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ABSTRACT

FINANCIAL MODELLING WITH RANDOM BRIDGE SIGNALS AND
FORWARD INFORMATION

Aydın, Nadi Serhan

Ph. D., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

Co-Supervisor : Prof. Dr. Anthony G. Constantinides

June 2016, 100 pages

In this thesis, we focus on modelling financial information flow, and information-based
asset pricing. The fundamental properties of the framework under study are recovered
in detail, after which a brief information-theoretic perspective is offered to quantify the
information content of signals. A link to the existing literature on asymmetric infor-
mation/belief equilibrium is established through a sequential auction model with het-
erogeneous signals. The effects of differential information on the allocation of overall
profit & loss (P&L) and the pace of price discovery are analysed − including the case
where agents work out an effective filtration by mutually learning from trade. We char-
acterise the signal-based expected P&L of agents based on explicit formulae for signal
quality in terms of the correctness of trade direction, and explore for the existence of
an optimal strategy by introducing a dynamic-programming-based decision rule, when
there is a common anticipation of gains from trade. A short extension of the optimisa-
tion problem to the cases of ‘risk-adjusted gains’ and ‘risk-averse agents’ is provided.
Finally, we examine, through a particular choice of real-world signal and by introduc-
ing a slightly modified version of the information process, the practical viability of
the signal-based framework on a selected stock ticker. An analytical approximation to
information-based price is derived through the Kummer’s function.

Keywords : Financial information flow, signal-based pricing, random bridge processes,
optimal strategy
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ÖZ

RASSAL KÖPRÜ TİPİ SİNYALLER VE İLERİYE DÖNÜK BİLGİYE DAYALI
FİNANSAL MODELLEME

Aydın, Nadi Serhan

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Ortak Tez Yöneticisi : Prof. Dr. Anthony G. Constantinides

Haziran 2016, 100 sayfa

Bu tezde, finansal bilgi akışının modellenmesi ve bilgi-temelli varlık fiyatlama üzerinde
durmaktayız. Çalışmaya konu olan çerçevenin temel özellikleri detaylı bir şekilde
türetildikten sonra sinyallerin bilgi içeriğinin ölçülebilmesi için bilgi teorisine dayalı
kısa bir perspektif sunuluyor. Farklı yapıda sinyalleri içeren ardışık müzayede modeli
aracılığıyla mevcut asimetrik bilgi-/düşünce-temelli denge literatürüyle bağlantı ku-
ruluyor. Piyasa katılımcılarının alım-satım sırasında karşılıklı öğrenme yoluyla etkin
bir filtrasyon türetebildikleri durum da dahil olmak üzere, farksal bilginin toplam kar
ve zararın (K&Z) paylaşımı ve fiyat oluşum hızı üzerindeki etkileri analiz ediliyor.
Alım-satım yönünün doğruluğu açısından sinyal kalitesi için türetilen açık formüllerle
katılımcıların sinyal-bazlı beklenen K&Z’ları tanımlanıyor ve, alım-satımdan kazanç
ortak beklentisi olduğu durum için, dinamik programlama bazlı bir karar alma kuralı
tanıtılmak suretiyle optimal stratejinin varlığı araştırılıyor. Optimizasyon problem-
inin ‘risk-düzeltmeli kazançlar’ ve ‘risk-çekimser katılımcılar’ durumlarına kısa bir
uzantısı veriliyor. Son olarak, gerçek hayattaki sinyaller için yapılan hususi bir ter-
cih vasıtasıyla ve bilgi sürecinin hafifçe değiştirilmiş bir versiyonu sunularak, sinyal-
bazlı çerçevenin pratikteki uygunalabilirliği seçili bir hisse senedi üzerinde irdeleniyor.
Bilgi-bazlı fiyata Kummer fonksiyonu türünden analitik bir değer yaklaşımı türetiliyor.

Anahtar Kelimeler : Finansal bilgi akışı, sinyal-bazlı fiyatlama, rassal köprü süreçleri,
en uygun strateji
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CHAPTER 1

INTRODUCTION

The raison d’être of the markets we study is to support information-based trading. Yet,
there is a fundamental conflict between how efficiently markets spread information
and the incentives to acquire it. This is something conventional stochastic models and,
particularly, the way their information content is structured tend to oversimplify. As
such, the notion that “there is a universal market filtration” also seems to be unrealistic.
What counts, for market efficiency, is that, in practice, investors have access to different
levels of information and with varying ease. This calls for a broader view of market
efficiency which takes into account the amount and pace of such access. Nevertheless,
by exchanging information through highly frequent trades, market participants are able
to maintain a law of reasonable price range, if not a law of one price.

Complications related to construction of an information flow are generally bypassed
through the concept of “natural filtration” F , whereas the essential point is that all
relevant information is contained in, and therefore, can be extracted from, the past tra-
jectory. Yet, little is known about the structure of this filtration. It is not clear, for
example, why a stochastic driver should be regarded as to contain all relevant infor-
mation about the “fundamental” value rather than noise. The filtration generated by
this random process is also pre-imposed on the future evolution of the “fundamental”
value. We emphasise here the word “fundamental” to reflect the notion that an asset’s
future is not necessarily determined by its past, but also its future prospects.

In this thesis, we focus on a concept where some of the aforementioned problems are
sought to be addressed. Market participants get noisy signals ξ on the future con-
venience dividends of an asset directly, or market factors which affect them1. When
combined together, the signals ξ form the “all-wise” filtration. The informational di-
versity thus naturally stems from the fact that either ξs might differ in quality (i.e., in
their signal-to-noise) or agents might vary in their capacity to interpret the same signal
(cf. [1]). In this structure, a subset of all available signals could determine the filtration
of the agent rather more explicitly. As a result, the question of how real-time informa-
tion flow dynamics can be satisfactorily imitated, as well as its implications for asset
pricing and market microstructure, need to be brought more under spotlight.

Assume we know a priori that a business − with two possible outcomes − will default
at maturity. Had it not failed, the business would pay one unit to its investors. The

1 We refer as convenience dividends to any material benefit drawn from holding.
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Figure 1.1: Differences in value judgements based on individual information sources.
The real outcome is set to default with a priori probability of 0.5.

only thing the agents know when the business started is that the two outcomes would
have even chances. Therefore, it is natural for them all to value the business at an
initial price of 0.5. But, once they start to get rumours about the health of the business
through different sources, the situation will change. As some of these sources will
be more reliable than others, revealing the true status of the business at a faster pace,
investors will start to differ in their judgements about the real value of the latter and,
if allowed, try to exploit that information. One who has access to a fast-track signal
source will uncover quickly what the real outcome will be, constantly trimming the
value to the asset, whereas the ones with access to less superior information sources
will have to wait longer periods to see what is happening, putting any bet they make
during that time at the risk of being exploited by others (cf. Figure 1.1, left panel).
Although it does not mean that the faster signals will get the investor a more realistic
value judgement at all instances and throughout the horizon, on average, they will do
so (Figure 1.1, right panel).

One benefit, inter alia, of working with signals rather than their aggregate (e.g., price)
directly is that the signals on certain factors can be both more accessible and pre-
dictable. Consider the likelihood of a regular policy decision on interest rates, an
intervention on the value of a currency, positive earnings announcement, a merger or
acquisition, certain regulatory changes, the resigning of a company’s top management,
or a candidate winning the approaching national poll. It may be much easier to col-
lect signals on the outcome of ongoing discussions on a regulatory change that would
impact the way a company is running, judge the reliability of signal sources, and deter-
mine the relative importance of that policy change against other possible factors, than
to focus on that company’s equity performance.

Needless to say that the ideas presented above are not all new. Yet, the literature
on the dynamics of financial information flow is considerably scarce, as compared to
that on heterogeneous information (which is also empowered by the recent advances
in methods such as the Malliavin calculus (cf. [51])) and stochastic filtering (with
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ongoing emphasis on generalisations to nonlinear systems, and particle methods (cf.
[7, 49])), which can be seen natural extensions of the present framework. In this thesis,
we aim to introduce the framework which was originally developed in [20] and extend
it in different directions.

• Accordingly, the next chapter, i.e., Chapter 2, assembles some fundamental
properties of random bridge processes and justifies their use in modelling forward-
looking financial information. Although this chapter is essentially based on [16],
[20] and [21], it contributes to the existing literature by recovering the necessary
properties of the signal-based framework in a much greater detail, and presenting
a useful information-theoretic analysis to quantify the information component.

• Chapter 3 introduces an interactive market setup where agents receive variegated
information. This chapter, which is inspired by the remarks of authors in [17],
is a significant addition to the literature on equilibrium with long-lived informa-
tion. It not only vividly illustrates some interesting price discovery dynamics
in the presence of heterogeneous information through numerical analysis, but
also explores optimal strategies to exploit differential information by analyti-
cally characterising ex-ante gains from trade.

• Chapter 4 puts the signal-based framework to practical use by introducing a
slightly modified version of the signal process and making a particular choice
for real-time signals. To the best of the author’s knowledge, this is the first such
attempt, with results having significant implications for harnessing the signal-
based framework in a real-world setting. We also contribute the literature by
presenting a crisp formula for the signal-based price.

Finally, Chapter 5 concludes with a brief outlook, and some remarks on the contempo-
rary area of Financial Signal Processing (FSP).

Throughout the thesis, we may interchange between the terms “dividends” and “cash-
flows”, as well as “agents” and “investors”− which is of no harm. However, a distinc-
tion has to be made at the outset between an “investor” and a “trader.” In the present
context, all market participants are “investors” who make their decisions on the basis
of long-term targets, more due diligence and a proper analysis of fundamental factors;
while “traders” will not necessarily do so.

3
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CHAPTER 2

THE SIGNAL-BASED FRAMEWORK

The flow of forward-looking information through signals is essential for the smooth
operation of the highly complex financial market engine and it is the most funda-
mental input to the pricing of any type of asset. The market agents, both human and
non-human, on the other hand, are signal processors who continuously mine for and
interpret these signals to extract information.

In what follows, we lay out the basic characteristics of the information-based frame-
work which was first introduced in [20] as a new way of modelling credit risk and, later
on, applied to a broad spectrum of issues in financial mathematics, including the valu-
ation of insurance contracts based on the cumulative gain process in [21], modeling of
defaultable bonds in [69] (as an extension of [20] to stochastic interest rates), general
asset pricing in [16], pricing of inflation-linked assets in [46], and modelling of asym-
metric information and insider trading in [14], before it was generalised to a wider
class of Lévy information processes in [44] for valuing credit-risky bonds, vanilla and
exotic options, and non-life insurance liabilities. This method was used, in [15], to
aggregate individual risk aversion dynamics to form a market pricing kernel, in [61],
to price credit-risky assets that may include random recovery upon default, in [62], to
introduce an extension of the theory towards an analysis of information blockages and
activations, as well as information-switching dynamics, in [19], to introduce a general
framework for signal processing with Lévy information, in [75], to value storable com-
modities and associated derivatives and, most recently, in [22], to obtain a stochastic
volatility model based on random information flow, and in [64], to produce estimates
of bankruptcy time.

However, we distinguish the present analysis from another particular strand of litera-
ture which looks at information dissemination and epidemics in networks with certain
topological properties, with applications to finance (see, e.g., [9, 11, 26, 30, 56]).

2.1. Modelling Information Flow

The information-based approach stems naturally from the dynamic nature of informa-
tion. Information is revealed at some pace and it is not pure all the time. There is
normally little or no rumour about an asset’s future value when there is a significant

5



time frame until its maturity; the beliefs are most diverse around the midway through
the lifetime of the asset when the rumours intensify; there is a growing consensus, as
the asset approaches its maturity, on how things will turn out; and, finally, the true
value becomes known.1 Bridge processes indeed have some nice properties to imitate
this behaviour. Consider a Brownian bridge process defined over the period [0, T ]2
which takes on values 0 and z at times 0 and T , respectively:

β
[0,z]
0T (t) := Bt −

t

T
(BT − z). (2.1)

with Bt being a Brownian motion. The bridge process in Eq. (2.1) is a standard
Brownian bridge with a deterministic drift. Let z represent the true value at time T
of a random quantity ZT that adheres to the a priori marginal density fZT (z), i.e.,
ZT (ω) = z. Rearranging the terms of Eq. (2.1) yields a random bridge process:

β
[0,ZT ]
0T (t) = t

T
ZT +Bt −

t

T
BT = t

T
ZT + β

[0,0]
0T (t), (2.2)

where β[0,0]
0T (t) is a standard Brownian bridge, representing the ‘pure noise’, that ad-

heres to the lawN (0, (tκ−1
t )1/2) with κt := T/(T − t).3 The first part (t/T )ZT , on the

other hand, is the ‘hidden truth’ about the future value of the random variable ZT (in
the sense that it is concealed by noise). The term 1/T , in this case, governs the overall
speed of revelation of true information about the actual value of ZT .

Definition 2.1. The process β[0,ZT ]
0T (t) is a ‘Brownian random bridge’ if:

• Its terminal value β[0,ZT ]
0T (T ) has the marginal law υ which admits density p(z),

i.e., υ(dz) = p(z)dz.

• There exists a Gaussian process (Gt)0≤t≤T with density gt(y) for all t ∈ [0, T ],
and υ concentrates mass where 0 < gT (z) <∞ for υ-almost-every z.

• Furthermore,

Q
[
β

[0,ZT ]
0T (t1) ≤ y1, . . . , β

[0,ZT ]
0T (tl) ≤ yl

∣∣∣β[0,ZT ]
0T (T ) = z

]
= Q

[
Gt1 ≤ y1, . . . , Gtl ≤ yl

∣∣∣GT = z
]

(2.3)

for every l ∈ Z+, increasing (t1, . . . , tl) ∈ [0, T ], (y1, . . . , yl) ∈ Rl, and υ-
almost-every z.4

1 Zero-noise at initial date is still intuitive since single point will have no prediction power.
2 See [64] for bridges on a random intervals [0, τ ].
3 The part E[βt] = 0 is indeed trivial, whereas V [βt] = E

[
B2
t − t

T
BtBT + t2

T2B
2
T

]
= t−2 t

2

T
+ t2

T
= tκ−1

t .
4 See [44] for a definition of Lévy random bridge instead.
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Thus, a Brownian random bridge is identical in law to a Brownian motion conditioned
to have the a priori law of ZT at time T . Indeed, one can define XT := ZT/(σT ) in
Eq. (2.2) by introducing a more general parameter, say σ (or, alternatively, σt) instead
of 1/T . This enables us to introduce the signal process ξt (or, the information process
in the sense of [20]):

ξt = σtXT + βt. (2.4)

where (and, henceforth) βt := β
[0,0]
0T (t). In other words, σ will be gauging the ratio of

true signal to noise (henceforth, just ‘signal-to-noise’). This particular way of defining
the information flow, in fact, distinguishes the current framework from a large class of
asymmetric information models, where, as in [55], a bulk of information is assumed to
arrive instantly at the beginning of the trading period, or, as in [6], the arrival pattern
of information is found to be irrelevant to trading strategies of agents. We also set βt
and XT to be independent: βt ⊥⊥ XT . We note that, hereafter, the signal ξt will be
regulating the information flow.

We also remark that Eq. (2.4) is not the only way to represent information flow. Some
other forms have also been considered in the literature with slightly different character-
istics, such as ξt = tXT +βt (cf. [15]), and ξt = (t/T )XT +σβt or ξt = (t/T )XT +βt
(cf. [45]).

More formally, we define a probability space (Ω,F ,Q), on which the filtration (F ξt )t∈[0,T ]
will be constructed. Here, Q, i.e., the risk-neutral measure, is assumed to exist. The
default measure is set to Q throughout the thesis, if not stated otherwise. For sim-
plicity, we assume that the asset under consideration is of predetermined maturity, i.e.,
the cashflow will be generated, and the related information process will expire, at a
pre-known time T . The filtration F ξt , which is assumed to be generated directly by
(ξs)0≤s≤t, is given by:

F ξt = {σ (ξs) : 0 ≤ s ≤ t < T} . (2.5)

We are now in a position to work out, with respect to the available information F ξt , the
value St and dynamics dSt of an asset which generates a cashflow φT = φ(XT ) at time
T for some invertible function φ. The value St, 0 ≤ t < T , is given by

St = 1{t<T}e−r(T−t)E
[
φT
∣∣∣F ξt ] ,

(or, simply) = 1{t<T}e−r(T−t)φt, (2.6)

where φt, φt(XT ), E[φT |F ξt ] are all equivalent, and r is the money market rate. Also
not to mention that the asset goes ex-dividend at T , i.e., immediately after the dividend
is paid, should the asset’s maturity be longer than T and should there be other dividends
to be paid.
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The quantities XT and φ(XT ) are measurable with respect to F ξT , but not necessarily
w.r.t. F ξt , t < T . On an important note, we remark that βt, i.e., the pure noise, is not
measurable w.r.t. F ξt , meaning that it is not directly accessible to market agents. Thus,
an agent, although he observes ξt, cannot separate true signal from noise until time
T .

Note that the expectation in Eq. (2.6) is conditioned, as we understand from Eq. (2.5),
on the entire path of ξt, which renders it difficult to handle. Therefore, verifying that
the information process ξt satisfies the Markov property could bring a great deal of
simplification to the construction of price dynamics. In [44], it is indeed shown that
Lévy bridges, and Lévy random bridges alike, satisfy the Markov property. Here we
verify the latter for Brownian random bridges.

Proposition 2.1. The information process (ξt)0≤t≤T , as defined in Eq. (2.4), is condi-
tionally Markovian.

Proof. (See an alternative proof in [60].) We set κt = T/(T − t) here and, whenever
appropriate, throughout the text. Let ξt be intrinsically pinned to an unknown value
XT = x. Defining Bt as a Brownian motion, we can indeed express the signal process
ξt as

σtx+ κ
− 1

2
t Bt or σtx+ κ

− 1
2

t

∫ t

0
dBs. (2.7)

One can verify that these are identical to

ξt = σtx+ (T − t)
∫ t

0

dBs

T − s
, (2.8)

which, in turn, implies

dξt =
(
σx−

∫ t

0

dBs

T − s

)
dt+ (T − t) dBt

T − t

=
(
σx− ξt − σtx

(T − t)

)
dt+ dBt

= (σx− ξt/T )κtdt+ dBt. (2.9)

Equations (2.8) and (2.9) indeed follow from two other well-known representations
of bridges (see, e.g., [66]). Eq. (2.9), on the other hand, directly implies that, given
XT = x, ξt is a Markov process with respect to its own filtration, i.e.,

E[h(ξt)|σ (ξr)r≤s] = E[h(ξt)|σ(ξs)] (s ≤ t), (2.10)

for any x, and any measurable, finite-valued function h (cf. [66]).
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Proposition 2.1 leads to a significant reduction in the complexity of calculating the
expectation in Eq. (2.6). The latter expectation can now be written, again, for the
single dividend as

St = 1{t<T}e−r(T−t)E [φT |ξt] , (2.11)

or, when the payoff has a continuous density, as

St = 1{t<T}e−r(T−t)
∫
X
φ(x)πt(x)dx. (2.12)

Here, the posterior density πt(x) := p(x|ξt) is given by

πt(x) = d
dx

Q(XT ≤ x|ξt). (2.13)

To restore St and its dynamics, apparently, we need to work out πt, the posterior den-
sity. Using Bayesian inference, πt can be written as

πt(x) = p(x)p(ξt|x)∫
X
p(y)p(ξt|y)dy

= p(x)p(ξt|x)∫
X
p(ξt)dy

(x ∈ X) , (2.14)

where X is the support of XT , p(x) the a priori probability density of XT , and p(ξt|x)
the likelihood (i.e., compatibility of the signal ξt given the measurement x). We note
that the procedure in Eq. (2.14) is similar to a Kalman [50] filtering operation in which
a transition step based on p(x|ξs) and p(ξt|ξs) also takes place before the measurement
update p(x|ξt) (see, e.g., [10]).

Here, we find it useful to state a dynamical consistency property satisfied by ξt.

Proposition 2.2. The process ξt is dynamically consistent, meaning that, if we store
the information transmitted by ξs, s ∈ [0, T ], in πs(x) and, then, re-initialise it at time
s as ξ′t, s ≤ t ≤ T , updating also its flow rate to σ′, then πt(x) can be written in terms
of πs(x) (i.e., the new prior) as follows

πt(x) = πs(x)p(ξ′t|x)∫
X
πs(y)p(ξ′t|y)dy

(s ≤ t ≤ T ), (2.15)

where
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ξ′t = ξt −
T − t
T − s

ξs = σ′(t− s)XT + β′t, (2.16)

with σ′ = σT/(T − s), and β′t being a standard Brownian bridge over [s, T ] (see a
time-varying information flow version in [16]).

Proof. Calculate πs(x)p(ξ′t|XT = x) as per definitions of ξt, ξ′t and σ′ and verify that
the right-hand side of Eq. (2.15) is indeed equal to πt(x).

Before we embark on the dynamics of the signal-based price process, let us compute
p(ξt|x) in Eq. (2.14). Indeed, Eq. (2.4) implies E [ξt|x] = σtx and V [ξt|x] = t/κt
where κt is as above. Hence,

p(ξt|x) = 1√
t/κt
√

2π
e
− 1

2
(ξt−σtx)2

t/κt . (2.17)

We then accommodate Eq. (2.17) into Eq. (2.14) to get πt(x). With some arrange-
ment,

πt(x) =
p(x) 1√

2π
√
t/κt

e
− 1

2
(ξt−σtx)2

tκ−1
t

∫
X
p(y) 1
√

2π
√
t/κt

e
− 1

2
(ξt−σty)2

tκ−1
t dy

= p(x)e
1
2
−ξ2t+2ξtσtx−σ

2x2t2

tκ−1
t∫

X
p(y)e

1
2
−ξ2t+2ξtσty−σ

2y2t2

tκ−1
t dy

= p(x)eκt(σxξt−
1
2σ

2x2t)∫
X
p(y)eκt(σyξt−

1
2σ

2y2t)dy
(x ∈ X) . (2.18)

Essentially, Eq. (2.18) is a convolution density in which p(ξt|x), as given in Eq. (2.17),
operates as a filter on p(x) to map the latter to its posterior πt(x) by comparing the
signal ξt against each possible value of x ∈ X.

2.2. The Signal-based Price Process

We shall continue to assume, w.l.o.g., that the asset pays a single cashflow φ(XT )
based on a single market factor XT . Accommodating Eq. (2.18) into Eq. (2.12), the
price process (St)0≤t≤T can be written as:
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St = 1{t<T}e−r(T−t)

∫
X
φ(x)p(x)eκt(σxξt−

1
2σ

2x2t)dx∫
X
p(x)eκt(σxξt−

1
2σ

2x2t)dx
. (2.19)

The dynamics of St, on the other hand, can be worked out as follows. First, we re-write
Eq. (2.11):

St = 1{t<T}e−r(T−t)E [φ(XT )|ξt] = 1{t<T}e−r(T−t)φt(XT ), (2.20)

where, again, φt(XT ) = E [φ(XT )|ξt]. Apparently, φt(XT ) can be expressed in the
form φ(t, ξt). Eq. (2.19), on the other hand, implies:

φ(t, ξt) =

∫
X
φ(x)p(x)eκt(σxξt−

1
2σ

2x2t)dx∫
X
p(x)eκt(σxξt−

1
2σ

2x2t)dx
. (2.21)

Now, we work out the dynamics of φ(t, ξt), from which the dynamics of St will follow
directly. Itô’s Lemma implies

dφ(t, ξt) = ∂φ(t, ξt)
∂t

dt+ ∂φ(t, ξt)
∂ξt

dξt, (2.22)

where the first partial derivative on the right-hand side equals, by virtue of Eq. (2.21),

∂φ(t, ξt)
∂t

= κ2
t

[∫
X
φ(x)

(
σξtx/T −

1
2σ

2x2
)
p(x)eκt(σxξt−

1
2σ

2x2t)dx
∫
X
p(x)eκt(σxξt−

1
2σ

2x2t)dx

−
∫
X
φ(x)p(x)eκt(σxξt−

1
2σ

2x2t)dx
∫
X

(
σξtx/T −

1
2σ

2x2
)
p(x)eκt(σxξt−

1
2σ

2x2t)dx
]

·
(∫

X
p(x)eκt(σxξt−

1
2σ

2x2t)dx
)−2

= κ2
t

[
(σξt/T )Et [φ(XT )XT ]− 1

2σ
2Et

[
φ(XT )X2

T

]
−Et [φ(XT )]

(
(σξt/T )Et [XT ]− 1

2σ
2Et

[
X2
T

]) ]
= κ2

t

[
(σξt/T ) (Et [φ(XT )XT ]− Et [φ(XT )]Et [XT ])

−1
2σ

2
(
Et
[
φ(XT )X2

T

]
− Et [φ(XT )]Et

[
X2
T

]) ]
= κ2

t

[
(σξt/T )Covt (φ(XT ), XT )− σ2Et [φ(XT )]Covt (φ(XT ), XT )

]
= σκ2

t (ξt/T − σEt [φ(XT )])Covt (φ(XT ), XT ) .
(2.23)
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where Covt = Cov(·|ξt) denotes the conditional covariance with respect to available
information ξt at time t. The equality

1
2
(
Et
[
φ(XT )X2

T

]
− Et [φ(XT )]Et

[
X2
T

])
= Et [φ(XT )]Covt (φ(XT ), XT ) (2.24)

in Eq. (2.23) can indeed be verified by applying Stein’s Lemma (cf. [73]), which
implies that

E [g(X) (X − E [X])] = V (X)E [g′ (X)] (2.25)

holds for any differentiable function g. Similarly, one can verify that the second partial
derivative term on the right-hand side of Eq. (2.22) is equivalent to

∂φ(t, ξt)
∂ξt

= σκt

[∫
X
φ(x)xp(x)eκt(σxξ−

1
2σ

2x2t)dx
∫
X
p(x)eκt(σxξt−

1
2σ

2x2t)dx

−
∫
X
φ(x)p(x)eκt(σxξt−

1
2σ

2x2t)dx
∫
X
xp(x)eκt(σxξt−

1
2σ

2x2t)dx
]

·
(∫

X
p(x)eκt(σxξt−

1
2σ

2x2t)dx
)−2

= σκt (Et [φ(XT )XT ]− Et [φ(XT )]Et [XT ])
= σκtCovt (φ(XT ), XT ) . (2.26)

Combining Eq. (2.23) and (2.26) as per Eq. (2.22) yields

dφt(XT ) = σκtCovt (φ(XT ), XT ) [κt (ξt/T − σEt [φ(XT )]) dt+ dξt] . (2.27)

As a direct result of Eq. (2.27), and using St = e−r(T−t)φt(XT ), the dynamics of St is
given by

dSt = re−r(T−t)φt(XT )dt+ e−r(T−t)dφt(XT ),
= re−r(T−t)φt(XT )dt+ e−r(T−t)σκtCovt (φ(XT ), XT )
· [κt (ξt/T − σEt [φ(XT )]) dt+ dξt] ,

= rStdt+ ΛtdWt, (2.28)

where Λt := e−r(T−t)σκtCovt (φ(XT ), XT ), and

dWt := κt (ξt/T − σφt(XT )) dt+ dξt (2.29)
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or, equivalently,

Wt := ξt +
∫ t

0
κs (ξs/T − σφs(XT )) ds. (2.30)

Alternatively, one can start with the dynamics of πt(x) given in Eq. (2.18) and use Eq.
(2.12) to reach the same result as in Eq. (2.28) (for details, see [16, 60].).

The term Λt which appears in Eq. (2.28) is the ‘absolute price volatility.’5 An inter-
esting observation related to the absolute price volatility is that its overall magnitude
is determined by the signal-to-noise parameter σ. Thus, an increase in the information
flow rate means an increased price volatility. This observation seems to be paradox-
ical if one considers that the growing financial market interconnectedness − which
is expected to increase market efficiency and reduce price anomalies − can actually
increase the price volatility.

Another interesting observation from Eq. (2.28) pertains to Wt and helps us shed a bit
more light on another somewhat paradoxical point in financial mathematics literature
which pertains to whetherWt really contains information or represents pure noise. The
process Wt, as will be shown to be a martingale w.r.t. F ξ

t below, is not imposed on the
model as one of its inputs, but rather appeared as one of its by-products. Furthermore,
when the information flow structure is defined explicitly, Wt is no more simply irre-
ducible, as suggested by many classical models in financial mathematics.

Proposition 2.3. The process Wt in Eq. (2.30) is a Brownian motion adapted to F ξ
t .

Proof. (See [16, 60] for a sketch.) Referring to Lévy’s characterisation of Ft-Brownian
motion, we first need to show that the process Wt, as defined in Eq. (2.29) is an F ξ

t -
martingale and, second, that d [W,W ] (t) = dt. The first condition is equivalent to

E
[
Wu|F ξt

]
= Wt or E

[
Wu −Wt|F ξt

]
= 0 (2.31)

for u ≥ t. Using the definition of Wt in Eq. (2.29) as well as the Markov property of
the process ξt, we can write the left-hand side more explicitly as

E
[
Wu −Wt|F ξt

]
= E [ξu − ξt|ξt] + E

[∫ u

t
(κsξs/T ) ds|ξt

]
−E

[∫ u

t
σκsE [φ(XT )|ξs] ds|ξt

]
. (2.32)

Now, using the definition of ξt in Eq. (2.4) in the first and second terms on the right-
hand side, and the tower property6 in the third one, we find

5 Note that Λt is also forward-looking.
6 E [E [X|Fu] |Ft] = E [X|Ft] for t ≤ u and increasing set of σ-algebras (Ft)t≥0.
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E
[
Wu −Wt|F ξt

]
= σuE [φ(XT )|ξt] + E [βu|ξt]− (σtE [φ(XT )|ξt] + E [βt|ξt])

+E
[∫ u

t
(κs/T ) (σsφ(XT ) + βs) ds|ξt

]
−σE [φ(XT )|ξt]

∫ u

t
κsds

= σuE [φ(XT )|ξt] + E [βu|ξt]− (σtE [φ(XT )|ξt] + E [βt|ξt])

+ (σ/T )E [φ(XT )|ξt]
∫ u

t
sκsds+ (1/T )E

[∫ u

t
κsβsds|ξt

]
−σE [φ(XT )|ξt]

∫ u

t
κsds. (2.33)

The integral (1/T )
∫ u

t
sκsds can be shown to be equal to

∫ u

t
κsds + t − u by change

of variable T − s to ν, and, then, ν back to T − s. Hence,

E
[
Wu −Wt|F ξt

]
= σuE [φ(XT )|ξt] + E [βu|ξt]− (σtE [φ(XT )|ξt] + E [βt|ξt])

+σE [φ(XT )|ξt]
(∫ u

t
κsds+ t− u)

)
+ (1/T )E

[∫ u

t
κsβsds|ξt

]
−σE [φ(XT )|ξt]

∫ u

t
κsds

= E [βu|ξt]− E [βt|ξt] + (1/T )E
[∫ u

t
κsβsds|ξt

]
. (2.34)

To conclude that Wt is an F ξ
t -martingale, we write the expectation E [βu|ξt] above as

follows:

E [βu|ξt] = E [E [βu|φ(XT ), βt] |ξt] . (2.35)

Note, by intuition, that the σ-algebra generated by both φ(XT ) and βt is larger than that
by ξt (the agent, given ξt, cannot know what is noise and what is not). Since we also
know that the independence relation φ(XT ) ⊥⊥ βu exists, Eq. (2.35) can be rearranged
as

E [βu|ξt] = E [E [βu|βt] |ξt] . (2.36)

To calculate E [βu|βt], we use the independence relation7

βuκu − βtκt ⊥⊥ βt. (2.37)
7 Indeed; V [βuκu − βtκt, βt] = E [(βuκu − βtκt)βt] = κuE [βuβt]−κtE

[
β2
t

]
= tκuκ

−1
u − tκtκ−1

t = 0.
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Also, we note that E [βu|βt] can be rearranged as

E [βu|βt] = κ−1
u (E [βuκu − βtκt|βt] + E [βtκt|βt])

= κ−1
u (E [βuκu − βtκt|βt] + βtκt) . (2.38)

Using the independence relation in (2.37) then implies E [βu|βt] = (κt/κu)βt and,
therefore, E [E [βuT |βtT ] |ξt] = (κt/κu)E [βtT |ξt]. Then, we conclude that Wt is an
F ξ
t -martingale by employing Eq. (2.38) in Eq. (2.34), i.e.,

E
[
Wu −Wt|F ξt

]
= (κt/κu − 1)E [βtT |ξt] + (1/T )

∫ u

t
κs(κt/κs)E [βt|ξt] ds

= (κt/κu − 1)E [βtT |ξt] + ((u− t)κt/T )E [βt|ξt]
= (κt/κu − 1)E [βtT |ξt] + (1− κt/κu)E [βt|ξt]
= 0. (2.39)

The second part, i.e., d [W,W ] (t) = dt, is rather simple. Recall Eq. (2.29), i.e.,

dWt := κt (ξt/T − σEt [φ(XT )]) dt+ dξt. (2.40)

We note that d [W,W ] (t) is only due to d [ξ, ξ] (t) (given ξt at time t). And, by repre-
sentation (2.9), we already know that

d [ξ, ξ] (t) = d [B,B] (t) = dt, (2.41)

which completes the proof.

Below, we will work out St for some particular dividend structures.

2.2.1 Gaussian Dividends

Assume φ is an identity, i.e., φ(XT ) = XT withXT ∼ N (0, 1). Then, accommodating
two well-known Gaussian integrals8 into Eq. (2.19) would yield

8 These are [65]:

1.
∫
X exp(−x2/2) exp(ax− bx2)dx =

√
2π(2b+ 1)−1/2 exp(a2/(2(2b+ 1)), and

2.
∫
X x exp(−x2/2) exp(ax− bx2)dx =

√
2πa(2b+ 1)−3/2 exp(a2/(2(2b+ 1))),

where X = (−∞,∞).
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St = 1{t<T}e−r(T−t)

∫
X
xp(x)eκt(σxξt−

1
2σ

2x2t)dx∫
X
p(x)eκt(σxξt−

1
2σ

2x2t)dx

= 1{t<T}e−r(T−t)

∫
X
xe−

x2
2 e(σκtξt)x−( 1

2σ
2κtt)x2

dx∫
X
e−

x2
2 e(σκtξt)x−( 1

2σ
2κtt)x2

dx

= 1{t<T}e−r(T−t)
σκtξt (σ2κtt+ 1)−3/2

(σ2κtt+ 1)−1/2

= 1{t<T}e−r(T−t)
σκtξt

σ2κtt+ 1 , (2.42)

where X = (−∞,∞). Since κt has a singularity at t = T (i.e., κt →∞ as t→ T ), we
can talk about the limit of St as t approaches T . Indeed, it is straightforward to show
that

lim
(T−t)→0

St = ξt
σT

= XT . (2.43)

2.2.2 Exponential Dividends

Besides normal density, exponential class of distributions are also commonly used to
model dividends. Assume, again, φ is an identity function and p(φ(x)) = p(x) =
λe−λx, λ > 0, and X = [0,∞), a priori. This implies, again by virtue of Eq. (2.19),
that
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St = 1{t<T}e−r(T−t)

∫
X
xe−λxeκt(σxξt−

1
2σ

2x2t)dx∫
X
e−λxeκt(σxξt−

1
2σ

2x2t)dx

= 1{t<T}e−r(T−t)

∫
X
xe
− 1

2

(
(xσ√tκt)2

−2x(κtσξt−λ)+a2
)

dx∫
X
e
− 1

2

(
(xσ√tκt)2

−2x(κtσξt−λ)+a2
)

dx

= 1{t<T}e−r(T−t)

∫
X
xe−

1
2(xσ√tκt−a)2

dx∫
X
e−

1
2(xσ√tκt−a)2

dx

(
a =

κtσξt − λ
σ
√
tκt

)

= 1{t<T}e−r(T−t)

∫
X′

x′ + a

σ
√
tκt

e−x
′2/2dx′∫

X′
e−x

′2/2dx′
(
x′ = xσ

√
tκt − a, X′ = [−a,∞)

)
(2.44)

With some further arrangement, we obtain the following explicit formula for the asset
price (similar to the one in [16]):

St = 1{t<T}e−r(T−t)
1

σ
√
tκt

∫
X′
x′e−x

′2/2dx′ + a

σ
√
tκt

√
2π (1−Θ (−a))

√
2π (1−Θ (−a))

(
y = x′2, dy = 2x′dx′

)
= 1{t<T}e−r(T−t)

1
σ
√
tκt

(
−e−x′2/2

∣∣∣
X′

)
+ a

σ
√
tκt

√
2πΘ (a)

√
2πΘ (a)

= 1{t<T}e−r(T−t)
1

σ
√
tκt

 e
− 1

2

(
κtσξt−λ
σ
√
tκt

)2

√
2πΘ

(
κtσξt−λ
σ
√
tκt

) + κtσξt − λ
σ
√
tκt

 .
(2.45)

where Θ(·) denotes the standard normal cumulative density.

2.2.3 Log-normal Dividends

Assume now φ(XT ) is not an identity but the dividend φ(XT ) will be paid according
to

φ(XT ) = S0e
(µ− 1

2ν
2)T+ν

√
TXT , (2.46)
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with ν > 0, and let XT ∼ N (0, 1). Note that this is equivalent to saying that φ(XT )
is an identity and adheres to lognormal marginal law with parameters (lnS0 + (µ −
ν2/2)T, ν

√
T ). We now simply accommodate Eq. (2.46) into Eq. (2.19), i.e.,

St = 1{t<T}e−r(T−t)

∫
X
S0e

(µ− 1
2ν

2)T+ν
√
Txe−

x2
2 eκt(σxξt−

1
2σ

2x2t)dx∫
X
e−

x2
2 eκt(σxξt−

1
2σ

2x2t)dx

= 1{t<T}e−r(T−t)S0e
(µ− 1

2ν
2)T

∫
X
eν
√
Txe−

x2
2 eκt(σxξt−

1
2σ

2x2t)dx∫
X
e−

x2
2 eκt(σxξt−

1
2σ

2x2t)dx

= 1{t<T}e−r(T−t)S0e
(µ− 1

2ν
2)T e

1
2a

2

e
1
2 b

2

∫
X
e−

1
2(x2(1+σ2κtt)−2x(ν√T+κtσξt)+a2)dx∫
X
e−

1
2(x2(1+σ2κtt)−2κtσξt+b2)dx

= 1{t<T}e−r(T−t)S0e
(µ− 1

2ν
2)T e

1
2a

2

e
1
2 b

2

∫
X
e
− 1

2

(
x
√

1+σ2κtt−a
)2

dx∫
X
e
− 1

2

(
x
√

1+σ2κtt−b
)2

dx

,

(2.47)

where X = (−∞,∞), a = (ν
√
T +κtσξt)/

√
1 + σ2κtt and b = (κtσξt)/

√
1 + σ2κtt.

Hence, we get

St = 1{t<T}e−r(T−t)S0e

(
µ− ν

2
2

)
T+ ν2T

2(1+σ2κtt)
+ ν
√
Tκtσ

1+σ2κtt
ξt
. (2.48)

As for dynamics dSt, we first need the evaluate the conditional covariance term which
appears in Eq. (2.27), i.e,

dφt(XT ) = σκtCovt [φ(XT ), XT ]
[
κt
(
T−1ξt − σEt [φ(XT )]

)
dt+ dξt

]
, (2.49)

to derive the dynamics of St as given in Eq. (2.28), i.e.,

dSt = rStdt+ ΛtdWt, (2.50)

where, again, Λt := e−r(T−t)σκtCovt (φ(XT ), XT ), and dWt and Wt as in Eq. (2.29)
and (2.30), respectively.

In order to calculate the conditional covariance term and, hence, dSt, more explicitly,
we need to evaluate one additional integral, namely,
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Et [φ(XT )XT ] =

∫
X
φ(x)xe−x

2
2 eκt(σxξt−

1
2σ

2x2t)dx∫
X
e−

x2
2 eκt(σxξt−

1
2σ

2x2t)dx
. (2.51)

We can use the same Gaussian integrals as above to compute Eq. (2.51):

Et [φ(XT )XT ] =
S0e

(µ− 1
2ν

2)T
∫
X
xe−

x2
2 e(κtσξt+ν

√
T)x−( 1

2κtσ
2t)x2

dx∫
X
e−

x2
2 e(κtσξt)x−( 1

2κtσ
2t)x2

dx

=
S0e

(µ− 1
2ν

2)T κtσξt+ν
√
T

(κtσ2t+1)3/2 exp
(

1
2

(κtσξt+ν√T)2

σ2κtt+1

)
1

(σ2κtt+1)1/2 exp
(

1
2

(σκtξt)2

σ2κtt+1

)
= S0e

(µ− 1
2ν

2)T σκtξt + ν
√
T

σ2κtt+ 1 exp
(
σκtξtν

√
T + 1

2ν
2T

σ2κtt+ 1

)
. (2.52)

We are now equipped with Eq. (2.42), (2.48) and (2.52) to calculate the conditional
covariance Covt (φ(XT ), XT ) = Et [φ(XT )XT ]− Et [φ(XT )]Et [XT ]:

Covt (φ(XT ), XT ) = S0e
(µ− 1

2ν
2)T σκtξt + ν

√
T

σ2κtt+ 1 exp
(
σκtξtν

√
T + 1

2ν
2T

1 + σ2κtt

)

−S0e
(µ− 1

2ν
2)T σκtξt

σ2κtt+ 1 exp
( 1

2ν
2T

1 + σ2κtt
+ σκtξtν

√
T

1 + σ2κtt

)

= S0e
(µ− 1

2ν
2)T exp

(
σκtξtν

√
T + 1

2ν
2T

σ2κtt+ 1

)
ν
√
T

1 + σ2κtt
. (2.53)

Notice that Eq. (2.53) without its last term is exactly Ster(T−t) and, therefore,

Covt (φ(XT ), XT ) = Ste
r(T−t) ν

√
T

1 + σ2κtt
. (2.54)

Then, by virtue of Eq. (2.50), we have

dSt = rStdt+ σκtν
√
T

σ2κtt+ 1StdWt, (2.55)

where, again, dWt is defined as in Eq. (2.41). Now, we discover that, for the particular
choice of σ2 = 1/T in Eq. (2.55), not only we get
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dSt = rStdt+ νStdWt, (2.56)

but also the information flow process ξt turns into a standard Brownian motion, i.e.,

E [ξsξt] = E
[(
sXT/

√
T + βsT

) (
tXT/

√
T + βtT

)]
= (st/T )E

[
X2
T

]
+ (s/

√
T )E [XTβtT ]

+(t/
√
T )E [XTβsT ] + E [βsTβtT ] (X ⊥⊥ β)

= s− κ−1
t s+ κ−1

t s = s. (2.57)

Yet, there is a more direct way to see this. Once we choose σ2 = 1/T , Eq. (2.48)
reduces to

St = 1{t<T}S0 exp
((
µ− ν2/2

)
t+ νξt

)
, (2.58)

where, again, ξt substitutes for Wt, the innovation process. Therefore, with the special
choice of φ(XT ) in Eq. (2.46), we actually end up in a Black-Scholes-type model of
stock price dynamics. Next, we will deal with signal-based derivatives pricing.

2.3. Change of Measure and Signal-based Derivative Pricing

In this section, we show how the present signal-based framework can be used to price
derivatives. A standard European call option that is written at time 0 on an asset which
is characterised by the price process in Eq. (2.48).9 Assume that the option expires at
time t and have an exercise price K. The underlying pays φ(XT ) ∈ (0,∞) at time T
where φ is not an identity. The information process (ξs)0≤s≤T will again be carrying
signals regarding the factor XT . Then, the value function for the option can be written
as,

C0 = e−rtE [St −K]+

= e−rtE [φt(XT )−K]+ , (2.59)

where E[·]+ denotes expectation over positive values. A simple timeline is given in
Figure 2.1.

Indeed, Eq. (2.59) looks like an “information” analogous to a forward “rate” agreement
(i.e., FIA versus FRA) as, once integrated over all possible values of φ(XT ), parties

9 It reads St = 1{t<T}S0 exp
(
−µ(T − t) +

(
µ− ν2

2

)
T + ν2T

2(1+σ2κtt)
+ ν

√
Tκtσ

1+σ2κtt
ξt

)
.
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0

C0

t

(St −K)+

T

φ(XT )

(ξs)0≤s≤T

Figure 2.1: Signal-based option pricing timeline.

in fact contract solely on the time-t value of the pricing signal, i.e., {ξs}0≤s≤T , which
will determine φ(XT ). Using Eq. (2.12)10, we have

C0 = e−rtE
[
e−r(T−t)

∫
X
φ(x)πt(x)dx−K

]+

= e−rtE

e−r(T−t)
∫
X
φ(x)p(x)eκt(σxξt−

1
2σ

2x2t)dx∫
X
p(x)eκt(σxξt−

1
2σ

2x2t)dx
−K


+

= e−rtE

e−r(T−t)
∫
X
φ(x)pt(x)dx∫
X
pt(x)dx

−K


+

= e−rtE
[(∫

X
pt(x)dx

)−1 ∫
X

(
e−r(T−t)φ(x)−K

)
pt(x)dx

]+

= e−rtE
[
Φ−1
t

∫
X

(
e−r(T−t)φ(x)−K

)
pt(x)dx

]+
, (2.60)

where

pt(x) := p(x)eκt(σxξt−
1
2σ

2x2t), Φ−1
t :=

(∫ ∞
0

pt(x)dx
)−1

. (2.61)

Proposition 2.4. The process Φ−1
t is the Radon−Nikodym derivative (in Girsanov’s

sense [38]) of the bridge measure B, under which ξt turns out to be a standard Brow-
nian bridge, with respect to the pricing measure Q.

Proof. We begin with the dynamics of pt = p(t, ξt). Apparently, using Eq. (2.29)11

for dξt and d [ξt, ξt] = dt, we have

10 St = 1{t<T}e−r(T−t)
∫∞

0 xπt(x)dx.
11 It can rewritten as dξt = dWt − κt

(
ξtT
−1 − σEt [φ(XT )]

)
dt where, again, Wt is a martingale under the

pricing measure.
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dpt = ∂p(t, ξt)
∂t

dt+ ∂p(t, ξt)
∂ξt

dξt + 1
2
∂2p(t, ξt)
∂ξ2

t

d [ξt, ξt]

=
[
κ2
t/T

(
σxξt −

1
2σ

2x2t
)
− κt

(1
2σ

2x2
)]
ptdt

+κtσxptdξt + 1
2κ

2
tσ

2x2ptd [ξt, ξt]

=
[
κ2
t/T

(
σxξt −

1
2σ

2x2t
)
− κt

(1
2σ

2x2
)]
ptdt

+κtσxpt
[
dWt − κt

(
ξtT

−1 − σφt(XT )
)

dt
]

+ 1
2κ

2
tσ

2x2ptdt

= 1
2σ

2x2
(
κ2
t − κ2

t tT
−1 − κt

)
ptdt+ κ2

tσ
2xφt(XT )ptdt+ κtσxptdWt.

(2.62)

The bracketed term in the last line of Eq. (2.62) can easily be shown to equal 0.
Therefore,

dpt
pt

= κ2
tσ

2xφt(XT )dt+ κtσxdWt. (2.63)

Now, we focus on Φt. Since Φt :=
∫∞

0 pt(x)dx is basically a function of time, we can
write

dΦt = d
(∫

X
pt(x)dx

)
=
∫
X

dpt(x)dx. (2.64)

Accommodating dpt(x) from Eq. (2.63), we have

dΦt =
∫
X

(
κ2
tσ

2xpt(x)φt(XT )dtdx+
∫
X
κtσxpt(x)dWt

)
dx

= κ2
tσ

2φt(XT )
(∫

X
xpt(x)dx

)
dt+ κtσ

(∫
X
xpt(x)dx

)
dWt. (2.65)

On the other hand, it follows from the definition of Φt that

∫
X
xpt(x)dx

Φt

= φt(XT )

i.e.,
∫
X
xpt(x)dx = φt(XT )Φt. (2.66)

Substituting this back into Eq. (2.65), we have
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dΦt = σ2κ2
tφ

2
t (XT )Φtdt+ σκtφt(XT )ΦtdWt. (2.67)

And, as a direct consequence,

d [Φt,Φt] = σ2κ2
tφ

2
T (XT )Φ2

tdt. (2.68)

Now, applying Itô Formula to f(Φt) = 1/Φt, we can show that

df(Φt) = dΦ−1
t = ∂f(Φt)

∂Φt

dΦt + 1
2
∂2f(Φt)
∂Φ2

t

d [Φt,Φt]

= −Φ−2
t σ2κ2

tΦtφ
2
T (XT )dt− Φ−2

t σκtΦtφt(XT )dWt

+Φ−3
t σ2κ2

tφ
2
t (XT )Φ2

tdt
= −σ2κ2

tφ
2
T (XT )f(Φt)dt− σκtf(Φt)φt(XT )dWt

+σ2κ2
tφ

2
t (XT )f(Φt)dt

= −σκtφt(XT )f(Φt)dWt, (2.69)

where the term σκtφt(XT ) can simply be called as the “market price of risk” (again,
in Girsanov’s sense). Based on Eq. (2.69), f(Φt) can be written as

f(Φt) = exp
(
−1

2σ
2
∫
X
κ2
sφ

2
s(XT )ds− σ

∫
X
κsφs(XT )dWs

)
, (2.70)

which is the exponential martingale. As a final step, we can define a Brownian motion
W̃ under B, by using Girsanov theorem, as

W̃t := Wt + σ
∫
X
κsφs(XT )ds, (2.71)

and check whether EB
[
W̃t

]
or E

[
W̃tΦ−1

t

]
is martingale. Apparently, by virtue of Eq.

(2.69) and (2.71),

d
(
W̃tf(Φt)

)
= W̃tdf(Φt) + f(Φt)dW̃t + d

[
W̃t, f(Φt)

]
= −κtσφt(XT )W̃tf(Φt)dWt + f(Φt)dWt + σκtφt(XT )f(Φt)dt
−κtσφt(XT )f(Φt)dt

=
[
1− W̃tκtσφt(XT )f(Φt)

]
f(Φt)dWt (2.72)

is a martingale. This completes the first part of the proof.
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We can verify that ξt turns into a standard Brownian bridge under B as follows. If we
write Wt explicitly in Eq. (2.71), using Eq. (2.30), indeed, we see that

W̃t = ξt +
∫
X
κs
(
ξsT

−1 − σφs(XT )
)

ds+ σ
∫
X
κsφs(XT )ds

= ξt + (1/T )
∫
X
κsξsds, (2.73)

which implies

ξt = W̃t − (1/T )
∫
X
κsξsds or dξt = dW̃t − (1/T )κtξtdt. (2.74)

Note that the differential equation in (2.74) above is the one satisfied by a standard
Brownian bridge βtT over the interval [0, T ]. To see this, consider the representation in
Eq. (2.9)12 without the drift term φ(x).

We now rewrite option value in Eq. (2.60) under B as

C0 = e−rtEB
[∫

X

(
e−r(T−t)φ(x)−K

)
pt(x)dx

]+
. (2.75)

Assuming that there exists a solution ξ∗t (following from the monotonicity of pt(x) in
ξt as per Eq. (2.61)) to the equality

∫
X

(
e−r(T−t)φ(x)−K

)
pt(x)dx = 0 (2.76)

for arbitrary t, T and K, and knowing that ξt is a standard Brownian bridge (i.e.,
ξt = z

√
t/κt with z ∼ N (0, 1)), we can infer C0 as follows:

12 It reads dξt =
(
σφ(x)− T−1 ∫ t

0 κsdW
′
s

)
dt+ dW ′t =

(
σφ(x)− T−1κtξt

)
dt+ dW ′t .
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C0 = e−rT
∫
X
φ(x)p(x)

∫
Z
e
κt

(
σxz
√
tκ−1
t −

1
2σ

2x2t

)
1√
2π
e−

z2
2 dzdx

−e−rtK
∫
X
p(x)

∫
Z
e
κt

(
σxz
√
tκ−1
t −

1
2σ

2x2t

)
1√
2π
e−

z2
2 dzdx

= e−rT
∫ ∞
−∞

φ(x)p(x)
∫
Z

1√
2π
e−

1
2(z2−2

√
tκtσxz+tκtσ2x2)dzdx

−e−rtK
∫
X
p(x)

∫
Z

1√
2π
e−

1
2(z2−2

√
tκtσxz+tκtσ2x2)dzdx

= e−rT
∫
X
φ(x)p(x)

∫
Z

1√
2π
e−

1
2(z−√tκtσx)2

dzdx

−e−rtK
∫
X
p(x)

∫
Z

1√
2π
e−

1
2(z−√tκtσx)2

dzdx. (2.77)

As we are interested in the expected value where ξt ≥ ξ?t (or, equivalently, z ≥ z?),
Eq. (2.77), in fact, corresponds to

C0 = e−rT
∫
X
φ(x)p(x)Θ

(
−z? +

√
κttσx

)
dx

−e−rtK
∫
X
p(x)Θ

(
−z? +

√
κttσx

)
dx (2.78)

and

P0 = e−rtK
∫
X
p(x)Θ

(
z? −

√
κttσx

)
dx

−e−rT
∫
X
φ(x)p(x)Θ

(
z? −

√
κttσx

)
dx (2.79)

for call and put prices, respectively, where Θ(·) denotes the standard normal cumula-
tive distribution.

Corollary 2.5. Assume φ(XT ) is as given in Eq. (2.46).13 Then, explicitly,

ξ∗ =

(
2
(
ln K

S0
+ ν2

2 T − rt
))

(κtσ2t+ 1)− ν2T

2κt
√
Tσν

. (2.80)

Figure 2.2 depicts the call option value against a range of values for the information
flow rate σ and maturity t, where T is a constant and φ(XT ) is as in Eq. (2.46).

13 It reads φ(XT ) = S0 exp
[(
µ− 1

2ν
2)T + ν

√
TXT

]
, where XT ∼ N (0, 1).
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As expected, greater time frame to maturity implies greater chances of price exceed-
ing the threshold K. But, again, how do we interpret faster information flow leading
to higher uncertainty and, therefore, higher option prices? At this point, we would
like to distinguish between the pattern in which information has been incorporated
into prices, and “informativeness” of prices in the sense of [55]. As we shall see
in Section 2.4 later in this chapter, for any t ∈ [0, T ], when σ1 ≤ σ2, the relation
h(φ(XT )|ξ2

t ) ≤ h(φ(XT )|ξ1
t ) always holds among conditional entropies of φ(XT ),

i.e., ξ1
t quickly turns into a less informative signal. Although this might initially

seem somewhat contradictory, pricing of contingent claims is more about volatility,
i.e., the pattern that information is incorporated, and the variability of signals, i.e.,
V(ξt) = (σt)2V(XT ) + tκ−1

t , and, therefore, variability of model prices are increasing
in σ, leading to higher option prices.
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Figure 2.2: Call option value for ranging pairs (σ, t). Arbitrary parameters: T = 2,
µ = 0.05, K = 100, ν = 0.2, S0 = 100.

While the present signal-based framework enables chopping up of the valuation prob-
lem into modelling and prediction of market factors, it also reduces the challenge of
explaining price variability to determining (e.g., based on data) how fast new infor-
mation is revealed to the market. Since volatility is latent and cannot be observed
directly, it has to be inferred from the data using a certain metric (with squared devia-
tions from the mean being the most common one). Information flow, however, is more
intuitive and can be modelled more structurally as well as in a more forward-looking
manner.

Figure 2.3 shows the relationship between implied volatility and signal-to-noise ratio
of call options written on two selected tickers, namely, AAPL and MSFT, for different
information maturities T . Each curve is an iso-value and the vertical lines show the
Black-Scholes implied volatilities on the valuation date. Implied volatility has in fact
no financial meaning, other than being an additional degree of freedom to equate the
model output to the market reality, and is not sensitive to forward-looking information.
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We can infer from the figure that information flow rate offers a more intutitive substi-
tute to implied volatility, with substitution rate decreasing as T increases, and allow
us to make observations such as “information is flowing more rapidly/slowly to the
market,” not just “market prices imply a higher/lower volatility.”
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Figure 2.3: Implied Volatility and information flow rate. Options are valued on May 1,
2015, and mature on August 21, 2015.

2.4. An Information-theoretic Analysis

Another intriguing question at this point would be how much information about φ(XT )
is carried in signal ξt at time t. This would help us measure the change, both w.r.t. time
and different values of the flow parameter σ, in the amount of information carried by
ξt.

We can write the Shannon [70] entropy (which is a special case of Renyı́ [68] entropy)
of ξt as

h(ξt) = −
∫

Ξ
p(ξt) log2 p(ξt)dξt = −Ep(ξt) [log2 p(ξt)] , (2.81)

where h(·) ≥ 0 almost surely, and ξt ∈ Ξ, i.e. the support of ξt (see, e.g., [32]). Thus,
in general, the greater the variance of ξt, the greater its entropy will be.

In the present framework, however, we are more concerned about information in a
bilateral sense. In this regard, ‘joint’ and ‘conditional’ entropies are defined as

h(ξt, φ(XT )) = −
∫

Ξ

∫
X
p(ξt, x) log2 p(ξt, x)dxdξt = −Ep(ξt,x) [log2 p(ξt, x)] , (2.82)
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and

h(ξt|φ(XT )) = −
∫
X

(∫
Ξ
p(ξt|x) log2 p(ξt|x)dξ

)
p(x)dx

= −
∫
X

∫
Ξ
p(ξt, x) log2 p(ξt|x)dξtdx

= −Ep(ξt,x) [log2 p(ξt|X)] , (2.83)

respectively, where

p(ξ, x) = ∂2

∂ξ∂x
Q [(ξt < ξ) ∩ (φ(XT ) < x)]

= ∂2

∂ξ∂x
Q [ξt < ξ|φ(XT ) < x]Q [φ(XT ) < x]

= p(ξ|φ(XT ) = x)p(x)
or, = p(x|ξt = ξ)p(ξ). (2.84)

Using Eq. (2.83), we can work out the following property:

h(ξt|φ(XT )) = −
∫
X

(∫
Ξ
p(ξt|x) log2

p(x|ξt)p(ξt)
p(x) dξt

)
p(x)dx

= −
∫
X

∫
Ξ
p(ξt, x) log2 p(x|ξt)dξtdx+

(
−
∫

Ξ
p(ξt) log2 p(ξt)dξt

)
−
(
−
∫
X
p(x) log2 p(x)dx

)
= h(φ(XT )|ξt) + h(ξt)− h(φ(XT )), (2.85)

which directly implies

h(φ(XT ))− h(φ(XT )|ξt) = h(ξt)− h(ξt|φ(XT )). (2.86)

It is straightforward to see from its definition that, ∀t ≤ T , ξt is of higher entropy
(more uncertain) without the knowledge of φ(XT ) than with it and, therefore, h(ξt)−
h(ξt|φ(XT )) ≥ 0 should hold. This means, in turn, by virtue of the left-hand-side of
Eq. (2.86), that φ(XT ) is of higher entropy (more uncertain) without the knowledge
of ξt than with it otherwise (we’ve already used this latter property in Section 2.3). To
illustrate this point further, we depict in Figure 2.4 the evolution of conditional entropy
of φ(XT ) with respect to ξt, i.e., h(φ(XT )|ξt), for different values of σ. Note that
h(φ(XT )|ξt) decreases both as the signal ξt (for a given σ) reveals more information
in time, and as its quality, i.e., σ, increases (for a given t).
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Figure 2.4: Evolution of conditional entropy h(φ(XT )|ξt) over time and across infor-
mation flow rates σ. Arbitrary parameters: T = 2, φ(XT ) = XT ∼ N (0, 1).

‘Mutual information,’ on the other hand, measures the amount of information that
ξt contains about another random variable φ(XT ), or vice versa, and corresponds
to the reduction in the amount of uncertainty of one variable due to the knowledge
of other. Mutual information (I), in fact, corresponds to the ‘relative entropy,’ or
Kullback−Leibler Distance, (D) between p(ξ, x) and p(ξ)p(x), i.e.,

I(ξt, φ(XT )) = D(p(ξ, x)||p(ξ)p(x)) =
∫

Ξ

∫
X
p(ξ, x) log2

p(ξ, x)
p(ξ)p(x)dξdx

= Ep(ξ,x)

[
log2

p(ξ, x)
p(ξ)p(x)

]
, (2.87)

where I(ξt, φ(XT )) = D(p(ξ, x)||p(ξ)p(x)) ≥ 0 almost surely.14 Furthermore, a direct
relationship between joint entropy h(ξt, φ(XT )) and mutual information I(ξt, φ(XT ))
can be established using Eq. (2.82) and (2.87):

I(ξt, φ(XT )) =
∫

Ξ

∫
X
p(ξ, x) log2 p(ξ, x)dξdx−

∫
Ξ
p(ξ) log2 p(ξ)dξ

−
∫
X
p(x) log2 p(x)dx

= h(ξt) + h(φ(XT ))− h(ξt, φ(XT )). (2.88)

14 We complete the definition (2.87) by adding the conditions 0 ln (0/0) = 0, 0 ln (0/p(·)) = 0, and
p(·) ln (p(·)/0) =∞.
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In the present context, since St is an invertible function of ξt, we can also show that
I(ξt, φ(XT )) = I(St, φ(XT )) (cf. [17]).

2.5. Single Dividend−Multiple Market Factors

We leave the case where the asset pays multiple cashflows to Chapter 5 and focus on the
case where asset pays a single dividend that is, this time, determined by a multiplicity
of independent market factors, i.e., X1

T , . . . , X
m
T , and, therefore, multiple information

processes ξ1
t , . . . , ξ

m
t . Then, St is given by

St = 1{t<T}e−r(T−t)E
[
φT (X1

T , . . . , X
m
T )|ξ1

t , . . . , ξ
m
t

]
= 1{t<T}e−r(T−t)

∫
X
. . .
∫
X
φT (x1, . . . , xm)π1

t (x1) . . . πmt (xm)dx1 . . . dxm,

where, again, πit(x)’s are the posterior density functions as in Eq. (2.18).15 Similarly,
multi-factor analogoue of dφ(XT ) in (2.49)16 is given by

dφ(X1
T , . . . , X

m
T ) =

m∑
i=1

σiκtCovit
(
φ(X1

T , . . . , X
m
T ), X i

T

)
·
(
κtT

−1
(
ξit − σiTEt

[
φ(X1

T , . . . , X
m
T )
])

dt+ dξit
)
,(2.89)

where Covit := Cov [φ(X1
T , . . . , X

m
T ), X i

T |ξ1
t , . . . , ξ

m
t ]. We, again, define

dW i
t , κt

(
ξitT

−1 − σiEt
[
φ(X1

T , . . . , X
m
T )
])

dt+ dξit (2.90)

or, equivalently,

Wt , ξt +
∫ t

0
κs
(
ξs/T − σEsφ(X1

T , . . . , X
m
T )
)

ds. (2.91)

Equation (2.90) enables us to simplify Eq. (2.89) as

dφ(X1
T , . . . , X

m
T ) =

m∑
i=1

σiκtCovitdW
i
t . (2.92)

Since St = 1{t<T}e−r(T−t)φ(X1
T , . . . , X

m
T ), in a similar sense to Eq. (2.28), we can

write the dynamics dSt as
15 It reads πt(x) = p(x)eκt(σxξ

α
t −

1
2σ

2x2t)/
∫
X p(x)eκt(σxξt−

1
2σ

2x2t)dx.
16 It reads dφ(XT ) = σκtCovt (φ(XT ), XT )

[
κt
(
T−1ξt − σEt [φ(XT )]

)
dt+ dξt

]
.
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dSt = µStdt+
m∑
i=1

Λi
tdW

i
t , (2.93)

where we again used the definition Λi
t := e−r(T−t)σiκtCovit. This implies that the

overall absolute volatility at time t is

Λt =
(

m∑
i=1

(Λi
t)2
)1/2

. (2.94)

Equation (2.94) is quite telling in the sense that it enables us to decompose the ab-
solute volatility at time t into its unhedgeable stochastic volatility components (see
[60]).
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CHAPTER 3

A SIGNAL-BASED HETEROGENEOUS AGENT NETWORK

Trade can occur on purely informational causes. In [12], for example, we are shown
that there are situations in which both parties are strictly better off under a trade exe-
cuted solely on the basis of their individual information.1 The literature on the dynam-
ics of heterogenous markets is still in its infancy but actively developing. Indeed, one
can be overwhelmed by the task of handling a very broad spectrum of aspects where
agent-level heterogeneity can arise, such as risk aversion levels, degrees of rationality,
patience, beliefs, and information gathering, processing skills, and so on.

A detailed classification of different market microstructure models, on the other hand,
is given in [24] which is beyond the scope of the present chapter. However, we start
with a review of the selected literature. In this regard, Table 3.1 provides a summary
overview of the literature on equilibrium information-based agent networks.

Perhaps one of the earliest sequential (discrete) trade models is the one described in
the work of Glosten and Milgrom (cf. [39]), where an attempt is made to explain bid-
ask spread as a purely informational phenomenon that is believed to be arising from
adverse selection behaviour encountered by less-informed traders. The informational
properties of transaction prices and the reaction of the spread to market-generated as
well as other public information is also investigated. One of the interesting implica-
tions of this model is the possibility of market shutdowns due to severe informational
inefficiencies. This is similar to the “lemons problem” of Akerlof [3]. The infor-
mational content of prices and the value of extra information to the holder are also
examined in the work of Kyle (cf. [55]) through sequential as well as continuous auc-
tion models. Moreover, the latter two seem to converge as the trading interval gets
smaller. One interesting result of the model discussed in [55], and to a certain extent
in [39], is that modelling innovations as functions of quantities traded is found to be
consistent with modelling price innovations as the consequence of new information
arrivals. The ‘informativeness of prices’ (which is complementary to the amount of in-
formation which is yet to be incorporated into prices) in the context of [55] refers to the
error variance of future dividend given the market clearing price. The question is how
intensively the agent, given his superior signal, should trade over time to maximise his
profit given his actions might disturb the market (i.e., prices and depth). This model is
later on extended in [4] to general continuous distributions for the dividend. Then, a

1 Contrary to, e.g., [42] and [63].
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Table 3.1: Selected literature on the analysis of heterogeneous information- or belief-
based market dynamics and equilibria.

Author Model Agents Signal struc-
ture

Signal
deadline

Payoff
distr.

Implications

Glosten & Milgrom
(1985) [39]

Sequential, market
order, unit quantity,
individual order

Informed (m), liquidity
(m), competitive spe-
cialist (m)

Immediate
access,
long-lived

Fixed to
trading
period

Continuous
(normal)

Differences on quantity and quality
of possessed information help explain
existence and magnitude of (pro-
tracted) spreads.

Kyle (1985) [55] Sequential & contin-
uous, market order,
optimal quantity

Informed (s), noise (m),
comp. market maker
(m)

Immediate
access,
long-lived

Fixed be-
yond trad-
ing period

Continuous
(normal)

Optimal strategy exists to incorpo-
rate extra information smoothly into
prices without affecting price volatil-
ity, and maximise profits.

Admeti & Pfleider
(1988) [1]

Sequential Kyle
auctions, market
orders

Informed (m), liquidity
(m), market-maker (s),
all risk-neutral

Short-lived,
explicit

One-
period

Continuous
(random
walk)

Clustering of liquidity trading induces
clustering of information driven price
changes.

Back (1992) [4] Continuous, optimal
quantity

Informed (s), unin-
formed (m), comp.
market maker (m)

Immediate
access,
long-lived

Fixed to
trading
period

Cont.
gen.

Kyle model equilibrium exists for
general continuous distributions with-
out recourse to filtering theory

Back & Pedersen
(1998) [6]

Continuous, optimal
quantity

Informed (s), unin-
formed (m), risk-
neutral competitive
market maker (m)

Long-lived,
explicit

Fixed to
trading
period

Continuous
(general)

Information flow pattern is irrelevant
given the total amount of information.
Intensity of information use follows
intensity of liquidity trading.

Back & Baruch
(2004) [5]

Continuous, market
order,

Informed (s), unin-
formed (m), compet-
itive market maker
(m)

Immediate
access,
filtration

Random,
= trading
period

Discrete Continous version of Glosten-
Milgrom converges to continuous
Kyle model.

Caldentey & Sta-
chetti (2010) [27]

Sequential & contin-
uous, market order

Informed (s), unin-
formed (m), market
maker (s)

Long-lived,
not explicit
(may not
reveal X
fully)

Random
trading
horizon

Continuous
(random
walk)

All extra information is used before
endogenousT and then, until random
deadline, it is passed on to market im-
mediately. Larger the variance of sig-
nal, smaller the T , larger the rents.

Bond & Eraslan
(2010) [12]

One-period, en-
dogenous dividend

Risk-neutral agents (p) Not explicit
∈ R

One-
period

Binary Trade based purely on informa-
tional differences is possible. Com-
mon knowledge of strict gains from
information-based trade exists.

Brown & Rogers
(2012) [23]

Sequential & contin-
uous, belief-based

Central-planner (s),
agents (m)

Not explicit,
belief process
Λt

Fixed to
trading
period

Endowment
(process)

Observational equivalence (i.e., equi-
libria & portfolio choices) of private
information and diverse beliefs mod-
els is established.

Notes. (s): single, (p): pair, (m): multiple, i.e.,> 2.

modified version of [39] in continuous time, where ‘bluffing’ (i.e., mixed strategy) is
also allowed, is shown to converge to, again, a modified version of [55] with a random
signal deadline in [5]. A rather game-theoretic approach to signal-based trade is taken
in [12] where, this time, the dividend is let endogenously be determined by the action
of the agent and its correspondence with the realised fundamental. The signals, in this
case, are related to the action that needs to be taken. A sufficient level of signal preci-
sion is found to be necessary and sufficient for establishing the case where both seller
and buyer are better off from trade in expectation (referred to as “common knowledge
of gains from trade” in [12]), which is the equilibrium.

So far, there is no explicit mention of the dynamics of information flow, which is
the subject of heterogeneity, and it is understood to be an ‘immediate access’ to a
publicly unknown value φ(XT ) without any noise component. Building on [4] and
[55], a learning component is added in [6]. This means the signals are now long-lived
with a signal-to-noise varying in time. Although this made possible the mentioning of
information ‘flow’ in its true meaning, the interpretation of ‘learning’ through signal
in [6] is slightly different in that when the noise-to-signal, i.e., reciprocal of signal-to-
noise, is large, this means the agent is learning a lot. Yet, interestingly, given the total
amount of information disparity in favour of the more informed, the pattern in which
the information flows is found to be rather irrelevant in equilibrium. Later on, the
long-lived signal process is associated with a exponential distributed random deadline
(as in [5] earlier) in [27]. In fact, a random deadline changes the way the strategies
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for exploiting extra information are structured in various ways, with one way being
that agents do not rush to unload their information before it becomes useless and,
accordingly, trade frantically as deadline approaches. Backward induction methods of
dynamics programming are also rendered inapplicable.

Perhaps the most interesting alternative to the models of ‘diverse information’ models
(where agents do generally share the same probability measure but work over distinct
probability spaces) are those of ‘diverse beliefs’. One way to account for the diversity
of beliefs is through equivalent (i.e., defined over the same filtered probability space)
probability measures which reflect agents’ personal beliefs on the true value of the
dividend, as in [23]. This is maintained by likelihood ratio martingales (or, density
processes). Interestingly, the equivalence of the latter two models is established, even
without a particular choice of explicit signal structure for private information. And,
not so interestingly, the greater the diversity of beliefs, the larger the volume of trade
is. A similar approach is found in [33] where an equilibrium is established in terms of
‘surviving agents.’ In a belief-heterogeneous market, the surviving agent is found to
be the one who is the most rational. Last but not least, in cognisance of the important
role played by dynamic optimisation in approaching heterogeneous financial market
equilibrium problems, we underline two recent accounts of the latter, i.e. [25] and [35],
where how, in a market of two agents with heterogeneous characteristics, equilibria for
various quantities can be found by means of a single backward-induction algorithm is
vividly shown.

The approach in the rest of this chapter to being informationally (dis)advantageous
is analogous to the one in [14]: we do not view the state of being informationally
(dis)advantageous as (not) having immediate access to the future value of an variable
which is unknown to the public information. We rather view it as having access to ef-
ficient streams of information or, equivalently (cf. [1]), being more capable to compile
and process large and complex datasets out of publicly available information. Both of
these are associated with a higher σ of ξ in the context of Chapter 2. Yet, in the sense
of [23], the present framework can also be seen as a diverse belief model where beliefs
are shaped in time by information itself.

3.1. Model Setup

We assume that there is a pure dealership market comprising risk-neutral agents with
heterogeneous informational access. For simplicity, and w.l.o.g., we assume there is a
pair of agents, j = 1, 2, with access to the filtrations ξ1

t , ξ2
t , and a single risky asset with

payoff φ(XT ) not being measurable w.r.t. F ξt , t < T . We also assume σ1 < σ2, i.e.,
agent 2 is informationally more susceptible than agent 1. In our dynamical model, for
simplicity of analysis, we suppose that agents trade with each other futures contracts on
the single risky asset at sequential auction times ti ∈ [0, T ] for i = 1, 2, . . . ,m, without
any intertemporal consumption and exogenous wealth. Both agents simply follow a
buy-and-hold strategy. In this setup, execution of trades, besides a potential profit
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or loss, results in two things. First, they help, e.g., the central-planner, consolidate2

information sets of agents at time ti to have a joint information bundle σ̄c = σ(ξ1, ξ2).
Second, the competitive market price will be discovered immediately. Below we will
analyse the latter two separately. Limit orders are cleared by a Walrasian matching
engine (as in [25]), which can be deemed a central-planner in the context of [23] or a
group of competitive market makers. The central-planner aims solely to maximise the
overall expected profit (or, utility) of agents.

We also note that, for any given t and a priori density p(x), the price is a function of ξ
and σ, i.e., St = S(ξ, σ). This means, if St is observed, then one needs to know σ to
be able to back out ξt. Without knowledge σ, the observer cannot infer how reliable an
observed sample of ξt is.

Moments before the sequential auction time ti, agents, having observed their signals,
submit to the central planner the bid and ask prices at which they are willing to trade.
One key property of our model is that an agent may not necessarily know his signal
is superior (i.e., agnostic) and the agents will be able to infer each other’s prices, and
also information (unless they are ‘omitters’, as described below), when, and only if, a
price match occurs and a clearing price is set. Otherwise, limit orders are kept with the
auction engine (i.e., closed limit order trading book). This also rules out ‘bluffing’ (cf.
[5, 27]).

Individual bid and ask prices are based on the signal-implied prices worked out by
virtue of Eq. (2.19) and trade occurs whenever

ς−S1
t ≥ ς+S2

t or ς−S2
t ≥ ς+S1

t , (3.1)

with ς− and ς+ being the constant bid and ask multipliers, respectively, where ς− ≤ 1
and ς+ ≥ 1. Obviously, if Eq. (3.1) holds with equality, i.e., if ς−S1

t = ς+S2
t or ς−S2

t =
ς+S1

t , then the market price S∗t will be discovered directly. In case of an inequality,
under risk-neutrality assumption, the market will clear at the mid-price3

S∗t = ς−S1
t + ς+S2

t

2 or
ς−S2

t + ς+S1
t

2 . (3.2)

The initial contract holdings of agents, as denoted by θj0, j ∈ {1, 2}, are set to 0.
Here θjt denotes the total time-t net contract stock held by agent j. We also define
θt := ∑

j θ
j
t as the total net contract ‘stock’ held by the central clearing at time t.

Accordingly, total net order ‘flow’ at time t should be ∆θt which is given by

∆θt =
∑
j

∆θjt =
∑
j

qjt = qt (3.3)

2 Here we emphasise the term ‘consolidate,’ since how information is consolidated will be one of the key
questions in our algorithm.

3 In [25, p. 7], the authors elegantly elaborate why the real-world interpretation of the price posted by a
Walrasian auctioneering computer is the bid-ask midpoint.
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for some trading process (qjt )0≤t≤T , given by

qjt :=


qj+t , Sjt > S∗t ,

qj−t , Sjt < S∗t ,
0, otherwise,

(3.4)

with qj+t > 0, qj−t < 0. Market clearing conditions imply qt = ∑
j q

j
t = 0 and,

therefore, θt = 0, ∀t ∈ [0, T ]. Now we define the increasing process (st)t∈[0,T ], i.e., the
time of the last trade prior to time t, as follows:

st = sup{s : s < t, |qjs| > 0}. (3.5)

It is apparent that st is 0 if t = 0, or if t > 0 and qjs = 0 ∀s ∈ [0, t). The ex-post (i.e.,
at contract expiry) profit/loss of agent j coming from time t transaction can be written
as

Πj
t = 1H∩{Sjt>S∗t }q

j+
t (X − S∗t ) + 1H∩{Sjt<S∗t }q

j−
t (X − S∗t ) + (3.6)

1L∩{Sjt<S∗t }q
j−
t (X − S∗t ) + 1L∩{Sjt>S∗t }q

j+
t (X − S∗t )

(or, simply) = qjt (X − S∗t ), (3.7)

where S∗t is as in Eq. (3.2), and H and L denote high- and low-type markets, respec-
tively (cf. [55]). Eq. (3.6) is based on the correspondence of signal and reality. Market
clearing conditions again will require Πt = ∑

j Πj
t = 0 ∀t ∈ [0, T ].

3.2. Numerical Analysis

We now present some numerical results based on the setup above. Let |qjt | ∈ {0, 1}
and assume, in this first scenario, that both agents are “omitters” (or, “stubborn big-
ots” of [23]) who never change their mind and simply execute trades according to
the following recurring procedure: (1) Observe signal ξjt . (2) Quote signal-based bid
and ask prices. (3) Let the central-planner determine − using the pre-announced and
legally binding matching rule (3.2) − the trade direction, if any, and the transaction
price (which are then revealed to the agents). Note that agents execute trades “without”
learning from each other−who could, otherwise, update their likelihoods p(ξ|x) as we
will see later on − and continue to rely solely on their own information sources.

In Figure 3.1, where the true fundamental value of X is set to 1, we illustrate one
possible path of such a scenario. Despite a bid-ask margin, occurrence of trade is
highly likely in this case as agents do not learn from each other and as personal value
judgements diverge. The informationally more (less) susceptible agent, though un-
knowingly, keeps trading in the right (wrong) direction due to superiority (inferiority)

37



Time step

0 2 4 6 8 10

P
ri
c
e

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S1 (σ=0.5)

S2 (σ=1.5)
Mid-point (trade)
Mid-point

Figure 3.1: Sample evolution of information-based transaction prices in scenario 1
(|qjt | ∈ {0, 1}). Arbitrary parameter values: T = 1, ∆t = 1/10, r = 0.05, σ ∈
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Figure 3.2: Evolution of information-based transaction P&L averaged over 103 path
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Figure 3.3: Evolution of information-based transaction P&L of multiple agents aver-
aged over 103 path simulations and based on parameters given in Figure 3.1 , except
that ∆t = 1/100.

of his signal. Note from Figure 3.1 that even after the agent with better signal discov-
ers the asset’s true value (around auction 5), he is still able to execute profitable trades
thanks to the matching rule. Figure 3.2, on the other hand, shows the profit-and-loss
(P&L) results of such a scenario for each time step averaged over 103 simulations,
where the number of auctions is increased to 100. We note at the first glance that the
qualitative behaviour of the P&L agrees with the qualitative behaviour of the magni-
tude of extra information held, presented through our information-theoretical analysis
in Section 2.4 of Chapter 2 of this thesis, as well as that in [14].

On an additional note, when multiple (>2) agents with various informational capabil-
ities are involved in the market, our numerical results presented in Figure 3.3 suggest
that, while P&L continue to agree with the qualitative behaviour of the magnitude of
extra information held by the agent, it is also distributed between agents proportional
to the quality of their signal (particularly once the differential informational reaches an
adequate level).

Yet, the exchanges generally do not operate quite this way. A more realistic scenario
would be that agents are “attentive” and infer their counterpart’s posterior πjst(x), and,
therefore, likelihood p(ξjst |x), from their price quote at time st. This would mean
having partial access to a larger σ-algebra, σ̄(ξst), generated by the join4 of σ(ξ1

st) and
σ(ξ2

st), i.e.,

σ̄(ξjst) = σ(ξ1
st) ∨ σ(ξ2

st). (3.8)

4 Note that the union of collection of sigma algebras is not always a σ-algebra or even an algebra.
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Once agent j gains partial access to σ̄(ξjst), he updates his posterior from πst(x) to
π̄st(x) (by updating p(ξjst|x) to p̄(ξjst|x), i.e., the effective likelihood), which will be
again of the form

π̄jst(x) = p(x)p̄(ξjst |x)∫
X
p(x)p̄(ξjst |x)dx

. (3.9)

Note that we intentionally avoid the notation p(ξ1
st , ξ

2
st |x), and use p̄(ξjst|x) instead,

so as not to mean that one party’s signal is directly observable to the other at the last
auction time st (which is also not needed). By virtue of bi-dimensional normal density,
p̄(ξjst |x) or, effectively, p(ξ1

st , ξ
2
st|x), in Eq. (3.9) can be written in the form

p(ξ1
st , ξ

2
st |x) = 1

2π(st/κst)
√

1− ρ2

· exp
(
−1

2
(ξ1
st − σ1xst)2

(1− ρ2)st/κst

)

· exp
(
−1

2
−2ρ(ξ1

st − σ1xst)(ξ2
t − σ2xst)

(1− ρ2)st/κst

)

· exp
(
−1

2
(ξ2
st − σ2xst)2

(1− ρ2)st/κst

)
, (3.10)

with |ρ| < 1 denoting the correlation between ξ1
st and ξ2

st conditional on x.5

Finally, we note that, in the present setup, the effective information σ̄(ξjst) can be
worked out only after (not before) the trade at time st, which renders it literally ‘use-
less’ until the present auction at time t. Therefore, before submitting an order at time
t, having observed a new signal ξjt , the agent will need to update his effective infor-
mation to σ̄(ξjt ) = σ(ξ1

t ) ∨ σ(ξ2
st) (e.g., for agent 1) or σ(ξ1

st) ∨ σ(ξ2
t ) (in the case

of agent 2). Also, since ξt is Markovian, for an agent, partially accessing the signal
sample ξjst of his counterpart will be as valuable as partially accessing his entire signal
history (ξjs)s≤st . Accordingly, right before the auction at time t, the ‘useful’ effective
likelihood p̄ for agent 1 will be

5 Note that when ρ = 1, assuming σ1 6= σ2, the central planner will only need to solve two linear equations,
with X and βti− being the two unknowns, to get instant access to X .
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p(ξ1
t , ξ

2
st |x) = 1

2π
√
t/κt

√
st/κst

√
1− ρ̂2

· exp
(
−1

2
(st/κst)(ξ1

t − σ1xt)2

(1− ρ̂2)(t/κt)(st/κst)

)

· exp
−1

2
−2ρ̂(ξ1

t − σ1xt)(ξ2
st − σ2xst)

√
(t/κt)

√
(st/κst)

(1− ρ̂2)(t/κt)(st/κst)


· exp

(
−1

2
(t/κt)(ξ2

st − σ2xst)2

(1− ρ̂2)(t/κt)(st/κst)

)
, (3.11)

where we used the relation β1
st = ρβ2

st +
√

1− ρ2β̄st , with β2
st ⊥⊥ β̄st , to find ρ̂, i.e., the

new correlation structure between ξ1
t and ξ2

st given x, as follows:

ρ̂ = Cov(β1
t , β

2
st)

σβ1
t
σβ2

st

= Cov(ρβ2
t +
√

1− ρ2β̄t, β
2
st)√

t/κt
√
st/κst

= ρ
st/κt√

t/κt
√
st/κst

= ρ

√
st
t

κst
κt
, (3.12)

with ρ being same as in Eq. (3.10). We note that ρ̂ is a decreasing function of time, as
expected, and also that, when ρ̂ = 0, Eq. (3.11) simply reduces to

p(ξ1
t , ξ

2
st |x) = 1

2π
√
t/κt

√
s/κst

· exp
(
−1

2
(st/κs)(ξ1

t − σ1xt)2

(t/κt)(st/κst)

)

· exp
(
−1

2
(t/κt)(ξ2

st − σ2xst)2

(t/κt)(st/κst)

)
, (3.13)

which also reduces to p(ξ1
t |x) when st = 0 (no trade). The signal-based price of agent

j, Sjt , is then given by

Sjt = E
[
X|σ̄(ξjt )

]
. (3.14)

Accordingly, the new trading procedure is as follows: (1) Observe signal ξjt . (1a) Work
out σ̄(ξjt ). (2) Quote signal-based bid and ask prices based on effective information.
(3) Let the central-planner do his work (same as (3) above).
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Figure 3.5: Evolution of information-based transaction P&L averaged over a series of
103 path simulations and based on parameters given in Figure 3.4, except that ∆t =
1/100.
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Figure 3.6: Learning process: Bayesian updating of posteriors πjt (x) averaged over 103

path simulations and based on parameters given in Figure 3.4, except that ∆t = 1/100.

One realisation of this second scenario is depicted in Figure 3.4. At the first glance,
learning seems to have decreased profit margins substantially (i.e., to a level where
they are often eaten up by the spread, preventing trade). In Figure 3.5, we again show
average stepwise P&L of agents over 103 realisations. It is apparent from the figure
that the informationally more susceptible agent is no more able to extract rents that are
as large as in the first scenario (see Figure 3.2), although he is still able to maintain
some modest profits. His ability to maintain modest profits is most likely due to the
lag in the learning process as there is still a room for the superior signal to provide
the agent receiving it with extra information in-between auctions. The huge difference
between the outcomes of two scenarios, i.e., “omitter” and “attentive”, implies that,
when each agent deems his own signal superior, there might exist optimal strategies
where agents can still be “attentive” but, this time, choose which time to reveal their
information through trade.

To conclude this section, we compare, in Figures 3.6-3.7, the impact of allowing mu-
tual learning on the speeds at which the two agents discover the true fundamental value
of the asset. In the case where the differential between information flow speeds is high
(refer to Figure 3.6), learning seems to work more in favour of the agent with less su-
perior signal with little or no benefit to the agent with a superior signal, whereas, when
the differential is minimal (cf. Figure 3.7), both agents equally benefit from sharing
their information via trading.

3.3. Signal-based Optimal Strategy

The P&L figures provided in Section 3.1 are ex-post, i.e., calculated at the terminal
date. In reality, when they trade, agents do so based on their signal-based expectations
about the true fundamental value to be revealed at time T . They learn whether their
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Figure 3.7: Learning process: Bayesian updating of posteriors πjt (x) averaged over 103

path simulations and based on parameters given in Figure 3.4, except that ∆t = 1/100.

earlier trades in futures contracts turned out to be a profit or loss again at time T . This,
in fact, establishes the main argument which calls for the existence of optimal choices
of trading times which maximise their signal-based expected profits: both agents be-
lieve that their trades will make them better off (or, there exists ‘a common knowledge
of gains from trade’ in the sense of [12]). Throughout this section, we will regard the
agents as ‘attentive,’ and assume ς± = 1.

3.3.1 Characterisation of Expected Profit

We recall from Section 3.2 that, just before the auction at time t, the agent j observes
the value of his signal and works out his effective information σ̄(ξjt ) before he makes a
judgement of the asset’s value. Assuming X ∈ {X l, Xh} and, again, |qjt | ∈ {0, 1}, the
expected (ex-ante) profit of agent j from his possible trade at time t can be decomposed
as follows:

Ejt
[
Πj
t

]
= P j

t (ξc)
∣∣∣Xh − Ejt [S∗t |ξc]

∣∣∣− P j
t (ξe)

∣∣∣Xh − Ejt [S∗t |ξe]
∣∣∣ (3.15)

with P j
t (ξc) and P j

t (ξe) being the chances of agent j getting correct and erroneous
signals at time t, respectively. And, again, Et[·] = E[·|σ̄(ξt)]. More formally,

P j
t (ξc) = P j

t (H)P j
t (ξc|H) + P j

t (L)P j(ξc|L) (3.16)
= P j

t (H)P j(Sjt > S∗t |H) + P j
t (L)P j(Sjt < S∗t |L),

P j
t (ξe) = P j

t (H)P j
t (ξe|H) + P j

t (L)P j(ξe|L) (3.17)
= P j

t (H)P j(Sjt < S∗t |H) + P j
t (L)P j(Sjt > S∗t |L),
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where, again,H andL denote high- and low-type markets in the sense of [55], and

(ξc|H) := (Sjt > S∗t |H), (ξc|L) := (Sjt < S∗t |L)
(ξe|H) := (Sjt < S∗t |H), (ξe|L) := (Sjt > S∗t |L). (3.18)

Then, Eq. (3.15) can be written more explicitly as follows:

Ejt
[
Πj
t

]
= P j

t (H)
(
P j
t (ξc|H)

(
Xh − Ejt [S∗t |H, ξc]

)
−P j

t (ξe|H)
(
Xh − Ejt [S∗t |H, ξe]

))
+

P j
t (L)

(
P j
t (ξc|L)

(
Ejt [S∗t |L, ξc]−X l

)
−P j

t (ξe|L)
(
Ejt [S∗t |L, ξe]−X l

))
,

(3.19)

where

P j
t (H) = P j

t (Xh) = phe
κtf(t,σj ,ξj ,xh)∑

k∈{h,l} pke
κtf(t,σj ,ξj ,xk) ,

P j
t (L) = P j

t (X l) = ple
κtf(t,σj ,ξj ,xl)∑

k∈{h,l} pke
κtf(t,σj ,ξj ,xk) , (3.20)

with f(t, σ, ξ, x) := σξtx− (1/2)σ2x2t. When the payoff, i.e., φ(X) = X , is continu-
ous, however, Eq. (3.19) implies

Ejt
[
Πj
t

]
= P j

t (H)
(∫

Xh

(
P j
t (ξc|H, x)

(
x− Ejt [S∗t (x)|H, ξc]

)
−P j

t (ξe|H, x)
(
x− Ejt [S∗t (x)|H, ξe]

))
πj+t (x)dx

)
+

P j
t (L)

(∫
Xl

(
P j
t (ξc|L, x)

(
Ejt [S∗t (x)|L, ξc)]− x

)
−P j

t (ξe|L, x)
(
Ejt [S∗t (x)|L, ξe]− x

))
πj−t (x)dx

)
, (3.21)

where Xh = (S∗0 , Xmax) and Xl = (Xmin, S
∗
0); πj+t and πj−t are normalised posteriors

for high- and low-type markets, respectively; and, at this time,

P j
t (H) :=

∫
Xh
πjt (x)dx, and P j

t (L) :=
∫
Xl
πjt (x)dx. (3.22)
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The notation S(x) is used to denote E[X|ξ(x)], i.e., the signal-based price of the agent
when the actual signal is pinned to the value x. In a nutshell, expected profit of the
agent is decomposed, through Eq. (3.19) and (3.21), into two components, i.e., whether
the agent’s signal is pointing at the right (wrong) trade direction and, in that case, what
the expected profit (loss) would be.

3.3.1.1 Trading Signal Quality: Digital Dividend

Assume, without loss of generality, that X ∈ {x0, x1}, with x0 = 0, x1 > 0 and the
prior knowledge of the pair (p0, p1).6 Let the true value of X be x1. Equation (3.19)
implies

Ejt
[
Πj
t

]
= P j

t (x1)
(
P j
t (ξc|x1)

(
x1 − Ejt [S∗t (x1)|ξc]

)
−P j

t (ξe|x1)
(
x1 − Ejt [S∗t (x1)|ξe]

))
+

P j
t (x0)

(
P j
t (ξc|x0)

(
Ejt [S∗t (x0)|ξc]− x0

)
−P j

t (ξe|x0)
(
Ejt [S∗t (x0)|ξe]− x0

))
. (3.23)

We can calculate the likelihoods of receiving a correct trade signal for agent 1 when
st = 0 (i.e., no trade until t) in high- and low-type markets, respectively, as fol-
lows:

P 1
t (ξc|x1) = P

(
S1
t (x1) > S∗t (x1)

)
= P

(
S1
t (x1)/2 > S2

t (x1)/2
)

= P

(∑
k=1,2 xkpke

κtf(t,σ1,ξ1,xk)∑
k=1,2 pkeκtf(t,σ1,ξ1,xk) >

∑
k=1,2 xkpke

κtf(t,σ2,ξ2,xk)∑
k=1,2 pkeκtf(t,σ2,ξ2,xk)

)
.

(3.24)

A straightforward calculation yields

6 Note that any binary payoff structure X ∈ {x0, x1}, x1 > x0 can be simplified as {0, x1 − x0}, a property
which will simplify our calculations.
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P 1
t (ξc|x1) = P

(
x1p1e

κtf(t,σ1,ξ1,x1)/
(
p0e

κtf(t,σ1,ξ1,0) + p1e
κtf(t,σ1,ξ1,x1)

)
> x1p1e

κtf(t,σ2,ξ2,x1)/
(
p0e

κtf(t,σ2,ξ2,0) + p1e
κtf(t,σ2,ξ2,x1)

))
= P

(
eκtf(t,σ1,ξ1,x1)+κtf(t,σ2,ξ2,0) > eκtf(t,σ2,ξ2,x1)+κtf(t,σ1,ξ1,0)

)
= P

(
eκtf(t,σ1,ξ1,x1) > eκtf(t,σ2,ξ2,x1)

)
(note f(t, σ, ξ, 0) = 0)

= P
(
κtf(t, σ1, ξ

1, x1) > κtf(t, σ2, ξ
2, x1)

)
= P

(
σ1κtξ

1
t x1 −

1
2σ

2
1κtx

2
1t > σ2κtξ

2
t x1 −

1
2σ

2
2x

2
1tκt

)
= P

(
σ1κtξ

1
t − σ2κtξ

2
t >

1
2x1tκt

(
σ2

1 − σ2
2

))
= P

(
σ1κt

(
z1

√
tκ−1
t + σ1x1t

)
− σ2κt

(
z2

√
tκ−1
t + σ2x1t

)
>

1
2x1tκt

(
σ2

1 − σ2
2

))
= P

(
σ1
√
tκtz1 − σ2

√
tκtz2 >

1
2x1tκt

(
σ2

2 − σ2
1

))
= Θ

(
1
2

x1tκt (σ2
1 − σ2

2)
(σ2

1 + σ2
2)1/2 (tκt)

1/2

)
(t < T ), (3.25)

where, again, Θ(·) is the standard normal cumulative distribution function.7 The last
line simply follows from z1 ⊥⊥ z2 and z1,2 ∼ N (0, 1). Similarly, by arranging the last
three lines of Eq. (3.25) and changing the direction of inequality from > to <, we can
indeed verify that

P 1
t (ξc|x0) = P 1

t (ξc|x1) (3.26)

and, moreover, by virtue of convex combination in Eq. (3.16), that

P 1
t (ξc) = P 1

t (ξc|x0) = P 1
t (ξc|x1). (3.27)

Equations (3.27) and (3.25) then directly imply

P 2
t (ξc) = 1− P 1

t (ξc) = P 1
t (ξe). (3.28)

Thus, the chances of agent j getting a correct (or erroneous) signal are the same no
matter if the market is bullish or bearish, and one agent’s success is the other one’s
failure, as expected. We now generalise Eq. (3.25) to the case where agents did already
exchange their information through trading, i.e. st > 0. Setting st = s, Eq. (3.25) can
be rearranged as

7 Note that, in Eq. (3.25), we inherently employ the basic relation P (x > b−a) = 1−Θ(b−a) = Θ(a− b).
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P 1
t (ξc|x1, s) = P

(
x1p1e

κtf(t,σ1,ξ1,x1)+κsf(s,σ2,ξ2,x1)/
(
p0 + p1e

κtf(t,σ1,ξ1,x1)+κsf(s,σ2,ξ2,x1)
)

> x1p1e
κtf(t,σ2,ξ2,x1)+κsf(s,σ1,ξ1,x1)/

(
p0 + p1e

κtf(t,σ2,ξ2,x1)+κsf(s,σ1,ξ1,x1)
))

= P
(
eκtf(t,σ1,ξ1,x1)+κsf(s,σ2,ξ2,x1) > eκtf(t,σ2,ξ2,x1)+κsf(s,σ1,ξ1,x1)

)
= P

(
κtf(t, σ1, ξ

1, x1) + κsf(s, σ2, ξ
2, x1)

> κtf(t, σ2, ξ
2, x1) + κsf(s, σ1, ξ

1, x1)
)

= P
(
σ1κtξ

1
t −

1
2σ

2
1x1tκt −

(
σ1κsξ

1
s −

1
2σ

2
1x1sκs

)
> σ2κtξ

2
t −

1
2σ

2
2x1tκt −

(
σ2κsξ

2
s −

1
2σ

2
2x1sκs

))
= P

(
σ1
(
κtξ

1
t − κsξ1

s

)
− 1

2σ
2
1x1 (tκt − sκs)

> σ2
(
κtξ

2
t − κsξ2

s

)
− 1

2σ
2
2x1 (tκt − sκs)

)
= P

(
σ1
(
κt
(
σ1tx1 + β1

t

)
− κs

(
σ1sx1 + β1

s

))
−σ2

(
κt
(
σ2tx1 + β2

t

)
− κs

(
σ2sx1 + β2

s

))
>

1
2x1 (tκt − sκs)

(
σ2

1 − σ2
2

))
= P

(
σ1
(
κtβ

1
t − κsβ1

s

)
− σ2

(
κtβ

2
t − κsβ2

s

)
>

1
2x1 (tκt − sκs)

(
σ2

2 − σ2
1

))
= P

((
σ2

1κ
2
t t/κt − σ2

1κ
2
ss/κs

) 1
2 z1 −

(
σ2

2κ
2
t t/κt − σ2

2κ
2
ss/κs

) 1
2 z2

>
1
2x1 (tκt − sκs)

(
σ2

2 − σ2
1

))
= Θ

(
1
2
x1(tκt − sκs) (σ2

1 − σ2
2)

(σ2
1 + σ2

2)1/2 (tκt − sκs)1/2

)
(s, t < T ), (3.29)

which, again, implies

• P 1
t (ξc|x0, s) = P 1

t (ξc|x1, s),

• P 1
t (ξc|s) = P 1

t (ξc|x1, s) = P 1
t (ξc|x0, s), and

• P 2
t (ξc|s) = 1− P 1

t (ξc|s) = P 1
t (ξe|s).

Note that neither P 1
t (ξc|x1) in Eq. (3.25) nor P 1

t (ξc|x1, s) in Eq. (3.29) is a function
of the value of agent j’s specific information at time t, i.e., σ̄(ξjt ), but rather depends
only on the differential between information flow speeds, σ1 and σ2 (or, how agents
perceive it), and the spread of X .

Eq. (3.25) and (3.29) indeed reveal a number of intuitive properties, which agree
with the analyses in Chapter 2 and earlier in this chapter, such as: (i) the larger the

48



differential |σ1 − σ2|, the more likely the agent with superior signal will get a correct
signal (ξc), (ii) with |σ1 − σ2| given, the agent with superior signal will prefer more
uncertainty (i.e., greater spread for X) to less uncertainty (i.e., smaller spread for X),
and, (iii) with |σ1 − σ2| and spread of X given, refraining from a trade will always
result in greater chances of getting a correct signal (although there will be a cost to
refraining).

To complete the case where the contract pays a binary dividend, we state, by virtue of
Eq. (3.30), the expected ‘profit-to-go’ of agent j at time t:

T∑
u=t

Ejt
[
Πj
uT

]
=

T∑
u=t

P j
t (x1)

(
P j
u(ξc|x1, su)

(
x1 − Ejt [S∗u(x1)|ξc]

)
−P j

u(ξe|x1)
(
x1 − Ejt [S∗u(x1)|ξe]

))
+

T∑
u=t

P j
t (x0)

(
P j
u(ξc|x0)

(
Ejt [S∗u(x0)|ξc]− x0

)
−P j

u(ξe|x0)
(
Ejt [S∗u(x0)|ξe]− x0

))
. (3.30)

Note that we preserve the subscript t for pj and Ej as they will be inferred based on
the effective information at time t, i.e., σ̄(ξjt ). Below we generalise the above results
to the case where X has a continuous distribution.

3.3.1.2 Trading Signal Quality: Gaussian Dividend

We first redefine the likelihoods of high- and low-type markets (see Eq. (3.22)):

P j
t (x+) =

∫
X+
πjt (x)dx, P j

t (x−) =
∫
X−
πjt (x)dx, (3.31)

where X+ = (0,∞) and X− = (−∞, 0). By virtue of Eq. (2.42) of Section 2.2.1,
where we define the signal-based price when asset pays Gaussian dividends, the chances
for agent 1 having right trade signals in high- and low-type markets can be found, in a
same manner as Eq. (3.21), as follows.8 Let X = x, x > 0,

8 We use the property that the price process St is Gaussian when X has a Gaussian terminal distribution.
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P 1
t (ξc|x+) =

∫
X+
P 1(S1

t (x) > S∗t (x))π+
t (x)dx =

∫
X+
P 1(S1

t (x)/2 > S2
t (x)/2)π1+

t (x)dx

=
∫
X+
P

(
1
2

σ1κt
σ2

1tκt + 1ξ
1
t (x)− 1

2
σ2κt

σ2
2tκt + 1ξ

2
t (x) > 0

)
π1+
t (x)dx

=
∫
X+
P

(
1
2

σ1κt
σ2

1tκt + 1
(
σ1tx+ β1

t

)
− 1

2
σ2κt

σ2
2tκt + 1

(
σ2tx+ β2

t

)
> 0

)
π1+
t (x)dx

=
∫
X+
P

(
1
2

σ1κt
σ2

1tκt + 1
√
t/κtz1 −

1
2

σ2κt
σ2

2tκt + 1
√
t/κtz2 (z1 ⊥⊥ z2, z1,2 ∼ N (0, 1))

>
1
2xtκt

(
σ2

2
σ2

2tκt + 1 −
σ2

1
σ2

1tκt + 1

))
π1+
t (x)dx

=
∫
X+

Θ


1
2xtκt

(
σ2

1
σ2

2tκt+1 −
σ2

2
σ2

1tκt+1

)
1
2
√
tκt

√(
σ1

σ2
1tκt+1

)2
+
(

σ2
σ2

2tκt+1

)2

 π1+
t (x)dx

=
∫
X+

Θ
(
−at
bt
x
)
π1+
t (x)dx (at, bt > 0, x > 0), (3.32)

where π+
t is the normalised density,

at = 1
2tκt

(
σ2

2
σ2

2tκt + 1 −
σ2

1
σ2

1tκt + 1

)
(3.33)

and

bt = 1
2
√
tκt

( σ1

σ2
1tκt + 1

)2

+
(

σ2

σ2
2tκt + 1

)2
1/2

. (3.34)

Accordingly, for a low-type market, it can be shown that

P 1
t (ξc|x−) =

∫
X−

Θ
(
at
bt
x
)
π1−
t (x)dx (at, bt > 0, xt < 0)

=
∫
X+

Θ
(
−at
bt
x
)
π1+
t (x)dx (at, bt > 0, x > 0)

= P 1
t (ξc|x+). (3.35)

If st = s is non-zero, in which case Eq. (2.42) takes the form

S1
t = 1{t<T}e

−r(T−t) σ1κtξ
1
t + σ2κsξ

2
s

σ2
1κtt+ σ2

2κss+ 1 , (3.36)
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we find P 1
t (ξc|x+, s) as

P 1
t (ξc|x+, s) =

∫
X+
P 1(S1

t (x) > S∗t (x)|s)π̄1+
t (x)dx

=
∫
X+
P 1(S1

t (x)/2 > S2
t (x)/2|s)π̄1+

t (x)dx

=
∫
X+
P

(
1
2
σ1κtξ

1
t + σ2κsξ

2
s

σ2
1tκt + σ2

2sκs + 1 −
1
2
σ2κtξ

2
t + σ1κsξ

1
s

σ2
2tκt + σ2

1sκs + 1 > 0
)
π̄1+
t (x)dx

=
∫
X+
P

(
1
2
σ1κt(σ1tx+ β1

t )
σ2

1tκt + σ2
2sκs + 1 −

1
2
σ1κs(σ1sx+ β1

s )
σ2

1sκs + σ2
2tκt + 1

−
(

1
2
σ2κt(σ2tx+ β2

t )
σ2

2tκt + σ2
1sκs + 1 −

1
2
σ2κs(σ2sx+ β2

s )
σ2

2sκs + σ2
1tκt + 1

)
> 0

)
π̄1+
t (x)dx

=
∫
X+
P

1
2

( σ1κt
σ2

1tκt + σ2
2sκs + 1

)2

(t/κt) +
(

σ1κs
σ2

1sκs + σ2
2tκt + 1

)2

(s/κs)

−2
(

σ1κt
σ2

1tκt + σ2
2sκs + 1

)(
σ1κs

σ2
1sκs + σ2

2tκt + 1

)
(s/κt)

] 1
2

z1

−1
2

( σ2κt
σ2

2tκt + σ2
1sκs + 1

)2

(t/κt) +
(

σ2κs
σ2

2sκs + σ2
1tκt + 1

)2

(s/κs)

−2
(

σ2κt
σ2

2tκt + σ2
1sκs + 1

)(
σ2κs

σ2
2sκs + σ2

1tκt + 1

)
(s/κt)

] 1
2

z2

>
1
2

(
σ2

2tκtx

σ2
2tκt + σ2

1sκs + 1 −
σ2

2sκsx

σ2
2sκs + σ2

1tκt + 1

)

−1
2

(
σ2

1tκtx

σ2
1tκt + σ2

2sκs + 1 −
σ2

1sκsx

σ2
1sκs + σ2

2tκt + 1

)}
π̄1+
t (x)dx

=
∫
X+

Θ
(
−a

s
t

bst
x

)
π̄1+
t (x)dx (ast , bst , x > 0), (3.37)

where, again, z1,2 are independently N (0, 1), π̄+ is the normalised effective posterior
density as given in Eq. (3.9),

ast = 1
2

(
σ2

2tκt
σ2

2tκt + σ2
1sκs + 1 −

σ2
2sκs

σ2
2sκs + σ2

1tκt + 1

)

−1
2

(
σ2

1tκt
σ2

1tκt + σ2
2sκs + 1 −

σ2
1sκs

σ2
1sκs + σ2

2tκt + 1

)
, (3.38)
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bst = 1
2

( σ1κt
σ2

1tκt + σ2
2sκs + 1

)2

(t/κt) +
(

σ1κs
σ2

1sκs + σ2
2tκt + 1

)2

(s/κs)

−2
(

σ1κt
σ2

1tκt + σ2
2sκs + 1

)(
σ1κs

σ2
1sκs + σ2

2tκt + 1

)
(s/κt)

+
(

σ2κt
σ2

2tκt + σ2
1sκs + 1

)2

(t/κt) +
(

σ2κs
σ2

2sκs + σ2
1tκt + 1

)2

(s/κs)

−2
(

σ2κt
σ2

2tκt + σ2
1sκs + 1

)(
σ2κs

σ2
2sκs + σ2

1tκt + 1

)
(s/κt)

] 1
2

. (3.39)

Indeed, we can quickly verify that ast > 0.9 Moreover, similar to the digital pay-
off case, it directly follows from (3.37) that P 1

t (ξc|x+, s) = P 1
t (ξc|x−, s), p1

t (ξc|s) =
P 1
t (ξc|x+, s) = P 1

t (ξc|x−, s), and p2
t (ξc|s) = 1− p1

t (ξc|s) = p1
t (ξe|s). Note in addition

that, for s = 0, Eq. (3.37) simplifies to Eq. (3.32).

For a low-type market, similarly,

P 1
t (ξc|x−, s) =

∫
X−

Θ
(
ast
bst
x

)
π−t (x)dx (ast , bst > 0, x < 0)

=
∫
X+

Θ
(
−a

s
t

bst
x

)
π+
t (x)dx (ast , bst > 0, x > 0)

= P 1
t (ξc|x+, s). (3.40)

Expected profit-to-go at time t can be inferred in a similar sense to Eq. (3.30).

As a final step to calculate the signal-based expected profit of then agent at time t
(i.e., just before the auction), as given in Eq. (3.21), we now compute the expected
transaction price in low- and high-type markets and with correct and erroneous signals.
Note that

E1
t

[
S∗t (x)

∣∣∣x+, ξc, s
]

= 1/2
(
S1
t (x) + E1

t

[
S2
t (x)

∣∣∣x+, ξc, s
])

= S1
t (x)− E

[
1/2
(
S1
t (x)− S2

t (x)
)+∣∣∣x+, s

]
, (3.41)

E1
t

[
S∗t (x)

∣∣∣x+, ξe, s
]

= 1/2
(
S1
t (x) + E1

t

[
S2
t (x)

∣∣∣x+, ξe, s
])

= S1
t (x) + E

[
1/2
(
S2
t (x)− S1

t (x)
)+∣∣∣x+, s

]
, (3.42)

9 As x > y implies x/(x+ 1) > y/(y + 1).
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E1
t

[
S∗t (x)

∣∣∣x−, ξc] = 1/2
(
S1
t (x) + E1

t

[
S2
t (x)

∣∣∣x−, ξc, s])
= S1

t (x) + E
[

1/2
(
S2
t (x)− S1

t (x)
)+∣∣∣x−, s] (3.43)

and

E1
t

[
S∗t (x)

∣∣∣x−, ξe] = 1/2
(
S1
t (x) + E1

t

[
S2
t (x)

∣∣∣x−, ξe, s])
= S1

t (x)− E
[

1/2
(
S1
t (x)− S2

t (x)
)+∣∣∣x−, s] . (3.44)

Notice that we dropped t and j from Ejt ’s in Eq. (3.41)-(3.44) since, by Eq. (3.37),
when (ξjt )0≤t≤T is pinned to a certain value x, the price differential is not conditional
on the specific value of agent j’s signal at time t, but rather a function of σ1, σ2, t and
s. Thus, all one needs to do (so as to compute the expected transaction price under
different market situations and trading signal quality) is to work out the expected value
of the ‘absolute price differential’ under each circumstance. To that end, we can infer
from Eq. (3.37) that

(
1/2 (S2

t (x)− S1
t (x))

∣∣∣x+, s
)
∼ N (astx, bst),(

1/2 (S2
t (x)− S1

t (x))
∣∣∣x−, s) ∼ N (astx, bst),(

1/2 (S1
t (x)− S2

t (x))
∣∣∣x+, s

)
∼ N (−astx, bst),(

1/2 (S1
t (x)− S2

t (x))
∣∣∣x−, s) ∼ N (−astx, bst),

where ast , b
s
t > 0 are as given above. As a result,

E
[

1/2
(
S2
t (x)− S1

t (x)
)+∣∣∣x+, s

]
=


η1

1√
2πbst

∫ ∞
0

ye
− 1

2
(y−ast x)2

(bs
t
)2 dy, x > 0,

η1
1√

2πbst

∫ ∞
0

ye
− 1

2
(y+ast x)2

(bs
t
)2 dy, x < 0,

= E
[

1/2
(
S1
t (x)− S2

t (x)
)+∣∣∣x−, s] ,

(3.45)

and
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E
[

1/2
(
S1
t (x)− S2

t (x)
)+∣∣∣x+, s

]
=


η2

1√
2πbst

∫ ∞
0

ye
− 1

2
(y+ast x)2

(bs
t
)2 dy, x > 0,

η2
1√

2πbst

∫ ∞
0

ye
− 1

2
(y−ast x)2

(bs
t
)2 dy, x < 0,

= E
[

1/2
(
S2
t (x)− S1

t (x)
)+∣∣∣x−, s] ,

(3.46)

with density normalising factors η1, η2. Thus, under the Gaussian payoff scenario,
we have derived explicit formulae for the two main sources of uncertainty involved in
signal-based trade, namely, the likelihood of a signal’s pointing at the right (wrong)
trade direction, and the expected amount of profit (loss) given the signal was correct
(erroneous). With inputs from Eq. (3.37) and (3.41)-(3.44), Eq. (3.21) can now be
written for agent 1 as

E1
t

[
Π1
t

]
= P 1

t (x+)
∫

X+

Θ
(
−a

s
t

bst
x

)
η1

1√
2πbst

∫ ∞
0

ye
− 1

2
(y+ast x)2

(bs
t
)2 dy

−Θ
(
ast
bst
x

)
η2

1√
2πbst

∫ ∞
0

ye
− 1

2
(y−ast x)2

(bs
t
)2 dy

 π̄1+
t (x)dx

+

P 1
t (x−)

∫
X−

Θ
(
ast
bst
x

)
η1

1√
2πbst

∫ ∞
0

ye
− 1

2
(y−ast x)2

(bs
t
)2 dy

−Θ
(
−a

s
t

bst
x

)
η2

1√
2πbst

∫ ∞
0

ye
− 1

2
(y+ast x)2

(bs
t
)2 dy

 π̄1−
t (x)dx

 ,
(3.47)

where π̄+, π̄− are, again, normalised effective posteriors for high- and low-type mar-
kets, with X+ = (0,∞) and X− = (−∞, 0). Equation (3.47) can also be written for
agent 2 without much effort. Accordingly, agent j updates his trading procedure as
follows: (1)-(1a) Same as in Section 3.2 above. (1b) Calculate Ejt [Πj

t ] based on Eq.
(3.47). (1c) Decide whether to quote or not to quote a price. If yes, proceed to next
step. (2) Quote signal-based price (as ς± = 1). (3) Same as in Section 3.2 above.

Now, equipped with the flexibility to shape his strategy (qjt )0≤t≤T , |qjt | ∈ {0, 1}, by
timing his trades, agent j will need to develop an optimal ‘online’ trading rule (refer-
ring to (1c) above) that maximises his profits, in understanding of his marginal benefits
and losses from seizing or skipping a trade opportunity.
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3.3.2 Risk-neutral Optimal Strategy

It is not difficult to see that E1
t [Π1

t ] in Eq. (3.47) will always be negative when agent
knows that his information is less superior. The top and bottom left panels of Figure
3.8, in this regard, depicts the evolution in time of E1

t [Π1
t ], based on almost all possible

strategies and a sample path of ξ1
t , when an agent believes that he is informationally

less susceptible than his counterpart. Yet, the agent can minimise his chances of losing
from a trade by keeping his information up-to-date through trading at “each” time step
(i.e., the top edge of each shape in the left panel). We note that the marginal expected
cost of refraining from trade for the less susceptible agent is always positive when the
agent believes he is informationally less susceptible.

We therefore infer from Figure 3.8 that a solution to the maximisation problem in Eq.
(3.48) is unattainable from the perspective of a less informationally capable agent.
The real-world implication of this is that market shutdowns may not occur in a real
market setting because investors think their effective information are either constantly
or temporarily superior to the market information. We, thus, turn our focus to the
case where both agents believe their information source is characterised by a higher
σ.

The top and bottom right panels of Figure 3.8, on the other hand, shows the evolution in
time of Ejt

[
Πj
t

]
for the agent who believes that he is informationally more susceptible.

The strategy which results in the bottom edge these shapes on the right panel is unique,
i.e., |qjt | = 1 ∀t. However, there is no single strategy which can achieve the top edge of
each shape, which is a combination of different strategies that result in the maximum
expected potential at different time points.

We define the optimal strategy of an agent as the one which maximises his overall
expected terminal profit from trading the contract based on his effective information
σ̄(ξjt ), i.e., for agent 1,

arg max(q1
t )

T∑
t=0

E1
t

[
Π1
t

]
=

T∑
t=0

E
[
Π1
t |σ̄(ξ1

t )
]

s.t. S∗t = 1/2(S1
t + S2

t ), (3.48)
qt = 0
∀t,

where σ̄(ξ1
t ) is same as in Eq. (3.8).

On an extra note, we remark that setting a mid-price, as in Eq. (3.2) and (3.48), is
indeed equivalent to

E
[
q1
t (X − S∗t )|σ̄(ξ1

t )
]

= E
[
q2
t (X − S∗t )|σ̄(ξ2

t )
]
. (3.49)

Thus, we can reinterpret the role of the central planner, in the context of this section,
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Figure 3.8: Evolution of Ejt [Πj
t ] as given in Eq. (3.47) for sample trajectories of ξ1

t and
ξ2
t and all possible trading strategies. The dividend is assumed to be Gaussian.

as ‘to observe ξ̄jt ’s through price quotes and set the transaction price as the mid-price
which equates the signal-based terminal profits of agents.’

Similar to [25], we can define the dynamic programming formulation of the agent j’s
problem given in Eq. (3.48) as follows:

V j
t = sup

(qjt )

(
Ejt
[
Πj
t

]
+ Ejt

[
V j
t+1

])
, (3.50)

where V j
t is the value function. Note that Ejt [Πj

t ] is implicitly determined by (qjs)0≤s<t,
whereas Ejt [V j

t+1] by (qjs)0≤s≤t. Therefore, at each auction, the agent will need to con-
sider the marginal impact of his current strategy on Ejt [V j

t+1]. The particular nature of
the present model, however, does not allow us to employ a backward-induction tech-
nique that is similar to the one described in [25] and [35].

Based on Eq. (3.50), we introduce the following real-time optimal trading strategy for
agent j:
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|qjt | =


1, if Ejt

[
Πj
t

]
> 0,

and Ejt
[
Πj
t

]
+ Ejt

[
Πj
t+1

]
|qjt |=1

> Ejt
[
Πj
t+1

]
qjt=0

,

0, otherwise,

(3.51)

where the term

Ejt [Πj
t ]−

(
Ejt [Πj

t+1]qjt=0 − Ejt [Πj
t+1]|qjt |=1

)
(3.52)

can be seen as the immediate expected gain from trade adjusted for the cost of los-
ing the informational advantage. Thus, the agent chooses to trade whenever his cost-
adjusted expected gain from trade is strictly positive.10

Figure 3.9 plots the value of (3.52) (averaged over a number of sample paths of ξjt )
for the more informationally susceptible agent for each point t in the trading horizon
and given each possible trading history st. The decision rule variable is positive for
any possible past strategy characterised by the last time of trade, qjst , implying that the
agent can maximise the sum of his expected terminal profits by trading at each time
point t, thereby constantly incorporating his differential information into prices, i.e.,
|qjt | = 1 ∀t ∈ [0, T ].
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Figure 3.9: Value of cost-adjusted expected gain from trade (averaged over a number
of sample paths of ξjt ) for the more informationally susceptible agent based on Eq.
(3.51) for all t and st.

10 In other words, whenever an agent refrains from trade in expectation of greater future profits, he should
refrain on the basis that he has to recover immediate cost of refraining.
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We can indeed show that the optimality of this strategy is invariant to the path of ξjt .
Consider agent 2 who deems his signal superior (σ2 > σ1) and let the market be high-
type (i.e., x ∈ X+). For given x, σ1, σ2, let’s denote the corresponding integrand in Eq.
(3.47), rearranged for agent 2, by H2(t, s), where

H2(t, s) = Θ
(
ast
bst
x

)
η1

1√
2πbst

∫ ∞
0

ye
− 1

2
(y−ast x)2

(bs
t
)2 dy

−Θ
(
−a

s
t

bst
x

)
η1

1√
2πbst

∫ ∞
0

ye
− 1

2
(y+ast x)2

(bs
t
)2 dy. (3.53)

Note thatH2(t, s) in Eq. (3.53) is the expected profit of agent 2 at time t given the time
of last trade, s, and a high-type payoff x, and it is not a function of ξ2

t . Agent 2 version
of Eq. (3.47) is, in fact, nothing but the sum of convex combinations of H2(t, s) and
its low-market analogous L2(t, s) with respect to the effective posteriors π̄2+

t and π̄2−
t ,

respectively. Thus, similar to the relation (3.52),

H2(t, s)− [H2(t+ 1, s)−H2(t+ 1, t)] (3.54)

can be seen as the signal-independent version of the cost-adjusted immediate gain from
trade (for the agent who deems his signal superior), whose value is depicted in Figure
3.10. It can be inferred from the figure, again, that it is optimal for the informationally
more susceptible agent to trade continuously without accumulating his extra informa-
tion.

3.3.3 Extension to Risk-adjusted Performance

In case agents are risk-adjusted expected profit (e.g., Sharpe ratio, [71]) maximisers
“at the portfolio level”, the objective function in Eq. (3.48) can simply be modified
as

arg max
(qjt )

T∑
t=0

qjtE
j
t

[
Πj
t

]
(

T∑
t=0

(qjt )2Vj
t

(
Πj
t

))1/2
. (3.55)

We then write the conditional variance Vj
t(Πj

t) = Vj(Πj
t |σ̄(ξjt )) of the signal-based

profit at time t, whose expectation is given in Eq. (3.47), using “law of total vari-
ance”11, as

11 V[Π|ξ] = E[E[Π2|ξ,X]]− E[E[Π|ξ,X]]2
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Figure 3.10: Value of signal-independent cost-adjusted expected gain from trade for
the more informationally susceptible agent based on Eq. (3.51) for all t and st.
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t [Π1

t ]
)2
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(3.56)

Figure 3.11 depicts the risk-adjusted version of Figure 3.8 using the same signal sample
as in the latter.

3.3.4 Extension to Risk-averse Utility

The above setup can easily be generalised to the case where agents are ‘characteristi-
cally’ risk-averse and attach decreasing marginal utility to each extra unit of expected
return due to the additional risk involved. In [12], the authors show that the following
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Figure 3.11: Evolution of Sharpe ratio based on Vj
t(Πj

t) given in Eq. (3.56) for sample
trajectories of ξ1

t and ξ2
t and all possible trading strategies. The dividend is assumed to

be Gaussian.

two cases are equivalent: (a) terminal payoff is exogenous (as in our case) and agents
are risk-averse, (b) dividend is endogenous and agents are risk-neutral. When the as-
set dividend (or terminal payoff) is exogenous and agents’ actions have no impact on
it, one needs to introduce either trade quotas or proper risk aversion assumptions to
prevent agents from trading unlimited amounts to make infinite profits, should quoted
prices be in their favour. In the presence of informational differences, there would be
less or no motivation for agents who are not only informationally less capable but also
risk averse to actively participate in a market where the participants are assumed to
be rational. Such state of affairs can, in fact, exacerbate the situations where markets
shut down due to perceived differential information. Such situations are avoided in
the literature by introducing the concept of ‘noise-traders’ (refer to Table 3.1), which
we avoid in the present context so as to focus solely on the influence of differential
information on market phenomena.

We assume that agents are risk-averse with the utility assigned to a sure dividend x,
i.e.,

Uj(x) = −e−λjx (λj > 0), (3.57)

that is characterised by a constant absolute risk aversion level λj . We note that the
utility function U : (0,∞) → R in Eq. (3.57) is C2, and satisfies U ′ > 0, U ′′ < 0
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as well as the Inada conditions ([48]). Under U , the certainty equivalent of E[X] for
agent j is given by

xjc = −
ln
(
−E

[
Uj(X)|σ̄(ξjt )

])
λj

(3.58)

with xjc < E[X|σ̄(ξ2
t )] following from strict concavity. Assuming again X is normal

with N (0, 1), the equilibrium strategy in a market where agents maximise their ex-
pected utility from terminal wealth12 is now associated to the objective function which
is analogous to Eq. (3.48) and (3.55) and given by

arg max(qjt)
T∑
t=0

E
[
Uj(Πj

t)
∣∣∣σ̄(ξjt )

]
(3.59)

where each signal-based price Sjt is worked out, this time, according to certainty equiv-
alence relation in Eq. (3.58) as follows (assuming st = 0 for simplicity):

Uj(Sjt ) = E
[
Uj(±X)

∣∣∣ξjt ] = −

∫
X
e−λj±xe−

x2
2 eκt(σjξ

j
tx−

1
2σ

2
jx

2t)dx∫
X
e−

x2
2 eκt(σjξ2

t x−
1
2σ

2
jx

2r)dx

= −

∫
X
e−

x2
2 e(σjκtξ

j
t∓λj)x−( 1

2σ
2
jκtt)x2

dx∫
X
e−

x2
2 e(σjκtξ

j
t)x−( 1

2σ
2
jκtt)x2

dx

= −e
(σjκtξ

j
t
∓λj)2

2(σ2
j
κtt+1) e

−
(σjκtξ

j
t
)2

2(σ2
j
κtt+1)

= −e
1
2

λ2
j

σ2
j
κtt+1

∓
σjκtξ

j
t
λj

σ2
j
κtt+1 . (3.60)

This implies, for a bid quote,

Sjt = U−1
j (E

[
Uj(X)

∣∣∣ξjt ]) = σjκtξ
j
t

σ2
jκtt+ 1 −

1
2

λj
σ2
jκtt+ 1 (3.61)

and, similarly, for an ask quote,

Sjt = −U−1
j (E

[
Uj(−X)

∣∣∣ξjt ]) = σjκtξ
j
t

σ2
jκtt+ 1 + 1

2
λj

σ2
jκtt+ 1 . (3.62)

12 There is no intertemporal consumption.
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The second term in Eq. (3.61) and (3.62) can be considered as the “information-
adjusted risk premium” and appears naturally as the bid/ask spread which is inversely
proportional to σj and t. Thus, given λj and t, the more an agent is informationally
more (less) susceptible, the lower (higher) a risk premium he will have.

The central planner, on his side, will set the price transaction price to the one which
equalises their individual signal-based expected utility from the transaction, i.e.,

E
[
U
(
q1
t (X − S∗t )

)
|ξ1
t

]
= E

[
U
(
q2
t (X − S∗t )

)
|ξ2
t

]
. (3.63)

Assuming again |qjt | ∈ {0, 1}, market is a high-type and agent 2 buys, the pricing rule
in Eq. (3.63) can be arranged further as follows:

−
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which directly implies, also by Eq. (3.61), that

S∗t =
λ1
(
σ1κtξ1

t

σ2
1κtt+1 + 1

2
λ1

σ2
1κtt+1

)
+ λ2

(
σ2κtξ2

t

σ2
2κtt+1 −

1
2

λ2
σ2

2κtt+1

)
λ1 + λ2

= λ1

λ1 + λ2
S1
t + λ2

λ1 + λ2
S2
t . (3.65)

Thus, the information-based market price is the weighted average of risk-adjusted
signal-based prices with respect to the risk aversion levels λj . Accordingly, ast and bst ,
and all relevant quantities such as P j

t (ξjc |x+, s) will need to be updated to re-explore
an optimal strategy.
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CHAPTER 4

PUTTING SIGNAL-BASED MODEL TO WORK

Building upon the concepts introduced in the previous chapters, this chapter aims to
focus on a more practical issue: how can we put signal-based framework to work for
a certain type of risky financial asset when there is a multiplicity of real-time market
signals on X which, in turn, determines φ(X). In other words, this chapter illustrates,
in a practical sense, how the problem of predicting the future value of a stochastic
random variable can be simplified to interpreting the information concerning one of
its constituents. In particular, we focus on equity market due to the relatively simpler
interpretation of the term “fundamental,” referring to the value of a cash-generating
business.

No matter how an information flow pattern is modelled, the aim of financial modelling
based on forward-looking information is to ensure that future information (e.g., earn-
ings and/or dividend payments in the case of equity) on an asset’s fundamental value
is represented −either fully or partially− in price discovery.

4.1. Multiple Dividends−Single Market Factor

The risky asset is now characterised at any time t by an infinite number of cash-
flows which accrue continuously but are announced (or physically distributed) at dis-
crete times intervals. We then call a time-varying subset of these cashflows, i.e.,
{φk}k=1,...,nt , which are due T1, . . . , Tnt , the cashflows “within” the horizon. Each pay-
off φk can be deemed a function ofmk market factors as a subset of {X1, . . . , Xmax(mk)}
for any k, thereby making the price a function of max(mk) market factors. This set-
ting indeed allows one to consider a broader spectrum of financial instruments. When
each market factor X is associated with an information process {ξt}0≤t≤Tk , the prob-
lem of valuing an equity reduces to identifying a set of potential candidates for X and,
therefore, ξ in a real-world setting, and calibrating the signal flow rate.

For simplicity, we shall assume mk = 1, ∀k, throughout the chapter (i.e, a single
market factor X determines each cashflow φk). We further assume that X1, . . . , Xnt ,
are i.i.d. At any time t, the σ-algebra F ξt is assumed to be the ‘join’ of the σ-algebras
generated by nt independent information processes, i.e., σ(ξ1) ∨ · · · ∨ σ(ξnt), and the
current and past values of the market factors and the risky asset, i.e., Ft = σ(Xs, Ss :
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0 ≤ s ≤ t):

F ξt := σ(ξ1) ∨ · · · ∨ σ(ξnt) ∨ Ft. (4.1)

The price of the asset is then simply given by

St =
nt∑
k=1

1{t<Tk}e
−r(Tk−t)E

[
φTk(X)|F ξt

]
, (4.2)

where E is w.r.t. Q by setting. Furthermore, the dynamics of asset price process
{St}t≥0 is analogous to those derived in Chapter 2 for the single cashflow case (cf.
[20]):

dSt = rtStdt
+ 1{t<T1}e

−r(T1−t)σ1κ
1
tCovt [φ(XT1), XT1 ] dW 1

t

...
+ 1{t<Tn}e−r(Tn−t)σnκntCovt [φ(XTn), XTn ] dW n

t

= rtStdt+
n∑
k=1

1{t<T1}e
−r(Tk−t)σkκ

k
tCovt [φ(XTk), XTk ] dW k

t

−
n∑
k=1

φ(XTk)d1{t>Tk}, (4.3)

where Cov is the covariance function. The last term in Eq. (4.3) comes from the
price adjustment due to accrual of cashflow (ex-dividend). Eq. (4.3) implies that the
asset price dynamics in the multiple cashflow case based on signal-based framework
remains fairly tractable. In what follows, we show how the present framework can be
applied on real market data with slight modifications.

4.2. The Case for “Implied” Dividends

In [18] and [75], the present concept is applied to produce a tractable formula for
storable commodity prices under the assumption that the asset pays −what authors
call− a continuous ‘convenience dividend’ that is assumed to follow Ornstein−Uhlenbeck
(OU) dynamics. The OU process is then associated, through its orthogonal decompo-
sition, to the concept of ‘OU bridge,’ thereby putting together analytical formulae for
commodity spot and derivatives prices. In this chapter, we introduce the concept of
“implied dividend,” which is based on earnings, as the stochastic market factor X
that determines the dividend through identity φ(X) = X and, eventually, the equity
price.
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There is indeed a large body of literature which argues that it is reasonable to consider
earnings data as a proxy for company’s expected dividends and measures tied to the
former, rather than the latter, will likely provide better information about the actual
cash flows generated (see, e.g., [28, 58, 59]). Indeed, many growth businesses choose
not to pay cash dividends but, instead, to use their earnings to repurchase outstand-
ing shares or to reinvest in future expansion − making earnings a more informative
measure of the fundamental value of a business (see [28, 34]). Investors are also far
more interested in the earnings potential of a business rather than its paid dividends
(cf. [8]). Earnings, like dividends, are also generated on a continuous basis, although
their true value is revealed at discrete time points (quarterly or annually), justifying
their suitability for use in continuous-time setups.

In the sequel, we assume that earnings are the basis for changes in an asset’s value as
“invisible” dividends and they provide some kind of convenience yield φ(X) which
become known to agents at Tk, k = 1, . . . , n. The raw signal process ξt in this case
conveys noisy information about the true value of the earnings (and, eventually, divi-
dends).

Based on the Bakshi−Chen model introduced in [8], we relate earningsX to “implied”
dividends X ′ as follows:

φ(X ′k) = δφ(Xk) + εk, εk ∼ N(0, σεk). (4.4)

where we implicitly assumed φ to be identity. Here, δ ∈ [0, 1] is the dividend payout
ratio. The use of constant payout ratio is common in the equity valuation literature. The
classic survey in [57] finds that indeed δt → δ. The rationale for and interpretation
behind Eq. (4.4) is addressed in [8] and [34]. Therefore, independent of whether
the firm pays cash dividends or not, we interpret δφ(X) given in Eq. (4.4) as the
“implied dividend” which will be the governing factor X in our model behind asset
price movements.

Furthermore, we assume that earnings and earnings growth follow a geometric Brow-
nian and Ornstein-Uhlenbeck (OU) dynamics, respectively. That is,

dXk = µXk XkdTk + σXdWX
k , (4.5)

dµXk = α(µ0 − µXk )dTk + σµdW µ
k , (4.6)

where dTk = Tk − Tk−1. Also we set WX
k ⊥⊥ W µ

k for F ξ-adapted WX
k and W µ

k that
are martingale under the pricing measure. In what follows, we will be employing this
model to estimate the parameters of our signal-based valuation framework.

4.2.1 Recovering the Gordon Model in Continuous Time

First we associate the signal-based price St to Gordon model [40, 41] under constant
earnings growth assumption, and later on extend this to time-varying growth.

65



4.2.1.1 Constant Earnings Growth

Assuming S pays an infinite strip of earnings starting from u, where u > t, the contin-
uous time analogous of Eq. (4.2) is

St = e−r
u
t (u−t)

∫ ∞
u

e−rb(v−u)E
[
δXv|F ξt

]
dv, (4.7)

where F ξt , Ft are as given in Eq. (4.1). When µX is constant, say µ0, a straightforward
calculation yields

St = δe−r
u
t (u−t)

∫ ∞
u

e−rb(v−u)E
[
Xue

(µ0− 1
2σ

2
X)(v−u)+σXWX

v−u
∣∣∣F ξt ] dv

= δe−r
u
t (u−t)φt(Xu)

∫ ∞
u

e−rb(v−u)E
[
e(µ0− 1

2σ
2
X)(v−u)+σXWX

v−u
]

dv

= δe−r
u
t (u−t)φt(Xu)

∫ ∞
u

e−rb(v−u)e(µ0− 1
2σ

2
X)(v−u)+ 1

2σ
2
X(v−u)dv

= δe−r
u
t (u−t)φt(Xu)

∫ ∞
u

e−(rb−µ0)(v−u)dv (η = v − u)

= δe−r
u
t (u−t)φt(Xu)

∫ ∞
0

e−(rb−µ0)ηdη

= δe−r
u
t (u−t) φt(Xu)

rb − µ0
(rb > µ0) , (4.8)

where rb is the investment benchmark while rut is the money market rate for matu-
rity u. Eq. (4.8) is nothing but the earnings (or implied dividend) equivalent of the
well-known intrinsic value model of Gordon. Note the slight difference in appearance
between the discrete and continuous forms of the Gordon model (cf. [53]) which disap-
pears as (1 +µ0dη)φt(Xu)→ φt(Xu) as dη → 0. This model, however, is mostly crit-
icised for assuming that the dividend growth rate as well as the risk-adjusted discount
rate remain constant − a point which is confronted in the literature by the well-known
St. Petersburg paradox (see, e.g., [36]). In our pricing algorithm, we shall circumvent
this issue by considering a constant spread between µ0 and rb.

4.2.1.2 Time-varying Earnings Growth

If µX were time-variant, on the other hand, we would simply have an additional term
exp(

∫ u
t µνdν) substituting for µ0 from the first line of Eq. (4.8). By the well-known

solution to the OU process in Eq. (4.6), we have

µν ∼ N

µte−α(ν−t) + µ0(1− e−α(ν−t)),
(
σ2
µ

2α(1− e−2α(ν−t))
)1/2

 , (4.9)
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with t ≤ ν ≤ u. This implies

E
[
exp

(∫ u

t
µνdν

)]
= exp

(∫ u

t
µte
−α(ν−t) + µ0(1− e−α(ν−t))dν

)
·

E
[
exp

(∫ u

t
µ′νdν

)]
, (4.10)

where the notation µ′ν is introduced to denote µν without a drift. The variance of∫ u
t µ
′
νdν is given by

V
(∫ u

t
µ′νdν

)
= E

[∫ u

t
µ′νdν1

∫ u

t
µ′νdν2

]
=
∫ u

t

∫ u

t
E
[
µ′ν1µ

′
ν2

]
dν1dν2. (4.11)

The covariance term E
[
µ′ν1µ

′
ν2

]
follows from the solution to the driftless OU process,

i.e.,

E
[
µ′ν1µ

′
ν2

]
= E

[∫ ν1

t
e−α(ν1−s1)dW µ1

s1

∫ ν2

t
e−α(ν2−s2)dW µ2

s2

]
= σ2

µe
−α(ν1+ν2)E

[∫ ν1

t
eαs1dW µ1

s1

∫ ν2

t
eαs2dW µ2

s2

]
= σ2

µe
−α(ν1+ν2)E
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0
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u1+t
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0
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u2+t
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= σ2

µe
−α(ν1+ν2−2t)E

[∫ ν1−t

0
eαu1dW µ1

u1

∫ ν2−t

0
eαu2dW µ2

u2

]
=

σ2
µ

2αe
−α(ν1+ν2−2t)

(
e2αmin(ν1−t,ν2−t) − 1

)
=

σ2
µ

2αe
−α(ν1+ν2)

(
e2αmin(ν1,ν2) − 1

)
. (4.12)

Simply by assuming ν1 < ν2, w.l.o.g., V (
∫ u
t µ
′
νdν) can be found as
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e−α(ν2−ν1) − e−α(ν2+ν1)

)
dν2dν1

=
σ2
µ

2α

∫ u

t

(
e−α(ν2−ν1)

−α
− e−α(ν2+ν1)

−α

)∣∣∣∣∣
u

t

dν1

=
σ2
µ

2α2

∫ u

t

(
e−α(u+ν1) − e−α(u−ν1)

)
−
(
e−α(t+ν1) − e−α(t−ν1)

)
dν1

=
σ2
µ

2α2

∫ u

t
e−αu

(
e−αν1 − eαν1

)
− e−αt

(
e−αν1 − eαν1

)
dν1

=
σ2
µ

2α2

(
e−αu − e−αt

) ∫ u

t

(
e−αν1 − eαν1

)
dν1

=
σ2
µ

2α2

(
e−αu − e−αt

)(e−αν1

−α
− eαν1

α

)∣∣∣∣∣
u

t

=
σ2
µ

2α3

(
e−αu − e−αt

) [(
e−αu − eαu

)
−
(
e−αt − eαt

)]
=

σ2
µ

2α3

[
2e−α(u+t) + e−α(u−t) + eα(u−t) − e−2αue−2αt − 2

]
. (4.13)

Returning back to Eq. (4.10), we conclude

E
[
exp

(∫ u

t
µνdν

)]
= exp

[
µt

1
α

(
1− e−α(u−t)

)
+ µ0

(
(u− t)− 1

α

(
1− e−α(u−t)

))
+ 1

2
σ2
µ

2α3

(
2e−α(u+t) + e−α(u−t) + eα(u−t) − e−2αue−2αt − 2

)]
.

(4.14)

Eq. (4.14) would be accommodated into Eq. (4.8) to derive a time-varying growth
version of the Gordon model. This, however, is beyond the scope of our analysis in this
chapter. Below, we introduce the earnings signals that will act, among possible others,
as our information flow process ξt. We also introduce a slightly modified version of
the latter.

4.3. Real-time Information Flow

Financial markets, with equity market being a particular example, are forward-looking,
i.e., prices are ideally discovered on the basis of expectations pertaining to the future
value-generating ability of the underlying business. One vivid example to this is the
price adjustments to an equity following unexpected deviations of realised earnings
from their consensus values and/or inter-temporal revisions of earnings expectations
by brokers. We explain how this property can be worked to fit it into the present
context in more detail below.
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Figure 4.1: Evolution of quarterly earnings signals. Data source: Bloomberg.

At time tk, market experts start disseminating their consensus estimates on the true
value of a certain ticker’s quarterly earnings value Xk, and therefore its implied div-
idend, which is due at Tk. These consensus figures are derived from comprehensive
assessments of up to 40 brokerage analysts which closely follow a certain ticker and
incorporate as much information as available. As for quarterly earnings consensus,
Tk − tk is generally between 2 and 4 years. We exhibit in Figure 4.1 the quarterly
earnings signals extracted from Bloomberg terminal for a large-cap U.S. blue-chip
company (ticker: MSFT) that are released at an average frequency of four days during
2004Q1−2015Q3. The data are adjusted for corporate issues such as stock splits, ex-
clude non-recurring items, include employee stock options expenses, and incorporate
any guidance issued by the company prior to actual earnings announcement.

As we cannot separate X from noise in any observed signal to construct empirically
the desired ξ given in Eq. (2.4) 1, we introduce2 a slightly modified version of ξ in Eq.
(2.4), while preserving its intuitive properties, as follows:

ξkt =
{
x∗k + τ kt (Xk − x∗k) + βkt

σ(Tk−tk) , if tk ≤ t ≤ Tk,

Ø, otherwise,
(4.15)

where x∗k is the first signal sample received at time tk about the true value of Xk, σ−1

now a measure of noise-to-signal, and

1 For instance, one does not normally observe a noisy signal for σtX in the market but X and, therefore, the
desired signal σtX + εt cannot be recovered from X + εt.

2 Also based on recommendation from Edward Hoyle, PhD, Department of Mathematics, Imperial College
London.
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τ kt = 1t≤tk
t− tk
Tk − tk

∈ [0, 1] (4.16)

the proportion of signal lifetime elapsed since it started being transmitted. Intuitively,
we now allow an increasing σ to suppress noise (thereby, increasing signal-to-noise)
rather than to increase the signal content directly, as in Eq. (2.4). The conditional
variance of ξkt given Xk = x can be rewritten as

V
(
ξkt
∣∣∣Xk = x

)
= 1
σ2

(t− tk) (Tk − t)
(Tk − tk)3 =

τ kt
(
1− τ kt

)
σ2(Tk − tk)

. (4.17)

Note that the modified version of the information process ξt in Eq. (4.15) is better
suited to the real-time signals considered here and, again, do not compromise intuitive
and statistical properties of ξt described in Chapter 2. The equivalence of the latter
two in the sense of integral in Eq. (2.19) can easily be seen as follows. Let us assume
w.l.o.g. that x∗ = 0 and tk = 0. Then, apparently,

∫
A
xp(x)e−

1
2( ξ−axb )2

dx =
∫
A
xp(x)e−

1
2

(
ξ′−ax/c
b/c

)2

dx (4.18)

with a = σt, b = τt(T − t), ξ′ = ξ/c, and c = σT .

As indicated by Eq. (4.15), the σ-algebra F ξ
t constantly enlarges and shrinks whenever

the number of available signals increases and decreases, respectively. Once the signal
ξk is started to be received at time tk, the market updates its prior information aboutXk

(i.e., pX(x)) through relation (2.14). On the other hand, the noise-to-signal measure
1/σ needs to be determined from the data. Again, for t > Tk, i.e., once Xk has been
revealed, (ξt)t1≤t≤T becomes degenerate (information-null).

To check the boundary values, apparently, ξktk = x∗k and ξkTk = Xk, with the latter ensur-
ing that the marginal law of ξkt is the a priori law of Xk (cf. [44, 45]). In Figure 4.2, we
plot the residuals βkt from several paths of actual earnings signals, extracted as per Eq.
(4.15) whereas their starting and end points are aligned.3 Sample residuals do indeed
exhibit properties that are similar to those of a bridge process. Furthermore, jumps
occur occasionally as a result of the significant revisions of consensus data.

4.4. Calibrating the Information Flow Rate

The information flow parameter σk, which is time-homogeneous by our setting, is
calibrated based on the modified information process given in Eq. (4.15) as follows.

3 We recall that Tk − tk differs across signals.
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Figure 4.2: Residuals of empirical information processes depicted in Figure 4.1.

We have an sample history of N = 41 quarterly earnings signals (with lengths varying
from 1.1 to 4.7 years) for the stock ticker considered.4 To calibrate σk,

1. We first extract the linear part of each signal according to Eq. (4.15) to get
various paths of the empirical bridge processes. We refer the reader back to
Figure 4.2 for a visualisation of the residual series βk, k = 1, . . . , N .

2. For each βk, we then run the following non-linear regression based on the theo-
retical variance of βkt :

(
βkt
)2

= 1
σ̂2
k

τ kt (1− τ kt )
Tk − tk

+ εkt , tk ≤ t ≤ Tk, (4.19)

where, again, τ kt = (t − tk)/(Tk − tk) and, presumably, εkt |F
ξ
t ∼ N (0, σε).

Figure 4.3 shows the calibration results of σ̂k for arbitrary quarterly earnings
signals, whereby the Levenberg−Marquardt nonlinear curve-fitting algorithm is
used.56

3. (Optional) As a final step, assuming β1 ⊥⊥ . . . ⊥⊥ βk, we perform a simple
variance averaging over all fitted curves resulting from Eq. (4.19) to find σ̂:

4 The first signal in sample commences on February 20, 2004, and lasts until on October 27, 2005, pinned to
2005Q3 earnings per share figure, whereas the last signal starts and ends on November 29, 2012, and October 21,
2015, respectively, pinned to 2015Q3 earnings per share figure.

5 Parameter estimates for all signals are statistically significant with considerably low p-values.
6 We also remark that some other statistical learning algorithms, e.g., Expectation-Maximisation algorithm (cf.

[43]), could also be used to capture possible multi-modal dynamics.
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Figure 4.3: Calibration results of information flow rate, i.e., σ̂k, using
Levenberg−Marquardt nonlinear curve-fitting algorithm. Arbitrary signals are shown.

σ̂ =
(∑N

k=1 σ̂
−2
k

N

)−1/2

. (4.20)

The last step yields σ̂ = 0.79 for the ticker MSFT with respect to the period 2005Q3-
2015Q3. In what follows, we develop a closed-form approximation to signal-based
price and present the pricing results.

4.5. Analytical Approximation to Signal-based Price

We now turn our attention back to deriving a preferably crisp formula for pricing the
risky asset when there is a multiplicity of information processes ξt1T1 , . . . , ξtnTn , deliv-
ering a continuum of market signals on i.i.d. market factors X1, . . . , Xn, and, thereby,
cashflows φ(X1), . . . , φ(Xn), through the identity φ(x) = x.

For simplicity of exposition and without loss of generality, consider any three signals
with
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(Tk−1, Tk, Tk+1) = (r, s, u), r < s < u. (4.21)

We state the well-known solution to the SDE of X in Eq. (4.5) at time u:

Xu = Xs exp
([
µXsu − σ2

X/2
]

(u− s) + σXW
X
u−s

)
= Xs exp

([
µXrse

−α(s−r) + µ0(1− e−α(s−r))− σ2
X/2

]
(u− s)

+ σXW
X
u−s + σµ(u− s)

∫ s

r
e−α(s−ν)dW µ

ν

)
. (4.22)

where µsu is simply the growth between s to u. Therefore, by virtue of Eq. (4.12) and
using the fact that WX ⊥⊥ W µ, we can write Xu/Xs in the conditionally log-normal
form

Ysu = Xu

Xs

= exp (µ̃su(u− s) + σ̃suZu−s) , (4.23)

where Z ∼ N (0, u− s), and with

µ̃su = µXrse
−α(s−r) + µ0(1− e−α(s−r))− σ2

X/2 (4.24)

and

σ̃2
su = σ2

X +
σ2
µ

2α(u− s)(1− e−2α(s−r)). (4.25)

The pricing relation at time t, s ≤ t ≤ u, will then be based on

St = e−r
u
t (u−t)E

[
δXu + εu|F ξt

]
= e−r

u
t (u−t)E

[
δXu|F ξt

]
, (4.26)

where, again, F ξt is defined as in Eq. (4.1). The second equality, in fact, follows from
the fact that ξt carries information only about Xu (i.e., εu ⊥⊥ ξt) and the assumption
that E [εu|{Xt}t<u] = 0.

We now know from Eq. (4.22), (4.25) and (4.24) that, conditionally,

Xu|Xs ∼ logN (µ̃′su, σ̃su) (4.27)

with µ̃′su := lnXs/(u−s)+µ̃su. Then, the pricing relation in Eq. (4.26) implies,
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St = e−r
u
t (u−t)E [δX|ξt]

= δe−r
u
t (u−t)

·

∫
X

exp
(
−1

2
(ln x− µ̃′su(u− s))2

σ̃2
su(u− s)

− 1
2

(ξt − [x∗ + τt(x− x∗)])2

τt(1− τt)/(σ2(u− t))

)
dx

∫
X
x−1 exp

(
−1

2
(ln x− µ̃′su(u− s))2

σ̃2
su(u− s)

− 1
2

(ξt − [x∗ + τt(x− x∗)])2

τt(1− τt)/(σ2(u− t))

)
dx
,

(4.28)

where X = (0,∞). Equation (4.28) is apparently not very handy without recourse to
numerical methods. We try to circumvent this issue by using two possible analytical
approximations, namely, through gamma and log-gamma distributions.

More specifically, this uses either X ∼ Γ(a, b) approximately, or Z ∼ log Γ(a, b),
again, approximately, where Z = logX , and Γ and log Γ are gamma and log-gamma7

probability laws with densities

fX(x|a, b) = xa−1

baΓ(a)e
−x/b, x ∈ (0,∞), (4.29)

and

fZ(z|a, b) = 1
baΓ(a)e

az−ez/b, z ∈ (−∞,∞), (4.30)

respectively.8. For approximation, we choose to minimise the Kullback−Leibler [54]
divergence between the theoretical and approximating density functions, i.e.,

arg min
(a,b)

∫
X

fX(µ̃′su(u− s), σ̃su
√
u− s)

· log2

(
fX(µ̃′su(u− s), σ̃

√
u− s)

f ′X(asu, bsu)

)
dx, (4.31)

or

arg min
(a,b)

∫
Z

fZ(µ̃′su(u− s), σ̃su
√
u− s)

· log2

(
fZ(µ̃′su(u− s), σ̃

√
u− s)

f ′Z(asu, bsu)

)
dz, (4.32)

7 “Log-gamma” in the sense that it is logarithm of a gamma random variable (not that its logarithm is a gamma
distribution as in the case of, e.g., lognormal distribution).

8 We remark that gamma distribution is conjugate prior to log-normal distribution with a known mean.

74



Support of X (truncated)
0 0.5 1 1.5 2 2.5

D
e
n
s
it
y

0

0.5

1

1.5

2

2.5

3

Lognormal:µ=0,σ=(0.10,0.15,0.25)
Gamma numerical approx.
Gamma numerical approx. (rounded)
Gamma analytical approx.

Figure 4.4: Approximation of conditional log-normal by its conjugate prior gamma.

which ensures the expected entropic (or, informational) distance between the latter
two is minimised. Approximate analytical solution to problems given in Eq. (4.31)
and (4.32), on the other hand, is given by

asu ≈
1

σ̃2
su(u− s)

, bsu ≈ σ̃2
su(u− s) exp

((
µ̃′su + σ̃2

su

2

)
(u− s)

)
(4.33)

(see Appendix A for a sketch of proof). Figure 4.4 shows the results of gamma approx-
imation to the log-normal density for different parameter values, using both numerical
and analytical solutions to the Kullback-Leibler minimisation problem. The approxi-
mation works extremely good, particularly for small variances values, and this is why
it will work particularly good in our context.

We use this property to replace the log-normal density (normal density) with its gamma
(log-gamma) conjugate prior with shape and scale parameters asu = a(µ̃′su, σ̃su) and
bsu = b(µ̃′su, σ̃su), which yields

S̃t = δe−r
u
t (u−t)

∫
X
xasu exp

(
− x

bsu
− 1

2
(ξt − [x∗ + τt(x− x∗)])2

τt(1− τt)/(σ2(u− t))

)
dx

∫
X
xasu−1 exp

(
− x

bsu
− 1

2
(ξt − [x∗ + τt(x− x∗)])2

τt(1− τt)/(σ2(u− t))

)
dx
,

(4.34)
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where S̃t is the approximation to St with a gamma prior and, again, X = (0,∞). We
can further simplify Eq. (4.34) as follows:

S̃t = δe−r
u
t (u−t)

∫
X
xasu exp

(
− x

bsu
− 1

2
(ξt − (1− τt)x∗ − τx)2

τt(1− τt)/(σ2(u− t))

)
dx

∫
X
xasu−1 exp

(
− x

bsu
− 1

2
(ξt − (1− τ)x∗ − τx)2

τt(1− τt)/(σ2(u− t))

)
dx

= δe−r
u
t (u−t)

∫
X
xasu exp

(
− x

bsu
− 1

2
−2τtx(ξt − (1− τt)x∗) + (τx)2

τt(1− τt)/(σ2(u− t))

)
dx

∫
X
xasu−1 exp

(
− x

bsu
− 1

2
−2τx(ξt − (1− τt)x∗) + (τtx)2

τt(1− τt)/(σ2(u− t))

)
dx

= δe−r
u
t (u−t)

∫
X
xasu exp

−1
2

(τx)2 − 2τtx (ξt − (1− τt)x∗) + 2 x
bsu

τt(1−τt)
σ2(u−t)

τt(1− τt)/(σ2(u− t))

 dx

∫
X
xasu−1 exp

−1
2

(τtx)2 − 2τtx (ξt − (1− τt)x∗) + 2 x
bsu

τt(1−τt)
σ2(u−t)

τt(1− τt)/(σ2(u− t)

 dx

= δe−r
u
t (u−t)

∫
X
xasu exp

−1
2

(τtx)2 − 2τtx
(
ξt − (1− τt)x∗ − 1−τt

bsuσ2(u−t)

)
τt(1− τt)/(σ2(u− t))

 dx

∫
X
xasu−1 exp

−1
2

(τtx)2 − 2τtx
(
ξt − (1− τt)x∗ − 1−τt

bsuσ2(u−t)

)
τt(1− τt)/(σ2(u− t))

 dx

= δe−r
u
t (u−t)

∫
X
xasu exp

−1
2

(
τtx− ψt

γt

)2
 dx

∫
X
xasu−1 exp

−1
2

(
τtx− ψt

γt

)2
 dx

, (4.35)

where ψt := ξt − (1 − τt)x∗ − 1−τt
bsuσ2(u−t) and γt :=

√
τt(1−τt)

σ
√

(u−t)
. A double change of

variable, i.e.,

S̃t = δe−r
u
t (u−t)

∫
X′

(
γtx
′ + ψt
τt

)asu
exp

(
−1

2(x′)2
)
γt
τt

dx′

∫
X′

(
γtx
′ + ψt
τt

)asu−1

exp
(
−1

2(x′)2
)
γt
τt

dx′
, (4.36)

with x′ := (τtx− ψt)/γt and X′ = (−ψt/γt,∞), followed by
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S̃t = δe−r
u
t (u−t)

∫
X

(
x

τt

)asu
exp

−1
2

(
x− ψt
γt

)2
 γt
τt

1
γt

dx

∫
X

(
x

τt

)asu−1
exp

−1
2

(
x− ψt
γt

)2
 γt
τt

1
γt

dx

= δe−r
u
t (u−t) 1

τt

∫
X
xasu exp

−1
2

(
x− ψt
γt

)2
 dx

∫
X
xasu−1 exp

−1
2

(
x− ψt
γt

)2
 dx

, (4.37)

with x := γtx
′ + ψt and X = (0,∞), reveals that the signal-based price St can crisply

be expressed as the ratio of two consecutive raw (uncentered) absolute (left-truncated
at 0) moments of the normal random variable

X ∼ N
(
ψt, γ

2
t

)
, (4.38)

where, again,

ψt := ξt − (1− τt)x∗ −
1− τt

bsuσ2(u− t) and γt :=

√
τt(1− τt)

σ
√

(u− t)
. (4.39)

With reference to, e.g., [74], Eq. (4.37) can be rephrased more even neatly as

S̃t = δe−r
u
t (u−t) 1

τt

γasut 2asu
2

Γ(asu+1
2 )√
π

γasu−1
t 2asu−1

2
Γ(asu2 )√

π

1F1

(
−asu

2 ,
1
2 ;−1

2

(
ψt
γt

)2
)

1F1

(
−asu−1

2 , 1
2 ;−1

2

(
ψt
γt

)2
)

= δe−r
u
t (u−t)τ−1

t γt
√

2
Γ
(

1+asu
2

)
Γ
(
asu
2

) 1F1

(
−asu

2 ,
1
2 ;−1

2

(
ψt
γt

)2
)

1F1

(
−asu−1

2 , 1
2 ;−1

2

(
ψt
γt

)2
) , (4.40)

where 1F1(κ, ν; z) corresponds to the confluent hypergeometric function of the first
kind (or Kummer’s function) that is given by

1F1(κ, ν; z) ≡
∞∑
m=0

(κ)m
(ν)m

zm

m! (4.41)

with (κ)m being the Pochhammer symbol defined by
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(κ)m ≡
{

1, if m = 0,
κ(κ+ 1) . . . (κ+m− 1), if m > 0. (4.42)

Eq. (4.41) is known to converge for any z ∈ C and is defined for any κ ∈ C, ν ∈ C \
{Z−∪{0}}, with Z− being the set of negative integers. We also note that 1F1(κ, ν; 0) =
1 for all feasible κ, ν. Further details on this type of functions are provided in [67].
Furthermore, in [20], the authors reach a closed-form result in terms of a finite sum of
Legendre-type polynomials that is somewhat analogous to Equation (4.40).

There is in fact a range of fast and effective algorithms available in the literature (see,
e.g., [67]) to compute 1F1(κ, ν; z), such as Taylor series, single fraction, Buchholz
polynomials, asymptotic series expansion, quadrature methods, or via solving the con-
fluent hypergeometric differential equation (CHDE):

z
d2f

dz2 + (ν − z)df
dz
− κf = 0. (4.43)

A thorough survey of algorithms that deal with confluent hypergeometric functions is
beyond the scope of this chapter, but Taylor series expansion seems to stand out as the
most simple and least costly method to compute Eq. (4.41). Picking an appropriate
tolerance level, say e = 10−15, and introducing, based on Eq. (4.41), the series

Am := (κ)m
(ν)m

zm

m! , F̂m :=
∞∑
m=0

Am, (4.44)

with A0 = 1, F̂0 = A0, and

Am+1 = Am

(
κ+m

ν +m

)(
z

m+ 1

)
, F̂m+1 = F̂m + Am, F̂∞ = 1F1, (4.45)

the desired function 1F1 can easily be computed to a high precision using the following
truncation procedure:

F̂M =
M∑
m=0

Am, such that
|AM+1|
|F̂M |

< e. (4.46)

This method indeed yields the desired values of 1F1 in a small fraction of a second.
Figure 4.5 shows the ratio of two confluent hypergeometric functions for several values
of κ and z, calculated based on the above method.

Thus, all in all, we are able to recover a crisp tractable approximation formula for the
signal-based price of a risky asset at time t which will pay an implied dividend of
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Figure 4.5: Ratio of two confluent hypergeometric functions whereas values are calcu-
lated using Taylor expansion with a tolerance level e = 10−15.

φ(Xu) at time u. For computational purposes, we finally note from Eq. (4.40) that,
when s < t ≤ u (i.e., with aus and bus having already been inferred from the data) only
the last argument of 1F1 needs to be updated with the arrival of new information ξt −
which is expected to improve the algorithm’s speed.

4.5.1 Extension to Multiple Signals

At any time t, there will be a total of k = 1, . . . , n(t), earnings signals, with each
of them being τk into their lifetime. Thus, the approximate price S̃t in the multiple
cashflow case is the sum of information-based net present values S̃1

t , . . . , S̃
n(t)
t , of a

strip of n(t) cashflows, and a Gordon continuation value in the sense of Section 4.2.1
above, i.e.,

S̃t = δ

(
n∑
k=1

e−r
k
t (Tk−t)

(
φt(XTk) + 1{k=n}

φt(XTk+1)
rb − µ0

))

= δ

(
n∑
k=1

e−r
k
t (Tk−t)

(
φt(XTk) + 1{k=n}

φt(φTk(XTk+1))
r − µ0

))

= δ

(
n∑
k=1

S̃kt

(
1 + 1{k=n}

eµ0dTk

rb − µ0

))
, (4.47)

where rkt 6= rb, rb > µ0, each S̃kt as given in Eq. (4.40) above, and with
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φt(Xv) = φt(φu(Xv)) (t ≤ u ≤ v) (4.48)

following from the tower property given the definition φt(Xu) := Et [φ(Xu)], or
E [φ(Xu)|ξt]. In the next section, we calibrate our earnings model to actual data.

4.5.2 Maximum-likelihood Estimation of Earnings Model

We recall from Section 4.5 that Y = ∆ logX is normally distributed with µ̃ and σ̃,
given in Eq. (4.24) and (4.25), which are, in turn, functions of the parameters α, µ0,
σX and σµ. We write the log-likelihood function L(α, µ0, σX , σµ|y), based on the
transition density of logX , to be maximised as follows:

L = L(α, µ0, σX , σµ|y)

=
w+1∑
l=3

log
(

1√
2πσ̃l−1,l

√
∆Tl

exp
[
−1

2
(yl−1,l − µ̃l−1,l∆Tl)2

σ̃2
l−1,l∆Tl

])

=
w+1∑
l=3

log
(

2π
[
σ2
X∆Tl +

σ2
µ

2α∆T 2
l (1− e−2α∆Tl−1)

])−1/2

−1
2

w+1∑
l=3


(
yl−1,l −

[
µXl−2,l−1e

−α∆Tl1 + µ0(1− e−α∆Tl−1)− σ2
X

2

]
∆Tl

)2

σ2
X∆Tl + σ2

µ

2α∆T 2
l (1− e−2α∆Tl−1)


= −w − 1

2 log(2π)− 1
2 log

(
w+1∏
l=3

σ2
X∆Tl +

σ2
µ

2α∆T 2
l (1− e−2α∆Tl−1)

)

−1
2

w+1∑
l=3


(
yl−1,l −

[
µXl−2,l−1e

−α∆Tl−1 + µ0(1− e−α∆Tl1)− σ2
X

2

]
∆Tl

)2

σ2
X∆Tl + σ2

µ

2α∆T 2
l (1− e−2α∆Tl−1)

 ,
(4.49)

where ∆Tl := Tl−Tl−1 andw is the estimation window size (i.e., number of Y samples
at each iteration). Indeed, one can easily verify that the function L is concave.

Log-likelihood calibration procedures for a two-layer stochastic asset pricing model
with latent growth parameter (or volatility factor) are not very explicit in the literature,
at least to the author’s knowledge, and possesses some challenges. In [2], for instance,
authors develop a maximum-likelihood calibration method for a two-layer stochastic
volatility model where option prices are inverted to produce an estimate of the un-
observable volatility state variable. Our GBM model with OU drift, as given in Eq.
(4.5) and (4.6), can also be considered within this difficulty category. The issue with
estimating the parameters of our earnings model is that a mean-reverting drift is not di-
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Figure 4.6: Sample paths of actual earnings (solid lines) compared to the calibrated
earnings model output (with parameters in headers).

rectly observable, which can lead to a distortion of parameter estimations, particularly
of α.

We therefore replace the unobservable µXl−2,l−1, l ≤ n, which goes into Eq. (4.49) with
its empirical proxy µ̂Xl−2,l−1 as follows. By Eq. (4.22),

µXl−2,l−1 =
log

(
Xl−1
Xl−2

)
− σXW∆Tl−2

∆Tl−2
+ σ2

X

2 . (4.50)

Thus, when sgn(logXl−1/Xl−2) = +1, logXl−1/Xl−2 we replace µXl−2,l−1 by its em-
pirical proxy

µ̂X+
l−2,l−1 =

E log
(
Xl−1
Xl−2

)+

∆Tl−1
+ σ2

X

2 (4.51)

and, when sgn(logXl−1/Xl−2) = −1, by

µ̂X−l−2,l−1 =
E log

(
Xl−1
Xl−2

)−
∆Tl−1

+ σ2
X

2 . (4.52)
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We considered expected values in Eq. (4.51) and (4.52) so as to prevent noise from
disturbing the estimation of α. The equivalent procedures

arg max
α,β,σX ,σµ

L(α, β, σX , σµ|y) (4.53)

and its necessary first-order optimality conditions

∂L
∂α

= ∂L
∂β

= ∂L
∂σX

= ∂L
∂σµ

= 0 (4.54)

then yield the desired results. To illustrate, we estimate the earnings model on se-
lected tickers for the period 2000Q1-2015Q1 using more than 60 quarters of earnings
data for each. The model output for each ticker is depicted against the actual earn-
ings data in Figure 4.6, where the calibrated parameters are reported as figure titles.
It can be inferred from the figure that earnings growth is generally characterised by
large diversions from, as well as extremely fast reversions to, a long-term growth tra-
jectory.9

For pricing purposes (in forthcoming Section 4.5.3), we shall recursively estimate the
parameters of L using various rolling window lengths w by incorporating both past
information and filtered future signals. To illustrate, if the number of available signals
at a certain time step t is nt, the estimation window will then comprise w − nt and nt
past and future earnings data, respectively. Figure 4.7 depicts the values over time of
log-likelihood calibrated parameters, namely, µ̃, σ̃ and µ0, for the ticker MSFT consid-
ered in this study (top panels), along with (two copies of) the observed market price
for the same period (bottom panels) where major financial incidents are also indicated.
Estimated values for α, on the other hand, lie in the band [54.8, 191.0]. One notable
observation from Figure 4.7 could be that the estimated model parameters are able to
capture major idiosyncratic and systemic incidents of financial stress.

4.5.3 Information-based Model Output

The confluent hypergeometric functions which allowed us to derive a closed-form for-
mula for the signal-based price in terms of Pochhammer series appear rarely in the
financial mathematics literature and is generally used as a tool to derive the character-
istic function of an average F -distribution as part of the general theory of asset pricing
(see, e.g., [47]). In [13], a confluent hypergeometric function appears in the compu-
tation of the Laplace transform of the normalised price for arithmetic Asian options.
Computation of the confluent hypergeometric functions can pose, however, significant
challenges, particularly, when |z| � 0 (see, e.g., [13, 67]).

9 Alternatively, similar to, e.g., [37], where authors discuss the calibration of stochastic volatility models, µX0,1
can be added as an additional parameter to the maximisation problem in Eq. (4.53). Yet, this did not have any
significant impact on our results.

82



Quarter

06Q2 07Q4 09Q2 10Q4 12Q2 13Q4

V
a

lu
e

0

0.1

0.2

0.3

0.4

0.5

0.6
Parameter estimations (w=20)

Quarter

06Q2 07Q4 09Q2 10Q4 12Q2 13Q4

V
a

lu
e

15

20

25

30

35

40

45

50
Market price (copy)

Quarter

06Q2 07Q4 09Q2 10Q4 12Q2 13Q4

V
a

lu
e

0

0.1

0.2

0.3

0.4

0.5

0.6
Parameter estimations (w=40)

µ0

µ̃

σ̃

Quarter

06Q2 07Q4 09Q2 10Q4 12Q2 13Q4

V
a

lu
e

15

20

25

30

35

40

45

50
Market price

Shocks

Figure 4.7: Maximum likelihood parameter estimation of stochastic drift model for im-
plied dividends (top panel) and market price (bottom panel, two copies to ease vertical
comparison).
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Figure 4.9: Signal-based price based on multiple signals on quarterly earnings.

For each time step t, we require at least a minimum number of signals be present for
the forward-looking information to have sufficient impact on price movements. Figure
4.8, in this respect, shows the number of active signals and their average length for the
time period covered in our dataset. Notably, some signals commence as early as over
4 years before their associated earnings are announced. Finally, for r(t, k), i.e., the
discount rate, we adopt U.S. T-bill yield curve rates with maturities correponding (or
falling close enough) to that of the cashflow k, k = 1, . . . , n(t).

We accommodate ξt for pricing in Eq. (4.28), (4.34), (4.40) along with Eq. (4.47)
to compute both signal-based price St (i.e., using (4.28)) and its numerical as well
as closed-form approximations S̃t (i.e., using Eq. (4.34) and (4.40), respectively).
Figure 4.9 left panels depict the log of the calculated price process (which is also
linearly detrended) during the pricing sample period July 22, 2005−October 21, 2014,
covering a total of 3379 data points.

Accordingly, we make some immediate observations as follows:

• The numerical results are almost identical to those obtained by the analytical
approximation (left panels of Figure 4.9).

• Since the bulk of the price accumulates the continuation value, which in turn
depends on the filtered value of the last cashflow Xn(t), the signal-based price is
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most sensitive to the fluctuations in the last earnings “within” the horizon. This
is represented by large swings in the signal-based price, when t = tn + 1 or
t = Tn + 1.

• Also when t = Tk, the contribution of Xk to S simply changes by the amount
of surprise (i.e., how much the signal k is off-target just prior to the release of a
true factor value). But, more importantly, the surprise at each Tk is incorporated
into the signal-based price through improved or deteriorated long-term growth
prospects µ0

t .

• The reaction of the signal-based price to shocks of different types (marked in
the top-right panel of Figure 4.9) has some noteworthy characteristics which are
summarised in Table 4.1.

Table 4.1: Notable reactions of signal-based price to select idiosyncratic and systemic
shocks.

Date (Shock) Notes

Apr. 27, 2006
(Internal)

Although there is no known systemic shock, the signal-based fundamental value
quickly reflects the diminishing business growth prospects implied by an unex-
pected earnings decline.

Dec. 2007
(External)

This is when an across-the-board slowdown in financial activity has started. Yet,
there is no significant reaction by the signal-based price, in line with the fact that
the real business is yet to be affected.

Sep. 15, 2008
(External)

Lehman collapse. Again, the signal-based price foregoes any significant reaction,
until the second round effects hit company’s long-term earnings growth prospects

Jan. 22, 2009
(Internal)

Systemic risks starts to threaten business growth outlook (i.e., second round ef-
fects), signalled by significantly off-the target earnings.

May 6, 2010
(External)

Known as the “Flash Crash.” Again the signal-based price keeps its focus at long-
term prospects.

Thus, in this chapter, we availed the signal-based framework for practical use by adapt-
ing it to a certain choice of real-time signals.
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CHAPTER 5

CONCLUSION

In Chapter 2, we have recovered some of the useful properties of the information-
based framework introduced in [20]. This included, inter alia, that the signal process
(ξt)0≤t≤T was indeed Markov w.r.t. its own filtration and, more strongly, it was dy-
namically consistent. The latter meant that two agents which observed ξt starting from
two different time points, say 0,s, for s > 0, would not only have a common view of
how ξt could evolve in the future (Markov property). They would also have a common
view of how XT could turn out, although the filtration of agent who started observing
ξt at s was regarded as being generated by (ξ′t)s≤t≤T instead of (ξt)0≤t≤T , provided that
his a priori knowledge about the terminal law of XT was updated to πt(s). Further-
more, although the martingale driver Wt was not imposed on the model at the outset,
it popped up rather naturally in the price process as a ‘reducible’ component. It was
also shown that, although a higher σ would ensure a less certainty ‘at the end’ of a cer-
tain period about the true fundamental value, a higher σ also meant an elevated price
volatility ‘during’ that period (which seemed somewhat paradoxical) as information
was incorporated rapidly. The availability of an exponential martingale for a shift from
Q to B, on the other hand, brought a significant deal of simplification to the problem of
derivative pricing. The calculated option prices were indeed in line with the decreas-
ing conditional entropy of (or, uncertainty about) the market factor XT w.r.t. ξt both in
time and for growing values of signal-to-noise σ.

In Chapter 3, where a network of a pair of agents with heterogeneous informational
skills was introduced, we have seen that the dispersion of the P&L results among
agents was directly linked to whether information was revealed through price quotes.
The case where agents were ‘attentive’ and did learn from each other, as compared to
the case where they were ‘omitters,’ was associated with a shrinking of opportunities
for (chances of) profit (loss). It was also apparent from the analysis on the impact of
learning on the evolution of individual information that the learning process, through
updating of posteriors πjt , worked in favour of the agent with an inferior individual
signal when σ1 6= σ2, and the agents benefited equally otherwise. As a result, the ex-
istence of a common knowledge of gains from trade in the sense of [12] was essential
to an equilibrium in the presence of informational asymmetries, and to avoid market
shutdowns. For the case where each agent deemed his own signal superior, we have
derived explicit formulae for the expected trade signal quality and the potential prof-
its/losses that the agent could make/incur (given his signal pointed at the right/wrong
direction), and, thereby, his overall expected P&L before an auction took place. As
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expected, perception of a greater informational superiority, |σ1 − σ2| meant a greater
likelihood for the agent that his trading signal was directionally correct, i.e., ξjt = ξc,
and greater expected profits (vice versa). An this likelihood was stronger in the case
of an a priori greater dispersion of the uncertain outcome XT , and also when the agent
chose to refrain from trade. In equilibrium, we found that the optimal strategy was to
exploit extra information as it arrived, as the cost of foregoing a profit was higher than
the cost of sharing the extra information.

In Chapter 4, we have shown, through a particular example, that the information pro-
cess and information-based framework can be practically viable, and an analytical ap-
proximation to the numerical asset price be recovered. Introducing a slightly modified
version of ξt and using quarterly earnings consensus data as a basis for constructing
the required signals empirically, we approximated the numerical price process via con-
fluent hypergeometric functions of the first kind (or, Kummer’s function) in terms of
a summation of Pochhammer functions. The model output was notable in that the
signal-based price was in general able to capture major trends in the actual price, but it
was also successively more responsive to the shocks that were related to the long-term
fundamental value of the underlying business, than those that had limited or no impact
on the latter.

As an outlook, the present research can be extended in several directions. How a time-
varying flow rate σt (i.e., agents deem their signal superior only temporally) would
affect the equilibrium strategy and P&Ls of agents in Chapter 3 would be an interesting
issue to look into. Moreover, making the amount of information shared a function of
the amount traded would give the agents the additional flexibility of deciding ‘how
much information to share,’ in addition to ‘when to share,’ and possibly affect their
trading strategies (qjt )0≤t≤T . Finally, the analysis in Chapter 4 reveals that abrupt price
changes do actually result from sudden changes in the amount and shape of available
information. This allows to extend the analysis in this chapter to a more realistic case
by using Lévy processes to model ξt.

Financial Signal Processing (FSP)

The use of digital signal processing (DSP) techniques in financial modelling as a
method at the core of engineering discipline is becoming increasingly widespread.
FSP, as an branch of DSP, applies techniques from the latter to aid quantitative invest-
ment strategies. The overall aim of the theory of FSP is to construct optimal casual
filters to extract useful information from a broad range of financial signals. In the fi-
nancial context, a signal can be deemed to be the price, or any other, process sampled
at a certain frequency which has a certain degree of explanatory power on the variable
of interest.

The justification for the use of SP techniques for modelling financial data stems from
the simple fact that any process in the time domain can be expressed as an ensemble of
infinite sinusoidal cycles, each characterised by a distinct cyclic or angular frequency
and radius in the frequency domain. Finite impulse-response (FIR) filters, in this re-
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gard, are generally preferred due to their stability, linear phase response, flexibility in
shaping the magnitude response, and convenience in implementation.

One of the most potent questions pertaining to the application of DSP techniques to
finance is about how to deal with latency without trading off attenuation of noise in
a causal filter context. This involves designing of, e.g., FIR, filters with selectively
prescribed delays in specific frequency regions without adversely influencing the at-
tenuation. This requires a methodology that would take the desired specifications in
amplitude, phase or group delay over a band of frequencies, and deliver the required
transfer function. One feasible approach is to use root moments, as described in [72].
Hilbert transform is also a useful tool to move from amplitude to phase, so as to achieve
the objective of minimising the phase delay.

There are basically two separate issues involved forecasting that need to be dealt with
separately, namely, signal ‘representation’ and ‘signal prediction.’ Existing techniques,
in the main, focus the second issue and consider the first as given and compliant. The
‘surrogate signal method,’ on the other hand, as proposed in [31], emerges from the
basic idea that the latter two problems must be decoupled from each other, and an ef-
ficient representation of the signal must precede, and be the basis for, its prediction.
In this respect, the surrogate signal, which aims to offer a satisfactory representation
of the original signal, is derived from the latter in a way that it retains the desirable
attributes of the parent signal, while also satisfying a priori external and equally de-
sirable constraints, such as smoothness and predictability. One particular way to ex-
tract the surrogate is through the use of ‘annihilator.’ Extracted surrogates are linked
to trading decisions through a quality factor, and specification of a surrogate quality
threshold.

The identification of dominant cycles, i.e., the peak in the representation of the signal in
the frequency-amplitude plane through Fourier transform (signal spectrum), is another
important concept in DSP. This component is sometimes used to develop momentum
as well as high-frequency trading strategies. For non-stationary signals, however, the
dominant cycle is generally time-varying and needs to be detected recursively. This
gives rise to the issue of instantaneous frequency (as an alternative to filter bank) and
the necessity of adaptive filtering techniques (cf. [31]).

Another point where sophisticated DSP techniques can be of great help is basically by
introducing the concept of ‘smooth independent components,’ which implies that the
independent components resulting from the independent component analysis (ICA), a
well-known blind source separation algorithm, can be constructed in a way that they
are robust and stable and, therefore, applicable to maximum portfolio diversification.
One example to this is given in [52], where the smooth ICA is used to compactly
represent a portfolio of assets.

Finally, the first difference or natural logarithm are generally used as the customary
starting to ensure stationarity in financial data, although they sometimes reduce the
information component. There are some recent techniques, such as empirical data de-
composition (EMD) and the like, which do not require a resort to such transformations
while preserving some of the desired characteristics of the data (cf. [29]).
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APPENDIX A

ANALYTICAL GAMMA APPROXIMATION TO
LOG-NORMAL VIA KULLBACK-LEIBLER MINIMISATION

We recall the objective function related to Kullback-Leibler distance minimisation
problem (4.31):

D(at, bt) =
∫
X
fX(µ̃t, σ̃t) log

(
fX(µ̃t, σ̃t)
gX(at, bt)

)
dx, (A.1)

where X = (0,∞). Let h(µ̃t, σ̃t) denote the terms which don’t depend on at and bt.
We have

D(at, bt) = h(µ̃t, σ̃t) + log (Γ (at)) + at log (bt) + 1
bt
Ef [X]− (at − 1)Ef [log (X)] .

(A.2)

Taking derivatives of D with respect to its arguments, each set to zero, we get

∂D(at, bt)
∂at

= Ψ(0) (at) + log (bt)− Ef [log (X)] = 0 (A.3)

∂D(at, bt)
∂bt

= at
bt
− 1
b2
t

Ef [X] = 0

= atbt − Ef [X] = 0. (A.4)

where

Ψ(m)(at) ≡ dm+1 log Γ(at)/dam+1
t (A.5)

is the polygamma function. Knowing that Ef [log(X)] = µ̃t and Ef [X] = exp(µ̃t +
σ̃2
t /2), we obtain the following system of equations to solve:
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Ψ(0) (at) + log (bt) = µ̃t

atbt = exp
(
µ̃t + σ̃2

t

2

)
. (A.6)

Next we eliminate bt by inserting first equation into the latter

at = exp
(

Ψ(0) (at) + σ̃2
t

2

)
. (A.7)

A first-degree approximation to Ψ(0) (at) is given by

Ψ(0) (at) ≈ log (at)−
1

2at
(A.8)

which yields

at ≈
1
σ̃2
t

, bt ≈ σ̃2
t exp

(
µ̃t + σ̃2

t

2

)
. (A.9)
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