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ABSTRACT

PRICING AND HEDGING LOOKBACK OPTIONS USING BLACK-SCHOLES IN
BORSA ISTANBUL

Samuel-Paul, Sharoy Augustine

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 4, 2016, 48 pages

The lookback option is a path dependent option that looks at the behaviour of the un-
derlying asset for a specified time frame known as the lookback period. The maximum
(minimum) attained during the lookback period is used to determine the option’s pay-
off. In this thesis, the floating strike lookback option, which uses the maximum to
determine the strike price for the put options will be examined and will be applied to
the assets appearing in the BIST30 index. We estimate the historical volatility of these
assets and compute the price of the floating strike lookback options written on these
assets using the Black Scholes (BS) framework. We then apply the delta hedging al-
gorithm given by Black Scholes to see its replication performance for these lookback
options. We apply the algorithm in two different periods: October 2015 and January
2016.

Keywords : Lookback options, floating strike, Turkish Market, Black Scholes, model
fitting, hedging, Borsa Istanbul
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ÖZ

BIST30 INDEKSINDEKI HISSE SENETLERI UZERINE YAZILI LOOKBACK
OPSIYONLARIN BLACK-SCHOLES MODELI ILE FIYATLANMASI VE

REPLİKASYONU

Samuel-Paul, Sharoy Augustine

Yüksek Lisans, Finansal Matematiği Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Temmuz 2016, 48 sayfa

Geriye Bakışlı opsiyonlar, şimdiki fiyatı opsiyonun dayanak varlığının geçmiş fiyat-
larına bağlı finansal araçlardır. Bu tezde BIST30 endeksini oluşturan stok fiyatları
uzerine yazılı maksimum Geriye Bakışı opsiyonları Black-Scholes modeli kullanılarak
fiyatlanıp ve replike (garanti) edilmistir. Replikasyon ve fiyatlama algoritmaları iki ayrı
donemde uygulanmıştır: Ekim 2015 ve Ocak 2016. Black-Scholes modelinin uygu-
lanması icin gerekli olan volatilite parametresi dayanak varlıgın tarihsel volatilitesi
kullanılarak hesaplanmıstır.

Anahtar Kelimeler : Geriye Bakışlı opsiyonlar, sabit olmayan işlem fiyatı, Türkiye
Piyasasında, Black Scholes, model uydurma, garantiye alma, Borsa Istanbul
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTERS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Fixed Strike Lookback . . . . . . . . . . . . . . . . . . 1

1.2 The Reverse Fixed Strike Lookback Option . . . . . . . . . . 2

1.3 The Floating Strike Lookback . . . . . . . . . . . . . . . . . 3

2 Pricing The LookBack Option . . . . . . . . . . . . . . . . . . . . . 7

2.1 Shreve’s Method . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Hedging . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Buchen’s Method . . . . . . . . . . . . . . . . . . . . . . . 13

3 Scope, Methodology and Findings . . . . . . . . . . . . . . . . . . . 17

3.1 Scope and Methodology . . . . . . . . . . . . . . . . . . . . 17

xv



3.1.1 Hedging error computation . . . . . . . . . . . . . 18

3.2 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conclusion and future works . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . 33

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

APPENDICES

A Some Definitions and Theorem . . . . . . . . . . . . . . . . . . . . . 37

B Computation of the Greeks . . . . . . . . . . . . . . . . . . . . . . . 41

xvi



LIST OF FIGURES

Figure 1.1 Example of a stock movement over a one year lookback period. . . 2

Figure 1.2 Reverse Strike Lookback Put Option. . . . . . . . . . . . . . . . . 3

Figure 1.3 Reverse Strike Lookback Call Option. . . . . . . . . . . . . . . . . 4

Figure 1.4 Stock Movement over a one year (250 days) Lookback Period for
Floating Strike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1 The floating lookback put option with constant volatility, U(t, z). . 11

Figure 2.2 The Floating Lookback Put Option’s Delta Function, Uz(t, z). . . . 12

Figure 3.1 October 30 trading days lookback period delta hedging error. . . . 19

Figure 3.2 October 30 trading days lookback period delta hedging error his-
togram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.3 October 30 trading days lookback period delta hedging error trajec-
tory for 4 underlying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.4 October and January 30 trading days lookback period delta hedging
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.5 January 30 trading days lookback period delta hedging error his-
togram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.6 January 30 trading days lookback period delta hedging error trajec-
tory for four companies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.7 October 30 days lookback period with updated volatility hedging
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.8 October 30 days lookback period with updated volatility hedging
error histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.9 October 30 days lookback period with updated volatility hedging
error underlying assets trajectory. . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.10 October 30 and 60 days lookback period hedging error. . . . . . . . 25

Figure 3.11 October 60 days lookback period hedging error Histogram. . . . . 26

xvii



Figure 3.12 October 60 days lookback period hedging error trajectory for 4 un-
derlying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.13 October 30 and 90 days lookback period hedging error. . . . . . . . 27

Figure 3.14 October 90 days lookback period hedging error histogram. . . . . . 28

Figure 3.15 four underlying assets 90 days lookback period hedging error tra-
jectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.16 October 30, 60 and 90 days lookback period hedging error. . . . . . 29

Figure 3.17 lookback period delta hedging error. . . . . . . . . . . . . . . . . . 30

xviii



LIST OF TABLES

Table 3.1 Summary of Findings. . . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.2 Summary of the BIST100 index and the top 10 assets with respect to
the control results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xix



xx



LIST OF ABBREVIATIONS

ABBREV Abbreviation

R Set of Real Numbers

DPS Dividend Per Share

EPS Earning Per Share

r Risk-Free Interest Rate

σ Volatility

BS Black-Scholes

i.e. That is

e.g. Example

Jan January

Oct October

wrt With respect to

E(t) Error at time t

E(X) Expectation of X

METU Middle East Technical University

IAM Institute of Applied Mathematics

xxi



xxii



CHAPTER 1

Introduction

The classical European option ‘calls’ and ‘puts’ give holders the right to buy or sell
an asset at a pre-agreed price, K, at a predetermined maturity date T . Furthermore,
the payoff for this type of option is dependent only on K and the asset price on the
maturity date and is given as:

Vc(T ) = [S(T )−K]+, Vp(T ) = [K − S(T )]+,

(for calls and puts respectively) where

[f(x)]+ =

{
f(x), if f(x) ≥ 0
0, otherwise.

The Lookback Option, unlike classical options, is an option where the movement of
the underlying assets is observed for a specified duration called the lookback period
in order to determine its payoff. In general, the payoff is determined by either the
maximum or minimum observed during the lookback period. These types of options
are also often referred to as path dependent options. See Figures 1.1, 1.2, and1.3.

The lookback options have several varieties which include:

• The fixed strike lookback,

• The reverse fixed strike lookback, and

• The floating strike lookback.

Below these options are defined.

1.1 The Fixed Strike Lookback

With the fixed strike lookback, the strike price for a put (call) is determined before
hand and the minimum (maximum) is used in place of S(T ). The payoff of a put (call)

1



Figure 1.1: Example of a stock movement over a one year lookback period.

is therefore given as ([2] section 8.4, page 198):

Vp(T ) =

[
K − min

0≤t≤T
S(t)

]+
,

(
Vc(T ) =

[
max
0≤t≤T

S(t)−K
]+)

.

Example 1.1. Let us assume we have a stock with starting price S(0) = 85, K = 90,
maturity date T and the lookback period, T − start date = 100 days. S(T ) = 43.5,

m(t) = min
0≤t≤T

S(t) = 20.89 and M(T ) = max
0≤t≤T

S(t) = 104.48,

then
Vp(T ) = 90− 20.89 = 69.11,

and

Vc(T ) = 104.48− 90 = 14.48.

1.2 The Reverse Fixed Strike Lookback Option

This is a reversal of the Fixed Strike option where, for a put (call) option the maximum
(minimum) is used. Hence, the pay-off is given as ([2] section 8.4, page 198):

Vp(T ) =

[
K − max

0≤t≤T
S(t)

]+
,

(
Vc(T ) =

[
min
0≤t≤T

S(t)−K
]+)

.

2



Figure 1.2: Reverse Strike Lookback Put Option.

With this type of option the investor is betting that the stock will perform bearishly
and will remain below the strike price in the case of a put; whereas, in the case of a
call, it will perform bullishly and will always be higher than the strike price. This is
represented in Figures 1.2 and 1.3.

1.3 The Floating Strike Lookback

With this lookback option the maximum (minimum) attained over the lookback pe-
riod is used as its strike price and S(T ) is maintained in the payoff’s computation.
Therefore, its payoff is given by ([2], section 8.4, page 198):

Vp(T ) =

[
max
0≤t≤T

S(t)− S(T )

]+
,

(
Vc(T ) =

[
S(T )− min

0≤t≤T
S(t)

]+)
.

This option is also referred to as “the no regret option” since the payoff is always
greater than or equal to zero as can be seen in Figure 1.4.

For the purposes of this thesis we will focus on the last of these, i.e., “the floating strike
lookback option.” Within the Black Scholes (BS) framework the pricing and hedging
of this option (as well as those of the rest of the lookback options covered above) are
well known and explicit formulas are already available in the literature, see, ‘Stochastic
calculus for finance II: Continuous-time models’ [11, chapter 7] and ‘An introduction
to exotic option pricing’ [2, chapter 8]; the derivations of these formulas are reviewed
in the next chapter. From time to time we will use the term “lookback option” loosely
to refer to the “floating-strike lookback option” unless otherwise specified.

3



Figure 1.3: Reverse Strike Lookback Call Option.

The goal of this thesis is to see how well these pricing and hedging formulas perform
for floating strike lookback options written on assets which form the BIST 30 index1.
The details of this application are explained in chapter 3. Let us very briefly comment
on the main aspects of our approach. Since the publicly available data is daily, we
perform our fits and run the hedging algorithm daily, i.e., a hedging portfolio is updated
at the end of each trading day. This discretization and model error imply that the
hedge is not perfect and a hedging error is accumulated throughout the running of
the hedging algorithm (precise definition is given in chapter 3). The average hedging
error (normalized by the initial price of the lookback option) is the main performance
measure by which we will assess the effectiveness of the BS formulas in pricing /
hedging the lookback options. To fit the model to data, there are two parameters to
be estimated: the constant volatility and the constant interest rate. The details are
explained in chapter 3. We will see that as the lookback period increased the frequency
of under-hedging [over-hedging] decreased [increased]. We also look at the effect of
updating the volatility estimation using the latest price changes; our main observation
here is that such updates have little influence on the performance of the alrogithms.

In conclusion, we will see that, for the exception of a few stock used as underlying
assets, the BS lookback pricing and delta hedging model performs relatively poorly
in pricing and hedging lookback puts in BIST30, with an average error between -2%,
and 33% for the options period tested and their standard deviation ranging between
16% and 30% (see Table 3.1.) We will also see that the BS model fails to capture
shocks to underlying prices; we observe this in the sudden performance change of
the hedging algorithm as it goes over the Turkish November 2015 elections and other
political disturbance (see Figure 3.3 and Figure 3.15). In the future we would like to

1 See http://www.borsaistanbul.com/endeksler/bist-pay-endeksleri for more on
BIST30.
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Figure 1.4: Stock Movement over a one year (250 days) Lookback Period for Floating
Strike.

consider the use of the gamma hedge in the model instead of just the delta hedge as
well looking at alternative pricing model such as pricing using stochastic volatility as
is given by Jianwei Zhu in “Modular Pricing of Options: An Application of Fourier
Analysis” [14, section 3.3].
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CHAPTER 2

Pricing The LookBack Option

In this chapter we review the Black-Scholes pricing formulas for lookback options.
Many authors, including Frans De Weert in “Exotic options trading,” [4, section 10.2],
Peter Zhang in “A guide to second generation options,”[12, section 12.3], Marek Musiela,
and Marek Rutkowski in Martingale methods in financial modelling ([9], section 6.7),
and ([7], section 25.10) has given expositions on the lookback Option. Some brief,
others in depth. Two well known expositions of this topic are also given in “Stochastic
calculus for finance II: Continuous-time models” [11]1 and in “An introduction to ex-
otic option pricing” [2]2. This chapter reviews these two expositions and the methods
of derivation they employ; we will refer to the first as “Shreve’s method” and to the
second as “Buchen’s method.”

2.1 Shreve’s Method

Since the payoff for this option is based on the maximum of an underlying asset over
the lookback period or the remaining time thereof, [t, T ], and the value of the asset at
time of maturity T , as per ([11] chapter 7), is computed as follows:

Given
S(t) = S(0)eσŴ (t), (2.1)

Ŵ (t) = αt+ W̃ (t) and α =
1

σ

(
r − 1

2
σ2

)
;

where S(t) is the price of the asset at some time t ∈ [0, T ], W̃ (t) is a Brownian motion,
r is the risk free rate and σ is volatility of the underlying asset.

Defining
M̂(t) = max

0≤u≤t
Ŵ (t), (0 ≤ t ≤ T )

1 The method of decomposition is used in its derivation. see Decomposition methods for differential equations:
theory and applications [6] for a review of the method of decomposition

2 The method of Images is used in its derivation. see(Introduction to electromagnetic and microwave
engineering[8], section 6.7) for a review of the method of images
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and
Y (t) = max

0≤u≤t
S(t) = S(0)eσM̂(t); (2.2)

the payoff is given as
V (T ) = Y (T )− S(T ), (2.3)

while the risk neutral price is given as

V (t) = Ẽ[e−rτ (Y (T )− S(T ))|F (t)]. (2.4)

Here τ = T − t. Since (2.3) has the Markov property, see A.1 in the appendix, there
exists a V (t, x, y) function such that

V (t) = V (t, S(t), Y (t)).

Now, for 0 ≤ t ≤ T and τ = T − t, using (2.2) we have

Y (T ) = S(0)eσM̂(t)eσ(M̂(T )−M̂(t))

= Y (t)eσ(M̂(T )−M̂(t)).

If
max
t≤u≤T

Ŵ (u) > M̂(t),

then the max lies in the interval [t, T ]. In that case

M̂(T )− M̂(t) = max
t≤u≤T

Ŵ (u)− M̂(t),

else

M̂(T )− M̂(t) = 0.

Therefore

M̂(T )− M̂(t) = [ max
t≤u≤T

Ŵ (u)− M̂(t)]+

= [ max
t≤u≤T

(Ŵ (u)− Ŵ (t))− (M̂(t)− Ŵ (t))]+.

From (2.1) and (2.2) and multiplying by a factor of σ we have

σ(M̂(T )− M̂(t)) = [ max
t≤u≤T

σ(Ŵ (u)− Ŵ (t))− σ(M̂(t)− Ŵ (t))]+

=

[
max
t≤u≤T

σ(Ŵ (u)− Ŵ (t))− log

(
Y (t)

S(t)

)]+
.

8



Now, with a substitution into equation 2.4 we derive

V (t) = e−rτ Ẽ

(
Y (t) exp

{[
max
t≤u≤T

σ(Ŵ (u)− Ŵ (t))

− log

(
Y (t)

S(t)

)]+}∣∣∣∣∣F (t)

)
− ertẼ[e−rTS(T )|F (t)].

Since, S(T ) is a martingale under P̃ , Y (t) and S(t) areF (t) measurable and the func-
tion maxt≤u≤T (Ŵ (u)− Ŵ (t)) is independent of F (t) hence we obtain

V (t) = e−rτY (t)g(S(T ), Y (T ))− S(t).

This can be expressed as,

V (t, x, y) = e−rτyg(x, y)− x (2.5)

where x = S(t), y = Y (t) and

g(x, y) = Ẽ

(
exp

{[
max
t≤u≤T

σ(Ŵ (u)− Ŵ (t))− log
(y
x

)]+})

= Ẽ

(
exp

{[
σM̂(τ)− log

(y
x

)]+})
= P̃

{
M̂(τ) ≤ 1

σ
log
(y
x

)}
+
x

y
Ẽ

[
e
σM̂(τ)I{M̂(τ)≥ 1

σ log( yx )}
]
. (2.6)

Using the formula

P̃{M̂(T ) ≤ m} = N

(
m− αT√

T

)
− e2αmN

(
−m− αT√

T

)
;m ≥ 0,

and substituting “m” with “ 1
σ

log
(
y
x

)
”, we derive

P̃

{
M̂(T ) ≤ 1

σ
log
(y
x

)}
= N

(
−δ−

(
τ,
x

y

))
−
(y
x

) 2r
σ2
−1
N
(
−δ−

(
τ,
y

x

))
. (2.7)

Utilizing the density function

f̃M̂(T )(m) =
2√
2πT

e−
1
2T

(m−αT )2 − 2αe2αmN

(
−m− αT√

T

)
;m > 0,

9



we have

x

y
Ẽ
[
eσM̃(τ)I{M̂(τ)≥ 1

σ
log( yx)}

]
=
x

y

∫ ∞
1
σ
log y

x

2√
2πτ

eαm−
1
2τ

(m−2τ)2dm

− x

y

∫ ∞
1
σ
log y

x

2αe(σ+2α)mN

(
−m− ατ√

τ

)
dm

= 2erτN

(
δ+

(
τ,
x

y

))(
x

y

)
−
(

1− σ2

2r

)
erτN

(
δ+

(
τ,
x

y

))(
x

y

)
+

(
1− σ2

2r

)
erτN

(
−δ−

(
τ,
x

y

))(y
x

) 2r
σ2
−1
. (2.8)

Then by substituting equations 2.8 and 2.7 into equation2.6, and then making a final
substitution into equation 2.5, we derive

V (t, x, y) =

(
1 +

σ2

2r

)
xN

(
δ+

(
τ,
x

y

))
+ e−rτyN(−δ−

(
τ,
x

y

)
)

− σ2

2r
e−rτ

x

y

2r
σ2 xN

(
−δ−

(
τ,
y

x

))
− x,

where

δ±(τ, k) =
1

σ
√
τ

[
log(k) +

(
r ± 1

2
σ2

)
τ

]
.

Since the function V (t, x, y) has a linear scaling property3, we can write the function
as

V

(
t,
x

y
, 1

)
= U

(
t,
x

y

)
.

Thereby, deriving

U

(
t,
x

y

)
=

(
1 +

σ2

2r

)
x

y
N

(
δ+

(
τ,
x

y

))
+ e−rτN(−δ−

(
τ,
x

y

)
)

− σ2

2r
e−rτ

x

y

1− 2r
σ2N

(
−δ−

(
τ,
y

x

))
− x

y
.

Making a final substitution of z = x
y

we get

U(t, z) =

(
1 +

σ2

2r

)
zN (δ+ (τ, z)) + e−rτN(−δ− (τ, z))

− σ2

2r
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− z.

3 i.e., given λ ∈ R, λV (t, x, y) = V (t, λx, λy)

10



The graph of this payoff function is depicted below.

From the graph in Figure 2.1 we see that when Z is close to one, as time to maturity,
τ = T − t, decreases so does the price of the option. On the other hand, when z is
close to zero as the price increases τ decreases. This is in line with the behavior of a
classical “at the money” and “deep in the money” put options respectively.

Figure 2.1: The floating lookback put option with constant volatility, U(t, z).

2.1.1 Hedging

From the foregone equations we have

V (t, x, y) = yU(t, z).
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By finding Vx(t, x, y) we will determine the delta of the option. Hence, our delta hedge
is given as

Vx(t, x, y) = yUz(t, z)
∂

∂x

(
x

y

)
= Uz(t, z)

=

(
1 +

σ2

2r

)
N(δ+(τ, z))

+

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− 1.

This formula is given as an exercise in “Stochastic calculus for finance II: Continuous-
time models” [11](section 7.8). We provide a solution to this in Appendix B.

The graph of the delta function is given in Figure 2.2.

Figure 2.2: The Floating Lookback Put Option’s Delta Function, Uz(t, z).

With the delta hedging of the lookback option it is notable that, unlike the standard
option where ∆ ≤ 0, ∆ ∈ [−1, 1], and in almost all cases when t = 0, 0 ≤ ∆.
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The gamma hedge is derived from Vxx(t, z, y), hence we have

Vxx(t, x, y) = Uzz(t, z)
∂

∂x

(
x

y

)
=

1

y
Uzz(t, z)

=
1

y

((
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

+
2

zσ
√
τ
N ′(δ+(τ, z))

)
.

This computation can also be found in Appendix B.

2.2 Buchen’s Method

Using the the method of images to compute the BS lookback option price Buchen
derives the price as an expression the classical European option price Cy(x, τ) plus a
premium Lp(x, y, τ). According to “An Introduction to Exotic Option Pricing” ([2]
chapter 8), the price of this option is computed as follows.

To achieve the pricing formula, by letting the price of the underlying asset at time t
be represented by S(t) = x, (0 ≤ t ≤ T ), where [0, T ] is the lookback period, let
F (x, y) = y = max0≤t≤T S(t) denote a running maximum function.

Theorem 2.1. For an option contract that pays the maximum the underlying asset
attains over the 0 ≤ t ≤ T the European option equivalent pay off is given as

V (XT , y, T ) = F (x, y)I(x<y) +G(x, y)I(x>y),

where,

G(x, y) = F (x, x) +

∫ x

y

F i
ξ(x, ξ)∂ξ.

Note:

F i(x) =

(
b

x

)α
F

(
b2

x

)
; α =

2r

σ2
− 1

is the image of F (x) wrt x = b and the BS differential operator L;
and

F i
ξ(x, ξ) = Iξ[Fξ(x, ξ)] =

(
ξ

x

)α
Fξ

(
ξ2

x
, ξ

)
.

Proof. Since V (XT , y, T ) satisfies the Black-Scholes terminal boundary value prob-
lem, see Appendix A.2
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we have:

LV = 0, V (x, y, T ) = F (x, y), and Vy(x, y, t) = 0 at x = y,

in the domain [t, T ];x > y.

By making the substitution Vy(x, y, t) = U(x, y, t), we have

LU = 0, U(x, y, T ) = Fy(x, y), and U(x, y, t) = 0 at x = y,

on the above stated domain. Here y found in the equation itself. Therefore, we can use
the payoff from the up and out barrier option,(see the appendix A.10 ), and we have

U(x, y, t) = Fy(x, y)I(x<y) − F i
y(x, y)I(x>y).

By integrating U(x, y, t) with respect to y we attain V (x, y, T )4.

As a result we have:

V (x, y, T )− V (x, 0, T ) =

∫ y

0

[Fξ(x, ξ)I(x<ξ) − F i
ξ(x, ξ)I(x>ξ)]∂ξ

=

∫ max{x,y}

0

Fξ(x, ξ)∂ξ + I(x>y)
∫ x

y

F i
ξ(x, ξ)∂ξ

= [F (x,max{x, y})− F (x, 0)] + I(x>y)
∫ x

y

F i
ξ(x, ξ)∂ξ

= [F (x, y)I(x<y) + F (x, x)I(x≤y) − F (x, 0)]

+ I(x>y)
∫ x

y

F i
ξ(x, ξ)∂ξ

= F (x, y)I(x<y) − F (x, 0) +G(x, y)I(x>y).

Since V (x, 0, T ) = F (x, 0) we have V (x, y, T ) = F (x, y)I(x<y) + G(x, y)I(x>y) as
required.

Now, as per ([2] section 8.3, pages 197-198), by using M(x, y, t) to denote the present
value of the generic maximum contract, where the payoff at time T is then given by
F (x, y) = y, the maximum price the asset attained. Here F (x, y) is independent of x.
Hence,

F (x, ξ) = ξ, Fξ(x, ξ) = 1 and F i
ξ(x, ξ) =

(
ξ

x

)α
.

4 this was given as an exercise to the reader.
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M(XT , y, T ) = yI(x<y) +

[
x+

∫ x

y

(
ξ

x

)α
dξ

]
I(x>y)

= yI(x<y) + xI(x>y) + β
[
x− y

(y
x

)α]
I(x>y)

= (1 + β)xI(x>y) + y[I(x<y) − βIi(x < y),

where β = 1
α+1

= σ2

2r
for non-dividend paying assets and β = σ2

2(r−q) for dividend
paying assets. Here q = DPS

EPS
is the constant dividend yield (see [1] for a definition of

“dividend.”).

Using assets and binary notation(see A.7), we have

M(x, y, t) = (1 + β)A+
y (x, τ) + y[B−y (x, τ)− βBi−

y (x, τ)]. (2.9)

The floating strike lookback put option’s strike price is set at k = yT , the maximum
asset price over [0, T ]. Thus the holder gets to sell the asset at the highest price attained
over the life of the option. The payoff at expiry is F (x, y) = (y − x)+ = (y − x) =
(k − x), so the current value is

Vp(x, y, t) = M(x, y, t)− x.

Utilizing equation 2.9 we have

Vp(x, y, t) = (1 + β)A+
y (x, τ) + y[B−y (x, τ)− βBi−

y (x, τ)]− x
= [yB−y (x, τ)− A−y (x, τ)] + β[A+

y (x, τ)− yBi−
y (x, τ)]

= [ye−rtN(−d1ξ(x, t))− xN(dξ(x, t))] (∗)

+ β

[
xN(dξ(x, t))− y

(
τ 2

x

)α
e−rtN

(
−d1ξ

(
t2

x
, t

))]
= Cy(x, τ) + Lp(x, y, τ).

where (∗) follows from the binary notions given in Appendices A.8 and A.9.
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CHAPTER 3

Scope, Methodology and Findings

3.1 Scope and Methodology

The main contribution of this thesis is an application of the Black Scholes formulas for
the pricing and hedging of the Floating Strike lookback option to asset prices observed
in Borsa Istanbul and observe their performance. We measure performance in terms of
the hedging error, which is defined below.

The underlying assets to which we apply the formulas are the stocks of the 30 com-
panies listed on the BIST30 along with the BIST30 index. While collecting these
data from Yahoo Finance it is noted that KARDEMIR KARABUK DEMIR CELIK
SANAYI VE TICARET A.S. had three different stock listings, all are used in our
study. Hence our application covers 33 underlying assets.

The risk free interest rates of 11.6% and 11.1% at Oct 1, 2015 and Jan 4, 2016 respec-
tively is used as our r in the computation of prices and hedges. These are taken from
Gosterge Faiz OraniGelişmeleri-Bloomberg HT 1

For the volatility σ, we use the historical volatility as discussed by John C. Hull in
“Options, futures, and other derivatives”([7]section 14.4 and 21.3) and by Don Chance
and Roberts Brooks in the book “Introduction to derivatives and risk management” ([3]
chapter 5.) For this, we use the closing prices from May 1, 2015 up to the starting date
of the contract.

As a basis of control, a lookback period of 30-market-trading-days on the closing price,
starting from Oct 1, 2015 is used. The rest of the results are centered around this for
comparison.

A second 30-market-trading-days on the closing price, starting from Jan 4, 2016 is
used to see how its hedging varied from the Oct 1, 2015 contract.

The 30-market-trading-days on the closing price, starting on Oct 1, 2015 is modified
by changing the volatility at the end of each trading day. The day’s closing result is
included in the computation of the volatility, which is then used in the pricing of the
contract for the remaining days of the lookback period.

1 See http://www.bloomberght.com/tahvil/gosterge-faiz.
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A 60 and a 90-market-trading-days contracts on the closing price, starting on Oct 1,
2015, is also used to assess how the hedging performed as the lookback period varied
in length.

3.1.1 Hedging error computation

We used the standard delta hedge algorithm given by the BS framework ([7] section
18.4, pages 380-387)

The hedging error is computed by first creating a hedged portfolio with the proceeds
from the option sale. This portfolio, Π, comprised of Delta Stocks and the excess or
insufficient proceeds vested in the risk free bonds market. Hence our bond value is
given as

Vb(t) = Vp(x, y, t)−∆(t, z)S(t)

.

Therefore, our hedged portfolio value is

Π(t) = Vb(t) + ∆(t, z)S(t) = Vp(x, y, t)

where ∆(t, z) = (Vp)x(x, y, t).

As indicated in the introduction discretize the hedging algorithm, taking one day as a
step size, leads to hedging error defined as follows:

E(t) = Vb(t−1)er+∆(t−1)S(t)−Π(t)+E(t−1)er for t ∈ (0, T ], and E(0) = 0.

This is the actual value of our previous day’s portfolio at time t minus the value of our
new portfolio plus the NPV of the previous day’s hedging error.

We will express the error as a fraction of the initial value of the option, i.e., E(t)
V (x,y,0)

100, t ∈
[0, T ]. This will be our main performance measure in evaluating the hedging perfor-
mance. An ideal hedge will be one that is equal zero or is almost zero.

3.2 Findings

Table 3.1 gives a summary of the results from the tests performed.

From our control, October 1 30-market-trading-days lookback period the results’ sum-
mary is given in Figures 3.1, 3.2 and Table 3.1. The following are observed:

The hedging on the various assets lookback options are scattered. Twenty (20) of the
underlying assets’ hedging errors fall within a plus or minus twenty percent (±20%)
range of the initial option price, whereas, twelve (12) fall within a plus or minus ten
percent (±10%), of which six (6) are within a plus or minus five percent (±5%).
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Table 3.1: Summary of Findings.

Oct Jan Oct Oct Oct
30-day with

Detail 30-days 30-days updated σ 60-days 90-days
Average -2% 5% -2% 33% 19%
Standard deviation 30% 16% 30% 19% 27%
Max over-hedging 70% 33% 72% 75% 61%
Max under-hedging 70% 51% 69% 5% 69%
Population size 33 33 33 33 33
No. under-hedged 19 11 18 2 6
No. over-hedged 13 22 13 31 26
Errors close to 0% 1 - 2 - 1
No of E(T ) ∈ ± 5% 6 11 6 4 3
No of E(T ) ∈ ± 10% 12 16 12 4 6
No of E(T ) ∈ ± 20% 20 29 20 8 14

Furthermore, the average error is 2% under-hedged with a standard deviation of 30%.
Moreover, nineteen (19) of the options are under-hedged using the delta hedging for-
mula, while thirteen (13) are over-hedged and one perfectly hedged option. The results
of these contracts are somewhat symmetric about -7%.

Figure 3.1: October 30 trading days lookback period delta hedging error.

Figure 3.3 gives the trajectory for four randomly selected runs of the hedging algo-
rithm. This shows that immediately after the Nov 2015 elections, the hedging moved
from a path of being over-hedged to becoming under-hedged.
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Figure 3.2: October 30 trading days lookback period delta hedging error histogram.

Figure 3.3: October 30 trading days lookback period delta hedging error trajectory for
4 underlying.
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As is summarized in Figures 3.4, 3.5 and Table 3.1, the 30-trading-days lookback
period contract, starting January 4, 2016, on the other hand, reflects a much more
compact hedging performance. The average error was 5% over-hedged with a 16%
deviation. Twenty-nine (29) of the underlying hedging is found within a plus or minus
twenty percent (±20%) and sixteen (16) within a plus or minus 10 percent(±10%) of
which eleven (11) fall between plus or minus five percent (±5%.)

While this contract type records no perfect hedge eleven (11) are under-hedged, where-
as twenty-two (22) over-hedged. The errors for this contract type are left skewed,
leaning towards being over-hedged.

The January 4, 2016 contracts record more over-hedging than the October 1, 2015
contracts.

Figure 3.4: October and January 30 trading days lookback period delta hedging error.

Figure 3.6 gives the trajectory path of four randomly selected underlying. The price of
the Arçelik stock significantly increases towards the end of the contract period. This
results in its option moving from being over-hedged to being under-hedged.
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Figure 3.5: January 30 trading days lookback period delta hedging error histogram.

Figure 3.6: January 30 trading days lookback period delta hedging error trajectory for
four companies.
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The 30-market-trading-days on the closing price, starting on Oct 1, 2015 is modified
by changing the volatility at the end of each trading day. The day’s closing result is
included in the computation of the volatility, which is then used in the pricing of the
contract. The results from the updated contracts are summarized in Figures 3.7,3.8 and
Table 3.1.

By updating the historical volatility daily to include (t − 1)’s data for our October 1,
2015 contracts, it is observed that eleven (11) contracts fall between a plus or minus
ten percent(±10%), whereas there are twelve (12) for the non-recomputing volatility
contract type.

Figure 3.7: October 30 days lookback period with updated volatility hedging error.

The six (6) contracts that fall in the a plus or minus five percent(±5%) range for the
non-updated contracts fall within the a plus or minus three percent(±3%) when the
volatility is adjusted; of these, two are perfectly hedged.

Some contracts show slight improvement, while other show a worsened performance.
The average is 2% under-hedged with a standard deviation of 30% which is identical
with non-updated hedge.

By updating the volatility, the contracts’ hedging performance show mixed results.
However, in general, the performance is little to no better than when the volatility was
not updated. Its skewness, as well, is not much varied from the non-updated volatility,
which tends to be more under-hedged.

Moreover, Figure 3.9 displays the trajectory of four randomly selected assets’ errors
when the volatility is adjusted daily. The directions of these trajectories is not uniform
where some are greater impacted by the Nov 2015 Turkish Elections than others.
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Figure 3.8: October 30 days lookback period with updated volatility hedging error
histogram.

Figure 3.9: October 30 days lookback period with updated volatility hedging error
underlying assets trajectory.
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As per the summary provided in Figures 3.10, 3.11 and Table 3.1, the 60-days contract,
on the other hand, had only two contracts under-hedged the remaining thirty-one(31)
are over-hedged. There are four contracts with errors within a plus or minus five per-
cent (±5%) range, the remaining twenty-nine(29) rest in the interval of fifteen percent
and seventy-five percent [15%, 75%].

Moreover, the average is a 33% over-hedging with a deviation of 0.19 and the errors
are left skewed with over 50% of the population found between 20-43 percent.

Figure 3.12 gives the trajectory of four different underlying contracts. The trajectory
shows a general upward trend with the errors of this contract type. The downward
pull from the November 1st elections can be seen on step 21 to 22, however, since the
contract period was longer, it soon continued on an its upward trajectory. The second
dip in the trajectory between just around step 53 which corresponds to Dec 11 2015,
another politically significant day [10].

Figure 3.10: October 30 and 60 days lookback period hedging error.
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Figure 3.11: October 60 days lookback period hedging error Histogram.

Figure 3.12: October 60 days lookback period hedging error trajectory for 4 underly-
ing.
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In Figures 3.13, 3.14 and Table 3.1 the results are summarized for the October 90 days
lookback period. This, the other hand, had one perfect hedge, while twenty-six (26)
are over-hedged, with only fourteen (14) hedging errors fall within the plus or minus
twenty percent(±20%) range and six (6) are between the plus or minus ten percent
(±10%) interval. The hedging error for this type of contracts is left skewed with an
average error of 19% over-hedged and a standard deviation of 0.27.

From Figure 3.15 we see that until the middle of the lookback period there is a general
upward trend. However, this trend goes in the opposite direction around step 53 which
corresponds to Dec 11 2015,[10].

Figure 3.13: October 30 and 90 days lookback period hedging error.
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Figure 3.14: October 90 days lookback period hedging error histogram.

Figure 3.15: four underlying assets 90 days lookback period hedging error trajectory.
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With the 60-days and 90-days contracts, the contracts are generally over-hedged. This
may lead to unnecessary cash being tied up in the portfolio hedge, whereas it could
have been used gainfully in other investments. The 90-days contracts’ average was
lower then the 60-days contracts’ in part to the impact of the Dec 11 market shock.

Figure 3.16 gives a picture of how the contracts performs as the lookback period in-
creases.

Figure 3.16: October 30, 60 and 90 days lookback period hedging error.

Figure 3.17 summarizes the performance of delta hedges on all contracts at different
time period.
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Figure 3.17: lookback period delta hedging error.
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From the control of Oct 1, 2015, 30-trading-days hedging the top 10 companies results
are summarized in Table 3.2 below:

Table 3.2: Summary of the BIST100 index and the top 10 assets with respect to the
control results.

Oct Jan Oct Oct Oct
30 30 30-day & a 60 90

Company days days updated σ days days
TOFAS TURK OTOMOBIL
FABRIKASI A.Ş. -9% -13% -8% -2% -22%
KARDEMIR KARABUK
DEMIR CELIK SANAYI
VE TICARET A.Ş. ”A” -8% 29% -10% 53% 48%
TÜRKİYE GARANTİ
BANKASI A.Ş. -6% 12% -9% 29% 16%
TÜRK
TELEKOMUNIKASYON A.Ş. -5% -17% -3% 35% 18%
ÜLKER BİSKÜVİ -2% 2% -2% 23% 9%
ENKA INSAAT
VE SANAYI A.Ş. -2% -51% 0% 43% 25%
EREGLİ DEMIR CELIK
FABRIKLARI A.Ş. -1% 17% -2% 75% 61%
HACI ÖMER SABANCI
HOLDİNG A.Ş. 0% -7% 0% 31% 10%
COCA COLA İÇECEK A.Ş. 3% 7% 1% 3% -11%
TAV HAVALIMANLARI
HOLDING A.Ş. 9% -5% 7% 49% 57%
BIST100 20% -4% 19% 43% 24%

From the results, delta hedging seem not to be ideal for hedging the lookback put
option in the Turkish Market; more so for longer lookback periods. However, for
individual stocks as underlying assets, there are some favorable results. Case in point,
contracts written on Coca Cola İçecek A.Ş. (CCA) and Ülker Bisküvi (ÜB) stocks
performed relatively well for the various contract period. ÜB performed within a plus
or minus ten percent for all condition excepting for the 60-days contract where the
error is twenty-three percent (23%). CCA on the other hand, performed within a one
and seven percent range except in the case of the 90-days contract where it is under-
hedged by 11%. Other stocks like Tav Havalımanları Holdings and Sabancı Holdings
perform relatively well with the 30 contracts but have errors over 10% for the 60 and 90
days contract. On the other hand, others like Turkcell Iletisim Hizmetleri A.Ş., Yapi
Ve Kredi Bankasi A.Ş., Turkiye Sise Ve Cam Fabrikalari A.Ş., and Otokar Otobüs
Karoseri San. A.Ş have errors less than 10% for the 90-days contract but perform
relatively poorly in the short term 30 days and even the 60-days contract. Likewise,
Arçelik A.Ş., Tofaş Turk Otomobil Fabrıkası A.Ş., and Petkim Petrokimya Holding
A.Ş. are in the under 10% error range for the 60-day options but for the other options
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their results were very poor relatively speaking.
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CHAPTER 4

Conclusion and future works

From the results in chapter 3, standard delta hedging performs relatively poorly, with
averages ranging between -2% and 33% and standard deviations between 16% and
30%, when hedging the lookback put option. In some cases E(T ) was as high as 75%
and as low as -70%. Furthermore, as is the case with the October-30-days lookback
option and the Turkish November Elections, the hedging performs even worse when
there are shocks in the market (see Figure 3.3 and Figure 3.9), since the model ignores
such phenomena. In spite of this, a few contracts like Coca Cola İçecek A.Ş. and
Ülker Bisküvi stocks performed relatively well for the various contract period. Con-
tracts written on Tav Havalımanları Holding A.Ş. and Hacı Ömer Sabancı Holding
stocks perfermed better with the 30-days lookback contracts then with the 60 and 90-
days contracts. Whereas, contracts written on underlying like Tofaş Türk Otomobil
Fabrikası, did better in the 60-days contract than with the 30 and and 90 days contract.

4.1 Future works

In future work, one may extend the tests done in this work (by studying different look-
back option products, time periods, maturities, underlyings, markets, etc.) to improve
our understanding of the practical performance of the BS pricing and hedging algo-
rithm.

Additionally, we would like to explore the hedging performance of other hedging
methods such as gamma hedging.

Another direction of research is to consider the use of implied volatility or more in-
volved volatility methods as is discussed in “The volatility surface: a practitioner’s
guide” [5], instead of historical volatility.

Finally, alternative pricing models may also be considered. This may include price
with stochastic volatility methods as is discussed in “Modular pricing of options”[14]
and in “Applications of Fourier transform to smile modeling” [13] and models that
consider market shocks.
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APPENDIX A

Some Definitions and Theorem

Definitions

Definition A.1 (From Stochastic calculus for finance II: Continuous-time models[11]
page 74). Given a probability space (Ω, F,P), 0 ≤ T a constant, and a filtration F (t),
t ∈ [0, T ]. Let X(t), t ∈ [0, T ]. If for every non-negative , Borel-measurable function
f and for ∀s ≤ t, s ∈ [0, T ], there is a Borel-measurable funtion g such that

E[f(X(t))|F (s)] = g(X(s)),

then X is said to be a Markov process.

Lemma[From Stochastic calculus for finance II: Continuous-time models[11] page 73]
Given a probability space (Ω, F,P), and G ⊆ F a σ-algebra. given G-measurable ran-
dom variablesX1, ..., XK and let Y1, ..., YL be independent of G. Letting f(x1, ..., xK , y1, ..., yl)
be a function with pseudo variables x1, ..., xK and y1, ..., yl and

g(x1, ..., xk) = Ef(x1, ..., xK , Y1, ...YL),

then

E[f(X1, ..., XK , Y1, ...YL)|G] = g(X1, ..., XK).

From the previous lemma we have

E[f(S(T ), Y (T ))|F (t)] = g(S(t), Y (t)). (A.1)

.

Definition A.2. ltô-Doeblin Formula for Multiple Processes

Theorem A.1. Two-dimensional Itô-Doeblin formula[from Stochastic calculus for fi-
nance II: Continuous-time models[11] page 141] Let f(t, x, y) be a function whose
partial derivatives ft , fx, fy, fxx, fxyfyxandfyy are defined and are continuous. Let
X(t) and Y (t) be Itô processes. The two-dimensional ltô-Doeblin formula in differen-
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tial form is

df(t,X(t), Y (t)) =ft(t,X(t), Y (t))dt+ fx(t,X(t), Y (t))dX(t)

+ fy(t,X(t), Y (t))dY (t)

+
1

2
fxx(t,X(t), Y (t))dX(t)dX(t)

+ fxy(t,X(t), Y (t))dX(t)dY (t)

+
1

2
fyy(t,X(t), Y (t))dY (t)dY (t). (A.2)

Theorem A.2 (From Stochastic calculus for finance II: Continuous-time models[11]
page 313). Let v(t, x, y) denote the price at time t of the floating strike lookback option
under the assumption that S(t) = x and Y (t) = y. Then the pay off function V (t, x, y)
satisfies the Black-Scholes-Merton partial differential equation

Vt(t, x, y) + rxVx(t, x, y) +
1

2
σ2x2Vxx(t, x, y) = rv(t, x, y). (A.3)

in the region {(t, x, y); 0 ≤ t < T, 0 ≤ x ≤ y} and satisfies the boundary conditions

V (t, 0, y) = e− r(T − t)y, 0 ≤ t ≤ T, y ≥ 0, (A.4)

V y(t, y, y) = 0, 0 ≤ t ≤ T, y > 0, (A.5)

V (T, x, y) = y − x, 0 ≤ x ≤ y. (A.6)

Proof. Using equation A.2 and equating f(t, x, y) to e−rtV (t, x, y), we have

df(t,X(t), Y (t)) =e−rt[−rv(t,X(t), Y (t))dt+ vt(t,X(t), Y (t))dt

+ Vx(t,X(t), Y (t))dX(t) + Vy(t,X(t), Y (t))dY (t)

+
1

2
Vxx(t,X(t), Y (t))dX(t)dX(t)

+ Vxy(t,X(t), Y (t))dX(t)dY (t)

+
1

2
Vyy(t,X(t), Y (t))dY (t)dY (t)].

However, the cross variation dY (t)dY (t) = 0 and dX(t)dY (t) likewise. resulting in

df(t,X(t), Y (t)) = e−rt[−rv(t,X(t), Y (t))dt+ vt(t,X(t), Y (t))dt

+ Vx(t,X(t), Y (t))dX(t) + Vy(t,X(t), Y (t))dY (t)

+
1

2
Vxx(t,X(t), Y (t))dX(t)dX(t)]

= e−rt[−rV (t,X(t), Y (t)) + Vt(t,X(t), Y (t))

+ rX(t)Vx(t,X(t), Y (t))

+
1

2
σ2X2(t)Vxx(t,X(t), Y (t))]dt

+ e−rtσX(t)Vx(t, S(t), Y (t))dW̃ (t)

+ e−rtVy(t,X(t), Y (t))dY (t).
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By definition, for f(t, x, y) to a martingale the dt part of the equation needs to be equal
to zero, hence

− rV (t,X(t), Y (t)) + Vt(t,X(t), Y (t))

+ rX(t)Vx(t,X(t), Y (t)) +
1

2
σ2X2(t)Vxx(t,X(t), Y (t)) = 0,

giving us

rV (t,X(t), Y (t)) =Vt(t,X(t), Y (t)) + rX(t)Vx(t,X(t), Y (t))

+
1

2
σ2X2(t)Vxx(t,X(t), Y (t)).

Alternatively

rV (t, x, y) =Vt(t, x, y) + rxVx(t, x, y) +
1

2
σ2X2(t)Vxx(t, x, y).

Definitions

1.

Definition A.3. A “barrier option” is an exotic option whose pays off is de-
pendent on whether the underlying asset’s price stays within a specified barrier
condition or not.

2.

Definition A.4. An ‘up and out barrier option’ is an option that makes the option
payoff only if the underlying assets stays below the specified barrier b ≤ 0.

3.

Definition A.5. Assets and binary notation is given as:

Aξ
+(x, ξ) = xI(x>ξ) an up-type asset binary;

Aξ
−(x, ξ) = xI(x<ξ) a down-type asset binary;

Bξ
+(x, ξ) = I(x>ξ) an up-type bond binary;

and Bξ
−(x, ξ) = I(x<ξ) a down-type bond binary; (A.7)

According to ‘An introduction to exotic option pricing’[[2]chapter 4 pages 83-
85] these contracts payments are given as

Aξ
±(x, t) = xN(±dξ(x, τ)); and Bξ

±(x, t) = e−rτN(±d1ξ(x, τ)) (A.8)

dξ(x, τ) =
log(x

ξ
) + (r + σ2

τ
)τ

σ
√
τ

and d1ξ(x, τ) =
log(x

ξ
) + (r − σ2

τ
)τ

σ
√
τ

(A.9)

Here, τ = T − t, the assets binary pays the assets price x and the bond pays 1
monetary unit if the contracts’ conditions are met.
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Theorem A.3 (Taken from An introduction to exotic option pricing[2]). The European
equivalent payoff for the down and out barrier option is given as:

V (x, y) = f(x)I(x<b) − f i(x)I(x>b). (A.10)
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APPENDIX B

Computation of the Greeks

In this Section we compute the Greeks of the Lookback Option. These are given as
exercises in ”Stochastic calculus for finance II: Continuous-time models” [11] section
7.8.

Questions:

Given the following equations solve the questions that follow.

1.

U(t, z) =

(
1 +

σ2

2r

)
zN (δ+ (τ, z)) + e−rτN(−δ− (τ, z))

− σ2

2r
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− z, (B.1)

2.
∂

∂t
δ± (τ, s) = − 1

2τ
δ±

(
τ,

1

s

)
, (B.2)

3.
e−rτN ′ (δ− (τ, s)) = sN ′ (δ+ (τ, s)) , (B.3)

4.
N ′
(
δ±
(
τ, s−1

))
= s

2r
σ2
±1N ′ (δ± (τ, s)) , and (B.4)

5. given c > 0

∂

∂t
δ±

(
τ,
x

c

)
=

1

xσ
√
τ
, and

∂

∂t
δ±

(
τ,
c

x

)
=

1

xσ
√
τ
. (B.5)
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1. Show that:

ut(t, z) = re−rτN(−δ−(τ, z))− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− σz√

τ
N ′ (δ+ (τ, z)) . (B.6)

Solution:

Ut(t, z) =

(
1 +

σ2

2r

)
z

[
d

dt
δ+ (τ, z)

]
N ′ (δ+ (τ, z)) + re−rτN(−δ−(τ, z))

+ e−rτ
[
d

dt
δ− (τ, z)

]
N ′ (−δ− (τ, z))

− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− σ2

2r
e−rτz1−

2r
σ2

[
d

dt
δ−
(
τ, z−1

)]
N ′
(
−δ−

(
τ, z−1

))
.

Now using equation B.2, we get:

Ut(t, z) =

(
1 +

σ2

2r

)
z

[
− 1

2τ
δ+

(
τ,

1

z

)]
N ′ (δ+ (τ, z))

+ re−rτN(−δ−(τ, z))

+ e−rτ
[
− 1

2τ
δ−

(
τ,

1

z

)]
N ′ (−δ− (τ, z))

− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− σ2

2r
e−rτz1−

2r
σ2

[
− 1

2τ
δ− (τ, z)

]
N ′
(
−δ−

(
τ, z−1

))
= re−rτN(−δ−(τ, z))− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
+K (τ, z) , (B.7)

where K (τ, z) is defined as:

K (τ, z) = −
(

1 +
σ2

2r

)
z

1

2τ
δ+
(
τ, z−1

)
N ′ (δ+ (τ, z))

− e−rτ 1

2τ
δ−
(
τ, z−1

)
N ′ (−δ− (τ, z)) (B.8)

− σ2

2r
e−rτz1−

2r
σ2

1

2τ
δ− (τ, s)N ′

(
−δ−

(
τ, z−1

))
.

42



Since N ′ is an odd fuction, and with the use of equations (B.3) and (B.4), we
then derive:

K (τ, z) = −
(

1 +
σ2

2r

)
z

1

2τ
δ+
(
τ, z−1

)
N ′ (δ+ (τ, z))

+ z
1

2τ
δ−
(
τ, z−1

)
N ′ (δ+(τ, z))

− zσ
2

2r
z1−

2r
σ2

1

2τ
δ−(τ, s)z

2r
σ2
−1N ′(δ+(τ, z).

Now simplifying, we have:

K(τ, z) =
z

2τ
N ′ (δ+ (τ, z))

(
−
(

1 +
σ2

2r

)
δ+σ

22rδ− (τ, z)

)
=

z

2τ
N ′ (δ+ (τ, z))F (τ, z). (B.9)

Now solving for F (τ, z), we then attain:

F (τ, z) = δ−(τ, z−1)− δ+(τ, z−1) + δ−(τ, z−1)− (τ, z−1)

− σ2

2r
δ+(τ, z−1)− σ2

2r
δ−(τ, z)

=
1

σ
√
τ

[
log(z−1)− log(z−1)− σ2

2r
(log(z−1) + log(z)

+ τ

(
r − σ2

2

)
−
(
r +

σ2

2

)
− σ2

2r

(
r − σ2

2

)
−
(
r +

σ2

2

)]
=

1

σ
√
τ

(−2τσ2)

= −2σ
√
τ .

Substituting F (τ, z) into equation (B.9),

K (τ, z) =
z

2τ
N ′ (δ+ (τ, z)) (−2σ

√
τ)

= − zσ√
τ
N ′ (δ+ (τ, z)) ,

is derived. Further, substituting K(τ, z) into equation (B.7), we finally derive:

ut(t, z) =re−rτN(−δ−(τ, zt))− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− σz√

τ
N ′(δ+(τ, z)),

as required.
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2. Show that

Uz(τ, z) =

(
1 +

σ2

2r

)
N(δ+(τ, z))

+

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− 1. (B.10)

Solution:

Uz(τ, z) =

(
1 +

σ2

2r

)
N(δ+(τ, z)) +

(
1 +

σ2

2r

)
zN ′ (δ+(τ, z))

(
d

dz
δ+(τ, z)

)
+ e−rτN ′(−δ−(τ, z)

(
d

dz
δ−(τ, z)

)
− σ2

2r
erτz−

2r
σ2N(−δ−(τ, z−1)

(
1− 2r

σ2

)
− σ2

2r
erτz−

2r
σ2N ′(−δ−(τ, z−1)

(
d

dz
δ+(τ, z)

)
− 1

=

(
1 +

σ2

2r

)
N(δ+(τ, z)) +

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− 1

+

(
1 +

σ2

2r

)
zN ′ (δ+(τ, z))

(
d

dz
δ+(τ, z)

)
+ e−rτN ′(−δ−(τ, z))

(
d

dz
δ−(τ, z)

)
− σ2

2r
erτz−

2r
σ2N ′(−δ−(τ, z−1)

(
d

dz
δ+(τ, z)

)
=

(
1 +

σ2

2r

)
N(δ+(τ, z))

+

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− 1 +G(τ, z). (B.11)

Now, let us see that G(τ, z) = 0.

From equation (B.11) it is derived that:

G(τ, z) =

(
1 +

σ2

2r

)
zN ′ (δ+(τ, z))

(
d

dz
δ+(τ, z)

)
+ e−rτN ′(−δ−(τ, z))

(
d

dz
δ−(τ, z)

)
− σ2

2r
e−rτz1−

2r
σ2N ′(−δ−(τ, z−1)

(
d

dz
δ+(τ, z)

)
.
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Using equation (B.2), we now have:

G(τ, z) =

(
1 +

σ2

2r

)
zN ′ (δ+(τ, z))

(
1

zσ
√
τ

)
+ e−rτN ′(−δ−(τ, z)

(
1

zσ
√
τ

)
+
σ2

2r
e−rτz1−

2r
σ2N ′(−δ−(τ, z−1)

(
1

zσ
√
τ

)
.

The fact that N ′ is an odd fuction and using equation (B.3) and simplifying, we
then have:

G(τ, z) =
σ2

2r
N ′ (δ+(τ, z))

(
1

σ
√
τ

)
− σ2

2r
z1−

2r
σ2N ′(δ+(τ, z−1)

(
1

σ
√
τ

)
.

Finally using equation (B.4), we see:

G(τ, z) =
σ2

2r
N ′ (δ+(τ, z))

(
1

σ
√
τ

)
− σ2

2r
z1−

2r
σ2 z

2r
σ2
−1N ′(δ+(τ, z))

(
1

σ
√
τ

)
= 0.

It therefore follows that:

Uz(τ, z) =

(
1 +

σ2

2r

)
N(δ+(τ, z)) +

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− 1.

3. Show that:

Uzz =

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1)) +

2

zσ
√
τ
N ′(δ+(τ, z)). (B.12)

By taking the patial derivative of equation (B.11) with respect to z and using
equation (B.2), we have:

Uzz(τ, z) =

(
1 +

σ2

2r

)
N ′(δ+(τ, z))

1

zσ
√
τ

− 2r

σ2

(
1− σ2

2r

)
erτz−

2r
σ2
−1N(−δ−(τ, z−1))

−
(

1− σ2

2r

)
erτz−

2r
σ2N ′

(
−δ−(τ, z−1)

) 1

zσ
√
τ
.
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By appying equation (B.3) and simplifying, we then have:

Uzz(τ, z) =

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

+

(
1 +

σ2

2r

)
N ′(δ+(τ, z))

1

zσ
√
τ

+

(
1− σ2

2r

)
z1−

2r
σ2N ′

(
δ+(τ, z−1)

) 1

zσ
√
τ
.

Now appying equation (B.4), we have:

Uzz(τ, z) =

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

+

(
1 +

σ2

2r

)
N ′(δ+(τ, z))

1

zσ
√
τ

+

(
1− σ2

2r

)
N ′ (δ+(τ, z))

1

zσ
√
τ

=

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

+N ′ (δ+(τ, z))
1

zσ
√
τ

[(
1 +

σ2

2r

)
+

(
1− σ2

2r

)]
=

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1)) +

2

zσ
√
τ
N ′ (δ+(τ, z)) .

4. Verify that the Black-Scholes-Merton Equation holds, i.e.,

Ut(τ, z) + rzUz(τ, z) +
1

2
σ2z2Uzz(τ, z) = rU(τ, z).
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with the use of equations (B.6),(B.10) and (B.12), we have:

Ut(τ, z) + rzUz(τ, z) +
1

2
σ2z2Uzz(τ, z)

= re−rτN(−δ−(τ, z))− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
− σz√

τ
N ′ (δ+ (τ, z))

+ rz

[(
1 +

σ2

2r

)
N(δ+(τ, z))

]
+ rz

[(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− 1

]
+

1

2
σ2z2

[(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

+
2

zσ
√
τ
N ′(δ+(τ, z)

]
= re−rτN(−δ−(τ, z))− σ2

2
e−rτz1−

2r
σ2N

(
−δ−

(
τ, z−1

))
+ rz

(
1 +

σ2

2r

)
N(δ+(τ, z))

+ rz

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− rz

+
1

2
σ2z2

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

= r

[
e−rτN(−δ−(τ, z))− σ2

2r
e−rτz1−

2r
σ2N(−δ−(τ, z−1))

+ z

(
1 +

σ2

2r

)
N(δ+(τ, z))

+ z

(
1− σ2

2r

)
e−rτz−

2r
σ2N(−δ−(τ, z−1)− z

+
1

2
σ2z2

(
1− 2r

σ2

)
e−rτz−

2r
σ2
−1N(−δ−(τ, z−1))

]
= rU(τ, z).

5. Show that:

U(t, 1) = Uz(t, 1).
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Substituting z=1 in equation(B.1), we have:

U(t, 1) =

(
1 +

σ2

2r

)
N (δ+ (τ, 1)) + e−rτN(−δ−τ, 1))

− σ2

2r
e−rτN (−δ− (τ, 1))− 1

=

(
1 +

σ2

2r

)
N (δ+ (τ, 1)) +

(
1− σ2

2r

)
e−rτN(−δ−(τ, 1))− 1

= Uz(t, 1).
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