
NUMERICAL SOLUTION OF SEMI-LINEAR
ADVECTION-DIFFUSION-REACTION EQUATIONS BY DISCONTINUOUS

GALERKIN METHODS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SÜLEYMAN YILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

JUNE 2016





Approval of the thesis:

NUMERICAL SOLUTION OF SEMI-LINEAR
ADVECTION-DIFFUSION-REACTION EQUATIONS BY

DISCONTINUOUS GALERKIN METHODS
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ABSTRACT

NUMERICAL SOLUTION OF SEMI-LINEAR
ADVECTION-DIFFUSION-REACTION EQUATIONS BY DISCONTINUOUS

GALERKIN METHODS

YILDIZ, SÜLEYMAN
M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

JUNE 2016, 41 pages

In this thesis, we study splitting methods for semi-linear advection-diffusion-reaction
(ADR) equations which are discretized by the symmetric interior penalty Galerkin
(SIPG) method in space. For the time integration Rosenbrock methods are used with
Strang splitting. The linear system of equations are solved iteratively by precondi-
tioned generalized minimum residual method (GMRES). Numerical experiments for
ADR equations with different type nonlinearities demonstrate the effectiveness of the
proposed approach.

Keywords : the discontinuous Galerkin (dG) method, operator splitting, Strang split-
ting, Rosenbrock methods, advection-diffusion-reaction equation
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ÖZ

YARI-DOĞRUSAL ADVEKSİYON-DİFÜZYON-REAKSİYON
DENKLEMLERİNİN SÜREKSİZ GALERKİN YÖNTEMİYLE NÜMERİK

ÇÖZÜMLERİ

YILDIZ, SÜLEYMAN
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Haziran 2016, 41 sayfa

Bu tezde, zaman ayırma metodları uzayda simetrik süreksiz Galerkin yöntemi ile yarı-
doğrusal adveksiyon-difüzyon-reaksiyon (ADR) denklemleri için incelenmiştir. Den-
klemin zaman integrallemesi için Rosenbrock metodları ve Strang operatör ayırması
kullanılmıştır. Lineer sistem preconditioner kullanılarak generalized minimum resid-
ual method (GMRES) ile iteratif bir biçimde çözülmüştür. Nümerik çözümlerin doğrusal
olmayan farklı ADR örnekleri için verimliliği sunulmuştur.

Anahtar Kelimeler : Strang ayırması, süreksiz Galerkin yöntemleri, Rosenbrock metod-
ları, adveksiyon-reaksiyon-difüzyon denklemleri
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I also would like to thank Bilgi Yılmaz, Güray Kara, Abdullah Ali Sivas and all other
friends for their useful comments.

Lastly, special thanks to my beloved wife and to my family for their patience and

support.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many real-life applications such as physical, biological, chemical and financial mod-
elling are fundamental processes of reaction, convection, diffusion phenomenons. In
partial differential equations (PDEs), convection appears in form of transport mecha-
nism of a substance or conserved property and contribution of diffusion to the system
is movement of a substance from high concentration to low concentration, reaction
refers response of the mechanism.

Finite element methods (FEMs) have been accepted as an accurate and efficient method
for solving PDEs. An advantage of FEMs is their ability to handle complicated ge-
ometries. Another advantage of using the FEMs is their ability to use higher order
approximations. On the other hand, the disadvantage of FEMs is that they do not have
local mass conservation property. Finite volume method (FVM) can be a proper choice
for local mass conservation property, however FVM has a lack of ability to use higher
order approximations. Combining the finest features of the FVM and FEMs, discontin-
uous Galerkin (dG) method is an attractive and accurate method in flow and transport
problems.

In this thesis, we consider the semi-linear advection-diffusion reaction (ADR) equa-
tions of the form

∂u

∂t
− ε∆u+~b (x, t)∇u+ r(u) = f (x, t) in Ω× (0, T ] ,

u(x, t) = gD on ΓD × (0, T ] , (1.1)

ε∇u(x, t) · ~n = gN on ΓN × (0, T ] ,

u(x, 0) = u0 in Ω,

with Ω is bounded, open, convex domain in R2 with boundaries ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅. Here, ε is the diffusivity constant, f (x, t) ∈ L2(Ω) is the source
function, ~b (x, t) ∈ (W 1,∞(Ω))2 is the velocity field, gD ∈ H3/2(ΓD) is the Dirichlet
boundary condition, gN ∈ H1/2(ΓN) is the Neumann boundary condition, u0 ∈ L2(Ω)
is the initial condition and ~n denote outward normal vector to the boundary.

The aim of this thesis is to investigate the accuracy and efficiency of Rosenbrock time
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integrators and the Strang time splitting for semi-linear ADR equations using dG dis-
cretization in space. For stiff ordinary differential equations (ODEs) or differential
algebraic equations(DAEs), Rosenbrock methods offers many advantages like ease of
implementation and less computational complexity. In recent years, numerous works
have been conducted on the development of Rosenbrock methods [11, 21, 24, 23],
which are applied to various fields such as biogeochemical processes [32], photochem-
ical dispersion problems [38] and electric circuit simulation [17].

Throughout the last century, with new physical phenomenas, the complexity of the
equations has increased because of the increase in the complexity of the phenomenas
which the equations are involved. In order to solve these problems, new solving meth-
ods have been developed. Thus, the operator splitting methods are attractive solvers
since they divide the problem into simpler subproblems. Yet, operator splitting meth-
ods are not only used for simplifying the complexity, but also with different combina-
tion of splitted parts higher order methods can be obtained. Most popular of operator
splitting method proposed by Strang [34], called Strang splitting.

A weakness with dG methods is that the linear systems derived from dG methods are
large and generally ill-conditioned. In order to deal with this large linear systems the
generalized minimum residual method (GMRES) [31] is a suitable choice. Efficiency
of the GMRES method can be increase by preconditioners so that selection of precon-
ditioner is an important topic. Several preconditioning are designed for linear systems
arising from discontinuous Galerkin discretization [28, 1] in recent years. We use here
the GMRES solver with the preconditioner designed for non-symmetric linear systems
arising from dG discretization of ADR equations in [15]

The outline of this thesis is as follows: In Chapter 2, we give brief overview about
the interior penalty discontinuous Galerkin (IPG) methods. We give the semi-discrete
IPG formulation for Equation (1.1) with upwinding for convection. In Chapter 3, we
introduce the Rosenbrock methods. Then, we give the fully discrete formulation of
Equation (1.1) by using symmetric interior penalty Galerkin (SIPG) method in space
discretization and Rosenbrock methods in time discretization. At the end of the Chap-
ter 3, we introduce operator splitting methods and Strang splitting method. Then,
we combine a second order 2-stage Rosenbrock integrator ROS2 method and explicit
trapezoid rule with Strang splitting method [38] for Equation (1.1). The Rosenbrock
solver ROS2 is an second order L-stable method [38]. On the other hand, it is pointed
out that the trapezoidal rule is one of the most accurate A-stable method [33]. Hence,
by combining Strang splitting with explicit trapezoid rule and ROS2 Method, we in-
vestigate the efficiency and accuracy of this combination. In Chapter 4, we present
numerical solution of three advection-diffusion-reaction problems with the methods
which are presented in Chapter 3. We present the convergence rate of the problems
by L2(L2) and L2(H1) norm. Efficient solution of linear system of equations arising
from dG discretization by the preconditioned GMRES method is presented in Chapter
4. The thesis ends with some conclusions in Chapter 5.
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CHAPTER 2

DISCONTINUOUS GALERKIN SPATIAL DISCRETIZATION

In the early 1970s, the first discontinuous Galerkin (dG) was proposed and analyzed
by Reed and Hill [29] as an alternative to high-order finite difference and finite volume
methods. Later on the dG methods become popular for solving hyperbolic problems.
In the late 1970s, Douglas and Dupont have first introduced interior penalty (IP) meth-
ods [13] for parabolic and elliptic problems. Then, in the eighties, several studies had
been done on elliptic problems [4, 8] and for problems with advection in [3, 5, 20].
The well-known dG methods are the local discontinuous Galerkin (LDG) method for
diffusion-convection equations proposed by Cockburn and Shu [10], and the compact
discontinuous Galerkin (CDG) method proposed by Peraire and Persson [27].

In this Chapter we show detailed construction of the symmetric interior penalty Galerkin
(SIPG) method for semi-linear ADR equations following [2, 30].

2.1 Preliminaries

In this Section, we introduce some useful definitions which are required in the con-
struction of discontinuous interior point Galerkin methods.

2.1.1 Sobolev spaces

The spaces Lp(Ω) of p-integrable functions are defined by

Lp(Ω) =
{
v Lebesgue measurable : ‖v‖2

Lp(Ω) <∞
}
, 1 ≤ p ≤ ∞,

where Ω polygonal domain in Rd. And the associated norm is defined by

‖v‖2
Lp(Ω) =

(∫
Ω

|v(x)|pdx
) 1

p

.

We mainly consider the space L2(Ω) which is a Hilbert space equipped with the usual
L2-inner product

(u, v)Ω =

∫
Ω

u(x)v(x)dx, ‖v‖2
L2(Ω) =

√
(v, v)Ω.
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LetD(Ω) denotes the subspace of the space C∞ having compact support in Ω. For any
multi-index α = (α1, . . . , αd) ∈ Nd with |α| =

∑d
i=1 αi, the distributional derivative

Dαv is defined by

Dαv(ψ) = (−1)|α|
∫

Ω

v(x)
∂|α|ψ

∂α1x1 · · · ∂αdxd
, ∀ψ ∈ D(Ω).

Then, we define for an integer s the Sobolev spaces

Hs(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω),∀0 ≤ |α| ≤ s

}
,

with the associated Sobolev norm

||v||Hs =

 ∑
0≤|α|≤s

||Dαv||2L2(Ω)

 1
2

,

and the associated Sobolev seminorm

|v|Hs = ||∇sv||L2(Ω) =

∑
|α|=s

||Dαv||2L2(Ω)

 1
2

.

The Sobolev spaces are defined by

Hs
0(Ω) = {v ∈ Hs(Ω) : v|∂Ω = 0} .

In order to deal with a partition ξh of Ω, we define the broken Sobolev spaces by

Hs(ξh) =
{
v ∈ L2(Ω) : v|K ∈ Hs(K),∀K ∈ ξh

}
,

with the associated broken Sobolev norm

||v||Hs(ξh) =

(∑
K∈ξh

||v||2Hs(K)

) 1
2

,

and the associated broken seminorm

|v|H0(ξh) =

(∑
K∈ξh

||∇v||2L2(K)

) 1
2

.

2.1.2 Trace Theorems

Theorem 2.1 (Theorem 2.5 [30]). For s0 > 1/2 and s1 > 3/2 , there exist trace oper-
ators γ0 : Hs0(Ω)→ Hs0−1/2(∂Ω) and γ0 : Hs1(Ω)→ Hs1−1/2(∂Ω) being extensions
of the boundary values and boundary normal derivatives, respectively, with polygonal
boundary ∂Ω , and for v ∈ C1(Ω̄), we have

γ0v = v|∂Ω, γ1v = ∇v · ~n|∂Ω.
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2.1.2.1 Green’s Theorem

Theorem 2.2. Let Ω be a domain in R2, with boundary ∂Ω and exterior unit normal
~n. Then, for all v ∈ H2(Ω) and w ∈ H1(Ω),

−
∫

Ω

∆uwdx =

∫
Ω

∇u∇wdx−
∫
∂Ω

~n · ∇uwds.

We consider the semi-linear ADR equations of the form

ut − ε∆u+~b∇u+ r(u) = f in Ω ⊂ R2, (2.1)

u(x, t) = gD on ΓD,

ε∇u(x, t) · ~n = gN on ΓN ,

u(x, 0) = u0 in Ω,

with ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. In the above equation, f ∈ L2(Ω) is the
function of source contribution, ε is the constant of the diffusivity, ~b ∈ (W 1,∞(Ω))2 is
the velocity field, gD ∈ H3/2(ΓD) is the Dirichlet boundary condition, gN ∈ H1/2(ΓN)
is the Neumann boundary condition, u0 ∈ L2(Ω) is the initial condition and ~n denote
outward normal vector to the boundary.

Let the mesh ξh = {K} be a family of shape regular elements for some positive
constant h0

max
K∈ξh

h2
K

|K|
≤ h0, (2.2)

where |K| and hK denote the area and the diameter of the element K, respectively.
Let also that Ω̄ = ∪K̄ and Ki ∩Kj = ∅ for Ki, Kj ∈ ξh. The set of interior domain,
Neumann boundary and the Dirichlet boundary edges are denoted by Γ0

h,Γ
N
h and ΓDh ,

respectively. Γ0
h ∪ ΓDh ∪ ΓNh forms the outline of the mesh. For any K ∈ ξh, let Pk(K)

be the set of all polynomials of degree at most k on K.

In order to discretize convection part of the problem (2.1) we will apply upwinding
[26, 29]. Thus, let us decompose the boundary edges into the set Γ+ of outflow edges
and the set Γ− of inflow edges defined by

Γ−h =
{
x ∈ ∂Ω : ~b · ~n < 0

}
, Γ+

h = ∂Ω \ Γ−h ,

where ~n is the unit normal vectors that point outward of the boundary ∂Ω. Similarly,
the set of outflow and inflow boundary edges of an element K ∈ ξh is defined by

∂K− =
{
x ∈ ∂K : ~b · ~nK < 0

}
, ∂K+ = ∂K \ ∂K−,

where ~nK is the unit normal vectors that point outward of the element boundary ∂K.
Additionally, on an interior edge ∂K, we denote the trace of a function v from outside
the element K by vout and from inside the element K by vin.
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Figure 2.1: Two elements sharing an edge (left); an element near to domain boundary
(right).

We set the finite dimensional solution and test function space by

Vh =
{
v ∈ L2(Ω) : v|K ∈ Pk(K),∀K ∈ ξh

}
6⊂ H1

0 (Ω).

There are two different traces coming from the adjacent elements due to Vh contain
discontinuous functions along the inter-element boundaries. Let Ki, Kj ∈ ξh (i < j)
be two elements near an interior edge e = Ki ∩Kj ⊂ Γ0

h (cf Fig:2.1). We denote the
trace of a scalar function v from insideKi by vi and from inside Kj by vj . Then, we
set the jump and average values of v on the edge e

[v] = vi~ne − vj~ne, {v} =
1

2
(vi + vj), (2.3)

where ~ne is the unit normal to the edge e oriented from Ki to Kj . Similarly, after
setting the jump and average values of a vector valued function ~q has the form

[~q] = ~qi · ~ne − ~qj · ~ne, {~q} =
1

2
(~qi + ~qj). (2.4)

We also set,

[~q] = ~qi · ~n, {~q} = ~qi,

[v] = vi~n, {v} = vi,

along any boundary edge e = Ki ∩ ∂Ω , where ~n is the unit outward normal to the
boundary at e.

6



2.1.3 Construction of IPG Methods

Now, for constructing SIPG method, we multiply the continuous Equation (2.1) by a
test function v ∈ Vh, we integrate over Ω ,∑

K∈ξh

∫
K

∂uh
∂t

vhdx−
∑
K∈ξh

∫
K

ε∆uhvhdx+
∑
K∈ξh

∫
K

~b∇uhvhdx

+
∑
K∈ξh

∫
K

r(uh)vhdx =
∑
K∈ξh

∫
K

fvhdx.

Applying the divergence theorem on every element integral gives∑
K∈ξh

∫
K

∂uh
∂t

vhdx+
∑
K∈ξh

∫
K

ε∇uh∇vhdx−
∑
K∈ξh

∫
∂K

ε(∇uh · ~n)vhds

+
∑
K∈ξh

∫
K

~b∇uhvhdx−
∑
K∈ξh

∫
K

~b · ~n(uouth − uinh )vhds−
∑
K∈ξh

∫
K

~b · ~nuinh vhds

+
∑
K∈ξh

∫
K

r(uh)vhdx =
∑
K∈ξh

∫
K

fvhdx.

It is easy to verify that [εv∇u] = {ε∇u} · [v] + [ε∇u] {v}. Then, using also the fact
that [∇u] = 0 (u is assumed to be smooth enough so that∇u is continuous) and adding
following equalities via [u] = 0 on the interior edges in order to handle the coercivity
of the left hand side and control the jump terms,∑

e∈Γ0
h∪ΓDh

∫
e

{ε∇vh} · [uh]ds =
∑
e∈ΓDh

∫
e

gD(∇vh · n)ds,

∑
e∈Γ0∪ΓD

σ

he

∫
e

[uh] · [vh]ds =
∑
e∈ΓD

σ

he

∫
e

gDvhds,

we get, ∑
K∈ξh

∫
K

ε∇uh · ∇vhdx+
∑

e∈Γ0∪ΓD

σε

he

∫
e

[uh] · [vh]ds

−
∑

e∈Γ0∪ΓD

∫
e

{ε∇uh} · [vh]ds+ κ
∑

e∈Γ0∪ΓD

∫
e

{ε∇vh} · [uh]ds

∑
K∈ξh

∫
K

~β · ∇uhvhdx+
∑
K∈ξh

∫
∂K−\∂Ω

~β · ~n(uouth − uinh )vhds

−
∑
K∈ξh

∫
∂K−∩Γ−

~β · ~nuinh vhds+
∑
K∈ξh

∫
K

αuhvhdx

=
∑
K∈ξh

∫
K

fvhdx+
∑
e∈ΓD

∫
e

gD
(
σε

he
vh + κε∇vh · n

)
ds

−
∑
K∈ξh

∫
∂K−∩Γ−

~β · ~ngDvhds+
∑
e∈ΓN

∫
e

gNvhds,
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so that we obtained the IPG formulation. The sort of the interior penalty Galerkin
method depends on κ in. Depending on the coefficient κ = −1, 0, 1 the method varies
as, Symmetric interior penalty Galerkin (SIPG) method, Incomplete interior penalty
Galerkin (IIPG) method, Non-symmetric interior penalty Galerkin (NIPG) method,
respectively.

Finally, we can give SIPG with upwinding formulation of Equation (2.1) as: find uh ∈
Vh such that

∫
Ω

∂uh
∂t

vhdx+ ah(uh, vh) = lh(vh), ∀vh ∈ Vh, (2.5)

with coreesponding bilinear form

ah(uh, vh) =
∑
K∈ξh

∫
K

ε∇uh · ∇vhdx+
∑

e∈Γ0∪ΓD

σε

he

∫
e

[uh] · [vh]ds

−
∑

e∈Γ0∪ΓD

∫
e

{ε∇uh} · [vh]ds+ κ
∑

e∈Γ0∪ΓD

∫
e

{ε∇vh} · [uh]ds

∑
K∈ξh

∫
K

~β · ∇uhvhdx+
∑
K∈ξh

∫
∂K−\∂Ω

~β · ~n(uouth − uinh )vhds

−
∑
K∈ξh

∫
∂K−∩Γ−

~β · ~nuinh vhds+
∑
K∈ξh

∫
K

αuhvhdx,

lh(vh) =
∑
K∈ξh

∫
K

fvhdx+
∑
e∈ΓD

∫
e

gD
(
σε

he
vh + κε∇vh · n

)
ds

−
∑
K∈ξh

∫
∂K−∩Γ−

~β · ~ngDvhds+
∑
e∈ΓN

∫
e

gNvhds.

2.1.4 Forming The Linear Systems

The discrete DG scheme for elliptic problems with bilinear form is given as [36]

ah(uh, vh) := Dh(uh, vh) + Ch(uh, vh) +Rh(uh, vh) = lh(vh), (2.6)
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where the forms Dh(uh, vh), Ch(uh, vh) and Rh(uh, vh) are corresponding to the diffu-
sion,advection and linear reaction parts of the problem, respectively, given by [36]

Dh(uh, vh) =
∑
K∈ξh

∫
K

ε∇uh · ∇vhdx+
∑

e∈Γ0∪ΓD

σε

he

∫
e

[uh] · [vh]ds (2.7)

−
∑

e∈Γ0∪ΓD

∫
e

{ε∇uh} · [vh]ds+ κ
∑

e∈Γ0∪ΓD

∫
e

{ε∇vh} · [uh]ds,

Ch(uh, vh) =
∑
K∈ξh

∫
K

~β · ∇uhvhdx (2.8)

+
∑
K∈ξh

∫
∂K−\∂Ω

~β · ~n(uouth − uinh )vhds

−
∑
K∈ξh

∫
∂K−∩Γ−

~β · ~nuinh vhds,

Rh(uh, vh) =
∑
K∈ξh

∫
K

αuhvhdx, (2.9)

lh(vh) =
∑
K∈ξh

∫
K

fvhdx+
∑
e∈ΓD

∫
e

gD
(
σε

he
vh + κε∇vh · n

)
ds (2.10)

−
∑
K∈ξh

∫
∂K−∩Γ−

~β · ~ngDvhds+
∑
e∈ΓN

∫
e

gNvhds.

The discrete solution uh ∈ Vh has the form

uh =
N∑
j=1

vjφj, (2.11)

with a set of basis functions {φi}Ni=1 spanning the space Vh and v = (v1, v2, . . . , vN)T is
the unknown coefficient vector. After substituting (2.11) into (2.6) and taking vh = φi,
we get for i = 1, . . . , N , the linear systems of equations

N∑
j=1

vjDh(φj, φi) +
N∑
j=1

vjCh(φj, φi) +
N∑
j=1

vjRh(φj, φi) = lh(φi). (2.12)

To form the linear system in matrix-vector form, for i = 1, . . . , N, we need the ma-
trices D,C,R ∈ RN×N related to the terms including the forms Dh, Ch and Rh in
Equation (2.12), respectively, satisfying

Dv + Cv +Rv = F, (2.13)

with the unknown coefficient vector v and the vector F ∈ RN related to the linear
functionals lh(φi) such that Fi = lh(φi), i = 1, . . . , N .
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To solve non-linear problems, we need the vectorH ∈ RN related to the non-linear
term such that

Hi(v) =

∫
Ω

r

(
N∑
j=1

vjφj

)
φidx, i = 1, . . . , N. (2.14)

After substituting (2.14) into (2.12) get for i = 1, . . . , N the non-linear systems of
equations

N∑
j=1

vjDh(φj, φi) +
N∑
j=1

vjCh(φj, φi) +
N∑
j=1

vjRh(φj, φi) (2.15)

+

∫
Ω

r (uh)φidx = lh(φi),

which can be written in the matrix-vector form of

Dv + Cv +Rv +H(v) = F, (2.16)

where, the matrices D,C,R ∈ RN×N and the vector H,F ∈ RN .

For parabolic problems we will rewrite Equation 2.16 as

Mv + Sv +H(v) = F, (2.17)

where, the matrix S = (D + C + R) is the stiffness matrix and M ∈ RN×N is the
symmetric positive definite mass matrix which by DG construction has a symmetric
block diagonal structure [36].
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CHAPTER 3

TIME DISCRETIZATION and SPLITTING

In this chapter we give an overview for the Rosenbrock methods and time splitting
techniques for the efficient solution of the semi-linear ADR equations.

3.1 Rosenbrock Methods

For stiff ODEs arising by discretizing PDEs, explicit methods have the disadvantage
that they require small time step sizes for a stable numerical solutions which increase
the elapsed time of computation. On the other hand implicit schemes produces numeri-
cally stable solutions, but at each time step a large linear system have to be dealt, which
is in many cases ill-conditioned. We consider here the Rosenbrock methods which
avoids the solution of nonlinear systems, working with the exact Jacobian [11, 18].
Rosenbrock methods are derived as a special cases of diagonally implicit Runge-Kutta
methods in 1963 [19]. It is known that Rosenbrock methods affected from order re-
duction dealing with stiff ODEs. Various type of Rosenbrock methods with multiple
stages were developed [23, 24] which not suffer from order reduction. These methods
are used for solving large systems of nonlinear ODEs, differential algebraic equations
(DAEs) and nonlinear parabolic PDEs efficiently.

We consider the following initial value problem arising from the dG discretization of
the semi-linear ADR equation

Mu′ = F (u), u(0) = u0, (3.1)

where M is an invertible (N,N)-matrix and u0 is initial condition. While dealing
with Galerkin methods we will assume that M is the symmetric positive definite mass
matrix.

The Rosenbrock methods were derived from the simple idea that subtract a linear au-
tonomous term Ju from both sides of Equation (3.1),

Mu′ − Ju = F (u)− Ju, (3.2)

and discretize the left-hand part implicitly, but the right-hand part explicitly. This leads
structural advantage compared to implicit methods. Depending on Ju two variants
exist:
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• Methods with exact Jacobian matrix ’J = F ′(u)’. This type of variant is used
in Rosenbrock-Wanner (ROW) methods. The main disadvantage of the ROW-
method is that Jacobian matrix must be computed at every integration step which
makes it less attractive for integrating large systems.

• Methods with inexact Jacobian matrix ’J ≈ F ′(u)’. This type of variant is used
in W-methods. The choice of Jacobian matrix is relatively free for W-methods.
Thus, W-methods lead computational advantages since the Jacobian matrix is
not evaluated at every step.

3.1.1 Structure of Rosenbrock Methods

Rosenbrock methods are class of linearly implicit Runge-Kutta methods and derived
by linearizing the diagonally implicit Runge-Kutta (DIRK) scheme.

At first to consider differential equations in autonomous form

u′ = F (u), u(0) = u0, (3.3)

a nonlinear DIRK scheme is given by [18]

ki = hF

(
u0 +

i−1∑
j=1

αijkj + αiiki

)
, i = 1, . . . , s, (3.4)

where the solution at the next time step is given by

un+1 = un +
s∑
i=1

biki. (3.5)

Equation (3.4) is linearised around

gi = u0 +
i−1∑
j=1

αijkj, (3.6)

become

ki = hF (gi) + hF ′(gi)αiiki. (3.7)

For acceleration of the computations, the Jacobian F ′(gi) is replaced by JF = F ′(u0)
so that the Jacobian will not be needed at every stage of Rosenbrock computation.

Thus an s-stage Rosenbrock method [18] reads as:

ki = hF

(
u0 +

i−1∑
j=1

αijkj

)
+ hJF

i−1∑
j=1

γijkj, i = 1, . . . , s, (3.8)

un+1 = un +
s∑
i=1

biki.
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with the coefficients αij, γij and bi which are generally shown in a Butcher tableau.

The nonlinear Equations (3.8) require the solution of a linear system with the matrix
I − hγii and the matrix-vector multiplication JF

∑
γijkj . In order to avoid this multi-

plication we introduce the new variables:

Ui =
i−1∑
j=1

γijkj, i = 1, . . . , s. (3.9)

If γij 6= 0 for i ≤ j, then the matrix Γ = (γij) is invertible and ki can be determined
from Ui with

ki =
1

γii
Ui −

i−1∑
j=1

cijUj, (3.10)

where C is given by

C = diag(γ−1
11 , . . . , γ

−1
ss )− Γ−1. (3.11)

So Rosenbrock method can be implemented as :(
I

hγii
− JF

)
Ui = F

(
un +

i−1∑
j=1

aijUj

)
+

i−1∑
j=1

cij
h
Uj, (3.12)

where aij = αijΓ
−1 , (m1, . . . ,ms) = (b1, . . . , bs)Γ

−1 and un+1 is given by

un+1 = un +
s∑
i=1

mjUj. (3.13)

Non-autonomous problems

y′ = F (u, t), (3.14)

can be converted to autonomous form by adding t′ = 1. Then the augmented sys-
tem(3.8) become

ki = hF

(
t0 + αih, u0 +

i−1∑
j=1

αijkj

)
+ γih

2∂F

∂x
(t0, u0) (3.15)

+h
∂F

∂u
(t0, u0)

i∑
j=1

γijkj,

un+1 = un +
s∑
i=1

biki.

where the additional coefficients are given by

αi =
i−1∑
j=1

αij, γi =
i−1∑
j=1

γij. (3.16)
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Implicit differential equations in the form of

My′ = F (u, t), (3.17)

with a constant matrix M can be converted to autonomous form by multiplying Equa-
tion (3.17) with M−1, applying method in Equation (3.15), and then multiplying the
resulting formula with M we obtain

Mki = hF

(
t0 + αih, u0 +

i−1∑
j=1

αijkj

)
+ γih

2∂F

∂x
(t0, u0) (3.18)

+h
∂F

∂u
(t0, u0)

i∑
j=1

γijkj,

un+1 = un +
s∑
i=1

biki.

In this chapter, we consider Rosenbrock methods of different order with two, three and
four stages designed for efficient solution of nonlinear ODEs.

The second order 2-stage ROS2 method for autonomous ODE systems is applied to at-
mospheric dispersion problems in [38]. For non-autonomous systems 3.17 the scheme
can be written as(

M − γτ ∂F
∂u

(tn, un)

)
k1 = F (tn, un) + γτ

∂F

∂t
(tn, un), (3.19)(

M − γτ ∂F
∂u

(tn, un)

)
k2 = F (tn+1, un + τk1)− 2Mk1

− γτ ∂F
∂t

(tn, un),

un+1 = un +
3

2
τk1 +

1

2
τk2.

After substituting Equation (3.19) in Equation (2.17) fully discrete formulation of
Equation 2.1 with 2-stage ROS2 method in time and SIPG in space takes the form

(M − γτ (S + JH(un)) k1 = −Sun −H(un) + F̃ (·, tn) + τγ∂tF (tn, un)

(M − γτ (S + JH(un)) k2 = −S(un + τk1)−H(un + τk1) + F̃ (·, tn+1)

− 2Mk1 − τγ∂tF (tn, un),

un+1 = un +
3

2
τk1 +

1

2
τk2,

where the jacobian of F (t, u) is

JF = −S − JH(u), (3.20)

and JH(u) is the jacobian of non-linear part in H(u).
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Table 3.1: Coefficients for the 3-stage ROS3P method.

a21 = 1.267949192431123e+ 00 c21 = -1.607695154586736e+00
a31 = 1.267949192431123e+00 c31 = -3.464101615137755e+00
a32 = 0.000000000000000e+00 c32= -1.732050807568877e+00
α1 = 0.000000000000000e+00 γ1= 7.886751345948129e-01
α2 = 1.000000000000000e+00 γ2 = -2.113248654051871e-01
α3 = 1.000000000000000e+00 γ3= -1.077350269189626e+00
m1 = 2.000000000000000e+00 γ = 7.886751345948129e-01
m2 = 5.773502691896258e-01
m3= 4.226497308103742e-01

The ROS2 method have proven to be very effective in many applications, e.g. at-
mospheric dispersion problems [38], chemical systems [39], atmospheric multiphase
chemical kinetics [12], geothermal processes [35].

We consider the third order 3-stage ROS3P [24] method. For avoiding matrix-vector
multiplication we will use following notation. For initial value problem

∂tu = F (u, t), u(0) = u0, 0 < t ≤ T, (3.21)

3-stage ROS3P method with the step size τ > 0 has the form [24]

(
I

τγ
− ∂uF (tn, un)

)
Uni = F (tn + αiτ, un +

i−1∑
j=1

aijUnj) (3.22)

+
i−1∑
j=1

cij
τ
Unj + τγi∂tF (tn, un),

un+1 = un +
3∑
i=1

miUni , (3.23)

for i = 1, 2, 3 .

The coefficients of ROS3P method are presented in Table 3.1.

After substituting Equation (3.22) in Equation (2.17) fully discrete formulation of 2.1
with 3-stage ROS3P method in time SIPG in space takes the form
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(
M

τγ
+ S + JH(un)

)
Uni =− S(un +

i−1∑
j=1

aijUnj)−H(un +
i−1∑
j=1

aijUnj) + F̃ (·, tn + αiτ)

+
i−1∑
j=1

cij
τ
MUnj + τγi∂tF (·, tn),

un+1 = un +
3∑
i=1

miUni ,

where i = 1, 2, 3, the jacobian of F (t, u) is

JF = −S − JH(u), (3.24)

and JH(u) is the jacobian of non-linear part in H(u).

The 4-stage third order L-stable ROS3PL-method for non-autonomous systems with
the recursive form [23] can be written as(

M

τγ
− ∂uF (tn, un)

)
Uni = F (tn + αiτ, un +

i−1∑
j=1

aijUnj) (3.25)

−
i−1∑
j=1

cij
τ
MUnj + τγi∂tF (tn, un),

un+1 = un +
3∑
i=1

miUni,

where i = 1, . . . , 4 and coefficients are presented in Table 3.2. After substituting
Equation (3.25), in Equation (2.17) fully discrete formulation of Equation 2.1 with
4-stage ROS3PL method in time SIPG in space takes the form(
M

τγ
+ S + JH(un)

)
Uni = −S(un +

i−1∑
j=1

aijUnj)−H(un +
i−1∑
j=1

aijUnj) + F̃ (·, tn + αiτ)

−
i−1∑
j=1

cij
τ
MUnj + τγi∂tF (·, tn),

un+1 = un +
3∑
i=1

miUni,

where i = 1, . . . , 4 , the jacobian of F (t, u) is

JF = −S − JH(u), (3.26)

and JH(u) is the jacobian of non-linear part in H(u).
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Table 3.2: Coefficients for the 4-stage ROS3PL method.

γ = 0.4358665215084590
a11 = 0.000000000000000 c11 = 2.294280360279042
a21 = 1.147140180139521 c21 = 2.631861185781065
a22 = 0.000000000000000 c22 = 2.294280360279042
a31 = 2.463070773030053 c31 = 1.302364158113095
a32 = 1.147140180139521 c32 = -2.769432022251304
a33 = 0.000000000000000 c33= 2.294280360279042
a41 = 2.463070773030053 c41= 1.552568958732400
a42 = 1.147140180139521 c42 = -2.587743501215153
a43 = 0.000000000000000 c43= 1.416993298352020
a44 = 0.000000000000000 c44= 2.294280360279042
γ1 = 0.435866521508459 α1 = 0.000000000000000
γ2 = -0.064133478491541 α2 = 0.500000000000000
γ3 = 0.111028172512505 α3 = 1.000000000000000
γ4 = 0.000000000000000 α4 = 1.000000000000000
m1 = 2.463070773030053
m2 = 1.147140180139521
m3= 0.000000000000000
m4 = 1.000000000000000

17



3.2 Operator Splitting Methods

Operator splitting methods are well studied field in the numerical solution of ordi-
nary differential equations. Generally the main idea is to split the differential operator
into several parts, where each part represents a particular physical phenomenon, such
as convection, diffusion. Operator splitting is an attractive technique, since complex
equation system maybe split into simpler parts that are easier to solve. Operating split-
ting methods not only used for simplifying the complexity. Different constructions of
splitting methods give arise to the higher order methods. After splitting one can treat
each part of the original operator independently and can lead to very efficient methods.

Different versions of operator splitting as with various time integrators are applied for
solving semi-linear parabolic ADR equations, see for example [7, 22, 25, 38].

For the illustration of the operator splitting methods, we consider the form of

∂u(t)

∂t
= Au(t) +Bu(t), t ∈ [0, T ], u(0) = u0, (3.27)

where u0 is given andA andB linear bounded operators in the Banach-space. Solution
of Equation (3.27) at the time t is u(t) = e(A+B)tu0. An alternative solution can be
done by replacing the Equation (3.27) with the subproblems on the subintervals:

∂u∗(t)

∂t
= Au∗(t), t ∈

(
tn, tn+1

)
, u∗(tn) = unsp, (3.28)

∂u∗∗(t)

∂t
= Bu∗∗(t), t ∈

(
tn, tn+1

)
, u∗∗(tn) = u∗(tn+1), (3.29)

whereby u0
sp = u0 is initial condition. This operator splitting technique is called se-

quential operator-splitting. It is the simplest operator-splitting method. Clearly, split-
ting the original Equation (3.27) in the form of the subproblems in Equations (3.28)-
(3.29) causes error, called local splitting error. For sequential operator-splitting method
local splitting error can be derived as follows [14]:

ρn =
1

τn
(exp(τn(A+B))− exp(τnB) exp(τnA))unsp (3.30)

=
1

2
τn[A,B]u(tn) +O(τ 2

n), (3.31)

where τn = tn+1 − tn. We define [A,B] := AB −BA as the commutator of A and B.
Thus, when the operators commute, then the method is exact.

An idea for constructing accurate schemes which may be used with large step size can
be construction of higher order methods from its numerical map Φt. So Φt of Equation
(3.27) satisfies

Φt = e(A+B)t +O(tp+1) (3.32)

with the order p. For higher order operator splitting methods a standard technique is
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composing Φt from more than two exponentials. Such as

e(A+B)t =
m∏
i=1

eaitAebitB +O(tm+1), (3.33)

where A,B are noncommutative operators, ai, bi are real numbers and t is time step.

Several compositions can be cast on the free parameters a1, . . . , am, and b1, . . . , bm,
for determining conditions.

For example Strang splitting method for Equation (3.27) can be cast into the general
form Equation (3.33) with

m = 2, a1 = a2 =
1

2
, b1 = 1, b2 = 0. (3.34)

So numerical solution take the form

u(t) = eA
t
2 eBteA

t
2 . (3.35)

In this study, we consider a very famous operator splitting method called Strang-
Marchuk splitting. This idea of splitting was proposed by Strang [34] and Marchuk
(1971). It is generally called as Strang splitting. Strang splitting is generally used
to accelerate computations for problems containing operators on very different time
scales, for instance, chemical reactions in fluid dynamics, and to solve multidimen-
sional partial differential equations. Strang splitting is second order method so that the
method is both provide accuracy and efficiency.

3.2.1 Strang Splitting

Strang splitting method is pointed it out as a popular and commonly used operator
splitting method. Strang splitting algorithm is as follows :

∂u∗(t)

∂t
= Au∗(t), tn ≤ t ≤ tn+1/2, u∗(tn) = unsp, (3.36)

∂u∗∗(t)

∂t
= Bu∗∗(t), tn ≤ t ≤ tn+1, u∗∗(tn) = u∗(tn+1/2), (3.37)

∂u∗∗∗(t)

∂t
= Au∗∗∗(t), tn+1/2 ≤ t ≤ tn+1, u∗∗∗(tn+1/2) = u∗∗(tn), (3.38)

where tn+1/2 = tn +
τ

2
and unsp = u0, and the approximation for the next time step

tn+1 is defined as unsp = u∗∗∗(tn+1). Moreover, the idea behind Strang splitting can be
summarized in Figure 3.1.
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Figure 3.1: Systematic schema of Strang splitting method.

3.2.2 ROS2 within Strang-type operator splitting

In this part of our study we will illustrate Strang-type operator splitting method with
ROS2 and explicit trapezoid rule.

Assume that the following equation denotes the ODE system obtained from spatial
discretization

ut = F (u, t) ≡ FT (u, t) + FR(u, t), FT (u, t) ≡ FA(u, t) + FD(u, t), (3.39)

where the vector function FT is supposed to contain the semidiscrete transport con-
tributions from advection and diffusion, represented here by FA and FD, respectively.
Likewise, FR is supposed to contain the reaction and source part.

Application of Strang splitting to Equation (3.39) takes the form

ut = FT (u, t), tn ≤ t ≤ tn+1/2, (3.40)

vt = FR(v, t), tn ≤ t ≤ tn+1, (3.41)

wt = FT (w, t), tn+1/2 ≤ t ≤ tn+1. (3.42)

We will apply explicit trapezoid rule to Equations (3.40), (3.42) and ROS2 to Equation
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(3.41). Thus we will consider the combination [38]

U0 = un, (3.43)

U1 = U0 +
1

4
τFT (U0, tn) +

1

4
τFT

(
U0 +

1

2
τFT (U0, tn), tn+1/2

)
,

U2 = U1 +
3

2
τk1 +

1

2
τk2,

U3 = U2 +
1

4
τFT (U2, tn) +

1

4
τFT

(
U2 +

1

2
τFT (U2, tn), tn+1/2

)
,

un+1 = U3,

where k1 and k2 for non autonomous are given by [6](
I − γτ ∂FR

∂u
(un, tn)

)
k1 = FR(un, tn) + γτ

∂FR
∂t

(un, tn), (3.44)(
I − γτ ∂FR

∂u
(un, tn)

)
k2 = FR(un + τk1, t

n+1)

− 2k1 − γτ
∂FR
∂t

(un, tn). (3.45)

Substituting Equation (2.16) in Equation (3.43) with FR(u, t) = −Ru−H(u) + F̃ (t)
and FT (u, t) = Du− Cu we have

Mun+1/2 = Mun +
1

4
τFT (un, tn)

+
1

4
τFT

(
un +

1

2
τFT (un, tn), tn+1/2

)
, (3.46)

vn+1 = vn +
3

2
τk1 +

1

2
τk2, (3.47)

Mwn+1 = Mwn+1/2 +
1

4
τFT (wn+1/2, tn+1/2)

+
1

4
τFT

(
wn+1/2 +

1

2
τFT (wn+1/2, tn+1/2), tn+1

)
, (3.48)

where u0 is initial condition, un+1/2 = vn ,vn+1 = wn+1/2 and k1, k2 are given by(
M − γτ ∂FR

∂u
(un, tn)

)
k1 = FR(un, tn) + γτ

∂FR
∂t

(un, tn), (3.49)(
M − γτ ∂FR

∂u
(un, tn)

)
k2 = FR(un + τk1, t

n+1)

− 2Mk1 − γτ
∂FR
∂t

(un, tn). (3.50)
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, we have shown the performance of the Rosenbrock time integrators
with different time splitting under dG spatial discretization for some semi-linear ADR
equations. We have shown the theoretically predicted order of convergence in space
for SIPG discretization of ROS2, ROS3P and ROS3PL time integrators. For spatial
discretization we used DGFEM package proposed in [37]. All numerical examples
are taken from [9]. In order to find more efficent solution of the semi-linear ADR
equations we applied Strang splitting to the problems with second order Rosenbrock
method ROS2 time integrator to the stiff parts of the equations. We have shown that
this combination is more efficent then backward Euler within Strang splitting as men-
tioned in [38]. In the last problem of this chapter, we compared ROS2 within Strang
splitting with ROS3P and we have shown that the latter is less efficent then the first one.
We have compared the norm preconditioner with ILU preconditioner for the iterative
solution of linear systems arising from SIPG discretization with GMRES method.

4.1 Numerical Results

4.1.1 Test Example-1

Our first problem is a nonlinear convection–diffusion-reaction problem with exact so-
lution

∂u

∂t
−∆u+ v1

∂u

∂x
+ v2

∂u

∂y
+ ku+

u3

1 + u2
= f(x, y, t) ∀(x, y, t) ∈ Ω× [0, 5],

u(x, 0, t) = u(x, 1, t) = 0 ∀x ∈ [0, 1] and ∀t ∈ [0, 5],

u(0, y, t) = u(1, y, t) = 0 ∀y ∈ [0, 1] and ∀t ∈ [0, 5],

u(x, y, 0) = x(1− x)y(1− y) ∀(x, y) ∈ Ω,

with Ω = [0, 1]× [0, 1], v1 = 2− x, v2 = (1 + y)(1 + e−t), k(x, y, t) = 1 + xye−t and
the source term f(x, y, t) is chosen adequately to obtain as exact solution u(x, y, t) =
e−tx(1− x)y(1− y).

In Table 4.3 , 4.4 and Table 4.1 we show the spatial errors of SIPG discretization for
ROS3P and ROS3PL with ∆t = 0.001. The errors and observed order of convergence
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Table 4.1: Spatial errors and corresponding order of convergence of ROS3P method
for ∆t = 0.001 and linearly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates L2(H1) Error L2(H1) Rates
96 1/4 2.0337e-03 - 3.4001e-02 -

384 1/8 5.7143e-04 1.832 1.7098e-02 0.992
1536 1/16 1.4837e-04 1.945 8.5153e-03 1.006
6144 1/32 3.6243e-05 2.033 4.2428e-03 1.005

of Example-1 using SIPG for spatial discretization and ROS3P for time discretization
are displayed in Table 4.1. The observed spatial orders of convergence measured in
H1 -norm reveal is 1 and in L2-norm it is 2. ROS3P is third order and A-stable method
and for quadratic elements as in Table 4.2 one can observe that orders of convergence
measured in L2 -norm reveal is 3 and in the global H1 -norm it is 2. The numerical
order of convergence for SIPG with quadratic elements confirm the theoretical orders
of convergence.

Table 4.2: Spatial errors and corresponding order of convergence of ROS3P method
for ∆t = 0.0001 and quadraticly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates L2(H1) Error L2(H1) Rates
192 1/4 1.257e-04 - 5.070e-03 -
768 1/8 1.526e-05 3.0415 1.288e-03 1.9768

3072 1/16 1.893e-06 3.0114 3.229e-04 1.9960
12288 1/32 4.008e-07 2.2399 8.081e-05 1.9986

In Table 4.3 we displayed the spatial errors and order of convergence for Example-1
with SIPG and ROS3PL using linear elements. The observed spatial order of con-
vergence for the global L2-norm is 2 and for the global H1-norm is 1. ROS3PL is a
L-stable method so one can see that using large time steps does not reduce the order of
convergence as in Table 4.4. For quadratic elements with time step ∆t = 0.0001 and
∆x = 1/32 we observed order reduction in ROS3P while with time step ∆t = 0.001
ROS3PL is not affected from order reduction as it can be seen in Table 4.4.

Table 4.3: Spatial errors and corresponding order of convergence of ROS3PL method
for ∆t = 0.001 and linearly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates L2(H1) Error L2(H1) Rates
96 1/4 2.036e-03 - 3.400e-02 -

384 1/8 5.737e-04 1.827 1.710e-02 0.992
1536 1/16 1.507e-04 1.929 8.515e-03 1.006
6144 1/32 3.851e-05 1.968 4.243e-03 1.005

Temporal errors of ROS3P and ROS3PL for ∆x = 1/256 are displayed in Table 4.5.
Observed order of convergence for ROS3P is to 0.4 and for ROS3PL it is 1.

In Table 4.6 we observed that order of convergence of ROS2 method with ∆t = 0.01
for the global L2-norm is 2 and for the globalH1-norm is 1. ROS2 method is a L-stable
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Table 4.4: Spatial errors and corresponding order of convergence of ROS3PL method
for ∆t = 0.001 and quadraticly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates L2(H1) Error L2(H1) Rates
96 1/4 1.25778e-04 - 5.07025e-03 -
384 1/8 1.53162e-05 3.0377 1.28801e-03 1.977

1536 1/16 1.89193e-06 3.0171 3.22788e-04 1.996
6144 1/32 2.37555e-07 2.9935 8.06698e-05 2.000

Table 4.5: Temporal errors and corresponding order of convergence of ROS3P and
ROS3PL for ∆x = 1/64 and linearly discretized SIPG method.

ROS3P ROS3PL
DoFs ∆t L2(L2) Error Rate L2(L2) Error Rate
24576 1.000 8.861e-04 - 8.610e-04 -
24576 0.500 2.216e-04 2.000 4.393e-04 0.971
24576 0.250 1.164e-04 0.928 2.285e-04 0.943
24576 0.125 9.148e-05 0.348 1.096e-04 1.060

2-step model which is fast and allows us for using large time step ∆t. ROS3PL and
ROS2 are L-stable methods but we note that ROS2 which is second order method con-
verge to its classical order with linearly discretized SIPG by the global L2-norm while
ROS3PL which is third order method converge to its classical order with quadraticly
discretized SIPG by the global L2-norm.

Table 4.6: Spatial errors and corresponding order of convergence of ROS2 for ∆t =
0.01 and linearly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates L2(H1) Error L2(H1) Rates
96 1/4 2.038e-03 - 3.39906e-02 -
384 1/8 5.754e-04 1.824 1.70880e-02 0.992

1536 1/16 1.523e-04 1.918 8.50944e-03 1.006
6144 1/32 4.010e-05 1.925 4.23991e-03 1.005

In Table 4.7 we displayed the temporal errors of ROS2 and ROS2 within Strang split-
ting for linearly disceretized SIPG method. The observed values for ROS2 is 1.6 while
for ROS2 within Strang it is 1.

Table 4.7: Strang splitting and ROS2 temporal errors for ∆x = 1/32 and linearly
disceretized SIPG method. For ROS2 within Strang splitting advection and diffusion
part solved with ROS2 rest of the equation solved with explicit trapezoid rule.

ROS2 ROS2 within Strang
DoFs ∆t L2(L2) Error Rate L2(L2) Error Rate
6144 1.000 7.793e-03 - 1.855e-01 -
6144 0.500 3.121e-03 1.320 1.083e-01 0.776
6144 0.250 1.056e-03 1.564 5.698e-02 0.927
6144 0.125 3.329e-04 1.665 2.824e-02 1.013
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In Table 4.8 we have presented spatial error and convergence order of Example-1 where
the advection and diffusion part solved by ROS2 and rest of the equation solved by
explicit trapezoid rule. In Table 4.9 we presented spatial error and convergence order
of Example-1 by backward Euler within Strang splitting.

An application to atmospheric dispersion problems has been done in [38], the authors
pointed out that stability of Strang splitting depends on very small time steps. The
authors found out that if solution of the stiff part is solved by ROS2 and rest of the
equation solved by explicit trapezoid rule, the splitting allows to use larger time steps.
They applied ROS2 within Strang splitting to a advection-diffusion reaction equation.
Similarly we observed that for ∆t = 0.001 and ∆x = 1/32 order of convergence of
ROS2 within Strang splitting is 1.157 while the observed order of convergence of back-
ward Euler is -0.402. This shows that backward Euler within Strang splitting starts to
diverge at ∆x = 1/32 while ROS2 within Strang splitting still converging. Moreover,
we presented time splitting errors for different time steps of backward Euler within
Strang splitting and ROS2 within Strang splitting in the global L2-norm in Figure 4.1 ,
Figure 4.2 and Figure 4.3 . We observed that as the time step decrease splitting errors
of ROS2 within Strang is decreasing while backward Euler is increasing. For instance
the global L2 error of backward Euler within Strang in Figure 4.3 for ∆x = 1/16 and
∆x = 1/32 is respectively 2.986e-03 and 3.083e-03 while for ROS2 case it is 1.505e-
03 and 1.498e-03. This shows that for small time steps backward Euler is not stable
while ROS2 is still stable. Thus we found out that this time splitting strategy is efficent
for Strang splitting.

Table 4.8: Strang splitting spatial errors and corresponding order of convergence for
linearly discretized SIPG method with ∆t = 0.001. Advection and diffusion solved
with ROS2 rest of the equation solved with explicit trapezoid rule.

DoFs ∆x L2(L2) Error L2(L2) Rate
96 1/4 2.021e-03 -
384 1/8 5.612e-04 1.849

1536 1/16 1.481e-04 1.922
6144 1/32 6.639e-05 1.157

Table 4.9: Strang splitting spatial errors and corresponding order of convergence for
linearly discretized SIPG method with ∆t = 0.001. All parts of the splitting schemes
solved by Backward Euler.

DoFs ∆x L2(L2) Error L2(L2) Rate
96 1/4 1.927e-03 -
384 1/8 4.647e-04 2.052

1536 1/16 8.070e-05 2.526
6144 1/32 1.067e-04 -0.402

26



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

t

L 2 E
rr

or

 

 

ROS2 within Strang

Strang

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

t

L 2 E
rr

or

 

 
ROS2 within Strang

Strang

Figure 4.1: Global L2 error of backward Euler and ROS2 within Strang splitting at
time t for ∆t = 0.1. ∆x = 1/16 (left) , ∆x = 1/32 (right).
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Figure 4.2: Global L2 error of backward Euler and ROS2 within Strang splitting at
time t for ∆t = 0.05. ∆x = 1/16 (left) , ∆x = 1/32 (right).
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Figure 4.3: Global L2 error of backward Euler and ROS2 within Strang splitting at
time t for ∆t = 0.025. ∆x = 1/16 (left) , ∆x = 1/32 (right).

Figure 4.4: Solution of the Example-1 using ROS2 within Strang splitting scheme for
time integration and (SIPG) for spatial discretization.
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In Figure 4.4 we displayed the exact solution and numerical solution of Example-
1 using (SIPG) for spatial discretization and ROS2 within Strang splitting as a time
integration. In the Figure ∆x = 1/16 , ∆t = 0.01 and 1536 degree of freedoms used.
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4.1.2 Test Example-2

Our second problem is a nonlinear ADR problem without exact solution.It has the form
of

∂u

∂t
−∆u+ v1

∂u

∂x
+ v2

∂u

∂y
+ ku+ ue−u

2

= f(x, y, t) ∀(x, y, t) ∈ Ω× [0, 5],

u(x, 0, t) = u(x, 1, t) = 0 ∀x ∈ [0, 1] and ∀t ∈ [0, 5],

u(0, y, t) = u(1, y, t) = 0 ∀y ∈ [0, 1] and ∀t ∈ [0, 5],

u(x, y, 0) = x2(1− x)2y2(1− y)2 ∀(x, y) ∈ Ω,

where Ω = [0, 1]× [0, 1], v1 = 1 + xy, v2 = 1 + x, k(x, y, t) = 1 + (x+ y)2e−tand the
source term f(x, y, t) = 104t2e−th(x)h(y) with h(ξ) = e−ξ + eξ−1 − (1 + e−1).

We have estimated the numerical errors by using the double mesh principle by

EN,τ = max
(xi,yj)∈Ω1/N

tm=mτ,m=1,2,3,..., 5τ

|UN,τ (xi, yj, tm)− U2N,τ (xi, yj, tm)|,

where U2N,τ (xi, yj, tm) is the numerical solution obtained by 2N × 2N .

Table 4.10: ROS3P spatial errors and corresponding order of convergence for ∆t =
0.01 and linearly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates
96 1/4 - -

384 1/8 8.034e+00 -
1536 1/16 2.091e+00 1.942
6144 1/32 5.283e-01 1.985

24576 1/64 1.324e-01 1.996

In Table 4.10 we displayed order of convergence and spatial errors of ROS3P method
with ∆t = 0.01 measured in the global L2-norm. We observed that comparing with
previous problem larger time steps not changed the stability.

Table 4.11: ROS2 within Strang splitting spatial errors and corresponding order of
convergence for ∆t = 0.01 and linearly discretized SIPG method.

DoFs ∆x L2(L2) Error L2(L2) Rates
96 1/4 - -

384 1/8 9.510e+00 -
1536 1/16 2.484e+00 1.937
6144 1/32 6.282e-01 1.983

24576 1/64 1.575e-01 1.996

In Table 4.10 and Table 4.11 we observed that even though ROS2 is second order and
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ROS3P is third order method for linearly discretized SIPG method ROS2 converge to
its classical order while ROS3P has order reduction for Example-2.

4.1.3 Test Example-3

In this case we have considered an initial boundary value problem of the form:

∂u

∂t
− ε∆u+ ku+ u3 = f(x, y, t) ∀(x, y, t) ∈ Ω× [0, 5],

u(x, 0, t) = u(x, 1, t) = 0 ∀x ∈ [0, 1] and ∀t ∈ [0, 5],

u(0, y, t) = u(1, y, t) = 0 ∀y ∈ [0, 1] and ∀t ∈ [0, 5],

u(x, y, 0) = x2(1− x)2y2(1− y)2 ∀(x, y) ∈ Ω,

where Ω = [0, 1] × [0, 1],ε > 0 ,k(x, y, t) = 1 + (x + y)2 + e−tand the source term
f(x, y, t) = e−tx(1− x)y(1− y).Also this problem has no exact solution.

Table 4.12: Spatial errors and order of convergence of ROS3P for ∆t = 0.01 and
ε = 1.

DoFs ∆x L2(L2) Error Rates
96 1/4 - -

384 1/8 4.396e-03 -
1536 1/16 1.112e-03 1.983
6144 1/32 2.799e-04 1.990
24576 1/64 7.010e-05 1.997

Spatial errors and order of convergence of Example-3 are presented in Table 4.12.
Observed order of convergence measured in the global L2-norm is 2. Different from
previous 2 example this example has no convection term. Numerical errors measured
same as in Example-2.

Table 4.13: Spatial errors and order of convergence of ROS2 within Strang splitting
for ∆t = 0.01 and ε = 1.

DoFs ∆x L2(L2) Error Rates
96 1/4 - -

384 1/8 5.684e-03 -
1536 1/16 1.464e-03 1.957
6144 1/32 3.688e-04 1.989
24576 1/64 9.239e-05 1.997

As in previous example, In Table 4.12 and Table 4.13 we observed that even though
ROS2 is second order and ROS3P is third order method for linearly discretized SIPG
method ROS2 converge to its classical order while ROS3P has order reduction for
Example-3.
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Table 4.14: Spatial errors and order of convergence of ROS2 within Strang splitting
and ROS3P for ∆t = 0.1 and ε = 1e− 9.

ROS3P ROS2 within Strang
DoFs ∆x L2(L2) Error Rates L2(L2) Error Rates

96 1/4 - - - -
384 1/8 1.867e-02 - 1.880e-02 -

1536 1/16 4.791e-03 1.962 4.816e-03 1.965
6144 1/32 1.220e-03 1.973 1.211e-03 1.991

24576 1/64 3.222e-04 1.921 3.033e-04 1.998

Figure 4.5: Solution of the Example-3 using ROS2 within Strang splitting and ROS3P
for time integration and (SIPG) for spatial discretization with ∆t = 0.1 ∆x = 1/64
and ε = 1e− 9. ROS2 within Strang splitting (left), ROS3P (right).

In Table 4.14, we observed that for ε = 1e− 9 and ∆x = 1/64 for the case of ROS3P
order reduction has appeared while for the case of ROS2 within Strang splitting still
it is converging to its classical order. Moreover, order reduction also can be observed
from Figure 4.5.
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4.2 Preconditioning

Numerical solution of the large linear systems of the form Ax = b with large condi-
tion number κ(A) is an issue since it takes too much time or it has lack of accuracy.
There are two numerical solvers for such system: direct and iterative. Direct solvers
usually faster then iterative solvers for small linear systems. Also there is no need
to think about the preconditioners. However, these solvers needs too much memory
and CPU time for larger systems. On the other hand, iterative solvers do not need
too much memory and they are able to solve very large linear systems. Also their
other advantage is that they often parallize well. Only disvantage of iterative solvers
is choice of the solver and preconditioner. Because efficiency of iterative solver de-
pends on good preconditioner. In this thesis we are dealing with linear systems arising
from spatial discretization of dG methods which leads to large and dense linear sys-
tems where the condition number κ(A) of the matrix A increases as h→ 0. Hence, to
obtain an efficient solution of the linear systems one must use efficient methods such
as the generalized minimum residual method (GMRES). An alternative to GMRES for
solving the linear system Ax = b is the conjugate gradient method however if A is not
symmetric-positive-definite (SPD), it cannot be directly applied. On the other hand,
for such linear systems using only GMRES does not guarantee an efficent solution so
that we used a preconditioner which have been found efficent for linear systems aris-
ing from dG spatial discretization [16]. We have compared the norm preconditoner
with incomplete LU factorization (ILU) preconditioner and we have shown that rel-
ative residual of the norm preconditioner decreases in remarkably less iteration then
ILU preconditioner.

The generalized minimum residual method (GMRES) is

xn+1 = x0 +
n∑
i=0

αiA
ir0,

where r0 = b− Ax0 and αi ∈ R are chosen so that

R(xn+1) = min
y
R(y),

y ∈ x0 +Kn+1,

Kn+1 = {z|z =
n∑
i=0

ciA
ir0, ci ∈ R}.

The idea behind the GMRES method is based on solving a least squares problem at
each step of the iteration. The approximate solution is given by a vector xn ∈ Kn (the
n-th order Krylov subspace) such that the residual

||rn||2 = ||Axn − b||2 (4.1)

is minimized. In order to solve this least squares problem, one can use the Arnoldi
iteration to construct a sequence of Krylov matrices then solve it iteratively.
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4.2.1 Preconditioners

Spectral properties of the coefficient matrix determines the convergence rate of itera-
tive methods. Hence one attempt to get same solution with better spectral properties
may be transforming the linear system into one that is equivalent. From this point of
view, a preconditioner is a matrix that performs such a transformation.

Suppose we wish to solve a m×m linear system

Ax = b. (4.2)

By multiplying both side of equation with inverse of any nonsingular m × m matrix
M , the system

M−1Ax = M−1b (4.3)

has the same solution. Suppose we want to solve 4.3 iteratively then the convergence
rate will depend on the matrix M−1A instead of matrix A. In order to solve 4.2 more
rapidly the matrix M must be well chosen.

There is no general theory on efficient selection of preconditioners. A good precondi-
tioner M expected to be close enough to matrix A. By close enough to matrix A we
mean the eigenvalues of M−1A are close to 1 and ||M−1A − I||2 is small. Another
property of a good preconditioner is easiness of solution. Preconditioned system in
Equation 4.3 must be easier to solve than in Equation 4.2.

There are several ideas on preconditioning, one of them is diagonal scaling or Jacobi.
The idea behind diagonal scaling is to find a diagonal matrix M that minimizing the
condition number of the matrix M−1A. One example to this kind of preconditioning
is M = diag(A). For some problems, this transformation is satisfactory for rapidness
of the convergence.

Another popular idea called as Incomplete Cholesky or LU factorization. This precon-
ditioning idea was famous in the 1970s. Let us consider a sparse A matrix with just a
few nonzeros per row. The disadvantage of the methods such as Gaussian elimination
or Cholesky factorization is that these processes decrease the number of zeros,so that
if A = RRT , then the matrix R will not be very sparse. Instead, we seek to find de-
composition as A ≈ R̃R̃T where R̃ allowed to have nonzeros only in positions where
A has nonzeros so that we can conserve the sparsity.

The last idea that we mention is called Norm-Preconditioning. This idea is based on
norm-equivalence. Moreover, the idea behind the method is to find a precondtioner
which is norm-equivalent to symmetric positive definite matrix. An application of
norm-preconditioning for linear systems arising from dG has been done in [16]. The
author claimed that As = (A + AT )/2 is a good preconditioner for the linear systems
of dG.

We have given the idea of preconditioning with left preconditioners in previous section.
Another idea for preconditioning of the linear system of Equation 4.2 is to transforming
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Figure 4.6: Semilogarithmic plot of relative residual of GMRES method on linearly
and quadraticly discretized SIPG Method without preconditioner

the system to

AM−1u = b, (4.4)

where u = Mx.The initial residual is r0 = b− Ax0 = b− AM−1u0 so note that u0 is
not necessary to start the algorithm.

We have combined Strang splitting with Rosenbrock methods in previous chapter. Rel-
ative residual of linearly and quadraticly discretized SIPG method of the first linear sys-
tem arising from ROS2 within Strang splitting without preconditioner is demonstrated
in Figure 4.6. Computation time of the linearly discretized system took 0.844216 sec-
onds with Intel-Core i3 processor and 4GB RAM. At 60th iteration relative residual
have become 8.8648e-04. For quadraticly discretized system observed elapsed time
for the solution of the unpreconditioned GMRES is 0.682956 seconds and at final it-
eration observed relative residual is 6.46559e-03. We note that linearly discretized
system has 24576 degree of freedoms while quadraticly discretized system has 12288
degree of freedoms, altough, solution of linearly discretized system is less expensive
then quadraticly discretized system.

In Figure 4.7 we have demonstrated relative residual of ILU and norm preconditioned
linear system both for linearly and quadraticly discretized case. The linear system
here is same with the system of Figure 4.6. We have used As = (A + AT )/2 which
suggested in [16] as a norm preconditioner. ILU and norm preconditioned system are
remarkably faster converged to the tolerance then the unprecontioned system. In 60
iteration ILU have not reached the desired solution while norm preconditioned system
got only 6 iteration for linear and quadratic case. We note that tolerance of ILU in
Figure 4.7 is 1e-8.
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Figure 4.7: Semilogarithmic plot of relative residual of GMRES method on SIPG
Method with ILU and Norm preconditioner. Linearly discretized (left), Quadraticly
discretized (right).

Computation time of the linearly discretized system with ILU and Norm precondi-
tioner is respectively 0.991449 and 0.739987 seconds. Observed relative errors for
ILU and Norm preconditioner is respectively 9.1606e-06 and 2.6560e-09. For linearly
and quadraticly discretized SIPG case, norm preconditioners have been found signifi-
cantly efficient.

Table 4.15: Condition numbers of stiffness matrix for linearly and quadraticly dis-
cretized SIPG with different penalty terms σ and ∆x = 1/16.

σ 10 20 30 40

Linear Elements
Unpreconditioned 3.8146e+03 7.9976e+03 1.2314e+04 1.6630e+04
ILU preconditioner 1.2655e+03 2.5243e+03 3.8807e+03 5.0948e+03
Norm preconditioner 4.8117 4.7848 4.7851 4.7852

Quadratic Elements
Unpreconditioned 9.3235e+03 2.0087e+04 3.2201e+04 4.4534e+04
ILU preconditioner 1.6686e+03 4.5976e+03 7.1879e+03 9.6445e+03
Norm preconditioner 5.2023 5.1860 5.1828 5.1815

In order to obtain a coercive bilinear form of SIPG the penalty parameter σ must be
chosen large enough [30]. In Table 4.15, we have displayed condition numbers of
stiffness matrix obtained from SIPG method for different choice of the penalty param-
eters. The condition number increase for unpreconditioned linear systems and remain
constant for the ILU and norm preconditioners. Norm preconditioner reduces the con-
dition number dramatically.
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CHAPTER 5

CONCLUSIONS

In this thesis, we have studied semi-linear advection-diffusion-reaction equations. We
have discretized the space with symmetric interior penalty Galerkin (SIPG) method to
deal with the unphysical oscillations due to the advection term. We have demonstrated
spatial and temporal errors and corresponding order of convergence for Rosenbrock
methods and ROS2 within Strang splitting for three different problems. Computa-
tional results obtained by SIPG discretization in space confirms the theoretical orders
of Rosenbrock methods.

In conclusion, we have obtained theoretically experimental convergence rates of Rosen-
brock methods for ADR equations numerically. We conclude that ROS2 within Strang
splitting more efficent candidate then ROS3P for stiff problems. Moreover, we con-
cluded that ROS2 is good candidate for dealing with the stiff equations. Also we
conclude that the norm preconditioner for linear systems arising from SIPG method is
more efficent then ILU preconditioner.
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