Correla-
tion, Classification
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ÖZ

ISTATİKSEL RASTGELELİK TESTLERİNİN B UT UNLEŞİK BİR
DEĞERLENDİRMESİ VE ARALARINDAKİ İLİŞKİLERİN DENEYSEL

ANALİZİ

Koçak, Onur

Doktora, Kriptografi

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Fatih Sulak

Eylül 2016, 82 sayfa

Rastgele sayılar günlük hayatta birçok uygulamada kullanılmaktadır. Örneğin, cep
telefonunuz bir baz istasyonuna bağlanacağı zaman, baz istasyonu telefonunuzu doğrulamak
için bir rastgele sayı gönderir. E-postalarını kontrol etmek için internet sitesine giriş
yaparken bilgisayarınız ve e-posta sunucusunun el sıkışması sırasında aralarında rast-
gele sayılar gönderirler. Bunu yanı sıra, şifreleme anahtarları ve ilk değerlerin de
üçüncü kişilerin tahmin edememeleri için rastgele olması gerekmektedir. Kriptografi,
bilgi teorisi, simülasyon ve kuantum teorisi gibi alanlarda benzer örneklerin sayısı
artırılabilir.

Rastgele sayı dizileri rastgele sayı üreteçleri(RSÜ) tarafından üretilirler. Belirsizlikleri
düşük olan RSÜlerin çıktılarının rastgele dizilerden ayırt edilemez olduğundan emin
olmak için test edilmeleri gerekmektedir. Ancak, bu testler teorik olarak gerçekleştirilemezler.
Bu sebeple, testler, çıktılar üzerine istatistiksel rastgellik testleri uygulanarak yapılır
ve sonuçları değerlendirilir. Sonucun güvenilir olması için birden çok test içeren test
paketleri kullanılmaktadır.

Neredeyse bütün test paketleri testlerin dağılım fonksiyonları için yaklaşımlar kul-
lanırlar. Ancak, yaklaşımlar uzun diziler için doğru sonuç verdikleri için, testler de
uzun diziler üzerinde çalışmakta ve şifreleme anahtarları ya da ilk değerler gibi kısa
dizilerin test edilmesi mümkün olmamaktadır. Bununla birlikte, testler arasındaki
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ilişkiler hiçbir pakette ölçülmemiştir.

Bu tezde literatürdeki istatistiksel rastgelelelik testleri incelenmiş, matematiksel bir
tabana oturan ve istatistiki olarak anlamlı olan testler seçilmiştir. Seçilen testlerin
dağılım fonksiyonları incelendikten sonra yaklaşım değerleri yerine gerçek değerlerden
oluşan olasılık değerleri elde edilmiştir. Bu değerlerden uzun diziler için hesaplan-
ması uygulanabilir olmayanlar için tekrarlamalı formüller verilmiştir. Ardından testler
arasındaki ilişkiler incelenmiş ve buna göre testlerin sınıflandırılması yapılmıştır. Son
olarak test paketleri oluşturulurken takip edilmesi gereken kurallardan bahsedildikten
sonra seçilen testlerden bir test paketi oluşturulmuştur.

Anahtar Kelimeler : İstatistiksel Testler, Dağılım Fonksiyonu, Test Paketleri, Kore-
lasyon, Sınıflandırma
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Doğanaksoy for his invaluable guidance and enthusiastic encouragement throughout
this thesis.

I wish to express my sincere appreciation to my co-supervisor Asst. Prof. Dr. Fatih
Sulak for many interesting ideas, advices and guidance. This work would not be com-
pleted without his help. My gratitude is extended to Dr. Muhiddin Uğuz for his sug-
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A final thank goes to my daughter İdil for waiting patiently to be born until my presen-
tation.

The generous financial support of the Scientific and Technological Research Council

of Turkey (TUBITAK) Graduate Scholarship no. 2211 is gratefully acknowledged.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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CHAPTER 1

INTRODUCTION

Random numbers are used in many applications in our daily life. For instance, when
your mobile phone is registering a base station, base station sends a random number.
Moreover, when logging in your e-mail or bank account your browser and the server
exchanges random numbers while authenticating each other. An encryption key should
be random so that no one can predict the key without trying all the possible values. The
number of applications can be increased from many fields including cryptography,
information theory, simulation and quantum theory.

In this work, we deal with random number sequences. These sequences satisfy should
the following criteria.

Let σ be a sequence with terms from the set T such that |T| = m. Then,

• each element should occur with probability 1
m

,

• even if the first t terms of the sequence is known, the t+1st term can be predicted
with probability 1

m
, again,

• the elements of the set T should be distributed uniformly among the sequence.

The random number sequences are generated by the random number generators (RNG)1.
These generators produce unpredictable data by using one or more sources of random-
ness. RNGs can be classified in two groups according to their source of randomness.
A RNG that requires an input called seed and generates output by algorithmically pro-
cessing this seed is called a pseudo-random number generator (PRNG). PRNGs are
deterministic generators and same input parameters yield the same output. In addition
to the PRNGs, generators that use unpredictable events as the source of randomness
are called truly random number generators(TRNG). A TRNG uses physical data
sources like coin flipping, radioactive decay, stratospheric noise etc. TRNGs are non-
deterministic generators. As the input source is not in control of the user and it is
not possible to get exactly the same parameters with a previous generation, an output
sequence cannot be regenerated. The singularity of the output is an important require-
ment from the security point of view, but, there are some situations where it is adopted

1 Throughout this thesis, random number generator name will also cover random sequence generators.
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to regenerate the sequence. For instance, instead of transmitting a long random se-
quence over a secure channel, it is more practical and preferable to send just the seed
and generate the sequence in the receiving party. Also, TRNGs are very expensive de-
vices in terms of execution and applicability. For these reasons, PRNGs are preferred
to TRNGs.

Since PRNGs are deterministic generators, they should be tested to make sure the out-
put sequences are indistinguishable from random sequences. Unfortunately, theoretic
testing is not possible if the output sequence has very obvious relations which is not
a usual case. Therefore, testing is done statistically using randomness tests and the
results are evaluated to conclude the non-randomness of the generator.

A statistical test examines certain characteristics of the sequence, compares the result
to those in random sequences and produces a p-value. P-value, in the context of this
thesis, is the probability of obtaining the observed or more extreme results when the
sequence is random and it is a real number between 0 and 1. If the p-value is be-
low a pre-determined limit significance level α, the sequence is concluded to be non-
random. Otherwise, the sequence cannot be considered random; the results indicate
that the sequence possesses the tested property as expected from a random sequence.
Moreover, by definition, sequences with a p-value less then α occurs with probability
α. Therefore, one expects to observe t × α such sequences if t sequences are tested.
That is, a single sequence with p-value less than α cannot be regarded as a sign of
non-randomness of the generator or the sequence set.

As a statistical test checks a single property, in order to decide on the randomness of
a sequence, sequence set or a generator, one needs to run multiple tests on the data.
For this purpose, test suites that cover a set of tests are composed. There are many
statistical test suites in the literature like Knuth[1], NIST[2], Test-U01[3], Diehard[4],
Dieharder[5], Crypt-X[6] etc. Among these suites, one of the mostly considered and
used was developed by NIST [1]. NIST Test Suite consists of 15 statistical randomness
tests and has been used in many applications. For example, in evaluation of AES
candidate algorithms, one of the criteria was the performance of the algorithms as
pseudo random number generators. NIST test suite was used to determine the number
of rounds at which the algorithms behave like a PRNG, to understand the security level
of the algorithms roughly[7].

Designing a test suite is an important task and some rule of thumbs should be fol-
lowed. On the one hand coverage of a suite should be wide, that is it should compare
the sequence under consideration in many different points of view with true random
sequences. On the other hand, an over populated suite is not far away from being ex-
pensive in terms of running time and computing power. Unfortunately, this trade-off
is ignored in most of the suites in use. There are approximately 50 distinct statistical
randomness tests in the literature and each test suite collects a number of them without
any reasoning and further examination.

With the motivation of designing a proper test suite, we examine the statistical ran-
domness tests in the literature. We select the ones that are based on a mathematical
background and important measure for randomness among the ones with calculable
distribution functions. Then, we review the distribution functions of these tests and
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present the distribution functions with actual probability values instead of approxima-
tions. When the actual values are not feasible to compute we present recursions which
are computationally feasible, at least, up to 4096 bits. We redefine some tests in order
to improve the sensitivity. Besides, we present new statistical randomness tests. We
define correlation detection methods and compute the correlations between selected
tests. According to the correlations, we classify these tests. We give the essential steps
in designing a test suite and build a test suite following these steps.

First we give preliminary information below. In Section 2, we give short and detailed
descriptions of the selected tests. Then, in Section 3, we study the correlations and
classifications of these tests. In Section 4, we give the important steps in test suite
design and construct a test suite using the tests mentioned in this thesis.

1.1 Preliminaries

1.1.1 Test Steps

By “to choose a binary sequence of a given length n randomly”, we understand “to
choose a binary sequence among all 2n such sequences with probability 1

2n
” or equiv-

alently, “to determine each term of the sequence to be either 0 or 1 with equal proba-
bilities, being independent of the other terms of the string”. We call a collection which
consists of randomly chosen strings a random collection. We discuss how to decide
whether a given collection of binary sequences is random or not.

The number of sequences for which the random variable assumes a particular value
can be computed theoretically (to obtain the expected value), and also can be counted
actually (to obtain the observed value). To decide whether a given collection is random
or not, we develop a strategy which is based on the comparison of the expected and
observed values.

Let Ωn be the set of all binary strings σ = s1s2 · · · sn of length n and let Σ be a col-
lection which consists of N random sequences σ1, . . . , σN . A statistical test which
decides whether the collection Σ is random or not, is constructed by the following six
steps.

PHASE 1 - SET-UP

Step 1. Define a test function.

• For the experiment of choosing a string σ ∈ Σ randomly, define a random vari-
able T : Ωn → T where T is a finite subset of integers.

Step 2. Find the probability distribution function.
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• For each fixed n, compute the probability distribution function Fn

Fn : T→ [0, 1]

Fn(k) = Prob(T ≤ k).

• In certain cases it may turn out to be infeasible to evaluate the probability dis-
tribution function directly at a pair of given integers n and k. In such a case,
recursive relations are much practical than computing the explicit expression.

Step 3. Partition the set T.

• Let Tmin and Tmax be the minimum and maximum values, respectively, that the
random variable T can assume.

• Fix an integerλ ≥ 2, put T0 = Tmin and Tλ = Tmax and choose T1, T2, . . . , Tλ−1 ∈
T such that T0 ≤ T1 < · · · < Tλ−1 < Tλ.

• Let B1 = {T ∈ T|T0 ≤ T ≤ T1} and for i = 2, . . . , λ let Bi = {T ∈ T|Ti <
T ≤ Ti} . Thus we obtain a partition B1, B2, . . . , Bλ of T. We refer to each part
of this partition as a bin. The minimum and maximum t-values in a bin will be
called respectively, the lower and upper bounds of that bin.

Step 4. Compute the expected number of sequences in each bin.

• For each bin Bi, i = 1, . . . , λ compute the probability Wi that the t-value of a
random sequence is contained in that bin:

W1 = F (T1)

W2 = F (T2)− F (T1)
...

Wλ = F (Tλ)− F (Tλ−1)

• Compute the expected number Ei of sequences σ ∈ Σ such that T (σ) ∈ Bi, that
is,

Ei = N ·Wi

for i = 1, . . . , λ.

• For the χ2 test (applied at the last step) to be sensitive, minimum of these ex-
pected values should be at least 5.

PHASE 2 - APPLICATION
Step 5. Compute the observed values.
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• For i = 1, . . . , λ compute Oi, the number of strings σ ∈ Σ for which T (σ) ∈ Bi,
that is

Oi = |{σ ∈ Σ|T (σ) ∈ Bi}|.

Step 6. Compute the p-value.

• The random variable χ2
T defined on ΩN by setting

χ2
T =

k∑
i=1

(Oi − Ei)2

Ei

is a χ2 distributed variable with degree of freedom being λ− 1.

• We define the p-value of the test to be

PT = χ2(χ2
T , λ− 1).

• It may be the case that a test function produces more than one p-value, say
PT1 , . . . , PTu . In such a case we take

PT = 1− (1−min(PT1 , . . . , PTu))1/u

as the p-value of the test.

First two steps constitute the theoretical background of the test where we compute the
necessary quantities and probability distribution functions. In the third and fourth steps
necessary preparations for the χ2 test are considered. Last two steps describe how the
test is to be applied for a given collection.

In the remaining part of this section we will define a number of test functions. For each
test function the probability distribution function will be given explicitly together with
the theoretical background (Steps 1 and 2). Whenever it is necessary, we will provide
recursive relations by which the required figures can be computed efficiently.

The number and bounds of bins can be chosen in many different ways (Steps 3 and
4). For the sequences of length 64 to 4096 we will suggest a reasonable choice for the
number of bins and other parameter values if the test uses any. We will also provide
bounds for bins corresponding to n = 128 bits.

1.1.2 Conversion from Binary to Integer

Some tests given in this thesis requires integer valued sequences. However, if the
sequence is binary, one can convert this sequence as follows. Let σ be a binary and
b be the required integer size for the test. Then, the converted sequence σ̃ will be
σ̃ = u1, . . . , ul where ui is the integer whose binary representation is the subsequence
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s(i−1)b+1s(i−1)b+2 · · · sib, ie ui =
∑b

j=1 2b−js(i−1)b+j with l = bn/bc, M = 2b and
ui ∈ {0, 1, . . .M − 1}, i = 1, . . . , l. For example if σ = 0011011001110 then σ̃ =
(001)2(101)2(100)2(111)2 = 1, 5, 4, 7 is the 3-bit representation of σ.

In some cases an overlapping conversion is required. In this case, the binary represen-
tation of ui will be sisi+1 · · · si+b−1.

If the tested sequence is an integer sequence with a distinct integer bit size, then one
can convert this sequence to binary first, and then to the required bit-length integer
sequence using the above mentioned conversion.

1.1.3 Conversion from Binary to ±1Sequence

Random excursion tests operates on the ±1 correspondence of the binary sequences.
For this purpose, the sequences should be converted to ±1 equivalents. Let σ be a
binary sequence st σ = s1s2 . . . sn. Then, σ̂, the corresponding ±1 sequence is σ̂ =
(−1)s1(−1)s2 . . . (−1)sn .

For example, if σ = 0011011001110 then σ̂ = (−1)0(−1)0(−1)1(−1)1(−1)0(−1)1

(−1)1 (−1)0 (−1)0(−1)1 (−1)1(−1)1(−1)0 = 1, 1,−1,−1, 1,−1,−1, 1, 1,−1,−1,−1, 1
is the new representation of σ.

1.1.4 Test Setup

In the experiments conducted for this thesis, we follow the below steps:

1. Fix a 128-bit key K and generate 10.000× 1000 sequences by σi = AESK(Pi)
where (Pi)10 = i.

2. For each set of 1000 sequences apply the tests and get tests value from each test.

3. Using the test values of 1000 sequences compute the p-value.

4. Repeat Step 3 10.000 times and produce 10.000 p-values for each test.
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CHAPTER 2

STATISTICAL TESTS REVISITED

For this work, we examine the statistical randomness tests in the literature. We se-
lect the tests that are based on a mathematical background and important measure
for randomness among the ones with calculable distribution functions. These tests
are frequency test, run test, longest run test, linear complexity and linear complexity
profile test, random excursion test, random height test, template matching test, inte-
ger frequency test, integer maximum test, saturation test(coupon collector), repetition
test and universal test. Then, we review the distribution functions of these tests and
present the distribution functions with actual probability values instead of approxima-
tions. When the actual values are not feasible to compute we present recursions which
are computationally feasible, at least, up to 4096 bits.

We redefine some tests in order to improve the sensitivity and present new statistical
randomness tests. For instance, the run test, which checks the number of total runs
in a sequence appears in many test suites. However, besides checking the total runs,
following the Golomb’s approach [8], it is more convenient to check the number of
runs of length 1, 2, 3 and so seperately. Therefore, we calculate the probabilities for
the number of runs of length r with r = 1, 2, 3, 4, 5 and r > 5, and define as a test
named the number of runs of length r.

Another test derived from the Golomb’s postulates is the autocorrelation test. We
define autocorrelation function and provide the details in this section.

Linear complexity is an important measure for randomness. Therefore, we include
linear complexity and linear complexity profile tests in our test set. Besides, we present
two new tests, pseudo-complexity and pseudo-complexity profile, which have the same
distribution functions with linear complexity counterparts and simpler to apply.

We review the random excursion and random excursion height tests given in the NIST
Test Suite [2] and present the actual probability values using a new approach. Similarly,
as the distribution function of overlapping template matching test in the NIST Test
Suite is known to be faulty [9][10], we use the probabilities for 4-bit templates from
[11].

For the remaining tests the actual probability values are calculated and recursions for
efficient computation of the probabilities are given, if necessary.
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In this chapter we give the definitions of selected tests in two formats. The first form
gives just the necessary information about the tests, what they measure, gives sug-
gested parameters and probability values for 128 bits. Also, a recursion is given if the
computation of the probability is infeasible for values up to 4096. The second form is
the detailed descriptions of the tests given in the first section. The detailed descriptions
present how the distribution functions, and if exist recursions, are calculated.

2.1 Short Definitions

In this section, brief definitions of selected statistical randomness tests are given in an
easy to follow format. The aim of this section is to give necessary information to those
who needs the only the information to apply the tests. The details of the test, derivation
of test functions and useful recursions are given in Section 2.2.

2.1.1 Weight Test

Definition

T = T (σ) is the number of 1’s in the sequence:

T =
n∑
i=1

si,

T = {0, 1, . . . , 2n}, Tmin = 0 , Tmax = 2n.

For example, if σ = 0011011001110 then the weight of the sequence is 7.

Probability distribution function

Fn(k) = 2−n
k∑
i=0

(
n

i

)
(2.1)

Useful recursions

Initial values:
F1(0) = 1, F1(1) =

1

2
.

For n ≥ 2 and k = 0

Fn(0) =
1

2
Fn−1(0).
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For n ≥ 2 and k ≥ 1

Fn(k) =
1

2
[Fn−1(k) + Fn−1(k − 1)].

we naturally assume that Fn(k) = 1 whenever k ≥ n.

Suggested parameter values

For any 64 ≤ n ≤ 4096 we can use λ = 8 bins.

Bounds and corresponding probabilities of bins

The bin values for n = 64, 128 are given in Tables 2.1 and 2.2 respectively.

Table 2.1: Weight test bin probabilities for n = 64

i 1 2 3 4 5 6 7 8
Ti 25 27 28 29 31 32 34 64
Ei 0,09966 0,12153 0,08339 0,09489 0,20224 0,09462 0,15123 0,15244

Table 2.2: Weight test bin probabilities for n = 128

i 1 2 3 4 5 6 7 8
Ti 55 58 60 61 63 65 68 128
Ei 0,10505 0,13217 0,12326 0,06879 0,14195 0,13319 0,15412 0,14147

2.1.2 Number of Total Runs Test

Definition

A run is defined as an uninterrupted sequence of identical bits[2]. For example, in the
sequence σ = 0011011001110, there are 7 runs: 00− 11− 0− 11− 00− 111− 0.

T = T (σ) is the number of runs in the sequence.

T = {0, 1, . . . , n− 1}, Tmin = 0 , Tmax = n− 1.

Probability distribution function

The probability distribution function of number of runs is
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Fn(k) = 2−n+1

k∑
i=0

(
n− 1

i− 1

)
.

Useful recursions

Initial values:
F1(0) = 0, F1(1) = 1.

For n ≥ 2 and k = 1

Fn(0) =
1

2
Fn−1(0).

For n ≥ 2 and k ≥ 2

Fn(k) =
1

2
[Fn−1(k) + Fn−1(k − 1)].

we naturally assume that Fn(k) = 1 whenever k ≥ n.

Suggested parameter values

For any 64 ≤ n ≤ 4096 we can use λ = 8 bins.

Bounds and corresponding probabilities of bins

The bin values for n = 64 and n = 128 are given in Tables 2.3 and 2.4 respectively.

Table 2.3: Number of total runs test bin values for n = 64

i 1 2 3 4 5 6 7 8
Ti 25 27 28 29 31 32 34 64
Ei 0,09966 0,12153 0,08339 0,09489 0,20224 0,09462 0,15123 0,15244

Table 2.4: Number of total runs test bin values for n = 128

i 1 2 3 4 5 6 7 8
Ti 56 59 61 62 64 66 69 128
Ei 0,10698 0,13197 0,12243 0,13860 0,13860 0,12243 0,13197 0,10698

2.1.3 Runs of Length r Tests

Definition
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This test outputs a test value and a p−value for each run length r ∈ {1, 2, 3, 4, 5} and
r > 5.

Tr = Tr(σ) is the number of runs of length r in σ:

Tr(σ) = number of runs of length r

T = {0, . . . , bn
r
c}, Tmin = 0, Tmax = bn

r
c.

In this work we take r = 1, 2, 3, 4, 5 and r > 5. Considering the sample sequence
σ = 0011011001110, there are 2 runs of length 1, 4 runs of length 2 and a run of
length 3. There are no runs of length 4 or 5.

To avoid confusions, we name each test as Run-r wwhich measure the number of runs
of length r.

Probability distribution function

Let Cr(n, k) be the number of n bit sequences which include k runs of length r. Then;

P (Tr = k) = 2−n+1

( n∑
i=1

Cr(n− i, k)− Cr(n− r, k) + Cr(n− r, k − 1)

)
(2.2)

Useful recursions

Cr(n, k) = 2Cr(n−1, k)−Cr(n−r, k)+Cr(n−r−1, k)+Cr(n−r, k−1)−Cr(n−r−1, k−1)
(2.3)

Suggested parameter values

No parameters are suggested.

Bounds and corresponding probabilities of bins

The bin values and probabilities for n = 64, 128 and 4096 are given below.

2.1.4 Longest Run Test

Definition

T = T (σ) is the length of the longest run in the sequence.

T = {0, 1, . . . , n}, Tmin = 0 , Tmax = n.
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Table 2.5: Bin boundaries and corresponding probabilities of Runs of length k =
1, 2, 3, 4, 5 and k > 5 for n = 64.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 Bin-6 Bin-7 Bin-8

Run-1 Ti 10 12 14 15 17 18 21 64
Ei 0,084674 0,105409 0,152089 0,086789 0,174560 0,079882 0,181243 0,135355

Run-2 Ti 4 5 6 7 8 9 10 32
Ei 0,078765 0,082579 0,118070 0,142894 0,149094 0,135925 0,109362 0,183310

Run-3 Ti 1 2 3 4 5 6 7 22
Ei 0,070597 0,137228 0,204320 0,216732 0,173893 0,109353 0,055106 0,032772

Run-4 Ti 0 1 2 3 16
Ei 0,117560 0,274326 0,294674 0,192801 0,120639

Run-5 Ti 1 2 12
Ei 0,358654 0,389813 0,251532

Run-5+ Ti 26 29 31 33 35 37 64
Ei 0,100698 0,171629 0,169352 0,184659 0,162041 0,112863 0,098758

Table 2.6: Bin boundaries and corresponding probabilities of Runs of length k =
1, 2, 3, 4, 5 and k > 5 for n = 128.

Bin-1 Bin-2 Bin-3 Bin-4 Bin-5 Bin-6 Bin-7 Bin-8

Run-1 Ti 24 27 29 31 33 36 39 128
Ei 0,099982 0,119213 0,108184 0,122274 0,124762 0,167098 0,122133 0,136354

Run-2 Ti 11 13 14 15 16 18 19 64
Ei 0,105171 0,141532 0,094448 0,103772 0,106022 0,191194 0,075396 0,182464

Run-3 Ti 4 5 6 7 8 9 10 43
Ei 0,077486 0,085723 0,124208 0,150293 0,154855 0,137851 0,107208 0,162376

Run-4 Ti 1 2 3 4 5 6 7 32
Ei 0,076203 0,141979 0,205089 0,212690 0,168575 0,106134 0,054467 0,034863

Run-5 Ti 0 1 2 3 25
Ei 0,124340 0,274874 0,286809 0,187762 0,126214

Run-5+ Ti 56 59 61 63 65 67 70 128
Ei 0,125678 0,126039 0,112692 0,127158 0,129267 0,118009 0,134873 0,126283

Probability distribution function

Let Cr(n, k) be the number of n bit sequences which include k runs of length r. Then;

P (T = t) = 2−n+1Ct(n, 0) (2.4)

Useful recursions

No recursions are required.

Suggested parameter values
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No parameters are required.

Bounds and corresponding probabilities of bins

The bin boundries and probabilities are given in the following tables.

Table 2.7: Bin boundaries and corresponding probabilities of Longest Run test for
n = 64 bits.

i 1 2 3 4 5 6
Ti 4 5 6 7 8 64
Ei 0,253773 0,256119 0,174412 0,099541 0,105145 0,110646

Table 2.8: Bin boundaries and corresponding probabilities of Longest Run test for
n = 128 bits.

i 1 2 3 4 5 6
Ti 5 6 7 8 9 128
Ei 0,121542 0,244832 0,248288 0,173365 0,101326 0,110646

2.1.5 Linear Complexity Test

Definition

T = T (σ) is the length of the shortest LFSR that generates the sequence σ. The linear
complexity is calculated via Berlekamp-Massey Algorithm [12] [13].

T = L(σ).

T = {0, . . . , n}, Tmin = 0, Tmax = n.

Probability distribution function

Prob(T = l) =

{
2min(2n−2L,2L−1)−n if n ≥ L > 0
2−n if L = 0

Useful recursions

Let Nn(L) be the number of sequences of length n with linear complexity L. Then,

Nn(L) =

 2Nn−1(L) +Nn−1(n− L) n ≥ L > n
2

2Nn−1(L) L = n
2

Nn−1(L) n
2
> L ≤ 0
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Suggested parameter values

It is suitable to use λ = 6 bins.

Bounds and corresponding probabilities of bins

The bin bounds and corresponding probabilities are given in Table 2.10 and Table 2.9.

Table 2.9: Linear complexity test bin probabilities for n = 64

i 1 2 3 4 5 6
Ti 30 31 32 33 34 Rest
Ei 0.03125 0.125 0.5 0.25 0.0625 0.03125

Table 2.10: Linear complexity test bin probabilities for n = 128

i 1 2 3 4 5 6
Ti 62 63 64 65 66 Rest
Ei 0.03125 0.125 0.5 0.25 0.0625 0.03125

2.1.6 Linear Complexity Profile Test

Definition

Let σi→j be the subsequence of length j − i + 1 that starts from si and ends with sj ,
inclusive. Then, T = T (σ) is the number of distinct terms in the linear complexity
profile sequence.

T (σ) = |{LPi|LPi = LC(σ1→i)}|.

T = {0, . . . , n
2
}, Tmin = 0, Tmax = n

2
.

Probability distribution function

For even n,

Prob(T = p) =


3 · 2−n if p = 1

(3
∑n/2

i=2 2i + 1)2−n if p = 2

(3
∑n/2

i=2 2i
(
i−3
p−2

)
)2−n if p > 2
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Useful recursions

No recursions are needed.

Suggested parameter values

In this test, we suggest to use λ = 10 bins.

Bounds and corresponding probabilities of bins

Table 2.11: Linear complexity profile test bin probabilities for n = 128

i 1 2 3 4 5 6 7 8 9 10
Ti 25-27 28-29 30 31 32 33 34 35 36-37 Rest
Ei 0.0878467 0.1263326 0.0844256 0.0946567 0.0996953 0.0986497 0.0917094 0.0800892 0.1162605 0.1203343

2.1.7 Pseudo Complexity Test

Definition

T = T (σ) can be defined as the ”1”s complexity of the sequence. The pseudo-
complexity is calculated similar to the linear complexity where the ith next discrepancy
is equal to 1 if si = 1, zero otherwise.

Ψi+1 =

 Ψi if Ψi >
n
2

Ψi if Ψi ≤ n
2

and si = 0
Ψi if Ψi ≤ n

2
and si = 1

The distribution function of pseudo-complexity test is same with the linear complexity,
however, it is easier to apply this test than linear complexity test.

T = Ψ(σ).

T = {0, . . . , n}, Tmin = 0, Tmax = n.

Probability distribution function

Prob(T = l) =

{
2min(2n−2L,2L−1)−n if n ≥ L > 0
2−n if L = 0
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Useful recursions

Let Nn(L) be the number of sequences of length n with pseudo complexity L. Then,

Nn(L) =

 2Nn−1(L) +Nn−1(n− L) n ≥ L > n
2

2Nn−1(L) L = n
2

Nn−1(L) n
2
> L ≤ 0

Suggested parameter values

It is suitable to use λ = 6 bins.

Bounds and corresponding probabilities of bins

The bin bounds and corresponding probabilities are given in Table 2.12 and Table 2.13.

Table 2.12: Pseudo-complexity test bin probabilities for n = 64

i 1 2 3 4 5 6
Ti 30 31 32 33 34 Rest
Ei 0.03125 0.125 0.5 0.25 0.0625 0.03125

Table 2.13: Pseudo complexity test bin probabilities for n = 128

i 1 2 3 4 5 6
Ti 62 63 64 65 66 Rest
Ei 0.03125 0.125 0.5 0.25 0.0625 0.03125

2.1.8 Pseudo Complexity Profile Test

Definition

Let σi→j be the subsequence of length j − i + 1 that starts from si and ends with sj ,
inclusive. Then, T = T (σ) is the number of distinct terms in the pseudo complexity
profile sequence.

T (σ) = |{LPi|LPi = LC(σ1→i)}|.

T = {0, . . . , n
2
}, Tmin = 0, Tmax = n

2
.
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Probability distribution function

For even n,

Prob(T = p) =


3 · 2−n if p = 1

(3
∑n/2

i=2 2i + 1)2−n if p = 2

(3
∑n/2

i=2 2i
(
i−3
p−2

)
)2−n if p > 2

Useful recursions

No recursions are needed.

Suggested parameter values

In this test, we suggest to use λ = 10 bins.

Bounds and corresponding probabilities of bins

Table 2.14: Pseudo complexity profile test bin probabilities for n = 128

i 1 2 3 4 5 6 7 8 9 10
Ti 25-27 28-29 30 31 32 33 34 35 36-37 Rest
Ei 0.0878467 0.1263326 0.0844256 0.0946567 0.0996953 0.0986497 0.0917094 0.0800892 0.1162605 0.1203343

2.1.9 Random Excursion Tests

Definition

For random excursion tests, the sequence should be converted to the corresponding±1
sequence by following the conversion given in Section 1.1.3. Let the partial sums of
the ±1 sequence σ̂ sequence be Si =

∑i
1 s̃i. Then T = T (σ) is the number times the

partial sum of the sequence equals c:

T (σ) = |{i|Si = c where Si =
i∑
s̃i, i ∈ {1, 2, . . . , n}}|,

T = {0, . . . , n
2
}, Tmin = 0, Tmax = n

2
.

In this work c is taken to be 0,±1,±2,±3.
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Considering the sample sequence σ = 0011011001110, the partial sums of correspond-
ing±1 sequence will be 1,2,1,0,1,0,-1,0,1,0,-1,-2,-1. The partial sum is equal to 0 four
times, 1 three times and so on.

Probability distribution function

The probability distribution is given as a recursion.

Useful recursions

Let xt(n, k) be the number of strings of length n which have intersect the line y = t
exactly at k distinct points. Then

xt(n, k) = xt−1(n+ 1, k)− xt−2(n, k).

The probability values can be calculated by dividing xt(n, k) by 2n.

Suggested parameter values

No parameters are required.

Bounds and corresponding probabilities of bins

The probability values for n = 128 and y = 1, 2, 3 are given below.

Table 2.15: Bin values and probabilities for n = 128, y = 1 and y = −1

i 1 2 3 4 5 6 7 8
Ti 1 3 5 7 9 12 16 64
Ei 0,140772 0,138555 0,131984 0,121481 0,107849 0,132083 0,119493 0,107782

Table 2.16: Bin values and probabilities for n = 128, y = 2 and y = −2

i 1 2 3 4 5 6 7 8
Ti 0 2 4 6 8 11 15 64
Ei 0,139689 0,137524 0,131103 0,120833 0,107487 0,132098 0,120326 0,110939

2.1.10 Random Excursion Height Test

Definition
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Table 2.17: Bin values and probabilities for n = 128, y = 3 and y = −3

i 1 2 3 4 5 6 7 8
Ti 0 2 4 6 9 12 64 64
Ei 0,208993 0,134829 0,126409 0,114484 0,144037 0,107825 0,163423 0,110939

First the sequence σ is converted to the ±1 sequence using the conversion given in
Section 1.1.3

Let Si =
∑i

1 ŝi. Then T = T (σ) is the maximum value of the partial sum of the ±1
sequence σ̂:

T (σ) = max{Si} st. Si =
i∑
ŝi i = 1, 2, . . . , n

T = {0, . . . , n}, Tmin = 0, Tmax = n.

Considering the sample sequence σ = 0011011001110, the partial sums of correspond-
ing ±1 sequence will be 1,2,1,0,1,0,-1,0,1,0,-1,-2,-1. The maximal value of the partial
sum sequence is 2.

Probability distribution function

The probability distribution is given as a recursion.

Useful recursions

Let ht(n) be the number of strings of length n whose excursions intersects y = t line
at its highest point. Then

ht(n) = ht−1(n− 1) + ht+1(n− 1)

The probability values can be calculated by dividing ht(n) by 2n.

Suggested parameter values

No parameters are required.

Bounds and corresponding probabilities of bins
The probability values for n = 128 are given below.
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Table 2.18: Random Excursion Height Test bin values and probabilities for n = 128

i 1 2 3 4 5 6 7 8
Ti 1 3 5 7 9 12 16 128
Ei 0.13968932 0.13545631 0.12736937 0.11613089 0.10266644 0.12824778 0.11781508 0.13262480

2.1.11 Template Matching Test

Definition

T = T (σ) is the frequency of a predefined template B in σ:

T (σ) = {(si, si+1, si+2, si+3) st sisi+1si+2si+3 = B and i = 1, 2, . . . , n with sn+i = si}.

T = {0, 1, . . . ,M}, Tmin = 0, Tmax = M.

For example, if σ = 0011011001110 and B = 011 then the number of matches for B is
3: 0 | 0 1 1||0 1 1|0|0 1 1|10. Note that the counting is done in an overlapping manner.
For instance, if the sequence is σ = 101010... and B = 101 then the first match is
101|010... and the next one is 10|101|0....

Probability distribution function

The probabilities are given below as recursions.

Useful recursions

Let T (n, k) be the number of binary strings of length nwith k overlapping substrings of
length 4. Then, the recursions according to the overlapping structure of the templates
are given below.

0-overlapping substrings: 0001, 0011, 0111, 1000, 1100, 1110.

T (n, 0) = 2T (n− 1, 0)− T (n− 4, 0)

T (n, k) =

 0 n < 4k
1 n = 4k
2T (n− 1, k)− T (n− 4, k) + T (n− 4, k − 1) n > 4k
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1-overlapping substrings: 0010, 0100, 1011, 1101, 0110, 1100.

T (n, 0) = 2T (n− 1, 0)− T (n− 3, 0) + T (n− 4, 0)

T (n, k) =


0 n < 3k + 1
1 n = 3k + 1
2T (n− 1, k)− T (n− 3, k) + T (n− 4, k)
+T (n− 3, k − 1)− T (n− 4, k − 1) n > 3k + 1

2-overlapping substrings: 0101, 1010.

T (n, 0) = 2T (n− 1, 0)− T (n− 2, 0) + 2T (n− 3, 0)− T (n− 4, 0)

T (n, k) =


0 n < 2k + 2
1 n = 2k + 2
2T (n− 1, k)− T (n− 2, k) + 2T (n− 3, k)− T (n− 4, k)
+T (n− 2, k − 1)− 2T (n− 3, k − 1) + T (n− 4, k − 1)) n > 2k + 2

3-overlapping substrings: 0000, 1111.

T (n, 0) = T (n− 1, 0) + T (n− 2, 0) + T (n− 3, 0) + T (n− 4, 0)

T (n, k) =


0 n < k + 3
1 n = k + 3
T (n− 1, k) + T (n− 2, k) + T (n− 3, k) + T (n− 4, k)
+T (n− 1, k − 1)− T (n− 2, k − 1)− T (n− 3, k − 1)
−T (n− 4, k − 1)) n > k + 3

The probabilities can be computed via dividing T (n, k) by 2n.

Suggested parameter values

In this test we use templates of 4 bit length.

Bounds and corresponding probabilities of bins

2.1.12 Autocorrelation Test

Definition
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Table 2.19: Template matching test bin values for n = 128

i 1 2 3 4 5
0-bit

Overlapping
Ti 6 7 8 9 128
Ei 0,242056 0,170823 0,186299 0,164018 0,236801

1-bit
Overlapping

Ti 5 7 8 10 128
Ei 0,163531 0,274334 0,154664 0,244821 0,162647

2-bit
Overlapping

Ti 5 7 9 11 128
Ei 0,199905 0,2565 0,255663 0,169316 0,118614

3-bit
Overlapping

Ti 4 6 8 10 128
Ei 0,219765 0,187373 0,185726 0,152004 0,255129

Let σi→j be the subsequence of length j − i + 1 that starts from si and ends with sj ,
inclusive. Then, T = T (σ) is the correlation value between σ1→64 σc→c+64.

T (σ) = weight(σ1→64 ⊕ σci→ci+64)

where c is the shift value.
T = {0, . . . , n

2
}, Tmin = 0, Tmax = n

2
.

Probability distribution function

The probability distribution function of auto correlation function is equal to the distri-
bution function of weight test for n

2
, ie.:

Fn(k) = 2−n
k∑
i=0

(
n/2

i

)
(2.5)

Useful recursions

No recursions are required.

Suggested parameter values

It is suggested to find the correlation value for distinct values of ci on each sequence.
In this work we applied autocorrelation test for ci = {odd primes less then n

2
}. The

number of bins is selected as 9 for a homogeneous distribution among the bins.

Bounds and corresponding probabilities of bins

The bin boundaries and probabilities are given in Table 2.20.
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Table 2.20: Bounds for Auto Correlation Test n = 128

i 1 2 3 4 5 6 7 8 9 10
Ti 0-27 28-29 30 31 32 33 34 35-36 37-64 255
Ei 0,130218 0,135937 0,087836 0,096336 0,099347 0,096336 0,087836 0,135937 0,130218 0,10135

2.1.13 Integer Tests

These test group is intended to test integer sequences. They check various proper-
ties of integer sequences like maximum term, minimum term, the distribution of the
integers and so on. Nevertheless, these tests can be applied to both integer and bi-
nary sequences. In the integer sequence case, if the integer size is appropriate with
the test, then the sequence is taken as is. If the sequence requires a different integer
size, then, the sequence is converted first to binary and then to the required integer-
length-sequence. The binary sequences are directly converted to the integer sequences
as given in Section 1.1.2 In this section, we give the descriptions of integer sequences
and 128-bit bin values for each test.

2.1.13.1 Integer Frequency Test

Definition

First each σ ∈ Ωn is converted into a b-bit integer sequence and the frequencies of all
possible 2b integers are computed.

This test produces M = 2b many test values Ta for each a ∈ [0,M − 1].

Ta = Ta(σ) is the frequency of the integer a in the sequence σ̃:

Ta(σ) = |{ui : ui = a, i = 1, . . . , l}|, a = 0, 1, . . . ,M − 1

T = {0, 1, . . . ,M}, Tmin = 0, Tmax = M.

Let σ = 0011011001110 then σ̃ = (001)2(101)2(100)2(111)2 = 1, 5, 4, 7 is the 3-bit
representation of σ. Then, the frequencies of the integers in the sample sequence are
0,1,0,0,1,1,0 and 1 for 0 through 7 respectively.

Probability distribution function

Obviously Ta is a binomial random variable, that is,
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Fn(k) = M−l
(
l

k

)
(M − 1)l−k.

Useful recursions

k ≥ 2

Fl(k) = Fl(k − 1) +
l + 1− k
k(M − 1)

[Fl(k − 1) + Fl(k − 2)].

Suggested parameter values

It is suitable to choose b and λ as given in Table 2.21.

Table 2.21: Integer bit size and number of bins for integer frequency test

Length of the sequence b λ
64 ≤ n ≤ 83 3 6
84 ≤ n ≤ 119 3 7
120 ≤ n ≤ 263 3 8
264 ≤ n ≤ 799 4 8
800 ≤ n ≤ 1919 5 8
1920 ≤ n ≤ 4096 6 8

Bounds and corresponding probabilities of bins

The bin bounds and probabilities are given below.

Table 2.22: Integer frequency test bin values and probabilities for n = 64, b = 3

i 1 2 3 4 5 6
Ti 0 1 2 3 4 21
Ei 0,06056 0,18167 0,25953 0,23482 0,15095 0,11247

Table 2.23: Integer frequency test bin values and probabilities for n = 128, b = 3

i 1 2 3 4 5 6 7 8
Ti 2 3 4 5 6 7 8 42
Ei 0,09011 0,12274 0,17096 0,18561 0,16352 0,12013 0,07508 0,07184
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2.1.13.2 Integer Maximum Test

Definition

We first convert each σ ∈ Ωn into a b-bit integer sequence as mentioned in Sec-
tion 1.1.2. Then the testidentifies the maximal element in the sequence.

T = T (σ) is the greatest integer contained in the sequence σ̃:

T (σ) = max{u1, . . . , ul},

T = {0, 1, . . . ,M − 1}, Tmin = 0, Tmax = M − 1.

Let σ = 0011011001110 then, σ̃ = (001)2(101)2(100)2(111)2 = 1, 5, 4, 7 is the 3-bit
representation of σ. So, the maximum term in the sample sequence is 7.

Probability distribution function

Prob(T ≤ k) =

(
k + 1

M

)l
.

Useful recursions

No recursions are required.

Suggested parameter values

For any 64 ≤ n ≤ 4096 we can use λ = 8 bins.

The parameter b can be chosen as

b = 1 + blog2(n)c.

Bounds and corresponding probabilities of bins

The bin bounds and probabilities are given below for n = 64, 128 and 4096.
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Table 2.24: Integer maximum test bin values and probabilities for n = 128, b = 8

i 1 2 3 4 5 6 7 8
Ti 224 234 240 244 248 250 253 255
Ei 0,126789 0,127453 0,126327 0,114674 0,146484 0,08763 0,152707 0,117936

2.1.13.3 Integer Minimum Test

Definition

The test is applied to σ̃, the b-bit converted sequence of σ as described in Section 1.1.2.

T = T (σ) is the smallest integer contained in the sequence σ̃:

T (σ) = min{u1, . . . , ul},

T = {0, 1, . . . ,M − 1}, Tmin = 0, Tmax = M − 1.

Considering the sample sequence σ = 0011011001110, the corresponding 3-bit integer
sequence will be σ̃ = (001)2(101)2(100)2(111)2 = 1, 5, 4, 7. The minimum term in σ̃
is 1.

Probability distribution function

F (k) = Prob(T ≤ k) = 1−
(
M − k
M

)l
.

Useful recursions

No recursions are required.

Suggested parameter values

For any 64 ≤ n ≤ 4096 we can use λ = 8 bins.

The parameter b can be chosen as

b = 1 + blog2(n)c.
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Bounds and corresponding probabilities of bins

The bin bounds and probabilities are given in the below table for 128.

Table 2.25: Integer minimum test bin values for n = 128, b = 8

i 1 2 3 4 5 6 7 8
Ti 2 5 7 11 15 21 31 255
Ei 0,117936 0,152707 0,08763 0,146484 0,114674 0,126327 0,127453 0,126789

2.1.13.4 Integer Maximum Minimum Difference Test

Definition

Each sequence σ ∈ Ωn is converted into a b-bit integer sequence as in Section 1.1.2.

T = T (σ) is the difference of the largest and smallest terms contained in the sequence
σ̃:

T (σ) = max{u1, . . . , ul} −min{u1, . . . , ul},

T = {0, 1, . . . ,M − 1}, Tmin = 0, Tmax = M − 1.

σ = 0011011001110 then σ̃ = (001)2(101)2(100)2(111)2 = 1, 5, 4, 7 is the 3-bit rep-
resentation of σ. The minimum and maximum elements in the sample sequence are 1
and 7 respectively. Therefore, the maximum-minimum difference is 6.

Probability distribution function

For k = 0 we have

Prob(T = 0) = l

(
1

M

)l
.

and for k ≥ 1

Fl(k) = (l − k)

(
k + 1

M

l)
+ (k + 1− l)

(
k

M

)l
Useful recursions
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No recursions are required.

Suggested parameter values

For any 64 ≤ n ≤ 4096 we can use λ = 10 bins. The parameter b can be chosen as

b = 1 + blog2(n)c.

Bounds and corresponding probabilities of bins

The bin bounds and probabilities are given in the below tables for n = 128.

Table 2.26: Integer maximum difference test bin values and probabilities for n =
128, b = 8

i 1 2 3 4 5 6 7 8 9 10
Ti 194 208 217 223 228 233 237 242 247 255
Ei 0,078835 0,096564 0,104781 0,093832 0,093925 0,107233 0,09309 0,119482 0,110909 0,10135

2.1.13.5 Integer Coverage Test

Definition

We first convert each σ ∈ Ωn into a b-bit integer sequence as mentioned in Sec-
tion 2.1.13.

T = T (σ) is the number of distinct terms contained in the sequence σ̃:

T (σ) = |{u1, . . . , ul}|,

T = {1, . . . ,M}, Tmin = 1, Tmax = M.

For example, if σ = 0011011001110 then σ̃ = (001)2(101)2(100)2(111)2 = 1, 5, 4, 7
is the 3-bit representation of σ. There are 4 distinct terms in the sample sequence.
Therefore, the coverage of this sequence is 4.

Probability distribution function
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Let Pl(k) = Prob(T = k). Let A and B be sets with l and M elements respectively
and let f : A→ B be a random mapping. Then Pl(k) = Prob(|f(A)| = k), so

Pl(k) =
k!

M l

(
M

k

){
l
k

}

where
{
l
k

}
is the Stirling number of the second kind. Consequently

Fl(k) =
k∑
i=0

Pl(k).

Useful recursions

We have

Pl(1) =
1

M l−1 .

and using the basic recursion for Stirling numbers of the second kind we get

Pl(k) =
k

M
Pl−1(k) +

(
1− k − 1

M

)
Pl−1(k − 1)

for k ≥ 2.

Suggested parameter values

It is suitable to choose b and λ as given in Table 2.27

Table 2.27: Integer Coverage Test suggested values for b and λ

Length of sequence b λ
64 ≤ n ≤ 192 5 5
192 ≤ n ≤ 245 6 6
246 ≤ n ≤ 1799 7 7
1800 ≤ n ≤ 4096 8 8

Bounds and corresponding probabilities of bins
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The bin bounds and probabilities for integer coverage test are given in the below tables
for n = 128.

Table 2.28: Integer coverage test bin values for n = 128, b = 5

i 1 2 3 4 5
Ti 15 16 17 18 256
Ei 0,105771 0,155071 0,227106 0,232804 0,279249

2.1.13.6 Integer Repetition Test

Definition

The sequence σ is converted to an integer sequence σ̃ as given in Section 2.1.13. Then,
the first index which the corresponding term appeared before is determined.

T = T (σ) is the smallest index k st the term uk = uj for some j < k:

T (σ) = mink{k|uk = uj, j = 0, . . . , k − 1},

T = {1, . . .M + 1}, Tmin = 1, Tmax = M + 1.

Notice that, by pigeon hole principle, a repetition occurs at most at (M + 1)st index.
Let σ = 0011011001110 then σ̃ = (00)2(11)2(01)2(10)2(01)2(11)2 = 0, 3, 1, 2, 1, 3 is
the 2-bit representation of σ. The repetition point in the sample sequence is 5:u5 = u3.

Probability distribution function

Prob(K = k) = M−k
(

M

k − 1

)
(k − 1)!(k − 1).

Useful recursions

No recursions are required.

Suggested parameter values
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The bit-length b is set to be 6 for n = 128.

Bounds and corresponding probabilities of bins

Table 2.29: Integer repetition test bin values for n = 128, b = 6

i 1 2 3 4 5 6 7 8
Ti 4 6 8 9 11 13 16 21
Ei 0,091087 0,123378 0,151507 0,079253 0,152509 0,131601 0,141654 0,104323

2.1.13.7 Integer Saturation Test

Definition

The sequence σ is converted to integer sequence σ̃ using integer size corresponding to
the length of σ and the smallest index at which all b-bit integers appeared is selected.

T = T (σ) is the length of the shortest subsequence starting from u1 that covers all M
distinct integers:

T (σ) = min{i} st. {{u1, . . . , ui} ≡ {0, 1, . . . ,M − 1}}.

T = {M,M + 1, . . . , l + 1}, Tmin = M, Tmax = l + 1.

The output value is l + 1 if the saturation point is never achieved.

Let σ = 0011011001110 then σ̃ = (00)2(11)2(01)2(10)2(01)2(11)2 = 0, 3, 1, 2, 1, 3 is
the 2-bit representation of σ. In the sample sequence, when m = 2, all 2-bit integers
appear in the first 4 terms of σ̃. Therefore, saturation point of the sequence is 4.

Probability distribution function

P (SP = k) = M−(k−1)
{
k − 1
M − 1

}
(M − 1)!.

Useful recursions

No recursions are required.
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Suggested parameter values

For n = 128, it is suggested to set b = 3.

Bounds and corresponding probabilities of bins

Bin bounds and probabilities are given in Table 2.30.

Table 2.30: Integer saturation test bin values for n = 128, b = 3

i 1 2 3 4 5 6 7 8
Ti 8-13 14-15 16-17 18-20 21-23 24-27 28-33 34-43 247 255
Ei 0,139321 0,108927 0,117315 0,164996 0,134863 0,128835 0,110264 0,095480 0,110909 0,10135

2.1.13.8 Universal Test

Definition

First, the sequence σ is converted to integer sequence with respect to the corresponding
integer size. Then, another sequence is generated considering the distance between
successive occurrences of the terms and compared to those of random numbers.

This test produces n many t-values. Namely, a t-value Ta for all a ∈ {0, . . . ,M − 1}.

Ta = Ta(σ) is the frequency of a in the distance sequence δ(σ̃) where δ(σ) = d1d2..dn
st

di =

{
j − i j is the smallest index st j > i and ui = uj
0 if i is the last index of ui

Ta = {0, 1, . . . , n−a} if a 6= 0 and T0 = {1, . . . ,M}, Tmin = 0, Tmax = max{n,M}.

Probability distribution function

Prob(T = T) = χ2(µ, l − 1)

where

µ =
l−1∑
a=0

(Ea − Ta)2

Ea

and Ea = (l − a) (M−1)
a−1

Ma .

Useful recursions
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No recursions are required.

Suggested parameter values

In this test, we suggest b = 3 for n = 128.

Bounds and corresponding probabilities of bins

Table 2.31: Universal test bin values and probabilities for n = 128, b = 3

i 1 2 3 4 5 6 7 8
Ti 1 2 3 5 7 10 15 42
Ei” 0,125 0,109375 0,095703 0,157013 0,120213 0,12962 0,128142 0,131267

2.2 Detailed Descriptions

In this section the details of the probability functions and recursions of statistical ran-
domness tests mentioned in the previous section are given. The aim of this chapter
is to give all the information used to calculate probability functions and recursions of
each test.

2.2.1 Weight Test

This test corresponds to the frequency test that every test suite includes. In this thesis,
we calculate the actual values for this test instead of widely used approximations.

Weight test examines the number of 1’s in a sequence and outputs a p-value by com-
paring the weight of the sequence to the expected weight. In an n bit sequence the
probability of the sequence to be ω is calculated as follows. Out of n bins for each bit,
one chooses ω bins and places 1’s in these bins. Then, the remaining n − ω bins are
filled with n− ω 0’s. Therefore, there are(

n

ω

)(
n− ω
n− ω

)
=

(
n

ω

)
(2.6)

sequences which have weight ω. The probability of a random sequence to have weight
ω is

Pr(W = ω) = 2−n
(
n

ω

)
.
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The recursions given in 2.1.1 is calculated as follows. Initial values:

F1(0) = 1, F1(1) =
1

2
.

For n ≥ 2 and k = 0

Fn(0) =
1

2
Fn−1(0).

For n ≥ 2 and k ≥ 1

Fn(k) = 2−n
k∑
i=1

[(
n− 1

i

)
+

(
n− 1

i− 1

)]
+ 2−n

= 2−n
k∑
i=0

(
n− 1

i

)
+ 2−n

k−1∑
i=0

(
n− 1

i

)
=

1

2
[Fn−1(k) + Fn−1(k − 1)].

we naturally assume that Fn(k) = 1 whenever k ≥ n.

2.2.2 Number of Total Runs Test

This test corresponds to the runs test in the NIST Test suite[2]. In this thesis, we
calculate the actual probability values.

The total runs test compares the number of runs within a sequence to the expected
number of runs and derives a p-value. The distribution function of the test is very
similar to the distribution function of the frequency test.

Let ψ be the differential sequence of σ such that

ψi =

{
σi ⊕ σi+1 if i < n
1 if i = n

Notice that ψi is 1 when σi 6= σi+1 which indicates that a run terminates and another
run starts. When the last term, 1, is associated with the last run in the sequence, the
weight of ψ is equal to the number of runs in σ plus 1. The result of the weight test
over ψ will be the result of the number of total runs test.

In this case when calculating the probabilities one should consider that the last term is
always 1. Assume that the weight of ψ is r. Out of n bits, one of the 1’s are placed to
the last bin, and the remaining r − 1 1’s are placed in r − 1 bins among n − 1 bins.
Therefore, the probability of the weight of ψ to be r is

Pr(W = r) = 2−n
(
n− 1

r − 1

)
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which is equal to the probability of σ to have r runs.

The recursions for number of total runs test can be derived from Weight test by replac-
ing k with k + 1.
Initial values:

F1(0) = 0, F1(1) = 1.

For n ≥ 2 and k = 1

Fn(0) =
1

2
Fn−1(0).

For n ≥ 2 and k ≥ 2

Fn(k) = 2−n
k∑
i=1

[(
n− 1

i

)
+

(
n− 1

i− 1

)]
+ 2−n

= 2−n
k∑
i=0

(
n− 1

i

)
+ 2−n

k−1∑
i=0

(
n− 1

i

)
=

1

2
[Fn−1(k) + Fn−1(k − 1)].

2.2.3 Runs of Length r Tests

The test suites in the literature deals with the number of all runs instead of comparing
the the number of runs of length k which gives a more refine idea about the randomness
of the sequence. Although, there are some studies which corresponds to the number of
runs of length 1 and 2, they are not intended for testing randomness and there is no
work on the number of longer runs.

Runs of Length r tests are a set of tests that evaluate the number of runs of length k
in a sequence for some k and compare the results to the expected number of runs of
length k a random sequence. In this work we suggest k = 0,±1,±2 and ±3.

The number of runs of length k can be calculated in a similar way with the number
of total runs test. However, the computations become infeasible and one needs to use
approximations to apply the test. Therefore, we follow another method to compute the
actual values.

Define the run sequence R as the sequence whose ith term is the length of the ith run in
the original sequence. It is obvious that the sum of the terms of R will give the length
of the sequence, n. For instance consider σ = 0011011001110. There are 7 runs which
are of length 2, 2, 1, 2, 2, 3 and 1 respectively: 00 − 11 − 0 − 11 − 00 − 111 − 0.
The sum of all lengths adds up 13 which is n. Therefore, run sequence R of an n bit
sequence is a composition of n. Any binary sequence can be identified uniquely from
the corresponding run sequence up to its first bit being 0 or 1. As the compositions
cannot distinguish the first bit, there are 2n−1 distinct compositions of n.

Let Qr(n, k) be the set of all compositions of n with k occurrences of positive integer
r. This composition is corresponding to a sequence which includes exactly k runs of
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length r. Also, let Cr(n, k) be the size of Qr(n, k). That is, Cr(n, k) is the number of
n bit sequences with exactly k runs of length r.

For convenience and in order to give an idea about how the following recursions are
derived, we will begin with C(n), the number of all compositions of n. Although, this
number is derived above as 2n−1 by correlating with the number of n bit sequences,
the following will give the necessary viewpoint for the next computations.

A composition of n can be constructed by appending a ’1’ to the end of all the compo-
sitions of n−1, or adding a ’2’ to all the compositions of n−2 and so on. For instance
consider the compositions of 4 given in Table 2.32.

Table 2.32: Compositions of 4 obtained from smaller integers

3 2 1 0
3 1 2 2 1 3 ∅ 4

2,1 1 1,1 2
1,2 1

1,1,1 1

Notice that, 4 is a composition of itself. We assume that this composition is derived by
appending 4 to the compositions of zero. For completeness, we assume C(0) = 1 and
let the only composition of 0 be shown by ∅.

Therefore, the number of compositions of n is

C(n) =
n−1∑
i=0

C(i).

This recursion can be simplified for n > 0 as follows:

C(n) = C(n− 1) + C(n− 2) + C(n− 3) + · · ·
C(n− 1) = C(n− 2) + C(n− 3) + · · ·

Subtracting the equations we get

C(n)− C(n− 1) = C(n− 1)

C(n) = 2C(n− 1). (2.7)

The initial value for this recursion is C(1) = 1. So, C(n) = 2n−1.

Moving a step forward, now let’s consider Cr(n, k).Similar to the previous computa-
tion, a composition of n including k runs of length r can be obtained from appending
1 to the end of the sequences in Qr(n− 1, k) , appending 2 to the end of the sequences
in Qr(n − 2, k) and so on. However, one should consider the case appending r to the
end of the sequences in Qr(n − r, k). In this case the result will be an element of
Qr(n, k + 1). Therefore, this case should be excluded from the computation. Finally,
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appending r to the end of sequences in Qr(n− r, k− 1) brings sequences in Qr(n, k).
Therefore, the total number of compositions of n with k occurrences of r is

Cr(n, k) =
n∑
i=1

Cr(n− i, k)− Cr(n− r, k) + Cr(n− r, k − 1). (2.8)

To compute Equation 2.8 for any r, one needs the to know the value of Cr(n− i, k) for
all i < n. As n gets larger, this computation will be time consuming. In order to have
a ”computing friendly” calculations, we need to simplify Equation 2.8. If we subtract
Cr(n− 1, k) from Cr(n, k), we get:

Cr(n, k) = Cr(n− 1, k − 1) +
(((((((((((((((

Cr(n− 2, k) + Cr(n− 3, k) + · · · − Cr(n− r, k) + Cr(n− r, k − 1)

Cr(n− 1, k) =
(((((((((((((((((

Cr(n− 2, k − 1) + Cr(n− 3, k) + · · · − Cr(n− 1− r, k) + Cr(n− 1− r, k − 1)

Cr(n, k) = 2Cr(n− 1, k)− Cr(n− r, k) + Cr(n− 1− r, k) + Cr(n− r, k − 1)− Cr(n− 1− r, k − 1)

Therefore, the probability of an n bit sequence to have k runs of length r is

P (R = r) = 2−n+1
(
2Cr(n−1, k)−Cr(n−r, k)+Cr(n−1−r, k)+Cr(n−r, k−1)−Cr(n−1−r, k−1)

)
.

(2.9)
Notice that the number of compositions is divided by 2n−1 instead of 2n since a run
sequence defines two binary sequences where one starts with 0 bit, and the other starts
with 1 bit.

2.2.4 Longest Run Tests

This test is equivalent to the Longest Run of Ones test in the NIST Test Suite[2]. This
test, unlike the NIST counterpart, accepts the longest run from both 0 and 1. Similar to
the other tests given in this section, the actual values for the longest run are presented.

The longest run test compares the maximal run length to the expected maximal length
in a random sequence. The distribution function of longest run test is derived by using
the compositions concept mentioned in the Runs of Length r test.

Let Qr(n, k) be the set of all sequences of length n, including k runs of length r, and
let the size of Qr(n, k) be Cr(n, k).

In order for an n bit sequence to have the maximal run length t, the number of runs
longer than t should be zero. Tthis sequence is an element of

⋃
i>tQi(n, 0). However,

this set also includes sequences that the maximal length of the runs are smaller than t.
Hence, if we exclude the sequences with no runs longer than t− 1, ie runs with length
smaller than t, we left with the sequences having maximum run length exactly t.

The number of sequences having the maximal run length as t are in

n⋃
i>t−1

Qi(n, 0)−
n⋃
i>t

Qi(n, 0)
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which is obviously Qt(n, 0). The number of sequences in Qt(n, 0) is Ct(n, 0), there-
fore, the probability of such a sequence is

P (T = t) = 2−n+1Ct(n, 0). (2.10)

2.2.5 Linear Complexity Test

Linear complexity test is inherited from NIST Test Suite[2]. It is an important measure
for the randomness and has been studied extensively for decades. The following details
can be found in [14] and [15].

Linear complexity test compares the linear complexity of the sequence to that of a
random sequence.

Let Nn(L) denote the number of n-bit sequences with linear complexity L and let the
linear complexity value at the index n− 1 be L′.

• If L′ < n
2

and δn−1 = 0 then, by Berlekamb-Massey algorithm L = L′. So,
Nn(L) = Nn−1(L

′) for this case.

• If δn−1 = 1, then the linear complexity will increase, L = n− L′, and L > n
2
.

• If, on the other hand, L′ > n
2
, no matter what the nth bit is, the complexity will

not change: L = L′. That is the linear complexity will not change if the last bit
is 1 or 0.

Therefore, if n ≥ L > n
2
, Nn(L) = Nn−1(n−L) + 2Nn−1(L) and if 0 ≤ L′ < n

2
, then

Nn(L) = Nn−1(L).

The only remaining part is L = n
2
. If, any L′ < n

2
lead to L = n

2
by an increase in the

linear complexity then L = n
2

= n−L′ ie. L′ = n
2

which is not the case. Therefore, the
only contribution for the case L = n

2
is from L′ > n

2
. In this case, the linear complexity

will remain the same regardless of δn−1. Therefore Nn(L) = 2Nn(L) if L = n
2
. This

yields the recursion

Nn(L) =

 2Nn−1(L) +Nn−1(n− L) n ≥ L > n
2

2Nn−1(L) L = n
2

Nn−1(L) n
2
> L ≤ 0.

It is easy to show that the given distribution function satisfies the above recursion for
the initial values N1(0) = 1 and N1(1) = 1.

2.2.6 Linear Complexity Profile Test

Linear complexity profile test is not a test that is widely included in test suites. How-
ever, this test completes the linear complexity test and is a distinguisher. Linear com-
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plexity profile test examines if the jumps in the linear complexity values are as expected
from a random sequence.

The probability distribution function for the linear complexity profile test is taken from
[16] and [19].

From [19] we know that

Pr(L = n, LCP = i) =


2l2−n if i = 1, l ≤ 1
2t+1

(
l−2
i−2

)
2−n if i > 1, l ≤ n

2

2n+1−l(n−l−1
i−2

)
2−n if i > 1, n

2
< l ≤ n− 1

2−n if i = 2, l = n
0 otherwise

It is trivial to see the probability function given in 2.1.6 hold using the above equation.

2.2.7 Pseudo Complexity Test

Pseudo complexity is a new randomness test that has the same probability distribution
with linear complexity test. However, it is easier to compute pseudo complexity then the
linear complexity. The test can be interpret as the ”ones complexity” as the complexity
changes for suitable indexes if the next term is 1.

The derivation of the distribution function and the recursion is the same as liner com-
plexity test given in 2.2.5.

2.2.8 Pseudo Complexity Profile Test

Pseudo complexity profile is a new randomness test that has the same probability dis-
tribution with linear complexity profile test. As in the pseudo complexity test case, it is
trivial to compute pseudo complexity profile value, therefore, it is faster to apply.

The derivation of the distribution function and the recursion is the same as liner com-
plexity profile test given in 2.1.6, the details of the distribution function can be found
in [16].

2.2.9 Random Excursion Tests

Random Excursion tests occur in the NIST Test Suite in the name of Random Excursion
and Random Excursion Variant Tests[2]. However, the tests use approximations in the
probability calculations and can be applied to sequences of length longer than 106. In
this work, we revisit the distribution function of the test and give the probabilities for
sequences of size less then, at least, 4096.
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The number of times the partial sum is equal to c is equal to the number of times
the graph of the sequence intersects the line y = c.We will follow this approach in
this section. Let σbe a binary sequence and define the sk as a balance point if in
the subsequence σ1→k the number of 1s and 0s are equal. A sequence is balanced,
obviously, if and only if the last term sn is a balance point.

Let B(n, k) be the set of balanced sequences which contain exactly k balance points
and let b(n, k) be the number of such sequences. By definition, if n is odd, then
b(n, k) = 0 for any k > 0.

Proposition 2.1. For any positive integer m

b(2m, 1) = 2Cm−1

where Cm−1 is the Catalan number 1
m

(
2m−2
m−1

)
.

Proof. Any σ = s1s2 . . . s2m ∈ B(2m) is balanced and has only one balanced point
which is the last term and none of the terms s1, . . . , s2m−1 is a balance point. Now
assume that m > 1 and s1 = 1 (hence s2m = 0). It easy to see that s2 = 1 and
no initial segment of the string s2, . . . , s2m−1 has more 0’s than 1’s, which means that
s2, . . . , s2m−1 is a Dyck word of length 2m − 2. Thus, to each Dyck word of length
2, there corresponds a σ ∈ B(2m, 1) with s1 = 1. Since the converse relation holds
also, the number of strings in B(2m, 1) with the initial term is 1 is the Catalan number
C(m− 1). Including the strings with initial term 0, assertion follows.

Proposition 2.2. For any positive integers m and k > 1

b(2m, k) =
m−1∑
i=1

b(2i, 1)b(2m− 2i, k − 1)

Proof. Let k > 1 and consider a string σ ∈ B(n, k). Assume that the first balance
point is s2t. Then, σ can be separated into two the substrings σ1 = s1 . . . s2i and
σ2 = s2i+1 . . . c2m such that σ1 ∈ B(2i, 1) and σ2 ∈ (2m− 2i, k − 1).

Now, let X(n, k) be the set of strings which contain exactly k balance points and let
x(n, k) be the number of such strings. Since a term with an odd index cannot be a
balance point, if n is odd, the last term cannot be a balance point and it follows that
x(n, k) = 2x(n − 1, k) for all nonnegative integers k. Therefore, it is sufficient to be
interested only with strings of an even length.

Lemma 2.3. The number strings of length 2m − 1 such that no initial segment has
more zeros than ones is 2

(
2m−1
m

)
.

Proof. It is well known that the number of strings of weight (total number of number
of ones in the string) which satisfy the hypothesis of the lemma is

(
2m−1
w

)
−
(
2m−1
w+1

)
for

w ≥ m. Summing up over all possible values of w, we obtain the desired result.
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Proposition 2.4. For any positive integer m,

x(2m, 0) = 2

(
2m− 1

m

)
.

Let s1 . . . sn ∈ X(2m, 0) with s1 = 1. Since the given string has no balance point
s2 = 1 and in the substring s2 . . . s2m no initial segment has more zeros than ones.
The number such substrings of length 2m− 1 is

(
2m−1
m

)
. Considering the strings with

s1 = 0 the assertion follows.

Proposition 2.5. For any positive integers m and k ≥ 1,

x(2m, k) = 2
m∑
i=1

b(2m, i)b(2m− 2i, 0).

Proof. Obvious from the previous results.

We say that a given string σintersects the line y = t at si if 2i−(s1+· · ·+si). Note that
si is a balance point if and only if σintersects the line y = 0 at si. We let Xt(n, k) to
be the set of strings of length n which have intersect the line y = t exactly at k distinct
terms and let xt(n, k) = |Xt(n, k)|. From the definition it follows that x0(n, k) =
x(n, k)andxt(n, k) = x−t(n, k) for any t = 1, . . . , n. Let σbe a sequence which has no
balance point. If s1 = 0 (resp. if s1 = 1), then the sequence s2 . . . sn does not intersect
the line y = −1 (respectively y = 1). Thus x(n, 0) = x1(n− 1, 0) + x1(n− 1, 0), so

x1(n, 0) =
1

2
x(n+ 1, 0).

Moreover, if σhas no balance point and s1 = 0 (respectively s1 = 1) then necessarily
s2 = 0 (respectively, s2 = 1) and the sequence s3 . . . sn does not intersect the line
y = −2 (respectively, y = 2), so

x2(n, 0) =
1

2
x(n+ 2, 0).

Assume that σhas no balance point. If s1 = s2 = 0, then either s3 = 0 and s4 . . . sn
does not intersect y = −3 or s3 = 1 and s4 . . . sn does not intersect y = −1. If
s1 = s2 = 1, then either s3 = 0 and s4 . . . sn does not intersect y = 1 or s3 = 1 and
s4 . . . sn does not intersect y = 3. It follows that x(n, 0) = 2x1(n−3, 0)+2x3(n−3, 0)
which gives

x3(n, 0) =
1

2
2x(n+ 3, 0)− 1

2
x(n+ 1, 0).

Now consider a string σwhich intersects the line y = 0 exactly k times. If s1 = 0 (resp.
if s1 = 1) , then the sequence s2 . . . sn intersects the line y = −1 (respectively y = 1)
exactly k times. Thus x(n, k) = x1(n− 1, k) + x1(n− 1, k), so

x1(n, k) =
1

2
x(n+ 1, k).
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For a string σwhich intersects the line y = 1 exactly k times, there are two possibilities.
Either s1 = 0 and s2 . . . sn ∈ X(n − 1, k − 1) or s1 = 1 and s2 . . .n ∈ X2(n − 1, k).
Then we have x1(n, k) = x(n− 1, k − 1) + x2(n− 1, k) which gives

x2(n, k) = x1(n+ 1, k)− x(n, k − 1).

When t > 1, for a string σwhich intersects the line y = t exactly k times, there are two
possibilities. Either s1 = 0 and s2 . . . sn ∈ X(t−1)(n−1, k) or s1 = 1 and s2 . . . sn ∈
X(t+ 1)(n− 1, k). Then we have xt(n, k) = x(t− 1)(n− 1, k) + x(t+ 1)(n− 1, k)
which gives the recursion

xt(n, k) = xt−1(n+ 1, k)− xt−2(n, k).

In particular, for y = 3, we have

x3(n, k) = x2(n+ 1, k)− x1(n, k).

2.2.10 Random Excursion Height Test

Random Excursion Height test is a companion to Random Excursion tests. This test
was previously presented in [17]. The probability distribution function was defined so
that the probability values are not feasible to compute for sequences longer than 256
bits. In this thesis we review and refine the distribution function so that it is practical
to compute the probability values up to 4096 bits.

Using the same notation as the Random Excursion test let X(n, k) be the set of strings
which contain exactly k balance points and x(n, k) be the number of such strings, and
Xt(n) be the set of strings of length n which do not intersect the line y = t. Also,
let Ht(n) is the set of strings of length n for which t is the largest integer that they
intersect the line y = t and ht(n) = |Ht(n)|.

In order to prove the recurrence relation we need to show some necessary equations.

Lemma 2.6. Let n, t and q be positive integers with t ≤ q ≤ n. The number of strings
of length n which contain q zeros and which intersect the line y = t at least once is
given by { ( n

q−t

)
q ≤ n+t

2(
n
q

)
q > n+t

2

Proof. Given a string σof length n which intersects the line y = t, depending on q we
consider two cases:

• n+t
2
< q ≤ n. In this case σnecessarily intersects the line y = t and number of

such strings is
(
n
q

)
.
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• t ≤ q ≤ n+t
2

. Let A be the set of strings of length n which have q zeros and
which intersect the line y = t, and let B be the set of strings of length n which
have q − t zeros. We will show that these two sets are equivalent, so that the
number of strings in A is

(
n
q−t

)
. Given σ ∈ A. Let i0 be the smallest integer

such that σintersects the line y = t at si0 . The string σ̄ = s̄1 . . . s̄i0 . . . s̄n where
s̄i = 1 − si, i = 1, . . . , i0 has q − t zeros, hence σ ∈ B. Thus, to each σ ∈ A,
there corresponds a unique string σ̃ ∈ B. Conversely, any string τ in B has q− t
zeros, hence n − q + t ones. On the other hand, the condition q ≤ (n + t)/2
implies that n− q + t ≤ (n + t)/2, which means that the string τ intersects the
line y = −t. Now in the string τ , starting with the first term replace each one
with a zero and each zero with a one up to the term at which the string intersects
the line y = −t for the first time. The resulting string intersects the line y = t
and has q zeros, hence is in A. Then the correspondence given above is one to
one and the sets A and B are equivalent.

By similarity, for any integer t we have x−t = xt so it is sufficient to compute xt only
for non-negative values of t.

Proposition 2.7. Let n and t be positive integers. The number of strings of length n
which intersect the line y = t at least once is given by

x̄t(n) =

{
2
∑b(n−t)/2c

i=0

(
n
i

)
if n− t is odd

2
∑b(n−t)/2c

i=0

(
n
i

)
−
(
n

n−t
2

)
if n− t is even

Proof. In the previous lemma we have obtained the number of strings of length n
which has q zeros and which intersect the line y = t. For obtaining x̄t(n) we have
to compute the sum of these values over all acceptable values of q: We consider two
cases depending on the parity of n+ t.

If n+ t is even

x̄t(n) =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n
n−t
2

)
︸ ︷︷ ︸

t≤q≤n+t
2

+

(
n

n+t
2

+ 1

)
+ · · ·+

(
n

n

)
︸ ︷︷ ︸

q>n+t
2

=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n
n−t
2

)
+

(
n

n−t
2
− 1

)
+ · · ·+

(
n

0

)

= 2

b(n−t)/2c∑
i=0

(
n

i

)
−
(
n
n−t
2

)

43



If n+ t is odd

x̄t(n) =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n−t−1
2

)
︸ ︷︷ ︸

t≤q≤n+t
2

+

(
n

n+t+1
2

)
+ · · ·+

(
n

n

)
︸ ︷︷ ︸

q>n+t
2

=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n−t−1
2

)
+

(
n

n−t−1
2

)
+ · · ·+

(
n

0

)

= 2

b(n−t)/2c∑
i=0

(
n

i

)

Corollary 2.8. Let n be a positive integer. The number of strings of length n which do
not intersect the line y = 1 is given by

x1(n) =

(
n

bn
2
c

)
and the number of strings which do not intersect the line y = 0 is given by

x0(n) = 2

(
n− 1

bn−1
2
c

)

Proof. The expression for x1(n) can be obtained directly by putting t = 1 in Propo-
sition 2.7. Now let σ∈ X0(n). Assume that s1 = 1, then necessarily s2 = 1 and
s1 . . . s2 ∈ X1(n−1). It follows that the number of strings in X0(n) with the first term
1 is x1(n− 1) =

(
n−1
bn−1

2
c

)
. Since the same holds for the strings with the first term 0, we

obtain the result.

We observe that smallest possible value for the height of a string is -1: ht(n) = 0 for
all positive integers n and for all negative integers t < −1. Next proposition gives the
number of strings for all possible values of the height.

Proposition 2.9.

h−1(n) =

(
n− 1

bn−1
2
c

)
h0(n) =

(
n

bn
2
c

)
−
(
n− 1

bn−1
2
c

)
and for all t such that 1 ≤ t ≤ n

ht(n) =

(
n

bn−t
2
c

)
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Proof. There are x0(n) strings of length which do not intersect the line y = 0. Given
a string σ ∈ X0(n), if s1 = 0, then σ can never intersect a line y = t for negative
values of t and consequently height of σ is necessarily positive. If s1 = 1 then σ can
intersect only the lines y = t with t < 0 and in such a case height of σ is −1, then
h−1(n) = 1/2x0(n). The number of strings of length n which do not intersect the line
y = 1 is x1(n) and height of any such function is at most 0. Since there are h−1(n)
strings with height −1, we get h0(n) = x1(n) − h−1(n). If n is even, say n = 2m,
then

h0(n) = x1(2m)− h−1(2m)

=

(
2m

m

)
−
(

2m− 1

m

)
=

(
2m− 1

m

)
=

(
n− 1
n−2
2

)
If n is odd, say n = 2m+ 1, then

h0(n) = x1(2m+ 1)− h−1(2m+ 1)

=

(
2m+ 1

m

)
−
(

2m

m

)
=

(
2m

m− 1

)
=

(
n− 1

bn−2
2
c

)
For any positive integer t, any string which intersects the line y = t + 1 intersects
the line y = t as well. Hence Xt+1(n, 0) ⊂ Xt(n, 0) and Ht(n) = Xt(n) \ Xt+1(n).
Then ht(n) = xt(n) − xt+1(n) and the assertion follows from Proposition 2.7 by
straightforward computations.

There are two strings of length 1: 0 and 1. Heights of these strings are 1 and -1, so
that h−1(1) = 1, h0(1) = 0, h1(1) = 1. With these initial values and the ht(n) = 0
whenever t > n, we can compute ht(n) recursively as follows:

h−1(n) = h−1(n− 1) + h0(n− 1)

h0(n) = h1(n− 1)

h1(n) = h−1(n) + h2(n− 1)

and for t = 2, . . . , n

ht(n) = ht−1(n− 1) + ht+1(n− 1)
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2.2.11 Template Matching Test

Template matching test is given in the NIST Test Suite as ”Overlappipng Template
Test” and ”Nonoverlapping Template Matching Test”. However, the computations for
the overlapping test is shown to be wrong. In this work we use the calculations from
[18] and restate the test.

Let TB(n, k) be the number of strings of length n which contain the template Bexactly
k times. For any fixed template B of length t, the sequence {TB(n, 0)}n satisfies a
constant coefficient, linear and homogeneous recursion of order t. This recursion de-
pends only on the overlap numberm of B and t. That is, ifD is anotherm-overlapping
template of length t, then the sequence {TD(n, 0)}n satisfy the same linear recursion
with{TB(n, 0)}n. Since the recursion depends only on n and m we can drop the tem-
plate from the notation noting m: T(n, k).

Lemma 2.10. Given a m-overlapping template Bof length t and an arbitrary binary
sequence δ of length not exceeding t. Let un denote the number of binary strings of
length n starting (or ending) with δ which do not contain B. The sequence un satisfy
the recursion of {TB(t,m)}n.

Theorem 2.11. For any non-negative integers m and t, the sequence {TB(t,m)}n
satisfies a constant coefficient, linear and homogeneous recursion of order 2t. Char-
acteristic polynomial of this recursion is the square of that of {TB(t, 0)}n.

Theorem 2.12. For any non-negative integers m and t, the sequence {TB(n, k)}n
satisfies a constant coefficient, linear and homogeneous recursion of order (k + 1)t.
Characteristic polynomial of this recursion is the product of those of {TB(n, 0)}n and
{TB(n, k − 1)}n.

Let T (n, k) be the number of binary strings of length n with k overlapping substrings
of length 4. Using the above theorems and the results given in[REFERANS], then, the
recursions of the overlapping structures are given below.

0-overlapping substrings: 0001, 0011, 0111, 1000, 1100, 1110.

T (n, 0) = 2T (n− 1, 0)− T (n− 4, 0)

T (n, k) =

 0 n < 4k
1 n = 4k
2T (n− 1, k)− T (n− 4, k) + T (n− 4, k − 1) n > 4k

1-overlapping substrings: 0010, 0100, 1011, 1101, 0110, 1100.

T (n, 0) = 2T (n− 1, 0)− T (n− 3, 0) + T (n− 4, 0)
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T (n, k) =


0 n < 3k + 1
1 n = 3k + 1
2T (n− 1, k)− T (n− 3, k) + T (n− 4, k)
+T (n− 3, k − 1)− T (n− 4, k − 1) n > 3k + 1

2-overlapping substrings: 0101, 1010.

T (n, 0) = 2T (n− 1, 0)− T (n− 2, 0) + 2T (n− 3, 0)− T (n− 4, 0)

T (n, k) =


0 n < 2k + 2
1 n = 2k + 2
2T (n− 1, k)− T (n− 2, k) + 2T (n− 3, k)− T (n− 4, k)
+T (n− 2, k − 1)− 2T (n− 3, k − 1) + T (n− 4, k − 1)) n > 2k + 2

3-overlapping substrings: 0000, 1111.

T (n, 0) = T (n− 1, 0) + T (n− 2, 0) + T (n− 3, 0) + T (n− 4, 0)

T (n, k) =


0 n < k + 3
1 n = k + 3
T (n− 1, k) + T (n− 2, k) + T (n− 3, k) + T (n− 4, k)
+T (n− 1, k − 1)− T (n− 2, k − 1)− T (n− 3, k − 1)
−T (n− 4, k − 1)) n > k + 3

2.2.12 Autocorrelation Test

Autocorrelation is one of the measures of randomness in Golomb’s postulates[8]. Nev-
ertheless, test suites does not include any autocorrelation test or equivalent.

The autocorrelation test examines possible repetitions with small periodicity within the
sequence. This test compares the first half of the sequence with σi→n/2+i at ith itera-
tion. The result is the weight of the n

2
-bit sequence obtained by XORing the two sub-

sequences. It is expected that there is no periodic patterns in the sequence, therefore,
the XOR of the sequences should be a random sequence. The distribution function of
auto correlation function, therefore, is equal to the distribution function of weight test
for n

2
:

Fn(k) = 2−n
k∑
i=0

(
n/2

i

)
. (2.11)

Other approaches can be followed like the maximum, or minimum, value of the cor-
relation among many shifts, the distribution of the autocorrelation values and so on.
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However, it is important to note that, subsequences generated from consecutive shift
values are correlated and it is hard to generate the distribution function for these ap-
proaches. Therefore, we choose a simpler way to test the sequence in terms of auto-
correlation.

2.2.13 Integer Tests

2.2.13.1 Integer Frequency Test

Integer frequency test appears in various test suites in various names including Knuth[1]
and Diehard[4]. In this work, we give the actual probability values and give a recur-
sion for large n values.

Integer frequency test converts the sequence to an integer sequence and checks the
frequencies of each integer in the new sequence.

First the sequence is converted to an integer sequence. Then, the frequencies of all
possible integers are computed and compared to the expected frequencies to get an
idea about the randomness of the sequence.

The conversion from binary sequence to the integer sequence needs careful attention
since it affects the sample space size. For an n-bit sequence, if the block size of the
integers are chosen to be m there will be n

m
terms in the converted sequence and each

term will be one of 2m integers. Then, the expected frequencies of each element will
be

fe = 2−m
n

m
. (2.12)

fe should be large enough in order for the results to be acceptable.

In this work, we choose m = 3 for n = 128. In this setting, there will be 42 terms
in the integer sequence and each integer will have an expected frequency of 5,2. This
way one can apply a χ2 goodness-of-fit test on the frequencies of the integers for a
single sequence by computing the expected values from Equation 2.12. However, the
recommended application of the test is on a set of sequences.

For an efficient recursion, fix the integers b and l, and let P (k) = Prob(Xa = k).
Probability values for k = 0, 1, . . . can be evaluated recursively by

P (0) =

(
1− 1

M

)l
and for k = 1, 2, . . . ,M − 1

P (k) =
1

M − 1
· l + 1− k

k
P (k − 1).

48



Now we have

Fl(0) =

(
1− 1

M

)l
Fl(1) =

(
l + 1− 1

M

)(
1− 1

M

)l−1

and for k ≥ 2

Fl(k) = Fl(k − 1) +
l + 1− k
k(M − 1)

[Fl(k − 1) + Fl(k − 2)].

2.2.13.2 Integer Maximum Test

Integer maximum test corresponds to the Max-of-t test given in Knuth test suite. In this
work, we give the distribution function with actual probability values.

Integer maximum test examines the maximum integer value in the sequence and com-
pares to the expected maximum value to check the randomness of the sequence.

First the sequence is converted to m−bit integer sequence. Then, the maximum term
of the sequence is output as the t-value. The process is repeated for many sequences a
χ2 goodness-of-fit test is applied to the observed values.

Let l = n
m

be the number of terms of the integer sequence. Then the probability that
the maximum term to be smaller than or equal to k can be computed as follows. In a
sequence with m-bit terms, there are M = 2m possible integers for each term where
k + 1 of them are smaller than or equal to k. This means, the probability of a term to
be smaller than or equal to k is

P (σi ≤ k) =
k + 1

M
.

Therefore, probability that every term of the sequence to be smaller than or equal to k,
ie maximal term, x, to be smaller than k, is

P (x ≤ k) =

(
k + 1

M

)l
.

In this work, we recommend setting m = 8 for n = 128 and applying χ2 goodness-of-
fit test on a set of sequences.
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2.2.13.3 Integer Minimum Test

Although integer maximum test occurs in various suites, minimum test is not used
to measure randomness. In this work, we give the distribution function with actual
probability values.

Integer minimum test considers the minimum integer value in the sequence and outputs
a p-value regarding the minimum value.

Similar to the integer maximum test, initially the sequence is converted to m−bit in-
teger sequence. Then, the minimum term in the sequence is output as the t-value.
The test is applied on various sequences and a χ2 goodness-of-fit test is applied to the
observed values.

Let l = n
m

be the number of terms of the integer sequence. The probability of a term to
be greater than k is M−k

M
where M = 2m and probability that all the terms are greater

than k is

P (σi > k) =

(
M − k
M

)l
.

Therefore, the probability that no term is greater than or equal to k, ie minimum term,
x, of the sequence is greater than or equal to k, is

P (x > k) = 1−
(
M − k
M

)l
.

Similar to the integer maximum test, it is recommended to take m = 8 for n = 128
and to apply χ2 goodness-of-fit test on a set of sequences.

2.2.13.4 Integer Maximum Minimum Difference Test

Max-min difference is an integer test that has not appeared on any test suite yet. The
test can be found in

Integer minimum test examines the difference between the maximum and the minimum
terms of the sequence.

The test converts the sequence into m-bit integer sequence. Then, finds the maxi-
mum, σmax, and minimum, σmin, terms and computes the difference between these
two terms: σmax − σmin. Then, a χ2 goodness-of-fit test is applied to the observed
differences of generator output sequences.

The probability of the difference dmax being k can be computed as follows.

50



First, for the maximum-minimum difference to be equal to 0, all the sequence should
be equal. The probability of such an event is, therefore:

Prob(T = 0) = l

(
1

M

)l
.

For k ≥ 1, by principle of inclusion-exclusion we write

Prob(T = k) = (l − k)

[(
k + 1

M

)l
− 2

(
k

M

)l
+

(
k − 1

M

)l]
.

It follows that

Fl(0) = l

(
1

M

)l
and for k ≥ 1

Fl(k) =
k∑
i=0

Prob(T = k)

= (l − k)

(
k + 1

M

l)
+ (k + 1− l)

(
k

M

)l
.

2.2.13.5 Integer Coverage Test

Integer coverage test is derived from the well known coverage concept. This test ha
not been appeared in a test suite, however, the details can be found in [19].

Coverage test is an integer test the coverage of the sequence. The coverage of the test
is defined as the number of distinct elements in the sequence.

The test is an integer sequence test, therefore, the bit sequence should be transferred
into an integer sequence in a non-overlapping fashion. The number of distinct integers
is the t-value of the test.

The number of n bit sequences containing exactly k distinct elements is calculated as
follows. First, the number of distinct k integer selections out of M integers is

(
M
k

)
.

Then, since l ≥ k, some elements can appear more than once in the sequence where
l = n

m
. There are k distinct integers and the sum of the frequencies of these integers

are l. The number of such ordered arrangements is equal to the partitions of l into k

which is the Stirling number of the second kind l of k,
{
l
k

}
. Finally, considering the k!
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orderings of k elements within these arrangements the total number of n bit sequences
containing exactly k distinct elements is(

M

k

){
l
k

}
k!.

Then, the probability of such sequences is

M−l
(
M

k

){
l
k

}
k!. (2.13)

For the recursions we have

Pl(1) =
1

M l−1 .

and using the basic recursion for Stirling numbers of the second kind we get

Pl(k) =
k!

M l

(
M

k

)[
k

{
l − 1
k

}
+

{
l − 1
k − 1

}]
=

k

M
· k!

M l−1

(
M

k

){
l − 1
k

}
+
M − k + 1

M
· (k − 1)!

M l−1

(
M

k − 1

){
l − 1
k − 1

}
=

k

M
Pl−1(k) +

(
1− k − 1

M

)
Pl−1(k − 1)

for k = 2, 3, . . ..

2.2.13.6 Integer Repetition Test

Integer repetition test examines the first index of the repetition in the sequence.

First the sequence is converted to b-bit integer sequence and then, starting from the
first term, each term is compared to the predecessor terms. The index, where the first
repetition occurs, is the t-value of the test.

Assume the first repetition occurs at kth point. That is, the first k− 1 terms are distinct
and the kth term is equal to one of the first k − 1 terms. Then, one can choose k − 1
distinct integers out of M for the first k − 1 terms and these terms can be arranged in
(k− 1)! ways. For the kth element there are k− 1 possible values. Therefore, there are(

M

k − 1

)
(k − 1)!(k − 1)
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and the probability of a repetition to occur at kth index is

M−k
(

M

k − 1

)
(k − 1)!(k − 1). (2.14)

2.2.13.7 Integer Saturation Test

Integer Saturation test is the equivalent of Knuth’s Coupon Collector test. In this work
we set the suitable parameters and give a recursion for efficient computation of the
probabilities. The test details can be found in [19].

Saturation test investigates the sequence in terms of the length of the shortest subse-
quence that includes all possible m-bit integers.

After the sequence is converted to m-bit integer sequence, the terms are traced until
all m-bit integers are occurred. The index of the last integer, saturation point, is the
t-value of the test.

In order to have k as the saturation point, the first k − 1 terms of the sequence must
cover M − 1 distinct integers, and the kth term must be the missing one in the first
k − 1 terms. Probability of the first k − 1 terms of the sequence covering M − 1
distinct integers is (

M
M−1

){ k − 1
M − 1

}
(M − 1)!

Mk−1 .

The last term is the non-appearing integer with probability 1
M

. Then, the probability of
a sequence having saturation point k is

P (SP = k) = M−(k−1)
(

M

k − 1

){
k − 1
M − 1

}
(M − 1)!

1

M

= M−(k−1)
{
k − 1
M − 1

}
(M − 1)!.

2.2.13.8 Universal Test

Universal test[20] deals with the distance between successive occurrences of elements.
The test is applied on the integer sequences. Therefore, first, binary sequences are
converted to b-bit integer sequences. Then, a distance sequence D is generated as
follows. D = d1d2..dn st

di =

{
j − i j is the smallest index st j > i and ui = uj
0 if i is the last index of ui

Then, the observed frequencies, Fi, in the sequence D are compared to the expected
numbers Ei.
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For a term t in σ̃, in order for the distance between its next occurrence to be d 6= 0,
there should be d − 1 elements which are not equal to t, and the next element should
be t. The probability of such a case is

P (d) =

(
M − 1

M

)d−1
1

M
. (2.15)

For d = 0, the probability can be computed by

P (0) = 1−
l∑

i=1

(
M − 1

M

)i−1
1

M
. (2.16)

Notice that, the last term dn should always be zero as it is the last occurrence of any
integer. Also, dn−1 is either1 or 0. Continuing this way, the distance d can appear in
l − d places. So the expected frequencies of the distances are

Ea = (l − a)P (d). (2.17)

The χ2 value can bi computed via

χ2
σ =

l−1∑
d=0

(Ed − Td)2

Ed
(2.18)

and the p− value can be computed using χ2 test with χ2
σ and degree of freedom n− 1.
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CHAPTER 3

CORRELATION OF STATISTICAL RANDOMNESS TESTS

Randomness testing is an expensive process in terms of time and computing power:
first a large set of sequences are produced, then, a set of statistical randomness tests are
applied on these sequences and the results are evaluated to conclude if the sequence or
the generator is non-random. So, it is not feasible to run all known tests in all possible
settings. Therefore, user should choose a subset of tests that runs in a practical time.
However, this subset of tests should contain as many tests to make the correct decision.

In such a process, if some or all the selected tests are correlated, then the results of these
tests will also be similar. This, not only wastes time and computing power, but also
may lead to false conclusions on the tested sequences. Therefore, in order to conclude
a reliable decision on the randomness, it is important for the tests to be uncorrelated.

Correlation can be investigated experimentally by examining the test values and p−
values of tests. One can apply correlation detection methods on the output sets of
statistical tests and conclude whether tests are correlated or not. In this section, the
correlation detection methods are applied on the data sets and correlations between
tests are deduced.

3.1 Pearson Correlation Coefficient

There are various ways to determine the correlation between random variables. The
most common method is the Pearson Product-Moment Correlation method. The
value of the Pearson coefficient is a measure of the linear correlation between two
random variable sets. The correlation coefficient of random variables X and Y can be
calculated using the Equation 3.1:

Corr(X, Y ) =
cov(X, Y )

σXσY
, (3.1)

where cov(X, Y ) is the covariance between X and Y and σX is the standard deviation
of X .

We calculate the Pearson correlation values for each test pair defined in Chapter 2 and
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present the results in Tables A.2, A.3, A.4 and A.5. In order for the tables to fit we
rename the tests and the corresponding test names are given in Table A.1. In theory, for
the tests to be uncorrelated all the values should be 0. On the other hand, In practice
there may be some deviations from 0 even if the tests are uncorrelated which can be
caused by the data selection. However, in the tables there are correlation values higher
than 0.1 which cannot be ignored.

The tables suggest the following statements.

• There is a correlation among the Random Excursion(1), Random Excursion(2)
and Random Excursion(3) tests, and Random Excursion Height test.

• There is a correlation among the Random Excursion(-1), Random Excursion(-2)
and Random Excursion(-3) tests.

• Random Excursion(1) and Random Excursion(-1) tests are correlated to Random
Excursion Test.

• Weight test and Height test have a higher correlation value than expected.

• Weight test and Integer Frequency tests are highly correlated.

• Number of Total Runs test is correlated to Runs of Length 1 and Integer Fre-
quency tests.

However, Pearson correlation values are not a strong measure and should be supported
with other instruments. Therefore, we need to define new measures for determining the
correlation between tests. For this reason we compare the Fail-Fail Ratio, the reactions
of the tests on the changes and deterministic structures in the sequence.

3.2 Fail-Fail Ratio

The primary result of a randomness test is whether the sequence passed the test or
failed. Therefore, it is convenient to base the correlation on the failed sequences. The
behaviour of a test on the failed sequences from another test can give some idea about
the correlation between these two tests. For instance, if tests T1 and T2 are uncorre-
lated, then it is expected that any sequence failed from T1 fails from T2 with the same
fail probability of any sequence in the sequence space. That is, failing from T1 should
not affect the result of the test T2. Any other result can indicate a relation between
the mentioned tests. This way, the fail probability of T1 on the sequences that fail
from T2 can be used as a correlation measure. We call this probability Fail-Fail Ratio
(FFR)[21]. Also, Pass-Fail(PFR) and Pass-Pass (PPR) ratios can be defined in a simi-
lar manner. However, our experiments show that these two ratios are not as reliable as
FFR.

We applied statistical randomness tests on 10000 sets, each consisting of 1000 se-
quences, and checked the FFR. The sequences are the output of AES algorithm, with a
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fixed key ad-bd incremental plaintexts. The plaintexts start from all zero 128-bits and
at each iteration we increment the integer value of the plaintext by one. The results are
given in Table B.1. As the tables is too large to fit here, we present only the rows with
correlation values higher than 0,4 for FFR.

Table B.1 indicates the following.

• Random Excursion tests for y = 1, 2, 3 are mutually highly correlated, and cor-
related to weight test.

• Random Excursion tests for y = −1,−2,−3 are mutually highly correlated and
highly correlated to Pseudo Complexity Profile and Weight tests.

• Random Height and Random Excursion for y = 0 are mutually highly corre-
lated.

• Runs of Length 5 and Runs of Length > 5 tests are mutually correlated to each
other and highly correlated to Longest Run and Random Excursion tests for
y = 1, 2, 3.

• Minimum test is highly correlated to Pseudo Complexity, Pseudo Complexity
Profile, Weight and Number of Total Runs tests. Moreover, Minimum test is
correlated to Maximum and Maximum-Minimum Difference tests.

Besides the above inferences, there are some other results that can be derived from the
Table B.1. However, these results are weaker and need to be justified by increasing the
number of tests.

In order to check the reliability of this method, we apply Fail-Fail Ratio on the short
sequence tests in the NIST Statistical Test Suite. As our primary aim is to test 128
bit sequence sets, we choose 9 short sequence tests from this suite and applied on the
same data sets with previous experiment. The results are given in Table C.1.

According to Table C.1, Frequency and Block Frequency tests, and Approximate En-
tropy, Serial-1 and Serial-2 tests are correlated. This result is compliant with the previ-
ous results[22]. This conformity encourages the use of Fail-Fail Ratio as a correlation
detection tool.

3.3 Transformations

Another method for observing the correlation between two tests is analysing the re-
actions of the tests to the changes in the sequence[23]. For this purpose, first a set
of sequences are tested, and a transformation is applied on the sequences. Then, the
correlation between the original sequence results and the transformed sequence results
are computed. This way, the characteristic similarities between tests can be detected.
This similarities can also be used for classification of the tests. For instance, if, for
a large space of sequences test T1 detects the complementation of a sequence but test
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T2 does not, then these two tests are probably in distinct classes and the correlation
between these two tests is not expected to be significant. Conversely, if two tests show
similar behaviour on the same transformations then these tests can be considered to
be in the same class and there may be a notable correlation between these tests. By
increasing the number of experiments and transformations, a reliable classification can
be achieved.

For this purpose, we define some transformations πi, and calculate the correlation value
between T (σ) and T (πi(σ)) for each transformation πi. Then, according to the corre-
lation values, we classify the tests. During this process we define a number of trans-
formations and select the ones that contribute to classification. For instance, if all
tests can detect a transformation (or none of them cannot detect) then we exclude this
transformation. The transformations used in the classification are given below.

1. Complement: This transformation complements all the sequence: C(σ) = σ̃
such that ŝi = 1⊕ si.

2. Swap Bits: The Swap Bits transformation swaps two successive bits in the se-
quence: B(σ) = σ̃ such that σ̃ = s2s1s4s3s5s6 . . . .

3. Swap Halves: Swaps the first half of the sequence with the last half: σ =
A||B, H(σ) = B||A.

4. Reverse: Reverse transformation reverses the sequence: R(σ) = snsn−1 . . . s1.

5. Swap Half-Reverse Last: This transformation first swaps the halves of the se-
quence and then reverses the last half of the swapped sequence: σ = A||B then
HR(σ) = B||R(A).

6. Reverse Halves: Reverse Halves transformation reverses each half of the se-
quence: if σ = A||B then RH(σ) = R(A)||R(B).

7. Complement Reverse: This transformation reverses the complement of the se-
quence CR(σ) = C(R(σ)).

To clarify the process, consider the Total Number of Runs test. This test cannot detect
the complementation of the sequence as the number of runs in the sequence σ and its
complement is the same. Therefore, the output values for the σ andC(σ) are equal. So,
the correlation value of the Total Number of Runs test corresponding to complement
transformation is 1.

We apply all the tests with the defined transformations above and compute the cor-
relation values between the outputs of the original sequences and the outputs of the
transformed sequences. The results are given in Table D.1. According to this table, the
tests can be classified as in Table 3.1.
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Table 3.1: Classification of Tests.

Complexity Tests Max-Min Tests Frequency Tests Run Tests
Autocorrelation Test Maximum Test Integer Frequency Test Random Height Test

Linear Complexity Test Minimum Test Weight Test Template Matching Test
Linear Complexity Profile Test Max-Min Difference Test Longest Run Test

Pseudo Complexity Test Coverage Tests Run of Length k Tests1

Excursion Tests Coverage Test Total Runs
Integer Complexity Tests Random Excursion Tests2 Repetition Test Pseudo Complexity Profile Test

Universal Test Saturation Test

1This set includes k = 1, 2, 3, 4, 5 and k > 5.
2This class includes Random Excursion Tests(0),(±1),(±2),(±3)
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CHAPTER 4

BUILDING A TEST SUITE

Designing a test suite is not a trivial task. On the contrary, one should follow some
certain rules in order to build a reliable suite. Piling up all the known tests makes an
impractical test suite which will be useless. The tests in the suite should be selected
carefully considering the correlation of the tests, coverage of the test suite, classes of
the tests and so on. Important criteria in the test suite design process are given below.

Test Subject
The tests should be selected among the ones that are based on mathematical back-
grounds and meaningful in terms of randomness and statistics. The tests should give
feedback about the quantity and quality of the tested feature.

Coverage
The coverage of the suit is defined as the ratio between the number of sequences that
fail from at least one of the test and the sample set size, |F ||ω| . Then, the coverage of
the suit should be evaluated after the tests are selected and it should be close to the
expected coverage. If the coverage value is smaller then the expected value, then is a
sign of correlated or weak tests in the suite.

Correlation
The tests in the suite should be uncorrelated. Correlated tests not only wastes time
and computing power, but also may lead to wrong decisions for the randomness of
the sequence or the generator. Besides, the correlation of the tests affect the coverage
of the suite. The lower the correlation, the higher the coverage. Moreover, it is a
good practice to inform the users about the correlations of the tests in the suite and the
coverage of the overall test suite. This way, if a smaller subset of the suite is intended
to be applied, the user can select the tests with lower correlation and higher coverage.

Marginal Coverage
The marginal benefits of the tests should be considered when including a new test to
the suite. For instance, assume there are two tests T1 and T2 in a suit with coverage
value c1. When the test T3 is added to the suite, assume the new coverage becomes c2.
For uncorrelated tests, ∆(c) = c1−c2 should be close to the significance level. If ∆(c)
is smaller than the significance level, then either T3 is a weak test, or it is correlated to
the tests in the suite. In any case, T3 should be excluded from the suite.
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Diversity
For a comprehensive test suite, there should be tests from various classes. For instance,
besides the tests examining the frequencies of terms, there should be tests checking
the complexity of the sequence. The suite, unless it was aimed to measure a specific
property, should include at least one test from each class.

Aim
The aim of the suite should be reflected on the test choice. If, for instance, short
sequences are aimed to be tested, then the tests in the suite should be able to test short
sequences. Similarly, if the aim is to test random number generators of long sequences,
the included tests should be suitable for testing bunches of long sequences. Besides,
the type of the sequences, integer or binary, should be considered and the tests should
be selected accordingly.

4.1 A Sample Test Suite

In this section, a sample selection process is applied on the tests mentioned in Section
2. The purpose of the selection is to design a test suite with high coverage and low
correlation by including as least tests as possible.

First, it is convenient to go class-by-class in order to have at least one test from each
class.

• Complexity Tests: All 4 tests in this class have coverage very close to 0, 01.
However, among them, Linear Complexity Profile test has the least correlation
values with the tests from other classes. So, it is a good practice to select Linear
Complexity Profile test. Besides, running this test also implies running Linear
Complexity Test. Therefore, one can select these two tests from the complexity
class.

• Integer Complexity Tests: In this class there is only one test, Universal Test,
exists. Therefore, selection of Universal Test should be left after the selection of
other classes according to the correlations with the selected tests.

• Max-Min Tests: In this set the Integer Maximum Minimum Difference test has
a higher correlation value than Maximum and Minimum tests. Considering the
correlation values where p-value< 0.05, the Minimum test has higher correlation
values than the Maximum test. Therefore, Maximum test can be selected from
this class.

• Random Excursion Tests: The Random Excursion(1), Random Excursion(2)
and Random Excursion(3) tests are highly correlated to each other and to Ran-
dom Excursion Height test. Therefore, if selected, one needs to select only one
of these tests. Similarly, The Random Excursion(-1), Random Excursion(-2) and
Random Excursion(-3) tests are highly correlated and it is enough to choose one
of them. Also there are correlations between Random Excursion-Random Ex-
cursion(1) and Random Excursion-Random Excursion(-1). Considering the cor-
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relations of Random Excursion-Random Excursion(2) and Random Excursion-
Random Excursion(3), Random Excursion test is a good choice. For the re-
maining tests, Random Excursion(-2) and Random Excursion(-3), the former
has higher correlation values with other tests. Therefore, the selected tests from
this class are Random Excursion and Random Excursion(-3).

• Frequency Tests: The frequency distribution of the terms in the sequence is a
very basic condition on the randomness of the sequence and affects the prop-
erties that other tests control. Although the correlation of weight and Integer
Frequency tests are medium, they are correlated to many tests in the set. There-
fore, it is a better choice to reserve the frequency tests for the later decisions and
select according to the correlation values with the selected tests.

• Coverage Tests: The correlation values and coverages of all three tests are very
close to each other. In this class, selection can be made according to the priority
of the test suite. Otherwise, Repetition Test is faster than the other two tests and
can be selected primarily.

• Run Tests: In this class Total Runs and Pseudo Complexity Profile are corre-
lated to Maximum test. Random Height Test and Random Excursion Tests are
correlated to each other. Also, Run Length> 5, Runs of Length 5 and Longest
Run tests are correlated. Template Matching Test can be selected among the re-
maining tests. If a second test is to be chosen, it is one of the Run-2, Run-3 and
Run-4 tests. Among these three tests, if we check the correlation where p-value
< 0.05, the most uncorrelated test is Run-2 test. That is, the Template Matching
and Run-2 tests can be selected from this class.

At this point, when the correlation values of Universal test and the selected tests are
computed, and the marginal benefit of the Universal test is evaluated, the results sug-
gest that the Universal Test should be omitted. The marginal benefit of the Universal
Test is less than 0.005 and if selected, it will increase the correlation of the suite.

From the above discussion, an example suite consists of the following tests: Lin-
ear Complexity Profile, Linear Complexity, Maximum, Random Excursion, Random
Excursion(-3), Repetition, Template Matching and Run-2 Tests. The coverage of the
suite is 0.0762 in contrast to the expected 0.077255306 which is very close. Moreover,
the correlation among the tests are considerably low. Thanks to the selection process,
the suite includes at least one test from each class, except the frequency class. Actu-
ally, our experiments show that, the probability of a sequence that fails from frequency
class tests but passes the selected suite tests is about 0.0001 which can be ignored.

63



64



CHAPTER 5

CONCLUSION

In this thesis, we examine the statistical randomness tests in the literature. We go
over 51 tests and select the tests with reasonable measure and calculable distribution
functions. We review the selected tests and compute the distribution functions so that
actual probability values can be computed for sequences shorter than 4096 bits. We,
also, define new tests for more sensitive results. At the end, we left with 20 tests and
30 p-values.

By using correlation detection methods, we find the correlations between each test
and using the correlation values we classify the selected tests. Finally, we stress some
important points in building a test suite and present an example test suite using the tests
mentioned in this thesis.

The focus of this work is testing the set of sequences, like encryption keys, that cannot
be tested using the present test suites. As a future work, we are aiming to extend our
results for longer sequences and contribute to the effectiveness and efficiency of the
statistical randomness testing.
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[20] Cihangir Tezcan Ali Doğanaksoy. An alternative approach to maurer’s universal
statistical test. ISCTurkey 2006 Conference Proceedings, pages 25–27, 2006.
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APPENDIX A

Pearson Correlation Value of Tests

Table A.1: Test naming in the Pearson correlation tables

Autocorrelation T1 Pseudo Comp. T11 Run 1 T21
Coverage T2 Random Ex. T12 Run 2 T22
Integer Frequency T3 Random Ex. 1 T13 Run 3 T23
Linear Comp. Pr. T4 Random Ex. -1 T14 Run 4 T24
Linear Comp. T5 Random Ex. 2 T15 Run 5 T25
Longest Run T6 Random Ex. -2 T16 Saturation T26
Maximum T7 Random Ex. 3 T17 Template Mat. T27
Max-Min Diff T8 Random Ex. -3 T18 Total Runs T28
Minimum T9 Random Height T19 Universal T29
Pseudo Comp. Pr. T10 Repetition T20 Weight T30
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Table A.2: Pearson correlation values between tests - 1

T1 T2 T3 T4 T5 T6 T7 T8
T1 0,00985 -0,01470 0,01260 -0,00629 -0,01164 -0,00794 -0,00780
T2 0,00985 -0,02078 0,00316 0,00671 -0,01047 0,00260 -0,00147
T3 -0,01470 -0,02078 -0,00037 -0,00097 0,03649 0,01853 0,01074
T4 0,01260 0,00316 -0,00037 0,00811 0,00616 0,01505 0,00712
T5 -0,00629 0,00671 -0,00097 0,00811 0,01645 -0,00646 -0,01392
T6 -0,01164 -0,01047 0,03649 0,00616 0,01645 0,01245 0,02328
T7 -0,00794 0,00260 0,01853 0,01505 -0,00646 0,01245 0,06928
T8 -0,00780 -0,00147 0,01074 0,00712 -0,01392 0,02328 0,06928
T9 -0,00266 -0,00130 0,04343 -0,00957 0,00439 0,02087 0,00893 0,08128

T10 0,00520 0,01834 0,02629 -0,00252 -0,00451 0,02764 0,00297 -0,00362
T11 -0,01472 0,00371 0,01513 -0,00176 -0,00468 0,00840 -0,00195 -0,00584
T12 0,00835 0,00350 0,00352 0,00775 -0,01747 -0,00007 -0,00521 0,00902
T13 -0,00035 0,02085 0,01434 -0,00695 0,00206 0,00974 0,02076 0,01076
T14 0,00833 0,00010 -0,01311 0,00886 0,00565 0,00904 0,00680 0,00812
T15 0,01236 0,00654 0,03393 -0,00319 -0,01024 0,00985 0,01495 0,00625
T16 0,02002 -0,00064 0,02354 0,02236 -0,00001 0,01613 0,00382 -0,00940
T17 0,01051 -0,00603 0,04049 0,00089 0,00274 -0,00109 0,00727 0,00260
T18 0,00074 -0,00526 0,04515 0,01006 -0,00833 -0,01270 0,01918 -0,00366
T19 0,00393 0,00459 0,07775 0,01680 0,00054 0,01161 0,02290 -0,00453
T20 0,00703 0,01907 0,00310 -0,00977 -0,01546 0,00796 -0,00815 0,00931
T21 0,00939 -0,00316 0,06815 0,01560 -0,01214 -0,00333 0,01908 0,00877
T22 0,01785 0,01421 0,01754 0,00288 0,00618 0,00245 -0,00498 -0,00110
T23 0,00255 -0,00105 0,00919 0,00653 -0,00635 0,01188 -0,01960 0,01095
T24 -0,00257 0,00746 0,00963 0,00141 -0,01162 0,00291 -0,00794 -0,02144
T25 0,00685 0,00565 0,02025 0,01189 -0,01449 0,00708 0,00690 -0,00145
T26 0,00294 0,00164 -0,00070 0,00724 -0,00234 -0,00633 0,00004 0,00472
T27 -0,01338 -0,00612 0,07379 -0,01659 0,00639 0,01235 0,00016 0,01054
T28 -0,01753 -0,00383 0,07379 -0,00104 0,01882 0,02311 0,00841 0,01267
T29 0,00246 -0,00492 -0,00357 0,00319 -0,00228 0,00018 0,00100 -0,00784
T30 0,00143 0,00821 0,10906 0,00660 -0,01105 0,01017 0,01353 -0,01358
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Table A.3: Pearson correlation values between tests - 2

T10 T11 T12 T13 T14 T15 T16
T1 -0,00266 0,00520 -0,01472 0,00835 -0,00035 0,00833 0,01236
T2 -0,00130 0,01834 0,00371 0,00350 0,02085 0,00010 0,00654
T3 0,04343 0,02629 0,01513 0,00352 0,01434 -0,01311 0,03393
T4 -0,00957 -0,00252 -0,00176 0,00775 -0,00695 0,00886 -0,00319
T5 0,00439 -0,00451 -0,00468 -0,01747 0,00206 0,00565 -0,01024
T6 0,02087 0,02764 0,00840 -0,00007 0,00974 0,00904 0,00985
T7 0,00893 0,00297 -0,00195 -0,00521 0,02076 0,00680 0,01495
T8 0,08128 -0,00362 -0,00584 0,00902 0,01076 0,00812 0,00625
T9 0,02396 -0,00052 -0,00278 -0,01429 -0,00219 0,00812

T10 0,02396 -0,01894 0,00043 -0,00736 -0,00501 0,01793
T11 -0,00052 -0,01894 0,00158 0,00200 0,00478 -0,01208
T12 -0,00278 0,00043 0,00158 0,13186 0,14480 0,04600
T13 -0,01429 -0,00736 0,00200 0,13186 0,02657 0,16873
T14 -0,00219 -0,00501 0,00478 0,14480 0,02657 0,01558
T15 0,00812 0,01793 -0,01208 0,04600 0,16873 0,01558
T16 0,00112 0,01598 -0,00405 0,05321 0,01060 0,17916 0,01366
T17 0,01346 0,03017 -0,00203 0,02239 0,07569 0,00099 0,19857
T18 -0,01622 0,00879 -0,00792 0,03733 0,00722 0,07826 0,01648
T19 0,01774 0,03412 -0,01000 0,05803 0,09380 0,03045 0,18073
T20 0,00283 0,00673 -0,00202 -0,01616 -0,00409 0,01224 0,01111
T21 0,00969 0,00869 -0,01009 -0,02609 -0,01388 -0,00946 -0,00309
T22 0,01170 0,01787 -0,00184 0,00531 0,00663 0,00841 0,00419
T23 0,02317 -0,00234 0,01062 0,00288 0,00070 -0,00447 0,00056
T24 -0,01005 0,00979 0,00081 0,00048 0,01336 -0,00317 -0,01352
T25 -0,00187 -0,01182 0,02333 0,00730 0,00841 0,00329 0,01990
T26 0,00259 0,01508 -0,01715 -0,00056 -0,02406 -0,00643 -0,00399
T27 0,01880 0,03306 0,01150 0,01643 0,00232 0,02018 0,03427
T28 0,00530 0,00761 -0,00712 -0,01840 0,00038 0,00994 0,01356
T29 -0,01200 -0,00049 0,00892 0,00207 0,00558 -0,01484 0,01652
T30 0,03461 0,05660 0,00934 0,03901 0,02513 0,01224 0,05713
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Table A.4: Pearson correlation values between tests - 3

T17 T18 T19 T20 T21 T22 T23
T1 0,02002 0,00074 0,00393 0,00703 0,00939 0,01785 0,00255
T2 -0,00064 -0,00526 0,00459 0,01907 -0,00316 0,01421 -0,00105
T3 0,02354 0,04515 0,07775 0,00310 0,06815 0,01754 0,00919
T4 0,02236 0,01006 0,01680 -0,00977 0,01560 0,00288 0,00653
T5 -0,00001 -0,00833 0,00054 -0,01546 -0,01214 0,00618 -0,00635
T6 0,01613 -0,01270 0,01161 0,00796 -0,00333 0,00245 0,01188
T7 0,00382 0,01918 0,02290 -0,00815 0,01908 -0,00498 -0,01960
T8 -0,00940 -0,00366 -0,00453 0,00931 0,00877 -0,00110 0,01095
T9 0,00112 -0,01622 0,01774 0,00283 0,00969 0,01170 0,02317

T10 0,01598 0,00879 0,03412 0,00673 0,00869 0,01787 -0,00234
T11 -0,00405 -0,00792 -0,01000 -0,00202 -0,01009 -0,00184 0,01062
T12 0,05321 0,03733 0,05803 -0,01616 -0,02609 0,00531 0,00288
T13 0,01060 0,00722 0,09380 -0,00409 -0,01388 0,00663 0,00070
T14 0,17916 0,07826 0,03045 0,01224 -0,00946 0,00841 -0,00447
T15 0,01366 0,01648 0,18073 0,01111 -0,00309 0,00419 0,00056
T16 0,20876 0,04374 -0,00048 -0,01708 0,01601 0,00428
T17 0,02939 0,01865 0,14469 0,00725 -0,01351 0,00687 -0,01726
T18 0,20876 0,06301 -0,01106 0,00739 0,00862 -0,01546
T19 0,04374 0,06301 0,01268 -0,02244 0,01950 -0,01198
T20 -0,00048 -0,01106 0,01268 -0,01155 0,01434 0,01390
T21 -0,01708 0,00739 -0,02244 -0,01155 -0,00512 0,00934
T22 0,01601 0,00862 0,01950 0,01434 -0,00512 0,01628
T23 0,00428 -0,01546 -0,01198 0,01390 0,00934 0,01628
T24 0,01231 -0,00879 0,01046 -0,01126 0,00672 0,00439 0,00553
T25 0,01060 0,01236 0,00632 -0,00078 0,00329 -0,00178 0,01442
T26 -0,00779 -0,00529 -0,00601 -0,00064 0,00693 0,02130 0,00217
T27 0,02412 0,02352 0,05967 0,00071 0,01699 0,03403 0,02075
T28 0,00599 0,01703 -0,00381 0,01571 0,20141 -0,00045 0,00306
T29 0,00557 0,01062 0,00375 0,01499 -0,00102 0,00463 0,00707
T30 0,03878 0,06737 0,17660 0,01123 -0,01660 0,00230 -0,00910
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Table A.5: Pearson correlation values between tests - 4

T24 T25 T26 T27 T28 T29 T30
T1 -0,00257 0,00685 0,00294 -0,01338 -0,01753 0,00246 0,00143
T2 0,00746 0,00565 0,00164 -0,00612 -0,00383 -0,00492 0,00821
T3 0,00963 0,02025 -0,00070 0,07379 0,07379 -0,00357 0,10906
T4 0,00141 0,01189 0,00724 -0,01659 -0,00104 0,00319 0,00660
T5 -0,01162 -0,01449 -0,00234 0,00639 0,01882 -0,00228 -0,01105
T6 0,00291 0,00708 -0,00633 0,01235 0,02311 0,00018 0,01017
T7 -0,00794 0,00690 0,00004 0,00016 0,00841 0,00100 0,01353
T8 -0,02144 -0,00145 0,00472 0,01054 0,01267 -0,00784 -0,01358
T9 -0,01005 -0,00187 0,00259 0,01880 0,00530 -0,01200 0,03461

T10 0,00979 -0,01182 0,01508 0,03306 0,00761 -0,00049 0,05660
T11 0,00081 0,02333 -0,01715 0,01150 -0,00712 0,00892 0,00934
T12 0,00048 0,00730 -0,00056 0,01643 -0,01840 0,00207 0,03901
T13 0,01336 0,00841 -0,02406 0,00232 0,00038 0,00558 0,02513
T14 -0,00317 0,00329 -0,00643 0,02018 0,00994 -0,01484 0,01224
T15 -0,01352 0,01990 -0,00399 0,03427 0,01356 0,01652 0,05713
T16 0,01231 0,01060 -0,00779 0,02412 0,00599 0,00557 0,03878
T17 -0,00458 0,00532 -0,02637 0,02518 -0,00085 -0,00602 0,06962
T18 -0,00879 0,01236 -0,00529 0,02352 0,01703 0,01062 0,06737
T19 0,01046 0,00632 -0,00601 0,05967 -0,00381 0,00375 0,17660
T20 -0,01126 -0,00078 -0,00064 0,00071 0,01571 0,01499 0,01123
T21 0,00672 0,00329 0,00693 0,01699 0,20141 -0,00102 -0,01660
T22 0,00439 -0,00178 0,02130 0,03403 -0,00045 0,00463 0,00230
T23 0,00553 0,01442 0,00217 0,02075 0,00306 0,00707 -0,00910
T24 0,02724 0,00509 -0,01464 0,01087 0,00873 0,00689
T25 0,02724 0,00595 -0,00053 0,00479 0,01589 0,02054
T26 0,00509 0,00595 0,00332 -0,01159 -0,00673 -0,00479
T27 -0,01464 -0,00053 0,00332 0,02347 0,00983 0,09429
T28 0,01087 0,00479 -0,01159 0,02347 -0,00547 0,01196
T29 0,00873 0,01589 -0,00673 0,00983 -0,00547 0,00047
T30 0,00689 0,02054 -0,00479 0,09429 0,01196 0,00047
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APPENDIX B

Fail-Fail Ratio of the Tests

Table B.1: Fail-Fail Ratio of the tests with correlation value
c > 0.4

Test-1 Test-2 Correlation Ratio

Minimum Pseudo Complexity 1
Random Height Random Excursion y=1 1

Random Excursion y=1 Random Height 1
Random Excursion y=2 Random Height 1
Random Excursion y=2 Random Excursion y=1 1
Random Excursion y=3 Random Height 1
Random Excursion y=3 Random Excursion y=1 1
Random Excursion y=3 Random Excursion y=2 1
Random Excursion y=-2 Random Excursion y=-1 1
Random Excursion y=-3 Random Excursion y=-1 1
Random Excursion y=-3 Random Excursion y=-2 1

Run>5 Longest Run 0,971291866
Run-5 Longest Run 0,968778696

Random Excursion y=-3 Weight 0,928571429
Random Excursion y=-2 Weight 0,875
Random Excursion y=-3 Pseudo Complexity Profile 0,862068966
Random Excursion y=-2 Pseudo Complexity Profile 0,857142857
Random Excursion y=-2 Maximum 0,785714286
Random Excursion y=-3 Maximum 0,785714286
Random Excursion y=2 Random Excursion y=3 0,673299531
Random Excursion y=-2 Random Excursion y=-3 0,672817907

Minimum Pseudo Complexity Profile 0,6
Minimum Weight 0,571428571

Random Excursion y=-1 Weight 0,541666667
Random Excursion Random Excursion y=-1 0,515960452

Random Height Random Excursion y=2 0,511131994
Random Excursion y=1 Random Excursion y=2 0,511131994
Random Excursion y=-1 Random Excursion 0,509412913
Random Excursion y=-2 Random Excursion 0,509412913

Continued on next page
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Table B.1 – Continued from previous page
Test-1 Test-2 Correlation Ratio

Random Excursion y=-3 Random Excursion 0,509412913
Random Excursion y=-1 Random Excursion y=-2 0,508390706

Random Excursion Random Height 0,507426099
Random Excursion Random Excursion y=1 0,507426099

Random Height Random Excursion 0,504371506
Random Excursion y=1 Random Excursion 0,504371506
Random Excursion y=2 Random Excursion 0,504371506
Random Excursion y=3 Random Excursion 0,504371506

Minimum Total Runs 0,470588235
Random Excursion y=3 Linear Complexity 0,4375

Run>5 Max-Min Diff 0,416666667
Maximum Max-Min Diff 0,416666667

Random Excursion Weight 0,416666667
Random Excursion y=-2 Max-Min Diff 0,416666667
Random Excursion y=-3 Max-Min Diff 0,416666667
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APPENDIX C

Fail-Fail Ratio of NIST Tests Suite
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APPENDIX D

Correlations of the Tests with Corresponding to Transformed
Sequences
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Table D.1: Correlation of tests with respect to the transformations

Test
Name C(σ) B(σ) HR(σ) C(R(σ)) Reverse H(σ) RH(σ)

Autocorrelation 1,000000 0,616492 0,059230 0,224906 0,224906 0,005444 0,241093
Coverage 1,000000 0,204551 0,175537 0,245642 0,245642 0,183341 0,162245
Integer
Frequency 0,143314 0,004453 0,138369 0,284798 0,558945 0,279168 0,055682

Linear
Complexity 0,683198 0,000978 0,000282 0,028148 0,046480 0,005047 0,001701

Linear
Complexity Profile 0,314211 0,051909 0,004756 0,006846 0,006028 0,005804 0,028192

Longest Run 1,000000 0,831832 0,931950 0,979056 0,979056 0,919052 0,917548
Maximum 0,062450 0,856820 0,381123 0,037794 0,057852 1,000000 0,057852
Max-Min Diff 1,000000 0,848187 0,358943 0,027538 0,027538 1,000000 0,027538
Minimum 0,062450 0,857644 0,389347 0,033628 0,065103 1,000000 0,065103
Pseudo
Complexity 0,024608 0,673146 0,002345 0,002840 0,002293 0,003891 0,002937

Pseudo
Complexity Profile 0,703245 0,796995 0,918352 0,678248 0,866998 0,974521 0,867314

Template
Matching -0,326734 0,445557 0,977526 -0,326734 1,000000 1,000000 1,000000

Random
Excursion 1,000000 1,000000 0,130502 0,103905 0,103905 0,148510 0,364410

Random
Excursion(1) 0,460839 0,895269 0,121609 0,077389 0,097195 0,142718 0,352743

Random
Excursion(-1) 0,460839 0,895284 0,120362 0,080167 0,096781 0,143221 0,357816

Random
Excursion(2) 0,007184 1,000000 0,135515 0,053653 0,113766 0,157979 0,375711

Random
Excursion(-2) 0,007184 1,000000 0,130510 0,044295 0,111067 0,157406 0,376769

Random
Excursion(3) 0,279692 0,912234 0,135703 0,016603 0,112201 0,158821 0,387904

Random
Excursion(-3) 0,279692 0,911844 0,134499 0,003498 0,114029 0,160278 0,386232

Random Height 0,690247 0,996327 0,711939 0,376123 0,685753 0,746442 0,865111
Repetition 1,000000 1,000000 0,012933 0,019101 0,019101 0,022164 0,129598
Run>5 1,000000 0,703733 0,968436 1,000000 1,000000 0,962647 0,962647
Run-1 1,000000 0,611412 0,989284 1,000000 1,000000 0,987657 0,987657
Run-2 1,000000 0,564285 0,976437 1,000000 1,000000 0,969664 0,969664
Run-3 1,000000 0,361314 0,966900 1,000000 1,000000 0,958981 0,958981
Run-4 1,000000 0,020842 0,960177 1,000000 1,000000 0,952106 0,952106
Run-5 1,000000 0,420643 0,953486 1,000000 1,000000 0,945842 0,945842
Saturation 1,000000 0,057627 0,062293 0,092427 0,092427 0,050854 0,108281
Number of
Total Runs 1,000000 0,505481 0,992205 1,000000 1,000000 0,992167 0,992167

Universal 1,000000 0,481727 0,540447 0,571712 0,571712 0,543717 0,731666
Weight 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000 1,000000
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