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Supervisor,Scientific Computing, METU

Assoc. Prof. Dr. A. Sevtap Selçuk-Kestel
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ABSTRACT

STOCHASTIC SURPLUS PROCESSES WITH VaR AND CVaR SIMULATIONS
IN ACTUARIAL APPLICATIONS

Şimşek, Meral

M.S., Department of Actuarial Sciences

Supervisor : Assoc. Prof. Dr.̈Omür Uğur

Co-Supervisor : Assoc. Prof. Dr. A. Sevtap Selçuk-Kestel

June 2016, 70 pages

The theory of ruin is a substantial study for those who are interested in financial sur-
vival probability based on the patterns imposed by the surplus process, which deter-
mines the insurer’s capital balance at a given time. In otherwords, fluctuations in
aggregate claims as well as premiums in such processes can besecured by a certain
capital. In this study, we simulate various surplus processes under different claim size-
distribution assumptions and extend the analyses by addingperturbation of a Brownian
motion in order to capture the possible uncertainty on aggregate claims as well as pre-
miums. The capital, which is required to prevent an insurance company from possible
losses, is achieved by using the capital-based risk measures,such as the Value-at-Risk
(VaR) and the Conditional Value-at-Risk (CVaR) associatedto the surplus process.
Findings of the thesis fill a gap in the related literature, especially for the claim size
distributions whose closed-form expressions for the ruin probabilities cannot be ob-
tained. This study sheds light on practitioners who allocate capital by means of VaR
and CVaR when ruin is considered.

Keywords: ruin theory, risk measure, value-at-risk, conditional value-at-risk
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ÖZ

AKTÜERYA UYGULAMALARINDA STOKAST İK REZERV SÜREÇLEṘI İÇİN
VaR VE CVaR ṠIMULASYONU

Şimşek, Meral

Yüksek Lisans, Aktüerya Bilimleri Bölümü

Tez Yöneticisi : Doç. Dr.Ömür Uğur

Ortak Tez Yöneticisi : Doç. Dr. A. Sevtap Selçuk-Kestel

Haziran 2016, 70 sayfa

İflas teorisi bir sigorta şirketinin finansal varlığını s¨urdürmekle ilgilenenler için büyük
önem arzeden bir konudur. Şirketin sermaye dengesine bu teorinin temel konusu olarak
incelenen rezerv süreçlerinin belirlenen zaman içindeki örüntüsü karar verir. Başka
bir deyişle, bu tip stokastik süreçlerde toplam hasar yada primlerdeki dalgalanmalar
şirketin likit olarak elinde bulundurduğu sermaye ile kontrol altında tutulabilir. Bu
çalışmada, farklı hasar dağılımları varsayımıyla sim¨ule edilen rezerv süreci ve olası be-
lirsizlikleri yansıtabilmesi için bu stokastik sürece Brown hareketi difüzyonu eklenerek
elde edilen model çalışılmıştır. Her iki stokastik modelden yola çıkarak, oluşabilecek
risklerden korunmak için ayırılan sermaye değeri Riske Maruz Değer (VaR) ve koşullu
Riske Maruz Değer (CVaR) gibi risk ölçümleri kullanılarak erişilebilir. Bu çalışmada
bulunan sonuçlar, litaratürde birçok hasar dağılımı için kapalı formülü bulunamayan
iflas olasılıklarını hesaplamada literatürdeki boşluğun doldurulmasına yardımcı ve sto-
kastik rezerv süreçleri kullanarak sermaye hesabı yapansigorta sektör çalışanlarına yol
gösterici olacağı düşünülmektedir.

Anahtar Kelimeler: iflas teorisi, risk ölçümü, riske maruz değer (VaR), koşullu riske
maruz değer (CVaR)
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CHAPTER 1

INTRODUCTION

Risk is a fragment of our daily lives. As a dictionary definition risk is an ‘exposure to
the chance of injury or loss; a hazard or dangerous chance’. However, only a single
definition is not entirely satisfactory since financial economists, behavioral scientists,
risk theorists, statisticians, and actuaries adjust theirconcepts in the definition of risk.
Generally, it is connected withuncertainty. Therefore, a popular answer to ‘what is
risk?’ can be uncertainty concerning an occurrence of a loss[28]. Although mostly
risk is seen as downside, rarely upside, potential of gain.

Since risk is inherent in everything that we act, essence of risk management shows up.
Kloman (1990) stated the risk management as [38]:

To many analysts, politicians, and academics it is the management of envi-
ronmental and nuclear risks, those technology generated macro-risks that
appear to threaten our existence. To bankers and financial officers it is
the sophisticated use of such techniques as currency hedging and interest-
rate swaps. To insurance buyers or sellers it is coordination of insurable
risks and the reduction of insurance cost. To hospital administrators it may
mean ‘quality assurance’. To safety professionals it is reducing accidents
and injuries. In summary, risk management isa discipline for living with
the possibility that future events may cause adverse effects.

As it is understood from the quotation, risk management protects our lives to some
extent via different implementations. Risk management is main business of especially
banks and insurance companies. Risk can be undertaken by an insurance which encap-
sulates from designing, pricing and marketing the insurance products, the underwriting
procedures, the calculation of liabilities, technical provisions and asset backing these
provisions, to the overall claims and risk management [57].Indeed, insurance pro-
vides an insured pooling losses, payment of fortuitous losses, transferring the risk, and
indemnification. Those insurance contracts are signed on the condition that losses are
insurable risk. Ideally, an insurable risk has different characteristics which are hav-
ing a large number of exposure units, the loss must be accidental or unintentional and
measurable, the chance of loss must be calculable, and finally premium for risk must
be feasible [28].
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In the risk management, no matter the sector operate in, financial institutions are af-
fected by three types of core risk:credit, market, andoperational risks[56]. Besides,
liquidity risk can be added, too. An insurance company encounters withunderwriting
risk as well. Credit risk is the default risk and, on the company investment portfo-
lio, it is the change in the quality of issuers of security, counter-parties (e.g. reinsur-
ance, derivative contracts), intermediaries, etc. This risk resembles also direct default,
spread, sovereign, and concentration risk. Market risk is related to the level or volatil-
ity of market prices on assets and considers the movements inthe level of stock prices,
interest rates, exchange rates or commodity rates. It consists of interest-rate risk, eq-
uity and property risk, currency risk, etc. Operational risk arises from inadequacy of
business plan or falling system such as fraud and external events. It is also named as
residual risks. Liquidity risk comes up due to insufficient liquid assets. For instance,
early termination of insurance contracts poses liquidity risk of which company should
be aware. Finally, underwriting risk (or insurance risk) isassociated with insurance
contracts on that misleading issues cannot be covered. Subclasses of such risk are
pricing, reserving, policyholder behavior, claim and net retention risk.

Road to regulation for an insurance company in terms of risk management is drawn
by Solvencyframework that is inspired by the Basel Accord for banking system. This
regulation is used for protection of the policyholder by enforcing a law, enough capi-
talization for the insurance company, hereby providing it financial stability. Same as
the Basel Accord, Solvency is based on three pillar system, where the first pillar is
interested in quantitative requirements, the second pillar involves governance and su-
pervision review of the process, and the third pillar concerned with market reporting
to compare risk profiles of companies easier. Pillar I rules on the amount of the cap-
ital in order to ensure an insurance company from probability of insolvency. In fact,
it focuses on sustaining the appropriate technical provisions (policy liabilities such as
premiums, not funded claims and claim reserves from unearned premiums), compen-
sating the obligations with appropriate assets, and the primary interest required capital.
On the purpose of calculating the capital requirements, company is free to useinternal
models, orstandard formula approach. Pillar II beholds competing way with risk of an
insurance company i.e. supervisory or designed qualified party reviews, independent
opinions about the determination of risk assessment for solvency purposes. This is es-
pecially required for the determination of internal modelsin Pillar I. Moreover, Pillar
II not only ensures having sufficient amount required capital, but also supports insurers
to improve better risk management techniques. Pillar III assists the disclosure of in-
formation to public to strengthen market discipline. Thereby, business of an insurance
company can easily be judged by policyholders, analysts, investors and supervisors.

Figure 1.1 demonstrates different states of solvency. Generally, when Available Sol-
vency Margin (ASM), which equals to the difference between assets and liabilities, is
less than zero, insolvency arises. Solvency Capital Requirements (SCR) is the target
requirement for an insurance company. Regulatory capital requirements account both
Minimum Capital Requirements (MCR) and SCR. The value lowerthan MCR is con-
sidered to be that the company is not in the regularity state solvency [57]. In an ideal
situation,

MCR ≤ SCR≤ ASM.

The maintenance of financial stability is satisfied by the economic capital view. It is a

2
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Figure 1.1: The state of solvency. MCR: Mininumum Capital Requirement, SCR:
Solvency Capital Requirement, ASM: Available Solvency Margin. (Adopted from:
Sandström, 2010, p. 5)

more complex situation than satisfying regularity state ofsolvency. Financial stability
can be guaranteed with the use ofOwn Risk and Solvency Assessment (ORSA)that is
proposed in [35, 36].

Business capital has central role in operations of insurer environment, as illustrated
in Figure 1.2, by holding clear vision on the handling purposes of each elements such
as risks and design of it, pricing, liabilities, assets and their managements, experience
rating, profit and solvency. A report of International Actuarial Association [34] (2004)
remarks that capital requirement purpose is a rainy day fundwhich covers bad situa-
tions effects, a way of risk management to decrease level of risk, an aid for avoiding
undesirable level of risk from a policyholder perspective,a function of actual economic
risk, a tool for supervisors in order to control financial failure of the company, and a
signal of emerging trends on the market.

Risk based capital regulation is the way of measuring the minimum amount of capi-
tal in order to maintain overall business operations according to company’s size and
its risk profile. Indeed, as indicated, capital allocation is seen as a buffer to the com-
pany against insolvency [50]. Under risk based capital regulations, financial regulators
should choose the correct approach of measuring the risk. These measures should give
intervention before the insolvency gets large, at least they should help minimize the
risk.

Pentikäinen (2004) [52] points out that solvency can be evaluated by using risk theo-
retical techniques, for example, ruin theory which plays important role in addressing
the issue of investigating business activities of an insurance company by means of
its surplus process. Besides pursuing inflows and outflows, other ingredient of this
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Figure 1.2: Relation of capital with other business instruments. (Adopted from:IAA
(2004) [34], p. 25. )

theory is the ruin probabilities which specify the amount ofrequired initial capital
for a certain probability of solvency. As a matter of fact, Sandström (2010) [57] re-
ported that ruin probability is the risk measure of insurer having an initial ASM; if
ASM greater or equal to SCR, it means insolvent during the given time interval. Over
the decades, prominent studies, for instance, by Asmussen &Albrecher (2010) [5],
Bühlman (1970) [8], Dickson (2005) [18], Embrechts (2000)[24], Mikosch (2006) [47],
Rolski et al. (2009) [55], have developed the ruin theory to acertain level. In fact, the
first studies in ruin are traced back Lundberg and Cramér about collective risk models.

In this study, we aim to find capital requirement for an insurance company via con-
sidering its solvency by attaining the ruin. Therefore, we shape the current paper in
the light of the ruin theory, in which the modeling of the surplus process plays an
important role. It figures out business act of an insurance company in terms of cash
flows, premium inflows and claim outflows, with setting up initial capital. Premiums
are collected at a constant rate from each contingent insurance policy within a given
unit of time. Although premium payments are received at the fixed rate, loss claims
are random and unpredictable. Financial survival of the company primarily relies upon
both estimating loss exposure, of which real values cannot be well-predicted, and bal-
ancing claims with premiums. We focus on estimating aggregate claims under various
distributions and, we extend the classical model by adding perturbation of a Brown-
ian motion in the surplus process to handle the uncertainty in premium payment, and
resolve the problem of uncertainties of aggregate claim distribution [5, 21].

Preliminary work on extension of classical surplus model byadding a diffusion term
was investigated by Gerber and Dufresne (1991) [21] for the sake of expressing an
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additional uncertainty of aggregate claims and premium income. They presented de-
fective renewal equation for extended surplus process, thereby standard techniques of
renewal theory for this model has become applicable for finding ruin probability es-
pecially in combinations of exponential distribution. Then, Veraverbeke (1993) [63]
moved perturbed risk models, concerning to asymptotic estimates of ruin probabil-
ity and they proved that asymptotically this is equal to integrated tail of claim size
distributions. Alter on, Schlegel (1998) [59] obtained asymptotic ruin behavior of per-
turbed risk model by allowing claim arrival process. Yang and Zhang (2001) [67] used
perturbed risk process which included not only compound Poisson but also Gamma
process. They obtained joint distribution of ruin time and the first recovery time. Lin
(2009) [44] derived optimal investment strategy that minimizes ruin probability of risk
process, perturbed by a diffusion, and discussed the relation between ruin and invest-
ment by investigating adjustment coefficient and diffusionvolatility parameter, risk
free rate and correlation coefficient.

Studies of risk measures in actuarial context were generally connected with calcula-
tion of the insurance premium; among those are the works of B¨uhlmann (1970) [8],
Gerber (1970) [29], Goovaerts (1984) [30], and Denuit et al.(2006) [15], Kaas et al.
(2008) [37]. Risk measures such as VaR or CVaR are started to use in 1990s in actuar-
ial by National Association of Insurance Commissioners (NAIC) establishment as an
early warning system for insurance regulators [50].

Due to its ease in calculations and clarity in interpretation, Value-at-Risk (VaR) has
become one of the popular capital-based risk measures. It describes maximum proba-
ble loss in the fixed time horizon at a specific confidence level. Despite the fact that it
is a widely used financial risk measure, it has some drawbackssuch as concealing any
idea about the value of the actual loss above confidence level; further it does not not
satisfy the subadditivity property of coherent risk measures. These drawbacks moti-
vate us to use Conditional Value-at-Risk (CVaR) [1, 54]. Theuse of CVaR leads us to
calculate the risk beyond VaR. In addition, it satisfies all axioms of coherency and, it
provides mathematical superior properties than those of VaR. Since CVaR turns out to
be a convex risk measure, it can be invoked in well-established convex programming
problems of risk management. A number of different variations of CVaR come out
such as Expected Shortfall, Tail Value at Risk, Tail Conditional or Average Value at
Risk provided that underlying distribution is continuous.

In this study, regarding the theoretical framework of ruin,to ensure required capital al-
location, we implement capital-based risk measures: VaR and CVaR for both classical
and its extended (alternative) surplus processes.

Over the years, there has been highly appreciated studies made public in the related
literature. Here, we emphasize some of these: Dhaene et al. (2003) [16] examine
risk measures based on exponential premiums from the Cramér-Lundberg upper bound
and for the fixed initial capital, they find annual premium fora give ruin probability
level. Cheridito et al. (2004) [12] give example about measuring risk of an insurance
company by employing VaR and Average Value-at-Risk (AVaR) of ruin probability
function which is limited at a certain confidence level. Theybound these measures
for risk component with Cramér-Lundberg upper bound. In the studies of Trufin et
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al. (2011) [61], on the other hand, directly ruin probability for risk measures VaR
and TVaR are used; these are the so-called ruin-consistent Value-at-Risk and ruin-
consistent Tail Value-at-Risk. Assuming the stationarityof insurance business, these
risk measures indicate the smallest amount of capital to provide the ruin probability
to be below a specific confidence level. Moreover, Gatto et al.(2014) [27] define
the value at ruin as well as the tail value at ruin of surplus process with diffusion.
They also propose efficient computation of these risk measures by using saddle point
approximation and Fast Fourier Transform methods. Recent work on combination of
risk measure and ruin theory is attributed to Mitric et al. (2015) [48]. They suggest
a risk measure which consists of expected deficit at ruin, as well as ruin-consistent
VaR and TVaR. They conclude their work with a closed-form expression of this risk
measure, despite the fact that obtaining closed-from solution of probability might not
be possible apart from some specific distributions such as exponential.

Therefore, implementation of these formulations on practical use might be difficult
under different distributional assumptions on the claim sizes. With various scenarios
for the claim distributions, this thesis study focusses on obtaining VaR and CVaR for
the risk components to allocate a necessary amount of initial capital as well as the
corresponding ruin probabilities associated to those (initial) capitals.

The thesis is structured as follows: Chapter 2 and Chapter 3 presents theoretical di-
mension of this study which mainly focuses on risk measures and ruin theory. Starting
with definition risk measure, we discuss coherency concept,concordantly popular risk
measures, VaR and CVaR are explained in Chapter 2. Further theme of the Chapter 3 is
ruin theory queries step by step constructing surplus process elements and the model.
Chapter 4 explains proposed approach for capital allocation with risk measures and
shows the results via tables and graphical tools. Finally, Chapter 5 concludes the study
by harmonizing the theoretical facts and simulation results handled on application part.
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CHAPTER 2

RISK MEASURE

Risk measurement is one of the predominant issues of actuaries and practitioners in
insurance business. Especially, risk measures are used in determination of capital or
reserve, premiums, reinsurance, deductible threshold etc. In this chapter, we start with
the definition of risk measure and their usage, then we continue with premium cal-
culation principles which are introduced as risk measure inactuarial context: that is
why it is called a premium-based risk measure. We argue the coherency axioms which
ideal risk measure should have and we finally give the properties of two important
capital-based risk measures: VaR and CVaR.

A risk measure explains the overall risk exposure with a single number. However,
economically, a risk measure represents the preferences ofthe decision maker in the
economic situation [43]; mathematically speaking that a risk measure is a real-valued
mapping on the space of random variables:ρ : X 7→ ρ(X) ∈ R [4]. The risk measure
is an important tool for establishing internal and externalmodels, insurance premium
and economic capital allocation [57, 62], and so on.

Internal and external model. In order to monitor solvency of a company, regulatory
committees agree on some standard reporting system like Basel Accord for banking
and Solvency for insurance companies. Since external reporting system calculations
have some deficiencies of setting companies’ targets on different business level, com-
panies have right to develop their own internal models. These models should based on
certain risk measures.

Insurance premium. Along with marketing concerns, computation of insurance pre-
mium is compromised of expected loss, cost of insurance capital, and risk loading
which are calculated via appropriate risk measures.

Economic capital allocation. Economic capital is considered as a cushion for unex-
pected losses. The capital, symbolizes the level of credit standing and tolerance level
for the probability of insolvency that the company can possibly rule out.

Common examples of risk measures in actuarial studies are based on the premium
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principles for pricing insurance, ruin probability given initial capital for controlling
solvency, in order to determine capital requirements to runthe business.

2.1 Premium-Based Risk Measures

Targeting the limited ruin probability, a risk characteristic or risk measure for calcu-
lating premiums including safety loading should be considered [31]. Such a risk mea-
sure is called premium-based risk measure which gives the minimum amount premium
that the insurer collects to compensate its obligations. Inthis section, widely used
premium-based risk measures, such as, expected-value premium principle, variance
premium principle, standard deviation, zero-utility premium principle are introduced.

Here,X is a non-negative random variable on(Ω,F ,P) that represents the risk, and
π(X) is called aspremium principlewhich is a functional on the space of risksX.
Below are the most popular examples of the premium-based risk measures on actuarial
applications.

(i) Expected-value premium principle:

π(X) = (1 + δ)E [X ] , (2.1)

whereδ > 0 is the safety loading which is utilized to protect the company losses
higher than anticipated. In the special case ofδ = 0 and,π(X) = E [X ], the risk
measure is calledpure premium.

Generally, expected-value premium principle is used in life insurance, however,
it is rarely used in property and casualty insurance. Nevertheless, such an aver-
age value calculation is not enough to explain loss exposureespecially in extreme
event modeling. Apparently, risks with identical means might have different dis-
persion, and hence, they should be priced with different premiums [8].

(ii) Variance premium principle:

π(X) = E [X ] + δVar [X ] , δ ≥ 0,

whereδ is a constant which refers to non-negative loading.

(iii) Standard deviation premium principle:

π(X) = E [X ] + δ
√

Var [X ], δ ≥ 0,

whereδ is again a constant which refers to non-negative loading.

Under variance and standard deviation premium principle, loss distribution with
higher dispersion has higher risk, hereby it has a higher premium. But, as noted
in [41], in standard deviation principle negative variation and positive variation
yields the same effect. This problem can be resolved by usingsemi-standard
deviation principleis given by

π(X) = E [X ] + δ
√

E [max(0, X − E [X ])2], 0 ≤ δ ≤ 1.
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(iv) Zero-utility premium principle:

U(c) = E [U(c−X + π(X))] ,

wherec is constant wealth of the insurer. Here,U is a given utility function being
concave and strictly increasing(U ′ > 0 andU ′′ < 0); that is,risk averse. Under
zero-utility premium principle is charged according to insurer’s wealth. Special
case of zero utility principle is when utility function is exponential:

U(x) =
1

β

(

1− e−βx
)

for some fixedβ > 0. In this case, premium principle becomes

π(X) =
1

β
ln
[

E
[

eβx
] ]

.

This premium calculation is attractive since it is based on the moment generat-
ing function of the loss distribution and it is called exponential utility function
premium principle.

2.2 Coherent Risk Measures

Many different kinds of risk measures have been introduced in literature, showing
which one is reasonable or right is passed on stating axiomatic characterizations of
these risk measures. For detailed explanations of axioms considered, we refer to
see [64]. Indeed, deciding whether a risk measure is reliable or not is, in general,
based on the idea ofcoherentrisk measures. Artzner (1999) [2] stated that in order to
regulate or manage risk effectively, axioms of coherence should be fulfilled for any risk
measure. Economically, coherence of a risk measure, for example, has a meaning of
consistency. Artzner et al. also point out that describing the risk with a single number
may cause a great loss of information. However, choosing thecorrect risk measure may
help decrease the effect of information loss. Furthermore,Bouwer, in [14], claims that
using incoherent risk measure for reducing risk causes extreme risk taking, opposite
diversification, and, it prompts blindness for investment cost etc.

Thus a coherent risk measureρ should satisfy the following properties; for given two
financial positionsX andY ,

(i) ρ(X + a) = ρ(X)− a, for all a ∈ R, (translation invariance)

(ii) ρ(X) ≤ ρ(Y ) for X ≥ Y , (monotonicity)

(iii) ρ(aX) = aρ(X) for all a ≥ 0, (positive homogeneity)

(iv) ρ(X + Y ) ≤ ρ(X) + ρ(Y ), (subadditivity)
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Translation invarianceaxiom implies that adding a constant amount ofa, the risk
decreases with that amount ofa. Also, adding/subtractingρ(X) instead ofa as a
capital annihilates the risk:

ρ(X − ρ(X)) = ρ(X)− ρ(X) = 0.

Monotonicityaxiom means that among two financial position, less risky financial po-
sition requires less money.Positive homogeneityis related to the linear utility which
signifies that position of a risk linearly depends on its size. Seemingly, this property
is not really desirable in insurance context since it calculates risk as a linear function
of the scale. Another criticism of the positive homogeneityproperty in literature is the
independence of currency, yet Denuit et al. [15] warn that itis the wrong interpreta-
tion. Subadditivityindicates that the risk of combined financial position is less than
the separate risk of these financial positions, reflecting the diversification effect. In
other words, as Artzner et al. [2, 3] state that ‘a merger doesnot create additional risk’.
Intuitively, it is possible to reduce economic capital required or the appropriate pre-
mium for a risk by pooling it [33]. Nevertheless, together with positive homogeneity,
subadditivity guarantees theconvexity axiom:

ρ[aX + (1− a)Y ] ≤ aρ(X) + aρ(Y ) for a ≥ 0.

Premium-based risk measures are described previously, arenot coherent risk measures
see [49] for detailed proofs. However, it is worth mentioning that the axioms that a
risk measure satisfies rely on the conditions of economic environment. Those axioms
above should be viewed as a typical set of rules or guidelines[17]. Having defined
what is meant by coherent risk measure, now move on to discusscapital-based risk
measures.

2.3 Capital-Based Risk Measures

Both premium-based and capital-based risk measures are governed to judge the risk.
Nevertheless, premium-based risk measures are generally attached to pricing of the in-
surance. Moreover, Goovaerts et al. compare these two risk measures and indicate that
mathematically both concepts are functionals, mapping random variables to a single
real number, but the justifications and derivations are different [32].

This section is mainly interested in the use of risk measure as a determination of eco-
nomic capital that is interpreted as a buffer for unexpectedlosses. Föllmer and Schied
highlight that a risk measure might be seen as a capital requirement which helps the
position be acceptable when added to position and then invested [26].

Below, the most common examples of capital-based risk measures in literature and
financial institutions are going to be reviewed. Among thoseare Value-at-Risk (VaR)
and its extension Conditional Value-at-Risk (CVaR) will bepresented. While VaR is
not a coherent measure, CVaR is; and, it is considered to be superior than VaR in many
applications in finance.
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2.3.1 Value-at-Risk

In actuarial risk theory, actuaries already have been usingquantile as a risk measure
for years. However, since 1990’s using quantiles as risk measure has gained popularity
in financial, particularly, in actuarial applications. First attempts start with the release
of Risk Metrics in order to set up a standard in the market [45].

VaR can be regarded a statistical summary of all possible losses in a portfolio. In
fact, it describes the maximum potential loss of a specific portfolio within a given time
horizon and a confidence levelα; for X ∼ F , VaRα is defined by the quantile function

VaRα(X) = F−1
X (α) = inf{x ∈ [0,∞] : FX(x) ≥ α}.

VaR attracts many regulators by virtue of the following [19,20, 58]:

• It is easy to calculate since it is basically statistical quantile function.

• It gives a single number representing all risk; this helps regulators understand
and interpret the value of VaR easily in order to react accordingly.

• It is a probabilistic measure, that presents to risk managers informations associ-
ated with the amount of loss. Some of the traditional measures such as durations,
Greeks do not indicate loss likelihood.

• It is a stable estimate as it neglects the tail of the underlying distributions.

• It measures maximum amount of loss likely to lose; this helpsto determine the
capital and the risk targets of the company.

• It ensures a more consistent and integrated approach to the management of dif-
ferent risks and provides greater risk transparency and disclosure.

These facilities make VaR popular among capital-based riskmeasures. However, VaR
has also unfavorable properties:

• It is inefficient risk measure for skewed distributions.

• It may give conflicting results, because calculation of VaR depends on the spec-
ified confidence level.

• It cannot give any other information beyond the quantile.

• It is not a coherent risk measure since it does not satisfy thesubadditivity prop-
erty. Although this is necessary for diversification of portfolios, failing subaddi-
tivity sometimes may not be so important to reject VaR [33].

• It is non-linear, non-convex, and non-smooth; it has multiple local extrema
which keep VaR off from optimization problems [42].

In order to avoid the drawbacks of VaR stated above, use of a coherent risk measure
CVaR is proposed by Uryasev (2000) [3, 4]. We briefly discuss it in the following
section.
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2.3.2 Conditional Value-at-Risk

A VaR at a given confidence levelα does not provide any further information about
the loss beyond the quantile. In practice, this weakness might cause to give a wrong
decision, as regulators do not only consider frequency of default but also they consider
the severity of default. Similarly, they often want to know ‘how bad is?’, when judging
the risk. Therefore, CVaR is proposed to quantify the risk beyond VaR and further,
it is also a coherent risk measure [3, 4]. Roughly speaking, CVaR is a downside risk
measure which determines the average loss (in the tail of theloss distribution) with
a certain confidence level. Similar to VaR, for a given confidence levelα, CVaR is
defined:

CVaRα(X) = E [X|X ≥ VaRα(X)] .

CVaR has superior properties, as given in [42, 58], than those of VaR; here are a couple
of those:

• It leads to find the value beyond the VaR, which ensures the estimation of ex-
treme tail losses, see Figure 2.1.

• It is a coherent risk measure satisfying all axioms in Section 2.2.

• It fits the loss distribution without distinction of skewness.

• It is convex and smooth; hence, it proves useful in related optimization problems
of finance and actuarial sciences.

CVaR has also some criticism stated in [58]:

• CVaR is more sensitive to estimation error than VaR since accuracy of CVaR is
extensively affected by the accuracy of the modeling of the tail. As a result, VaR
may be regarded more robust than CVaR.

• In order to establish a reliable estimate, CVaR generally needs a large number of
(realizations) observations. Even then, it may fail to estimate the most extreme
potential losses.

Nonetheless, an important question still persists, in literature, for the choice of the risk
measure [58]: which one should be preferred? Answer dependson the preferences and
the objective in general;

• If high uncontrolled risk is needed, VaR can offer better results since it is more
unrestricted than CVaR.

• For distributions with light tails, such as, normal or elliptical distributions which
might be regarded an extension of multivariate normal distribution, CVaR may
not perform well. Also, one should remember that under normal distribution
CVaR converges to VaR.
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Figure 2.1: The graph shows that CVaR considers risk beyond VaR.

• CVaR needs a large number of observation, otherwise it does not give a consis-
tent result.

• VaR is more stable (in terms of robustness) than CVaR in estimation problems,
since VaR does rarely consider the tail of the distribution.
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CHAPTER 3

BUILDING RISK MODELS and RUIN THEORY

In this chapter, step by step we construct different collective risk model in order to
obtain stochastic surplus processes. After, we discuss thekey elements of ruin theory
framework.

3.1 Risk Models

In actuarial modeling of risk, two major approaches are conducted for aggregate loss:
individual and collective models. Individual model considersn independent policies
which may or may not have losses. Consequently, for a certaintime period, it has to be
constructed as two sources of variability: either loss occurs or not, and if so, the size
of the loss.

LetXi denote the claim size of contracti in the insurer’s portfolio, the aggregate loss
Sn is

Sn =
n
∑

i=1

Xi. (3.1)

It is important to emphasize that the amount of claim may be zero under individual
policy which implies that individual model has probabilitymass at zero. It should also
be noted that the mean and variance ofSn are given by

E [Sn] = nE [X ] and Var[Sn] = nVar [X ] .

On the other hand, collective risk model examines the compound distribution of the
aggregate loss which is inferred by counting the number of claims from the insurance
portfolio, not from the individual policies. Instead of analyzing each policy separately,
as in individual model, each claim is analyzed separately. It, therefore, consists of a
stochasticN(t) for the number of claims between the time intervals (to be discussed
in the next section in detail). In the collective risk model,non-negativeXi refers to
independent claims and

S(t) =

N(t)
∑

i=1

Xi (3.2)
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is the aggregate loss. Here, we should impose the basic assumptions that

i. the number of claims is independent of the claims;

ii. individual claims is independent and identically distributed (i.i.d.).

These assumptions provide us the derivation of some distributional inferences for the
total claim size. Herewith, we can reach the meanE [S(t)] an the variance Var[S(t)]
of aggregate claims, respectively,

E [S(t)] = E [N(t)]E [X ] , (3.3)

and
Var [S(t)] = E [N(t)]Var [X ] + Var [N ] [E [X ]]2. (3.4)

Using collective model approach, namely, modeling distribution of claim numbers and
claim sizes separately has various advantages [39]:

1. The expected number of claims changes according to numberof insurance pol-
icy, which helps insurer to control growth in business volume for forecasting the
number of claims in future using past year data.

2. Economic inflation and additional claims inflation which affects the losses in-
curred and these claims are paid back to insureds. Such inflation effects generally
conceal when insurance policies have deductibles or limitswhich are indepen-
dent of inflation. Thereby, aggregate results are used.

3. Influence of changes in deductibles and policy limits can easily be applied by
changing the specifications of the distribution claim size.Also, influence of
changes in deductibles can be understood better with respect to the claim num-
ber.

4. Non-covered losses, claim cost for insurers and claim cost of reinsurer can mu-
tually be consistent which results in shifting losses to a reinsurer easier.

5. Understanding of the relative distribution of total claim is important to imple-
ment modified policy details. In collective model, distribution of total claims is
defined as a combination of the number of claims and claim sizedistributions.

3.1.1 Models for the Claim Number Process

In this section, one of the benchmark in counting process, sois called Poisson process
is covered. Since it has appealing theoretical properties,it is commonly used in applied
probability and theory of stochastic processes. Then, we mention renewal process. For
a more general version of Poisson process, we will briefly explain the renewal process
and give its asymptotic properties.
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3.1.1.1 Poisson Process

We start with recalling Poisson distribution with intensity λ > 0,

P {X = k} =
e−λλk

k!
.

Also, we know thatE [X ] = Var [X ] = λ.

Definition 3.1. (Poisson Process [47]): A stochastic processN(t) with intensityλ > 0,
is called as aPoisson processif

(1) N(0) = 0,

(2) The process has independent increments withN(t)−N(s) orN(s, t] has a Poisson
distribution with intensityλ(t− s) for t > s > 0, andλ > 0,

(3) The processN(t) is right-continuous and has left limit (càdlàg process)

For simplicity, we can also write a Poisson process as

N(t) = #{n ≥ 1 : Tn ≤ t}, t ≥ 0,

where inter-arrival times the sequence ofWi, which are i.i.d. Exponential random
variables with meanλ. The arrival timesTi’s are such thatT0 = 0, Tn = W1 + · · ·+
Wn, n ≥ 1.

A Poisson process has some additional properties that we should mention.

(i) SinceN(0) = 0 a.s., it follows that

N(t)−N(0) = N(0, t] ∼ Poisson(λt) .

(ii) The independent increment property facilitates to work with finite-dimensional
distribution ofN .

(iii) Cádlág process indicates that the value of the jump of the Poisson process added
to the process already [40].

Figure 3.1 shows sample paths of Poisson processes with different intensities:λ = 1,
λ = 3, λ = 5. Forλ = 1 jumps occur less frequently, while forλ = 5 they occur more
frequently.

Furthermore, Poisson process is divided into two parts ashomogeneous Poisson pro-
cessand inhomogeneous Poisson processwhich are closely related. Homogeneous
Poisson process has a linear intensity function which has anintuitive meaning that
claims arrive uniformly over time since it evolves linearly. In other words, this process
adds to condition (2) in Definition 3.1 stationarity property. Moreover, homogeneous
Poisson process is a primitive example of Lévy processes that satisfy the conditions:
having stationary and independent increments withN(0) = 0, and being a càdlàg
process. On the other hand, inhomogeneous Poisson process can be constructed non-
constant intensity function that time slows down or speed upaccording to magnitude
of λ(t).
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Figure 3.1: Poisson process with different intensities.

3.1.1.2 Renewal Process

When there is a large interval between the arrival times, Poisson process moves away
from a being realistic model to describe arrivals. Then, forsuch situations, modeling
the inter-arrival times via a distribution is necessary. Inthis respect, renewal process
models occurrences at random times at which inter-arrival times are i.i.d. distributed
random variables [53].

Definition 3.2. (Renewal Process [47]): A renewal sequence can be given

T0 = 0, Tn = W1 + · · ·+Wn n ≥ 1,

where the variablesWi’s are i.i.d. sequence of almost surely positive random variables,
which refer to inter-arrival times andTi’s are the arrival times. The (renewal) counting
process then can be written as

N(t) = #{n ≥ 1 : Tn ≤ t}, t ≥ 0.

A Poisson process is a special case of renewal process when inter-arrival times are
distributed as i.i.d. Exponential. Although, renewal processes are more preferable than
Poisson processes, in the cases of large gaps between the arrival times and models for
long-time period; homogeneous Poisson and renewal processes both have numerous
asymptotic properties in common.
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Theorem 3.1(Strong Law of Large Numbers for the Renewal Process [47]). If ex-
pectation of inter-arrival timesE [W1] = λ−1, is finite, then number of claim process
satisfies the strong law of large numbers:

lim
t→∞

N(t)

t
= λ a.s.

For homogeneous Poisson process, it is readily known that the exact value of expected
claim number process isE [N(t)] = λt, whereas for a general renewal process, expec-
tation of the renewal process is asymptoticallyE [N(t)] = λt by Theorem 3.1.

Theorem 3.2(Elementary Renewal Theorem [47]). If the expectation of inter-arrival
timesE [W1] = λ−1 exist, then

lim
t→∞

E [N(t)]

t
= λ.

Proposition 3.3(Asymptotic Behavior of the Variance of Renewal Model [47]). Sup-
pose that variance of the inter-arrival time exists, that isVar [W1] <∞. Then,

lim
t→∞

Var [N(t)]

t
=

Var [N(t)]

[E [W1]]3
.

Theorem 3.4(Central Limit Theorem for the Renewal Process [47]). Suppose that
variance of the inter-arrival time exists(Var [W1] < ∞). Then, by the Central Limit
Theorem

N(t)− λt
√

Var [N(t)] [E [W1]]−3

d−−−→ Y ∼ N (0, 1) ,

ast→ ∞.

3.1.2 Modeling Total Claim Size

The total claim size modeling, given in Eq. 3.2, there are many different approaches.
Specifically, if the claim number follows a homogeneous Poisson process, the model
is called Cramér-Lundberg model; on the other hand, if the claim number is a renewal
process, the model Eq. 3.2 is called renewal or Sparre-Anderson model.

Broadly, finding analytical distribution of model Eq. 3.2 ishard to derive for an ar-
bitrarily given distribution for the claim numbers or the claim sizes. For this rea-
son, asymptotic properties are suggested to use in order to find how much premium
should be charged for a given time period to avoid insolvencyor avoid ruin. As shown
in Section 2.1, premium calculation basically depends on identifying expectation and
variance based on strong law of large numbers (Theorem 3.1),elementary renewal
theorem (Theorem 3.2) and the Central Limit Theorem (Theorem 3.4).

Note that the expected value ofS(t) previously given Eq. 3.3 now changes to

E [S(t)] = λtE [Xt] ,
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under Cramér-Lundberg model. On the other hand, for the general renewal model such
a compact formula does not exist. However, by using Theorem 3.2, if the expectation

of inter-arrival times exist and equals toλ−1, then we have
E [N(t)]

t
→ λ a.s.t→ ∞.

So, the expectation of renewal model can be computed as

E [S(t)] = λtE [X1] (1 + o(1)), t→ ∞.

Furthermore, using the variance of total claim size in Eq. 3.4, the variance of Cramér-
Lundberg model becomesE [N(t)] = Var [N(t)]. Hence,

Var [S(t)] = λt[Var [X1] + (E [X1]
2]

= λtE
[

X1
2
]

.

For the renewal model, again by using Theorem 3.2 and Proposition 3.3, the variance
can be expressed as

Var [S(t)] = [λtVar [X1] + Var [W1]λ
3tE [X1]

2](1 + o(1))

= λt[Var [X1] + Var [W1]λ
2
E [X1]

2](1 + o(1)).

Apart from the expectation and variance, asymptotic behavior of the renewal model
can be stated by invoking Theorem 3.1 and Theorem 3.4 as follows:

(1) if the expectation of inter-arrival timesWi and claim sizesXi exist,S(t) satisfies
thestrong law of large numbers

lim
t→∞

S(t)

t
= λE [X1] a.s. (3.5)

(2) if the variance of inter-arrival timesWi and the claim sizesXi exist,S(t) satisfies
the Central Limit Theorem

sup
x∈R

∣

∣

∣

∣

∣

P

{

S(t)− E [S(t)]
√

Var [S(t)]
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

−→ 0, (3.6)

whereΦ is the distribution function of the Standard Normal distribution.

3.1.3 Claim Size Distributions

Here, in this section, we introduce commonly used class of distributions in insurance
business practice. These distributions are studied by someexplanatory statistical tools
such asquantile–quantile (Q–Q) plot which gives the best fit to the real life data, and
another graphical tool:mean excess plotwhich helps discriminate the tail and decide
whether the distribution is heavy-tailed or light-tailed.
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Quantile–Quantile Plot (Q–Q plot). Q–Q plot is a scatter plot for identifying, at-
a-glance, which distribution can give better fit to the insurance data. Firstly, it takes
a set of observation i.e. empirical distribution, sort themin the ascending order, then
plot them versus quantiles of reference distribution whichis calculated as quantile of
pi wherepi = (i+ 1/2)/(n+ 1).

If one see roughly linear line proceeding by points between two quantiles, it can be
said that the data is distributed as presumed distributions. Contrary to common misun-
derstanding, the claimed distribution should not be Normaldistribution necessarily.

In Figure 3.2,Q–Q plots of Generalized Pareto (top), Exponential (middle) and Nor-
mal distribution (bottom) are given for illustration. Since the aim of Figure 3.2 is to
show whether the distribution is Exponential or not, simulated data quantiles are cal-
culated versus simulated Exponential distribution quantile. In theQ–Q plot, if the data
points nearly spread around the linear line, it means that input distribution is as the
same as the assumed distribution. On the top figure, since data comes from the Gener-
alized Pareto distribution the data points move away from the linear line on the right,
whereas on the bottom figure, data are generated from Normal distribution, it can be
seen that both left and right end of the linear line, there is acurve down shape. Also,
one can reach an interpretation about the outliers of the distribution usingQ–Q plots.
For example, although data points almost fit the linear line in the middle figure, one or
two points seem to be extreme. Likewise, on the top and bottomfigures extreme points
are clearly distinguishable.

Q–Q plot allows us to understand the following properties of a distribution stated by
Chambers [11]: It

(1) ensures comparison of distribution by looking at almostlinear relationship,

(2) finds outliers of the distribution which are the data values move away from the
linear line appearance extremely, whereas the other data values scattered near the
linear line,

(3) determines location and scale of the distribution whichmight be estimated by
graphically through intercept and slope,

(4) enables to make inference for the shape of the distribution, e.g., if the data follows
one of the heavy-tailed and right-skewed, theQ–Q plot is seen as nearly curving
down shape at right-up of the linear line,

Mean Excess Plot. There is no precise way to decide whether claim size distribution
is heavy-tailed or light-tailed. Yet, the intuitive approach is that, a distribution is a
heavy-tailed if 20% of the claims account for more than 80% ofthe total claims [5].
Also, by accepting Exponential distribution as a benchmark, and denoting the right tail
of distribution byF (x) = 1− F (x) for x > 0, if,

lim sup
x→∞

F (x)

e−λx
<∞ for some λ > 0,

21



0 1 2 3 4 5 6 7 8
20

30

40

50

60

70

80

Quantiles of Exponential Distribution

Q
ua

nt
ile

s 
of

 G
en

er
al

iz
ed

 P
ar

et
o 

In
pu

t S
am

pl
e

0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7

8

Quantiles of Exponential Distribution

Q
ua

nt
ile

s 
of

 E
xp

on
en

tia
l 

In
pu

t S
am

pl
e

0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

Quantiles of Exponential Distribution

Q
ua

nt
ile

s 
of

 N
or

m
al

 In
pu

t S
am

pl
e

Figure 3.2:Q–Q plot of distributions with different characteristic.
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thenF is considered a light-tailed distribution. If, on the otherhand,

lim inf
x→∞

F (x)

e−λx
> 0 for all λ > 0,

then,F is a heavy-tailed one.

These two results help us interpret the tail of the distribution. While in graphical
interpretation, mean excess plot deduces a comparison about thickness of the tail of
the distribution.

Definition 3.3. (Mean Excess Function [25]. ) Given a non-negative random variable
Y with finite mean, cumulative distributionF , andy being the right end point. Mean
excess function (mean residual life function) is

eF (u) = E
[

Y − u
∣

∣Y > u
]

, 0 ≤ u ≤ y.

Mean excess function can also be written as

eF (u) =
1

F (u)

∫ ∞

u

F (y)dy, u > 0.

If eF (u) converges to infinity asu → ∞, thenF is called heavy-tailed, otherwise if
eF (u) converges to a finite constant asu → ∞, F is called light-tailed. In insurance
business practice, unlimited growth of mean excess function indicates the danger of
the underlying distributionF in its right-tail. This means, given claim sizesXi excess
the high thresholdu.

Mean excess functions for some distributions are illustrated in Figure 3.3, (for their
mean excess functions, see [9]). As mentioned before, mean excess function approach
exponential distribution is a benchmark since it has memoryless property. In other
words, the expected value ofY − u in Definition 3.3 does not change, whether that
is conditioned onY > u or not. If the distribution has heavier tail than exponential
distribution,e(u) ultimately increases, if it has lighter tail,e(u) deceases ultimately.
Figure 3.3a shows shapes of Lognormal, Gamma withα < 1 andα > 1, mixture
of Exponentials, and Exponential. In this panel of the figure, continuous increase in
mean excess function in Lognormal, for example, proves thatdistribution has heavier
tail, while mean excess function of Gamma withα > 1 decreases which means that
distribution has lighter tail. Figure 3.3b demonstrates mean excess function of Weibull
with τ > 1 andτ < 1, Pareto, Burr and Exponential distributions. In this panelof
the figure, for example, Pareto and Burr distributions have heavier tails according to
Exponential, while Weibull withτ > 1 has lighter tail.

Graphical method is based on empirical mean excess functioneFn
(u) considered inu ∈

(X(1), X(n)), whereX(k) representskth order statistics. GivenFn empirical distribution
has bounded support and by the strong law of large numbers,eFn

(u) −→ eF (u), a.s. as
n→ ∞. The mean excess plot consists of the set

{

(X(k), eFn
(X(k))) : k = 1, 2, . . . , n− 1

}

.
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Figure 3.3: Shape of different mean excess functions for different distributions.
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Figure 3.4: Examples of mean excess plot for specified distributions.

Figure 3.4 is drawn to depict graphical method of mean excessfunction. Figure 3.4a
contains simulations of mean excess function having Exponential with mean0.8, co-
inciding with Figure 3.3 for Exponential distribution, mean excess plot shows straight
line around nearly mean0.8, whereas in Figure 3.4b, we see a linear line shape which
supports the Figure 3.3a for Lognormal mean excess function.

A note of caution is due here since the data might have sparsity, and hence the plot
mean excess function calculates the larger thresholdu, which may cause misleading
information about heaviness of the tail. For this reason, one might consider different
excess functions which are not affected by sparsity of the data, e.g., median excess
function and respectively median excess plot [47].

Some Realistic Claim Size Distributions. After some statistical inference property
about claim size distribution, some of the most popular distributions in non-life in-
surance modeling are mentioned below by classifying them aslight-tailed and heavy-
tailed.
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a. Light-tailed distributions: such as Exponential, Gamma, Erlang, Phase-type distri-
butions are in this category. As well as in many applied probability, Exponential
distribution is a benchmark in risk theory. Especially, it is widely used in ruin the-
ory framework, since compound Poisson process with Exponential claim sizes is
employed to find closed-form solution for the ruin probability. Most prominent
property of Exponential distribution is itslack of memory. The distribution which
has favorable property is Gamma, due to being one of the infinitely divisible distri-
butions which allows computational tractability in the calculation of the distribution
of the total claim.

b. Heavy-tailed distributions: such as Weibull, Lognormal, Pareto, Loggamma, dis-
tributions with regularly varying tails and subexponential class of distributions are
the examples of such distributions. Lognormal has heavier tail than Weibull distri-
bution, and also it has the property thatlogX ∼ N (µ, σ), Pareto or Generalized
Pareto is particularly used for large claims modeling, and they settle a (large claim)
threshold, sayθ > 0, then one can consider the claims above that threshold.

3.1.4 Distribution of Total Claim Size

Thus far, we focus on constructing the total claim size modelwith different assump-
tions and distributions of claim number and size. As much as constructing a model,
detection of the distribution is significant for practitioners in the field. One might ob-
serve the distribution of the total claim sizeS(t) in Eq. 3.2 by using characteristic
function, by decomposing it as claim size state and time of a compound Poisson into
independent compound Poisson processes. If these are not applicable, some numerical
methods might be used such as Panjer recursion, fast Fouriertransform (FFT), and
some approximation methods, for instance, Central Limit Theorem (CLT), and Monte
Carlo method.

One of the ways of finding distribution of total claim amountS(t) is to usecharacter-
istic functionand moment generating function (m.g.f.) ofS(t) which can be helpful
especially compound Poisson and compound geometric cases.Assuming the indepen-
dence ofN(t) andXi, wherei = 1, 2, . . . , N(t), the characteristic function ofS(t)
can be found as

φS(s) = E
[

E
[

eis(X1+X2+···+XN )
∣

∣N
]]

= E
[

E
[

(eisX1)N
]]

= E
[

(φX1(s))
N
]

=MN(log φX1(s)). (3.7)

Moreover, if the total amount process can be written as amixture distributionsuch as

G(x) = p1F1(x) + · · ·+ pnFn, x ∈ R,

wherepi is probabilities andFi is distribution function of real-valued random variables
wheni = 1, . . . , n, then, characteristic function of mixture distribution becomes

φ(s) = p1φ1(s) + · · ·+ pnφn(s). (3.8)
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Likewise, with Eq. 3.8, one might reach a conclusion that sumof independent com-
pound Poisson variables are again compound Poisson.

In addition to these, compound Poisson process can be decomposed into independent
compound Poisson processes by presenting a disjoint partition on the time and claim
size spaces. The detailed explanations and examples are presented in [47].

To find exact distribution ofS(t), one may use anumerical methodso-calledPanjer
recursion. However, to use this recursion formula is based on a condition that the claim
size should be expressed on a lattice form. In fact, it is goodto emphasize that every
continuous claim size distributions can be approximated bya lattice distribution and in
real life models, for example, claim sizes can be explained by a lattice form in terms
of monetary amounts.

Theorem 3.5. (Panjer Recursion Formula [7])

A compound random variableS, satisfying the condition

P {N = n}
P {N = n− 1} = α+

β

n
for n = 1, 2, . . .

has the recursive equation for the distribution of claim size with the initial condition
fs(0) = P {N = 0} as follows:

fS(x) =
1

1− αfx(0)

x
∑

k=1

(

α +
βk

x

)

fx(k)fs(x− k),

Although Panjer recursion method is the most extensively used technique to find dis-
tribution of total claim size,fast Fourier transform (FFT)method attracts many prac-
titioners since it provides an easy and fast alternative with controllable error; and it
neglects aliasing error. See [23, 37, 60].

A comparison of Panjer recursion and FFT, other numerical methods in order to find
exact distribution ofS(t), one might refer to [23, 60].

Finally, as it is not easy to find the exact distribution of total claimS(t), approxima-
tion techniquesbased on the Central Limit Theorem approximation and Monte Carlo
method may be preferred.

Central Limit Theorem approximationfundamentally relys on the asymptotic behavior
of renewal process. As in many statistical applications, asymptotic confidence interval
for larget is found by using the Central Limit Theorem forS(t),

P {S(t) ≤ z} ≈ Φ

(

z − E [S(t)]
√

Var [S(t)]

)

,

whereΦ is the distribution function ofN (0, 1) distribution. Then, for example,95%
confidence interval for average claim size can be found

P

{

S(t) ∈
[

E [S(t)]∓ 1.96
√

Var [S(t)]
]}

≈ 0.95.
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An insurance portfolio with high claim numbers, conditional onN(t) = n(t), Central
Limit Theorem provides good approximations. Given the finite mean and variance of
total claim sizeS(t), the probability becomes [47]

P {S(t) > z|N(t) = n(t)} = P

{

S(t)− n(t)E [X1]
√

n(t)Var [X1]
>
z − n(t)E [X1]
√

n(t)Var [X1]

}

for largez. However, it is suggested that normal approximation shouldbe avoided.
Since the number of claims is random, if extreme event probabilities are of the interest,
instead saddle point approximation can be more favorable tonormal approximation.

One of the easiest way of computing the approximate distribution of S(t) is Monte
Carlo technique. If we know the distribution of claim numberN(t), and claim sizes
Xi, wherei = 1, 2, . . . , N(t), one can generate the i.i.d. samples for total claim size.
Let

X
(1)
1 , . . . , X

(1)
N1
, . . . , X

(m)
1 , . . . , X

(m)
Nm

,

whereX(j)
i is the jth generated variate from the selected distribution ofith claim.

Therefore,

S1 =

N1
∑

i=1

X
(1)
i , . . . , Sm =

Nm
∑

i=1

X
(m)
i

Then the probability ofP {S(t) ∈ A} for some Borel setA by the strong law of large
numbers it follows that

p̂m =
1

m

m
∑

i=1

1A(Si)
a.s.−−→ P {S(t) ∈ A} = p = 1− q as m→ ∞.

Note thatmp̂m ∼ B (m, p). The relative frequencies of̂pm of the eventA is p, which
is calledcrude Monte-Carlo simulation. If one use larger samples or replications in
Monte Carlo method, it is sure that better convergence in estimation is obtained. Also,
using the Central Limit Theorem, asymptotic95% confidence interval is

[p̂m ± 1.96
√

pq/m].

Here, generic algorithm for simulating of a collective model is given in Algorithm 1.
This algorithm lists the steps on generating total claim sizes conditional to random
number of claims in an insurance portfolio.

The main pitfall of the crude Monte Carlo method is slow convergence. That can be
settled up variance reduction techniques due to standard deviation error only decreases
as a square root in terms of the required number of simulations [40]. Therefore, de-
creased variance speeds the computations with desired accuracy and less simulation
runs. One of the variance reduction techniques isimportance samplingwhich finds a
distribution for the underlying random variables assigning a high probability to those
values are important. Detailed explanations or examples can be found in [6, 40].

Another way to approximateS(t) isbootstrap techniquewhich is applicable with small
sample size. Contrary to other approximation techniques, it does not require any in-
formation about distribution ofXi’s, instead it uses information reached from the data.
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Algorithm 1 Monte Carlo Simulation for Collective Models

for m = 1, 2, . . . , k do
SimulateN (m) from a claim size distributions, e.g., Poisson, Geometric,Negative
Binomial etc.
SimulateX(m)

1 , X
(m)
2 , . . . , X

(m)
N from a claim size distribution among the light-

tailed or the heavy tailed distributions.

CalculateS(m) =
N(m)
∑

i=1

X
(m)
i (using Eq. 3.2).

end for

The bootstrap technique develops the idea that replacing the quantity based on un-
known distributionF with the known empirical distributionFn, then it simulates i.i.d.
random variables from pseudo-samples of empirical distribution function ofFn. For
detailed explanations, one can look at [22]. In insurance context, bootstrap approach
ensures to approximate distribution of the aggregated claim sizes. Mikosch [47] urges
that naive bootstrap does not work properly when one uses heavy tailed distributions
and also bootstrap does not help to solve the probability of rare events.

This section has reviewed the constructing collective riskmodel with describing the
key instruments of that model. Moreover, exact distribution of total claim size and
approximations are discussed. In the next section, we will explain the ruin theory
framework which uses collective risk model.

3.2 Ruin Theory

The amount of aggregate claims has vital impact on companiesfinancial stability. A
catastrophic claim size may result in insolvency of the insurance company. For this
reason, it is vital to estimate the robustness of the firm under stressed conditions. Ruin
probability is one of the important indicator to detect suchsituations.

Ruin theory considers stochastic behavior of capital of theinsurance company. Pio-
neering work on ruin theory roots back to study of Lundberg (1903) on collective risk
model. He modeled surplus process of an insurance company with compound Pois-
son process intuitively [46]. However, precise and critical works are carried out by
Cramér [65] in order to implant foundations into mathematical context.

One of the main ingredient of the ruin theory is the surplus process: it explains the
excess of initial capital raised by the constant rate premiums collected over claims.
Aspects of insurance business in ruin theory leans on whether this process falls below
zero or not.

We first launch continuous time surplus process where an insurance company collects
premiums at constant rate, while losses may occur at any timeat any size. The formu-
lation of the ruin probability, its bound and asymptotic results are given. We drag ruin
considerations to discrete time set-up as well, since in some applications yearly grid
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might be preferable.

3.2.1 Continuous Time Surplus Model

If an insurance company collects the premiums continuouslyover losses occurring at
any time, the surplus process can be defined as:

U(t) = u+ p(t)− S(t), t ≥ 0, (3.9)

where, in the framework of Cramér-Lundberg model,

p(t) = ct and S(t) =

N(t)
∑

i=1

Xi, for t ≥ 0.

Here,u = U(0) is the initial capital, the equity of an insurance company att = 0.
Deterministic functionp(t) is the premium income that is gathered from each con-
tingent portfolio per unit of time andc is the premium rate such thatc > 0. S(t)
given in Eq. 3.2 is an aggregate claims up to given unit timet. Claim amounts are
independent of claim arrivals sequence which is described as

T0 = 0, Tn =W1 + · · ·+Wn, n ≥ 1,

whereWi’s are called inter-arrival times and assumed to be i.i.d.. Then, the claim
number process is defined as

Nt = #{n ≥ 1 : Tn ≤ t}, t ≥ 0.

We assume that theXiis an i.i.d. sequence of positive claim sizes with the underlying
distribution functionF . Thereby, it is assumed thatN(t) is a Poisson process with
intensityλ so thatS(t) is a compound Poisson process. Under these assumptions, the
surplus process

U(t) = u+ ct−
N(t)
∑

i=1

Xi, t ≥ 0, (3.10)

is rather well understood.

An illustration of surplus process is performed by assumingan exponentially dis-
tributed claim sizes with mean 2, yielding a compound Poisson process havingλ = 5.
Given the initial amount,u = 150 with premium ratec = 11 and a time frameT = 7
days with daily basis, the surplus process is simulated for 1000 runs and presented
in Figure 3.5. It can be seen that by timeU(t) decreases dramatically. Some of the
runs fall below zero and the others do not keep the financial stability. Histogram in
the Figure 3.5 demonstrates the frequency of the final valuesof the surplus processes.
As seen, small part of tail of the histogram implies the surplus processes which are
below zero.
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Figure 3.5: Paths of simulated surplus processes for compound Poisson claim and the
histogram of final values of these surplus processes.

Therefore, having specified the surplus processU(t), ruin event will occur when sur-
plus process falls below zero, let us a give definitions related to ruin and ruin probabil-
ity,

Definition 3.4. (Ruin, ruin time, infinite and finite ruin probability [47]) Ruin is an
event defined as

Ruin= {U(t) < 0, for somet > 0}.
The first time at which the ruin occurs is called the ruin time,which might implicitly
depend on the initial capital:

τ(u) = inf{t > 0 : U(t) < 0}.

Hence, the probability of ruin for the initial capitalu > 0 turns out to be

ψ(u) = P {Ruin|U(0) = u} = P {τ(u) <∞} (3.11)

for the infinite time horizon. Likewise, for the finite time horizonT , as in the work [5]
by Asmussen and Albrecher, the probability of ruin with the definition of Ruin =
{U(t) < 0 : 0 < t < T}, and given the positive initial capitalu is, therefore,

ψ(u, T ) = P {Ruin|U(0) = u} = P {τ(u) < T} ; (3.12)

it consequently may depend on the time horizonT .

As mentioned in [10], contrary to infinite time ruin probability, for exact ruin probabil-
ities in finite time there is no such a method like Pollaczek-Khinchin formula, on the
literature, it is possible to obtain partial integro-differential equation for probability of
non-ruin and Asmussen [5] suggest that explicit formula of finite time ruin probability

30



solely is known when the claims are Exponentially distributed, even for that numerical
integration should be necessarily done.

Alternatively,

Ruin=
⋃

t≥0

{U(t) < 0} =
{

inf
t≥0

U(t) < 0
}

= {T <∞}

Ruin can occur only at the timest = Tn for somen ≥ 1, sinceU(t) linearly increases
in the interval[Tn, Tn+1).

We can also represent ruin in terms of the inter-arrival timesWn, the claim sizesXn

and the premium ratec,

Ruin=
{

inf
t≥0

U(t) < 0
}

=
{

inf
n≥1

U(Tn) < 0}

=
{

inf
n≥1

[u+ p(Tn)− S(Tn)]
}

=
{

inf
n≥1

[u+ cTn −
n
∑

i=1

Xi]
}

.

Recalling the fact that

N(Tn) = #{i ≥ 1 : Ti ≤ Tn} = n a.s.

SinceWj > 0 a.s. is assumed for allj ≥ 1, then, a random walk,Sn, can be character-
ized:

Zn = Xn − cWn, Sn = Z1 + · · ·+ Zn, n ≥ 1, S0 = 0.

Here, the sequence ofWi andXi are mutually independent. As a result of this set-up,
the following alternative expression forruin probability,ψ(u), with the initial capital
u can be presented

ψ(u) = P

{

inf
n≥1

(−Sn) < −u
}

= P {supSn > u} .

Supposing thatE [W1] andE [X1] exist, certain asymptotic results with strong law of
large numbers,

Sn

n
a.s−→ E [Z1] as n→ ∞.

allows
E [Z1] = E [X1]− cE [W1] .

If E [Z1] > 0 is independent of the initial capital, ruin probability is one. In other
words, ruin is inevitable which is stated also in Proposition 3.6.

Proposition 3.6. (Ruin probability with one [47]) IfE [W1] andE [X1] exist, and the
condition

E [Z1] = E [X1]− cE [W1] ≥ 0,

then, the ruin occur with probability one for everyu > 0.
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Proof of the Proposition 3.6 is available in [66]. Proposition 3.6 expresses that if an
insurance company avoids the ruin, it should choose the premiump(t) = ct conditional
toE [Z1] < 0. Therefore,Net Profit Condition (NPC)has to be stated.

Definition 3.5. (Net Profit Condition (NPC)) The surplus process satisfies the net profit
condition if

c > E [X ]E [N ] . (3.13)

Given the unit of time, NPC clarifies the business act of the insurance company with
guaranteeing ‘No Ruin’ if the expected claim size is smallerthan premium income.
In other words, if the NPC is not satisfied, even for large values of initial capital, ruin
occurs with probability one [13]. However, Mikosch [47] states that the ruin event
is not going to be avoided completely, since the expectationmight diverse due to the
uncertain nature of the stochastic process. Therefore, in the calculation of constant
premium rate,c, besides NPC, one should consider expected-value principle premium
given in Eq. 2.1:

p(t) = (1 + δ)E [S(t)]

= (1 + δ)E [X ]E [N(t)]

= (1 + δ)
E [X1]

E [W1]
t,

whereδ > 0 is the safety loading. Consequently, the premium rate

c = (1 + δ)
E [X1]

E [W1]

is obtained.

3.2.2 Bounds for Ruin Probability

In this section, upper bound for the ruin probability is presented. Assume that the
renewal model with the NPC in Eq. 3.13, and a small claim condition, if m.g.f. of the
claim size distributions exist. By the Markov’s Inequality, we have

P {X1 > x} ≤ e−rxMX1(r) for all x > 0.

As a result, one can infer thatP {X1 > x} decays to zero exponentially. Note that this
inequality contradicts real life claim size examples whichexpose generally heavier
tails, and non-existing m.g.f..

Definition 3.6. (Adjustment or Lundberg coefficient) Let m.g.f. ofZ1 exist in a neigh-
borhood of the origin. The unique positive solution of the equation

MZ1(r) = E
[

er(X1−cW1)
]

= 1

exists, and the solutionr = R̃ then R̃ is calledadjustment coefficient or Lundberg
coefficient.
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Theorem 3.7(Lundberg Inequality). Given the basic assumption is the renewal model
with NPC, and the adjustment coefficientR̃ exists, then

ψ(u) ≤ e−R̃u

holds for allu > 0.

As it is understood from Theorem 3.7, if the initial capital large enough, the probability
of ruin becomes very small. As well as the initial capital, ruin probability depends upon
the magnitude of the adjustment coefficient. Indeed smallerR̃ means getting a more
riskier portfolio.

Exact Asymptotics for the Ruin Probability: the Small and Large Claim Sizes

The bounds for ruin probability are derived for small and large claim sizes. The asymp-
totics alter with respect to the magnitude of the claim size.

a. Small Claim Size Case

Theorem 3.8(Cramér’s ruin bound [47]). For the Craḿer-Lundberg model satis-
fying the NPC in Eq. 3.13, assume that claim size distribution functionFX1 has
a density and m.g.f. ofX1 exists in an interval neighborhood of origin, at which
adjustment coefficient̃R exist. Then, there existsC > 0 such that

lim
u→∞

eR̃uψ(u) = C,

where

C =

[

R̃

δE [X1]

∫ ∞

0

xeR̃xFX1(x)dx

]−1

.

Here,δ denotes the safety loading, and tail of distribution function is

FX1 = 1− FX1 .

Renaming probability of no-ruin as ‘non-ruin’ probability, ϕ(u), is denoted by

ϕ(u) = 1− ψ(u),

as the expression in case of small claims which is presented in Lemma 3.9.

Lemma 3.9(Fundamental integration for non-ruin probability [47]). For the Craḿer-
Lundberg model satisfying the NPC in Eq. 3.13 andE [X1] exists, assume that claim
size distribution functionFX1 has a density. Then, the non-ruin probability is writ-
ten as:

ϕ(u) = ϕ(0) +
1

(1 + δ)E [X1]

∫ u

0

FX1(y)ϕ(u− y)dy. (3.14)
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Remark3.1. ϕ(0) can be evaluated asϕ(0) =
δ

1− δ
whenϕ(u) → 1 asu→ ∞.

The proof is available in [47].

Analogously, we assume Cramér-Lundberg model with NPC condition. The Cramér
bound for ruin probability for small claim size is defined by virtue of Theorem 3.8:

ϕ(u) = Ce−R̃u(1 + o(1)) where u→ ∞.

Following theorem states the ruin probability for the largeclaim sizes.

b. Large Claim Size Case

Theorem 3.10(Ruin probability when the integrated claim size distribution is subex-
ponential claims [47]). Suppose that the Craḿer-Lundberg model with NPC and
E [X1] exist, also the claim sizesXi have a density with integrated claim size dis-
tributionFXi,1 is subexponential. Then the asymptotic relationship of ruin is prob-
ability

lim
u→∞

ψ(u)

FXi,1

= δ−1.

This theorem emphasizes that fundamentally the probability ψ(u) is of the same
order asFXi,1 which should not be neglected even if the initial capitalu is large
enough.

3.2.3 Discrete Time Surplus Model

Up to now, different ruin probabilities and their properties are found in the continu-
ous time setting. As stated in [65], insurance companies andregulators cannot follow
the surplus process continuously, since balance sheet estimates for an insurance com-
pany can be on regular basis e.g. quarterly, monthly, weekly, etc. If the companies
use the discrete time surplus process, they have the opportunity of a slightly delay in
claim payments. Moreover, computation of discrete time surplus process resulting ap-
proximation can be handled easier [5]. However, a drawback of this approach is that,
generally, influence of model parameters on the final resultscannot be traced and re-
spectively, the qualitative behavior of ruin probabilities cannot be well recognized [5].

Again the same representation of initial capitalu, and imposing the NPC withE [X1] > 1,
the surplus processUd(u) for the discrete time setting is given by [5]

Ud(u) = u+ n−
n
∑

i=1

Xn, n ∈ N, (3.15)

where claim size in a time uniti isXi.

The ruin time for the discrete surplus model in Eq. 3.15 is

τd(u) = min{n ≥ 1 : Ud(u) ≤ 0},
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and the ruin probability is defined as [5]

ψd(u) = P {τd(u) <∞} = P

{

min
n≥1

Ud(n) ≤ 0

}

.

Moreover, on the discrete time set-up, adjustment coefficient r = R̃d is positive unique
root of the equation

E
[

er(X1−1)
]

= 1,

if it exists.

Proposition 3.11.Suppose that the adjustment coefficient exists, then probability ruin
in discrete time is given by

ψd(u) =
e−R̃du

E

[

exp{−R̃dUd(u)}|τd(u) <∞
] .

Notably, the Lundberg inequality for the discrete ruin probability isψd(u) ≤ e−R̃du.

Proof of Proposition 3.11 can be found in [5].
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CHAPTER 4

IMPLEMENTATION

Development of financial engineering in insurance applications based on securitization
of insurance products growing use of risk measures in regularity capital, and solvency
requirement conduce increasing trend in popularity of riskmeasures [20]. Indeed, risk
measures are highly crucial for capital allocation and evaluation of the performance of
a company.

Ruin theory prospects the probability that a company bears for a specific time horizon
with initial capital and collected premiums. Main ingredient of the underlying theory
is based on the surplus process which resembles a business stream of the cash inflows
and outflows of the company.

This chapter aims to find required capital for an insurance company in order to main-
tain its business activities and be aware of the early warning signal due to breakdowns.
Works on risk measures derived from ruin theory framework such as [12, 16, 27, 48,
61], suggest the theoretical applicability of that the concept, although closed-form so-
lution of ruin probability except for a few specific distributions like exponential, mix-
ture exponential etc. cannot be derived. Therefore, results in these works are difficult
to put into real life applications for practitioners in insurance sector. In the following
section, we mention procedures that we use with all aspects.

An amount of initial capital which is a buffer against the insurance risk when premium
income cannot compensate the future claim payments. We consider the risk measures
stated accordingly for the surplus process in the frameworkof ruin theory.

We consider the surplus process as in Eq. 3.10,

U(t) = u+ ct−
N(t)
∑

i=1

Xi, t ≥ 0, (4.1)

in which premiums are collected at the fixed ratec and realization of aggregate claims
S(t) are drawn from a given distribution. In principle, such a simple surplus process
gives rise to skepticism on the modeling and applicability in real life problems. Rolski
et al. [55], for instance, express that even though premium is not random for a given
time, their calculation should include stochastic elements within the portfolio, based
on the economic environment. Simple justification of this view might be attributed to
either increase or decrease in the number of customers, events trigger unexpected large
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claims, or even, investment of the surplus on (domestic or foreign) financial (risky or
volatile) markets.

In construction of the mathematical model for the surplus process, the effects of inter-
est, or possibly inflation, should also be taken into account. Consequently, extension of
the Cramér-Lundberg model by adding a perturbation of a Brownian motion to Eq. 4.1
is inevitable. Such an additional term may help model the (underlying) stochastic
nature of the process; it may also explain other criticism ofthe classical model in
literature.

Hence, we consider the extended surplus process at timet as

UB(t) = u+ ct + σBB(t)−
N(t)
∑

i=1

Xi, t ≥ 0, (4.2)

whereB(t) is a standard Brownian motion and independent ofS(t). Inclusion of
the Brownian motion may also be regarded as a perturbation ofthe classical (unper-
turbed) Cramér-Lundberg model [55]. Indeed, such a model was first introduced by
Gerber (1970) to capture additional uncertainties of the aggregate claims as well as
the stochastic fluctuations in the premium income [21]. Since then, perturbed surplus
models has been used by other researchers whose main concerns have been either the
investment of the surplus [21] or the asymptotic behavior ofthe ruin or, simply, ap-
proximation of the Cramér-Lundberg model [59, 63].

As a matter of fact, the probability of ruin is one of the main desired quantities of
interest in such processes. Here, within the framework of the proposed surplus process,
a ruin event may occur either by random oscillation of the process itself or, purely, by
the jumps realized due to the aggregate claims.

We depict in Figure 4.1a simulated7 days realizations of different surplus processes
U(t) given in Eq. 4.1 for Exponential claim sizes with mean 2 and a Poisson process
with λ = 5 with a predefined initial capital75. Alternatively, in Figure 4.1b perturbed
model of Eq. 4.2 is depicted with diffusion coefficientσB = 10 using Eq. 4.2. It is
clear that Figure 4.1b reveals marked oscillations in simulation paths which proves the
occurrence of ruin incurred by both jumps due to aggregate claims and oscillation of
the process.

Since the cardinal goal is to seek capital requirement in a monetary unit, configuration
of the surplus model and its extension should be made. Thereby, given the surplus
process as in Eq. 4.1, risk component,S(t)− p(t) is redefined as

C(t) =

N(t)
∑

i=1

Xi − ct t ≥ 0, (4.3)

where the fixed premium ratec > 0. Recall that aggregate claimS(t) is a compound
Poisson process fulfilling the assumptions thatN(t) is homogeneous Poisson process
with intensityλ > 0, theXi are i.i.d. with meanE [Xi] = µ >∞ andN(t) andXi are
mutually independent.
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Figure 4.1: Different simulation paths of two models.

Respectively, we use extended surplus process in Eq. 4.2 which captures uncertainties
in premium, and aggregate claim. The risk component for the extended model under
the same assumptions is as follows:

CB(t) =

N(t)
∑

i=1

Xi − ct− σBB(t), t ≥ 0. (4.4)

Considering the aggregate claim under different distribution assumptions, we simulate
pathsC(t) orCB(t) using Algorithm 2.

Algorithm 2 Simulating Risk Components

for m = 1, 2, . . . , k do
SimulateN (m)(t) from Poisson distibution with the intensityλt wheret ∈ [0, T ]

SimulateX(m)
1 , X

(m)
2 , . . . , X

(m)
N from any given claim size distribution

CalculateS(m) =
N(m)
∑

i=1

X
(m)
i ,

CalculateC(m)

(orC(m)
B = C(m) − σB

√
tZ(m)

whereZ(m) is a standart normally distributed random variable formth run)
end for

Having defined the risk component for both classical surplusand extended model, for
a defined time interval we determine the value which address the required capital by
using capital-based risk measures: VaR and CVaR. So, atα confidence level, given the
distributionF , VaR and CVaR for any risk componentC are defined, respectively,

VaRα(C) = F−1
C (α),

and
CVaRα(C) = E [ C | C ≥ VaRα(C)] .
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For the estimation of VaR and CVaR of risk components, there are couple of methods
proposed in literature. Basically, VaR can be obtained by parametric, non-parametric
or Monte Carlo simulation methods. Among these Monte Carlo simulation technique
is more powerful and flexible than others, since randomly generated loss distribution
takes into account nearly all degree of complexity [20]. It carries on large number of
trials which promises a good approximation to unknown distribution we want to know.
Moreover, this method is considered as an appropriate way tocope with complicating
factors such as valuation problems, badly behaved distribution, nonlinearity, parameter
and model risk, long horizons, etc. Indeed, based on the given distribution for the claim
sizes, having an idea about the distribution of the risk componentsC(t) andCB(t) may
be quite difficult to obtain analytically. Thus, simulation, as in the Algorithm 3 might
be necessary.

Algorithm 3 Simulating VaR and CVaR Estimates of Risk Components

for m = 1, 2, . . . , k do
SimulateN (m)(t) from Poisson distibution with the intensityλt wheret ∈ [0, T ].

SimulateX(m)
1 , X

(m)
2 , . . . , X

(m)
N from any suitable claim size distributions.

CalculateS(m) =
N(m)
∑

i=1

X
(m)
i ,

CalculateC(m), (orC(m)
B = C(m) − σB

√
tZ(m),

whereZ(m) is a standart normally distributed random variable formth run.)
end for
Calculate VaR(C), CVaR(C) (or VaR(CB), CVaR(CB))

Having constructed the risk components, for simulations, one more step remains: the
choice of distribution and parameter. As mentioned in Subsection 3.1.3 claim size dis-
tribution, in modeling non-life insurance commonly analyzed via light-tailed distribu-
tions. Hence we use Exponential and Gamma. To represent heavy-tailed distributions
we take Weibull, Lognormal and Pareto, which are used generally in catastrophic rare
events. For comparison, all claim size distributions satisfy the same mean, say an arbi-
trary chosen value3 That is Exponential distribution with mean3, Gamma distribution
with shape3 and scale1, Weibull distribution with shape0.5, scale1.5, Lognormal
distribution with log mean1, and log standard deviation0.4441. Instead of Pareto dis-
tribution, for easiness we use MATLAB random generator. For Generalized Pareto with
shape0.5, scale0.5, threshold2 is used which is equivalent to Pareto distribution with
shape1, scale2.

We recall that one of the stated model assumptions is that claim numbers are generated
by a Poisson distribution with a given intensity. For simplicity, we choose arbitrarily a
Poisson process with intensityλ = 10. Also, a vital requisite is that the premium rate
should be greater than 30 due to NPC in Eq. 3.13 so that we select the premium rate to
bec = 31.

With all parameters and distributions, simulations for risk components are attained
for k = 10000 times, and estimations of VaR and CVaR at95% confidence level for
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different time horizons (1-year, 2-year, 5-year, 10-year)in daily basis are obtained.
One should note that this time basis infers to checking the risk components for both
model in that range: if the company want to check their risk components weekly for a
year, it would be appropriate to choose take one year as 52 times 7 days, thereby time
basis is taken as 7.

Furthermore, we simulate ruin probabilities for each risk components under these dis-
tributions and parameters in specified time horizons by using Monte Carlo techniques.
Indeed, we take VaR and CVaR estimations that are obtained via simulations and we
use them as initial capital, then in selected time horizons with defined basis, we esti-
mate the ruin probabilities for the given claim size distributions.

For the comparison of light-tailed and heavy tailed distributions for the claim size, we
make use of the Exponential and Pareto distributions, for the other simulation results
when claim size distribution is Gamma, Weibull and Lognormal whose results are
given in Appendix A and Appendix B.

Figure 4.2 and Figure 4.3 summarize the risk component behavior when claim sizes are
distributed as Exponential with mean 3, with and without perturbation of a Brownian
motion, respectively, withσB = 0 andσB = 1. The paths generated on the 1-year,
2-year, 5-year, 10-year in daily basis time horizons. As canbe easily be inferred from
the histograms CVaR considers tail better than VaR. When time horizon increases,
gradually fit better to a normal distribution.

To go deep inside the figures, we tabulate the results in Table4.1 and Table 4.2. VaR
and CVaR estimates and their corresponding ruin probabilities are presented. First, as
expected, when the time horizon increased from 1-year to 10-year increase in VaR and
CVaR estimates are obvious. Accordingly, these tables whenwe allocate the initial
capital by using CVaR estimates instead of using VaR estimates, we can clearly catch
up the difference in ruin probabilities. It is apparent to deduce that even in slight
increase between VaR and CVaR values, ruin probabilities decline nearly half in all
cases. These decreasing ruin probabilities suggest that a risk averse insurance company
should fancy CVaR in allocation of required capital; this considerably minimizes its
insurance risk.

In order to detect the effects of this perturbed model, the values in Table 4.2 are com-
pared to those in Table 4.1. Along with the specified time horizon, there is a small
difference among the estimates of both VaR and CVaR. Consequently, unsteady in-
crease or decrease in ruin probabilities of these estimatesappear. However, this should
not be considered bad, for the fact that perturbed models is used to reflect uncertainties
in premiums, aggregate claims and market conditions.

Panjer [51] stated that lower percentage may reflect the inter-unit diversification that
exists. In this study, all simulations are investigated in95% confidence level; however,
it is known that solvency regulation uses a confidence level of 99.5% for entire enter-
prise. For that reason, we simulate surplus processes in order to find capital require-
ment for99.5% confidence level, and find their ruin probabilities associated to those
capitals. When we compare Table 4.3 and Table 4.4 with Table 4.1 and Table 4.2,
as it is expected, all VaR and CVaR estimates rise, consequently, corresponding ruin
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Figure 4.2: Simulated risk components with claim distribution Exponential(3), and
σB = 0.

Table 4.1: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Exponential(3) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 15774.5542 15893.5989 0.0430 0.0170

dt = 1; T = 2×365 31281.7036 31435.7473 0.0537 0.0212
dt = 1; T = 5×365 77530.3213 77798.0859 0.0517 0.0192
dt = 1; T = 10×365 154475.6833 154850.5623 0.0131 0.0049

Table 4.2: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Exponential(3) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 15776.5397 15895.2196 0.0422 0.0173

dt = 1; T = 2×365 31278.6609 31437.8074 0.0563 0.0218
dt = 1; T = 5×365 77536.6294 77804.3774 0.0503 0.0192
dt = 1; T = 10×365 154487.2658 154857.3203 0.0124 0.0047
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Figure 4.3: Simulated risk components with claim distribution Exponential(3), and
σB = 1.
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Table 4.3: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Exponential(3) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 16040.6107 16124.9383 0.0048 0.0020

dt = 1; T = 2×365 31625.3920 31768.0860 0.0053 0.0018
dt = 1; T = 5×365 78133.2822 78335.3219 0.0059 0.0028
dt = 1; T = 10×365 155288.3805 155581.6487 0.0013 0.0003

Table 4.4: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Exponential(3) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 16044.9878 16129.8398 0.0044 0.0021

dt = 1; T = 2×365 31635.5772 31769.2284 0.0056 0.0017
dt = 1; T = 5×365 78131.5395 78341.2831 0.0058 0.0027
dt = 1; T = 10×365 155302.7512 155578.5398 0.0010 0.0004

probabilities when those values used as initial capitals are markedly decrease.

As Figure 4.4 presents changes in ruin probabilities, when time increases from 1-year
to 10-year using daily basis. It is striking that in 10-year analysis, with the help of
fitted line through the points, ruin probabilities for both VaR and CVaR drop. This is
clearly explained with rising VaR and CVaR estimates given in Table 4.1.

On the other hand, we consider the influence of time basis on the ruin probabilities,
since an insurance company checks its surplus process in different time basis referring
to a specific time discretization. Here, we simulate models when surplus of an insur-
ance company is controlled daily, monthly, quarterly and semi-annually within 1-year.
In Figure 4.5 depicts the effect of such time discretizationon the ruin probabilities;
clearly, as time discretization increases, ruin probabilities increase.

Furthermore, in order to see the effects of the diffusion coefficient in the model with
perturbation of Brownian motion in ruin probabilities, we check over ruin probabilities
of VaR and CVaR by increasing the diffusion coefficientσB, 0 ≤ σB ≤ 100. We infer
from Figure 4.6 that adding diffusion coefficient does not provide a stable ruin prob-
ability according to situations which cause uncertaintiesin premiums and aggregate
claims.

Similarly, Figure 4.7 and Figure 4.8 show demonstration of aheavy-tailed claim size
distributed risk component behavior for both unperturbed and perturbed models. As
stated all claim size mean is3; that is, Pareto(1, 2) is generated. At a first glance, Fig-
ure 4.7 and Figure 4.8 seems to be different from Figure 4.2 and Figure 4.3. That is,
due to the fact that Pareto distribution is a model for low frequency and high severity
situations, namely, for extreme events. In such situationsit is natural to expect higher
estimates of VaR and CVaR.

Table 4.5 and Table 4.6 are constructed with the estimates ofVaR and CVaR when
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Figure 4.5: Change in ruin probabilities of Exponentially distributed claim whendt =
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45



0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Diffision coefficient

P
ro

b.

 

 
P(VaR)
P(CVaR)

Figure 4.6: Change in ruin probabilities of Exponentially distributed claim size when
σB increases.
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Figure 4.7: Simulated risk components with claim distribution Pareto(1, 2),σB = 0.
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Figure 4.8: Simulated risk components with claim distribution Pareto(1, 2),σB = 1.
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Table 4.5: VaR0.95 and CVaR0.95 estimates and the ruin probabilities when claim size
process follows Pareto(1, 2) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 15832.8755 16243.2002 0.0514 0.0127

dt = 1; T = 2×365 31391.3823 31973.7217 0.0477 0.0113
dt = 1; T = 5×365 77744.3984 78683.1634 0.0553 0.0129
dt = 1; T = 10×365 154868.4314 156097.6582 0.0279 0.0082

Table 4.6: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Pareto(1, 2) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 15830.0355 16244.3285 0.0517 0.0129

dt = 1; T = 2×365 31389.4173 31973.8131 0.0481 0.0112
dt = 1; T = 5×365 77762.0244 78685.2456 0.0541 0.0129
dt = 1; T = 10×365 154870.2301 156103.4810 0.0284 0.0080

claim size are distributed as Pareto(1, 2): not surprisingly, increasing estimate results
are faced again. Furthermore, when diffusion coefficientσB is choosen to be 1, rise
and decline of the estimates of VaR and CVaR induces unsteadyincrease and decrease
in ruin probabilities, as seen in Table 4.6.

Finally, in order to indicate differences between choosing95% and99.5% for a heavy-
tailed distribution such as Pareto, VaR and CVaR estimates and their corresponding
ruin probabilities are displayed in Table 4.7 and Table 4.8.Interestingly, in these tables
significant increase of VaR and CVaR estimates are observed.That can be reasoned
by these estimates of heavy-tailed distributions at99.5% confidence level move further
beyond the tail. Inversely, depending on these increased estimates, corresponding ruin
probabilities decrease.

For the other distributions that considered in this study the same analyses are done and
summarized in Appendix B for99.5% degree of certainty.

Table 4.7: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Pareto(1, 2) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 16689.4173 17935.5261 0.0057 0.0014

dt = 1; T = 2×365 32727.8489 34227.7038 0.0037 0.0016
dt = 1; T = 5×365 79782.1542 82267.8557 0.0045 0.0014
dt = 1; T = 10×365 158066.2547 160527.9438 0.0028 0.0016
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Table 4.8: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Pareto(1, 2) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)
dt = 1; T = 365 16690.9627 17934.7743 0.0056 0.0014

dt = 1; T = 2×365 32725.0879 34223.5661 0.0037 0.0016
dt = 1; T = 5×365 79774.8693 82268.4054 0.0046 0.0014
dt = 1; T = 10×365 158061.7920 160528.5048 0.0028 0.0016
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CHAPTER 5

CONCLUSION

In this study, we bring into focus of determining initial capital that any insurance com-
pany should allocate to recompense all possible contingentclaims. Indeed, required
capital ensures the insurance company from insolvency. We base upon ruin theory
framework and risk measures in calculation of the required capital. First, we take ba-
sic surplus model, and and then, we extend it by model with adding a perturbation
of Brownian motion to explain uncertainties in aggregate claims better. This help us
understand the uncertainties in premiums that might be due to economic conditions,
for instance, insurance market volatility and underwriting factors such as factors that
cause large claims, and increase or decrease in policyholder. Then, we constitute risk
components via removing initial capital, and taking a negative position in the surplus
processes. After simulating these risk components under different claim size distribu-
tions, namely, Exponential, Gamma, Weibull, Lognormal, Pareto, we track down VaR
and CVaR estimates for various time units. Accordingly, taking VaR and CVaR as the
proposed initial capital, we calculate the associated ruinprobabilities.

Findings of this study suggest that in all models, not surprisingly if the claim size
follows heavy-tailed distributions like Weibull and Pareto, VaR and CVaR estimates
are high, when compared to those distributions with light tails. Their ruin probabilities
by writing VaR and CVaR estimates as an initial capital at different timesT = 1,
T = 2, T = 5, andT = 10 with daily basis are generally higher than light-tailed
distributions.

Furthermore, in this study, we observe that ruin probabilities obtained by using CVaR
estimate are always halfed in all simulations. That yields us to comment that depending
on risk appetite of the company, it should decide which risk measure they choose:
VaR or CVaR. For instance, risk averse companies should choose CVaR in their risk
management regulations since it indicates conservative asproven in this study.

Another result we can infer from these simulations is that adding perturbation of Brow-
nian motion generally demonstrates their effect by increasing and decreasing the VaR
and CVaR estimates. However, unstable behavior in ruin probabilities of the estimates
VaR and CVaR does not make a precise inference between perturbed and unperturbed
models, however perturbed model might be thought of a more realistic model since it
fulfills the stochastic nature of the process. Nevertheless, a decrease in the estimates of
VaR or CVaR supports the idea that if the insurance companiesmodeling their surplus
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process with Brownian motion, need less initial capital to run the business, and vice
versa.

Another crucial aspects of this study shows that time discretization is important in
calculation of the ruin probability. In order to avoid ruin,it is better to use small time
basis to investigate the surplus.

In addition to simulations built on at95% confidence level, relevant with degree of
certainty for risk measures on Solvency II regulation, samesimulations is repeated
for 99.5% confidence level. Comparison of those reveals that, not strikingly, VaR
and CVaR estimates are always higher while ruin probabilities associated with those
estimates are lower. As expected, VaR and CVaR estimates of simulations made for
heavy-tailed claim sizes are even more higher since the difference on the tails of such
distributions at95% to 99.5% goes beyond more. Yet,99.5% confidence level might
be generally skeptical for CVaR estimates which is already conservative risk measure.

To sum up, for a better risk management of an insurance company, regulators or actu-
aries can use proposed approach in order to pursue company cash flow with classical
and extended surplus models, and by employing VaR and CVaR associated to those
surplus processes, the required capital should be attainedwithout neglecting their ruin
probabilities.

Further in this topic, the optimization of the proposed riskmeasures for precise cap-
ital allocation can be carried out. With this motivation, further study of constrained
optimization problems involving the surplus process, VaR and CVaR would be worth-
while since quantifying economic capital, and allocating it from an insurance portfolio
optimally has a pivotal role in Asset/Liability Management(ALM). Leading study in
optimizing portfolio under VaR and CVaR constrained based on Rockafeller and Urya-
sev [54], and the collected studies are summarized in [58]. As implied also in these
studies, CVaR gains more importance since constrained optimization with that risk
measure presents promising results. To such studies, more that one additional con-
straint, the ruin probability,would certainly be helpful since our proposed approach
focuses on ruin theory.

Undoubtedly, the reinsurance is mutual agreement with insurance companies and oth-
ers specialized reinsurance products such as Swiss, MunichRe, Lloyd’s, in order to
reduce the risk in a portfolio. For that reason, observing optimal capital allocation un-
der ruin consideration both provides healthier reinsurance agreements and ensures the
success in fair investments of the company.
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APPENDIX A

Further Simulation Figures
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Figure A.1: Simulated risk components with claim distribution Gamma(3, 1),σB = 0.
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Figure A.2: Simulated risk components with claim distribution Weibull(1.5, 0.5),σB =
0.
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Figure A.3: Simulated risk components with claim distribution Lognormal(1, 0.441),
σB = 0.
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Figure A.4: Simulated risk components with claim distribution Gamma(3, 1),σB = 1.
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Figure A.5: Simulated risk components with claim distribution Weibull(1.5, 0.5),σB =
1.
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Figure A.6: Simulated risk components with claim distribution Lognormal(1, 0.4441),
σB = 1.
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APPENDIX B

Further Simulation Tables

In this part of this thesis, we present the comparison of light-tailed distributions with
Exponential, and further heavy-tailed distribution with Pareto distribution.

B.1 Tables when claim sizes are distributed as Gamma(3, 1)

Gamma distribution with shape parameter 3 and scale paramater 1 is a distribution
which has lighter tail than Exponential distribution. (seeFigure 3.3a). Therefore,
when Table B.1, Table B.2, Table B.3, and Table B.3 are compared to with those results
from the use of Exponential distribution, it is clear that the use of Gamma(3, 1) yields
lower VaR and CVaR estimates. However, the ruin probabilities with initial capital
slightly changes.

Table B.1: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Gamma(3, 1) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15473.3609 15546.4560 0.0421 0.0155
dt = 1; T = 2×365 30776.2071 30872.4523 0.2689 0.1455
dt = 1; T = 5×365 76875.3575 77026.5844 0.0501 0.0194
dt = 1; T = 10×365 153409.5737 153616.6194 0.2037 0.1102
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Table B.2: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Gamma(3, 1) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15475.4770 15549.5473 0.0409 0.0162
dt = 1; T = 2×365 30780.7116 30877.1559 0.2628 0.1438
dt = 1; T = 5×365 76878.1751 77029.1300 0.0504 0.0212
dt = 1; T = 10×365 153420.3815 153623.4969 0.1980 0.1101

Table B.3: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Gamma(3, 1) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15638.0865 15692.9458 0.0049 0.0017
dt = 1; T = 2×365 30990.5156 31062.8770 0.0582 0.0301
dt = 1; T = 5×365 77223.7490 77341.9016 0.0044 0.0016
dt = 1; T = 10×365 153854.6805 154007.4651 0.0465 0.0242

Table B.4: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Gamma(3, 1) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15641.1363 15698.2739 0.0048 0.0014
dt = 1; T = 2×365 30986.9138 31070.1879 0.0622 0.0298
dt = 1; T = 5×365 77235.5288 77338.8302 0.0039 0.0018
dt = 1; T = 10×365 153863.8518 154014.6297 0.0449 0.0247
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Table B.5: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Weibull(1.5, 0.5) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 16352.1492 16624.4890 0.0483 0.0185
dt = 1; T = 2×365 32091.3380 32468.4802 0.0495 0.0196
dt = 1; T = 5×365 78834.5941 79465.3718 0.0479 0.0175
dt = 1; T = 10×365 156248.9798 157101.3741 0.0324 0.0120

Table B.6: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Weibull(1.5, 0.5) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 16355.8537 16625.1636 0.0473 0.0188
dt = 1; T = 2×365 32090.8261 32469.8726 0.0497 0.0200
dt = 1; T = 5×365 78841.7191 79469.4481 0.0477 0.0170
dt = 1; T = 10×365 156267.0462 157105.4636 0.0311 0.0121

B.2 Tables when claim sizes are distributed as Weibull(1.5,0.5)

Weibull distribution with shape0.5, scale1.5 has a heavy tail. Table B.5, Table B.6
Table B.7, and Table B.8 with the results when claim size is distributed as Pareto(1, 2),
it proves that VaR and CVaR estimates are obtained by using Weibull(1.5, 0.5). More-
over, if the results for heavy-tailed distributions are reviewed, surprisingly VaR and
CVaR estimates when claim size is considered as Weibull are always higher. That may
be reasoned by parameter choice of Weibull. Although the VaRand CVaR estimates
higher when claim size distributed as Weibull, corresponding ruin probabilities is gen-
erally higher than the other heavy-tailed distributions. For instance, when Table B.7
and Table B.8 compared to Table B.9 and Table B.10, ruin probabilities for 99.5%
confidence level cannot reach to the ruin probabilities on95% level of confidence.

Table B.7: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Weibull(1.5, 0.5) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 16955.7903 17148.8771 0.0054 0.0021
dt = 1; T = 2×365 32918.3447 33250.2423 0.0059 0.0022
dt = 1; T = 5×365 80254.1607 80744.4581 0.0041 0.0018
dt = 1; T = 10×365 158140.0671 158835.0510 0.0026 0.0012
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Table B.8: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Weibull(1.5, 0.5) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 16965.1108 17146.8439 0.0056 0.0021
dt = 1; T = 2×365 32915.1052 33250.0659 0.0058 0.0021
dt = 1; T = 5×365 80264.1818 80745.1410 0.0042 0.0018
dt = 1; T = 10×365 158176.3777 158831.0642 0.0026 0.0012
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Table B.9: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15630.2244 15684.8001 0.0378 0.0154
dt = 1; T = 2×365 31107.4199 31189.2957 0.0003 0.0000
dt = 1; T = 5×365 77063.7144 77184.1861 0.0008 0.0001
dt = 1; T = 10×365 153388.6887 153573.0642 0.0037 0.0011

Table B.10: VaR0.95 and CVaR0.95 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15630.6779 15688.1694 0.0381 0.0145
dt = 1; T = 2×365 31114.2279 31194.7622 0.0003 0.0000
dt = 1; T = 5×365 77065.4204 77192.9527 0.0010 0.0002
dt = 1; T = 10×365 153398.9478 153584.4237 0.0030 0.0007

B.3 Tables when claim sizes are distributed as Lognormal(1,0.4441)

Lognormal distribution with log mean of1, and log standard deviation of0.4441 is one
of the examples of heavy-tailed distributions. Here, the results are compared to Pareto
distributed claim size estimates and their ruin probabilities. In Table B.9, Table B.10,
Table B.11 and Table B.12, VaR and CVaR estimates are generally are found to be low.
Despite the lower estimates in VaR and CVaR, ruin probabilities are mostly lower than
the results constructed for Pareto claim size. This situation can be due to the fact that
Pareto distribution is predominantly used the modeling extreme events for that reason
the estimates of VaR and CVaR may not be enough to reduce the ruin probabilities like
those obtained using Lognormal distribution situation.

Table B.11: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) andσB = 0.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 15755.0479 15791.8451 0.0040 0.0016
dt = 1; T = 2×365 31285.2752 31342.2580 0.0000 0.0000
dt = 1; T = 5×365 77353.2821 77432.2375 0.0000 0.0000
dt = 1; T = 10×365 153796.1481 153942.3861 0.0002 0.0000
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Table B.12: VaR0.995 and CVaR0.995 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) andσB = 1.

Time VaR CVaR ψ(VaR) ψ(CVaR)

dt = 1; T = 365 16965.1108 17146.8439 0.0056 0.0021
dt = 1; T = 2×365 32915.1052 33250.0659 0.0058 0.0021
dt = 1; T = 5×365 80264.1818 80745.1410 0.0042 0.0018
dt = 1; T = 10×365 158176.3777 158831.0642 0.0026 0.0012
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