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ABSTRACT

APPLICATIONS OF THE HESTON MODEL ON BIST30 WARRANTS :
HEDGING AND PRICING

MERT, ÖZENÇ MURAT

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

August 2016, 46 pages

The Heston model is one of the first and known stochastic volatility models. The aim
of this work is to study the performance of the Heston Model on pricing and hedging
the warrants written on BIST30 and the compatibility between the observation of the
Heston Model in the literature and BIST30 data.

Keywords : The Heston model, BIST30, warrants, pricing, hedging, fitting, compari-
son, Black-Scholes
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ÖZ

HESTON MODELİNİN BIST30 VARANTLARI ÜZERİDEKİ UYGULAMALARI:
ÜRETME VE FİYATLAMA

MERT, ÖZENÇ MURAT

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Ağustos 2016, 46 sayfa

Heston modeli ilk ve en bilinen stokastik volatilite modellerinden biridir. Bu çalışmanın
amacı Heston modelinin BIST30 üzerine yazılmış varantlar üzerindeki fiyat ve üretme
(pricing and replication) performansını ve Heston modeli ile ilgili literatürde yapılmış
gözlemlerin BIST30 verisiyle uyumunu incelemektir.

Anahtar Kelimeler : Heston modeli, BIST30, varant, fiyatlama, üretme, yerleştirme,
karşılaştırma, Black-Scholes
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The risk neutral measure . . . . . . . . . . . . . . . . . . . . 4

2.3 The derivation of the Heston PDE . . . . . . . . . . . . . . 5

2.3.1 The Heston PDE for a European call . . . . . . . . 10

2.3.2 The Heston Characteristic Functions . . . . . . . . 14

2.3.2.1 Obtaining the Coefficients Cj and Dj 16

2.4 Obtaining in-the-money Probabilities . . . . . . . . . . . . . 20

2.5 Pricing Options . . . . . . . . . . . . . . . . . . . . . . . . 20

xv



2.5.1 Pricing a European Call Option . . . . . . . . . . 20

2.5.2 Pricing a European Put Option . . . . . . . . . . . 21

2.5.3 Pricing an Option with the Stock Paying Dividend . 21

3 Fitting the Heston Model to BIST30 Warrants . . . . . . . . . . . . . 23

3.1 The Heston Parameters . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Obtaining the Heston Parameters with the Loss Func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Effects of the Heston Parameters on the Heston Implied Volatil-
ities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Fitting the Heston Model to BIST30 Warrants . . . . . . . . 25

3.3.1 Results of the Fit . . . . . . . . . . . . . . . . . . 25

4 Hedging a BIST30 Call Warrant with the Heston Model . . . . . . . . 31

4.1 Hedging an Option Using the Heston Model . . . . . . . . . 31

4.1.1 Hedging an Option . . . . . . . . . . . . . . . . 31

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Hedging BIST30 warrants already traded in the mar-
ket . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1.1 Hedging a warrant having a shorter time
to maturity . . . . . . . . . . . . . . . 34

Hedging in the time period 15.01 to 03.02 35

4.2.1.2 Hedging a warrant having a longer time
to maturity . . . . . . . . . . . . . . . 36

4.2.2 Hedging a warrant not traded in the market . . . . 40

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xvi



LIST OF FIGURES

Figure 3.1 The change in the Heston parameters in the periods (01.03.2016-
31.03.2016) and (15.01.2016-03.02.2016) . . . . . . . . . . . . . . . . . 27

Figure 3.2 The comparison between the market and the model implied volatil-
ities at 28.03.2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.3 The comparison between the market and the model implied volatil-
ities at 20.01.2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.1 BIST30 index change in MARCH 2016 . . . . . . . . . . . . . . . 34

Figure 4.2 The Hedge Errors of the Heston and The Black-Scholes Model in
(01.03.2016-31.03.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.3 BIST30 index change in (15.01.2016-03.02.2016) . . . . . . . . . 36

Figure 4.4 The Hedge Errors of the Heston and The Black-Scholes Model in
(15.01.2016-03.02.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.5 The Hedge Errors of the Heston and The Black-Scholes Model in
(01.03.2016-31.03.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.6 The Hedge Errors of the Heston and The Black-Scholes Model in
(15.01.2016-03.02.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.7 The Hedge Errors of the Heston Model on the untraded warrant in
(01.03.2016-31.03.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xvii



xviii



LIST OF TABLES

Table 3.1 1March2016-HestonParameters . . . . . . . . . . . . . . . . . . . . 25

Table 3.2 Comparison between Market Prices and Model Prices of Call War-
rants in 1March2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.3 28March2016-HestonParameters . . . . . . . . . . . . . . . . . . . 26

Table 3.4 Comparison between Market Prices and Model Prices of Call War-
rants in 28March2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.5 20January2016-HestonParameters . . . . . . . . . . . . . . . . . . 26

Table 3.6 Comparison between Market Prices and Model Prices of Call War-
rants in 20January2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 3.7 Mean of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 4.1 The comparison of the hedge performance between the Heston and
the Black-Scholes models on a warrant with short time to maturity in (01.03.2016-
31.03.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4.2 The comparison of the hedge performance between the Heston and
the Black-Scholes models on a warrant with short time to maturity in (15.01.2016-
03.02.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 4.3 The comparison of the hedge performance between the Heston and
the Black-Scholes models on a warrant with long time to maturity in (01.03.2016-
31.03.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.4 The comparison of the hedge performance between the Heston and
the Black-Scholes models on a warrant with short time to maturity in (15.01.2016-
03.02.2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.5 The Model Prices and the Hedge Performance of The Heston Model
on the Untraded Warrant . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xix



xx



LIST OF ABBREVIATIONS

P The Probability Measure

Q The Risk-Neutral Measure

St The Stock Price at time t

Xt The Log Stock Price at time t

W The Brownian Motion

κ The Mean Reversion Speed

θ The Mean Reversion Level

σ The Volatility of the Variance

ρ The Correlation between the Brownian motions

v0 Initial Variance

(SDE)S Stochastic Differential Equations

xxi



xxii



CHAPTER 1

INTRODUCTION

The Black-Scholes model to price and hedge options [6] gives a simple formula to price
a given European option in terms the price of the underlying and its assumed constant
volatility and the interest rate (again assumed constant). The assumption of constant
volatility has long been known to be unrealistic and many models allowing stochastic
volatility have been developed over the years, see, Scott [22], Hull and White [13],
and Wiggins [23]. Melino and Turnbull have reported that the performance of the
Black-Scholes model is worse on foreign currency options when it is compared to the
models allowing stochastic volatility in [18, 19]. However, these models do not have
closed-form solutions and extensive numerical techniques are needed to solve the two
dimensional partial differential equations in these models. Following these develop-
ments, Steven L. Heston proposed [12] a stochastic volatility model having a closed-
form solution for European call option prices when there is a correlation between the
underlying security and the volatility. This gives the Heston model a computational
efficiency in the valuation of European options, which is important in fitting the model
to known option prices.

The Heston model is a stochastic volatility model in which two correlated Brownian
motions drive the stock price and the volatility. There are a number of studies in the
literature on the applications of the Heston model on actual markets, see, e.g., [9],
[24], [14], and [4]. The goal of the current thesis is to study the applicability of the
Heston model to standard call and put options written on the BIST30 index, which
tracks 30 of the most traded stocks in the Borsa Istanbul and compare its performance
to the standard Black Scholes model (BIST30 is one of the main indices tracking Borsa
Istanbul, for more on it we refer the reader to [1]). To the best of our knowledge, the
present thesis is a first attempt in this direction.

Chapter 2 is a review of the Heston model: its definition, the class of risk neutral
measures under the Heston model, the derivation of the partial differential equation
(PDE) satisfied by European options in the Heston model and a solution of the PDE.
The resulting PDE is linear and can be treated using Fourier analysis (i.e., computation
of the characteristic functions of the distribution of the process at fixed times). The
computed Fourier transforms are inverted to compute European option prices. This
chapter mainly follows [10, 21], giving further details of some of the arguments present
in these works.
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Chapter 3 fits the Heston model to BIST30 European call warrants traded in Borsa
Istanbul (BIST). This involves the estimation of the Heston parameters κ, θ, σ, v0, ρ
from the warrant prices. For this purpose we use the minimization of loss functions
which is defined as the difference between the market implied volatilities and the model
implied volatilities generated by the Heston model; the bisection algorithm is used to
extract the model implied volatilities from the model prices. This fitting algorithm is
explained in [21] and we use the implementation provided in [21]. For the fit, we used
the call warrants with strikes 95, 100, 105 and maturities 29.04.2016 and 30.06.2016
as input; the fit is done across the time interval (01.03.2016-31.03.2016). To test the
performance of the fitting process and see how it varies, we repeat the fit across another
time interval: (15.01.2016-03.02.2016). For the second fit we use the call warrants
with strikes 90, 95, 100 and maturities 29.02.2016 and 29.04.2016. Further comments
on the fitting can be found in Chapter 3 and Chapter 4.

Chapter 4 applies the hedging algorithm implied by the Heston model to the hedging
of BIST30 warrants. For this, we first review the hedging algorithm to be applied and
define the hedging error process, denoted (PL)t. This will be our main measure of
the performance of the Heston hedging algorithm. In an ideal hedging process the
the hedging portfolio must be self financing and the hedging error must be zero. Due
to discretization and model errors the hedging error will be nonzero in practice. The
hedging error is computed both for the Heston model and the Black Scholes model
and these are compared. Since the Heston model includes one more Brownian motion
driving volatility, to hedge an option, the volatility needs to be hedged by including
an additional option in the hedging portfolio. We applied the hedging algorithm to
warrants having a short time and a long time to the maturity separately. Two warrants
with strike 95 and with maturities 29.04.2016 and 30.06.2016 are hedged along in the
period (01.03.2016-31.03.2016) using the market prices and the Heston model. To
compare the performance of the hedging using the Heston model, we also hedge these
warrants using the Black-Scholes model. To see how the hedge performance changes
with time, we run the hedging algorithm in the time period (15.01.2016-03.02.2016)
and compare it with the hedging implied by Black-Scholes; in this time period we
use the strike 90 and maturities 29.02.2016 and 29.04.2016. All of these hedges are
performed on warrants already traded in the market. As a final application, the last
example is the hedging of a call warrant untraded in the market with strike 96 and ma-
turity 29.04.2016 in the period (01.03.2016-31.03.2016). Comments on how the strike
and maturity choices have been made can be found in the introduction of Chapter 4.
The main finding of this chapter is this: in all of the hedging examples we studied, the
use of the Heston model to model and hedge for stochastic volatility greatly reduces
the hedging error from that of Black Scholes. A detailed commentary on our results is
given in Chapter 4.

In all of the computations the interest rate is taken to be constant and is estimated from
an average of the benchmark interest rate 1 over a single month preceding the hedge
period.

Conclusion comments on future work.

1 see, e.g, http://www.bloomberght.com/tahvil/gosterge-faiz
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CHAPTER 2

The Heston Model

In this chapter, we review the Heston model (following mostly [12] and [21]): the
derivation of changes of measure to risk-neutral probabilities, the Heston partial dif-
ferential equation (PDE) satisfied by the price of a European call option. The solution
of this PDE is reduced to the computation of in-the-money probabilities that are de-
rived from Heston characteristic functions using the inverse Fourier transformation.
Finally, we use the price of the European call option to obtain the European put op-
tion’s price using the put-call parity. To finish the chapter, we give the option prices
under the case that the stock pays dividend.

2.1 The Model

In the Heston Model [12], the underlying stock price St follows the Black-Scholes
process with a stochastic variance vt following Cox-Ingersoll-Ross process [8] which
is actually an example of a square root process. Hence, the model is the bivariate
system of stochastic differential equations (SDEs) [21]

dSt = µStdt+
√
vtStdW

(1)
t , (2.1a)

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t , (2.1b)

where µ the drift of the process for the stock, κ > 0 the mean reversion speed for the
variance, θ > 0 the mean reversion level for the variance, and σ > 0 the volatility of
the variance. Moreover, W (1) and W (2) are two Brownian motions such that
EP[dW

(1)
t dW

(2)
t ] = ρdt. In other words, ρ ∈ [−1, 1] represents the correlation be-

tween W (1) and W (2).

In the Heston Model, the volatility is modeled by using the variance vt. The variance
process derives from the Orstein-Uhlenbeck process for the volatility ht =

√
vt given

by

dht = −βhtdt+ δdW
(2)
t . (2.2)
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Applying Ito’s lemma on the function f(ht) = h2
t = vt,

vt = h2
t = h0 +

∫ t

0

2hsdhs +
1

2

∫ t

0

2d〈h〉s.

Taking differentiation with respect to t and using Equation 2.2,

dvt = 2htdhtd〈h〉t
= 2ht[−βhtdt+ δdW 2

t ] + δ2dt

= (−2βvt + δ2)dt+ 2δ
√
vtdW

(2)
t .

(2.3)

Letting κ = 2β, θ = δ2/(2β), and σ = 2δ in Equation 2.3, Equation 2.1b is obtained.

2.2 The risk neutral measure

The stock price and variance processes in Equation 2.1a and Equation 2.1b are under
the probability measure P. For pricing, the measure P needs to be changed into a risk
neutral measure Q. In this sense, applying Girsanov’s theorem for Equation 2.1a and
Equation 2.1b separately leads to the risk-neutral process for the stock price which is
the following:

dSt = rStdt+
√
vtStdW̃

(1)
t , (2.4)

where W̃ (1)
t = W

(1)
t +

∫ t
0

(
µ−r√
vs

)
ds and r is the risk-free rate.

Sometimes, using log price is needed. For the log price process, using Ito’s lemma on
log(St) gives

log(St) = log(S0) +

∫ t

0

1

Ss
dSs +

1

2

∫ t

0

−1

S2
s

d〈S〉s.

Taking the derivation of the both sides with respect to t and using the fact that
d〈S〉s = vsS

2
sds,

d(log(St)) =
dSt
St
− 1

2S2
t

vtS
2
t dt =

(
µ− vt

2

)
dt+

√
vtdW

(1)
t .

The log price process under risk neutral measure is

4



d(log(St)) =
(
r − vt

2

)
dt+

√
vtdW̃

(1)
t . (2.5)

In the case that the stock pays a continuous dividend yield, which is denoted by q,
r is replaced by r − q in the equations Equation 2.4 and Equation 2.5.

The variance process under the risk neutral measure is obtained by subtracting a func-
tion λ(St, vt, t) from the drift of dvt in Equation 2.1b. Thus,

dvt = [κ(θ − vt)− λ(St, vt, t)]dt+ σ
√
vtdW̃

(2)
t , (2.6)

where W̃ (2)
t = W

(2)
t +

∫ t
0

(
λ(Ss,vs,s)
σ
√
vs

)
ds and λ(S, v, t) is called the volatility risk pre-

mium or the market price of the volatility risk. As in [7], λ(St, vt, t) = λt. We will
assume that λ = 0 using [10].

Letting λ(S, v, t) = λvt in Equation 2.6,

dvt = κ?(θ? − vt)dt+ σ
√
vtdW̃

(2)
t , (2.7)

where κ? = κ+ λ and θ? = κθ/(κ+ λ).

κ? and θ? are called the risk neutral parameters for the variance process.

Since λ = 0 using our assumption above, κ? = κ and θ? = θ.

To sum up, the Heston model under the risk neutral measure Q is

dSt = rStdt+
√
vtStdW̃

(1)
t , (2.8a)

dvt = κ?(θ? − vt)dt+ σ
√
vtdW̃

(2)
t , (2.8b)

where EQ[dW̃
(1)
t dW̃

(2)
t ] = ρdt.

2.3 The derivation of the Heston PDE

Due to the presence of a second random process driving the volatility, the Heston
model is incomplete and for a perfect hedge a second asset is needed driven by the
same underlying processes (this is in contrast to the Black Scholes model, which is
complete). Thus, we will be using a hedging portfolio consisting of the underlying
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asset, riskless bond and a second derivative asset written on the underlying; added
to this portfolio is one unit of the option to be hedged. We would like the resulting
portfolio to be riskless. The value of V = V (S, v, t) of such a portfolio, consisting of
one unit of the option to be hedged, ∆ units of the stock, and ψ units of another option
U = U(S, v, t) for the volatility as in [10] is

Π = V + ∆S + ψU,

where Πt = Π, Vt = V , and Ut = U for simplicity.

Suppose that the portfolio is self-financing. So the change in the value of the portfolio
is

dΠ = dV + ∆dS + ψdU. (2.9)

Applying Ito’s lemma on V ,

V = V0 +

∫ t

0

∂V

∂s
ds+

∫ t

0

∂V

∂S
dS +

∫ t

0

∂V

∂v
dv

+
1

2

∫ t

0

∂2V

∂S2
d〈S〉s +

1

2

∫ t

0

∂2V

∂v2
d〈v〉s

+
1

2

∫ t

0

∂2V

∂S∂v
d〈S, v〉s.

(2.10)

Using the fact that d〈S〉t = vS2dt, d〈v〉t = σ2vdt, and d〈S, v〉t = ρvσSdt and differ-
entiating the Equation 2.10 with respect to t,

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂v
dv

+
1

2

∂2V

∂S2
d〈S〉t +

1

2

∂2V

∂v2
d〈v〉t +

1

2

∂2V

∂S∂v
d〈S, v〉t

=

[
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+

1

2
σ2v

∂2V

∂v2
+

1

2
ρvσS

∂2V

∂S∂v

]
dt

+
∂V

∂S
dS +

∂V

∂v
dv.

(2.11)

Using again Ito’s lemma onU , dU is obtained by the same argument with the procedure
obtaining dV . For this, V terms in Equation 2.11 are replaced by U terms. Therefore,
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dU =

[
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
ρvσS

∂2U

∂S∂v

]
dt

+
∂U

∂S
dS +

∂U

∂v
dv.

(2.12)

Substituting dV and dU terms in equations Equation 2.11 and Equation 2.12, respec-
tively, into Equation 2.9,

dΠ = dV + ∆dS + ψdU

=

[
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+

1

2
σ2v

∂2V

∂v2
+

1

2
ρvσS

∂2V

∂S∂v

]
dt

+ ψ

[
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
ρvσS

∂2U

∂S∂v

]
dt

+

[
∂V

∂S
+ ψ

∂U

∂S
+ ∆

]
dS +

[
∂V

∂v
+ ψ

∂U

∂v

]
dv.

(2.13)

To get the hedged portfolio against the movements in the stock and the volatility, the
terms

[
∂V
∂S

+ ψ ∂U
∂S

+ ∆
]
dS and

[
∂V
∂v

+ ψ ∂U
∂v

]
dv in Equation 2.13 must be zero. Thus,

ψ = −∂V
∂v

/∂U
∂v

, (2.14a)

∆ = −ψ∂U
∂S
− ∂V

∂S
=

∂V
∂v

∂U
∂S
− ∂V

∂S
∂U
∂v

∂U
∂v

. (2.14b)

In this light, ψ and ∆ are called the hedge parameters. Moreover, the change in hedged
portfolio comes from equating the last two terms of Equation 2.13 to zero. Therefore,

dΠ =

[
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+

1

2
σ2v

∂2V

∂v2
+

1

2
ρvσS

∂2V

∂S∂v

]
dt

+ ψ

[
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
ρvσS

∂2U

∂S∂v

]
dt.

(2.15)
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Since the portfolio is riskless, the earning on this portfolio must be the risk-free rate,
r. This is to say that dπ = rΠdt. Thus, Equation 2.9 becomes

dΠ = r(V + ∆S + ψU)dt. (2.16)

dΠ is in common in both Equation 2.15 and Equation 2.16. So equating these equa-
tions and substituting the hedge parameters ψ and ∆ represented explicitly in Equa-
tion 2.14 to obtain

∂U
∂v

[
∂V
∂t

+ 1
2
vS2 ∂2V

∂S2 + 1
2
σ2v ∂

2V
∂v2

+ 1
2
ρvσS ∂2V

∂S∂v

]
− ∂V

∂v

[
∂U
∂t

+ 1
2
vS2 ∂2U

∂S2 + 1
2
σ2v ∂

2U
∂v2

+ 1
2
ρvσS ∂2U

∂S∂v

]
∂U
∂v

=
r
(
∂U
∂v

+
[
∂V
∂v

∂U
∂S
− ∂V

∂S
∂U
∂v

]
S − ∂V

∂v
U
)

∂U
∂v

.

Cancelling out ∂U
∂v

from both sides and gathering V terms in left side as a function of
V only and U terms in right side as a function of U only,

[
∂V
∂t

+ 1
2
vS2 ∂2V

∂S2 + 1
2
σ2v ∂

2V
∂v2

+ 1
2
ρvσS ∂2V

∂S∂v

]
− rV + ∂V

∂S
rS

∂V
∂v

=

[
∂U
∂t

+ 1
2
vS2 ∂2U

∂S2 + 1
2
σ2v ∂

2U
∂v2

+ 1
2
ρvσS ∂2U

∂S∂v

]
− rU + ∂U

∂S
rS

∂U
∂v

.

(2.17)

The left side and the right side of Equation 2.17 are functions of V and U, respectively.
This leads to the fact that both side can be written as a function f(S, v, t). In the Heston
model, this function is taken as [12]

f(S, v, t) = −κ(θ − v) + λ(S, v, t),

where λ(S, v, t) is the market price of volatility risk. This justifies the appearance of
λ(S, v, t) in Equation 2.16. As mentioned before, the market of the volatility risk is
a linear function of volatility, i.e. λ(S, v, t) = λt, where λ is constant [7]. Since
our assumption is that λ = 0 depending on [10], without loss of generality, putting
f(S, v, t) = −κ(θ − v) instead of the left side in Equation 2.17,

−κ(θ − v) =

[
∂U
∂t

+ 1
2
vS2 ∂2U

∂S2 + 1
2
σ2v ∂

2U
∂v2

+ 1
2
ρvσS ∂2U

∂S∂v

]
− rU + ∂U

∂S
rS

∂U
∂v

. (2.18)
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Rearranging Equation 2.18 gives the Heston’s partial differential equation (PDE)
which is

[
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+

1

2
σ2v

∂2U

∂v2
+

1

2
ρvσS

∂2U

∂S∂v

]
− rU + rS

∂U

∂S

+κ(θ − v)
∂U

∂v
= 0.

(2.19)

Whether U(S, v, t) is an European call or put option determines the boundary condi-
tions for the Heston PDE. In this approach, let U(S, v, t) be an European call option
with strike K and maturity T .

The value of the call at the maturity is (ST −K)+. If the stock price is zero, the value
is also zero. The change in the value of the call option U with respect to the stock
price goes to 1 since if the stock price is large enough, the strike K has no effect on
the value of the call option U . If the volatility goes to infinity, the stock price grow
to large enough so that the strike K cannot affect the value of the option. Therefore,
stock price S is the only factor left determining the value.

These arguments lead to the following boundary conditions for the Heston PDE:

U(S, v, T ) = (ST −K)+, (2.20a)

U(0, v, t) = 0, (2.20b)

∂U

∂S
(∞, v, t) = 1, (2.20c)

U(S,∞, t) = S. (2.20d)

Moreover, Equation 2.19 can be written as

∂U

∂t
+AU − rU = 0, (2.21)

where

A = rS
∂

∂S
+

1

2
vS2 ∂

2

∂S2
+ κ(θ − v)

∂

∂v
+

1

2
σ2v

∂2

∂v2
+

1

2
ρvσS

∂2

∂S∂v

is the generator of the Heston model.

It is known that rS ∂
∂S

+ 1
2
vS2 ∂2

∂S2 is the generator of the Black-Scholes model [17] ,
with v =

√
σBS , where σBS is the Black-Scholes volatility.
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In addition to this, κ(θ − v) ∂
∂v

+ 1
2
σ2v ∂2

∂v2
+ 1

2
ρvσS ∂2

∂S∂v
is the part of the PDE, which

is related to the stochastic volatility.

As mentioned earlier, let the log price Xt = log(St), t ≥ 0. Taking X = log(S) for
simplification, the followings can be obtained:

∂U

∂S
=
∂U

∂X

∂X

∂S
=
∂U

∂X

1

S
, (2.22a)

∂2U

∂v∂S
=

∂

∂v

(
∂U

∂X

1

S

)
=

1

S

∂2U

∂v∂X
, (2.22b)

∂2U

∂S2
=

∂

∂S

(
∂U

∂X

1

S

)
=

1

S2

∂2U

∂X2
− 1

S2

∂U

∂X
. (2.22c)

Substituting expressions in Equation 2.22 into the Heston PDE in Equation 2.19 gives

∂U

∂t
+

1

2
vS2

(
1

S2

(
∂2U

∂X2
− ∂U

∂X

))
+

1

2
ρvσS

(
1

S

∂2U

∂X∂v

)
+

1

2
σ2v

∂2U

∂v2

+−rU + rS

(
1

S

∂U

∂X

)
+ κ(θ − v)

∂U

∂v
= 0.

(2.23)

Rearranging Equation 2.23,

∂U

∂t
+

1

2
v
∂2U

∂X2
+
(
r − v

2

) ∂U
∂X

+
1

2
σ2v

∂2U

∂v2
+

1

2
ρvσ

∂2U

∂X∂v
− rU

+κ(θ − v)
∂U

∂v
= 0.

(2.24)

2.3.1 The Heston PDE for a European call

Let Ct(K) be a European call price at time t where the option is written on the under-
lying asset S with maturity T and strike K.

The European call price at time t is the discounted expected value of the payoff at the
maturity under the risk neutral measure Q. That is

Ct(K) = e−r(T−t)EQ[(ST −K)+]

= e−r(T−t)EQ[(ST −K)1{ST>K}]

= e−r(T−t)EQ[ST1{ST>K}]−Ke−r(T−t)EQ[1{ST>K}]

= StE
Q[1{ST>K}]−Ke−r(T−t)Q(ST > K).

(2.25)
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To evaluate e−r(T−t)EQ[St1{ST>K}] in Equation 2.25, one can chance the measure Q
as QS by defining the following Rodon-Nikodym derivative:

dQ
dQS

=
St
Bt

/ST
BT

, (2.26)

where Bt = ert,t ≥ 0.

Thus,
dQ
dQS

ST/St
BT/Bt

= 1.

Therefore,

e−r(T−t)EQ[ST1{ST>K}] = StE
Q
[
1{ST>K}

ST/St
BT/Bt

dQ
dQS

]
= StE

QS [1{ST>K}]

= StQS(ST > K) = StQS(log(ST ) > log(K)).
(2.27)

Moreover,

Q(ST > K) = Q(log(ST ) > log(K)).

Letting QS(ST > K) = P1 and Q(ST > K) = P2 and using the log price process
log(St) = Xt, Equation 2.25 can be written as following:

Ct(K) = StP1 −Ke−r(T−t)P2, (2.28a)

Ct(K) = eXtP1 −Ke−r(T−t)P2. (2.28b)

Furthermore, P1 and P2 can be considered as the probabilities of the call expiring in-
the-money, conditional on the value St = eXt of the stock and the value vt on the
variance at time t, respectively.

To get more information on the measures Q and QS, one can consider that the measure
Q uses Bt as numeraire, while the measure QS uses St as numeraire. Using [5], this
change of measure method is valid for many models including the Heston model and
the Black-Scholes model. That is why there are resembles between the call price in
the Heston model and the Black-Scholes model. For example, using the same change
of measure technique, one can find QS(ST > K) = Φ(d1) and Q(ST > K) = Φ(d2),
which are used to calculate the call price in the Black-Scholes model.
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Since the European call satisfies the Heston PDE in Equation 2.24, accepting Xt = X
and using Equation 2.28b, the Heston PDE can be written in terms of the call option
with price Ct(K) as follows:

∂C

∂t
+

1

2
v
∂2C

∂X2
+
(
r − v

2

) ∂C
∂X

+
1

2
σ2v

∂2C

∂v2
+

1

2
ρσv

∂2C

∂X∂v
− rC

+κ(θ − v)
∂C

∂v
= 0.

(2.29)

∂C
∂t

, ∂C
∂X

, ∂2C
∂X2 , ∂2C

∂X∂v
, ∂C
∂v

, and ∂2C
∂v2

need to be found to extend Equation 2.29. Thus,

∂C

∂t
= eX

∂P1

∂t
−Ke−r(T−t)

[
∂P2

∂t
+ rP2

]
, (2.30a)

∂C

∂X
= eX

[
∂P1

∂X
+ P1

]
−Ke−r(T−t)∂P2

∂X
, (2.30b)

∂2C

∂X2
= eX

[
∂2P1

∂X2
+ 2

∂P1

∂X
+ P1

]
−Ke−r(T−t)∂

2P2

∂X2
, (2.30c)

∂2C

∂X∂v
= eX

[
∂2P1

∂X∂v
+
∂P1

∂v

]
−Ke−r(T−t) ∂

2P2

∂X∂v
, (2.30d)

∂C

∂v
= eX

∂P1

∂v
−Ke−r(T−t)∂P2

∂v
, (2.30e)

∂2C

∂v2
= eX

∂2P1

∂v2
−Ke−r(T−t)∂

2P2

∂v2
. (2.30f)

Plugging the expressions in Equation 2.30 into Equation 2.29,

∂C

∂t
= eX

∂P1

∂t
−Ke−r(T−t)

[
∂P2

∂t
+ rP2

]
+

1

2
v

[
eX
[
∂2P1

∂X2
+ 2

∂P1

∂X
+ P1

]
−Ke−r(T−t)∂

2P2

∂X2

]
+
(
r − v

2

)[
eX
∂P1

∂t
−Ke−r(T−t)

[
∂P2

∂t
+ rP2

]]
+

1

2
σ2v

[
eX
∂2P1

∂v2
−Ke−r(T−t)∂

2P2

∂v2

]
+ ρσv

[
eX
[
∂2P1

∂X∂v
+
∂P1

∂v

]
−Ke−r(T−t) ∂

2P2

∂X∂v

]
− r

[
eXtP1 −Ke−r(T−t)P2

]
+ κ(θ − v)

[
eX
∂P1

∂v
−Ke−r(T−t)∂P2

∂v

]
= 0.

(2.31)
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Rearranging Equation 2.31,

eX
∂P1

∂t
−Ke−r(T−t)∂P2

∂t
+
(
r +

v

2

)
eX
∂P1

∂X
−
(
r − v

2

)
Ke−r(T−t)

∂P2

∂X

+
1

2
veX

∂2P1

∂X2
− 1

2
vKe−r(T−t)

∂2P2

∂X2
+ ρσveX

∂2P1

∂X∂v

− ρσvKe−r(T−t) ∂
2P2

∂X∂v
+

(
1

2
ρσv + κ(θ − v)

)
eX
∂P1

∂v

− κ(θ − v)Ke−r(T−t)
∂P2

∂v

+
1

2
σ2veX

∂2P1

∂v2
− 1

2
σ2Ke−r(T−t)

∂2P2

∂v2
= 0.

(2.32)

Since Ct(K) satisfies the Heston PDE in Equation 2.29 for non-negative stock prices,
strikes and risk-free rate, S ≥ 0, K ≥ 0 and r ≥ 0, taking S = 1, K = 0 and S = 0,
K = 1 in Equation 2.28a results the prices of the options as P1 and −P2, respectively.
The options obtained as above with price P1 and P2 follow the Heston PDE. Since one
can simply multiply the Heston PDE in Equation 2.29 by−1, the option with price P2

also follows the Heston PDE.

Since P1 satisfies the Heston PDE, it can be assumed that P2 = 0 to write the PDE in
terms of P1. Thus, Equation 2.32 changes to the following equation:

ex
[
∂P1

∂t
+
(
r +

v

2

) ∂P1

∂X
+

1

2
v
∂2P1

∂X2
+ ρσv

∂2P1

∂X∂v

+ (ρσv + κ(θ − v))
∂P1

∂v
+

1

2
σ2v

∂2P1

∂v2

]
= 0.

(2.33)

Since eX is not zero if X is not −∞ or S is not 0 and since P1 is obtained by letting
S = 1 and K = 0, the term eX in Equation 2.33 is not zero. Thus, Equation 2.33
simplifies to

∂P1

∂t
+
(
r +

v

2

) ∂P1

∂X
+

1

2
v
∂2P1

∂X2
+ ρσv

∂2P1

∂X∂v

+ (ρσv + κ(θ − v))
∂P1

∂v
+

1

2
σ2v

∂2P1

∂v2
= 0.

(2.34)

Since P2 satisfies the Heston PDE as well, it can be assumed that P2 = 0 to write the
PDE in terms of P2. Thus, Equation 2.32 changes to the following equation:
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∂P2

∂t
+
(
r − v

2

)∂P2

∂X
+

1

2
v
∂2P2

∂X2
+ ρσv

∂2P2

∂X∂v

κ(θ − v)
∂P2

∂v
+

1

2
σ2v

∂2P2

∂v2
= 0.

(2.35)

Letting u1 = 1
2
, u2 = −1

2
, b1 = κ− ρσ, b2 = κ and a = κθ unifies Equation 2.34 and

Equation 2.35 as follows:

∂Pj
∂t

+ (r + ujv)
∂Pj
∂X

+
1

2
v
∂2Pj
∂X2

+ ρσv
∂2Pj
∂X∂v

+ (a− bj)
∂Pj
∂v

+
1

2
σ2v

∂2Pj
∂v2

= 0.

(2.36)

2.3.2 The Heston Characteristic Functions

When ST > K at expiration, the probabilities of the call being in the money are stated
as Pj = 1{XT>logK}, j = 1, 2. In this sense, the initial guess [12] for the characteristic
functions fj(φ;xt, vt) for the log of the terminal stock price, XT = log(ST ), is

fj(φ;Xt, vt) = exp(Cj(τ, φ) +Dj(τ, φ)vt + iφXt),

where i =
√
−1, Cj and Dj are coefficients and τ is the time to maturity.

Using Feynman-Kac theorem which states that if a function g(Xt, t) of the Heston
bivariate system of SDE’s Xt = (Xt, vt) = (log(St), vt) satisfies the PDE
∂g
∂t
− rg +Ag = 0, where A is mentioned earlier as the Heston generator ,

A = rS ∂
∂S

+ 1
2
vS2 ∂2

∂S2 + κ(θ − v) ∂
∂v

+ 1
2
σ2v ∂2

∂v2
+ 1

2
ρvσS ∂2

∂S∂v
, then

g(Xt, t) = E[g(XT , T )|Ft] = E[g(XT , T )|Xt, vt].

Using g(Xt, t) = exp(iφ log(St)),

g(Xt, t) = E[eiφXT |Ft] = E[eiφXT |Xt, vt].

Since fj’s are characteristic functions for the terminal condition XT = log(ST ) on in
the money call probabilities Pj’s for j = 1, 2, fj satisfies the PDE ∂f

∂t
− rf +Af = 0

above. Therefore, with risk neutral probabilities Qs and Q, which use the stock and
the bond as numeraire, respectively,
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f1(φ;Xt, vt) = EQs [eiφXT ], f2(φ;Xt, vt) = EQ[eiφXT ].

Since fj satisfy the PDE, it can be written as follows:

∂fj
∂t

+ (r + ujv)
∂fj
∂X

+
1

2
v
∂2fj
∂X2

+ ρσv
∂2fj
∂X∂v

+ (a− bj)
∂fj
∂v

+
1

2
σ2v

∂2fj
∂v2

= 0.

(2.37)

To write Equation 2.37 in terms of τ = T − t, one can simply use ∂f
∂t

= −∂f
∂τ

. Hence,

−∂fj
∂τ

+ (r + ujv)
∂fj
∂X

+
1

2
v
∂2fj
∂X2

+ ρσv
∂2fj
∂X∂v

+ (a− bj)
∂fj
∂v

+
1

2
σ2v

∂2fj
∂v2

= 0.

(2.38)

Since the initial guess of the characteristic functions are fj(φ;Xt, vt) = exp(Cj(τ, φ)+
Dj(τ, φ)vt + iφXt), j = 1, 2,

∂fj
∂τ

= fj

[
∂Cj
∂τ

+
∂Dj

∂τ
v

]
, (2.39a)

∂fj
∂X

= (iφ)fj, (2.39b)

∂2fj
∂X2

= −φ2fj, (2.39c)

∂2fj
∂X∂v

=
∂ (fjDj)

∂X
= (iφ)fjDj, (2.39d)

∂fj
∂v

= fjDj, (2.39e)

∂2fj
∂v2

= fjD
2
j . (2.39f)

Plugging the expressions in Equation 2.39 into Equation 2.38, j = 1, 2,

fj

[
−
(
∂Cj
∂τ

+
∂Dj

∂τ
v

)
+ ρσviφDj −

1

2
vφ2

+
1

2
σ2vD2

j + (r + ujv)iφ+ (a− bjv)Dj

]
= 0.

(2.40)
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Since fj is nonnegative for j = 1, 2, Equation 2.40 turns out to be the following
equation:

−
(
∂Cj
∂τ

+
∂Dj

∂τ
v

)
+ ρσviφDj −

1

2
vφ2

+
1

2
σ2vD2

j + (r + ujv)iφ+ (a− bjv)Dj = 0.

(2.41)

Equation 2.41 can be rewritten as follows:

v

[
−∂Dj

∂τ
+ ρσiφDj −

1

2
φ2 +

1

2
σ2D2

j + ujiφ− bjDj

]
− ∂Cj

∂τ
+ riφ+ aDj = 0.

(2.42)

Since the variance v is non-negative, Equation 2.42 can be divided into two differential
equations as

− ∂Dj

∂τ
+ ρσiφDj −

1

2
φ2 +

1

2
σ2D2

j + ujiφ− bjDj = 0, (2.43a)

− ∂Cj
∂τ

+ riφ+ aDj = 0. (2.43b)

If one solves the differential equations above, the characteristic functions fj is obtained
for j = 1, 2. In fact Equation 2.43a is a Ricatti equation in Dj . Once Dj is found
explicitly, by integrating Equation 2.43b, Cj can be found as well.

Moreover, since fj(φ;Xt, vt) = exp(Cj(τ, φ) + Dj(τ, φ)vt + iφXt), j = 1, 2, when
Cj(τ, φ) and Dj(τ, φ) are known explicitly, the characteristic functions for the log of
the terminal stock price are obtained explicitly.

2.3.2.1 Obtaining the Coefficients Cj and Dj

In Equation 2.43a, letting Mj = ujiφ− 1
2
φ2, Qj = bj − ρσiφ, j = 1, 2, and R = 1

2
σ2

converts the equation Equation 2.43a into the following:

−∂Dj

∂τ
−QjDj +RD2

j +Mj = 0. (2.44)

Assuming Dj = − 1
R

(
∂w
∂τ

/
w
)

= − 1
R
w′

w
and putting this into Equation 2.44, j = 1, 2,
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− 1

R

w′′

w
− 1

R

(
w′

w

)2

+Mj +Qj
1

R

(
w′

w

)
+

1

R

(
w′

w

)2

= 0. (2.45)

Rearranging and multiplying both sides of Equation 2.45 by Rw,

w′′ +Qjw
′ +RMjw = 0. (2.46)

To solve the second order ODE in ( Equation 2.46), we use its characteristic roots:

αj =
−Qj +

√
Q2
j − 4MjR

2
, (2.47a)

βj =
−Qj −

√
Qj − 4MjR

2
. (2.47b)

To simplify Equation 2.47a and Equation 2.47b,
let dj =

√
Q2
j − 4MjR =

√
(bj − ρσiφ)2 + σ2(φ2 − 2ujiφ).

Thus, αj =
−Qj+dj

2
and βj =

−Qj−dj
2

.

The well known solution of the ODE in Equation 2.46 is

w = Y eαjτ + Zeβjτ ,

where Y and Z are constants.

Since Dj = − 1
R
w′

w
,

Dj = − 1

R

[
Y αje

αjτ + Zβje
βjτ

Y eαjτ + Zeβjτ

]
. (2.48)

Let N = Y
Z

. Equation 2.48 becomes

Dj = − 1

R

[
Nαje

αjτ + βje
βjτ

Neαjτ + eβjτ

]
. (2.49)

Using the initial condition Dj(0, φ) = 0 and Equation 2.49, Nαj + βj = 0, from

which N = −βj
/
αj . This changes Equation 2.49 into

17



Dj = −βj
R

[
−eαjτ + eβjτ

(
−βj
αj

)eαjτ + eβjτ

]
. (2.50)

Dividing numerator and denominator of the right side in Equation 2.50 by eβjτ ,

Dj = −βj
R

[
1− e(αj−βj)τ

1− (
βj
αj

)e(αj−βj)τ

]
. (2.51)

Moreover, note that αj − βj = dj .

Let gj =
βj
αj

=
Qj+dj
Qj−dj . Thus, Equation 2.51 simplifies to the following equation:

Dj =
Qj + dj

2R

[
1− edjτ

1− gjedjτ

]
. (2.52)

Putting Qj = bj − ρσiφ and R = 1
2
σ2 into Equation 2.52, the coefficient Dj(τ, φ),

j = 1, 2, can be written explicitly as

Dj(τ, φ) =
bj − ρσiφ+ dj

σ2

[
1− edjτ

1− gjedjτ

]
. (2.53)

After finding Dj(τ, φ) as above, integrating the equation Equation 2.43b, the coeffi-
cient Cj(τ, φ) can be written as

Cj =

∫ τ

0

[
riφ+ a

(
bj − ρσiφ+ dj

σ2

)(
1− edjy

1− gjedjy

)]
dy +N1, (2.54)

where N1 is a constant.

Rearranging Equation 2.54,

Cj =

∫ τ

0

riφdy + a

(
bj − ρσiφ+ dj

σ2

)∫ τ

0

(
1− edjy

1− gjedjy

)
dy +N1. (2.55)

Using the initial condition Cj(0, φ) = 0 and Equation 2.55, N1 = 0.
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To find the coefficient Cj , two integrals in Equation 2.55 need to be found. The first
integral equals

∫ τ

0

riφdy = riφτ. (2.56)

To evaluate the second integral, suppose z = edjy. Differentiating both side with
respect to τ gives dz = edjydjdy, from which dy = dz

/
zdj . Thus, substituting

z = edjy into the second integral, we get

∫ edjτ

1

(
1− z

1− gjz

)(
1

zdj

)
dz =

1

dj

∫ edjτ

1

(
1− z

z(1− gjz)

)
dz. (2.57)

To evaluate the integral in Equation 2.57, a fractional expansion can be used as fol-
lows:

1− z
z(1− gjz)

=
1

z
− 1− gj

1− gjz
.

Thus, Equation 2.57 becomes

1

dj

∫ edjτ

1

[
1

z
− 1− gj

1− gjz

]
dz =

1

dj

[∫ edjτ

1

1

z
dz −

∫ edjτ

1

(
1− gj
1− gjz

)
dz

]

=
1

dj

[
log(z) +

(
1− gj
gj

)
log(1− gjz)

]z=edjτ
z=1

= τ +

(
1− gj
djgj

)
log

(
1− gjedjτ

1− gj

)
.

(2.58)

Putting gj =
bj−ρσiφ+dj
bj−ρσiφ−dj in Equation 2.58 gives the solution of the second integral as:

τ − 2

bj − ρσiφ+ dj
log

(
1− gjedjτ

1− gj

)
.

Substituting the value of the integrals evaluated above into Equation 2.55, the coeffi-
cient C(τ, φ) is found as

C(τ, φ) = riφτ +
( a
σ2

)[
(bj − ρσiφ+ dj)τ − 2 log

(
1− gjedjτ

1− gj

)]
. (2.59)
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2.4 Obtaining in-the-money Probabilities

The characteristic functions are known. They can be inverted to get the desired in-the-
money probabilities P1 and P2 by using inversion theorem [11] as, for j = 1, 2,

Pj = Pr(log(St) > log(k)) =
1

2
+

1

2π

∫ ∞
−∞

Re

[
e−iφ log(K)fj(φ;x, v)

iφ

]
dφ

=
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ log(K)fj(φ;x, v)

iφ

]
dφ.

(2.60)

Additionally, P1 and P2 are Arrow-Debreu prices for the binary options with
(S = 1, K = 0) and (S = 0, K = 1), respectively.

2.5 Pricing Options

Since P1 and P2 are known, option prices can be found by using these probabilities.

2.5.1 Pricing a European Call Option

To price a European option price, implementing in-the-money probabilities P1 and P2

into Equation 2.28a which is

Ct(K) = StP1 −Ke−r(T−t)P2,

the call option price is obtained.

Thus,

Ct(K) = St

[
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ log(K)f1(φ;x, v)

iφ

]
dφ

]
−Ke−r(T−t)

[
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ log(K)f2(φ;x, v)

iφ

]
dφ

]
.

(2.61)

Rearranging Equation 2.61, the call price at time t can be found as below:

Ct(K) =
1

2
St −

1

2
Ke−r(T−t) +

1

π

∫ ∞
0

Re

[
e−iφ log(K)

(
Stf1(φ;x, v)−Ke−r(T−t)f2(φ;x, v)

)
iφ

]
dφ.

(2.62)
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2.5.2 Pricing a European Put Option

In order to protect arbitrage free market, the put-call parity must hold [16], which is

Pt(K) = Ct(K) +Ke−r(T−t) − St

The European call option price at time t is already known explicitly. So using the put-
call parity, to price the put option at time t, it is just needed to put the call price in the
parity. Thus,

Pt(K) =
1

2
Ke−r(T−t) − 1

2
St +

1

π

∫ ∞
0

Re

[
e−iφ log(K)

(
Stf1(φ;x, v)−Ke−r(T−t)f2(φ;x, v)

)
iφ

]
dφ.

(2.63)

In addition to this, the other method for pricing put options to use in-the money prob-
abilities.

In-the-money probabilities for the put option are the complement of those which are
P1 and P2 [25].

Let these probabilities be P ?
1 and P ?

2 . Thus, these probabilities can be written as below:

For j = 1, 2,

P ?
j = Pr(log(ST ) < log(K)) = 1− Pj =

1

2
− 1

π

∫ ∞
0

Re

[
e−iφ log(K)f1(φ;x, v)

iφ

]
.

(2.64)

Moreover, Equation 2.28a needs to be modified for the put price as following:

Pt(K) = Ke−r(T−t)P ?
2 − StP ?

1 . (2.65)

When Equation 2.64 is inserted in Equation 2.65, the result is exactly the same with
the put option price at time t, which is obtained in Equation 2.63.

2.5.3 Pricing an Option with the Stock Paying Dividend

To insert the dividend, q, into the model which is demonstrated in risk-neutral proba-
bilities in Equation 2.8a, the risk free rate r needs to be replaced by (r− q) so that the
stochastic process for the stock price can written as following:
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dSt = (r − q)Stdt+
√
vtStdW̃

(1)
t . (2.66)

Furthermore, the call option price and the put option price at time t needs to be written
with compatible to the stock paying dividend q. Thus, Equation 2.28a and Equa-
tion 2.65 are changed to the following equations:

Ct(K) = Ste
−q(T−t)P1 −Ke−r(T−t)P2, (2.67a)

Pt(K) = Ke−r(T−t)P ?
2 − Ste−q(T−t)P ?

1 . (2.67b)

Putting the probabilities Pj and P ?
j into Equation 2.67a and Equation 2.67b establishes

the call and put option price at time t with the stocks paying the dividend, respectively.

22



CHAPTER 3

Fitting the Heston Model to BIST30 Warrants

In this chapter, we will fit the Heston model to the warrants written on BIST30; this fit
is done in section 3.3. For the fit we use the method of loss functions, where the goal
is to minimize the difference between model prices and the observed market prices.
An excellent reference which explains a number of fitting algorithms is [21]. The first
section below reviews the one based on loss functions as covered in [21]. For our actual
computations, we also use the implementation of this algorithm as given by [21]. The
effects of the Heston parameters on implied volatilities is briefly reviewed in section
3.2; these will be useful in interpreting our fit results.

3.1 The Heston Parameters

To fit the model to the BIST30 warrants, the parameters in the model needs to be
found. Some of these parameters are mentioned before in Equation 2.8a which we
copy below for reader’s convenience:

dvt = κ(θ − vt)dt+ σ
√
vtdW̃

(2)
t

As seen above, the parameters are κ, θ, σ which are the mean reversion speed for the
variance, the mean reversion level for the variance, the volatility of the variance.

In addition to these, the correlation ρ between the Brownian motions W̃ (1)
t and W̃ (2)

t

and the initial variance v0 are also among the Heston parameters.

In total, there are five many parameters that are κ, θ, σ, vo, ρ .

3.1.1 Obtaining the Heston Parameters with the Loss Function

The loss function estimating the parameters uses the error between the market prices
and the model prices or between the market and the model implied volatility. To use
the method above, we impose the following constraints on the parameters:
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κ > 0, θ > 0, σ > 0, v0 > 0, ρ ∈ [−1, 1]

Since the loss functions use the market option prices or the implied volatilities obtained
from them, this method estimates the risk-neutral parameters of the Heston model.
That is the reason fitting the Heston’s parameters to option prices generates the risk
neutral measure. In other words, κ = κ? and θ = θ? under both measures P and Q.

LetNT be the number of maturities Ti (i = 1, ..., NT ) andNK be the number of strikes
Kj (j = 1, ..., NK). C(Ti, Kj) = Cij represents the market price of the option which
has Ti maturity and Kj strike. C(Ti, Kj,Θ) = CΘ

ij represents the price generated by
the Heston model, which has again Ti maturity and Kj strike.

Let IVij and IV Θ
ij be the market implied volatility derived from Cij using the Black-

Scholes model and the model implied volatility derived from CΘ
ij , respectively. The

aim is to minimize the error between the market and model implied volatility by using
the loss function. Thus, the implied volatility mean error sum of squares (IVMSE)
parameter estimates are based on the loss function,

1

N

NT ,NK∑
i,j=1

wi,j
[
IVij − IV Θ

ij

]2
, (3.1)

where N = NTNK and wij is the weight of the option Cij among the all options that
are used. For more on these weights, please see [21].

CΘ
ij needs to be calculated at first place to extract IV Θ

ij in Equation 3.1. For this, the
bisection algorithm which is a root finding algorithm is used.

3.2 Effects of the Heston Parameters on the Heston Implied Volatilities

The Heston parameters have some effects on the Heston implied volatilities derived
from the option prices generated by the model. Whether these volatilities show smile
or skew is determined by the parameters.

The correlation between Brownian motions ρ affects the direction of the skew. In
other words, when ρ < 0 and ρ > 0 , the slope of the skew is negative and positive,
respectively. Additionally, the more the volatility of the variance σ increases, the more
the curvature of the smile increases.

Moreover, the parameters the mean reversion speed for the variance, κ, the mean re-
version level for the variance, θ, and the initial variance, v0 , control the level of the
curvature. The higher values in κ, θ and v0 make the curvature flattening.

We will observe these effects in our estimation results below.
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3.3 Fitting the Heston Model to BIST30 Warrants

Before we examine the results of our fits, let us give some information about the war-
rants and the data used for our fit.

Warrants and options both give the holder of that warrant or option the right to buy or
sell a financial asset on specific terms and conditions (maturity, exercise price etc.) but
not the obligation. Thus, an investor can not lose more money than that he/she pays
for a warrant. Warrants differ from options by the fact that they represent certificated
option rights so that all warrants have an International Securities Identification Number
(“ISIN”) . [3]

To fit the model, warrants that are written by Deutsche Bank and traded in BIST30 are
used. We took the warrants from the date December 2015 since Borsa Istanbul passes
single session era at the date 30.11.2015. [2]

Recall that we use the constant risk-free rate. To find it, we used the bond having two
years maturity. We took the average of its yields in the previous month to obtain the
risk-free rate of the month we worked on. For example, using the average of the daily
returns in the month (December, 2015) and (February, 2016 ) , we get the risk-free
rate 0.1081 and 0.1086 to use in (January, 2016) and (March, 2016), respectively. The
reason of mentioning about the risk-free rates in (January, 2016) and (March, 2016) is
that we use these months as examples of our applications in the remaining part of this
thesis.

3.3.1 Results of the Fit

For the fit, we selected six call warrants with two different maturities (29.04.2016
and 30.06.2016) and three different strikes (95, 100, 105) in the period (01.03.2016-
31.03.2016).

We fit the model for each day in (01.03.2016 − 31.03.2016) and obtain the Heston
parameters, Heston implied volatilities and the model prices of the call warrants.

To give the reader an idea about what the fits look like, we give several examples in
the tables below.

Table 3.1, Table 3.2, Table 3.3, and Table 3.4 show the parameters and comparison
between the market and the model prices of six call warrants.

Table 3.1: 1March2016-HestonParameters

kappa theta sigma v0 rho IVMSE
4.2693 0.0435 0.3006 0.0696 0.8798 1.15e-07

Table 3.2 and Table 3.4 show that the market prices and the model prices are close to
each other. From this, it is clear that the fits work very well.
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Table 3.2: Comparison between Market Prices and Model Prices of Call Warrants in
1March2016

DATE MATURITIES STRIKES MARKET PRICES Model PRICES

01.03.2016

29April2016
95 3.03 3.0284
100 1.43 1.4351
105 0.63 0.6259

30June2016
95 4.78 4.7820
100 2.93 2.9255
105 1.73 1.7334

Table 3.3: 28March2016-HestonParameters

kappa theta sigma v0 rho IVMSE
19.8663 0.0645 0.3686 0.0645 0.9827 5.05e-06

Table 3.4: Comparison between Market Prices and Model Prices of Call Warrants in
28March2016

DATE MATURITIES STRIKES MARKET PRICES MODEL PRICES

28.03.2016

29April2016
95 6.33 6.3505
100 3.03 3.022
105 1.18 1.1745

30June2016
95 8.50 8.5210
100 5.50 5.4460
105 3.23 3.2677

To see how the results of the fit vary, we change the period through which we fit the
model, and the maturities and the strikes of the warrants. Again we take six war-
rants with maturities (29.02.2016 and 29.04.2016 ) and strikes 90, 95, 100 in the period
(15.01.2016− 03.02.2016).

We fit the model for each day in (15.01.2016 − 03.02.2016) and obtain the Heston
parameters, the Heston implied volatilities and the model prices of the call warrants.

There is an example which shows the comparison between the market and the model
prices of the call warrants selected as tables Table 3.5 Table 3.6:

Table 3.5: 20January2016-HestonParameters

kappa theta sigma v0 rho IVMSE
6.2121 0.0807 1.1939 0.1372 -0.3329 5.53e-06

As seen in Table 3.6 above, although the period, strikes and maturities are changed,
the fitting process gives the close model prices to the market prices.

Additionally, since we fit the model along both periods mentioned above, we found
the estimated parameters for each day. Therefore, we can observe the change in all
parameters in both periods and compare them using Figure 3.1 .
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Table 3.6: Comparison between Market Prices and Model Prices of Call Warrants in
20January2016

DATE MATURITIES STRIKES MARKET PRICES MODEL PRICES

20.01.2016

29Februaryt2016
90 1.58 1.5711
95 0.53 0.5498

100 0.18 0.1689

29April2016
90 3.38 3.3848
95 1.83 1.8237

100 0.93 0.9302
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(b) The change in θ
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(c) The change in σ
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(d) The change in v0
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(e) The change in ρ

Figure 3.1: The change in the Heston parameters in the periods (01.03.2016-
31.03.2016) and (15.01.2016-03.02.2016)

As seen in the Figure 3.1, it can be observed that σ and v0 values during 15January-
3February is bigger than σ and v0 values during 1March - 31March. Moreover, while ρ
values are negative during 15January-3February, ρ values are positive during 1March-
31March.

To evaluate the comparison between κ and θ values, the mean of all parameters can be
checked by using Table 3.7 below:

Table 3.7 shows that the mean of parameters σ, v0 and ρ are the same with the obser-
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Table 3.7: Mean of Parameters

Mean of Params. in 15.01.2016-03.02.2016 Mean of Params. in 01.03.2016-31.03.2016
κ 11.2126 6.6562
θ 0.1209 0.1718
σ 0.4073 1.4238
v0 0.0565 0.1292
ρ 0.8719 -0.2578

vation made using the Figure 3.1. Furthermore , the mean of κ all along 15January-
3February is bigger than the mean of κ all along 1March-31March.Although the mean
of θ during 15January-3February is bigger than the mean of θ during 1March-31March,
since the means are close to each other, this does not affect more than the other param-
eters’ effect on the curvature of the smile of the Heston implied volatilities.

Using Section 3.2 and the observation on the comparisons of the parameters in the
periods (15.01.2016− 03.02.2016) and (01.03.2016− 31.03.2016), the model implied
volatilities’s curvature for the most of the days in (01.03.2016− 31.03.2016) are more
flattening that the curvature of the days in (15.01.2016− 03.02.2016).

To see this, since the parameters of 28 March 2016 and 20 January 2016 are known
from Table 3.3 and Table 3.5, which enables to compare the parameters of these
two days as well, the figures of the model implied volatilities in these days are used.
Additionally, the figures gives the comparisons between the market implied volatilities
and the model implied volatilities simultaneously are:

As seen in Table 3.6 above, although the period, strikes and maturities are changed,
the fitting process gives the close model prices to the market prices.

Additionally, since we fit the model along both periods mentioned above, we found
the estimated parameters for each day. Therefore, we can observe the change in all
parameters in both periods and compare them using Figure 3.1 .

95 96 97 98 99 100 101 102 103 104 105
0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

Maturity: 29 April 2016

Strikes

Im
pl

ie
d 

V
ol

at
ili

tie
s

 

 

Market IV
Heston IV

95 96 97 98 99 100 101 102 103 104 105
0.24

0.242

0.244

0.246

0.248

0.25

0.252

0.254

0.256

0.258

0.26
Maturity: 30 June 2016

Strikes

Im
pl

ie
d 

V
ol

at
ili

tie
s

 

 

Market IV
Heston IV

Figure 3.2: The comparison between the market and the model implied volatilities at
28.03.2016

When we compare the parameters in 28.03.2016 and 20.01.2016, the comparison of
the parameters of these days are convenient to the observations made above for the
comparison of the parameters in. Thus, we can make an initial opinion about that
the model implied volatilities’ curvature in 28.03.2016 are more flattening than the
curvature in 20.01.2016. Figure 3.2 and Figure 3.3 show that this opinion is true.
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Figure 3.3: The comparison between the market and the model implied volatilities at
20.01.2016

Therefore, the parameters’ effects on the model implied volatilities observed in the
literature are in the same way with BIST30 warrants.
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CHAPTER 4

Hedging a BIST30 Call Warrant with the Heston Model

In this chapter, we review how one hedges and replicates an option in the Heston
model. Then we compare the hedging performance of the Heston model and the Black-
Scholes model on a collection of call warrants written on the BIST30 index traded in
BIST. Finally, we perform the hedging of a call warrant with a strike that was not being
traded during the period covered.

4.1 Hedging an Option Using the Heston Model

4.1.1 Hedging an Option

As we have already indicated in Section 2.3, to get a riskless portfolio and to hedge
the random volatility, an additional asset (other than the underlying index) driven by
the same Brownian motions is needed in the hedging portfolio. The value of the risk-
less portfolio Π, consisting of one option with price V = V (S, v, t), ∆ units of the
underlying asset (in our case it is the BIST30 index), and ψ units of another option
U = U(S, v, t) for the volatility is

Π = V + ∆S + ψU. (4.1)

Using Equation 4.1, one obtains ∆ and ψ given in Equation 2.14 of Section 2.3, for
reader’s convenience we repeat them here:

ψ = −∂V
∂v

/∂U
∂v

, (4.2a)

∆ = −ψ∂U
∂S
− ∂V

∂S
. (4.2b)

Because we are looking at the problem from the point of the seller of the option, the
V position in Equation 4.1 needs to be changed to a short position [15]. Thus, the
riskless portfolio, Π, including a short position on the call to be hedged will be:

Π = −V + ∆S + ψU (4.3)

31



Equation 4.3 changes Equation 4.2a and Equation 4.2b and we obtain ∆ and ψ for the
hedging portfolio as

ψ =
∂V

∂v

/∂U
∂v

, (4.4a)

∆ = −ψ∂U
∂S

+
∂V

∂S
. (4.4b)

In Equation 4.3, V is the price of the option hedged , U is the price of another option
used to hedge V and S is the stock price. Since Π represents the value of the riskless
portfolio, and because the market is no arbitrage it must be that Π equals the payoff of
a riskless bond. Thus, how much bond must be present in the hedging portfolio at time
t, can be calculated via

Bt = Vt − (∆tSt + ψtUt). (4.5)

For the purposes of this work the financial data available to us have been daily prices.
Thus, to apply the above continuous time hedging algorithm, we discretize time and
we perform the hedge at the end of each trading day. This leads to a hedging error Ht

for day t and an accumulated hedge error (denoted (PL)t) up to day t, computed as
follows:

1. At t = 0 the hedging portfolio is constructed for the first time and H0 = 0,

2. The hedging portfolio at t has long positions in ∆t units of stock, ψt units of the
other option with price U and Bt units of the bond; these are computed using the
formulas above.

3. This hedging portfolio, (∆t, ψt, Bt) is updated to (∆t+1, ψt+1, Bt+1) at time t+1;
due to discretization and model errors this update will not be self financing and
the portfolio will accrue the following hedging error

Ht+1 = Vt+1 − (Bte
r/365 + ∆tSt+1 + ψUt+1), (4.6)

where Bte
r/365 represents the bond’s value at t+ 1.

4. The total hedging error up to time t+ 1 then will be

(PL)t+1 = (PL)te
r/365 −Ht+1, (4.7)

where (PL)t is the accumulated hedging error up to day t. Thus, the total hedg-
ing error up to day t+ 1 is the sum of the future value of the total hedging error
up to day t plus the hedging error stemming from the transactions of day t + 1.
Note that a positive value of (PL)t means that the hedger makes a profit from the
transaction and a negative value corresponds to a loss. But, since we are looking
at this problem from the point of view of hedging, closer (PL) is to 0 better the
hedging algorithm works (if the algorithm worked perfectly (PL) would have
been 0 identically).

The total hedge error as a percentage of the current value of the option is defined as

(HE)t =
(PL)t
Vt

. (4.8)

We will be using this value to measure how well the hedging algorithm works.
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4.2 Results

In this section, we report on the performance of hedging based on the Heston model
using the steps given in the previous section. In subsection 4.2.1 we apply the hedging
call warrants on the BIST30. Two periods and four options are covered:

1. (01.03.2016-31.03.2016) (24 working days); we hedged two warrants in this pe-
riod: a call option with strikeK = 95 with maturity 29.04.2016 and a call option
with the same strikeK = 95 and maturity 30.06.2016. The parameter estimation
of the Heston model for these periods have been carried out in Chapter 3; for
the parameter values of the Heston model to be used in the present chapter we
use the results of Chapter 3.

2. (15.01.2016-03.02.2016) (14 working days), the warrants are call options with
strike K = 90 and maturity 29.02.2016 and 29.04.2016.

In choosing these we have used the following guidelines:

1. we wanted to cover at least one option with a short term maturity and one with a
longer term.

2. In choosing the strikes: we have chosen one of the most liquid strikes traded in
the period covered and used in model fitting (the greatest number of strikes used
in any of the model fits we performed was three, so in choosing our example
strikes we did not have many options to begin with).

3. the time period was chosen to be between 1.12.2015 (the date when BIST switched
to a single trading session) and 31.3.2016 (the date around which we were in the
middle of carrying out the work that is the subject of the present thesis). We
wanted to cover at least two different time periods to get an idea about how
much the results obtained depend on the period covered.

In the final subsection of the chapter, we apply the hedging algorithm to a warrant
which was not traded in the market during the period covered. For this example, we
have chosen the period between 1.03.2016 and 31.03.2016, a call option warrant with
strike K = 96 and maturity 29.04.2016.

4.2.1 Hedging BIST30 warrants already traded in the market

To measure the hedging performance of the Heston model on BIST30 warrants, we
compare its performance with the hedging performance of the Black-Scholes model.

We use the delta-hedging of the Black-Scholes model [20] and apply the Black-
Scholes delta-hedging for each time period one day as in Section 4.1.1 .
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4.2.1.1 Hedging a warrant having a shorter time to maturity

Using the method in Section 4.1.1, we hedged a warrant with strike 95 and maturity
29 April 2016 both using the Heston and the Black-Scholes models for each day in the
period (01.03.2016-31.03.2016). Let us denote the warrant being hedged with C .

Furthermore, to hedge a warrant using the Heston model, we need to use another
BIST30 warrant. For this, we choose a warrant with strike 100 and maturity 29 April
2016. Let us denote this warrant by C?.

In our hedging computations, we used the market prices of C and C? in both the
Heston and the Black-Scholes model ( in the case of hedging with the BS model, this
corresponds to using the implied volatility in the computations, rather than historical
volatility). The trajectory of the BIST30 index during the period covered is given in
Figure 4.1 .
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Figure 4.1: BIST30 index change in MARCH 2016

The hedging errors of the Heston model and the Black-Scholes models are given in
Table 4.1.

When we compare the models’ hedge performance listed in Table 4.1, we see that the
percentage errors of the Heston model are much closer to zero than the errors of the
Black-Scholes model, i.e., the hedge performance of the Heston model is better than
the performance of the Black-Scholes model. The hedge percentage errors of both
algorithms are also depicted in Figure 4.2. It can also be observed from this figure that
the Heston model’s hedge errors are closer to zero while the Black-Scholes hedge error
can fluctuate wildly.
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Table 4.1: The comparison of the hedge performance between the Heston and the
Black-Scholes models on a warrant with short time to maturity in
(01.03.2016-31.03.2016)

# Heston Model Hedging BS Model Hedging
DATE Profit/Loss Hedge Error(%) Profit/Loss Hedge Error(%)

1March2016 0 0 0 0
2March2016 0.0391 1.40 -0.1279 -3.73
3March2016 -0.0268 -0.80 -0.0072 -0.22
4March2016 -0.0719 -1.98 -0.0867 -2.39
7March2016 -0.0813 -2.18 -0.0946 -2.54
8March2016 -0.0407 -1.10 0.1029 2.78
9March2016 -0.0171 -0.39 0.0939 2.14
10March2016 -0.0537 -1.16 0.1412 3.10
11March2016 0.0516 1.08 0.3396 7.07
14March2016 0.1162 2.21 0.5792 11.03
15March2016 -0.0841 -2.89 0.1772 3.98
16March2016 -0.3945 -0.90 0.4486 10.20
17March2016 0.0466 0.73 0.8043 12.57
18March2016 0.3802 4.87 1.3581 17.41
21March2016 0.2245 2.66 1.1944 14.14
22March2016 -0.2023 -2.94 0.5809 8.32
23March2016 -0.3246 -4.76 0.1796 3.19
24March2016 -0.3093 -4.73 0.5130 7.85
25March2016 -0.3552 -4.50 0.3851 5.90
28Mart2016 -0.2952 -2.29 0.5367 8.48

29March2016 -0.1837 -2.85 0.7981 12.41
30March2016 0.1155 -1.86 1.0228 13.41
31March2016 0.1422 1.52 1.3991 18.46

Hedging in the time period 15.01 to 03.02 To further understand the performance
of the hedging algorithm given by the Heston algorithm we conducted another hedge
covering the time period January 15 to February 2 2016 (approximately 45 days before
the period studied above). We now consider the warrant with strike 90 and maturity 29
February 2016 in both models. Let C1 denote the warrant hedged.

To hedge C1 using the Heston model , another BIST30 warrant is needed. We choose
this warrant with strike 95 and maturity 29 February 2016, which is called C?

1 .

The trajectory of BIST30 in the period (15.01.2016-03.02.2016) can be observed in
Figure 4.3.

The comparison of the hedging performance between the Heston model and the Black-
Scholes model can be observed using the following Table 4.2

From Table 4.2 , the profits or the losses of the hedging process of the warrant C1 for
both models in the columns of profit/loss can be observed. The percentage of the hedge
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Figure 4.2: The Hedge Errors of the Heston and The Black-Scholes Model in
(01.03.2016-31.03.2016)
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Figure 4.3: BIST30 index change in (15.01.2016-03.02.2016)

errors of both models can be obtained in the hedge error columns; see also Figure 4.4,
for a graphical representation of the hedge errors of the models.

As in the previous period we see once again that, in the period (15.01.2016-03.02.2016)
the percentage errors of the Heston model are much closer to zero than the errors of
the Black-Scholes model.

4.2.1.2 Hedging a warrant having a longer time to maturity

In Section 4.2.1.1, we hedged a warrant having a short time to maturity by using the
Heston model and the Black-Scholes model and compared the performance of these
with each other.
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Table 4.2: The comparison of the hedge performance between the Heston and the
Black-Scholes models on a warrant with short time to maturity in
(15.01.2016-03.02.2016)

# Heston Model Hedging BS Model Hedging
DATE Profit/Loss Hedge Error(%) Profit/Loss Hedge Error(%)

15January2016 0 0 0 0
18January2016 -0.0033 -0.13 0.0151 0.62
19January2016 0.0375 1.68 0.1975 8.86
2OJanuary2016 -0.0127 -0.81 0.1887 11.94
21January2016 0.0657 5.81 0.5221 46.20
22January2016 0.0315 1.82 0.0985 5.70
25January2016 0.0542 3.13 0.1362 7.87
26January2016 0.1061 4.55 -0.1960 -8.41
27January2016 0.0871 3.65 -0.1793 -7.53
28January2016 0.0948 3.90 -0.1122 -4.62
29January2016 0.1445 4.69 -0.3149 -10.22
1February2016 0.0994 3.33 -0.3089 -10.36
2February2016 0.0160 0.68 -0.0135 -0.58
3February2016 0.1041 3.78 -0.1400 -5.09
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Figure 4.4: The Hedge Errors of the Heston and The Black-Scholes Model in
(15.01.2016-03.02.2016)

To see these models’ performance on a warrant with a longer time to maturity, we will
know perform the hedge of a warrant C̄ with strike 95 and maturity 30.06.2016 in the
time period 01.03.2016 to 31.03.2016 using both models (in the previous subsection
the maturity was 29.04.2016; thus the warrants in the present subsection have two
additional months to maturity). For the Heston model hedge we will use the additional
warrant with strike 100 and maturity 30.06.2016; we will denote this last warrant by
C̄?.

Table 4.3 lists the hedging errors of the models, Figure 4.5 shows the same errors
graphically. We see from both of these that the hedging results for the 30.06 maturity
warrants are similar to those of the warrants with 29.04 maturity. The hedge errors of
the Heston model are much closer to zero compared to the hedging errors of the Black
Scholes model.
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Table 4.3: The comparison of the hedge performance between the Heston and the
Black-Scholes models on a warrant with long time to maturity in
(01.03.2016-31.03.2016)

# Heston Model Hedging BS Model Hedging
DATE Profit/Loss Hedge Error(%) Profit/Loss Hedge Error(%)

1March2016 0 0 0 0
2March2016 -0.0800 -1.50 -0.2974 -5.56
3March2016 -0.0252 -0.48 -0.1262 -2.43
4March2016 0.0276 0.50 -0.2051 -3.73
7March2016 0.0433 0.78 -0.1625 -2.93
8March2016 -0.0531 -0.94 -0.0445 -0.79
9March2016 0.0060 0.10 -0.0730 -1.16

10March2016 -0.0513 -0.77 -0.1022 -1.54
11March2016 0.0062 0.09 0.0438 0.64
14March2016 0.0328 0.45 0.2839 3.89
15March2016 -0.0914 -1.41 -0.1176 -1.81
16March2016 -0.0284 -0.44 0.1043 1.60
17March2016 0.1007 1.21 0.6606 7.96
18March2016 0.2581 2.67 1.2649 13.11
21March2016 0.2243 2.19 1.1518 11.24
22March2016 -0.0748 -0.84 0.4187 4.70
23March2016 -0.1024 -1.33 -0.1321 -1.72
24March2016 -0.0896 -1.04 0.1518 1.76
25March2016 -0.1534 -1.76 -0.0255 -0.29
28March2016 -0.1513 -1.78 0.1265 1.49
29March2016 -0.1034 -1.20 0.3886 4.52
30March2016 -0.0959 -0.99 0.7138 7.36
31March2016 0.0415 0.43 1.0936 11.30

Moreover, using Figure 4.5, it can be observed that the Heston model’s hedge error is
more close. Thus, the hedge performance of the Heston model on C̄ is better than the
Black-Scholes’ one in (01.03.2016-31.03.2016).

Finally, let us change the time period to (15.01.2016-03.02.2016) and hedge a warrant
(denoted C̄1) with strike K = 90 with maturity 29.04 (in the previous section we
covered the same strike in the same time period with maturity 29.02). For the Heston
hedge we will use the additional warrant with strike 95 and the maturity 29.04.2016
(denoted C̄?

1 ). Table 4.4 and Figure 4.6 shows that the Heston hedge errors for this
setup. Once again, we get results to those we have observed in the previous cases:
The Heston hedge error is closer to zero compared to the hedging errors of the Black-
Scholes model.

38



0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

10

12

14

Working Days In (01.03.2016−31.03.2016)

H
ed

ge
 E

rr
or

s(
%

)

 

 

HESTON MODEL
BLACK−SCHOLES MODEL 

Figure 4.5: The Hedge Errors of the Heston and The Black-Scholes Model in
(01.03.2016-31.03.2016)

Table 4.4: The comparison of the hedge performance between the Heston and the
Black-Scholes models on a warrant with short time to maturity in
(15.01.2016-03.02.2016)

# Heston Model Hedging BS Model Hedging
DATE Profit/Loss Hedge Error(%) Profit/Loss Hedge Error(%)

15January2016 0 0 0 0
18January2016 0.0146 0.34 0.0156 0.37
19January2016 0.0384 0.94 0.1486 3.64
20January2016 -0.0285 -0.84 0.1903 5.63
21January2016 -0.0969 -3.42 0.6242 22.06
22January2016 0.0528 1.45 0.0012 0.03
25January2016 0.0193 5.30 0.0394 1.08
26January2016 0.2302 5.25 -0.4422 -10.10
27January2016 0.2151 4.80 -0.4750 -10.60
28January2016 0.1683 3.67 -0.4574 -9.99
29January2016 0.3140 5.98 -0.6795 -12.64
1February2016 0.2921 5.67 -0.6729 -13.07
2February2016 0.1719 3.82 -0.3771 -8.38
3February2016 0.2184 4.33 -0.6330 -12.03
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Figure 4.6: The Hedge Errors of the Heston and The Black-Scholes Model in
(15.01.2016-03.02.2016)

4.2.2 Hedging a warrant not traded in the market

In the previous sections we have hedged 4 different warrants in two different time peri-
ods, all of which were traded in the time periods covered. In this section we would like
to apply the Heston hedging algorithm to a warrant with a strike not available in the
market. For our warrant we have chosen a call warrant with strike K = 96 and matu-
rity 29.04.2016; we will denote this warrant with C3. As before, for the Heston hedge
an additional warrant is required: for this, we will use the warrant with strike K = 100
with the same maturity 29.04.2016 as that of C3. To maintain the comparison with
the hedging previous hedging performance mentioned in Section 4.2.1.1 and Sec-
tion 4.2.1.2, we observe the hedge performance of C3 during the period (01.03.2016-
31.03.2016) .

Since C3 is not traded, the hedging algorithm must use the model prices (as opposed to
the market prices, which are not available forK = 96). The model prices of C3 and the
hedge errors are shown in Table 4.5. the hedging error is also depicted in Figure 4.7.

When we compare these results with those of the previous section, we see that the
hedging performance of the Heston model for the untraded C3 is slightly worse than
those for the traded options. In particular, we see that the hedging error grows up to
8% whereas in the previous hedges the maximum hedging error was around 4%.
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Table 4.5: The Model Prices and the Hedge Performance of The Heston Model on the
Untraded Warrant

DATE The Model Prices of C3 Profit/Loss Hedge Errors(%)
1March2016 2.6274 0 0
2March2016 2.9949 0.0291 0.97
3March2016 2.8784 -0.0227 -0.79
4March2016 3.0802 0.0101 0.33
7March2016 3.2203 -0.0481 -1.49
8March2016 3.2579 -0.0930 -2.86
9March2016 3.8012 -0.0096 -0.25

10March2016 4.0301 -0.0360 -0.89
11March2016 4.1751 0.0743 1.78
14March2016 4.5950 0.1652 3.59
15March2016 3.8285 -0.1018 -2.66
16March2016 3.7694 -0.0283 -0.75
17March2016 5.6354 0.0310 0.55
18March2016 7.3127 -0.0392 -0.54
21March2016 7.8037 -0.0403 -0.52
22March2016 6.2163 -0.3376 -5.43
23March2016 4.9151 -0.4108 -7.35
24March2016 5.7542 -0.4042 -7.02
25March2016 5.7656 -0.4495 -7.80
28March2016 5.5685 -0.3980 -7.14
29March2016 5.6810 -0.3032 -5.33
30March2016 6.8552 -0.3105 -4.53
31March2016 7.0531 -0.3506 -5.08
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Figure 4.7: The Hedge Errors of the Heston Model on the untraded warrant in
(01.03.2016-31.03.2016)
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CHAPTER 5

Conclusion

In this chapter we comment further on our results and suggest several directions for
future research.

As seen in Chapter 3, Figure 3.1, there is a great change in the Heston estimated
parameters between the period (01.03.2016-31.03.2016) and (15.01.2016-03.02.2016).
This can be interpreted that the Heston model is not perfectly compatible with the
market (BIST30 warrants). However, with the appropriate choices of parameters, the
Heston model generates the model prices close to the known market prices as seen in
Table 3.2, Table 3.4 and Table 3.6.

We see in all of the examples that the hedge performance of the Heston model is
superior to that of the Black-Scholes model; this is the case as we change the strike,
the maturity and the period of hedge. This seems to be clearly related with the fact that
the Heston model uses an additional option to hedge volatility.

For future work, the following goals seem relevant: a better model for the interest rate,
allowing jumps in the Heston model, extending the analysis to earlier periods (not just
the period after November 2015, to which we have confined ourselves in this work)
and to more systematically cover the option parameters.
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