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Mathematics, Hacettepe University

Assist. Prof. Dr. Mert Özarar
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ABSTRACT

ON THE EFFICIENCY OF LATTICE-BASED CRYPTOGRAPHIC
SCHEMES ON GRAPHICAL PROCESSING UNIT

Yüce Tok, Zaliha

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ersan Akyıldız

Co-Supervisor : Assoc. Prof. Dr. Sedat Akleylek

December 2016, 75 pages

Lattice-based cryptography, a quantum-resistant public key alternative, has re-
ceived a lot of attention due to the asymptotic e�ciency. However, there is a bot-
tleneck to get this advantage on practice: scheme-based arithmetic operations and
platform-based implementations. In this thesis, we discuss computational aspects
of lattice-based cryptographic schemes focused on NTRU and GLP in view of the
time complexity on both CPUs and Graphical Processing Units (GPU). We fo-
cus on the optimization of polynomial multiplication methods both on theoretical
and implementation point of view. We propose a modified version of interleaved
Montgomery modular multiplication algorithm for ideal lattices, sparse polyno-
mial multiplication and its sliding window version for e�cient implementations.
We show that with the proposed algorithms we significantly improve the perfor-
mance results of lattice-based signature schemes. We also implement parallelized
version of well known polynomial multiplication algorithms such as schoolbook
method, NTT by using CUDA and provide a library for selected lattice-based
signature schemes on a GPU.

Keywords : lattice-based cryptography, polynomial multiplication, sparse polyno-
mial multiplication with sliding window, interleaved Montgomery modular mul-
tiplication, NTRUEncrypt, GPU, FFT-based polynomial multiplication, cuFFT,
number theoretic transform (NTT)
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ÖZ

GRAFİK İŞLEMCİ BİRİMLERİ ÜZERİNDE KAFES TABANLI
KRİPTOGRAFİK ŞEMALARIN UYGULAMALARININ İYİLEŞTİRİLMESİ

Yüce Tok, Zaliha

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Doç. Dr. Sedat Akleylek

Aralık 2016, 75 sayfa

Kuantum hesaplamaya dirençli açık anahtarlı sistemlere alternatif olan kafes ta-
banlı kriptografi asimptotik verimliliğinden dolayı büyük ilgi görmektedir. Bununla
birlikte, pratikte bunu kullanabilmek için bazı engeller bulunmaktadır: şema ta-
banlı aritmetik işlemler ve platform tabanlı uygulamalar. Bu tez çalışmasında,
kafes tabanlı kriptografik protokollerden NTRU ve GLP’nin CPU ve grafik işlem
birimleri (GPU) üzerindeki zaman karmaşıklıklarını hesaplama açısından tartıştık.
Burada, polinom çarpımının hem uygulama hem de teorik açıdan iyileştirilmesi
üzerine durduk. İdeal kafesler için aralanmış Montgomery modüler çarpma al-
goritmasının güncellenmesi, seyrek polinomların çarpma algoritmasını ve bunun
kayan pencere tekniğini verimli uygulamalar için önerdik. Önerilen algoritmalar
ile kafes tabanlı kriptografik şemaların performans sonuçlarının iyileştirildiğini
gösterdik. Ayrıca, ilkokul yöntemi, NTT gibi bilinen çarpma algoritmalarını par-
alel bir şekilde uyguladık ve seçilen kafes tabanlı kriptografik şemalar için GPU’da
çalışan bir CUDA yazılım kütüphanesi oluşturduk.

Anahtar Kelimeler : kafes tabanlı kriptografi, polinom çarpımı, kayan pencere
yöntemi, aralanmış Montgomery yöntemi, NTRUEncrypt, GPU, FFT tabanlı
çarpımı, cuFFT, NTT
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CHAPTER 1

INTRODUCTION

Main goal of cryptography is to provide the secrecy and integrity of information
while transferred from one side to another. The history was started with the
famous Roman Empire Caesar with Caesar cipher and incredible developments
took place. Modern cryptosystems on symmetric and asymmetric (public-key)
cryptography have been developed and widely used in every field of the modern
world.
Symmetric systems today enable us to send the plaintext as an unreadable for-
mat called ciphertext and provide to receiver to turn the ciphertext to original
plaintext.
Plaintext to ciphertext conversion is called encryption and ciphertext into plain-
text conversion is called decryption. Encryption and decryption processes are
done with the same key called secret key in symmetric systems. These systems
enable us to send information in a secure and fast way with one drawback: di�-
culty in the sharing of secret key. Sharing of the secret key means both sides have
to agree on the same key before communication. Modern cryptography solves this
problem by using asymmetric cryptography.
Asymmetric cryptography is a bit more complex than the symmetric cryptogra-
phy. In those systems two keys are generated; one is called as public key which is
known by all and the other one is the private key and kept secret by the owner.
The sender encrypts the message with the receiver’s public key and only the re-
ceiver can decrypt the message with his private key. Also asymmetric key is used
for authentication purposes, one can sign the message with his private key and
anyone can verify that the message is signed by him. The security of asymmetric
cryptographic schemes is based on the computationally hard problems,for exam-
ple integer factorization and discrete log problems [43]. Systems like RSA and
ECDSA are today’s most commonly used schemes.
Although today’s symmetric and asymmetric systems solve the issues, the emer-
gence of quantum computer studies move today’s secure cryptosystems into a
doubt situation [11]. Shor’s thesis showed that problems based on hardness of
factorization problem can be e�ciently solved with quantum computers while to-
day’s computers are not capable of doing it [54]. This novel property of quantum
computation has much attention from the industry to academy and researches are
done in similar and di↵erent fields. These researches showed that while quantum
computing has big advantage on search algorithms and integer factorizations, it
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does not di↵er the ordinary computing complexities in an exponential way on
other fields.
The di↵erence with conventional and post quantum computers can be described
to get a better understanding for why quantum computers are so powerful. In
classical computers, computing is done in building blocks called bits which hold a
binary value namely 0 and 1 only one value for the time. In quantum computers
building blocks made up of qubits which holds 0 and 1 at the same time which
is called the superposition of states. This “quantum superposition” provides
manipulating all combinations of bits simultaneously which makes the quantum
computation parallel and rapid than the classical computing. Protocols or algo-
rithms that are resistant to quantum attacks has been called quantum resistant.
The vulnerable algorithms against quantum attacks are called the quantum –in-
secure in this manner.
In cryptography side, algorithms that their security is guaranteed by integer fac-
torization and discrete log problems are vulnerable to quantum attacks. These
algorithms are safe according to today’s technology but it has shown that they
can be broken by quantum methods [55]. Also quantum search algorithms like
Grover’s makes the related attacks more powerful so new security measures should
be held according to this new situation [23]. Cryptographic algorithms that are
widely used today like RSA, DSA and ECDSA will be insecure after the quantum
computing since they depend on the computationally hardness of integer factor-
ization and discrete log problems. Increasing the key sizes of these algorithms is
not su�cient to resist the attacks. The increase on the key size will be adequate
until the more powerful quantum computer is developed. On the other side,
some of symmetric-key cryptographic algorithms are proved to be quantum-safe.
These algorithms security does not depend on the computational assumptions
but designed as theoretically secure. When come to the widely used ones like
AES, they are also considered as quantum-safe because they will still resistant to
quantum attacks only by doubling the key size. Since quantum search does not
provide exponential speedups, symmetric key encryption like AES is believed to
be quantum-safe [13]. Similarly, good hash functions are also believed to be resis-
tant to quantum adversaries [13]. Table 1.1 shows the status of the widely used
cryptographic schemes after quantum computers be in use [14]. As a result, the
studies are done in public key area and researchers working for the algorithms
both secure after quantum computers in use and e�cient for today’s ordinary
ones.

Table 1.1: Common Cryptographic Algorithms After Post Quantum Computers

Algorithm Status After Post Quantum Computers
AES 256 increase in key size
SHA 3 increase in output size
RSA no longer secure
ECDSA, ECDH no longer secure
DSA no longer secure

Moving from today’s widely used algorithms to new quantum algorithms will
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require great e↵ort. The algorithms standardized today are analyzed by many
researchers for many years and this has been long history. As a result, there
has not been any complete standard or adequate cryptanalysis on post quantum
algorithms.
Post-quantum cryptographic schemes can be classified in five groups:

1.1 Hash-based cryptography

Hash-based cryptography based on the one-time signature (OTS) schemes. OTS
is a signature scheme where each key pair is used to sign only one message. The
security depends on cryptographic hash function’s collision resistancy [11].
First study on hash based systems was done by Lamport and Di�e and system
was based on OTS. Merkle adds binary tree structure to signatures and with this
way usable signature size is increased to the size of the binary tree [44]. The
leaves of the Merkle’s binary tree are called the one time signature (OTS) public
keys. Root of the Merkle’s tree is the main public key. Each inner node of the
binary tree is calculated as hash of concatenation of its child’s. With this way
leaf nodes are used to authenticate the public keys. In every sign operation one of
the OTS public keys are used and never the same key is used again. So the state
of the tree should be kept that which keys have already been used and which ones
are not. This drawback is still the main research areas of hash based signature
schemes. Merkle’s signatures are so ine�cient due to large key sizes, signatures
and long signature generation process.
XMSS is one of the most e�cient hashed based schemes build on Merkle’s trees
which is also in the standardization period [12]. It has performance improve-
ments on tree traversal, reduced private keys and shortened signature generation
time. Although XMSS has a great performance optimization according to basic
Merkle’s tree, it is still ten times slower than the RSA.

1.2 Code-based cryptosystems

Error correcting codes are widely used in communication technology to add the
additional redundancy to transmission for many years. In 1978, McEliece used
error correcting codes for a di↵erent purpose and introduces a scheme that uses
binary Goppa codes for a public key encryption scheme [42]. Goppa codes are
one of the widely used and e�cient error correcting codes. The scheme’s secu-
rity depends on the syndrome decoding problem which is known as NP-complete
problem. With this property it is secure against post-quantum attacks.

In McEliece cryptosystem, private key is composed of a random binary irreducible
Goppa code and the public key is a matrix randomly generated from the private
key. Ciphertext is a codeword with some errors which can only detected by the
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private key. It has great performance statistics on encryption and decryption
processes. Besides these advantages, the practical implementation of this system
does not exist. The main reason for this is the extremely large key sizes.

Courtois, Finiasz, and Sendrier proposed the CFS cryptosystem in 2001 [16].
Similar to McEliece, the security depends on the syndrome decoding problem. In
CFS, while encryption and decryption performance results are good, signature
generation process results are far from a practical usage. Like McEliece system,
it has got very large key sizes. According to the fastest implementations of CFS,
it is 100 times slower than the RSA. Besides McEliece and CFS, several schemes
have been proposed that uses di↵erent codes like QC codes or quary codes on their
schemes to decrease the key size. One of the most significant achievements on
those schemes is the Cayrel et al.’s study on smart cards. The proposed method
is based on the Stern’s protocol and has a better performance results than RSA
for 80 bit security level. Also the studies done by Misoczki and Barreto have
reduced the public key size significantly [45].

1.3 Multivariate Cryptography

Multivariate cryptography is based on the problem of solving multivariate quadratic
polynomial equations and the isomorphism. The first multivariate scheme was
proposed in early 1980s [41]. From that time several such systems have been
proposed with special equations to meet the e�ciency requirements. But this
specific choices lead to trapdoors and many of them has been broken during last
two decades. Currently one of the most popular schemes is Simple Matrix en-
cryption scheme [57]. Main advantage of this scheme is its e�ciency due to work
on only a single field. Also its decryption process is very e�cient. Beside the
encryption purpose, there are also schemes for digital signatures. UOV and Rain-
bow are most promising ones [34], [35]. Rainbow is more e�cient with smaller
key size. There also exist BigField schemes such as HFE (Hidden Field Equa-
tions) and pFLASH [50], [15]. A variant of HFE, namely HFEv has similar secure
signature size with RSA and ECC [17].

1.4 Lattice-based cryptography

Lattice-based cryptographic schemes are one of the most widely studied post-
quantum cryptographic protocols. Lattice-based systems depend on the di�culty
of the Shortest Vector Problem (SVP) which is proved as NP-hard [55]. There is
not any quantum algorithm to solve SVP, so lattice-based systems are assumed
to quantum resistant. One of the attractive properties of lattice-based systems
is the worst-case to average-case reduction which means all the keys in lattice
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systems are strong and hard to break. The most well known lattice systems are
NTRU-based schemes and BLISS [33].
For several years, lattice-based cryptographic schemes have only been consid-
ered secure for large system parameters causing ine�cient implementations. In
1998, NTRU cryptosystem was proposed as a public key cryptographic scheme
over polynomial rings using the computational properties of hard problems over
lattices as an alternative to factorization or discrete logarithm problem based
schemes [30]. Standardization of the NTRU drafted in IEEE P1363 and it is still
in progress and commercialized by Security Innovation [2], [32]. After this draft
was published, the progress has shown that the design has robustness against
di↵erent kind of attacks. Its encryption process is almost 10 times faster and
decryption processes is almost 100 times faster than RSA for the 1024-bit secu-
rity level. Furthermore, there is no evidence that it’s vulnerable to practical or
quantum attacks [55]. The main drawback of NTRU system when compared to
RSA and ECDSA is its large key size.
The recent improvement on lattice-based cryptography is the BLISS signature
system proposal. BLISS signature scheme has better performance results than
RSA and also public and private key sizes are in acceptable limits. In addition,
BLISS has implementations on embedded devices with good results. Addition to
these schemes practical key exchange protocols are studied to work within TLS
protocol. The common point of the proposed lattice-based schemes is the suit-
ability to parallelize. The researches on parallel implementation of these schemes
exist but limited. Graphical processing units (GPU) is one of the parallel com-
puting environment that attracted researchers due to having high performance
computing abilities. Graphical processing units (GPU) main application area is
to execute commands in parallel with the computer graphics; hence they have
been produced for gaming community. A general purpose GPU, having many
cores, has a place on high performance computing applications. There are sev-
eral studies on parallel implementations of cryptographic protocols since they are
useful for operations requiring lots of processing units [18].
Arithmetic operations on the GPU have been widely studied for public key cryp-
tographic schemes such as RSA and elliptic curve based protocols. In [53] e�cient
implementations of computationally expensive operations in RSA-1024 and 2048
and curve-based cryptographic schemes on NVIDIA 880GTS graphic card were
presented. Standard radix form and residue number system approaches were
used. This was the first study using the CUDA framework for general purpose
GPU in public key cryptography. One year later, [22] explained arithmetic op-
erations over finite fields of large prime characteristic and elliptic curve scalar
multiplication operations on the GPU. They also presented both serial and par-
allel version of these operations for large integers. The first implementation of
NTRU on a GPU was given in [29]. They implemented schoolbook multiplication
in a circular cyclic manner with O(n2) complexity on NVIDIA GTX280. The re-
quired data was generated on the CPU and then sent to the GPU for the other
computations. They also showed that although the schoolbook multiplication
method was used, for the same security level NTRU had a better performance
than RSA and elliptic curve based cryptographic schemes. Also, there has been
an interest for the implementation of lattice-based cryptography in FPGA. The
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main reason is to run the arithmetic operations in a parallel way. Multiplication
algorithms which are the core part of the lattice-based cryptographic schemes
for FPGAs were discussed in [52]. They gave the implementation details of how
to parallelize NTT algorithm for the recomputed values. Due to the memory
requirements of finding the values, the precomputation step was not performed
on the FPGA but these values were given to the system directly.
In this thesis, our aim is to discuss computational aspects of lattice-based crypto-
graphic schemes in view of the time complexity on both CPU and GPU side. Poly-
nomial multiplication is the most time-consuming part of cryptographic schemes
whose security is based on ideal lattices. Thus, any e�ciency improvement on this
building blocks has great impact on the practicability of lattice-based cryptogra-
phy. In this thesis, we investigate several algorithms for polynomial multiplica-
tion and implement them in serial and parallel platforms. Compact and e�cient
implementation architectures of polynomial multiplication for lattice-based cryp-
tographic schemes are presented for the quotient rings (Z/pZ)[x]/(xn � 1) and
(Z/pZ)[x]/(xn + 1), where p is a prime number. We choose the widely studied
NTRU and GLP schemes which are also defined on the fields (Z/pZ)[x]/(xn � 1)
and (Z/pZ)[x]/(xn + 1), respectively.

In this thesis, we discuss the computational aspects of lattice-based cryptographic
schemes focused on NTRUEncrypt and GLP signature schemes [3], [5], [6], [7],
[8]. We give the details of the selected modular multiplication algorithms. We
explain the improvements of the multiplication algorithms for CPU and GPU-
based implementations. We also modify the polynomial multiplication methods
considering the needs of the selected cryptosystems.

For the ring (Z/pZ)[x]/(xn � 1) used in NTRU, we implement the fast convolu-
tion and fast convolution with sliding window methods. The proposed methods
work with the data input {0,1}. Since NTRU uses the inputs from the data
set {-1,0,1}, we generalize these methods to handle NTRU data sets. By using
fast convolution with sliding window method the number of required additions is
drastically reduced when compared to convolution method. We also implement
modified version of interleaved Montgomery modular multiplication method for
this quotient ring proposed by [49]. With the proposed algorithms, we improve the
multiplication complexity and embed the conversion operation into the algorithm
with almost free cost. Schoolbook and parallelized schoolbook (implemented on
GPU) methods are also implemented for performance comparison purposes.

For the ring (Z/pZ)[x]/(xn + 1) used in signature scheme, we propose a sparse
polynomial multiplication algorithm. This technique was initially proposed by
[47] for specific set of inputs, but we generalize it to work with inputs used in
GLP signature scheme. We enhance the performance by performing polynomial
multiplication with only addition and subtraction operations. Moreover, the pro-
posed methods are easily modified to be used in other cryptographic applications
having a sparse polynomial multiplication operation with a slight di↵erences in re-
duction part since they are independent of the choice of reduction polynomial. We
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also implement the Number Theoretic Transform (NTT) multiplication method
which is widely used and e�cient in lattice systems. We parallelize this method
on GPU to analyze the performance gains. Another study that we did in parallel
computing side is using CUDA Fast Fourier Transform (cuFFT) library which
is parallelized FFT library developed for NVIDIA GPUs. Finally we proposed
modified version of interleaved Montgomery modular multiplication method sim-
ilar to the one we defined for ring (Z/pZ)[x]/(xn � 1).
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CHAPTER 2

Preliminaries

In this chapter, we recall the basic definitions on lattice-based cryptography used
in thesis. We also give the lattice-based signature schemes; NTRU and GLP.

2.1 Lattice Definitions

Definition 1. (Lattice)

A lattice L is a discrete additive subgroup of Rn , i.e, it is a subset L ✓ Rn

satisfying the following properties:

• L is closed under addition and subtraction (subgroup).

• There is an ✏ > 0 such that any two distinct lattice points x 6= y 2 L are
at distance at least k x� y k� ✏ .

Let B = [b1, . . . bk] 2 Rn⇥k be linearly independent vectors in Rn. The lattice
generated by B is defined as the all integer linear combinations of columns of B.

L(B) = Bx : x ✓ Zk

The vectors b1, ..., bk are called the basis of the lattice B. n is called the dimension
and k is called rank of the lattice.

Definition 2. (Full rank lattice) A full rank lattice is defined as the set of vectors

L(b1, ..., bn) =
⇢

nP
i=1

x
i

b
i

: x
i

✓ Z for 1  i  n

which is generated by n linearly independent vectors b1, ..., bn in Rn. The vectors
b1, ..., bn are the basis of the lattice and Bx is the usual matrix-vector multiplica-
tion.
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Lattices can have more than one bases, in fact they have an infinite number of
di↵erent basis. By using a lattice basis another basis can be obtained by multi-
plying existing basis with uni-modular matrix (uni-modular matrix is a matrix
with integer coe�cients that has ±1 as determinant).

The determinant of a lattice is the absolute value of the determinant of the basis
matrix det(L(B)) =| det (B) |. The value of the determinant is independent of
the choice of the basis, and geometrically corresponds to the inverse of the density
of the lattice points in Rn.

Definition 3. (Determinant) Let L = L(B) be a lattice of rank n, where B ✓
Rm⇥n is any basis. We define the determinant of the lattice, denoted by det(L),
as the n-dimensional volume of P (B), i.e. det(L) = p

det(BTB).

2.2 Number Theory Research Unit (NTRU) and GLP Signature Scheme

In this thesis, we focus on the most promising ones of the lattice-based cryp-
tosystems, namely NTRU and GLP Signature Schemes. These schemes pro-
posed for the quotient rings (Z/pZ)[x]/(xn � 1) and (Z/pZ)[x]/(xn + 1) where
q is a power of 2 and p is an odd prime. Let R

q

= (Z/qZ)[x]/(xn � 1),R
p

=
(Z/pZ)[x]/(xn + 1),Z

q

= (Z/qZ) and Z
p

= (Z/pZ). Following sections briefly
explain these schemes.

2.2.1 NTRU

NTRU was originally introduced as an encryption scheme [30]. In 2003, digi-
tal signature scheme using the NTRU lattices proposed [33]. NTRU encryption
scheme was based on homomorphic properties under addition and multiplication.
This property leads to emergence of fully homomorphic schemes based on NTRU
[40].

NTRU has got much attention than the other schemes because of its practical
key size. However, it does not have su�cient performance result according to tra-
ditional cryptographic schemes like RSA or ECDSA. It still needs improvement
on computational intelligence issues. Studies on these systems primary based on
the improvement of lattice polynomial multiplications, since the most time con-
suming part of NTRU cryptosystems are the polynomial multiplications over the
polynomial ring. The other arithmetic operations can be eliminated by the usage
of special rings as in the case of NTRU where the encryption scheme depends
on the arithmetic in the quotient ring (xn � 1) which the modular reduction is
almost free.
In this section, the details of NTRU cryptosystem is briefly explained. Param-
eter selection, key generation, encryption, decryption, signature generation and
verification processes are discussed.
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Domain Parameters Domain parameters are defined in [31] as follows:

• n The dimension of the polynomial ring used in NTRU

• p A positive integer specifying the ring Z/pZ over which the coe�cients of
a certain product of polynomials will be reduced during the encryption and
decryption process

• q A positive integer specifying the ring Z/qZ over which the coe�cients of
a certain product of polynomials will be reduced during the encryption and
decryption processes; also used in the construction of the public key

• k A security parameter which controls resistance to certain types of attacks,
including plaintext awareness

• df The distribution of coe�cients of the polynomial f (f is the part of the
private key)

• dg The distribution of coe�cients of the polynomial g (g is the part of the
private key)

• dr The number of 1s and -1s used in a certain random polynomial r, below
in the encryption process

• f A polynomial in Z[x]/(xn � 1)

• f
p

A polynomial in (Z/pZ)[x]/(xn�1) (this is part of the private key). This
polynomial is obtained by reducing the coe�cients of f modulo p

• f
q

A polynomial in (Z/qZ)[x]/(xn � 1) This polynomial is obtained by
reducing the coe�cients of f mod q.

• L
f

The set of polynomials in Z[x]/(xn � 1) whose coe�cients satisfy df

• g A polynomial in (Z/qZ)[x]/(xn� 1) (used with f
q

to construct the public
key)

• L
g

The set of polynomials in Z[x]/(xn � 1) whose coe�cients satisfy dg

• L
r

The set of polynomials in Z[x]/(xn � 1) whose coe�cients satisfy dr

• f�1
p

The inverse of f
p

in (Z/pZ)[x]/(xn � 1)

• f�1
q

The inverse of f
q

in (Z/qZ)[x]/(xn � 1)

• h The public key, a polynomial in (Z/qZ)[x]/(xn � 1)

• r A polynomial in (Z/pZ)[x]/(xn � 1) (used with h to encode message

• m The plaintext message, a polynomial in (Z/pZ)[x]/(xn � 1)

• e The encrypted message a polynomial in (Z/pZ)[x]/(xn � 1)

• G A generating function
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• H A hashing function

NTRU works on the ring R = (Z/pZ)[x]/(xn � 1). An element f 2 R is a poly-
nomial written as

f =
nP

i=1
f
i

xi = [f0, f1, ..., fn�1]

IEEE recommends n = 251, q = 128 and p = 3 for domain parameters. In gen-
eral p is chosen from the set 2, 3, 2 + x since it allows very e�cient arithmetic.
Note that reduction with 3 gives one of the following elements {�1, 0, 1} which
gives possibility to use special algorithms for performance improvement issues.
The polynomial sets f 2 L

f

, g 2 L
g

, r 2 L
r

and m 2 L
m

which are used for
key generation and there are several ways to create for them. Since our goal is
to obtain an e↵ective scheme, we should consider in which cases we have easy
arithmetic operations. Thanks to [21] for the selected parameters d

f

, d
g

and d
r

we have:

L
f

= {1 + p ⇤ f : f 2 (d
f

, 0)}, L
g

= (d, 0), L
r

= (d
r

, 0)

By using these sets, it’s guaranteed that computing f�1
p

is particularly easy and
f�1
p

⌘ 1 mod p. Now, we are ready to summarize the key generation, encryption
and decryption phases for NTRUEncrypt.

Key Generation Key generation process in NTRU starts with selecting two
polynomials f and g where f 2 L

f

and g 2 L
g

. The private key polynomial
f must also have inverses modulo q and modulo p. When suitable parameters
selected as discussed before, this condition will be satisfied for most choices of f .
The inverse of f will be denoted as follows:
ff�1

q

⌘ 1 mod q and ff�1
q

⌘ 1 mod p
The next step in key generation process is the computation of public key h as
follows: h ⌘ (p ⇤ f�1

q

g) mod q Algorithm 1 gives the key generation process of
the NTRU system.

Encryption

Encryption process starts with choosing random polynomial r from L
r

. Polyno-
mial r is used as a blind factor for the encryption. Blinding factor r is multiplied
with public key h and added to message m. All these operations are done in
modulo q. Algorithm 2 gives the encryption process for NTRU.
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Algorithm 1: NTRU Key Generation Algorithm

Input : NTRU domain parameters (n,p,q)
Output: private key f 2 (Z/pZ)[x]/(xn � 1), public key h

1 Choose random polynomial f 2 L
f

.
2 Choose random polynomial g 2 L

g

.
3 Compute f�1

q

such that ff�1
q

⌘ 1 mod q.
4 h ⌘ (p ⇤ f�1

q

⇤ g) mod q

Algorithm 2: NTRU Encryption Algorithm
Input : message m, public key h
Output: private key f 2 (Z/pZ)[x]/(xn � 1), public key h

1 Choose random polynomial r 2 L
r

as a masking (blinding) factor
2 e ⌘ (r ⇤ h+m) mod q.
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Decryption
The encrypted message is decrypted by using private key f . In decryption process,
precomputed inverse polynomial of f is used for performance gain. Algorithm 3
gives the decryption process for NTRU.

Algorithm 3: NTRU Decryption Algorithm

Input : Private key f , f�1
p

, f�1
q

, ciphertext e
Output: Message m

1 a ⌘ (e ⇤ f) mod q. a ⌘ (r ⇤ p ⇤ f�1
q

⇤ g ⇤ f +m ⇤ f) mod q
2 a ⌘ (p ⇤ r ⇤ g +m ⇤ f) mod q
3 a ⇤ f�1

p

⌘ (p ⇤ r ⇤ g ⇤ f�1
p

+m ⇤ f ⇤ f�1
p

) mod p
4 a ⇤ f�1

p

⌘ (m ⇤ f ⇤ f�1
p

) mod p
5 m ⌘ a mod p since f�1

p

⌘ 1 mod p

Remark 4. For most of the time with appropriate parameter choices, the original
message is recovered with high probability. However some parameter choices can
cause decryption failure, so it is suggested to include a few check bits in each
message block [31].

2.2.2 Lattice Based Signature Scheme (GLP Signature Scheme)

In this section we recall the GLP signature scheme given in [25]. This scheme’s
signature size is shortened according to the memory requirements on embedded
devices. The signature scheme is based on the proposed methods defined in [20]
and [38]. Following paragraphs will give a brief definition of the scheme.
Let n be a power of 2 and Z

p

be the ring of integers modulo p, where p is a
prime number and p ⌘ 1 mod 2n . The signature scheme is defined over the
polynomial ring (Z/pZ)[x]/(xn+1) = Z

p

[x]/(xn+1). The polynomials are in the
quotient ring of degree at most (n� 1) whose coe�cients are in

⇥�p�1
2 , p�1

2

⇤
.

Key generation, signature generation and signature verification processes are
given below. Hash, compression and transform algorithms are explained in [25].

Key Generation
Private key pair (s1, s2) is generated randomly from the polynomial ring Z

p

[x]/(xn+
1). Also parameter a which is known publicly also randomly generated from the
same ring. Public key is the combination of the private key pair and publicly
known parameter a. Algorithm 4 defines the key generation process. For details
please see [25].
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Algorithm 4: Key Generation Algorithm
Input : Prime p, polynomial degree n
Output: Public key t, private key (s1, s2)

1 Choose random polynomials s1, s2 from the polynomial ring Z
p

[x]/(xn + 1)
where all integer coe�cients are from the set {�1, 0, 1}

2 t = as1 + s2

Signature Generation

Signature generation process starts with choosing two random polynomials from
the polynomial ring Z

p

[x]/(xn + 1) with integer coe�cients from the set
{�k, . . . ,�1, 0, 1, . . . , k} where k is the predefined security parameters. These
polynomials are used as blinding factor in generation process. Algorithm 5 Step
2 gives a 160-bit hashed value of the message by using blinding polynomials and
publicly known polynomial a. In Step 3 and Step 4 signature pair (z1, z2) is gen-
erated from the polynomial ring Z

p

[x]/(xn + 1). If the signatures are not from
the set {�(k� 32), . . . ,�1, 0, 1, . . . , k� 32}, signature is rejected, key generation
process starts from the beginning. In Step 5 signature is compresses and range
check is done similar to the previous step. If the range check fails, again it starts
from the beginning. For details please see [25].

Algorithm 5: Signature Generation Algorithm

Input : Private key (s1, s2), message m = {0, 1}⇤
Output: Signature (z1, z02) with integer coe�cients in the range

[�(k � 32), k � 32] and 160-bit hash output c
1 Choose random polynomials (y1, y2), from the polynomial ring

Z
p

[x]/(xn + 1) with integer coe�cients from the set
{�k, . . . ,�1, 0, 1, . . . , k} where k is the predefined security parameter

2 c = Hash(Transform((ay1 + y2)),m), 160-bit hash value of the higher
order bits of (ay1 + y2)

3 z1 = s1c+ y1
4 z2 = s2c+ y2
5 If the coe�cients of z1 or z2 are not in the range [�(k � 32), k � 32] then

go to Step 1.
6 z02 = Compress(ay1 + y2, p, k� 32) compression of the polynomial z2 into z02
7 if compression fails then
8 go to Step 1
9 end

Signature Verification

Algorithm 6 defines the signature verification process. In Step 1 range check is
done for signature pair (z1, z2). In Step 2 hashed value is compared with c. For
details please see [25].
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Algorithm 6: Signature Verification Algorithm

Input : Signature (z1, z02) with integer coe�cients in the range
[�(k � 32), k � 32], public key t, 160-bit hash , output c, message
m = {0, 1}⇤

Output: “Verified” or “not verified”
1 if the coe�cients of z1 or z2 are not in the range [�(k � 32), k � 32] then
2 return “not verified”
3 end
4 if c = Hash(Transform(az1 + z02 � tc),m) then
5 return ”verified”
6 else
7 return “not verified
8 end

2.3 GPU Technologies

In this section we give a short introduction to GPU technologies and CUDA
platform. 2000s manufacturers’ main goal is to speed up the clock cycle of the
processors. However limitations on manufacturing integration circuits made in-
feasible to get big performance gains on central processors. This causes the huge
usage of parallel environments in multicore computers, notebooks and even mo-
bile phones.
With these developments parallel environments have shifted from super com-
puters to tools we use daily. In the meantime, graphic processing underwent
a dramatic revolution. Revolutions started with 2D display accelerators used in
personal computers and continued with 3Ds used in many applications like graph-
ics and gaming. NVIDIA and ATI technologies evolved the graphic accelerators
and made a↵ordable to users on many applications [1].

Figure 2.1: Simple CPU/GPU hardware configuration.
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Early release of NVIDIA GPUs used Microsoft’s DirectX standard. Then NVIDIA
announced the first GPU cards GeForce 8800 GTX that is built with NVIDIA’s
CUDA. This new architecture has brought new components designed for strictly
GPU computing and new alternatives for usage of graphic processors on general-
purpose applications. In this study we prefer to use NVIDIA (Quadro 600) GPU,
because it has more implementation alternatives compared to ATI technologies.
Now we give a brief survey on hardware and software configuration of NVIDIA
CUDA.

2.3.1 NVIDIA GPU Hardware Configurations

The main functionality of the “chipset” or “core logic” is connecting the CPU
to outside world. Every input/output from network controllers, disk, keyboards,
GPUs goes through this chipset [58]. GPUs were connected through these chipsets
called PCI Express bus. Theoretically PCI Express designed to deliver about 500
MB/s of bandwidths which was not appropriate for GPUs. With new hardware
configurations GPUs are designed up to 8G/s of bandwidths which is appropriate
for parallel applications.Figure 2.1 shows the basic GPU architecture.
Multiple CPUs, CPU with integrated memory controller and integrated GPUs
have di↵erent architectures that are widely used in GPU hardware for di↵erent
needs. For interested readers, we recommend The CUDA Handbook [58] .

2.3.2 NVIDIA GPU Software Configurations

CUDA software designed in layer basis, at the deepest level starts with driver and
continues with some tools such as driver APIs, runtime environment, libraries.
In Figure 2.2 layered structure of CUDA software is given.
CUDA software, designed to operate on Windows, Linux and MacOS, is a par-
allel computing programming model maintained by NVIDIA. Since CUDA is an
extension of the C programming language, applications are developed in C/C++
programming language by directly using CUDA driver API or special libraries
for linear algebra operation, matrix operations etc.

2.3.3 CUDA Program Structure

A CUDA program consists of two parts which are run on either the host (CPU)
or a device such as a GPU. The parts that have rich amount of data parallelism
are implemented in the device code. The program has a single source code for
both host and device code. The NVIDIA C Compiler (NVCC) compiles the host
code on standard C compiler and runs it as an ordinary process. The device code
is written using CUDA API including parallel functions, compiled by NVCC and
then executed on a GPU device. Figure 2.4 shows the CUDA execution model.
Each GPU kernel call launches CUDA grids and device code run on the GPU.A
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Figure 2.2: Layered structure of CUDA software.

sample code for parallel CUDA implementation is given in Figure (2.3 ).

CUDA parallel functions (kernel functions) use special thread structure that is
composed of grids and blocks. At the basic level grids map to GPUs, blocks map
to Multiprocessors (MP) and threads map to Stream Processors (SP). All threads
have unique coordinates to handle which portion of the data to be processed. 2D
hierarchy exists called blockId and threadId in CUDA runtime system for thread.
Figure 2.4 shows the CUDA grid structure. CUDA grids have two dimensions
which defines the size of the grid in x and y dimension. Each block consists of
2D or 3D thread structure in [x,y] or [x,y,z] dimensions. Both block and thread
dimensions defines which thread will perform the required process.

The function to be parallelized called with kernel launch according to given block-
thread structure. In the sample code VectorAdd function uses 1 block with N
threads. Since only one block is called and 1D thread is used CUDA defined
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Figure 2.3: Sample code.

threadIdx parameter is su�cient. For multiple blocks and 2D, 3D threads CUDA
predefines parameters block dimension y and thread dimension z.

2.3.4 CUDA in Cryptographic Applications

Unlike previous parallel programming languages, CUDA gives an alternative way
to easy development of parallel application on di↵erent fields such as crypto-
graphic protocols. Several works are done for lots of cryptosystems on CUDA.
The performance results are shared especially for block ciphers such as AES and
DES. Also public key cryptographic protocols such as RSA, ECDSA and NTRU
were implemented [28], [29], [48], [56]. In this thesis, we use CUDA API for poly-
nomial multiplication operations. Note that CUDA has several libraries such as
cuFFT and cuBLAS that are e�ciently designed for specific operations. We also
use the cuFFT library for polynomial multiplication operations which gives us
a big performance gain on large bit sizes. cuFFT is the NVIDIA’s Fast Fourier
Transform product [1]. It consists of two separate libraries cuFFT and cuFFTW.
The cuFFT library is designed to provide high performance on NVIDIA GPUs.
The cuFFTW library is provided as a porting tool to enable users of FFTW to
start using NVIDIA GPUs with a minimum amount of e↵ort. We use the cuFFT
library for comparison.
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Figure 2.4: CUDA execution model.

Figure 2.5: CUDA grid structure.
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CHAPTER 3

MULTIPLICATION TECHNIQUES

In this chapter, polynomial multiplication techniques in lattice-based crypto-
graphic schemes are discussed. Following section gives the algorithms specific
to selected fields,namely (Z/pZ)[x]/(xn � 1) and (Z/pZ)[x]/(xn + 1).

3.1 Multiplication over the quotient ring (Z/pZ)[x]/(xn � 1)

In this section we give the polynomial multiplication algorithms to be used for
lattices defined in the field (Z/pZ)[x]/(xn � 1). Schoolbook, Parallelized School-
book, Fast Convolution and Fast Convolution with Sliding Window methods are
discussed in the following sections.

3.1.1 Schoolbook Method

In Algorithm 7, the naive multiplication method called schoolbook is given. In
this method, each coe�cient of the first polynomial is multiplied with the other
polynomial and then modular reduction operation according to p is performed.
The multiplication is defined as follows:

Let a (x) =
n�1P
i=0

a
i

xi and b (x) =
n�1P
i=0

b
i

xi be polynomials in (Z/pZ)[x]/(xn �

1). Then, c(x) = a(x)b(x) with c
j

=
jP

i=0
a
i

b
j�i

+
n�1P

i=j+1
a
i

b
n+j�i

by using xn ⌘
1mod(xn � 1).

The classical schoolbook algorithm has a quadratic complexity O(n2) with n2

multiplications and (n� 1)2 additions.

In Algorithms 8 and 9, parallelized version of schoolbook method is given. Al-
gorithm 8 consists of two parts: CPU and GPU sides. In CPU side, there is a
need to create GPU grids and blocks with respect to the degree of the polynomial.
Then, from Step 2 to Step 4 allocating memory operation is performed for CUDA
platform. In Algorithm 9, we give the GPU side of the schoolbook algorithm.
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Algorithm 7: Schoolbook Algorithm

Input : a (x) =
n�1P
i=0

a
i

xi, b (x) =
n�1P
i=0

b
i

xi 2 (Z/pZ)[x]/(xn � 1)

Output: c(x) = a(x)b(x) =
n�1P
i=0

c
i

xi

1 Set all coe�cients of c(x) to 0
2 for k=0 to n do
3 for i=0 to n do
4 c

k

= c
k

+ b
i

a(n+k�i) mod p
5 end
6 end
7 return c(x)

Parallel multiplication is performed in Step 5. In GPU side, each coe�cients of
a(x) is multiplied by b(x) and then added to c(x) in threads. In Algorithm 8 Step
6, the results are turned back to the host (CPU Side).

Algorithm 8: Parallelized Schoolbook Method CPU and GPU side

Input : a (x) =
n�1P
i=0

a
i

xi, b (x) =
n�1P
i=0

b
i

xi 2 (Z/pZ)[x]/(xn � 1)

Output: c(x) = a(x)b(x) =
n�1P
i=0

c
i

xi

1 grids, blocks = create gpu grids and blocks according to n
2 allocate cuda memory(cuda a)
3 allocate cuda memory(cuda b)
4 allocate cuda memory(cuda c)
5 call gpu schoolbook procedure grids,blocks (cuda a, cuda b, cuda c)
6 cuda copy(cuda c,c)
7 return c
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Algorithm 9: Parallelized Schoolbook Method GPU side
Input : cuda

a

, cuda
b

, cuda
c

Output: cuda
c

1 threadIdx = block id.x · block dimension.x+ threadIdx.x
2 if threadIdx > n then
3 return
4 end
5 for i=0 to n do
6 c threadIdx = c threadIdx+ b threadIdx� ia i mod p
7 end
8 return c(x)

23



3.1.2 Fast Convolution Method

The most time consuming part of NTRU encryption and decryption are poly-
nomial multiplications of products r · h and e · f . According the design of the
algorithm public key h and encrypted message e are almost randomly distributed
modulo q. So we can choose r and f in a way that reduce the computation den-
sity. r and f are generally selected that have binary coe�cients which results to
get product without multiplication. The required computation is the hamming
weight of the binary polynomial * polynomial degree addition and modulo q op-
eration. By choosing low hamming weights one can gain significant performance
gain. Fast convolution algorithm [46], [47] uses the following modular reduction
fact:

xn ⌘ 1 mod (xn � 1), xn+1 ⌘ x mod (xn � 1), ..., x2n�2 ⌘ xn�2 mod (xn � 1)

With the help of these equations the modular multiplication of two elements a
and b can be written in a matrix-vector product form as follows:

c(x) =

2

66666664

a0 a
n�1 ... a2 a1

a1 a0 ... a3 a2
. . ... . .
. . ... . .
. . ... . .

a
n�2 a

n�3 ... a0 a
n�1

a
n�1 a

n�2 ... a1 a0

3

77777775

2

66666664

b0
b1
.
.
.

b
n�2

b
n�1

3

77777775

Notice that c
j

=
P

i+k=jmodn

a
i

b
k

each row of this a matrix is the one cyclic shift of

the previous row. In Algorithm 10 we give the fast convolution algorithm step
by step. The complexity of fast convolution algorithm depends on the Hamming
weight of a(x). Assume that Hamming weight of a(x) is e, then the required
number of operations is (e + 1)n (Step 4 and Step 8) and n (Step 8), additions
and modular reductions, respectively.

In Algorithm 10 Step 4 is executed d · n times. In Step 4 there are two additions
on e for index computation, one for addition of c and b index elements. Step 8 is
executed n times. In Step 8 there are 2 additions one for index computation and
one for c is addition. Also there are n reduciton. Total number of operation is
2n(d+ 1) addition and n reduction.
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Algorithm 10: Fast Convolution Algorithm

Input : a (x) =
n�1P
i=0

a
i

xi, b (x) =
n�1P
i=0

b
i

xi 2 (Z/pZ)[x]/(xn � 1). d is an

array showing the index of 1’s in a(x) and e is the number of 1’s.

Output: c(x) = a(x)b(x) =
n�1P
i=0

c
i

xi

1 Set all coe�cients of c(x) to 0
2 for i=0 to e-1 do
3 for j=0 to n-1 do
4 c

j+d[i] = c
j+d[i] + b

j

5 end
6 end
7 for i=0 to n-1 do
8 c

i

= (c
i

+ c
i+n

) mod p
9 end

10 return c(x)
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3.1.3 Fast Convolution with Sliding Window Method

One can speed up the fast convolution method by using some patterns in the
polynomials, which is called sliding window method for NTRU [36] , [37]. The
basic idea lies on the structure of a convolution operation. Let c = a · b where
a, b, c 2 R. Note that multiplication of a 2 R and ab 2 R

This method needs some memory to store the results for the corresponding pat-
tern. In order to apply multiplication with sliding window method , one needs
to convert the coe�cients to binary form. By searching for simple patterns like
1,11,101,1001, etc. the same coe�cients are calculated only once and stored in
the look-up table. The main idea is to find patterns that have many 1’s and
repeat many times in the coe�cients for an e�cient implementation. Note that
the selected patterns do not share the same 1’s.

Lemma 5. Let u be the number of 1’s in the pattern and v be the number of
occurrences for the selected pattern. Then, the required number of additions is
n(v + u� 1) over (Z/pZ)[x]/(xn � 1).

Lemma 6. [36, 37] Consider a task that chooses a bit according to a distribution
where the probability that is selected is p. We repeat this task independently to
choose coe�cients of a binary polynomial. Let Z be the distance between two
neighboring occurrences of 1’s. Then Pr[Z > d] = (1� p)d.

By Lemma 5 patterns in di↵erent forms help to reduce the required number of
additions. We have the following steps to use multiplication with sliding window
method:

• Finding Patterns: We partition the binary string into short blocks of a
fixed length, w, except for the parts containing consecutive zeroes. This is
equivalent to a sliding window method with window size w in the context
of modular exponentiation in RSA. Pattern search technique is given in
Algorithm 11. In this study we focus on finding the patterns having only
two 1’s with the first and last position of the string for example 11, 101,
1001 and so on.

• Recoding: After using Algorithm 11, we make a list to show where the
pattern ends in the binary representation. For example, let a=(1001011101)
and w=3. Then, d0 = {0, 6} shows the positions of 1’s not in the any
pattern. d2 = {5, 9} gives the positions where the pattern (101) finishes
(numbering is left to right). Note that since we use the 1’s only once, there
is no (11) pattern; so d1 is an empty set.

• Precomputation: By using the selected patterns, a look-up table is com-
puted.

• Multiplication: The coe�cients of the c(x) are computed as in fast con-
volution manner.
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Algorithm 11 finds the patterns according to window size w and stores their
indices. Scanning of bits for pattern search is done through right to left because
of the Algorithm 12.

Algorithm 11: Pattern Search Algorithm
Input : y is a binary string having n elements and w is the window size
Output: d0, is an integer array representing the positions of ‘1’s not

included in any pattern. d1, d2 and d
w�1 is also an array giving

the positions of 1’s in y for 11, 101, . .., 100...1 of length w
respectively

1 i = n – 1
2 while i � 0 do
3 while i � 0 and y[i]! = 1 do
4 i=i-1
5 end
6 for j=1 to w-1 do
7 if y[i-j] == 1 then
8 append i to d

j

9 i =i-j-1
10 else
11 append i to d0
12 i=i-w
13 end
14 end
15 end
16 return all d

i

’s

Example 7. Example
Let w= 6 N= 34
0**3****8 10***15**19***24**28****34
10010000101100010001000010001011001
Pattern 0 {1} :[]
Pattern 1 {11} : []
Pattern 2 {101} : [30,10]
Pattern 3 {1001} : [34, 3]
Pattern 4 {10001} : [15]
Pattern 5 {100001} : [24]

In Algorithm 12, fast convolution with sliding window method is given. In this
method the operations are done for the related pattern obtained by using Algo-
rithm 11. Note that the number of stored integers is n(w � 1). Precomputation
is done from Step 2 to Step 10. There are w� 1 addition in Line 3 and 2(w� 1)n
additions in line 6. Multiplication is performed between Step 11 and Step 21.

Large values of w is not considered since amount of computation almost the same
as the smaller ones while the amount of memory is proportional to w.
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Algorithm 12: Fast Convolution with Sliding Window Method

Input : For 0  i  (w–1)d
i

is an array having the positions e
i

of the
pattern p

i

in the binary polynomial a(x) · b(x) is a polynomial of
degree (n-1) and w is the window size.

Output: c(x) = a(x)b(x) =
n�1P
i=0

c
i

xi

1 Set all coe�cients of c(x) to 0
2 for j=0 to w � 1 do
3 b

j+n

= b
j

4 end
5 for i=1 to w � 1 do
6 for 0  j  n do
7 c

i

[j] = b
j

+ b
j+1

8 end
9 end

10 Let c0 = b i.e. c0[k] = b for 0  k  n
11 for i = 0 to w-1 do
12 for j =0 to e

i

do
13 for k = 0 to n do
14 c

k+di[] = c
k+di[] + c

i

[k]
15 end
16 end
17 end
18 for j = 0 to n do
19 c

j

= (c
j

+ c
j+n

) mod p
20 end
21 return c(x)
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3.1.4 Interleaved Montgomery Modular Multiplication

Montgomery multiplication is one of the widely used multiplication algorithms
in cryptography. It’s e�ciency is one of the main reason of its usage. In Mont-
gomery modular multiplication method one needs to transform the elements to
the required form. For the quotient ring (Z/pZ)[x]/(xn � 1) , for given a(x) and
b(x) 2 R

q

, first compute a(x)·b(x) in the form enabling very e�cient computation
and then transform the result to final computation [4].

In NTRU, polynomial arithmetic is performed in R
q

i.e. xn = 1. In Montgomery
modular multiplication algorithm one needs M 0(x) ⌘ �M(x)�1 mod xw, where
w is the word length of the target platform. In Lemma 8 we give the computation
of M 0(x) for the NTRU case. Note that this also helps us to eliminate the
precomputation phase.

Lemma 8. Let M(x) = xn � 1 and M 0(x) ⌘ �M(x)�1 mod xw, where w  n.
Then M 0(x) = 1.

In Algorithm 13 we give modified interleaved Montgomery modular multiplica-
tion algorithm for NTRU. After using the observation in Lemma 8, we decrease
the required number of multiplications by one with omitting the multiplication
M 0(x) (see Step 4). Then, we replace the multiplication with M 0(x) = xn � 1 by
shifting n times and one subtraction (see Step 5). Recall that shifting operation
is almost free. We convert the multiplication with M(x) to shifting and subtrac-
tion operations which improves the complexity of the algorithm. Since we are
working on the Montgomery form, we need to convert the elements to the desired
form. Conversion of the result is done by shifting operation (see Step 8 and 9).
In Algorithm 13, the required number of multiplications is reduced to 1 (see Step
3) and the required number of additions is 3 (see Step 3 and 5).

Algorithm 13: Interleaved Montgomery Modular Multiplication Algo-
rithm for NTRU

Input : A (x) =
n�1P
i=0

a
i

xiw, B (x) =
n�1P
i=0

b
i

xiw,M = xn � 1 with a
i

, b
i

2 Z
q

where q is a prime power, deg(A(x)) < deg(M(x)), deg(B(x)) <
deg(M(x)), gcd(r(x),M(x)) = 1, r(x) = xw and nw = d n

w

e.
Output: C(x) = A(x) · B(x)modM(x)

1 Set all coe�cients of C(x) to 0
2 for i = 0 to n

w

� 1 do
3 C(x) = C(x) + A(x) · b

i

(x)mod(M(x))
4 q(x) = C(x)mod(r(x))

5 C(x) = (C(x) + q(x) · xn � q(x)
r(x))

6 end
7 T (x) = (r(x))nw

8 C(x) = C(x) · T (x)mod(M(x))
9 return C(x)
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3.2 Multiplication over the Quotient Ring (Z/pZ)[x]/(xn + 1)

In this section, we give some of the selected algorithms: sparse polynomial mul-
tiplication, interleaved Montgomery modular multiplication, number theoretic
transform in serial and parallel type and CUDA-based FFT (cuFFT). We fo-
cus on the arithmetic over the quotient ring (Z/pZ)[x]/(xn + 1) having impor-
tant applications in lattice-based cryptographic schemes due to the applicability
of FFT-based polynomial multiplication enabling e�cient modular multiplica-
tion. Note that we also implement the schoolbook method over the quotient ring
(Z/pZ)[x]/(xn + 1). Since the idea is very similar to Algorithm 7 and Algorithm
8, we omit it.

3.2.1 Number Theoretic Transform

Number Theoretic Transform (NTT) algorithm was proposed in [51] to avoid
rounding errors in Fast Fourier Transform (FFT). NTT, a Discrete Fourier Trans-
form defined over a ring or a finite field, is used to multiply two integers and does
not require arithmetic operations in complex numbers. The multiplication com-
plexity is quasi-linear O(nlogn). The main idea is to transform polynomials to
NTT form. Algorithm 14 describes the iterative NTT which is the modified ver-
sion of [9, 5, 6] .

There are some restrictions on applying NTT algorithm:

• The degree of the quotient ring (Z/pZ)[x]/(xn + 1) n should divide (p� 1)

• wn ⌘ 1 mod p and for each i < n, wi 6= 1 mod p

Let w be the primitive n-th root of unity. For a(x) =
n�1P
i=0

a
i

xi 2 Z
p

[x] by using

w, NTT (NTT
w

(a)) is defined as follows:

A
i

=
n�1P
j=0

a
j

!ij mod p , i = 0, 1, ..., n� 1

where A = {A0, A1, . . . An�1} is the NTT form.
The inverse transform NTT�1

w

(A) is given as:

a
i

= n�1
n�1P
j=0

A
j

!�ij mod p , i = 0, 1, ..., n� 1
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By using Convolution Theorem arbitrary polynomials can be multiplied and then
reduce according to chosen reduction polynomial. However appending n 0’s to the
inputs doubles the transform size [59]. To use NTT to multiply two elements in
(Z/pZ)[x]/(xn + 1). the condition is p ⌘ 1 mod 2n due to wrapped convolution
approach [5, 6, 39]. This idea is given in lattice-based hash function SWIFFT
which needs modular reduction operations in (xn + 1).

After computing NTT of two polynomials, the multiplication operation can be
performed. Algorithm 14 gives polynomial multiplication with iterative NTT
[5, 6]. In Algorithm 16 the parallel version of iterative NTT method is given. To
make it e�cient, we focus on “for” loops. Parallelization is achieved by determin-
ing the required number of threads. This algorithm needs data transfer between
CPU and GPU. Thus, there is a delay and this causes ine�ciency.

Algorithm 14: Iterative NTT algorithm

Input : a 2 (Z/pZ)[x]/(xn + 1) and ! 2 (Z/pZ)[x]/(xn + 1) is the
primitive n-th root of unity

Output: NTT
w

(a)
1 f = BitReverseCopy(a)
2 f = SumDi↵(f)
3 n = 2ldn //length of the sequence
4 rn = element Of Order(n)
5 if reverse NTT then
6 rn = rn(-1)
7 end
8 for ldm=1 to ldn do
9 m = 2ldm

10 mh = m/2

11 dw = rn2ldnldm

12 w = 1
13 for j=0 to mh-1 do
14 for r=0 to n-m step m do
15 t1 = r + j
16 t2 = t1 +mh
17 v = f [t2] ⇤ w
18 u = f [t1]
19 f [t1] = u+ v
20 f [t2] = u� v
21 end
22 end
23 end
24 return f
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Algorithm 15: Polynomial multiplication with iterative NTT

Input : a(x), b(x) 2 (Z/pZ)[x]/(xn + 1)
Output: c(x) = a(x)b(x)

1 ntta[]=iterative NTT(a[], ldn, forward)
2 nttb[]=iterative NTT(b[], ldn, forward)
3 for i=0 to n-1 do
4 c[i]= ntta[i]nttb[i] mod p
5 end
6 c=iterative NTT(c[], ldn, inverse)
7 for i=0 to n-1 do
8 c[i]=c[i]/(ldn-1)
9 end

10 return c

Algorithm 16: Parallelized Iterative NTT Method (CPU and GPU Side)

Input : a(x), b(x) 2 (Z/pZ)[x]/(xn + 1)
Output: c(x) = a(x)b(x)

1 f = BitReverseCopy(a)
2 f = SumDi↵(f)
3 ldn base 2 logarithm on n
4 rn = elementOfOrder(n)
5 if reverse NTT then
6 rn = rn�1

7 end
8 for ldm=2 to ldn do
9 m = 2ldm

10 mh = m/2

11 dw = rn2ldnldm

12 create blocks and grids
13 callgpu ntt procedure ⌧ grids, blocks � (f, dw)
14 end
15 return f
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Algorithm 17: Parallelized Iterative NTT Method GPU side

Input : a(x), b(x) 2 (Z/pZ)[x]/(xn + 1)
Output: c(x) = a(x)b(x)

1 thread IdX = block Id.x * block Dimension.x+ threadIdx.x
2 thread IdY = block Id.y * block Dimension.y+ threadIdx.y
3 if thread IdX > 0 or thread IdY == 0 then
4 return
5 end
6 for i = 0 to thread IdY do
7 w = w · dw mod p
8 end
9 t1 = thread IdX *mh + thread IdY

10 t2= t1*mh
11 v= at2*w modp
12 u = at1
13 at1 = u +v modp
14 at1 = u -v modp
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3.2.2 CUDA Fast Fourier Transform (cuFFT) Based Multiplication

The NVIDIA cuFFT library enables the users to have very fast FFT computations
with an interface on the GPU by using CUDA platform [1]. cuFFT is optimized
for a wide range application area from computational physics to signal processing.
In this thesis we use cuFFT to obtain an e�cient polynomial multiplication over
the quotient ring (Z/pZ)[x]/(xn+1). In Algorithm 18 we give the parallel version
of polynomial multiplication method using CUDA. In Step 5 the schedule is
planned to have FFT value on GPU and then in Step 6 and Step 7 the computed
values are stored. The component wise multiplication is performed in a parallel
way in Step 8. Forward FFT is achieved in Step 9. The result is sent to host
in Step 11. From Step 13 to Step 15 normalization of the computed values is
performed by simply dividing the result to the polynomial degree n.

Algorithm 18: CUDA Fast Fourier Transform (cuFFT) Based Multipli-
cation
Input : a(x), b(x) 2 (Z/pZ)[x]/(xn + 1)
Output: c(x) = a(x)b(x)

1 allocate cuda memory(cuda a)
2 allocate cuda memory(cuda b)
3 cuda copy(a, cuda a)
4 cuda copy(b,cuda b)
5 cu↵tPlan1d(planForward, n,CUFFT D2Z, 1)
6 cu↵tExecD2Z(planForward, cuda a, cuda a)
7 cu↵tExecD2Z(planForward, cuda b, cuda b)
8 multiply complex(cuda a, cuda b, cuda a)
9 cu↵tPlan1d(planInverse, n,CUFFT Z2D, 1)

10 cu↵tExecD2Z(planInverse, cuda a, cuda a)
11 copy the result from gpu to host
12 cuda copy(cuda a,c)
13 for i=0 to n do
14 c

i

= ci
n

15 end
16 return c
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3.2.3 Interleaved Montgomery Modular Multiplication Algorithm for
(Z/pZ)[x]/(xn + 1)

Montgomery Modular Multiplication is widely used in elliptic curve systems due
to its e�ciency. In this study, we implement the Interleaved Montgomery Modular
Multiplication proposed by [49]. The parameters are n = 2k and p ⌘ 1 mod 2n,
where k is positive integer and p is prime. In Lemma we give the computation of
M 0(x) for R

p

case . By using this, one multiplication in interleaved Montgomery
method turns out to the subtraction operation.

Lemma 9. Let M(x) = xn + 1 and M 0(x) ⌘ M(x)�1 mod xw, where w  n.
Then M 0(x) = �1.

Now we have M 0(x) = �1. In Step 4 we replace the multiplication by M 0(x)
with multiplication by -1. Now that this can be also considered as an addition
modulo p. Since in R-LWE based schemes coe�cients of the elements are chosen
from the set{-1,0,1}, this multiplication by -1 does not e↵ect the e�ciency of
the algorithm. In Step 5, instead of multiplication with M(x) = xn + 1 we
use shifting the corresponding polynomial n times and then add it. With this
observation we decrease the number of multiplication in the algorithm. In Step
8 and 9 we convert the elements to the desired form. Note that these are not
the real multiplications, they are just shifting operations. The multiplication and
addition complexity of Algorithm 19 is only 1 (see Step 3) and 3 (see Step 3 and
5), respectively.

Algorithm 19: Interleaved Montgomery Modular Multiplication Algo-
rithm for xn + 1

Input : A (x) =
n�1P
i=0

a
i

xiw, B (x) =
n�1P
i=0

b
i

xiw,M = xn � 1 with a
i

, b
i

2 Z
q

where q is a prime power, deg(A(x)) < deg(M(x)), deg(B(x)) <
deg(M(x)), gcd(r(x),M(x)) = 1, r(x) = xw and nw = d n

w

e.
Output: C(x) = A(x) · B(x)modM(x)

1 Set all coe�cients of C(x) to 0
2 for i = 0 to n

w

� 1 do
3 C(x) = C(x) + A(x) · b

i

(x)mod(M(x))
4 q(x)� C(x)mod(r(x))

5 C(x) = (C(x) + q(x) · xn � q(x)
r(x))

6 end
7 T (x) = (r(x))nw

8 C(x) = C(x) · T (x)mod(M(x))
9 return C(x)
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3.2.4 Sparse Polynomial Multiplication

In [10], it is noticed that the multiplication of polynomials could be performed
using only additions because of the cyclic structure of the quotient ring (xn +1).
We extend this idea to the multiplication of two elements in R

p

.

Remark 10. Our observation is that some of signature schemes (for example,
[19] , [24]) use sparse polynomials whose coe�cients are in the set {�1, 0, 1}
and the number of nonzero coe�cients is relatively small. Then, two of these
polynomials or one of them completely random are multiplied. This observation
yields a natural modification of the algorithms in [10].

The proposed method uses the easy way of reduction. Now we recall this idea.
Note that we are working in R

p

. Then, xn ⌘ �1 mod (xn + 1), xn+1 ⌘ �x
mod (xn+1), xn+2 ⌘ �x2 mod (xn+1), ..., x2n�2 ⌘ �xn�2 mod (xn+1). With

the help of these equations, the multiplication of two elements a (x) =
n�1P
i=0

a
i

xi

and b (x) =
n�1P
i=0

b
i

xi in R
p

can be written in a matrix–vector form as follows:

c(x) =

2

66666664

a0 a
n�1 ... a2 a1

�a1 a0 ... a3 a2
. . . . .
. . . . .
. . . . .

�a
n�2 �a

n�3 ... a0 a
n�1

�a
n�1 �a

n�2 ... �a1 a0

3

77777775

2

66666664

b0
b1
.
.
.

b
n�2

b
n�1

3

77777775

where c is the coe�cient vector of c(x). Note that each row of this A matrix is
one cyclic shift of the previous row and upper triangular part is multiplied by
(-1). One can also formulate this multiplication as follows:

c
i+j

mod n =
n�1P
i=0

n�1P
j=0

(�1)b
i+j
n ca

i

b
j

In Algorithm 20, we explain the sparse polynomial multiplication method step by
step. Note that since a

i

, b
i

2 {�1, 0, 1}, we cannot apply the algorithm given in
[10], [36], [37] directly for the multiplication in R

p

. While constructing Algorithm
20, we use the property of the matrix–vector product having the minus of elements
in the upper triangular part.We add a new loop (from Step 8 to 12) for the
elements a

i

= 1. In Step 5, for each index of 1s in array d, we shift the coe�cients
vector of b by the number of index value and add to c. Similarly, in Step 10 for
each index of -1s in array d, we shift the coe�cients vector of b by the number of
index value and subtract from c. It is easy to see that the arithmetic complexity
of Algorithm 20 depends on the nonzero elements in the coe�cient vector a. The
complexity of determining the number of 1s and (-1)s is just 2n comparisons and
thus precomputation step is linear.
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Algorithm 20: Sparse Polynomial Multiplication

Input : a (x) =
n�1P
i=0

a
i

xi and b (x) =
n�1P
i=0

b
i

xi, are the elements of R
p

with

a
i

, b
i

2 {�1, 0, 1}, i.e. a = (a0, a1, ..., an�1) and
b = (b0, b1, ..., bn�1).d and f are arrays of e and g elements storing
the index of 1s and (-1)s in a(x) respectively.

Output: c(x) = a(x)b(x) mod (xn + 1) =
n�1P
i=0

c
i

xi

1 Precomputation : Set d[] and f []
2 for i=0 to 2n-1 do
3 c

i

=0 // set all coe�cients of c(x) to 0
4 end
5 for i=0 to e-1 do
6 for j=0 to n-1 do
7 c

j+d[i] = c
j+d[i] + b

j

//add a
i

.b
j

where a
i

= 1
8 end
9 end

10 for i= 0 to g-1 do
11 for j= 0 to n-1 do
12 c

j+f [i] = c
j+f [i] � b

j

//add a
i

.b
j

where a
i

= �1
13 end
14 end
15 for i=0 to n-1 do
16 c

i

= (c
i

� c
i+n

) mod p // reduction of polynomial modulo xn + 1 and
its coe�cients

17 end
18 return c(x)
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Lemma 11. The required number of additions and subtractions in Algorithm 20
is (g + 1) · n and e · n (in total bounded by n2 + n, where e is the number of 1s
and g is the number of (-1)s in the coe�cient vector of a(x), respectively.

Since the required number of additions and subtractions in Algorithm 20 de-
pends on the number of nonzero elements in the coe�cient vector of a(x) (the
multiplicand), Algorithm 20 gives better performance for the multiplication of
polynomials having so many zeros. In [26], the hash function outputs a 512- co-
e�cient polynomial having only 32 nonzero (-1 or 1) coe�cients (see [26]). Then,
Algorithm 20 is very e�cient for this case. We also note that if the number of
nonzero elements (-1 or 1) of a 512-coe�cient vector is less than 340, then the
proposed method is also e�cient than NTT (see Remark 14).

Algorithm 20 can be used in any ring, i.e., it is independent of the choice of
reduction polynomial. One can obtain sparse polynomial multiplication algorithm
by changing the reduction part (steps 13-15 in Algorithm 20). Algorithm 20 can
also be modified to be used to multiply to polynomials whose coe�cients are in
{�k, ..., 0, ..., k}, where k is a small integer. The main modifications are to add
new loops for each coe�cients in {�k, ..., 0, ..., k} and then the multiplication of
each b

i

(see Steps 5 and 10) with the corresponding coe�cient.
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3.2.5 Sparse Polynomial Multiplication with Sliding Window

Extended pattern search
Using a detailed precomputation phase, the performance of Algorithm 20 can
be improved significantly by storing some computations. We use the repeated
patterns to decrease the arithmetic complexity of the polynomial multiplication.
Then we adapt sliding window technique to Algorithm 20. Let w be the window
length. In this paper, by a pattern of length w, we mean that (10...01), (�10...0�
1),(10...0 � 1) or (�10...01) with #0s = (w � 2). For example, our pattern set
includes 11,�1� 1,�11, 1� 1, 101,�10� 1, 10� 1,�101, .... With the help of
this structure, if there is any repeated pattern, then we precompute and store
some values, i.e., b+ xl,�b� xl, b� xl or �b+ xl where b is the coe�cient array
of b(x) and 0  l  w. Note that if l = 1, then this corresponds to Algorithm 20.

Remark 12. There might be some patterns up to determined length in the
coe�cient array of a(x). For example, let a(x) = �1 + x � x3 + x4, then the
coe�cient array is (�1, 1, 0,�1, 1) and the repeated pattern is {�1, 1}. Therefore,
the computation of the repeated pattern is performed only once. This, of course,
helps us to improve the complexity of multiplication operation if the number of
repeated patterns is satisfactory. To achieve this, we need some memory to store
the precomputed values. Note that sparse polynomial multiplication with sliding
window method is very e�cient if the number of the repeated patterns is high.
The intersection of di↵erent patterns yields an empty set, i.e., the patterns do
not share any 1 or (-1).

In Algorithm 21, a detailed pattern search which finds the patterns in the coef-
ficient array is given. This algorithm is the core part of the sparse polynomial
multiplication with sliding window method since we need to find the repeated
patterns. Algorithm 21 searches for specific patterns for given window length on
polynomial coe�cient. These specific patterns start with 1 or -1 and end with 1
or -1s. The start index of each pattern is stored in the arrays. Maximum length
of the pattern is equal to window length. In Algorithm 21, we are looking for the
repeated patterns such as {11,�1� 1,�11, 1� 1, 101,�10� 1, 10� 1,�101, ...}.
Sparse polynomial multiplication with sliding window method performs the poly-
nomial multiplication using the properties of the specific patterns instead of only
processing individual the coe�cients equal to 1s and -1s. Sparse polynomial mul-
tiplication with sliding window method is given in Algorithm 22. This algorithm
has a precomputational phase, i.e., one needs to find patterns using Algorithm
21. After determining the patterns, from steps 15 to 36 the results are computed
and stored for selected patterns. In Algorithm 22, we precompute the subsequent
coe�cients addition/subtraction, i.e., T

i

[j] = b
j

+ b
j+i

and Tminus
i

[j] = b
j

� b
j+i

where i = 0, ..., n and j = 1, ..., w (window length). The computations in the
algorithm are performed using the following manner: For every element of each
pattern in pattern

i

d
j

we shift the value of T or Tminus array by the value of
index and add with c or subtract from c, respectively. The array T is used for
the patterns which start and end with same value. The array Tminus stands
for the patterns which start and end with di↵erent values. Note that there is no
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Algorithm 21: Extended Pattern Search Algorithm

Require: a = (a0, a1, . . . , an�1) is the coe�cient array of a(x) with
a
i

2 {�1, 0, 1} of length n and w is the window size.
Ensure: pattern0d0 is an array representing the positions of separated 1s not

included in any pattern d1, d2, . . . , dw�1 stand for patterns
(11, 101, . . . ., 10. . . 01) of length w arrays representing the positions,
respectively. pattern1d0 is an array representing the positions of separated
(-1)s not included in any pattern. d1, d2, ..dw�1 stand for patterns
(�1� 1,�10� 1, . . . .,�10. . . 0� 1) of length w arrays representing the
positions respectively pattern3d1 is an array representing the positions for
(�11). d2, ..dw�1 stand for patterns (�101, 10� 1, . . . .,�10. . . 01) of length
w arrays representing the positions respectively

1: i= n-1
2: while i � 0 do
3: while a[i] = 0 do
4: i=i-1
5: end while
6: for j=1 to w-1 do
7: if a[i] = 1 and a[i-j] = 1 then
8: append i to pattern0dj // determining the positions of patterns

starting with 1 and ending with 1 ;
9: i = i-j-1;
10: break;
11: else if if a[i] = 1 and a[i-j] = 1 then
12: append i to pattern2dj // determining the positions of patterns

starting with 1 and ending with -1;
13: i= i-j-1;
14: break;
15: else if if a[i] = -1 and a[i-j] = 1 then
16: append i to pattern3dj // determining the positions of patterns

starting with 1 and ending with -1;
17: i= i-j-1;
18: break;
19: else
20: append i to pattern1dj // determining the positions of patterns

starting with -1;
21: i= i-j-1;
22: break;
23: end if
24: if j= w-1 then
25: if a[i] = 1 then
26: append i to pattern0d0 //determining the positions of separated

1s not included in any pattern;
27: i=i-w;
28: else
29: append i to pattern1d0 //determining the positions of separated

-1s not included in any pattern;
30: end if
31: end if
32: end for
33: end while
34: return pattern

i

d
j
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need for multiplications of coe�cients. Arithmetic complexity of Algorithm 22 is
discussed in Lemma 13.

Lemma 13. Let w be window length. Let u1 and u2 be the number of 1s and
(-1)s in the patterns , and v1 and v2 be the number of occurrences for the selected
pattern, respectively. Then the required number of additions and subtractions is
n(u1 + v1 + w + 1) and n(u2 + v2 + w + 1) over (Z/pZ)[x]/(xn + 1), respectively
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Algorithm 22: Sparse polynomial multiplication with sliding window
method

Require: b (x) =
n�1P
i=0

b
i

xi, is an element in R
p

with b
i

2 Z
p

. Send a(x) to

Algorithm 21 then receive pattern
i

d
j

for 0  i  3 and 1  j  w � 1
Ensure: c(x) = a(x)b(x) mod (xn + 1)
1: for i=0 to 2n-1 do
2: c

i

= 0 // set all coe�cients of c(x) to 0
3: end for
4: for j = 0 to w � 1 do
5: b

j+n

= b
j

6: end for
7: for i=1 to w do
8: for for j=0 to n do
9: T

i

[j] = b
j

+ b
j+i

// addition of two subsequent coe�cients
10: Tminus

i

[j] = b
j

� b
j+i

//subtraction of two subsequent coe�cients
11: end for
12: end for
13: for k = 0 to n do
14: T0[k] = b

k

15: Tminus0[k] = �b
k

16: end for
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Algorithm 23: Sparse polynomial multiplication with sliding window
method Cont.

17: for i = 0 to w do
18: for j= 0 to pattern0di do
19: for k= 0 to n do
20: c

k

+ pattern0di[j] = c
k

+ pattern0di[j] + T
i

[k] // addition of the
patterns starting and ending with 1 and precomputed values

21: end for
22: end for
23: for j= 0 to pattern1di do
24: for k= 0 to n do
25: c

k

+ pattern1di[j] = c
k

+ pattern1di[j]� T
i

[k] // addition of the
patterns starting and ending with -1 and precomputed values

26: end for
27: end for
28: for j= 0 to pattern02i do
29: for k= 0 to n do
30: c

k

+ pattern2di[j] = c
k

+ pattern2di[j] + Tminus
i

[k] // addition of
the patterns starting with 1 and ending with -1 and precomputed values

31: end for
32: end for
33: for j= 0 to pattern03i do
34: for k= 0 to n do
35:

36: c
k

+ pattern23i[j] = c
k

+ pattern3di[j]� Tminus
i

[k] // addition of
the patterns starting with -1 and ending with 1 and precomputed values

37: end for
38: end for
39: end for
40: for i = 0 to n� 1 do
41: c

i

= c
i

� c
i+n

mod p // reduction of polynomial modulo xn + 1 and its
coe�cients modulo p

42: end for
43: return c(x)

Table 3.1: Comparison of the proposed method with NTT multiplication.

Operation NTT Mult. Negative Wrapped Conv. Algorithm
Mult 3n log 2n + 4n 3n/2 log n + 5n -
Add/Sub 6n log 2n + n 3n log n 33n
Mode p 9n log 2n + 4n 9n/2 log n+ 5n n
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Remark 14. The arithmetic complexity of NTT multiplication is asymptoti-
cally O(nlogn). One can e�ciently perform polynomial multiplication in R

p

with
9n log 2n+4n coe�cient multiplications, 6n log 2n+n additions/subtractions and
3nlog2n + 4n multiplications (see Table 3.1). Thus the proposed methods more
e�cient than NTT for sparse polynomial multiplication having up to 340 nonzero
coe�cients for (Z/pZ)[x]/(x512+1) (see Remark 12). The proposed methods work
for any positive integers n and p. However, NTT is only applicable for p ⌘ 1
mod 2n where p is a prime power. In lattice-based cryptography n = 2k is chosen
for e�ciency and security reasons.
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CHAPTER 4

IMPLEMENTATION DETAILS & EXPERIMENTAL
RESULTS

In this chapter, we give the implementation details and timing results of the mul-
tiplication algorithms for NTRU and Signature schemes. We receive experimental
results for several platforms.

4.1 Implementation Details

We implement the lattice-based library by using C++. We use CUDA program-
ming language which has similar syntax with C++ and which can be adding as
a library to our C++ project. We design the library in a layered manner. At
the bottom, we have the global definitions which are used by all classes in com-
mon. The the lattice polynomial classes are implemented to define the lattice
polynomial. NTRU and GLP lattices implemented in di↵erent classes since their
arithmetic di↵ers because of the quotient rings they are built on. In one layer
above, classes for lattice polynomial arithmetic implemented. Polynomial addi-
tion, subtraction and ring based multiplication algorithms are implemented on
these classes. On the top of the library, NTRU and GLP signature schemes are
implemented.
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4.2 Experimental Results for Multiplication Algorithms over (Z/pZ)[x]/(xn�
1)

4.2.1 Performance Results for Intel(R) Xeon E3-1230 3.30GHz Plat-
form

Timing results of the multiplication algorithms on NTRU given according to the
platform defined in Table 4.1.To obtain more consistent results the algorithms
are run 1000 times for the uniformly random polynomials in the multiplication
operation. To compare the multiplication operation on the GPU using CUDA
platform we fix p = 49201153 satisfying p ⌘ 1 mod 2n. In Table 4.1, we list the
properties of experiment platform.

Table 4.1: The configuration of experiment platform

CPU Intel(R) Xeon E3-1230 3.30 GHz
Memory 8 GB
Operating System Windows 7 (64 bit)
GPU Accelerator NVIDIA Quadro 600
GPU Memory 1 GB

Table 4.2 shows the performance results of multiplication algorithms to multiply
two elements in (Z/pZ)[x]/(xn � 1) for n = 1024, 2048, 4096 and 8192. Recall
that in previous sections, we give the algorithms of schoolbook method, paral-
lelized school method, fast convolution method and fast convolution method with
sliding window for multiplication (Z/pZ)[x]/(xn � 1).

Table 4.2: Timing results of multiplication in (Z/pZ)[x]/(xn � 1) (n/second)

n 1024 2048 4096 8192
Schoolbook Method 14,856 58,918 238,165 967,287
Fast Convolution
Method

1,768 6,999 28,109 109,441

Fast Convolution With
Sliding Window Method

0,994 3,892 15,307 59,486

Parallelized Schoolbook
Method

2,964 5,298 19,745 80,319

For n = 1024 fast convolution method is better than parallelized schoolbook
method. However, for n > 1024 parallelized schoolbook method is much more
e�cient than fast convolution method.
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In Figure 4.1 timing comparison of the selected multiplication algorithms is
demonstrated. Note that since schoolbook method has the worst timing results,
we omit it in the figure. According to the timing results, for every parameter of
n, fast convolution with sliding window method is the best method to multiply
two elements over (Z/pZ)[x]/(xn�1). Recall that in fast convolution with sliding
window method the required number of additions is drastically reduced when we
compare this with the fast convolution method.

Figure 4.1: Timing comparison of multiplication methods over (Z/pZ)[x]/(xn�1)
(second/n).
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Performance Results for NTRUEncrypt

For NTRUEncrypt cryptosystem IEEEp1363.1 “Standard Specifications for Public-
Key Cryptographic Techniques Based on Hard Problems over Lattices” recom-
mends a set of parameters for di↵erent security levels [32]. In Table 4.3,the pa-
rameters for NTRUEncypt with di↵erent security levels are summarized. NTRU-
Encrypt cryptosystem is implemented according to each of these parameters.

Table 4.3: Recommended parameter sets for NTRUEncrypt in IEEEp1363.1

N p q d
f

d
g

d
m

d
r

Security Level
ees401ep1 401 3 2048 113 133 113 113 112
ees541ep1 541 3 2048 49 180 49 49 112
ees659ep1 659 3 2048 38 219 38 38 112
ees449ep1 449 3 2048 134 149 134 134 128
ees613ep1 613 3 2048 55 204 55 55 128
ees761ep1 761 3 2048 42 253 42 42 128
ees653ep1 653 3 2048 194 217 194 134 192
ees887ep1 887 3 2048 81 295 81 81 192
ees1087ep1 1087 3 2048 63 362 63 63 192
ees853ep1 853 3 2048 268 289 268 268 256
ees1171ep1 1171 3 2048 106 390 106 106 256
ees1499ep1 1499 3 2048 79 499 79 79 256

Table 4.4 reports the performance results of NTRUEncrypt cryptosystem with
various multiplication algorithms for the di↵erent security levels shown in Table
4.3. Encryption operation is performed 1000 times to obtain consistent results.
For each encryption process the required elements are randomly chosen.
The experimental results show that the performance of NTRUEncrypt does not
directly depend on the polynomial degree. In other words, for the same secu-
rity level (for example 128-bit security level one can choose one of ees449ep1,
ees613ep1, ees761ep1) the choice of domain parameter set does not a↵ect the
performance. The timing results are very close to each other for quotient ring
with di↵erent degrees. Other domain parameters have an important role on the
timing. According to the timing results, using fast convolution with sliding win-
dow method in NTRUEncrypt improves the performance of the scheme. Recall
that in Table 3 we use modulo p = 49201153 . In NTRUEncrypt the reduction is
done modulo q = 2048 . This is almost free since this reduction equals to taking
the least significant 11-bit of the result. This explains why the results in Table
4.2 and Table 4.4 are very close.
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Table 4.4: Timing results of NTRUEncrypt for the IEEEp1363.1 parameter set
(parameter set/second)

Parameter
Set

Schoolbook
Method

Fast Conv. with
Sliding Window

Fast Conv.
Method

Security
Level

ees401ep1 2,863 0,177 0,274 112
ees541ep1 5,140 0,162 0,217 112
ees659ep1 7,614 0,181 0,196 112
ees449ep1 3,587 0,215 0,373 128
ees613ep1 6,612 0,197 0,253 128
ees761ep1 10,158 0,221 0,246 128
ees653ep1 7,467 0,316 0,584 192
ees887ep1 13,845 0,353 0,506 192
ees1087ep1 20,776 0,418 0,475 192
ees853ep1 12,679 0,648 1,199 256
ees1171ep1 24,149 0,573 0,787 256
ees1499ep1 39,739 0,645 0,794 256
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In Figure 4.2 a comparison for NTRUEncrypt encryption process with di↵erent
multiplication techniques is demonstrated. Recall that in Figure 4.1 fast convo-
lution with sliding window gives better performance. Since the main operation
in NTRUEncrypt is the polynomial multiplication, the implementation with this
method NTRUEncrypt gives better performance.

Figure 4.2: Timing results of NTRUEncrypt for the IEEEp1363.1 parameter set
(second/parameter set).
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4.2.2 Performance Results for NVIDIA Quadro 600 GPU Platform

In this section we give the performance results for the GPU platform using CUDA
platform. We use NVIDIA Quadro 600 GPU having 96 cores. In Figure 4.3,
polynomial multiplication algorithms are compared in view of the number of
parallel multiplications per second on (Z/pZ)[x]/(xn� 1) by using the parameter
sets given in Table 4.3. To perform the polynomial multiplication the required
random data is generated on the GPU with CUDA platform. Since transferring
data between CPU and GPU needs more time, we prefer this choice. According to
the implementation results, polynomial multiplication in R

q

is accelerated almost
29% by using Algorithm 13. Our design for ees401ep1 parameter set achieves the
throughput of 12156 polynomial multiplications per second while it’s 9391 in the
original one. Note that degree of the polynomial has an important a↵ect on the
performance of parallel multiplication.

Table 4.5 summarizes our experimental findings for NTRUEncrypt from n = 401
up to n = 853. The timings for encryption operation are given for 1000 trials and
the input of NTRUEncrypt is randomly generated. The data is generated on the
CPU and then it’s transferred to the GPU.
While implementing NTRUEncrypt, we use a set of parameters for di↵erent se-
curity level recommended in Table 4.3. We implement fast convolution and its
sliding window version as described in previous sections. We also compare the
proposed method with the original Montgomery modular multiplication method.
According to the experimental results by using modified interleaved Montgomery
multiplication method NTRUEncrypt is accelerated almost 35%. However, the
proposed method is not the best choice for NTRUEncrypt. Fast convolution
with sliding window method gives better performance since multiplication is per-
formed by only additions and the required number of additions is drastically
reduced when we compare this with the fast convolution method. Moreover,
fast convolution method and its sliding window version have a nice structure for
parallelization.

Table 4.5: Experimental results for NTRUEncrypt on the GPU using CUDA
platform (second/parameter set)

Parameter Set ees401ep1 ees449ep1 ees653ep1 ees853ep1
Fast Convolution with
Sliding Window

0.179 0.233 0.350 0.749

Fast Convolution 0.265 0.384 0.621 1.678
Interleaved Montgomery 0.829 1.401 1.986 3.037
Original Montgomery 1.142 1.768 2.502 3.755
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Figure 4.3: Comparison of multiplication over (Z/pZ)[x]/(xn�1) (multiplication
per second/parameter set).
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4.3 Experimental Results for Multiplication Algorithms over (Z/pZ)[x]/(xn+
1)

4.3.1 Performance Results for Intel(R) Xeon E3-1230 3.30GHz Plat-
form

Timing results of the multiplication algorithms on GLP given according to the
platform defined in Table 4.1.To obtain more consistent results the algorithms are
run 1000 times for the uniformly random polynomials in the multiplication opera-
tion. In Table 4.1, we list the properties of experiment platform. The performance
results of multiplication algorithms to multiply two elements in (Z/pZ)[x]/(xn+1)
for n = 1024, 2048, 4096 and 8192 is given in Table 4.6. The polynomials are
generated randomly whose coe�cients are {�1, 0, 1} . Recall that we give the al-
gorithms of schoolbook method, parallelized schoolbook method, iterative NTT,
parallelized iterative NTT, interleaved Montgomery and cuFFT-based multipli-
cation method over the quotient ring (Z/pZ)[x]/(xn + 1).

Table 4.6: Timing results of multiplication of two elements in (Z/pZ)[x]/(xn+1)
(n/second)

1024 2048 4096 8192
Schoolbook Method 15,148 60,419 242,856 973,655
Iterative NTT 0,860 1,884 3,882 8,383
Parallelized Schoolbook Method 3,254 5,821 21,129 82,627
Parallelized Iterative NTT 6,851 14,343 3,983 118,326
cuFFT-Based Multiplication 1,318 2,240 2,204 3,512

In Figure 4.4 timing comparison of the selected multiplication algorithms to mul-
tiply two elements over (Z/pZ)[x]/(xn + 1) is demonstrated. Note that since
schoolbook method has the worst timing results, we omit it in the figure. Ac-
cording to the timing results, for the polynomials of degree n = 1024 and 2048,
iterative NTT method is the most e�cient one. For n > 2048 cuFFT-based mul-
tiplication has the best timing results since the library is designed to work with
large data sets. The parallelization of cuFFT library is very e↵ective when work-
ing with large data sets. Note that other parallelized methods such as iterative
NTT do not give the expected improvement since the data transfer between CPU
and GPU multiple times increases the execution time and a↵ects the e�ciency.
cuFFT-based multiplication has a better performance since data transfer is per-
formed once. This decreases the latency according to the other methods. Recall
that cuFFT is an optimized library for the GPU.
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Figure 4.4: Timing comparison of multiplication methods over (Z/pZ)[x]/(xn+1)
(second/n).
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Experimental Results for Signature Scheme

In this section we give the implementation results of the signature scheme defined
over the polynomial (Z/pZ)[x]/(xn+1). Recall that we choose p = 49201153 sat-
isfying p ⌘ 1 mod 2n. To obtain more accurate results, we run the signature
generation and verification processes 1000 times.
Table 4.7 shows the timing results of signature generation process with various
multiplication algorithms. According to the timing results, iterative NTT method
has more e�cient results than others for n < 4096. For n � 4096 signature gener-
ation with cuFFT-based multiplication is the fastest one. In signature generation
process the most time consuming part is the polynomial multiplication. Serial
implementation of the algorithms gives better results up to polynomial degree
8192.

Table 4.7: Timing results of signature generation (n/second)

n 1024 2048 4096 8192
Schoolbook Method 65,82 273,466 1191,049 5949,218
Iterative NTT 4,285 9,263 20,057 55,036
Parallelized Schoolbook Method 12,571 24,564 104,152 482,399
Parallelized Iterative NTT 29,016 65,104 166,621 485,218
cuFFT-Based Multiplication 5,846 9,919 18,258 25,685

55



In Figure 4.5, a timing comparison of signature generation phase with various
multiplication algorithms defined in Multiplication Techniques section. The sig-
nature c is composed of 32 1’s and -1’s. Since the number of the coe�cients
di↵erent than 0 is very small, modified fast convolution method has better re-
sults. Recall that the e�ciency of modified fast convolution method depends on
Hamming weight of the input.

Figure 4.5: Timing comparison of signature generation phase with multiplication
algorithms (second/n)
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Table 4.8 shows the timing results of signature verification process with various
multiplication algorithms. According to the timing results, as in signature gen-
eration phase iterative NTT method is more e�cient than others for n < 4096.
For n � 4096 signature verification with cuFFT-based multiplication is the most
e�cient one. These results show that parallelized algorithms have better perfor-
mance for the higher security levels.

Table 4.8: Timing results of signature verification (n/second)

n 1024 2048 4096 8192
Schoolbook Method 31,048 126,125 504,425 2000,192
Iterative NTT 1,978 4,245 8,688 18,265
Parallelized Schoolbook Method 5,870 14,413 39,295 168,217
Parallelized Iterative NTT 14,831 28,021 13,381 38,976
cuFFT-Based Multiplication 2,914 4,290 6,539 8,892

In Figure 4.6 a timing comparison of signature generation phase with various
multiplication algorithms defined in Multiplication Techniques section is demon-
strated.

Figure 4.6: Timing comparison of signature verification phase with multiplication
algorithms (second/n)
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Performance Results for NVIDIA Quadro 600 GPU Platform

In this section we give the performance results for the GPU platform using CUDA
platform. We use NVIDIA Quadro 600 GPU having 96 cores. In Table 4.9 the
number of multiplications over the (Z/pZ)[x]/(xn + 1) for selected methods is
given. We choose p = 49201153 satisfying p ⌘ 1 mod 2n. We generate the ran-
dom data on the GPU.
According to the experimental results, Since cuFFT is optimized version of FFT
on the GPU for the parallel processing, cuFFT-based multiplication gives the best
throughput. Algorithm 19 gives better performance than the original one. We
also note that the number of parallel multiplication decreases when one compares
with Table 4.9. The reason is that taking modulo with p = 49201153 results a
delay. The comparison results show that by using Algorithm 19 multiplying two
elements in R

p

is accelerated at least 19% compared to interleaved Montgomery
modular multiplication.

Table 4.9: Experimental results for selected polynomial multiplication methods
over the polynomial ring R

p

on the GPU using CUDA platform (second/n)

Algorithms n=1024 n=2048 n=4096
Parallelized Schoolbook Method 9478 5897 2515
cuFFT-based Multiplication 27650 15308 7691
Original Montgomery 9659 6034 2671
Interleaved Montgomery Method 8074 4965 2153
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4.3.2 Performance Results for NVIDIA GeForce GTX 775M Platform

In this section, we give the performance results for the platform Intel Core i5
3.4GHz CPU and NVIDIA GeForce GTX 775M with 768 CUDA cores. We choose
cuFFT library to implement NTT since cuFFT is an optimized library for the
GPU This helps us to obtain more consistent results. The parallelized parts of the
source code are implemented by using CUDA C++ as defined below. In this part,
we fix p = 1061093377 . Note that we use standard modulo reduction algorithm
not e↵ecting the overall performance of polynomial multiplication method.

Table 4.10 summarizes the performance results of the selected polynomial mul-
tiplication algorithms in (Z/pZ)[x]/(xn + 1) on the GPU using CUDA platform.
The polynomials are randomly generated in such a way that the coe�cients of the
multiplicand polynomial has 64 nonzero coe�cients. Algorithm 20 and Algorithm
22 are implemented on CPU as serial. The proposed multiplication methods can
also be parallelized but the operations on these algorithms have low computation
density. The data transfer between CPU and GPU gets more time than the actual
computation. As a result parallelized versions does not get better performance
than serial implementations. According to the experimental results, modified
fast convolution method is the most e�cient algorithm for random polynomial
multiplications (not sparse and not having special patterns).

Table 4.10: Timing results of polynomial multiplication methods

Algorithm n=1024 n=2048 n=4096
Parallelized Schoolbook Method 4,508 4,786 5,079
cuFFT-based NTT method 0,062 0,131 0,291
Sparse Polynomial Multiplication 0,035 0,072 0,156
Sparse Polynomial Multiplication
with Sliding Window

0,037 0,081 0,193

Remark 15. We would like to note that although in the implementation of
the proposed methods the data transfer between CPU and GPU multiple times
increases the execution time which a↵ects the e�ciency and in cuFFT-based
NTT polynomial multiplication method data transfer is performed only once, the
proposed methods have better performance for the defined data set.

Table 4.11 shows the timing results of signature generation process with various
multiplication algorithms for n = 1024, 2048 and 4096 in seconds. We would like
to note that since the polynomial multiplication in Algorithm 5 Step 2 (a·y1) does
not fit to our proposed methods, we use cuFFT-based NTT in that case. In Step
3, we use the proposed methods. According to the timing results, the performance
of sparse polynomial multiplication (and also its sliding window version) is much
more better than others. For n = 4096 signature generation with Algorithm 22
is the fastest one with a slight di↵erence. Recall that in signature generation
process, the signature c is composed of 32 1s and -1s. Since the number of the
coe�cients di↵erent than 0 is very small, sparse polynomial multiplication and
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its sliding window version have better results. Recall that the e�ciency of sparse
polynomial multiplication depends on Hamming weight of the input. However,
low Hamming weight without repeated patterns causes the ine�ciency of the
sliding window version. Sparse polynomial multiplication with sliding window
has better performance for uniformly random polynomial multiplication whose
coe�cients are in {�1, 0, 1}.

Table 4.11: Timing results of signature generation

Algorithm n = 1024 n = 2048 n = 4096
Parallelized Schoolbook Method 12,571 24,564 104,152
cuFFT-based NTT Method 5,846 9,919 18,258
Sparse Polynomial
Multiplication

2,656 5,534 13,297

Sparse Polynomial Multiplication
with Sliding Window

2,782 5,845 13,273

Table 4.12 shows the timing results of signature verification process with various
multiplication algorithms in seconds. As in signature generation case, since the
polynomial multiplication in Algorithm 6 in Step 1 does not fit to our proposed
methods, we use cuFFT-based NTT in that case. According to the timing results,
as in signature generation phase sparse polynomial multiplication is more e�cient
than others.

Table 4.12: Timing results of signature verification

Algorithm n = 1024 n = 2048 n = 4096
Parallelized Schoolbook Method 5,870 14,413 39,295
cuFFT-based NTT Method 2,914 4,290 6,539
Sparse Polynomial Multiplication 1,321 2,665 5,593
Sparse Polynomial Multiplication
with Sliding Window

1,369 2,842 5,741
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4.3.3 Performance Results for NVIDIA Geforce GT 555M Platform

In this section, we give cycle counts of the multiplication algorithms and signa-
ture generation and verification processes. To obtain more consistent results the
algorithms are run 1000 times for the uniformly random polynomials in the mul-
tiplication operation. To compare the multiplication operation on the GPU using
CUDA platform we fix p = 8383489 satisfying p ⌘ 1 mod 2n. We implement the
algorithms using the NVIDIA Geforce GT 555M GPU having 144 CUDA cores
on a notebook with the Intel Core i7-2670QM processor and 4GB memory.

In Table 4.13 we list the performance results of di↵erent multiplication algo-
rithms which multiply two elements in (Z/pZ)[x]/(xn + 1) for n = 2k with
k 2 {8, ..., 13}.The polynomials are generated randomly whose coe�cients are
in the set {�1, 0, 1}.

Table 4.13: Timing results of multiplication of two elements in (Z/pZ)[x]/(xn+1)
(n/second)

Degree n 256 512 1024 2048 4096 8192
Iterative NTT 11475 24524 54407 125332 274217 719816
Parallelized Iterative
NTT

16589 32569 72713 231960 689075 1860731

cuFFT-based 13970 26885 61089 134909 245964 450917
Sparse Polynomial
Multiplication

14684 29163 75942 167857 331857 799078

According to the timing results, we observe that for the polynomials of degree
n 2 {256, 512, 1024, 2048}, the iterative NTT method is the most e�cient one.
However, for n > 2048, there is enough workload such that cuFFT-based mul-
tiplication outperforms the other methods since the library is designed to work
with large data sets. The parallelization of cuFFT library is very e↵ective when
working with large data sets. Note that other parallelized methods, such as itera-
tive NTT, do not give the expected improvement since the data transfer between
CPU and GPU happens multiple times and increases the execution time a↵ecting
the e�ciency negatively. cuFFT-based multiplication has a better performance
since data transfer is performed merely once. This decreases the latency versus
the other methods. Recall that cuFFT is an optimized library for GPU. The
sparse polynomial multiplication method improves in performance with larger n
since we prefer to use cuFFT-based multiplication for decomposed polynomials
instead of schoolbook multiplication.

Here, we give the timing results of our implementation of the signature scheme
proposed in [27]. It is defined over the polynomial ring (Z/pZ)[x]/(xn+1). Again,
we run the signature generation and verification algorithm 1000 times and list in
Table 4.14 our respective timing results under consideration of various multipli-
cation algorithms. In the signature generation process the most time-consuming
part is the polynomial multiplication. Hence, we make similar observations as in
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Figure 4.7: Comparison of polynomial multiplication results (cycle
counts/parameter set).

the previous section. That is, according to the timing results, the signature gen-
eration process with iterative NTT for polynomial multiplication performs best
for n < 4096 as in Table 4.14. For n 2 {4096, 8192} the signature generation with
cuFFT-based multiplication is most e�cient. The sparse polynomial multiplica-
tion method is of the same magnitude as the cuFFT-based multiplication and is
a preferable choice for higher security levels where the degree n is chosen large.
Also Figure 4.8 shows the graphic for signature generation. The timing results of
the signature verification process with various multiplication algorithms is given
in Table 4.15.

Table 4.14: Cycle counts for the signature generation algorithm with di↵erent
multiplication methods

Degree n 256 512 1024 2048 4096 8192
Iterative NTT 73866 158703 325530 702773 1534303 3808258
Parallelized Iterative
NTT

102804 234901 472159 1850947 4975280 19548904

cuFFT-based
Multiplication

92816 206719 359664 726804 1371674 2561705

Sparse Polynomial
Multiplication

97085 219485 405977 857904 1964071 5081130
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Figure 4.8: Comparison of signature generation results (cycle counts/parameter
set).

Table 4.15: Cycle counts for the signature verification algorithm with di↵erent
multiplication methods

Degree n 256 512 1024 2048 4096 8192
Iterative NTT 40746 82331 171857 366431 815838 1971789
Parallelized Iterative
NTT

58015 114089 295402 856910 2142230 1097502

cuFFT-based
Multiplication

53618 90526 201976 424451 707590 1239700

Sparse Polynomial
Multiplication

56419 99217 218006 480731 824003 2698207
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Figure 4.9: Comparison of signature verification results (cycle counts/parameter
set).

64



CHAPTER 5

CONCLUSION

In this thesis, we discuss the computational aspects of lattice-based cryptographic
schemes focused on NTRUEncrypt and GLP signature schemes. We give the de-
tails of the selected modular multiplication algorithms. We explain the improve-
ments of the multiplication algorithms for CPU and GPU-based implementations.
We also modify the polynomial multiplication methods considering the needs of
the selected cryptosystems. We show that in some cases they give better perfor-
mance results than iterative NTT method for the quotient ring (Z/pZ)[x]/(xn+1).
Some of the multiplication methods running e�ciently in CPU platform do not
give the expected performance on the GPU.

First, we implement the fast convolution and fast convolution method with sliding
window method for the quotient ring (Z/pZ)[x]/(xn�1). The proposed methods
work with the data input {0,1}. Since NTRU uses the inputs from the data set
{-1,0,1}, we generalize these methods to handle NTRU data sets. According to
the experimental results, fast convolution with sliding window method the num-
ber of required additions is drastically reduced when we compare this with the
convolution method. GPU implementation of these methods are also done, but
experiments gives ine�cient results due to the low density characteristics of in-
puts.

Second, we give the required updates for Interleaved Montgomery Modular mul-
tiplication method to be used in lattice-based cryptographic schemes for the quo-
tient rings (Z/pZ)[x]/(xn + 1) and (Z/pZ)[x]/(xn � 1). The major improvement
is to reduce the required number of multiplications. Algorithm 13 and Algorithm
19 give better performance than the original one. We give an acceleration of
interleaved Montgomery modular multiplication at least 19% on the GPU for
lattice-based cryptography.

Finally, we present novel sparse polynomial multiplication methods working e�-
ciently in (Z/pZ)[x]/(xn + 1) for any positive integers n and p. We enhance the
performance of some lattice-based signature schemes significantly by performing
polynomial multiplication in (Z/pZ)[x]/(xn +1) with only addition and subtrac-

65



tion operations. Moreover, the proposed methods are easily modified to be used
in other cryptographic applications having a sparse polynomial multiplication
operation with a slight di↵erences in reduction part since they are independent
of the choice of reduction polynomial.According to the experimental results, the
proposed methods are approximately 80% faster than NTT. Then,, we investi-
gate how these algorithms perform when run on GPU. We show that some of
the multiplication methods which e�ciently run in the CPU platform do not give
the expected performance on GPU. Data latency between CPU and GPU causes
ine�cient implementations, in particular, for small data sets since the CUDA
platform is designed to work with large data sets. Every kernel call causes la-
tency since kernel initialization is done for each call specific to CUDA platform.
We obtain the highest e�ciency of cuFFT-based multiplication method for the
polynomial degree larger than 4096. We conclude that for an e�cient GPU im-
plementation of cryptographic schemes using the CUDA platform, more e↵ort is
required to optimize modular arithmetic operations.
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