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ABSTRACT

LOCAL VOLATILITY MODEL APPLIED TO BIST30 EUROPEAN
WARRANTS:PRICING AND HEDGING

KİRAZOĞLU, Zekiye Sıla

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2016, 43 pages

One of the basic observations on pricing options is that the assumption of constant
volatility does not agree with data and market price data gives a volatility smile that
depends on maturities and strike prices. The first model that developed to be compat-
ible with this observation is the local volatility model. The purpose of this work is to
study the performance of the local volatility model on BIST30 warrants and compare it
to the standard Black Scholes model. To estimate the local volatility model from data
two approaches are used: 1) we estimate the local volatility directly from the under-
lying data (in this approach we make two assumptions: a) the local volatility depends
only on the price of the underlying b) the local volatility is a piecewise linear function)
2) first a Heston model is fit to option prices and we use Dupire’s formula to derive the
implied local volatiliy model.

Keywords : The Local Volatility Model, BIST30, warrants, pricing, hedging
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ÖZ

BIST30 ALIM SATIM VARANTLARINA YEREL VOLATİLİTE
MODELLERİNİN UYGULANMASI

KİRAZOĞLU, Zekiye Sıla

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2016, 43 sayfa

Opsiyon fiyatlamada temel gözlemlerden biri sabit volatilite varsayımının verilerle
uyuşmadığı ve market fiyat verilerinin vadeye ve kullanım değerine bağlı bir “volatilite
eğrisi” (volatility smile) verdiğidir. Bu gözlemle uyum kurmak için geliştirilen mod-
ellerden ilki “yerel volatilite” (local volatility) modelleridir. Bu çalışmanın amacı Yerel
volatite modellerinin BIST30 üzerine yazılmış alım satım varantlarının fiyatlama ve
üretme (replication) performansını çalışmak ve Black Scholes modeliyle karşılaştırmaktır.
Veriden yerel volatilite modeli çıkarımı için iki yöntem izlenmiştir 1) dayanak varlığın
geçmiş fiyat hareketlerinden çıkarım (bu yöntem için iki varsayım yapılmıştır a) yerel
volatilite sadece dayanak varlığın değerine bağlı kabul edilmiştir b) yerel volatilite
fonksiyonu yerel olarak lineer kabul edilmiştir) 2) ilk olarak opsiyon fiyatlarından He-
ston modeli çıkarımı yapılmış ve Dupire formülü kullanılarak Heston parametrelerinin
karşılık geldiği yerel volatilite fonksiyonu çıkarımı yapılmıştır.

Anahtar Kelimeler : Yerel Volatilite Modeli,BIST30,varant, fiyatlama, üretme
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CHAPTER 1

Introduction

The standard classical model in option pricing is the Black Scholes (BS) model first
given in [1], see also [15]. Black Scholes model is the benchmark model also in fi-
nance practice: the reason for its dominance is the simple explicit formulas it gives
for pricing and hedging. The simplicity of these come from the model assumptions,
namely constant interest rate and volatility. One indication of the prominence of this
model in practice is the term “implied volatility:” by definition the implied volatility
of a given European option is the volatility value in the Black Scholes model under
which the model gives exactly the price observed in the market. If the BS model were
a consistent model for option prices all options on the same underlying stock would
have the same implied volatility even if they have different strikes or different matu-
rities. Unfortunately such consistency doesn’t exist in real markets and the implied
volatilities of options written on the same underlying do change with strikes and ma-
turities (these collection of implied volatilities is called a volatility smile) [7]. What is
the simplest extension of the BS model to account for the volatility smile? Perhaps the
simplest extension would be to replace the constant volatility with a volatility which is
allowed to depend deterministically on time and the price of the underlying; this is the
local volatility model and its first analyses began with [5, 4]. In the paragraphs below
we review this model.

The Local Volatility model is an extension of the standard Black Scholes model where
the constant volatility σ ∈ R+ is replaced with a function σ : (s, t) → R+; thus the
volatility is made a deterministic function of the current asset price and time. There
are a number of studies in the literature which explain why this model is called a
local volatility model and its further motivations, see, e.g, [10, 7]. The main practical
motivation for local volatility models consists of two points

1. There is only one source of randomness, i.e., the Brownian motion driving the
stock price,and hence the model leads to a complete market and it allows a per-
fect hedge of European derivatives in continuous time with a portfolio consisting
of only the underlying stock and bonds.

2. Given a perfect and smooth implied volatility surface of standard European op-
tions (i.e., a volatility surface in which all maturities and strikes are represented)
there is a unique local volatility model which matches exactly the given surface;
hence, at least in theory, local volatility models can perfectly match given Euro-
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pean option prices on any given day. This relation is known as Dupire’s formula,
and is reviewed in the next chapter.

The aim of this thesis is to study the applicability and performance of the Local Volatil-
ity model to standard call options written on the BIST30 index 1, which is one of the
most popular stock indices that tracks 30 of the most traded stocks in the Borsa İstanbul
and compare its performance to the standard Black-Scholes model.

Chapter 2 is a review of the Local Volatility model: its definition, the derivation of the
partial differential equation (PDE) satisfied by European option prices under the local
volatility modela and a derivation of Dupire’s formula. This chapter mainly follows
[7, 5, 16]. Chapters 3 and 4 present our main work and results. As stated, our goal
is to fit the local volatility model to warrants written on the BIST30 index which are
currently traded in Borsa Istanbul and study the hedging and pricing performance of
the model. For this work, we use the publicly available daily prices. Therefore, the
delta hedging algorithm implied by the local volatility model is also applied daily. This
discretization and model error will lead to an accumulated hedging error which will be
updated each time the hedging portfolio is updated; the details of this computation is
given in section 3.2.3. This hedging error, normalized by the price of the option will
be our main performance criterion.

In fitting the local volatility model to data we try two approaches: in Chapter 3 we
directly use the values of the BIST30 index to estimate the local volatility function;
we refer to this as ”fitting using historical data.” To simplify our task we make the
following assumptions

1. the local volatility function depends only on the price of the underlying

2. the local volatility function is piecewise linear in the log of the underlying price.

Further details, of the fitting process, starting from these assumptions are given in
Chapter 3. In Chapter 4 we use the approach suggested in [7]: first fit the Heston
model to the derivative prices and use Dupire’s formula to get a local volatility surface.
The fits used in this thesis come from [14]. In computing the local volatility function
we use an approximation developed by Gatheral. The derivation of this approximation,
following [16] is also given in Chapter 4.

In addition to the model fits, both chapters study the hedging performance of the fitted
models. For our hedge study, we look at two periods over which the hedging algorithm
is run: 15.01.2016- 05.02.2016 and 01.03.2016- 31.03.2016. All of the hedged war-
rants are call type. For the January period we use strike price- 90 and two maturities:
29.02.2016 and 29.04.2016. For the March period we use strike price- 95 and two
maturities: 29.04.2016- 30.06.2016. All of the warrants hedged in these chapters were
traded (and had market prices) during the periods over which we run the hedging al-
gorithm. This leads to a further choice in the implementation of the hedging algorithm

1 This is one of the main indices tracking asset prices observed in Borsa Istanbul, for more info on it see
http://www.borsaistanbul.com/endeksler.

2
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when the fit is done from historical data as in Chapter 3: in the hedging one can either
use the model prices or the market prices. In Chapter 3 both of these possibilities are
tried. Our main finding on this choice is that the market prices lead to a much bet-
ter hedge compared to the model prices. All hedges are also repeated with the Black
scholes model and the results are compared with those given by the local volatility
model. A detailed comparison is given in Chapters 3 and 4; based on the results of
these chapters our overall impression is that the local volatility models do not hedge
significantly better than simple Black Scholes, and their performances are similar.

In all of the computations the interest rate is taken to be constant and is estimated from
the average of the benchmark interest rate 2 over a single month preceding the hedge
period.

Conclusion comments on future work.

2 see, e.g, http://www.bloomberght.com/tahvil/gosterge-faiz

3
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CHAPTER 2

Local Volatility Models

This chapter gives a definition of local volatility models and Dupire’s formula [5, 7],
which connects prices to the local volatility functions.

2.1 The Model

Consider the following general model often used to model an asset price:

dSt = (µt − dt)Stdt+ σtStdWt, (2.1)

where µt is the average growth rate of the stock and dt is the dividend yield assumed
to be zero in this study, Wt is a Brownian motion and the σt is the volatility at time
t. In addition to the stock price modeled by Equation 2.1 the market is also equipped
with an instantenous interest rate rt. In the Black-Scholes model, σt = σ and rt = r
are assumed to be constant; in local volatility models the constany assumption on σ is
modified to

σt = σ(t, St)

where σ(·, ·) is a deterministic function of time and the current stock price. For the
purposes of this thesis we will assume dt = 0; in pricing options in an arbitrage free
framework the average growth rate µt plays no role, and we will assume it to be a
cosntant µ. Thus, we arrive at the following basic local volatility model for the price
movement of a stock.

dSt = µStdt + σ(t, St)StdWt. (2.2)

The existence uniqueness theory asssociated with this stochastic differential equation
(SDE) is classical, see [11, Chapter 5], a simple sufficient condition for the existence
and uniqueness of the solution to Equation 2.3 is the Lipschitz continuity of σ(·, ·) in
the x variable. The piecewise linear models of local volatility we use in this thesis does
satisfy this condition.

The solution of St of Equation 2.3 gives us the price of a risky asset in our market. The
constant riskless rate r gives the second component of this market, the bond price:

S
(0)
t = ert.

5



Pricing European derivatives under the model given above is classical and one can
find a thorough exposition in it in [13]. Let us very briefly indicate the elements of
this theory. Let us denote (Ω,F , P ) the probability space on which is constructed the
SDE Equation 2.3 and let Ft be the filtration generated by W . One constructs a new
martingale measure P ∗ on (Ω,F ) under which the process

W ∗
t =

∫ t

0

µ− r
σ(s, Ss)

ds+Wt

is a Brownian motion. The existence of the measure P ∗ is given by Girsanov’s theorem,
for the details we refer the reader to [13]. Under P ∗ the dynamics Equation 2.3 become

dSt = rStdt + σ(t, St)StdW
∗
t . (2.3)

For the rest of this thesis these risk neutral dynamics will be assumed for the risky asset
price.

Consider a European option with payoff g(ST ) where the function g : R → R+ rep-
resents the payoff structure. Under basic intergrability assumptions on g(ST ), a well
known fact in mathematical finance [13] is that the no arbitrage price of this option at
time t < T equals

V (t, St) = e−r(T−t)E∗[g(ST )|Ft].

A well known method to compute the function V is to derive a PDE which it satisfies
and (perhaps numerically) solve this PDE. This derivation is well known; we review
it in the next section within the context of the local volatility model. The derivation
rests on the construction of an arbitrage free portfolio containing one unit of the option
to be priced and ∆ units of the underlying asset. The ∆ value can then be used to
actually replicate the payoff of the option. When such a replicating portfolio exists for
all contingent claims, we say that the market is complete; thus the argument of the next
section also implies the completeness of the market (at least for European options).

2.2 Derivation of the Local Volatility PDE

In the Black Scholes model, to derive the PDE satisfied by the price of a European
option one begins by a portfolio consisting of ∆ units of the underlying asset and 1 unit
of the option to be hedged; then the coefficient ∆ is chosen so that the portfolio value
becomes deterministic. This procedure produces two outcomes: 1) the PDE satisfied
by the price V and 2) the ∆ amount which can be used when replicating the option.
It is well known that the ∆ turns out to be Vx(t, St). The details of this derivation
is already given in [13] and many standard textbooks on mathematical finance. For
readers convenience we overview below its steps in the context of the local volatilty
model. All of the calculation below are done under the risk neutral measure; to ease
notation we will denote the risk neutral brownian motion by W .

We begin with a portfolio (1,∆) consisting of one unit of the option to be priced and ∆
unit of the underlying stock. We want to choose ∆ so that the portfolio value becomes

6



a deterministic function of time. The value Π of the portfolio is

Πt = V (t, St) + ∆tSt

We will construct the portfolio to be selffinancing so that e−rtΠt will be a martingale
under P ∗. The change in the portfolio is

dΠt = dV (t, St) + d(∆tSt). (2.4)

Application of Ito’s formula gives

V = V0 +

∫ t

0

∂V

∂s
ds+

∫ t

0

∂V

∂S
dS +

1

2

∫ t

0

∂2

∂S2
d 〈S〉s . (2.5)

Using the fact that d 〈S〉s = σ(t, St)
2S(t, St)

2dt and dS = rStdt + σStdWt from
Equation 2.1 and differentiating Equation 2.5 with respect to t,

dV =
∂V

∂t
dt+ µS

∂V

∂S
dt+

1

2
σ2S2 ∂

2

∂S2
dt+ σS

∂V

∂S
dW (2.6)

To find ∆S we can multiply Equation 2.1 with ∆,

∆dS = ∆µSdt+ ∆σSdW (2.7)

If we combine Equation 2.5 and Equation 2.7 we get,

dΠ =

(
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+ ∆µS

)
dt

+

(
σS

∂V

∂S
+ ∆σS

)
dW

(2.8)

Since we have a riskless portfolio the coefficient of dW must be equal to zero, in
other words, (

σS
∂V

∂S
+ ∆σS

)
= 0

which means
∆ = −∂V

∂S
. (2.9)

Here, ∆ is called hedge parameter. Subsituting ∆ in Equation 2.8 and equating the
coefficient of dW zero give

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (2.10)

Since the portfolio is riskless and the market is arbitrage free, the payoff portfolio
must be equal to the risk-free rate, r. That is, dΠ = rΠdt. Therefore, Equation 2.10
becomes

dΠ = r(V + ∆S)dt (2.11)

7



This and Equation 2.10 give

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
= r(V + ∆S),

Substituting to this the value of ∆ found in Equation 2.9 we get the PDE we seek:

− rV +
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ(t, x)2S2∂

2V

∂S2
= 0. (2.12)

This is a linear parabolic PDE. The payoff g of the option is used to supply a boundary
condition to Equation 2.12:

V (T, x) = g(x).

The equation Equation 2.12 is a classical equation; remember our Lipschitz continuity
assumption on σ. This assumption suffices to get smooth solutions to Equation 2.12,
when g has enough intergrability [6]. In the next section we will solve this PDE nu-
merically to compute prices of call options on BIST30.

2.3 Dupire’s Formula

Perhaps the most important formula connected to the local volatility model Equa-
tion 2.3 is Dupire’s formula, which is the name of the following relation:

∂C

∂τ
(τ,K) =

K2σ2(τ,K)

2

∂2C

∂K2
(τ,K)

whereC(τ,K) is the price of the call option with maturity τ and strikeK. A derivation
of Dupire’s Formula is given in Appendix 2.4. The significance of this formula is that
it allows us to compute the local volatility from the price function C thus:

σ2(K,T, S0) = 2
∂C
∂T

K2 ∂2C
∂K2

(2.13)

See the next section for a derivation of this formula. In theory, the right hand side of
Equation 2.13 can be computed from known European option prices. We say “in the-
ory” because, the computation of the derivatives of C requires that we have a complete
set of European option prices for all strikes and expirations, which is not available in
real life. An approach suggested by [7] to overcome this difficulty is as follows: one
first fits another volatility model, such as the Heston model, to the known prices, and
then one uses Equation 2.13 to get the implied local volatility model. We will use this
approach in Chapter 4.

2.4 Derivation of Dupire’s Formula

In this section we give a derivation of the Dupire’s equation step by step. The outline
of the following computation is given as an exercise in [13].

8



Step 1: Let us begin with showing Equation 2.1 has a unique solution such that S0 = x
for every x ∈ R:

From Ito formula, we have;

St = S0 +

∫ t

0

µ(s)Ssds+

∫ t

0

σ(s, Ss)SsdWs +
1

2

∫ t

0

S2
sσ

2(s, Ss)ds (2.14)

Therefore, if we write S0=x for all x in Equation 2.14, we obtain unique St for each x
that we equalize to S0.

Step 2: Secondly, we can show that the solution St have an exponential form. That is;

Let Xt = log(St);i.e. St = exp(Xt).Then if we apply Ito’s Formula on Xt, we get;

Xt = X0 +

∫ t

0

µ(s)Ss
1

Ss
ds+

∫ t

0

σ(Ss, s)Ss
1

Ss
dWs +

1

2

∫ t

0

(− 1

S2
s

)S2
sσ

2(Ss, s)ds

(2.15)
After some arrangements in Equation 2.15, we obtain;

Xt = X0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(Ss, s)dWs −
1

2

∫ t

0

σ2(Ss, s)ds (2.16)

If we take an exponential of both sides of Equation 2.16;

A = eXt = St = eX0e
∫ t
0 µ(s)ds+

∫ t
0 σ(Ss,s)dWs− 1

2

∫ t
0 σ

2(Ss,s)ds (2.17)

Hence, we get;

St = S0 exp[

∫ t

0

µ(s)ds+

∫ t

0

σ(Ss, s)dWs −
1

2

∫ t

0

σ2(Ss, s)ds] (2.18)

Step 3: Now, we should prove that the natural filtration of the process (St)t≥0 is equal
to F(which is the notation of the natural filtration of (Bt)t≥0). Let Zt = log(St), then

Zt = Z0 +

∫ t

0

µ(s)ds+

∫ t

0

σ(s, Ss)dWs −
1

2

∫ t

0

σ2(Ss, s)ds (2.19)

We know our first assumption that St = eZt , so Ss = eZs . Then if we plug Ss in
the Equation 2.19, we obtain:

Zt = Z0 +

∫ t

0

µsds+

∫ t

0

σ(s, eZs)dWs −
1

2

∫ t

0

σ2(s, eZs)ds (2.20)
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If we divide both sides by Zt and then integrate from 0 to t, we get:

∫ t

0

1

σ(s, eZs)
dZs =

∫ t

0

Z0

σ(s, eZs)
ds+

∫ t

0

µ(s)

σ(s, eZs)
ds+Wt −

1

2

∫ t

0

σ(s, eZs)ds

(2.21)

Finally, if we leave Wt alone in Equation 2.21;

Wt =

∫ t

0

1

σ(s, eZs)
dZs−

∫ t

0

Z0

σ(s, eZs)
ds−

∫ t

0

µ(s)

σ(s, eZs)
ds+

1

2

∫ t

0

σ(s, eZs)ds (2.22)

OR if we write Ss instead of eZs in Equation 2.22;

Wt =

∫ t

0

1

σ(s, Ss)
dSs −

∫ t

0

logS0

σ(s, Ss)
−
∫ t

0

µ(s)

σ(s, Ss)
ds+

1

2

∫ t

0

σ(s, Ss)ds (2.23)

which is equal to;

Wt =

∫ t

0

1

σ(s, Ss)
dSs −

∫ t

0

[
log(S0) + µ(s)

σ(s, Ss)
− σ(s, Ss)

2
]ds (2.24)

All of these means that if we know process (St)t≥0,then we can find Wt in terms of St.

Step 4: Let L be martingale defined by Lt = exp
(
−
∫ t
0

ΘudWu − 1
2

∫ t
0

Θ2
udu
)

,with

Θt = µ(t)
σ(t,St)

. Fix the horizon τ̃ of the model (0 < τ̃ < +∞) and let P ? be the proba-
bility given by dP ?

dP
= Lτ̃ . Given τ ∈ [0, τ̃ ], let C(τ,K) be the price of a call option

with maturity τ and strike price K.

(a) We should prove that, for (t, x) ∈ R+, σ(t, x) ≤M .In adddition to this, we should
deduce that, for 0 ≤ t ≤ τ̃ and p ≥ 1, E?(Spt ) ≤ Sp0exp

(
p2−p
2
M2t

)
:

To reach a solution, first we should take f(St) = Spt then we should apply the Ito’s
Formula on f(St);

f(St) = f(S0) +

∫ t

0

f ′(Ss)dSs +
1

2

∫ t

0

f ′′(Ss)d < S >s (2.25)

OR equivalently;
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Spt = Sp0+

∫ t

0

pSp−1s Ssσ(s, Ss)dBs+

∫ t

0

pSp−1s Ssµ(s)ds+
1

2

∫ t

0

p(p−1)Sp−2s S2
sσ

2(s, Ss)ds

(2.26)

If we take expectation of the both sides of Equation 2.26;

E?[Spt ] = E?[Sp0 ] + pE?[

∫ t

0

Spsµ(s)ds] +
p(p− 1)

2
E?[

∫ t

0

Spsσ
2(s, Ss)ds] (2.27)

Since expectaiton of Brownian Motion is zero and drift term is given by zero, after
doing this elimination in Equation 2.27 we have;

E?[Spt ] = E?[Sp0 ] +
p(p− 1)

2
E?[

∫ t

0

Spsσ
2(s, Ss)ds] (2.28)

Since σ2 ≤ M2, we have E?[Spt ] ≤ E?[Sp0 ] + p(p−1)
2

E?[
∫ t
0
SpsM

2ds] which is equiva-
lently;

E?[Spt ] ≤ E?[Sp0 ] +
p(p− 1)

2
M2E?[

∫ t

0

Spsds] (2.29)

Now, to reach the desired conclusion we should use Gronwall’s Inequality which says;

If we have an equality such that ψ(t) = ψ(0) + c
∫ t
0
ψ(s)ds where c is a constant, then

by taking derivative we have ψ′(t) = cψ(t) and we know that the solution of this equal-
ity ψ(t) = ψ(0)ect. If we use inequality instead of equality, we have ψ(t) ≤ ψ(0)ect.If
we turn back our inequality, we see that here the constant c = p2−p

2
M2 and we con-

clude that;

E?[Spt ] ≤ Sp0e
p2−p

2
M2t (2.30)

(b)The explanation of the equality C(τ,K) = E?[(Sτ −K)+] for τ ∈ [0, τ̃ ] is;
Since E? is taken under P ? that is the risk neutral probablity measure, the equality
above makes sense in term of that pricing a call option in risk neutral expectation,
which gives us an oppurtunity that we can act freely in risk neurtral environment as a
risk neutral investor.
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(c) To show that, for K ≥ 0 , τ → C(τ,K) is nondecreasing on [0, τ̃ ] we use the
martingale property of S under P ?. Moreover, we prove that (τ,K) → C(τ,K) is
continuous on [0, τ̃ ]×R+:

Let f be a convex function and M be a martingale, thenE?[f(Mt)|Fs] ≥ f [E?[Mt|Fs]]].
Here, since E?[Mt|Fs]] = Ms we have E?[f(Mt)|Fs] ≥ f(Ms) which means that
t→ f(Mt) is a submartingale. [13]
Let τ → (Sτ − K)+ = f(Mτ ) = C(τ,K), then from the expectation rules we
know that E?[E?[X|G]] = E?[X] where G is the probability measure. Therefore;
E?[E?[f(Mt)|Fs]] ≥ E?[f(Ms)]. In other words if t ≥ s thenE?[f(Mt)] ≥ E?[f(Ms)]
which means that τ → C(τ,K) is non-decreasing on τ ∈ [0, τ̃ ]

Now, to prove continuity, let Yn = (Sτn−Kn)+ so that Y = (Sτ −K)+ when n→∞.
Fix ω ∈ Ω. If Yn(ω) → Y (ω) for ω ∈ Ω, then, using Dominated Convergence The-
orem we need to show that E?[Yn] → E?[Y ], i.e. we need to put the limit inside of
E?.To do this, we only need to show that |Yn| ≤ Z for Z ∈ R.Thus, for a fixed ω ∈ Ω.

|Yn| = (Sτn −Kn)+ ≤ |Sτn(w)|+ ≤ max
t∈τ̃
|St(w)| (2.31)

Therefore, E?[Yn] → E[Y ]. This means that C(τn, Kn) → C(τ,K). This proves that
(τ,K)→ C(τ,K) is continuous on [0, τ̃ ]×R+.

(d) Now, we need to make a connection with the E∗ and the call price C:

First we need to check that (S −K)2+ = 2
∫∞
K

(S − u)+du. Now,
let S ≤ K, then 2

∫ S
K

(S − u)+du+ 2
∫∞
S

(S − u)+du = 2
∫ S
K

(S − u)+du since
2
∫∞
S

(S − u)+du is equal to zero. We can write directly

2

∫ S

K

(S − u)du = 2S

(
u
∣∣∣S
K

)
− 2

(
u2

2

∣∣∣S
K

)
(2.32)

= 2S(S −K)− 2

[
S2 −K2

2

]
= (S −K)2 = (S −K)2+

Hence, here we conclude that

(S −K)2+ = 2

∫ ∞
K

(S − u)+du = 2

∫ ∞
K

(Sτ − y)dy (2.33)

.Finally, if we take an expectation star of both sides in Equation 2.33;

E?[(Sτ −K)2+] = 2

∫ ∞
K

E?[(Sτ − y)]dy = 2

∫ ∞
K

C(τ,K)dy (2.34)

.
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Step 5: Let f0(x) = (x+)2 and, for ε > 0,

fε(x) =


0 if x < 0
x3

3ε
if x ∈ [0, ε]

x2 − εx+ ε2

3
if x > ε

(a)First we should prove that, for ε > 0,fε is of class C2, that limε→0(fε) = f0(x) for
every x ∈ R, and that ∀x ≥ 0 , 0 ≤ fε(x) ≤ f0(x) ,0 ≤ f ′ε(x) ≤ 2x ,0 ≤ f ′′ε (x) ≤ 2:

To begin with, to prove that fε is of class C2 , we need show that left and right limits
at 0 and ε is equal to each other on functions fε(x),f ′ε(x),and f ′′ε (x). To do so, we find
f ′ε(x), and f ′′ε (x) as below:

f ′ε(x) =


0 if x < 0
x2

ε
if x ∈ [0, ε]

2x− ε if x > ε

, f ′′ε (x) =


0 if x < 0
2x
ε

if x ∈ [0, ε]

2 if x > ε

Now, let us look left and right limits:

limx→0− (fε(x) = 0) = 0 = limx→0+

(
fε(x) =

x3

3ε

)

limx→ε−

(
fε(x) =

x3

3ε

)
=
ε2

3
= limx→ε+

(
fε(x) = x2 − εx+

ε2

3

)

limx→0− (f ′ε(x) = 0) = 0 = limx→0+

(
f ′ε(x) =

x2

ε

)

limx→ε−

(
f ′ε(x) =

x2

ε

)
= ε = limx→0+ (f ′ε(x) = 2x− ε)

limx→0− (f ′′ε (x) = 0) = 0 = limx→0+

(
f ′′ε (x) =

2x

ε

)

limx→ε−

(
f ′′ε (x) =

2x

ε

)
= 2 = limx→ε+ (f ′′ε (x) = 2)
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Since all left and right limits are equal as above, we say that fε is of class C2.
Let us now compute limε→0(fε).

lim
ε→0

fε(x) =


0 if x < 0
x3

3ε
if x ∈ [0, ε]

x2 − εx+ ε2

3
if x > ε


=


limε→00 = 0 if x < 0

limε→0
x3

3ε
= 0 if x = 0

limε→0x
2 − εx+ ε2

3
= x2 if x > 0.

Thus the above limit equals to:{
0 if x ≤ 0

x2 if x > ε
= (x+)2

Given ε > 0 and ε is so small. Then we have

f0(x)− fε(x) =


0 if x < 0

x2 − x3

3ε
> 0 if x ∈ [0, ε]

εx+ ε2

3
> 0 if x > ε

≥ 0 ∀x

Therefore, ∀x ≥ 0 , 0 ≤ fε(x) ≤ f0(x).Also,

2x− f ′ε(x) =


2x if x < 0

2x− x2

ε
= x(2− x

ε
) > 0 if x ∈ [0, ε]

2x− (2x− ε) = ε > 0 if x > ε

≥ 0 ∀x

Therefore,∀x ≥ 0,0 ≤ f ′ε(x) ≤ 2x.Also,

2− f ′′ε (x) =


2 if x < 0

2− 2x
ε

= 2(1− x
ε
) > 0 if x ∈ [0, ε]

0 if x > ε

≥ 0 ∀x

Therefore, ∀x ≥ 0,0 ≤ f ′′ε (x) ≤ 2.

(b) Secondly, we should prove that, for K ≥ 0 and τ ∈ [0, τ̃ ],

E?[fε(Sτ −K)] = f0(S0 −K) +
1

2
E?

[∫ τ

0

f ′′ε (S0 −K)S2
uσ

2(u, Su)du

]

Using Ito’s formula on the function fε(Sτ −K), we have

fε(Sτ −K) = fε(S0−K)+

∫ τ

0

f ′ε(S0−K)dSu+
1

2

∫ τ

0

f ′′ε (S0−K)d〈S〉u . (2.35)
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When we rewrite Equation 2.35 by substituting the explicit expressions for dSu and
d〈S〉u we get

fε(Sτ −K) = fε(S0 −K) +

∫ τ

0

f ′ε(S0 −K)Suσ(u, Su)dWu (2.36)

+

∫ τ

0

f ′ε(S0 −K)Suµ(u)du+
1

2

∫ τ

0

f ′′ε (S0 −K)S2
uσ

2(u, Su)du (2.37)

Taking E? of Equation 2.36 we get

E?[fε(Sτ −K)] = E?[fε(S0 −K)] + E?

[∫ τ

0

f ′ε(S0 −K)Suσ(u, Su)dWu

]
+E?

[∫ τ

0

f ′ε(S0 −K)Suµ(u)du

]
+ E?

[
1

2

∫ τ

0

f ′′ε (S0 −K)S2
uσ

2(u, Su)du

]
Since E? of Brownian Motion is martingale, we can eliminate that term. Also, since
µ(t) is given 0, that term having µ(t) in it is 0. Therefore, we get what desire,i.e.,

E?[fε(Sτ −K)] = E?[fε(S0 −K)] +
1

2
E?

[∫ τ

0

f ′′ε (S0 −K)S2
uσ

2(u, Su)du

]
(2.38)

Final Step: Assume that, for every t ∈ (0, τ̃ ], the random variable St has, under
probability P ?, a density p(t,.), where (t, x)→ p(t, x) is continuous on (0, τ̃ ]×R+.

(a) Firstly, we prove that, for 0 < τ ≤ τ̃ and K > 0, p(τ,K) =
(
∂2C
∂K2 (τ,K)

)
:

We know from 4(d):

E∗[(Sτ −K)2+] = 2
∫∞
K
C(τ, y)dy

Now, we take three times derivatives of both sides of the equation with respect to
K to prove the statement above. To clarify the solution, we show derivatives one by
one,i.e.,

First Derivative:

∂

∂K
E∗[(Sτ −K)2+] =

∂

∂K

[∫
(y −K)2+p(τ, y)dy

]
=

∂

∂K

[∫ +∞

K

(y −K)2p(τ, y)dy

] (2.39)

Since integral’s end point contains a function of K, we need to apply Liebniz Rule. To
do so, let g(y,K) = (y −K)2.Then
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−g(y,K)
∂

∂K
(K)+

[∫ +∞

K

∂

∂K
((y −K)2)p(τ, y)dy

]
= −(y −K)2 − 2

[∫ +∞

K

(y −K)p(τ, y)dy

] (2.40)

Second Derivative:

Again, since integral’s end point contains a function of K, we need to apply Lieb-
niz Rule To do so, let h(h,K)=(y-K). Then

∂

∂K

[
−(y −K)2 − 2

∫ +∞

K

(y −K)p(τ, y)dy

]
= −2(y −K)− 2

[
−h(y,K)

∂

∂K
(K) +

∫ +∞

K

∂

∂K
(y −K)p(τ, y)dy

]
= −2(y −K) + 2(y −K) + 2

∫ +∞

K

p(τ, y)dy

= 2

∫ +∞

K

p(τ, y)dy

(2.41)

Third Derivative:

Here, it is simply the usage of Fundamental Theorem of Calculus we have

∂
∂K

[∫ +∞
K

p(τ, y)dy
]

= 2p(τ,K)

In conclusion, we showed above that

∂3

∂K3 [E∗[(Sτ −K)2+]] = 2p(τ,K)

First Derivative:

∂
∂K

[
2
∫ +∞
K

C(τ, y)dy
]

= 2C(τ,K)

Second and Third Derivative:

∂2

∂K2 (2C(τ,K)) = 2 ∂
2C
∂K2 (τ,K)

In conclusion, we showed above that

∂3

∂K3

[
2
∫ +∞
K

C(τ, y)dy
]

= 2 ∂
2C
∂K2 (τ,K)
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By cancelling 2 which is common on both sides of the equation, we proved that

p(τ,K) = ∂2

∂K2 (τ,K)

(b) Secondly, we should prove, using Question 5, that

E?[(Sτ −K)+]2 = (S0 −K)2+ +
∫ τ
0

(∫∞
K
y2σ2(u, y)p(u, y)dy

)
du:

Since we already proved 5(b), we can directly use it to prove the above statement.
Thus,we have

E∗[fε(Sτ −K)] = fε(S0 −K) + 1
2
E∗
[∫ τ

0
f
′′
ε (S0 −K)S2

uσ
2(u, Su)du

]
Now, we take limits of both sides when ε→ 0.In other words;

Taking Limit of LHS:

Using the Dominated Convergence Theorem we put the limit inside of the E∗.Thus,
we have

limε→0(E
∗[fε(Sτ−K)]) = E∗[limε→0 fε(Sτ−K)] = E∗[f0(Sτ−K)] = E∗[(Sτ−K)2+]

Taking Limit of RHS:

Here, we need to write the term of E∗ in an explicit form. To do so, we use given
density function p(t, .).Also, we use again the Dominated Convergence Theorem to
put E∗ and the limit inside of the integral. Thus, we have

lim
ε→0

[
fε(S0) +

1

2
E∗
[∫ τ

0

f ′′ε (S0 −K)S2
uσ

2(u, Su)du

]]
= lim

ε→0
[fε(S0 −K)] + lim

ε→0

[
1

2
E∗
[∫ τ

0

f
′′

ε (S0 −K)S2
uσ

2(u, Su)du

]]
= f0(S0 −K) +

1

2

∫ τ

0

E∗
[
lim
ε→0

(f
′′

ε (S0 −K)S2
uσ

2(u, Su))
]
du

= (S0 −K)2+ +
1

2

∫ τ

0

(∫ +∞

K

2y2σ2(u, y)p(u, y)dy

)
du

= (S0 −K)2+ +

∫ τ

0

(∫ +∞

K

y2σ2(u, y)p(u, y)dy

)
du

(2.42)

In conclusion, when we take limits of both sides of the equality holds again. Thus,we
proved the statement in (b),i.e.,
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E∗[(Sτ −K)2+] = (S0 −K)2+ +
∫ τ
0

(∫ +∞
K

y2σ2(u, y)p(u, y)dy
)
du

(c) Finally, we deduce from above that ∂C
∂K

(K, τ) = K2σ2(τ,K)
2

∂2C
∂K2 (τ,K) (for

0 < τ ≤ τ̃ and K > 0):

Here,we use the statement 6(b) to prove the given statement so that we take two times
derivative of 6(b) and multiply it with 1

2
. Now, we need to show LHS and RHS of the

equality seperately. Thus, we have,

For LHS:

∂

∂τ
[E∗[(Sτ −K)2+]] =2E∗[(Sτ −K)|+∗] = 2C(τ,K)

=
1

2

∂

∂τ
[2C(τ,K)] =

∂C

∂τ
(τ,K)

This simply means that

1

2

∂2

∂τ 2
[E∗[(Sτ −K)∗+]] =

∂C

∂τ
(τ,K)

(2.43)

For RHS:

Here, we use the Fundamental Theorem of Calculus so we have

∂

∂τ

[
(S0 −K)2+ +

∫ τ

0

(∫ +∞

K

y2σ2(u, y)p(u, y

)
du

]
=

∂

∂τ

[∫ τ

0

(∫ +∞

K

y2σ2(u, y)p(u, y)dy(

)
du

]
=

∫ +∞

K

y2σ2(τ, y)p(τ, y)dy

(2.44)

Taking one more derivative and using again the Fundamental Theorem of Calculus
and 6(a), we have

1

2

∂

∂τ

[∫ +∞

K

y2σ2(τ, y)p(τ, y)dy

]
=
K2σ2(τ,K)

2
p(τ,K) =

K2σ2(τ,K)

2

∂2C

∂K2
(τ,K)

(2.45)

Since RHS is equal to LHS,we get:
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∂C

∂τ
(τ,K) =

K2σ2(τ,K)

2

∂2C

∂K2
(τ,K), (2.46)

which is called Dupire’s Equation.
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CHAPTER 3

Hedging and Pricing Using Historical Fit

In this chapter, we fit the local volatility model to BIST30 using historical price data of
the BIST30 index directly; then we use these fits to price and hedge European options
on BIST30. We do these over two periods: 15.01.2016-05.02.2016 (two weeks, we
will refer to this time interval as the “January period” ) and 01.03.2016-31.03.2016
(four weeks, will be referred to as the “March period.”).

3.1 The fit

As indicated in the introduction, for the purposes of this chapter we assume the local
volatility function to depend on the stock price only and to be piecewise linear in
log(St); these are simplifying assumptions and can be relaxed in future work. Here
we would like to point out that there are many earlier works estimating local volatility
models from data, see, e.g., [8, 2], it is worth looking into these approaches within the
present context, this may be undertaken in future work.

To perform the fit we proceed as follows: to fit a local volatility model on day t, we
take the price data of the 200 days preceding day t; let m denote the minimum value
of log(St) observed in these 200 days and let M denote the maximum. We divide the
interval (m,M) into 3 bins of equal size. Then we compute the returns for each day
and classify them into the 3 bins according to the value of the index for which the
return is computed. Then the volatility of each bin is computed separately; t o get our
local volatilility function the computed volatilities are connected with lines. Finally,
outside of the interval (m,M) the local volatility function is taken constant in such a
way to make it continuous. In other words, we assume σ(t, x) = σ(x) which means
that σ depends on only x = log(S). We further assume;

σ(x) = aix+ bi, xi ∈ (ci−1, ci)

σ(x) = l, x ≤ m

σ(x) = r, x ≥M

m = c0 < c1 < ..... < ck = M

(3.1)

Here k − 1 is the number of bins; ai, bi, l, r are such that σ is a continous function.
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Let us comment on the two parameters: the length of the history used in the compu-
tation (taken to be 200 above) and the number of bins (3): based on our numerical
experiments, these parameters seem to have limited impact on the hedging and pricing
results. We have chosen the length 200 because it represents approximately one year
of price history. As for the number of bins: with increasing number of bins the model
becomes more general. Our numerical experiments indicate that after 3 the hedging
and pricing results seem to barely change with increasing number of bins and 3 bins
appear to give a general enough model under the current assumptions. A more system-
atic study of the effect of these parameters on the pricing and hedging results may be
undertaken in future work.

3.1.1 The local volatility fit for the January period

The local volatility for BIST30 estimated for the January period is shown in Figure 3.2;
for comparison the constant Black Scholes volatility (again estimated using historical
volatility) is shown in Figure 3.1. Both of these figures display a graph for each week
of the given period: the later the week, the thicker the line representing that week’s
estimated local volatility.

Figure 3.1: Black-Scholes Volatility in 15.01.2016-05.02.2016

Concerning these fits we observe the following: the shape of the local volatility curve
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Figure 3.2: Local Volatility in 15.01.2016-05.02.2016

doesn’t change in these two weeks but their values slightly change. The Black scholes
constant volatility alsochanges slightly in the two weeks covered.

3.1.2 The local volatility fit for March period

The local volatility for BIST30 estimated for the March period is shown in Figure 3.4;
for comparison the constant Black Scholes volatility (again estimated using historical
volatility) is shown in Figure 3.3. As in the previous subsection, both of these figures
display a graph for each week of the given period (the length of the period covered is
slightly longer than four weeks, therefore Figure 3.3 gives a fifth estimate): the later
the week for which the fit is estimated, the thicker the line representing the estimated
local volatility. We note that as the weeks progress the shape of the local volatility fit
changes.

3.2 Pricing BIST30 Warrants using Historical Data

The next subsection reviews how one computes option prices using the local volatility
model. Subsection 3.2.2 computes actual prices of several call warrants written on
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Figure 3.3: Black-Scholes Volatility in 01.03.2016-31.03.2016

BIST30 using the local volatility models estimated in the previous section and using
the computational approach explained in subsection 3.2.1. For the pricing example, we
slightly extend the periods we study: we will give two pricing examples from January,
two from February, two from March and two from April. The local volatility models
for the dates not covered in the previous section are estimated using exactly the same
methods as of the previous section.

3.2.1 Computation of the option price

Consider a call option with strike K and maturity T ; as reviewed in the previous chap-
ter, its price will be

V (s, t)
.
= Es

[
e−r(T−t)(ST −K)+

]
,

where St has the dynamics given in Equation 2.3. If we change our price variable to
x = log(s) and define Xt = log(St) one can write the last display as

V (x, t) = Ex
[
e−r(T−t)(eXT −K)+

]
.

In the BS framework σ is a constant and the last expectation can be written as a one
dimensional integral against the normal distribution. When σ is not constant we no
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Figure 3.4: Local Volatility in 01.03.2016-31.03.2016

longer have such explicit formulas. An alternative and standard approach to the comp-
tuation of the same expectation is by solving the partial differential equation (PDE)
satisfied by V , derived in the previous chapter the function C (as a function of x and t:

Vt + σ2(t, s)Vxx/2 + (r − σ2(t, s)/2)Vx = 0,

with the terminal condition

V (T, x) = (ex −K)+. (3.2)

This PDE doesn’t have straightforward closedform expressions for its solution but
its solution via numerical techniques is standard. For the purposes of this thesis we
have used the Markov chain approximation technique given in [12]. This involves
the discretization of the space and time variables to construct a discrete time and
space Markov chainXn whose transition probabilities approximate the diffusion Equa-
tion 2.3. For the local volatility model the dynamics of Xn are given as follows:

Xn
0 = x,Xn

k+1 = Xn
k + Ink∆x

where Ik takes values in {−1, 0, 1}. Let Fk
.
= (X1, X2, ..., Xk); the conditional distri-

bution of In given Fn is

P (Ik+1 = 1|Fn) = 0.5(σ(Xk)
2 + γ∆x);P (Ik+1 = 0|Fn) = 1− σ(Xk)

2
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where
γ = r − σ(Xn)2/2

and ∆x is the discrete space step size. Let ∆t be the time step used in the discretization;
then it will take Xn N = T/∆t steps to reach maturity. The resulting approximation
of the option prices consists of the expectation

Cn(x, T ) = e−rTE
[(
eX

n
N −K

)+]
.

BecauseXn is discrete and takes onlyN steps the last expectation can be computed by
backward recursion in finitely many steps. As n grows and ∆x,∆t → 0 the time and
space grids are refined and the discrete markov chain Xn converges weakly to log(St).
For further details of the construction of the discrete time process Xn and convergence
proofs we refer the reader to [12].

3.2.2 Application to data

For January and February, for our call warrants, we take the strikes 90 and 95 and
the maturities 29.02.2016 and 29.04.2016. All of these warrants were among the
highly traded warrants written by Deutsche Bank in January and February of 20161

the availability of their market price will give us a chance to compare model and mar-
ket prices. The first part of Table 3.1 show the model prices on 15.01.2016, 20.01.2016,
01.02.2016 and 16.02.2016. For March and April, we take 100 and 105 as strikes and
29.04.2016 and 30.06.2016 for the maturities; once again all of these warrants were
available for trade in Borsa Istanbul in March and April. The second part of Table 3.1
show the prices of these options on 03.03, 11.03, 05.04, and 18.04.

A comparison of the local volatility model prices and BS prices listed in Table 3.1 is
shown in Figure 3.5; we see that except for the first 6 prices the local volatilty model
implies greater or equal prices as compared to BS.

The scatter plot of differences between model and market prices (computed with the
formula (Pmarket − Pmodel)/Pmodel) is given in Figure 3.6; Figure 3.7 gives the his-
togram of the same errors. It is clear from these figures that, for the examples covered
by them, the market prices are almost always more expensive (up to 5 times) compared
to the prices given by the local volatility model.

3.2.3 Hedging BIST30 Warrants

For the hedging, we use the delta hedging algorithm implied by the model. The self
financing hedging portfolio is (Bt, Dt) where Bt is the bond position at time t and Dt

is the delta position taken on the underlying stock. These are computed as follows:

Dt =
∂C

∂s
(t, St), Bt = e−rt(C(t, St)−DtSt)

1 Other european call warrants written by the same market maker on BIST30 and traded in the same period
had strikes 100, 105, 110, 115 and 120; the value of the index in January and February was around 85 − 90 thus
the strikes we use are the ones closest to being at the money among those written at the time.
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Date, Index Maturity Strike Market Model BS

15.01, S = 86.95

29.02 90 2.43 1.23 1.88
95 0.93 0.25 0.64

29.04 90 4.23 2.76 3.90
95 2.38 1.16 2.16

20.01, S = 85.12

29.02 90 1.58 0.61 1.82
95 0.53 0.088 0.67

29.04 90 3.38 1.94 0.53
95 1.83 0.73 0.07

01.02, S = 89.95

29.02 90 2.98 1.96 1.94
95 1.03 0.36 0.34

29.04 90 5.15 3.82 3.89
95 2.93 1.74 3.89

16.02, S = 87.1

29.02 90 0.78 0.79 0.25
95 0.13 0.31 0.0034

29.04 90 3.23 2.06 2.005
95 1.58 0.68 0.66

03.03, S = 94.34

29.04 100 1.53 0.95 0.73
105 0.68 0.24 0.15

30.06 100 3.18 2.34 1.93
105 1.89 1.04 0.77

11.03, S = 97.84

29.04 100 2.23 1.90 1.65
105 0.83 0.54 0.40

30.06 100 4.23 3.71 3.28
105 2.38 1.80 1.47

05.04, S = 101.80

29.04 100 3.75 3.11 2.98
105 1.28 0.76 0.63

30.06 100 6.3 5.21 4.95
105 3.78 2.09 2.33

18.04, S = 105.91

29.04 100 6.43 6.17 6.16
105 2.53 1.95 1.85

30.06 100 9.03 7.95 1.80
105 5.75 4.39 4.18

Table 3.1: Prices (computed using local volatility and those observed in the market)
of several options in the first four months of 2016; the first column gives the date (all
from 2016) when the prices are computed and the value of BIST30 on that date
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Figure 3.5: Pmodel/PBS for the prices given in Table 3.1

where ∂C
∂s

is the delta of the option, i.e., the derivative of the price with respect to the
price of the underlying. A well known fact is that a hedging portfolio thus constructed
is self financing and its value at time T equals exactly the payoff of the option [13]. To
practically implement the hedging algorithm we discretize it; because the price data
we have is daily our stepsize will be a day. Thus the hedging portfolio is updated once
at the end of the trading day. This discretization and model error will lead to a hedging
error, i.e., the hedging portfolio will no longer be self financing. We keep track of the
hedging error using the following equations:

H0 = 0, Ht+1 = e−r/365Ht +Bte
r(t+1) +DtSt+1 − Ct+1;

Ht is the cost of running the hedging algorithm upto day t; in a perfect hedge we would
have Ht = 0. We will refer to 100Ht/Ct is hedging error expressed as a percentage
of the current call value. This will be our main measure of the performance of the
hedging algorithm.

3.2.4 Hedging with model prices

When a historical fit is done, a choice arises as to which prices to use in the hedging
algorithm. This subsection runs the hedging algorithm with model prices in the January
and March periods. For the January period we take the strike of our call to be K = 90
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Figure 3.6: The price difference between market and model prices given in Table 3.1;
((Pmarket − Pmodel)/Pmodel)

and its maturity 29.02. For the March period we take the strike K = 95 and maturity
29.04. The hedging errors for these warrants are shown in Figures 3.8 and 3.9. The red
line represents the hedging error of the local volatility hedging algorithm and the blue
line represents that of Black Scholes.

In Figures 3.8 and 3.9, we see that in January, hedging with Black-Scholes Model and
the Local Volatility Model act similar. However, Black-Scholes Model causes more
loss especially in the last day of the period; the BS model realizes around 110% loss
whereas the local volatility realizes around 80% loss. In March, on the other hand,
both models act almost the same; both models realize around 90% loss.

3.2.5 Hedging with market prices

This subsection runs the same hedging algorithm now using the warrant prices ob-
served in the market. For the purpose of this section we will run the hedging algorithm
also on two different maturities: 29.02 and 29.04 for the January period; 29.04 and
30.06 for the March period. The hedge results for the January period are given in
Figures 3.10 and 3.11.

For the March period the strike is K = 95 and maturities are 29.04 and 30.06. The
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Figure 3.7: The histogram of the price differences given in Figure 3.6

hedging results are given in Figures 3.12 and 3.13.

Our comments on the results reported in these Figures are as follows: once the market
prices are used, the difference observed in Figure 3.8 between BS hedge results and
local volatility hedge results disappears (compare with Figure 3.10). In fact, in all
of the hedges using market prices, there is little difference between the delta hedging
of the BS model and that of the local volatility model. Finally, we observe that as
compared to the results of the previous section, the hedge errors drop signficantly to
around 20%. With this observation we can interpret the price difference observed in
the previous chapter as follows: the local volatility models used in the present thesis
underprices the call warrants studied in this thesis.
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Figure 3.8: Hedging BIST30 Warrants with Therotical Prices in January
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Figure 3.9: Hedging BIST30 Warrants with Theoretical Prices in March
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Figure 3.10: Hedging error for K = 90 and maturity 29.02
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Figure 3.11: Hedging error for K = 90 and maturity 29.04
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Figure 3.12: Hedging error for with K = 95 and maturity 29.04
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Figure 3.13: Hedging error for K = 95 and maturity 30.06
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CHAPTER 4

Hedging with Local Volatility Implied by the Heston Model

4.1 Heston parameters and hedging performance

The Heston model is one of the first and most well known stochastic volatility models
[9]. Its main advantage is the availability of closed form pricing formulas under it for
basic European options.In the Heston Model [9], the underlying stock price St follows
the Black-Scholes process with a stochastic variance vt following Cox-Ingersoll-Ross
process [3] which is actually an example of a square root process. Hence, the model
is the bivariate system of stochastic differential equations (SDEs) [16]

dSt = µStdt+
√
vtStdW

(1)
t , (4.1a)

dvt = κ(θ − vt)dt+ σ
√
vtdW

(2)
t , (4.1b)

where µ the drift of the process for the stock, κ > 0 the mean reversion speed for the
variance, θ > 0 the mean reversion level for the variance, and σ > 0 the volatility of
the variance. Moreover, W (1) and W (2) are two Brownian motions such that
Ep[dW

(1)
t dW

(2)
t ] = ρdt. In other words, ρ ∈ [−1, 1] represents the correlation between

W (1) and W (2). For more on this model and an implementation of fitting and pricing
algorithms for the Heston model we refer the reader to [16].

As already indicated in the introduction an alternative way to fit a local volatility model
to market prices, explained in [7], is to first fit a Heston model and then use Dupire’s
formula to get the local volatility. The goal of this section is to use the local volatility
model obtained by such a fit to hedge two call warrants in the March period. Thus we
propose the following hedging algorithm:

1. fit the Heston model to market prices,

2. use Equation 2.13 to derive a local volatility model from Heston model prices,

3. use the delta hedging algorithm, as described in subsection 3.2.3, using the delta
of the pricing function computed from the local volatility model given by the
heston model.
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Dupire’s formula implies that there is an extremely simple way to implement the above
steps without actually computing the local volatility function itself: instead of the last
two steps one simply computes the delta of the Heston model and uses it as the delta
in the hedging algorithm of subsection 3.2.3. Figures 4.1 and 4.2 give the hedging
error associated with this algorithm applied to two warrants in the March period: both
warrants have strike K = 95 and they have the respective maturities 29.04 and 30.06;
as in the previous section the red line gives the hedging error for the Heston-implied
local volatility hedging algorithm and the blue line gives the hedging error of the Black
scholes model. To apply the hedging algorithm we need to fit the Heston model to
market data during the March period. This was already done in [14]; we quote the
parameter fits listed in Table 4.1 from that work.

κ θ σ v0 ρ
01.03.2016 6.3868 0.0489 0.3094 0.0702 0.9793
02.03.2016 12.3838 0.0612 0.8786 0.0710 0.3990
03.03.2016 19.9720 0.0561 0.4496 0.0677 0.9612
04.03.2016 2.0042 0.0000 0.3906 0.0695 0.9989
07.03.2016 1.2846 0.0023 0.2057 0.0696 0.9826
08.03.2016 1.6237 0.0001 0.2484 0.0662 -0.9988
09.03.2016 11.9639 0.0526 0.3830 0.0563 0.9934
10.03.2016 12.0781 0.0571 0.2971 0.0499 0.9935
11.03.2016 19.9748 0.0550 0.5111 0.0401 0.9974
14.03.2016 19.9638 0.0543 0.6892 0.0360 0.9948
15.03.2016 13.2286 0.0561 0.2704 0.0480 0.9858
16.03.2016 19.9847 0.0562 0.7625 0.0357 0.7337
17.03.2016 16.3918 0.0569 0.7249 0.0400 0.9988
18.03.2016 0.0604 1.9371 0.4819 0.0400 0.9990
21.03.2016 0.0860 1.5786 0.4335 0.0436 0.9989
22.03.2016 0.0858 0.0546 0.2071 0.0584 0.9979
23.03.2016 0.3991 0.0191 0.1428 0.0638 0.9963
24.03.2016 19.9552 0.0664 0.3502 0.0575 0.9947
25.03.2016 19.9274 0.0668 0.1605 0.0695 0.9739
28.03.2016 19.9751 0.0652 0.3750 0.0625 0.9924
29.03.2016 19.9928 0.0657 0.6282 0.0530 0.9984
30.03.2016 19.9938 0.0667 0.6559 0.0546 0.9988

Table 4.1: Heston Parameters

We note that the results reported in Figures 4.1 and 4.2 differ from those reported in
subsection 3.2.5: the hedging error processes for the local volatility and BS algorithms
no longer overlap (compare Figures 4.1 and 4.2 to those in subsection 3.2.5). The
absolute value of the hedging error seem to be similar for the two hedging algorithms.
At least for these two examples, the use of the Heston-implied local volatility seem to
bring no futher gains in Hedging performance when compared to the simple BS.
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Figure 4.1: Hedge Errors in March- 29.04.2016
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Figure 4.2: Hedge Errors in March- 30.06.2016

4.2 Approximation to Local Volalitility in the Heston Model

Dupire’s formula allows one to derive a local volatility model from a Heston model.
However, the quantities appearing Dupire’s formula will in general require a nontrivial
amount of computation. Note that in the estimates listed in Table 4.1 most of the
time the ρ parameter takes values very close to 1 or −1. For these types of situations
Gatheral developed a simple formula to compute the local volatility without computing
explicitly all of the derivatives appearing in Dupire’s formula. The goal of this section
is to give a derivation of this formula; in this we follow [16].

We know that the Heston Model is established on two equations which are:

dSt = µtStdt+
√
vtStdW

1 (4.2a)

dvt = κ(θ − vt)dt+ σ
√
vtdW

2 (4.2b)

where µ the drift of the process for the stock, λ > 0 the mean reversion speed for the
variance, vt > 0 the mean reversion level for the variance, and η > 0 the volatil-
ity of the variance. Moreover, W 1 and W 2 are two Brownian motions such that
Ep[dW 1(t)dW 2(t)] = ρdt. In other words, ρ ∈ [−1, 1] represents the correlation
between W 1 and W 2.

The v process is a Cox-Ingersoll-Ross (CIR) model and for these models one can
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explicitly compute the conditional expectation E[vt|vs], s < t:

E[vt|vs] = (vs − θ)e−κ(t−s) + θ.

In particular E[vt|v0] will be of use to us in the computations below, so let us define

v̂t = E[vt|v0] = (v0 − θ)e−κt + θ. (4.3)

In addition define

ŵt
.
=

∫ t

0

v̂sds = (v0 − θ)
(

1− e−κt

κ

)
+ θt, (4.4)

this is the “total” variance in the interval [0, t].

Now set xt = log(St

K
) = f(St). If we use Ito’s formula [13] to compute xt directly,

f(St) = log(
St
K

) = log(
S0

K
) +

∫ t

0

f ′(Ss)dSs +
1

2

∫ t

0

f ′′d〈S〉s (4.5)

Here, the quadratic variation of Ss is equal to vsS2
sds from the equation (2.20a). If we

plug f ′ and f ′′ and d〈S〉s, then our equation becomes:

f(St) = log(
S0

K
) +

∫ t

0

1
K
Ss

K

dSs +
1

2

∫ t

0

− 1

S2
s

vsS
2
sds (4.6)

Simplifying the last display gives

xt = log(
S0

K
) +

∫ t

0

1

Ss
dSs −

1

2

∫ t

0

vsds. (4.7)

If we differentiate xt, we get:

dxt =
1

St
dSt −

vt
2
dt.

If we plug dSt = µtStdt+
√
vtStdW

1 then we conclude that:

dxt =
1

St
(µtStdt+

√
vtStdW

1
t )− vt

2
dt

(4.8)

which is equal to

dxt =
√
vtdW

1
t −

vt
2
dt (4.9)

One can represent W 1 and W 2 as linear combinations of two independent Brownian
motions Zt and Bt by defining W 1

t = Bt and W 2
t = ρBt +

√
1− ρ2Zt where Zt and

Bt are orthogonal Brownian motions [16]. Then one can write dvt as

dvt = κ(θ − vt)dt+ σ
√
vt(ρdZt +

√
1− ρ2dBt) (4.10)
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If we assume ρ ≈ ±1, then we obtain dvt directly:

dvt = κ(θ − vt)dt+ ρσ(dxt +
vt
2
dt). (4.11)

Gatheral’s approximation is based on the following ansatz:

Ansatz: E[xt|xT ] = xT
ŵT
ŵt, where ŵ is as in Equation 4.4.

Let ut = E[vt|xT ] denote the expected value of the variance at time t conditional on
xT . Now, take the conditional expectation of Equation 4.11 and apply the ansatz to get:

dut = κ(θ − ut)dt+ ρσ

(
xT
ŵT

v̂tdt+
1

2
utdt

)
, (4.12)

where v̂ is as in Equation 4.3. Define κ′ = κ−ρσ/2 and θ′ = θκ/κ′. The last equation
can be written as

dut
dt

+ κ′ut = ρσ
xT
ŵT

ŵt + κ′θ′.

This is a first order linear ODE and it can be solved explicitly. Its solution at time T
equals

uT = ρσ
xT
ŵT

∫ T

0

v̂te
κ′(T−t)dt+ θ′(1− e−κ′T ) + C1e

λ′T , (4.13)

whereC1 is a constant to be determined from the initial condition u0 = E[v0|XT ] = v0.
Setting T = 0 in the above equation implies that u0 = C1 = v0. Then

uT = v̂T
′ + ρσ

xT
ŵT

∫ T

0

v̂te
−κ′(T−t)dt (4.14)

where v̂′T = (v0 − θ)e−κ
′T + θ′. Finally, carrying out the integral appearing in the last

display we arrive at Gatheral’s approximation of local volatility via the Heston model:

uT = v̂′T + ρσ
xT
ŵT

eκ
′T

(
v0 − θ
κ′ − κ

(
e(κ
′−κ)T − 1

)
+
θ

κ′

(
eκ
′T − 1

))
. (4.15)

An implementation of this formula is given in [16]. As examples we provide a table
and a figure. Note that all of the values for ρ parameter listed in Table 4.1 are very close
to 1 or −1 except for two dates: 02.03 and 16.03. Table 4.2 lists the local volatilities
Equation 4.15 as well as the implied volatility for a call option with strike K = 95 and
maturity 29.04 for the rest of the dates using the approximation Equation 4.15. Our
main observation on this table is that the local and implied volatilities seem relatively
close to each other.

Figure 4.3 gives the entire local volatilty surfaces using the same technique for the
days 01.03, 15.03. The surface on top is for the day 15.03 and the one below is for
01.03. We observe that their shapes seem similar and smooth, but as already indicated,
the volatility for 15.03 is uniformly greater than that of 01.03.
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Table 4.2: Local Volatility vs. Heston Implied Volatility K=95,Maturity=29.04.2016

Local Volatility Heston Implied Volatility
01.03.2016 0.2479 0.2538
03.03.2016 0.2038 0.2446
04.03.2016 0.2376 0.2436
07.03.2016 0.2468 0.2531
08.03.2016 0.2309 0.2494
09.03.2016 0.2264 0.2265
10.03.2016 0.2343 0.2236
11.03.2016 0.2130 0.2070
14.03.2016 0.2204 0.1911
15.03.2016 0.1760 0.2217
17.03.2016 0.1760 0.1811
18.03.2016 0.2062 0.1519
21.03.2016 0.2186 0.1663
22.03.2016 0.2356 0.2280
23.03.2016 0.2490 0.2454
24.03.2016 0.2502 0.2349
25.03.2016 0.2593 0.2562
28.03.2016 0.2515 0.2383
29.03.2016 0.2426 0.2131
30.03.2016 0.2418 0.2054
31.03.2016 0.2211 0.1785
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CHAPTER 5

Conclusion

In this chapter, we comment further on our results and suggest several directions for
future research.

In Chapter 3, we saw that model prices computed using historical estimation of the lo-
cal volatility function give prices below market prices. Results of Section 3.2.3 suggest
that hedging with these model prices lead to great hedging errors. When we use market
prices for hedging we get better hedging results as seen in graphics of Section 3.2.5;
but the results are almost the same as those obtained from simple Black scholes. In
the last chapter we have looked at several hedging examples using the local volatility
model implied by the Heston model fitted to market price data. Our main observa-
tion in these examples are two: the absolute value of the hedging error doesn’t change
significantly from that of BS but it leads to different hedge error processes (this is in
contrast to results in Chapter 3).

For future work, the following goals seem relevant: doing historical fits of local volatil-
ity function allowing dependence on time, testing the fit-hedge-price calculations on
more extensive data (more time periods, more strikes and maturities) and running the
hedging algorithm on options not traded in the market.
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