ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DUYGU OZDEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CRYPTOGRAPHY

SEPTEMBER 2016

Approval of the thesis:

ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS

submitted by DUYGU OZDEN in partial fulfillment of the requirements for the de-
gree of Master of Science in Department of Cryptography, Middle East Technical
University by,

Prof. Dr. Biilent Karasozen

Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Ozbudak

Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Cenk
Cryptography, METU

Assoc. Prof. Dr. Ali Doganaksoy
Mathematics, METU

Asst. Prof. Dr. Fatih Sulak
Mathematics, ATILIM UNIVERSITY

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: DUYGU OZDEN

Signature

ABSTRACT

ANALYSIS OF RECENT ATTACKS ON SSL/TLS PROTOCOLS

Ozden, Duygu
M.S., Department of Cryptography
Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2016, 46| pages

Transport Layer Security(TLS) and its predecessor Secure Socket Layer(SSL) are two
important cryptographic, certificate based protocols that satisfy secure communication
in a network channel. They are widely used in many areas such as online banking
systems, online shopping, e-mailing, military systems or governmental systems. Be-
ing at the center of secure communication makes SSL and TLS become the target of
attackers and an important field of study for researchers. So many vulnerabilities and
attacks towards these protocols were explored from past to present. In this thesis, we
will mention about the design of SSL and TLS, the cryptographic algorithms used in
them, important and recent attacks on these protocols with their precautions. At the
end, we will touch on the important points and the selection of parameters for their
design that will give strong ideas for the future works to fix these vulnerabilities and
improve the protocols.

Keywords : attacks, cryptographic certificate based protocols, algorithm, selection of
parameters, vulnerability

vii

0z

SSL/TLS PROTOKOLLERINE YAPILAN SON ATAKLARIN ANALIZI

Ozden, Duygu
Yiiksek Lisans, Kriptografi Bolimii
Tez Yoneticisi : Do¢. Dr. Murat Cenk

Eyliil 2016, 46 sayfa

Transport Layer Security(TLS) ve onun onciilii Secure Socket Layer(SSL), bir ag
kanalinda giivenli iletisim saglayan iki 6nemli kriptografik, sertifika tabanli protokoldiir.
Bu protokoller; internet bankacilig1, elektronik aligveris, elektronik postalama, askeri
sistemler ve devlet sistemlerinde yaygin olarak kullanilmaktadir. Giivenli iletisimin
merkezinde olmak, SSL ve TLS’ i saldirganlarin hedefi haline getirmekte ve arastirmacilar
icin 6nemli bir calisma alam1 olmaktadir. Gegmisten bugiine, bu protokollere karsi
bir cok zafiyet ve atak kesfedilmistir. Bu tezde, SSL ve TLS’ in dizaynindan, on-
lar icerisinde kullanilan kriptografik algoritmalardan, onemli ve giincel ataklardan ve
onlemlerinden bahsedecegiz. Son olarak, ilerideki calismalarda bu ataklari diizeltmek
ve protokolleri gelistirmek icin gii¢lii fikirler vermek amaciyla, protokollerin dizaynindaki
onemli noktalara ve parametrelerin se¢imine deginecegiz.

Anahtar Kelimeler : ataklar, kriptografik sertifika tabanli protokoller, algoritma, parame-
trelerin secimi, zafiyet

ix

To My Family

X1

ACKNOWLEDGMENTS

At first, I would like to express my special thanks to my supervisor Assoc. Prof.
Dr. Murat Cenk for his positive attitude, endless support, trust, encouragement and
valuable guidance during the period of writing and improving this thesis. His advices
enlighten me to produce much better study than I can. I am so happy to have a favorable
supervisor like him.

Secondly, I would like to say my appreciation to my friend Adnan Kili¢ for his helps
in programming languages not only during my thesis development but also during my
education.

Finally, I would like to thank my family and my close friends for their endless sup-
port, love and trust as always. They encouraged me during my education life even in

stressful times.

Xiii

TABLE OF CONTENTS

LISTOFFIGURES o o

LISTOFTABLES o

LIST OF ABBREVIATIONS

CHAPTERS

1 INTRODUCTION e

2 PRELIMINARIES

2.1

Popular Cryptosystems Used in SSL/TLS
2.1.1 Asymmetric Cryptography
2.1.1.1 RSA oo

2.1.1.2 Elliptic Curve Cryptography(ECC) . .

2.1.2 Symmetric Cryptography
2.1.2.1 Stream Cipher
2.1.2.2 Block Ciphers

2.1.3 Cryptographic Hash Functions and Hash Based Func-
HONS v v e

XV

B H B & & B @A H

3

Xe

2.1.3.1 SHAT 9l

2.1.3.2 MD5 9
2.1.33 HMAC ol
2.2 Key Exchange Mechanisms 10}
2.2.1 Diffie-Hellman Key Exchange

2.2.1.1 The Usage of Diffie-Hellman Algorithm
in SSL/TLS
2.2.1.2 The Anonymous Diffie Hellman . . . [l
2.2.13 Fixed Diffie Hellman [
2.2.1.4 Ephemeral Diffie Hellman [l
2.3 Authenticated Encryption Types inside SSL/TLS 12
2.3.1 Encrypt-then-MAC 12
232 Encrypt-and-MAC 12}
2.33 MAC-then-Encrypt 12
234 MAC-then-Encode-then-Encrypt 12
CERTIFICATION BASED PROTOCOLS: SSL/TLS
3.1 Historical Development of SSL/TLS (13
3.2 Public Key Infrastructure(PKI) 4l
3.3 How does SSL/TLS protocol work? 14
3.3.1 SSLprotocol 14
3.3.2 TLS protocol 16}
RECENT ATTACKS ON SSL/TLS
4.1 The Attack Types 17

Xvi

4.2

4.3

4.1.1 Protocol Logic Flaws
4.1.2 Cryptographic Design Flaws 18]
4.1.3 Implementation Flaws 18]
4.14 Configuration and Infrastructure Flaws 19|
The Recent Attacks
4.2.1 The Alert Attack 19]
4.2.2 Timing Attacks
422.1 RSA based Timing Attacks 20
4222 ECC based Timing Attacks
423 Triple Handshake Attack 20
424 Cross Protocol Attacks
424.1 The Wagner and Schneier Attack . . .
4242 A New Cross Protocol Attack
4243 DROWN attack
4.2.5 SLOTH: Security Losses from Obsolete and Trun-
cated Transcript Hashes 27
4.2.6 SMACK: State Machine Attacks 30l
4.2.6.1 SKIP-TLS: Message Skipping Attacks
onTLS 30l
4.2.6.2 FREAK Attack: Factoring RSA Ex-
portKeys
4.2.7 Imperfect Forward Secrecy: Focus on Logjam Attack [31]

Some Other Important Attacks

4.3.1

Generalization of attackson SSL 2.0

Xvii

432 Generalization of Attackson SSL 3.0 33l

433 Poodle Attack 33
434 Truncation Attack
4.3.5 Protocol Downgrade Attacks 34
43.6 Beast Attack 34
437 Crime and Breach Attacks 34
5 IMPORTANT POINTS AND SELECTION OF PARAMETERS . . . [33
5.1 Recommended Key Sizes and Parameters in Algorithms and
Protocols 351

5.2 Protection Methods from Recent Attacks and Some Other Known

Attacks L 37

6 CONCLUSION e 39

6.1 Our Suggestions for Future Works
REFERENCES e 43|

xXviii

Figure 2.1

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 6.1

LIST OF FIGURES

Diffie-Hellman Process

Alert Attack
Triple Handshake Process 1
Triple Handshake Process 2
Triple Handshake Process 3
The Wagner and Schneier Attack
A New Cross-Protocol Attack
Drown Attack Lo
A man-in-the-middle Client Impersonation Attack

A man-in-the-middle Credential Forwarding Attack

Usage Percentages of Certificates

Xix

Table 2.1

Table 4.1
Table 4.2
Table 4.3

Table 5.1
Table 5.2

LIST OF TABLES

NIST Recommended Key Sizes

SLOTH Attack Results
Available Vulnerabilities of TLS Implementations

Vulnerable Systems on Freak Attack

Recommended Key Sizes by ENISA

Recommended Ciphersuites for TLS

Xxi

SSL
TLS
DHKE
RSA
ECC
SHA1
MD5
HMAC
PKI
DROWN
SLOTH
SMACK
FREAK
RC4
AES
SSH
OpenPGP
CSR
ECDH
ECDSA
CPU
KSA
PRGA
DES
NSA
NIST
DLP

CA
IETF
RFC

LIST OF ABBREVIATIONS

Secure Socket Layer

Transport Layer Security

Diffie-Helmann Key Exchange

Rivest Shamir Algorithm

Elliptic Curve Cryptography

Secure Hash Algorithm 1

Merkle Damgard Algorithm 5

Hash based Message Authentication Code
Public Key Infrastructure

Decrypting RSA with Obsolete and Weakened Encryption
Security Losses from Obsolete and Truncated Transcript Hashes
State Machine Attacks

Factoring RSA Export Keys

Rivest Cipher 4

Advanced Encryption Standard

Secure Shell

Pretty Good Privacy

Certificate Signing Request

Elliptic Curve Diffie-Hellman

Elliptic Curve Digital Signature Algorithm
Central Processing Unit

Key Scheduling Algorithm

Pseudo-Random Generation Algorithm

Data Encryption Standard

National Security Agency

National Institute of Standards and Technology
Discrete Logarithm Problem

Certification Authority

Internet Engineering Task Force

Request for Comments

xxiii

TCP/1P
HTTP
SMTP
NNTP
CCS
CBC
CRT
IEEE
IMDEA

FBI
IBM
VPN
ENISA
GCM
DTLS

Transmission Control Protocol/Internet Protocol
Hypertext Transfer Protocol

Simple Mail Transfer Protocol

Network News Transfer Protocol
ChangeCipherSpec

Cipher Block Chaining

Chinese Remainder Theorem

Institute of Electrical and Electronics Engineers

The French Institute for Research in Computer Science and Au-
tomation

Federal Bureau of Investigation

International Business Machines

Virtual Private Network

European Network and Information Security Agency
Galois/Counter Mode

Datagram Transport Layer Security

XXiv

CHAPTER 1

INTRODUCTION

Technology and its fast development in recent years bring many opportunities in our
lives. Nearly the most important one of them is the discovery of internet. It started
to be improved in 1960s but it has begun to be centrally located in daily life since
1990s. The advantages of internet like easy access to information, communication,
online banking, e-commerce and many others enhance the life standards. On the other
hand, the internet has also some drawbacks as much as its benefits. One of them is
related to the security point of view. For example, if people use internet for shopping,
banking transactions or even for communication, they sometimes need to give their
credit card numbers for payment. Another example is downloading or sharing some
applications, photos, personal informations without using a secure channel. Some
websites are not secure enough for these types of operations. In the earlier stages of
internet, system developers or users are not aware of these issues. However, the rise
of plagiarism in all areas causes stealing money, information or even reliability which
makes people awaken. At this point, the essentialness of making internet more and
more secure arises. The internet uses some protocols that are formats or rules of digital
messages for exchanging data between computers across a single network or a series
of interconnected networks. See [S] . One of the most important internet protocols
are certificate based protocols such as Secure Socket Layer(SSL) or Transport Layer
Security(TLS). They are used for ensuring security of communication between the
client(service requesters) and the server(the providers of a resource or service) over an
insecure channel. SSL is developed by Netscape Communications in 1994 to allow
secure access of a browser to a web server and became the accepted standard for web
security. See [6] . The version 1 of SSL, named SSL 1.0, was never released due to
some deficiencies. After that, SSL 2.0 and SSL 3.0 are developed respectively. TLS,
the following version of SSL, was developed in 1999 and mentioned in RFC(Request
for Comments). The current versions are TLS 1.0, TLS 1.1, TLS 1.2 and TLS 1.3 is
a working draft. The name of the protocol changed from SSL to TLS because TLS
works over any bidirectional stream of bytes, not just sockets. See [7] .

Besides of the fact that SSL and TLS are a computer system invention, they are also
cryptologic tools in order to satisfy confidentiality, data integrity, authentication and
non-repudiation provided by cryptology. Confidentiality means that the data or the
message is disclosed to unauthorized people or systems. Data integrity is maintaining
the accuracy and completeness of the message. Entity authentication is the corrobora-
tion of the identity of an entity and message authentication is corroborating the source

of information; also known as data origin authentication. Non-repudiation means pre-
venting the denial of previous commitments or actions [40]]. Cryptology consists of
two parts: cryptography and cryptanalysis. Cryptography comprises of asymmetric
cryptography (public key cryptography) and symmetric cryptography. Public key part
means that two keys are used: the public one and the private one. This system has
some algorithms and signature schemes inside itself. The symmetric cryptography
uses one key inside its algorithms and the algorithms have two types: block ciphers
and stream ciphers. Hash functions and pseudo-random sequences are also valuable
parts of cryptography. In addition, basic terms of cryptology are plaintext which is
the original message, ciphertext which is the coded message, cipher which is the al-
gorithm for transforming plaintext to ciphertext, key which is the information used in
cipher and known only by the sender or the receiver, encryption which is converting
plaintext to ciphertext and decryption which is recovering ciphertext from plaintext
[29]. Cryptanalysis is a study of cryptosystems for finding or noticing some weak-
nesses or vulnerabilities that permits capturing the plaintext from ciphertext without
knowing the key or obtaining the whole key or a part of the key.

Since the data transferred over an insecure channel, a third person could access the
data if SSL/TLS user does not use a strong encryption or an algorithm inside the cer-
tificate. In other words, the system remains open to the man in the middle attacks.
Although there are some other vulnerabilities or attacks on these systems like config-
uration mistakes or implementation flaws, the most important one relies on the usage
of cryptography in SSL/TLS certificates. Cryptography in SSL/TLS uses symmet-
ric and asymmetric encryption algorithms, hash functions and hash based functions
and key exchange mechanisms. The most popular symmetric encryption algorithms
are RC4 and AES, the asymmetric encryption algorithms are RSA and Elliptic Curve
Cryptography and the hash functions and hash based functions are SHA1, MD5, MAC
and HMAC. In addition to these, the key exchange mechanisms used inside certificate
have a great importance for not exploiting the system. The significant one of the key
exchange mechanisms is named as Diffie-Hellman Key Exchange. Improvements in
the technology show that the security of internet usage and not exposing the related
attacks depend on both using strong cryptography and building a good system.

In this thesis, we investigated certificate based protocols and focused on SSL/TLS and
recent attacks on them.

In Chapter 2, some popular cryptosystems inside these certificates were mentioned
according to their types and usages.

In Chapter 3, first, the historical development of SSL/TLS were told shortly and the
development processes were given as a table. After that, the public key infrastructure
which is the key point of designing a certificate is mentioned. Then, how SSL and TLS
works was showed in detail. Last, attacks especially the most effective ones were told
in brief.

In Chapter 4, the attack types and the recent attacks on SSL and TLS were given briefly.
We focused on the security of these systems, the parameters and the cryptographic
infrastructure of the attacks.

In Chapter 5, we investigated important points and selection of parameters on these
protocols. The currently recommended key sizes and parameters in algorithms and
protocols were given. After that, the protection methods from recent attacks and some
other known attacks towards SSL/TLS told shortly.

CHAPTER 2

PRELIMINARIES

2.1 Popular Cryptosystems Used in SSL/TLS

SSL/TLS certificates provides secure communication as it is said before. But what is
the protocol behind it? How does it work? The main security object is the encryption.
The algorithms used for encrypting transmitted data and session keys should be strong
enough in case they would not be exploited. This means that a powerful cryptography
is needed. The SSL communication uses both symmetric and asymmetric cryptogra-
phy for the connection. Additionally, it uses some algorithms that create keys.

2.1.1 Asymmetric Cryptography

Asymmetric cryptography, known also as public key cryptography, uses two types of
keys. One is public key, known by anybody, the other one is private key, known only
by the owner of the system. Popular algorithms used inside SSL and TLS are RSA and
Elliptic Curve Cryptography described in below.

2.1.1.1 RSA

The RSA is one of the most popular asymmetric cryptosystems with its common us-
age in many systems and protocols such as digital signature schemes, SSH, OpenPGP,
SSL/TLS, etc. to achieve data transmission, authentication or encryption securely. It
was discovered by Ron Rivest, Adi Shamir and Leonard Adleman in 1978 and named
with the initial letters of their surnames. The security of RSA cryptosystems relies
on the difficulty of integer factorization. The reason for this is the asymmetric cryp-
tography uses two types of keys. One of them is shared publicly and the other one is
kept secret. The user of RSA cryptosystems chooses two large primes and calculates
the multiple of them. The multiple of these numbers and an encryption key are shared
publicly and the prime factors and the decryption key are kept secret. In this way, it is
hard to decrypt the message even if the public parameters are known.

The RSA Algorithm has the key generation part, encryption part and decryption part.

5

a. Key Generation:

-As a first step, choose two distinct prime numbers p and g randomly. Yet, it is impor-
tant to choose the primes close to each other but they could have different lengths by a
few digits. The reason is to make factorization more difficult. Also, large primes could
be effectively found by using primality tests. The prime numbers should be private.

-Compute n = p.q in order to use as a modulus for public and private keys. It could be
shared publicly.

-Compute ¢(n) which is Euler’ s totient function and is equal to (p — 1)(¢ — 1). This
value should be private.

-Choose a large integer e such that 1 < e < ¢(n) and gcd(e, ¢(n)) = 1. This value is
public.

-Calculate the integer d by using the equation d.e = 1(mod¢(n)) which means that d
is the modular multiplicative inverse of e. This value of d also should be private.

As aresult, the RSA user get two keys for asymmetric encryption;
Public key: n, e Private key: p, ¢, d
b. Encryption:

-The message M should be converted to the integer m as a first step. Note that, the
integer m should satisfies that 0 < m < n and ged(m,n) = 1 by using padding
schemes.

-Calculate the ciphertext value ¢ = m®modn.

c. Decryption:

-To get the original message, calculate ¢? = (m®)? = m mod(n).

-After finding m, one could easily recover the message M by reversing padding scheme.
d. RSA Usage in SSL/TLS:

The key obtained by using RSA algorithm is used for authentication and symmetric
key exchange in SSL/TLS. It relies on the Public Key Infrastructure(PKI) which is
commonly used in certificate design. An SSL certificate includes public and private
keys coming from asymmetric encryption algorithm that is assumed by PKI. By us-
ing Certificate Signing Request(CSR), the RSA private key is generated. The key size
should be at least 1024-bit and especially in today’ s computation power, it could be
2048-bit or larger.

Table 2.1: NIST Recommended Key Sizes

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size

(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

2.1.1.2 Elliptic Curve Cryptography(ECC)

An elliptic curve is the set of points described by the equation below:

y? = 23 + ax + b where 4a® + 270 # 0

Elliptic Curve Cryptography relies on finding the discrete logarithm of a random ellip-
tic curve. Some protocols based on discrete logarithm is used with the elliptic curves.
The most popular ones are Elliptic Curve Diffie Hellman(ECDH) that is used for en-
cryption and Elliptic Curve Digital Signature Algorithm(ECDSA)that is used for digi-
tal signing.

Elliptic curves have smaller key size, yet the key is stronger especially compared with
RSA and because of this it is easier to implement and efficient to use. However, since
they are not commonly used, the certificates generally do not support them when com-
pared to RSA.

From the certificate point of view, smaller data is transmitted from server to client dur-
ing the handshake process because the key size is smaller when compared to RSA. This
brings another facileness: less CPU and memory is needed which increases network
performance. Cryptographers and system developers think that when the advantages
of elliptic curves are taking into account, they will be very popular by creating stronger

cryptography.

2.1.2 Symmetric Cryptography

Symmetric cryptography, uses just one key for both encryption and decryption. There
are two types of symmetric cryptography: Stream Ciphers and Block Ciphers. Popular
stream cipher algorithm used inside SSL and TLS is RC4 and block cipher algorithm
is AES, both of them described in below.

2.1.2.1 Stream Cipher

RC4

This algorithm is developed by Ron Rivest and started to be used in 1994. Its ease
of use in many applications made this algorithm very popular and used in many cryp-
tosystems.

RC4 is a stream cipher and consists of two algorithms: Key Scheduling Algorithm(KSA)
and Pseudo-Random Generation Algorithm(PRGA). The keystream generated with
this algorithm is used for encryption by bitwise xoring with the plaintext. The de-
cryption is also same logic meaning that ciphertext is xored with the keystream.

This algorithm is used in SSL/TLS communication due to some advantages. One ad-
vantage is that it does not require padding operation which strengthens it against TLS
attacks like BEAST. The other advantage is its efficiency and fast usage which brings
less computation and lower hardware requirements. On the other hand, the algorithm
brings some drawbacks like small key size (128-bit etc.) and the key is not completely
random which causes small bias. Therefore, RC4 algorithm is no longer considered as
secure enough and is not commonly used in SSL/TLS communication.

2.1.2.2 Block Ciphers

-AES

The Advanced Encryption Standard or known as Rijndael is developed by Joan Dae-
men and Vincent Rijmen and published first in 1998. Its predecessor is DES algorithm
but it is not commonly used in today’ s technology because it is not very strong against
some attacks. AES, on the other hand, became very popular and applied in many
systems and considered to be secure enough.

a.Description:
-KeyExpansion: The round keys are derived from the key schedule of AES.
-InitialRound: AddRoundKey step means the bitwise xor of key to the plaintext.

-Rounds: SubBytes, ShiftRows, MixColumns, AddRoundKey are the one round of
AES algorithm.

-Final Round: SubBytes, ShiftRows and AddRoundKey is the last round of the algo-
rithm.

-Note that, AES algorithm has 10,12 or 14 rounds with 128-bit,192-bit or 256-bit Keys
respectively. The most common one is 10 round AES with 128-bit key.

b.Usage of AES in SSL/TLS:

AES was started to use in TLS connection to make the system strong enough. Before

8

TLS, SSL systems, specially SSL 3.0, the most powerful one of SSL, uses 3DES,
but it is also not secure enough against some attacks. Therefore, encryption in TLS
communication generally uses AES algorithm.

2.1.3 Cryptographic Hash Functions and Hash Based Functions

A hash function takes a message and outputs to the fixed-size string (or message digest)
that is called hash value. The function is a one-way function and satisfies pre-image
resistance (given a hash value h, it is difficult to find the message of this hash value),
second pre-image resistance (given a message my, it is difficult to find another message
me different from m satisfying h(m,) = h(ms)) and collision resistance (it is difficult
to find two different messages giving same hash value) properties. Hash functions
do not use a key. In addition, hash based functions consist of a cryptographic hash
function with a secret key. Popular hash functions used inside SSL and TLS are SHA1
and MD5, a hash based function is HMAC(Hash Based Message Authentication Code)
described in below.

2.1.3.1 SHA1

The Secure Hash Algorithm 1 is designed by United States National Security Agency
(NSA) and published by the United States National Institute of Standards and Tech-
nology (NIST). It produces fixed (160-bit) hash value named as message digest.

This algorithm is widely used in SSL/TLS connections but it is not considered as secure
enough towards some attacks so it is thought that SHA1 algorithm will no longer be
used until 2017. Instead, SHA256, which outputs 256-bit fixed length message will be
considered in the connections of certificates.

2.1.3.2 MDS

This algorithm is designed by Ronald Rivest in 1991. Its structure is Merkle-Damgard
construction which gives its name. It produces 128-bit fixed hash value.

The MDS5 algorithm is also widely used in SSL/TLS connections as a signature algo-
rithm in the certificate. Although its common usage in the design of certificates, the
algorithm is vulnerable against some attacks. Therefore, MDS5 is no longer recom-
mended.

2.1.3.3 HMAC

Hash-based Message Authentication Code is a type of Message Authentication Code(MAC)
with the usage of a cryptographic hash function with a secret key. The output of HMAC

9

function has the same length with the hash function used in the system. For example,
HMAC-MDS outputs 128-bit fixed hash value as in MDS5 algorithm.

SSL uses MAC algorithm while TLS uses HMAC which is more secure and newer.
While MAC satisfies authentication, HMAC satisfies both authentication and data in-
tegrity. TLS 1.0 and 1.1 uses HMAC-MDS5 and HMAC-SHA-1 inside the handshake
protocol. However, TLS 1.2 recommends that the hash function in HMAC should be
at least 256-bit length, which means SHA-256 should be used.

2.2 Key Exchange Mechanisms

This is a cryptographic method for changing the key between the sender and the re-
ceiver through a secure channel. The most popular key exchange mechanism for SSL
and TLS is Diffie-Hellman Key Exchange described in below.

2.2.1 Diffie-Hellman Key Exchange

This protocol is developed by Whitfield Diffie and Martin Hellman in 1976. In this
system, two participants A and B want to communicate each other securely and for this
reason, they want to produce and share a random secret key in public but authenticated
channel.

Firstly, they agree on a cyclic group G of order nin mod p where p is a prime number
and a generator g of the group G where g is a primitive root mod p. These values
could be shared publicly. Note that, the computations should be done under mod p
arithmetic.

Secondly, A chooses an integer a , 1| < a < n as a private key and compute ¢ then
sends it to B. Similarly, B chooses an integer b, 1 < b < n as a private key and
compute g° then sends it to A.

Thirdly, A takes g° and computes (g°)* which is g?* and B takes g® and computes (g*)°

which is again ¢®. This ¢ is their shared key at the end.

It is important that the values of g, g%, ¢° are public. The only private keys here are a
and b. Computing g% with using ¢ and ¢® but without using a and b is a hard problem
named as Diffie-Hellman Problem. In addition, computing the values a or b with the
knowledge of ¢ and ¢® or g’ is named as Discrete Logarithm Problem. This shows us
that solving Discrete Logarithm Problem means breaking the Diffie Hellman Protocol.
However, it is still an open problem whether Diffie-Hellman Problem and Discrete
Logarithm Problem is equivalent or not. See [37]

10

A= g?mod p

B =gl mod p

s=Biamod p S = APmod p

'Y s

g mod p g mod p
Figure 2.1: Diffie-Hellman Process

2.2.1.1 The Usage of Diffie-Hellman Algorithm in SSL/TLS

The Diffie-Hellman Protocol is an important key exchange mechanism used inside SSL
and TLS. The system has three versions: Anonymous Diffie Hellman, Fixed Diffie
Hellman and Ephemeral Diffie Hellman.

2.2.1.2 The Anonymous Diffie Hellman

The procedure uses Diffie Hellman without authentication. This could lead to man in
the middle attacks. For this reason, anybody should avoid using this anonymous one.
The way of doing this is adding ”!ADH” command inside the code SSL _set_cipher_list.
If you use The Anonymous Diffie Hellman, a call to SSL_get_peer_certificate returns
NULL.

2.2.1.3 Fixed Diffie Hellman

In this procedure, certificate contains server’ s public key parameters and certification
authority(CA) signs the certificate. The parameters never changed.

2.2.1.4 Ephemeral Diffie Hellman

In this procedure, each run of the protocol uses different public keys. The security of
these temporary keys could be checked with the signature on the key. Using temporary
keys in the session could lead to protect the privacy of the previous sessions even if the
server’ s key is signed for a long term. This is called as "Perfect Forward Secrecy”.
Therefore, this system should be preferred. See [3]

11

2.3 Authenticated Encryption Types inside SSL/TLS

2.3.1 Encrypt-then-MAC

In this system, the message is encrypted first and then the ciphertext produced by
encryption is used for applying MAC with a suitable block cipher. Inside TLS, both
the ciphertext and MAC are sent between two parties. The system was explained in
RFC 7366 in detail. This method is one of the strongest authenticated encryption type
if the MAC algorithm is strong enough.

2.3.2 Encrypt-and-MAC

In this system, MAC is generated according to the message and also the message is
encrypted without using MAC. After that, both of two versions are sent in the system.
This method is generally used in some SSH systems.

2.3.3 MAC-then-Encrypt

In this system, MAC is generated according to the message and the message and MAC
are encrypted together. Then both ciphertext and encrypted version of MAC are sent
in the system.

2.3.4 MAC-then-Encode-then-Encrypt

In this system, MAC is used to the message and then message is encoded into a bit-
string by using some encoding rules. After that, encryption is applied to the output of
the encoding. For more detail, see [36].

12

CHAPTER 3

CERTIFICATION BASED PROTOCOLS: SSL/TLS

3.1 Historical Development of SSL/TLS

SSL contains the versions 1.0, 2.0 and 3.0 in terms of its historical development and
then it was converted to TLS protocol in order to make it more secure. TLS, on the
other hand, has the versions 1.0, 1.1 and 1.2 respectively and with the latest version
of TLS, named as TLS 1.3, designers make great strides in providing privacy and data
integrity.

SSL 1.0

This version was formed in 1994 by Netscape web browser which belongs to the
Netscape Communications Corporation. However, it came in for criticism and could
not be opened for public use because it contained pretty much vulnerabilities.

SSL 2.0

Netscape Communications released SSL 2.0 in February 1995 after making some ar-
rangements in the previous version. Yet, many vulnerabilities were explored again in
SSL 2.0.

SSL 3.0

After the first two versions failed in practice, this version was developed by Paul
Kocher and Alan Freier. The group, called IETF(Internet Engineering Task Force)
and standardize the internet protocols, published this version in 1996. However, this
version again has considered unsafe since 2014, because it is open to a variety of at-
tack methods affecting block encryption. This version is only supported by the RC4,
a stream cipher algorithm but this algorithm is not enough to make SSL 3.0 reliable
since it can be exposed to various attacks.

TLS 1.0

TLS 1.0 was defined in January 1999, inside the documents named as Request For
Comments(RFC) and used in identifying TCP/IP (in the RFC 2246 version). This
design was created by Christopher Allen and Tim Dierks and was obtained by the
development of SSL 3.0 but does not have the capability of interoperability.

13

TLS 1.1

This version is defined in RFC 4346 in April 2006 and it is the updated version of TLS
1.0.

TLS 1.2

This version is defined in RFC 5246 in August 2008. It is also a protocol created by a
number of changes on the previous version, TLS 1.1.

TLS 1.3 (incomplete) This version, started to be designed in March 2015 with several
changes on TLS 1.1 and 1.2, has not yet completed its development.

3.2 Public Key Infrastructure(PKI)

In order to make authentication in SSL protocol, one of the most important part is the
necessity of public key infrastructure. It is a set of policies that creates and manages
digital certificates and public key encryption. In terms of cryptography, public key
infrastructure is a body of rules that provides contact between the public keys and the
users via certification authority(CA). The informations came from certification author-
ity should be unique up to users in their jurisdiction. The public key infrastructure has
three main parts:

1.Certification Authority, which is responsible for giving and verifying digital certifi-
cates.

2.Registration Authority, which takes requests from users in the name of certification
authority and check on informations came from users.

3.Central Directory, which is the secure storage of informations belong to the certifi-
cates.

3.3 How does SSL/TLS protocol work?

3.3.1 SSL protocol

This protocol contains four layers: The Record Layer, ChangeCipherSpec Protocol,
Alert Protocol and Handshake Protocol. Let us explain how they work:

Record Layer

This layer contains a header for the message and a hash value formed by MAC. The
parts of the layer encapsule the definition and the version of protocol and the length of
the message.

14

ChangeCipherSpec Protocol

This layer represents the beginning of secure communication. In other words, this sec-
tion says that the data transferred in the communication is changed from unencrypted
to encrypted one.

Alert Protocol

This layer explains the warnings about the communication in two steps: Severity Level
and Alert Description.

-Severity Level sends messages to the participants by using the values ”1” and 2”. If
the message comes as the value 17, it means that the connection between the partic-
ipants is closed down and they should reconnect to each other. On the other hand, if
the message comes as the value ”2”, it means that an important failure occurs and the
client and the server should not continue to the communication.

-Alert Description means that a particular error message coming from one side of
the communication occurs. The message could include one the following errors:
CloseNotify, Handshake Failure, CertificateRevoked, Unexpected Message, NoCertifi-
cate, CertificateExpired, BadRecordMAC, BadCertificate, CertificateUnknown, De-
compressionFailure, UnsupportedCertificate, IllegalParameter. See [39]

Handshake Protocol

In order to communicate securely, the handshake protocol is used between the client(user’
s browser) and the server(web application). The process is explained step by step be-
low.

1.Client Hello

The first step is a request called the Client Hello since the user wants to communicate
with the server. This contains the SSL version number, the cipher settings supported
by the client and session-specific data.

2.Server Hello

The second step is the answer of the server to the client hello message in order to
communicate with SSL. This section also contains SSL version number, the cipher
settings and session-specific data. Additionally, this step includes the public key of the
server as a server’ s certificate.

3.Server Key Exchange

Since there is no algorithm to agreed upon, the information is sent with no encryption.
The public key of server is used to encrypt a session key which is generated for the
secure communication. It is important to say that both the client and the server will use
the same key to encrypt session-specific data. On the other hand, digital certificates are
used to ensure that the right client wants to communicate with the right server. This
certificates include public keys (never private ones) and connect it to the certificate
owner.

15

4 .Server Hello Done

When the server key exchange finished, the client receives the server hello done mes-
sage which shows that the server took her message.

5.Client Key Exchange

This message has an information about the key that the client and the server will use
to communicate each other.

6.Change Cipher Spec

This step change the session-specific data transmission from an insecure channel to a
secure channel.

7.Finished

After all these steps finish, the secure communication via SSL completed.

3.3.2 TLS protocol

This protocol contains two layers: The Record Protocol and The Handshake Protocol.
Let us explain how they work:

The Record Protocol

This part of TLS communication is used to satisfy secret and reliable communication
between the participants. The protocol benefits from symmetric key cryptography even
if it could use no encryption. By the usage of MAC, the hash functions are generated
and the connection uses this hash function to satisfy privacy.

The Handshake Protocol

This protocol satisfy authentication between the client and the server. This means that
the participants compromise over an encryption algorithm and the keys before sending
the message to each other. The handshake procedure is same with the one used in SSL
communication.

16

CHAPTER 4

RECENT ATTACKS ON SSL/TLS

Even though SSL and TLS protocols make progress about security along their histor-
ical development, they have still some vulnerabilities towards many attacks. In this
chapter, the recent vulnerabilities and attacks will be explained in detail which could
lead the future works to improve them.

4.1 The Attack Types

The attacks on SSL/TLS can be expressed with 4 categories:
-Protocol Logic Flaws

-Cryptographic Design Flaws

-Implementation Flaws

-Configuration and Infrastructure Flaws

4.1.1 Protocol Logic Flaws

The protocols of SSL/TLS could be used in two ways. One of them is by connecting
with different TCP port using HTTPS (443.port) instead of HTTP (80.port). The other
one is connecting with same TCP port, however client could send a request to switch
to TLS protection. (E.g. STARTTLS request for mail and news, in SMTP and NNTP,
respectively) See [4].

The attacks arise from protocol logic could lead negotiating with weak algorithms. In
other words, even if the client and the server use strong cryptographic primitives inside
communication, the algorithm could be vulnerable.

One example is state machinery attacks and early CCS(ChangeCipherSpec) attack
could be showed up as a protocol logic flaw in recent years. The other one is the
flaws could be developed by an attacker inside TLS context or inside the certificate.
The adversary could change the configuration files in order to close down the usage of

17

strong cryptographic primitives.

The renegotiation attack is the other example of protocol logic attacks. It was dis-
covered in August 2009 and it affects all TLS versions and the last version of SSL.
It relies on the plaintext injection attack. It allows an attacker to conjoin his request
into the beginning of the conversation between the client and the server. This is not a
kind of man-in-the-middle attack because the attacker could not be able to decrypt the
message. This attack could cause some problems like injecting messages into HTTPS
connection, downgrading HTTPS to HTTP, injecting custom responses, leading to de-
nial of service attacks etc.

The Alert attack and the Triple Handshake attack are the recent ones included in the
protocol logic and will be discussed in later.

4.1.2 Cryptographic Design Flaws

These attacks arise from the cryptanalysis on the blocks of the plaintext and the ci-
phertext used in algorithms inside SSL/TLS. The attacks also come to light due to the
improper non-blackbox usage because the blackboxes are used to reach vulnerabilities
in SSL and TLS. One of the example for these attacks is the usage of CBC(Cipher
Block Chaining) Mode of operation in the block cipher encryption types. The recent
attack for this kind of attack is named as BEAST attack.

Additionally, the padding oracle attacks are used for taking advantage of error mes-
sages to gain information on encrypted data. These attacks are included in both proto-
col logic and cryptographic design flaws and the attacks in [45] and [21] are related
to that ones. POODLE attack, on the other hand, is also a padding oracle attack which
aims CBC mode in SSL 3.0.

These attacks rely on some cryptographic failures in certificate design. Precautions
for these attacks could somehow be possible, but implementing the precautions is re-
ally hard issue. The attacks towards TLS implementation are described in [19] and
[31]. Therefore, even for modern ciphers based SSL/TLS protocols, the RSA based
certificates still cause some weaknesses. For more information, see [10]].

4.1.3 Implementation Flaws

These types of attacks could be emerged from the buffer overflows mentioned in [18],
that are security vulnerabilities overrunning the buffer’ s border and overwriting on
close memory locations. OpenSSL attacks and timing-based side channel attacks to-
wards cryptographic infrastructure are two types of buffer overflows. See [9]] and [20]
respectively.

18

4.1.4 Configuration and Infrastructure Flaws

Other types of attacks are related to the configuration and infrastructure flaws that are
the problems in TLS forming. Certification management is an important issue and
many mistakes comprise of the incorrect configuration of the certificates. For detailed
information, see [35]] and [26]].

4.2 The Recent Attacks

4.2.1 The Alert Attack

This attack was discovered by the team of miTLS on February, 2012. Along the proto-
col in use, the client and the server authenticate each other in first handshake process
messages by verifying the finished message. They also authenticate the application
data by not accepting it. They just not authenticate in Alert protocol during the first
handshake. The messages in Alert types are two bytes and they are cleavable. The
process of attack is described in Figure See [10].

Client Attacker Server
Alert Fragment [a0]

Handshake

Data

Genuine alert [c0;c1] [a0;c0]

Figure 4.1: Alert Attack

As seen in the Figure d.1] the attacker add [a0], which is one byte alert part and it is
kept secret. When 2 bytes alert [cO,c1] is sent and authenticated, then the 2 bytes alert
[a0,c0] is received and it works which breaks alert authentication process. Therefore,
it is important to notice that there should be an agreement till the end of first handshake
at least.

4.2.2 Timing Attacks

These types of attacks could be used to exploit the devices having weak computing
power like smartcards. A timing attack targets to obtain the private information inside
the protocol by looking at the time in the system. The attack told in [33]] aims to obtain
the keys for decrypting RSA algorithm. Many cryptographic libraries could not find a
solution for timing attacks. One of the most widely used library in the SSL and TLS is
OpenSSL. There is an optimization on the implementation of RSA thanks to the Chi-
nese Remainder Theorem [22], Sliding Windows [32]], Montgomery multiplication

19

[43] and Karatsuba Algorithm [20]. However, all of these optimizations produce tim-
ing attacks to get the private key of the system. Another attack for OpenSSL systems
is ECC based timig attacks.

4.2.2.1 RSA based Timing Attacks

In OpenSSL Decryption System, the center of RSA decryption is exponentiation over
a modulus, say N which is the multiple of two primes, say p.q. The exponentiation
works as m = ¢! mod N where m is the message, c is the ciphertext and d is the
private decryption key. By the CRT, the message is obtained by calculating first m; =
¢ mod p, second my = ¢® mod ¢ and last putting m, and m, together to get the
message m. Note that, d; and d, are computed before by using d. At this point, the
timing attack could be applicable to the factors of N. When the factors were found, it
is easy to gain d because itis e=! mod (p—1)(q — 1) where e is the public encryption
key of the system.

When we looked at the usage of attack in SSL, we see that the attack gets the private
decryption key by observing the differences in time between the ClientKeyExchange
and Alert Message. Even if a small difference in time occurs, it gives an idea about
RSA parameters of the system.

4.2.2.2 ECC based Timing Attacks

The attack is mentioned in [20] on ECDSA based TLS protocols and there is a vul-
nerability inside OpenSSL library again. ECC uses scalar multiplications (e.g. point
multiplication) that create problem about implementing these multiplications. This im-
plementation is so called Montgomery power ladder [44]. This implementation could
not prevent a timing side channel attack.

When we looked at the usage of attack in TLS, we see that the researchers calculated
the time between the ClientHello message and the ServerKeyExchange message during
the handshake protocol. The ServerKeyExchange message has an ECDSA signature
over a digest, covering of necessary parts for producing further cryptographic materi-
als. Since the digital signature could only be created randomly, an adversary is able to
measure runtime of the vulnerable scalar multiplication function [28]].

4.2.3 Triple Handshake Attack

This attack was presented in 2014 IEEE Symposium on Security and Privacy by a
group members of IMDEA, INRIA and Microsoft Research. The attack also a kind
of man-in-the-middle and allows an attacker to establish two connections with same
keys and handshakes, insert an additional data inside the message and renegotiate to
forward the connection between the client and the server.

20

The attack has 3 parts. Part 1 is shown in the Figure 4.2] part 2 is shown in the
Figure [4.3]and part 3 is shown in the Figure[.4]

In part 1, the client connects with the attacker unconsciously and the attacker connects
with the server as if it is a client. The attacker also compel the client and the server to
use RSA key exchange method. After that, the attacker in the middle takes encrypted
message from client and encrypts it again and send it to the server. With same keys and
parameters but different server certificates and finished messages, both handshakes to
get a new session are completed.

User Attacker Target

| Client C | | Server A Server 5

ClientHello(er, [RSA DH]. ...}

ClientHelle(er, HSA])
ServerHello(sr, sid, RS A, ENC_ALG)
ServerCertificate(certy. phy)

ServerCertificate(cert . ph)

ServerHaelloDone

ClientKeyExchange({rsalpris, pk 1))

ClientKeyExchange(rsa|pms, phgl)

ClientCCS
ClientFinished(verifydata{log,, ms))
ClientFinished(verifydatalog), ms))
ServerCCS
ServerFinished(verifydata|log,, ms))
ServerFinished verifydata(logh, ms})

Cache new session: Enows: Cache new session:
#id, s, anon — cert g sid, i, oT, ST sud s, anon — certlg
er, &, RS A, ENC_ALG o, 57, RS54, ENC_ALG

AppData
AppData’
I L I

Figure 4.2: Triple Handshake Process 1

In part 2, the client again connects with the attacker and asks whether it could start the
previous session or not. The attacker makes the same thing towards the server. Then,
he sends the handshake messages that are unchanged between the client and the server.
Now, both the keys and the finished messages are same. By the way, the attacker knows
the connection keys now.

In part 3, the server wants to renegotiate with client authentication on the connection
with the attacker. After that, the attacker sends the renegotiation request to the client
and the client authenticates with its client certificate with the attacker. The attacker
could send full messages from the client to the server and back. The handshake now
succeeds, since the expected Renegotiation Indication extension values on connections
are the same. See [10].

When renegotiation part finished, the attacker did not know the key. Also, he cannot
read the transferred data on the connection. However, the primary messages of the
attacker on both connections could be added to the messages after renegotiation part.
See [16] for more information.

21

Tlser

Has session:
sud, s, anen — cert g,
o, ar, KEX_ALG, ENC_ALG

ClientHello(er', sid)

Attacker

Fnows:

sul, ms, or, 81

Target

Has session:
sid, s, anon — certg,
cr, s, KEX_ALG, ENC_ALG

ServerHello|sr', sid)

Server(CS

ServerFinished|cvd = verifydataling,, mis))

ClientCCS

ClientFinished(snd = verifydata(log,, ms])

New conmechion:

aid, s, or', sty evd, sod

Fonows:

stal, roes, o' s

New connection:
aid, ms, or', ar' | cod, sod

AppData’

sy

Hus session:
wid, s, anon = cerd oy,
or, sv, KEX_ALG, ENC_ALG

Hiss conmection:
s, s, er’, st e, sl

hppData

I oy

wiil, ms, or, 57

IS neswis
sied, s, ot e’

Figure 4.3: Triple Handshake Process 2

Has session
sidd, s, anon. = cert g
o, sr, KEXALG, ENCLALD

His

sid, movw, ox’, st oo, sod

caamnect i

AppData

ClisntHallolor”, [KEX_ALG', [ENC_ALG'], cou)

Serverbellol s, sid, REXALG' ENCALG', cod, sl

Serverfertificate)

g}

ServerleyExchange(signl bere, sl))

CertificateRaquest

ServerHelloDone
ClisntCertificate|certo. pho)
ClientKeyExchange|bee |
CertificateVerify{sign[lug,, skooerte)
ClientCOE
ClientFinished|verifydatallog,. me'1)
SarverCC8

ServerFiniahed|{verifydatalog,. ma'))

Cache new session;
sidd ma’, eerto —

o', s KEX_ALG', ERC_ALGY

Kuows

ety

Cache new session
ns, certo

er® s KEX_ALS', ENC_ALG

Applata,

hppDatay

Aceepted from A
Applatal 4+ AppDatad

*

22

Aceepted from O
AppDatal + Apphatad

Figure 4.4: Triple Handshake Process 3

*

In order to avoid this attack, applying the same validation policy for all certificates
received over a connection, binding the master secret to the full handshake and binding
the abbreviated session resumption handshake to the original full handshake could be
some solutions. See [16] in detailed explanations.

4.2.4 Cross Protocol Attacks

A cross protocol attack is a way of leading that the client uses one protocol in the
connection whereas the server uses a different one. Adding something to one protocol
could not be seen as an invalid data in another protocol. There are some popular cross
protocol attacks which of them are mentioned below. For more information, see [38]].

4.2.4.1 The Wagner and Schneier Attack

It is a kind of cross protocol attack that relies on the Diffie-Hellman key exchange
digital signature does not include an identifier of the ciphersuite inside the protocol.
The attacker convinces the client, who uses TLS RSA Export type ciphersuite and
thinks different RSA parameters inside the ServerKeyExchange part, to take Diffie
Hellman parameters from TLS Diffie Hellman RSA ciphersuite.

In the attack, a man-in-the-middle again tries to damage the connection. The client
validates the signature and reads the RSA modulus that is a prime number of a Diffie-
Hellman group. The client also reads the RSA exponent that is the generator of the
corresponding group. He encrypts the key, say k with the generator, say ¢ as k9 in
modulus, say p. Then he adds this encrypted key into the ClientKeyExchange part.
With knowing the generator g and as a prime number p, the attacker could reach the
gth root of k9 to obtain the session key. See Figure [4.5]

For more information, see [46].

23

Clicnt Adversary Scrvor

ClicntHello

TLS_RSA_EXPORT.. ., CIAND
Cliwal Helle
TLE MEFE REA .. ORAMND
SurverHolle
TLE MHEF REA .. SRAND
Serverllella
TLS_REA_EXFPORT..., SRAND
Caruil icale Cartilicale
lee — — — - — — — — — — — —
ServerKeyExchange
{r. 9. Y=},
ServerBoevBxchanye gig(CRAND, SRAND, p, 3, ¥s)

Verify aignatnre; I
read p os BRSA m and g ne
exponent

ScrverHelloDone

ClientKeyOxchange &9 mod p

Rocover I

ChangeCipherSpee, Finished

ChanyelCipher3pec, Finished

Application. Data

Figure 4.5: The Wagner and Schneier Attack

4.2.4.2 A New Cross Protocol Attack

It is a kind of server impersonation attack which uses Diffie Hellman Key Exchange
protocol. In this attack, the server must support a prime curve and the client must sup-
port a plain Diffie Hellman process. That is because of the fact that the RSA signature
algorithm could be used both in Elliptic Curve Diffie Hellman and Diffie Hellman Key
Exchange.

Elliptic Curve Diffie Hellman(ECDH) ServerKeyExchange message should be a valid
Diffie Hellman ServerKeyExchange message. The attacker in the middle could ob-
tained the Diffie Hellman exchanged key. The attacks success probability is 2°. One of
the recommendation for not being exposed to this attack is changing the ServerKeyEx-
change signature, identifiers of the algorithms and all previous messages. For detailed
informations and recommendations, see [38]. The process of the attack has shown in

the Figure {.6|

24

The new cross-protocol attack

Client Adversary Server

ClientHello
TLS_DHE_RSA..., CRAND ClientHello
TLS_ECDHE_RSA..., CRAND

ServerHello
TLS_ECDHE_RSA..., SRAND

Certif icate

ServerKeyExchange
curve_params, kG, sig(CRAND,
SRAND, curve_params, kG)

ServerHello
TLS_DHE_RSA..., SRAND <

Certif icate]

Verify signature |

ServerHelloDone

ClientKeyExchange Y, = a® mod n

| Recover pre-master secret

ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data

Figure 4.6: A New Cross-Protocol Attack

4.2.4.3 DROWN attack

This attack published in March 2016, very recently by some researchers. The name
DROWN comes from Decrypting RSA with Obsolete and Weakened Encryption. It is
an important and harmful vulnerability on HTTPS and other SSL/TLS based sessions.
This attack allows an attacker to break the encryption and to obtain passwords or im-
portant numbers that have financial worth or stealing risky messages. Studies on this
attack shows that around 33% of HTTPS websites are vulnerable to this attack. See
[12].

A web server is vulnerable to DROWN attack if it uses SSL 2.0 that is used in a
considerable amount of web servers right now. The problems of webserver has shown

in Figure

In order to prevent the attack, system developers should be sure that the private key for
a server is not used for another server. The most practical solution may be upgrading

25

A server is vulnerable to DROWN if:

It allows both TLS and 55Lv2 connections It shares a public
key (%,) with a
server that allows
S5Lv2 connections.
Then, if one server
allows TLS
connections, and
one supports
SSLvz...

"5 ._..-3 ’g-’l
/

the SSLv2 server
can be used to
attack the TLS server

17% of HTTPS servers still allow S5Lv2 When taking key reuse into account, an additional 16% of HTTPS servers
connections are vulnerable, putting 33% of HTTPS servers at risk

Figure 4.7: Drown Attack

TLS or SSL libraries and browsers.

26

4.2.5 SLOTH: Security Losses from Obsolete and Truncated Transcript Hashes

The collision of hash functions is a recently developed and highly damaging kind of
exploit that brings a necessity of not using hash functions like MD5 and SHA1 in digi-
tal signature applications like SSL/TLS certificates. Nevertheless, these hash functions
are still in use inside many cryptographic protocols. The Figure[d.I|shows the SLOTH
attack results on MD5, SHA1 and HMAC, popular hash and hash based functions.

Table 4.1: SLOTH Attack Results

Collision Wall-clock Preimage Security
P Pre h
rotocol Property Mechanism Attack Type War Time Cost i
TLS 1.2 Client Auth ASA-MDS Impersonation Sl 299 1hour (48 ;15 89 bits
Prefix cores)
Truncated HMAG (86 Gredential e 20 days (4 =
1 h | Bi
TLS 1.2 Channel Binding bits) Forwanding Generic 4 GPUS) 2 48 bits
TLS 1.2 Client Auth :g;ﬁ;m Impersanation sh-:r:n 277 PALY 83 bits
2X necti = 5
TLS 1.2 Sewer Auth ASA-MDS Impersonation Generic S 2128% 2128 X bits
+storage
ASA-SHAT or " Chosen 3 .
TLS 1.3 Server Auth Impersonaticn 7 60 B3 bits
ECDSA-SHAT e Prafix 2 &
Handshake ch ;
BEE- 5 B ke MDS | SHA1 Downgrade g 27 2180 83 bits
ntegrity Frefix

The SLOTH attack works on TLS 1.2 client authentication process as a man-in-the-
middle client impersonation attack and also on TLS Channel Bindings as a man-in-
the-middle credential forwarding attack. Additionally, the attack affects on TLS 1.2
and 1.3 server authentication by removing MD5 from TLS 1.3 and affects softwares
and responsible disclosures.

A man-in-the-middle client impersonation attack has shown in the Figure 4.8] and
a man-in-the-middle credential forwarding attack has shown in the Figure 4.9] For
detailed information, see [17].

27

| Client C | MitM A Server S I

CH(n., ez.)
SH'(nl, ex)
SC'(cert,)
| SKE'(sign(ska, hash(ne | ns | 8> — g | g | 9)))

Computes ex., dn’ s.t. hash(log]) = hash(log})
by finding a chosen-prefix collision (',) s.t.:
hash(CH | SH' | SC' | SKE' | SCR'(C) | —)) = hash(CH'(n., C3))

CH'(n.,ex))

SH(ns, exs)
SC(eerts)
SKE(sign(sks, hash(n. [n, | p| g | g")))
SCR'(dn’ = Cy | SH | SC | SKE | SCR) SCR(dn)
SHD SHD
log§ C(cert,) cC(cert.) _ logi.
s CKE(g™ mod (¢° — g) = g) CKE(g) -
| hash(lags) = hash(lag;)
logs
CCV(sign(skc, hash(log?))) CCV(sign(skc, hash(log?))) e

[(ms, k1, k) = kdf(g¥, e | m) | (ms, ka1, ko) = k(g e | na)]

[CFIN(macgg (s, hash(log;)))]*
[SFIN(macgg(mns, hash(logs)))]*

-

~_ logj

Authenticated Connection:

C— 8

I I *

Figure 4.8: A man-in-the-middle Client Impersonation Attack

28

Client C |

|MitM Al

CH(n., exc) CH(n., ex.)
SH(n,, ex,) SH(n,, ex,)
SC'(certy) SC(cert,)

SKE'(sign(sk 4,hash(n. |n. | g —g|g|g))

SKE(sign(skg, hash(n. | n. | p| g g¥)))

Computes dn’, ex), s.t.
macgg(ms®, hash(logs)) = macgg(ms®, hash(log3))
by finding a generic collision (', Cy) s.t.:
macog(ms®, CH | SH | SC' | SKE' | SCR'(C}) | SHD | CC | CKE) =
macog(ms®, CH | SH | SC | SKE | SHD | GKE | NPN(® “http/1.1’" | C3))

SCR/(dn’ = C})

SHD SHD
CC(no_cert)
CKE(g® mod (g% — g) = g) CKE(g)

[(ms®, k5, k5) = kdf(g, n, | n,)

|Kn0ws (ms®, kf,

Kg), (ms*, ks, k3)| | (ms*, k. k) =

[CFIN(macgs(ms®, hash(log5)))| i

kdf(g¥, nc | n,)]

[NPN(ex, = ‘ ‘http/1.1°° | Cy)|M

[CFIN(macos(ms®, hash(log5)))]*:

[SFIN(macgg(ms®, hash(log§)))]

[SFIN(macgg(mns®, hash(log3)))]*?

tls-unique, = macgg(ms®, hash(log;))

|tls~u.niquec = tls-unique; = Tl

| tls-unique; = ma

cos (ms*, hash(log3))

[TokenBinding(sign(ske, hash(T)))[*

[TokenBinding(sign(skc, hash(T)))]*:

Authenticated Connection:
C—= 8

Figure 4.9: A man-in-the-middle Credential Forwarding Attack

29

*

4.2.6 SMACK: State Machine Attacks

In these types of attacks, the main approach is the designing flaws of state machines
that use TLS protocol. The implementation mistakes in open source TLS machines
were tested and realized that many vulnerabilities in these implementations have not
been recognized for many years. In this section, we mention about these attacks rely
on man-in-the-middle types.

4.2.6.1 SKIP-TLS: Message Skipping Attacks on TLS

This attack was found in 2015. Different cipher suites in TLS use different message
sequences. As an example, in ephemeral (forward secret) Diffie-Hellman cipher suites
(including ECDHE)), server authentication relies on the Server Key Exchange message,
whereas this message is not used in the RSA key exchange. The other one is, in
non-ephemeral Diffie-Hellman cipher suites, clients use the DH keys fitted in server
certificates instead of newly generated keys provided in the Server Key Exchange.
See [23]. It was found that some open source TLS implementations (like OpenSSL,
GnuTLS, CyaSSL, JSSE etc.) incorrectly let some messages be skipped even if they
are required for the selected cipher suite.See [15]]

Some TLS implementations were showed in the Table 4.2 according to how they are
vulnerable.

Table 4.2: Available Vulnerabilities of TLS Implementations

JSSE(Java Secure Socket Extension):

Server impersonation vulnerability. Java 1.5, 1.6, 1.7 and 1.8

prevent the attack.

CyaSSL(C language based SSL library):

Client and server impersonation vulnerability. CyaSSL 3.3.0 prevents the
attack.

OpenSSL(Open Source Implementation of SSL):

Client impersonation vulnerability if server accepts static Diffie-Hellman
certificates. OpenSSL 1.0.1k prevents the attack.

axTLS(Highly Configurable client/server TLS 1.2 Library):

Client impersonation vulnerability. axTLS 1.5.2 prevents the attack.
Mono(Free Open Source Project):

Client impersonation vulnerability. Mono 3.12.1 prevents the attack.

Note that, if you want to connect an HTTPS web site as a client software user with one
of above libraries over a network that is not secure (e.g.WI FI), you are most probably
not in secure. It is very important that you should use the latest version of the library to
decrease the danger. There are some online testing servers for SKIP-TLS attack. See

(1] .

30

4.2.6.2 FREAK Attack: Factoring RSA Export Keys

This attack was discovered on March, 2015 by some researchers from IMDEA, INRIA
and Microsoft Research [15]]. It causes server impersonation for which uses export-
grade encryption in so many browsers and systems such as Apple’ s Safari, Google’ s
Android phone systems, Microsoft Internet Explorer, OpenSSL, Microsoft’ s SChan-
nel(Secure Channel) implementation in Microsoft Windows. With this attack, HTTPS
connection between the client and the server could be interrupted that allows an at-
tacker to change the transferred data.

By using export RSA moduli less than or equal to 512-bits long, an attacker could fac-
torize it in less than 12 hours with just $100 by using Number Field Sieve algorithm.
However, many popular and important web sites including NSA, FBI, IBM, Syman-
tec still enable export ciphersuites on their servers that could lead the FREAK attack
directly. See [10].

Table 4.3: Vulnerable Systems on Freak Attack

Vulnerable TLS Client Libraries Vulnerable Web Browsers
-IBM JSSE

-Cisco using OpenSSL

-Mono versions before 3.12.1 BlagkiS8® Brow i

-LibReSSL versions before 2.1.2 SO <o

-Schannel versions before KB3046049 FOpera versioNgiiBiore 28
-SecureTransport versions before i0S 8.2,
AppleTV 7.1,

OS X Security Update 2015-002

-Safari on OS versions before March 9

-Internet Explorer on OS versions before

-BoringSSL versions before Nov 10, 2014 March 9

-Chrome versions before 41

-OpenSSL versions before 1.0.1k

All the attacks in the Table 4.3| shows us that, a user of that systems should update
their libraries or browsers constantly.

4.2.7 Imperfect Forward Secrecy: Focus on Logjam Attack

In the article [11], a popular algorithm Diffie-Hellman key exchange has been investi-
gated in terms of security. This algorithm has a wide range of usage in SSH and IPsec
systems and SSL/TLS protocols. Since the security of Diffie-Hellman key exchange
mechanism relies on the security of Discrete Logarithm Problem(DLP) and it is be-
lieved that computing a discrete logarithm is much more difficult than factoring RSA
modulus of the same size, this key exchange mechanism is considered as secure and
hard to break. However, in this article, it has come to light that this thought is not
working properly in practice because of two reasons: The first is, many servers use
weak Diffie-Hellman parameters. The second is, design and implementation flaws and
configuration mistakes leads many attacks on servers, which use Diffie-Hellman key
exchange mechanism in protocols. From this point of view, the Logjam attack against

31

the TLS protocol and threats from state-level adversaries have been examined in this
article. The Logjam attack, a security vulnerability against Diffie Hellman algorithm
ranging from 512-bit to 1024-bit keys, allows the man-in-the-middle attack in order
to downgrade vulnerable TLS connections to 512-bit export-grade crypto. This means
that an attacker in the middle could be able to see and change the data inside the con-
nection. DHE-EXPORT ciphers supported servers could be affected by this attack as
much as all modern web browsers. The studies on this attack shows that this attacks
applies to 8.4% of Alexa Top Million HTTPS sites and 3.4% of all HTTPS servers
that have browser-trusted certificates. On the other hand, in terms of state-level ad-
versaries, many HTTPS, SSH or VPN servers use the same prime numbers inside the
Diffie-Hellman key exchange algorithm. Yet, this is a very important vulnerability to
exploit the mechanism since this prime number is used into the Number Field Sieve
algorithm, which is the most efficient process to break Diffie-Hellman connection. The
cryptographers know that the Number Field Sieve algorithm needs an expensive pre-
computation step that generates a matrix values from the relevant prime number and
a cheap descent step which uses this matrix, the generator g and ¢g“ that are public
parameters and the attacker could be easily compute the private “a” from this informa-
tion. This means that an attacker that has a good precomputation power could easily
calculate the discrete log of a number used in Diffie-Hellman key exchange and could
modify the data transmitted in TLS protocol. The article shows us that the computa-
tion against the most common 512-bit prime used for TLS connection and the Logjam
attack could be used to downgrade connections to 80% of TLS servers that support
DHE-EXPORT. It is estimated that the same thing can be achieved for 768-bit and
then 1024-bit primes. Breaking the system for the most common 1024-bit prime num-
ber used by web servers could allow passive eavesdropping in the 18% of the Alexa
Top Million HTTPS domains. A second prime number could allow passive decryption
of connections to 66% of VPN servers and 26% of SSH servers. A close reading of
published NSA leaks says that their attacks on VPNs are consistent with having such
a break.

This article recommends us some important key points for a secure connection. As a
server owner part, we should disable support for export cipher suites and use a 2048-bit
Diffie-Hellman group. As a browser user, we should update our browser to the latest
version. As a system admin or developer, we should use TLS libraries of the latest
version and the servers that we maintain use 2048-bit or larger prime numbers and the
clients that we maintain refuse prime numbers that are smaller than 1024-bit in Diffie-
Hellman key exchange protocol. As a result, to realize and fix these vulnerabilities,
both cryptographers and system builders should work together. See [11]

4.3 Some Other Important Attacks

4.3.1 Generalization of attacks on SSL 2.0

This version of SSL is in the wrong in many aspects: -The cryptography used in SSL
2.0 contains identical keys for both encryption and message authentication processes.

32

-Its MAC (Message Authentication Code) construction is weak against some length
extension attacks because it uses the hash function (MD5) with a secret prefix.

-There is no such protection for handshake protocol in SSL 2.0. This could cause man
in the middle attacks.

-TCP connection close process is used to point to the end of the message. This could
lead the truncation attacks.

-The virtual hosting system used in many web servers is contrary to SSL 2.0. This is
because SSL 2.0 uses a single service and a fixed domain certificate. For this reason,
many websites unable to use SSL 2.0.

4.3.2 Generalization of Attacks on SSL 3.0

In this version, such vulnerabilities of SSL 2.0 were corrected. However, there are also
some weaknesses of SSL 3.0:

-The key derivation process is weak in this version. This is because of the fact that the
half of the master key is produced by depending on MDS5 hash function which could
cause some collisions.

-CBC mode of operation system used in SSL 3.0 is vulnerable to the padding attack
(POODLE attack) so this system is critical for SSL connection.

4.3.3 Poodle Attack

This attack was discovered on October 14, 2014 by Bodo Moller, Thai Duong and
Krzysztof Kotowicz from Google Security Team. The name Poodle means Padding
Oracle on Downgraded Legacy Encryption and it is a kind of man-in-the-middle attack
targeting CBC-mode ciphers in SSL 3.0. This attack allows a man-in-the-middle to de-
crypt the message in this version of SSL. Even if the TLS versions become widespread,
there are still so many browsers and servers using SSL 3.0 and vulnerable to this attack.

In this attack system, if an attacker could reach and control a router in an open public
area like Wi-Fi, then he could enforce the user’ s browser to downgrade to use SSL 3.0
or before versions even if the browser uses any TLS version. After that, the attacker
could capture the information transferred by SSL certificate.

As a solution, both the client and the server could support TLS versions, never SSL, but
they should not support downgrading the system. One way of doing this is upgrading
their browsers or servers to the latest version. See [42] for more information.

The statistics shows us that the POODLE attack is a really serious problem. As of
October 12, 2014, nearly all HTTPS Alexa Top 1 Million websites supports SSL 3.0
and 0.12% of them do not support TLS. More statistics are in [2].

33

4.3.4 Truncation Attack

This attack gives an impression as if the message is finished by inserting a TCP code
into the message. In this way, the server could not take the rest of the message. This
TCP code is a TCP FIN message which is unencrypted and causes to close the connec-
tion.

4.3.5 Protocol Downgrade Attacks

This attack makes the server think that it communicates with the current version of
TLS but in reality it uses one of the previous versions. In this way, the system used be-
tween the client and the server is accessible to some known vulnerabilities of previous
versions. For example, the attacker could use weaker encryption algorithms or smaller
key size.

4.3.6 Beast Attack

This attack was discovered on September 2011 and named as Browser Exploit Against
SSL/TLS(BEAST). This affects Cipher Block Chaining(CBC) method used in SSL.
This is also a kind of man-in-the-middle attack and it allows an attacker silently decrypt
and obtain authentication tokens to get the transferred data. For detailed information,
see [24].

4.3.7 Crime and Breach Attacks

The Crime attack was announced in 2012 as a kind of side channel attack against com-
pression in HTTPS implementations. Breach attack named as Browser Reconnaissance
and Exfiltration via Adaptive Compression of Hypertext, on the other hand, is a kind of
Crime attack on HTTP compression and HTTP responses. It was announced in 2013
on Black Hat conference. For detailed information, see [25] and [27]].

34

CHAPTER 5

IMPORTANT POINTS AND SELECTION OF PARAMETERS

5.1 Recommended Key Sizes and Parameters in Algorithms and Protocols

A very first and important point for selecting a suitable key size in an algorithm or a
protocol is that the key size selected by a user should not be broken easily with the
techniques or computation powers of the present time. Predictions for the security of
keys should not just include the current time. They should also be foresighted ideas
and should be advised in the near or long terms. Note that, a suitable key size, say
k-bits does not guarantee the k-bits of security. Note also that selecting a long key size
does not mean to make algorithms or systems more secure.

Additionally, the recommended cryptographic algorithms and cryptography based sys-
tems are at least AES-128 for block ciphers, at least SHA-256 for hash functions and
at least 256-bit-Elliptic Curves for public key primitives. In the Table[S.1] the recom-
mended key sizes of the report published in 2014 by ENISA were given.

For key agreement systems or inside the protocols, generally it is better to use dis-
crete logarithm based systems and primitives, integer factorization based algorithms,
strong cryptographic components or functions. Discrete Logarithm Problem(DLP) and
Integer Factorization Problem are still very hard problems at the present time.

The key agreement systems in SSL/TLS have two main types: RSA-Key Exchange
and Diffie-Hellman Key Exchange. Even if RSA is not considered secure enough
nowadays, it is a widely used mechanism in SSL/TLS protocols and the attack towards

Table 5.1: Recommended Key Sizes by ENISA

Parameter Legacy Future System Use Future System Use

Near Term Long Term
Symmetric Key Size k 80 128 256
Hash Function Output Size m 160 256 512
MAC Output Size m 80 128 256%*
RSA Problem I(n) > 1024 3072 15360
R I(p") > 1024 3072 15360
Finite Field DLP I (p(), l()q) > 160 256 512
ECDLP I(q) > 160 256 512
Pairing I(pF™) > 1024 3072 15360
U(p),l(q) > 160 256 512

35

RSA in [19] has been fixed in the latest versions of TLS. Also, a security analysis
towards RSA in TLS has been published in [34]. Inside the key agreement step, the
key for transferring data is obtained from pre-master secret inside the protocol. This
derivation is generated in two ways: either TLS 1.2 usage or the previous versions of
TLS usage.

The encrypted data transferred in the TLS are sent and received between the client
and the server inside the Record Layer of the protocol. Two systems widely used
in TLS are MAC-then-Encode-then-Encrypt using CBC mode or MAC-then-Encrypt
using RC4 algorithm. The former one is hard to implement and the latter one is a weak
stream cipher type. However, these problems arrived at a solution in TLS 1.2 thanks to
the Authenticated Encryption, the GCM mode and CCM mode. Other attacks for this
situation is BEAST [24] and CRIME [25] attacks. The list of TLS ciphersuites are in

8.

For the handshake protocol, RSA is also a widely used key agreement protocol in
TLS. Even if there are many attacks towards RSA algorithm, the protocol could be
made more secure by the usage of strong number theoretic parameters and random
oracles(theoretical black boxes).

For the whole protocol security, it is better to choose discrete logarithm based or el-
liptic curve based systems. Especially, ECDSA is strongly recommended but not in a
common usage.

The recommended ciphersuites by ENISA for TLS were given in the Table[5.2]

Table 5.2: Recommended Ciphersuites for TLS

Camellia_128_GCM_SHA?256
AES_128 GCM_SHA256
Camellia_256_GCM_SHA384
AES_ 256 _GCM_SHA384
AES_128_CCM
AES_128_CCM_8
AES_256_CCM
AES_256_CCM_8

For more information, see the ”Algorithms, key size and parameters” report-2014 by
ENISA.

36

5.2 Protection Methods from Recent Attacks and Some Other Known Attacks

Many attacks towards SSL/TLS could be fixed by taking in consideration much more
to the design of the protocol, implementation flaws, vulnerabilities and cryptographic
infrastructures if possible. The main way for not being exposed to these attacks is
upgrading the protocol, the browser and the server to the latest version. Also, the
informations inside the content of the messages should be given clearly in order not to
come across misunderstandings.

The Wagner and Schneier Attack [46] arrived at a solution by authenticating the data
in the handshake protocol and adding the hash values of them into the evaluations of
ClientFinished and ServerFinished messages. The problem here is that the hash values
were not added to the ChangeCipherSpec and Alert messages which could lead to the
following attacks. This attack shows that satisfying authentication between the client
and the server is really important issue. For detailed information, see [14].

As a cryptographic design flaw, [19] is an important attack because it gets benefits
from the error messages coming from the server to obtain information about the plain-
text messages. This means that there should be taken less error messages as much as
possible for not being a target of an attacker. The attack [31] is an improved version of
[19]. These studies showed that precautions towards some attacks could lead to find
other problems for exploiting the system. [13] attack moved these previous attacks to
further away.

Another cryptographic design flaw is the attack mentioned in [45]. This attack could
not been applied to the classical SSL and TLS protocols. Yet, it is applicable to the
DTLS(Datagram Transport Layer Security) protocol that provides secure communica-
tion for datagram based protocols. As a solution, the use of GCM mode instead of
CBC mode could be given. Equal error messages for padding and decrypting could be
another solution but they could not prevent timing attacks completely.

Performance optimization attack informed by [30] shows that this optimization is not
always beneficial, even it could be harmful. Therefore this fixing could be skipped or
rearranged.

As a cross protocol attack type, the key exchange algorithm confusion could work on
Elliptic Curve Diffie Hellman mechanisms [38]]. With today’ s computation power,
the attack does not affect too much, but it will be a strong threat in the future as this
power increases.

A way of preventing timing attacks is being careful about implementations. They
should have equal time responses inside the process of the protocol. Also, timing
attacks could arise from the side channels coming from unforeseen places. Addition-
ally, instead of using changeable algorithms for comparing the time to find the secret,
using constant time algorithms could be a better choice. The optimizations for the
implementations like Montgomery multiplication or Karatsuba algorithm are also re-
markable issues for designing the secure systems. For more and detailed information,
see [41].

37

CHAPTER 6

CONCLUSION

Communicating with a computer based systems always reveal the importance of se-
curity, especially with regards to the criticality and privacy points. The standardized
certificate based protocols like SSL and TLS help such systems to make more se-
cure and to decrease the exploitations. In addition, since these protocols are based on
the cryptography, they could benefit somehow from the confidentiality, data integrity,
authentication and non-repudiation features of cryptographic systems. Nevertheless,
vulnerabilities like the design and implementation flaws of the systems or inability of
cryptographic infrastructure of the protocols make this structure become a target of
adversaries. Hence, investigating these protocols in detail is a necessary and indis-
pensable issue.

In this thesis, firstly, significant cryptographic algorithms, functions and key exchange
mechanisms were examined. More particularly, they were chosen from the most
widely used ones inside SSL and TLS. Secondly, the development process of these
protocols and what added on them that changes their names consecutively were given
from past to present. Additionally, the public key infrastructure, which is the corner-
stones of the SSL and TLS were told. After that, the working principle of the protocols
was mentioned in summary. Thirdly, the attack types according to their vulnerable
points were examined and it was decided that they have four branches: Protocol Logic
Flaws, Cryptographic Design Flaws, Implementation Flaws and Configuration and In-
frastructure Flaws. At this point, we particularly focused on the recent attacks on SSL
and TLS in order to pay attention to the present time disclosures. The Alert Attack,
Timing Attacks, Triple Handshake Attack, Cross Protocol Attacks, SLOTH Attack,
Smack Attack and Logjam Attack are the most important current attacks. Also, we ex-
plained some other important attacks in brief not to ignore them for security. Lastly, we
mentioned the important points for designing a prospering protocol and the parameters
for selecting them carefully. For this reason, the currently recommended key sizes and
parameters in the algorithms and protocols used by SSL and TLS were given. At the
end, protection methods from well-known attacks were told.

39

6.1 Our Suggestions for Future Works

Table [6.1] shows the usage of SSL certificate authorities for websites from w3techs
statistics. This table means that over the half of websites do not use a certificate. This
is a main and critical problem, especially for users since they connect to a page having
no such security measure. In particular, people could give their credit card numbers
or critical personal informations uncaringly, leading the loss of money or more crucial
things. Therefore, we suggest that it is important to use websites with certificate ones
(generally they begin with "https”) as far as possible.

Other issue is a remarkable amount of websites use invalid domain (45.4% from all).
This also invites attackers to the system and may be never being noticed. So, we
suggest also that especially the system developers should be careful about the domain
of the certificate.

Certificate expired is another problem for the websites. Nearly 1% of web sites use
expired certificates that causes a thought as if a certificate is still active. The percentage
of this problem could seem too small, but if we think on the basis of whole websites
that are over millions nowadays, it is a serious number.

Finally, there is a gap between the study areas of system developers and cryptogra-
phers. Many attacks arise from either as a design flaw of a system to the hardware or
software, or as a lack of cryptography inside the protocol. Therefore, we recommend
that both system developers and cryptographers should work together or they should
learn both of these issues best. Also, they should pay attention to performed attacks
and should design a system by avoiding from the attacks as much as possible.

40

None
Self-signed
Unrecognized Authority

58.2%

10.8%
1.3%

Symantec Group
Comodo

Go Daddy Group
GlobalSign
StartCom
Entrust

DigiCert
Verizon
Unizeto

Secom Trust
SwissSign
Trustwave

Network Solutions

329.0%

28.8%

13.6%

2.8%
9.5%

0.7%
2.3%

0.5%
1.8%

0.5%
1.7%

0.2%
1.0%

0.2%
0.7%

0.2%
0.6%

0.1%
0.5%

0.1%
0.4%

less than 0.1%
0.1%

W3Techs.com, 33 &wgust 2013

B absolute usage percentage M market share

Figure 6.1: Usage Percentages of Certificates

41

[1]

[10]

[11]

[12]

REFERENCES

12 Online Free Tools to Scan Website Security Vul-
nerabilities and Malware, https://geekflare.com/
online-scan—-website-security—-vulnerabilities/, accessed:

2016-08-16.

Alexa Top 1 Million Domains, https://poodle.io/, accessed: 2016-08-
16.

Diffie-hellman in SSL/TLS, https://wiki.openssl.org/index.
php/Diffie_Hellman, accessed: 2016-08-16.

History of the SSL/TLS Protocol Suite, http://cromwell-intl.com/
cybersecurity/ssl-tls.html, accessed: 2016-08-16.

Internet Protocol (IP), https://www.techopedia.com/definition/
5366/internet—protocol—ip, accessed: 2016-08-16.

Introduction to Secure Sockets Layer, http://euro.ecom.cmu.edu/
resources/elibrary/epay/SSL.pdf, accessed: 2016-08-16.

Transport Layer Security over Stream Control Transmission Protocol, https:
//tools.ietf.org/html/rfc3436, accessed: 2016-08-20.

Transport Layer Security (TLS) Parameters, http://www.iana.org/
assignments/tls—-parameters/tls—parameters.xml, accessed:
2016-08-16.

Vulnerabilities, https://www.openssl.org/news/
vulnerabilities.html, accessed: 2016-08-16.

A Zoo of TLS attacks, https://mitls.org/pages/attacks#
deployment, accessed: 2016-08-16.

D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halder-
man, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al., Imperfect for-
ward secrecy: How diffie-hellman fails in practice, in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pp. 5—
17, ACM, 2015.

N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Va-
lenta, D. Adrian, J. A. Halderman, V. Dukhovni, et al., Drown: Breaking TLS
using SSLv2.

43

https://geekflare.com/online-scan-website-security-vulnerabilities/
https://geekflare.com/online-scan-website-security-vulnerabilities/
https://poodle.io/
https://wiki.openssl.org/index.php/Diffie_Hellman
https://wiki.openssl.org/index.php/Diffie_Hellman
http://cromwell-intl.com/cybersecurity/ssl-tls.html
http://cromwell-intl.com/cybersecurity/ssl-tls.html
https://www.techopedia.com/definition/5366/internet-protocol-ip
https://www.techopedia.com/definition/5366/internet-protocol-ip
http://euro.ecom.cmu.edu/resources/elibrary/epay/SSL.pdf
http://euro.ecom.cmu.edu/resources/elibrary/epay/SSL.pdf
https://tools.ietf.org/html/rfc3436
https://tools.ietf.org/html/rfc3436
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
https://mitls.org/pages/attacks#deployment
https://mitls.org/pages/attacks#deployment

[13] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K. Tsay,
Efficient padding oracle attacks on cryptographic hardware, in Advances in
Cryptology—CRYPTO 2012, pp. 608625, Springer, 2012.

[14] M. Bellare and P. Rogaway, Entity authentication and key distribution, in Annual
International Cryptology Conference, pp. 232-249, Springer, 1993.

[15] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, A messy state of the union: Tam-

ing the composite state machines of TLS, in 2015 IEEE Symposium on Security
and Privacy, pp. 535-552, IEEE, 2015.

[16] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub, Triple hand-
shakes and cookie cutters: Breaking and fixing authentication over TLS, in 2014
IEEE Symposium on Security and Privacy, pp. 98—113, IEEE, 2014.

[17] K. Bhargavan and G. Leurent, Transcript collision attacks: Breaking authentica-
tion in TLS, IKE, and SSH, NDSS (Feb. 2016), 2016.

[18] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright, Trans-
port Layer Security (TLS) extensions, Technical report, 2006.

[19] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS# 1, in Annual International Cryptology Conference,
pp. 1-12, Springer, 1998.

[20] D. Brumley and D. Boneh, Remote timing attacks are practical, Computer Net-
works, 48(5), pp. 701-716, 2005.

[21] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, Password interception in a
SSL/TLS channel, in Annual International Cryptology Conference, pp. 583-599,
Springer, 2003.

[22] K. Chemali, Chinese Remainder Theorem, 2005.
(23] J. Curguz, VULNERABILITIES OF THE SSL/TLS PROTOCOL.

[24] T. Duong and J. Rizzo, Here come the & ninjas, Unpublished manuscript, 320,
2011.

[25] T. Duong and J. Rizzo, The crime attack, in Presentation at ekoparty Security
Conference, 2012.

[26] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov, The
most dangerous code in the world: validating SSL certificates in non-browser

software, in Proceedings of the 2012 ACM conference on Computer and commu-
nications security, pp. 38—49, ACM, 2012.

[27] Y. Gluck, N. Harris, and A. Prado, BREACH: Reviving the CRIME attack, Un-
published manuscript, 2013.

[28] N. Howgrave-Graham and N. P. Smart, Lattice attacks on digital signature
schemes, Designs, Codes and Cryptography, 23(3), pp. 283-290, 2001.

44

[29] A. Kahate, Cryptography and network security, Tata McGraw-Hill Education,
2013.

[30] J. Kelsey, Compression and information leakage of plaintext, in International
Workshop on Fast Software Encryption, pp. 263-276, Springer, 2002.

[31] V. Klima, O. Pokorny, and T. Rosa, Attacking RSA-based sessions in SSL/TLS,
in International Workshop on Cryptographic Hardware and Embedded Systems,
pp- 426440, Springer, 2003.

[32] C. K. Koc, High-speed RSA implementation, Technical report, Technical Report,
RSA Laboratories, 1994.

[33] P. C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems, in Annual International Cryptology Conference, pp. 104-113,
Springer, 1996.

[34] H. Krawczyk, K. G. Paterson, and H. Wee, On the security of the TLS protocol:
A systematic analysis, in Advances in Cryptology—CRYPTO 2013, pp. 4294438,
Springer, 2013.

[35] J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and G. Muller, Finding error han-
dling bugs in openssl using coccinelle, in Dependable Computing Conference
(EDCC), 2010 European, pp. 191-196, IEEE, 2010.

[36] D. H. Lee and X. Wang, Advances in Cryptology-ASIACRYPT 2011: 17th In-
ternational Conference on the Theory and Application of Cryptology and Infor-
mation Security, Seoul, South Korea, December 4-8, 2011, Proceedings, volume
7073, Springer Science & Business Media, 2011.

[37] A. Mahalanobis, Diffie-Hellman Key Exchange Protocol, Its Generalization and
Nilpotent Groups., Ph.D. thesis, Florida Atlantic University Boca Raton, Florida,
2005.

[38] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel, A cross-
protocol attack on the TLS protocol, in Proceedings of the 2012 ACM conference
on Computer and communications security, pp. 62—72, ACM, 2012.

[39] H. L. McKinley, SSL and TLS: A beginners guide, SANS Institute, 2003.

[40] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography, CRC press, 1996.

[41] C. Meyer and J. Schwenk, Lessons Learned From Previous SSL/TLS Attacks-A
Brief Chronology of Attacks and Weaknesses., JACR Cryptology ePrint Archive,
2013, p. 49, 2013.

[42] B. Moller, T. Duong, and K. Kotowicz, This POODLE bites: exploiting the SSL.
3.0 fallback, PDF online, 2014.

[43] P. L. Montgomery, Modular multiplication without trial division, Mathematics of
computation, 44(170), pp. 519-521, 1985.

45

[44] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factoriza-
tion, Mathematics of computation, 48(177), pp. 243-264, 1987.

[45] S. Vaudenay, Security Flaws Induced by CBC Padding—Applications to SSL,
IPSEC, WTLS..., in International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 534-545, Springer, 2002.

[46] D. Wagner, B. Schneier, et al., Analysis of the SSL 3.0 protocol, in The Second

USENIX Workshop on Electronic Commerce Proceedings, volume 1, pp. 2940,
1996.

46

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	PRELIMINARIES
	Popular Cryptosystems Used in SSL/TLS
	Asymmetric Cryptography
	RSA
	Elliptic Curve Cryptography(ECC)

	Symmetric Cryptography
	Stream Cipher
	Block Ciphers

	Cryptographic Hash Functions and Hash Based Functions
	SHA1
	MD5
	HMAC

	Key Exchange Mechanisms
	Diffie-Hellman Key Exchange
	The Usage of Diffie-Hellman Algorithm in SSL/TLS
	The Anonymous Diffie Hellman
	Fixed Diffie Hellman
	Ephemeral Diffie Hellman

	Authenticated Encryption Types inside SSL/TLS
	Encrypt-then-MAC
	Encrypt-and-MAC
	MAC-then-Encrypt
	MAC-then-Encode-then-Encrypt

	CERTIFICATION BASED PROTOCOLS: SSL/TLS
	Historical Development of SSL/TLS
	Public Key Infrastructure(PKI)
	How does SSL/TLS protocol work?
	SSL protocol
	TLS protocol

	RECENT ATTACKS ON SSL/TLS
	The Attack Types
	Protocol Logic Flaws
	Cryptographic Design Flaws
	Implementation Flaws
	Configuration and Infrastructure Flaws

	The Recent Attacks
	The Alert Attack
	Timing Attacks
	RSA based Timing Attacks
	ECC based Timing Attacks

	Triple Handshake Attack
	Cross Protocol Attacks
	The Wagner and Schneier Attack
	A New Cross Protocol Attack
	DROWN attack

	SLOTH: Security Losses from Obsolete and Truncated Transcript Hashes
	SMACK: State Machine Attacks
	SKIP-TLS: Message Skipping Attacks on TLS
	FREAK Attack: Factoring RSA Export Keys

	Imperfect Forward Secrecy: Focus on Logjam Attack

	Some Other Important Attacks
	Generalization of attacks on SSL 2.0
	Generalization of Attacks on SSL 3.0
	Poodle Attack
	Truncation Attack
	Protocol Downgrade Attacks
	Beast Attack
	Crime and Breach Attacks

	IMPORTANT POINTS AND SELECTION OF PARAMETERS
	Recommended Key Sizes and Parameters in Algorithms and Protocols
	Protection Methods from Recent Attacks and Some Other Known Attacks

	CONCLUSION
	Our Suggestions for Future Works

	REFERENCES

