
USING ULTRA HIGH FREQUENCY DATA IN INTEGRATED VARIANCE 
ESTIMATION: GATHERING EVIDENCE ON MARKET MICROSTRUCTURE 

NOISE 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO  
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS  

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 
 

BY  
INCI KILICKAYA 

 
 
 
 
 
 
 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF DOCTOR OF PHILOSOPHY 
IN FINANCIAL MATHEMATICS 

 
 
 
 
 
 
 
 
 

APRIL 2017  



  



Approval of the thesis: 

 

 

USING ULTRA HIGH FREQUENCY DATA IN INTEGRATED VARIANCE 

ESTIMATION: GATHERING EVIDENCE ON MARKET 

MICROSTRUCTURE NOISE 

 

 

 

submitted by İNCİ KILIÇKAYA in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy in Department of Financial Mathematics, Middle East 

Technical University by, 

 

 

Prof. Dr. Bulent Karasözen 

Director, Graduate School of Applied Mathematics 

 

Assoc. Prof. Dr. Yeliz Yolcu Okur 

Head of Department, Financial Mathematics 

 

Assoc. Prof. Dr. Seza Danışoğlu 

Supervisor, Department of Business Administration, METU 

 

 

Examining Committee Members 

 

 

Assoc. Prof. Dr. Seza Danışoğlu 

Department of Business Administration, METU 

 

Prof. Dr. Zehra Nuray Güner 

Department of Business Administration, METU 

 

Prof. Dr. Aslıhan Salih 

Department of Business Administration, TED UNIVERSITY  

 

Assoc. Prof. Dr. Sevtap Kestel 

Department of Actuarial Sciences, METU   

 

Assoc. Prof. Dr. Süheyla Özyıldırım 

Department of Business Administration, BİLKENT  

UNIVERSITY 

 

Date:     





 

 





 

v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 

 

 

    Name, Last name: Inci KILIÇKAYA 

 

    Signature             :  

 

 

 

 

  



 

vi 

  



 

vii 

ABSTRACT
 

 

 

 

USING ULTRA HIGH FREQUENCY DATA IN INTEGRATED VARIANCE 

ESTIMATION: GATHERING EVIDENCE ON MARKET MICROSTRUCTURE 

NOISE 

 

 

 

Kılıçkaya, İnci 

PhD., Department of Financial Mathematics 

Supervisor : Assoc. Prof. Dr. Seza Danışoğlu 

 

 

February 2017, 284 pages 

 

 

 

 

In recent years, as a result of more readily available ultra high frequency data (UHFD), 

realized volatility (RV) measures became popular in the finance literature since in 

theory, sampling at increasingly higher frequency should lead to, in the limit, a 

consistent estimator of integrated return volatility (IV) for Ito-semimartingale asset 

prices. However, when observed prices are contaminated with an additive market 

microstructure noise (MMN), an asymptotic bias appears, and, therefore, it becomes 

necessary to mitigate the effect of MMN in estimation of IV. The success of the 

available methods in the literature to suppress the MMN effects must be considered 

only if the empirical evidence backs the assumptions underlying the methods 

developed for handling MMN. On this issue, we realize that empirical evidence on the 

MMN structure should be collected taking into account the dimensions of volatility 

estimation using high frequency data as these dimensions may impair the validity of 

the methods adopted to handle MMN in the first place. Accordingly, in this Thesis, 

first we provide a complete discussion of the dimensions of volatility estimation using 

UHFD. Next, we prove that the formal tests regarding the existence of MMN and the 

constant variance of MMN increments originally developed under calendar time 

sampling can also be used under transaction time sampling. Third, we propose a new 

approach to measure the liquidity of stocks in a high frequency setting. Finally, by 

using tick data from Borsa İstanbul National Equity Market for a period of 6 months, 

we show that (i) the data handling procedures as various combinations of cleaning and 

aggregation methods do not distort UHFD’s original traits, (ii) the return dynamics in 

transaction time are different from those in calendar time, (iii) the RV dynamics are 
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affected by the sampling scheme and liquidity, (iv) the volatility signature plots point 

to the existence of MMN and suggest a positive relationship between the noise 

increment and the true price return, valid in all possible dimensions (sampling scheme, 

liquidity, data handling methods, and session-based or daily calculations), (v) the 

MMN exhibits statistically significant existence under both CTS and TTS for all 

stocks, however, the liquidity and the data handling methods matter under TTS in 

terms of rejection rates of the null hypothesis that the MMN statistically does not exist, 

(vi) the formal tests on the existence of MMN offer positive correlation between the 

noise and the efficient price, (vii) the liquidity and the sampling schemes are very 

influential on the rejection of the null hypothesis that the MMN increments have 

constant variance independent of the sampling frequency, in particular, under CTS, 

(assuming an i.i.d MMN with constant variance is proper for frequencies lower than 1 

minute but under TTS, this assumption fails especially for liquid stocks), (viii) data 

handling has suppressive effects under TTS on the rejection percentages regarding the 

null hypothesis that the MMN increments have constant variance independent of 

sampling frequency. 

 

 

Keywords: Integrated Variance, Realized Volatility, Market Microstructure Noise, 

Sampling Schemes, Data Handling Methods, Liquidity in High Frequency Finance  

 



 

ix 

ÖZ
 

 

 

 

BİRİKİMLİ VARYANS HESAPLAMASINDA ULTRA YÜKSEK FREKANSLI 

VERİ KULLANIMI: PİYASA MİKROYAPISINDAN KAYNAKLANAN 

GÜRÜLTÜ HAKKINDA KANIT TOPLAMA YÖNTEMLERİ 

 

 

 

Kılıçkaya, İnci 

Doktora, Finansal Matematik Bölümü 

Tez Yöneticisi: Doç. Dr. Seza Danışoğlu 

 

 

Şubat 2017, 284 sayfa 

 

 

 

 

Ultra Yüksek Frekanslı Veri setlerinin (UYFV) yaygınlaşması ile varlık getirilerinin 

birikimli varyans (BV) tahmininde gerçekleşmiş oynaklık (GO) tipi tahmin edicilerin 

kullanımı popüler hale gelmiştir çünkü teoride, belli bir zaman aralığında toplanan veri 

sayısı sonsuza ulaştığında GO, BV’nin tutarlı bir tahmincisidir. Ancak, gözlemlenen 

varlık fiyatlarının piyasa mikroyapısından kaynaklanan bir gürültü (PMYG) ile 

kirlenmesi durumunda, asimptotik bir sapma ortaya çıktığından PMYG’nün GO 

tahmin edicisi üzerindeki etkilerinin azaltılması ihtiyacı doğar. Literatürde PMYG’nün 

GO tahmin edicisi üzerindeki etkilerinin bastırılması amacıyla çeşitli yöntemler 

önerilmişse de, bu yöntemler benimsenmeden önce söz konusu yöntemlerin PMYG 

hakkında dayandığı varsayımların ampirik kanıtlarla desteklenmesi gerekmektedir. 

Dolayısıyla, GO kullanılarak BV tahmininde, PMYG’nin istatistiksel yapısı hakkında 

kanıt toplanmalı ancak, kanıt toplanırken BV hesabında UYFV kullanılmasına ilişkin 

sorun ve boyutlar dikkate alınmalıdır. Bu çerçevede, bu tezde ilk olarak BV hesabında 

UYFV kullanılmasına ilişkin sorun ve boyutlar hakkında kapsamlı bir tartışma 

yapılmış, arkasından takvim zamanı altında geliştirilen PMYG’nin varlığına ve veri 

toplama sıklığından bağımsız olarak farklarının sabit varyansına yönelik istatistiksel 

testlerin işlem zamanı altında da kullanılabileceği gösterilmiştir. Ek olarak, yüksek 

frekanslı veri ile yapılan çalışmalarda kullanılmak üzere hisse senetlerini likiditelerine 

göre sınıflandırmak için yeni bir yöntem önerilmiştir. Son olarak, bu tezde, 6 aylık 

Borsa İstanbul Ulusal Pazar UYFV’si kullanılarak, (i) hata temizleme ve aynı anlı 

verileri özetleme tekniklerinin kombinasyonları olarak uygulanan veri hazırlama 

metotlarının UYFV’nın orijinal özelliklerini bozmadığı, (ii) takvim zamanı altındaki 
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getiri dinamiklerinin işlem zamanı altında farklı olduğu, (iii) GO tahmin edicisinin 

dinamiklerinin veri toplama tekniğinden ve likiditeden etkilendiği, (iv) oynaklık 

imzası grafiklerinin olası tüm boyutlarda (veri hazırlama metotları, veri toplama 

teknikleri, likidite ve hatta GO’nun günlük veya seanslık hesaplanması) geçerli olmak 

üzere PMYG’nin varlığı ve gerçek varlık fiyatları ile PMYG arasında pozitif 

korelasyona dair görsel kanıt sunduğu, (v) istatistiksel test sonuçlarına göre, 

PMYG’nin varlığının hem işlem hem de takvim zamanında teyit edildiği ancak, 

takvim zamanı altında likidite ve veri hazırlama metotlarının test sonuçlarını 

etkilediği, (vi) PMYG’nin varlığını test eden istatistiğin aldığı değerlerin PMYG ile 

gerçek varlık fiyatları arasında pozitif bir korelasyonun varlığını desteklediği, (viii) 

PMYG farklarının veri toplama aralığından bağımsız olarak sabit bir varyansı olup 

olmadığına yönelik istatistiksel test sonuçlarının likidite ve veri toplama 

tekniklerinden büyük ölçüde etkilendiği, nitekim, takvim zamanı altında sabit 

varyanslı ve bağımsız ve aynı dağılan PMYG varsayımının 1 dakikadan az veri 

toplama aralıkları için uygun olduğu ancak, işlem zamanı altında bu tip bir varsayımın 

özellikle likit hisse senetleri için reddedildiği, (viii) işlem zamanı altında veri 

hazırlama metotlarının PMYG farklarının sabit varyansına yönelik test sonuçlarını 

aşağı yönde baskıladığı gösterilmiştir. 
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CHAPTER 1
 

 

 

INTRODUCTION 
 

 

 

 

Although the Turkish capital markets have undergone great progress over the last few 

decades, what is evident regarding the economy as a whole is also evident for the 

capital markets: the prices of financial securities are very volatile due to macro-

economic imbalances as well as domestic factors such as political stability and 

international factors such as exchange rates. For instance, in a general pattern of 

cyclical fluctuations, Borsa İstanbul A.Ş. indices that are calculated in order to reflect 

the price and return performance of all shares exhibit a high degree of volatility. This 

type of an investment environment is only preferable if the investor is a risk taker. 

However, investment theory suggests that different investors may have different 

choices regarding the level of risk to assume and even the same investor may prefer 

different risk levels at different times. In order to accommodate these different risk 

preferences, the financial system has to offer means by which investors can manage 

and adjust the level of risk that they take. The derivative markets and derivative 

instruments as a means of risk management are one of the best possible ways of 

achieving this objective. However, benefiting from derivative markets requires 

measuring return volatilities correctly since volatility is the most crucial and 

challenging input used in portfolio selection, derivative pricing and risk management, 

mainly because volatility is a latent variable and is not directly observable. Fortunately, 

the finance literature offers many parametric and nonparametric volatility models to 

measure or forecast return volatilities. Some of the models that are developed over the 

last few decades include ARCH, GARCH, EGARCH, and stochastic volatility 

specifications and the performance of these models has been studied frequently [51].  

 

Accompanying the introduction of several complex volatility models, one important 

development in the volatility measurement context has been the advent and availability 

of “ultra high frequency data” (UHFD), which refers to the data sets including 

thorough reports of all the financial markets activity information that is available, 

where “ultra” high frequency data means that it is not possible to dive into finer details 

than that is provided in these data sets [37]. The basic unit of information contained in 

UHFD is called the “tick”, which represents a time stamp and a set of information 

summarizing specifics of the market activity at that time [37]. 

 

The availability of UHFD sets is considered to be one of the most groundbreaking 

changes in the field of volatility measurement and forecasting since such high 
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frequency data not only fostered the development of improved ex-post volatility 

measurements but also inspired research into their potential value as an information 

source for longer horizon volatility forecasts [66]. However, due to the complex 

structures of parametric models, modeling volatility in a high-frequency setting is very 

challenging. As Andersen et al. [13] put it, volatility models using daily data cannot 

accommodate high- frequency data whereas parametric models specified directly for 

intraday data usually cannot capture the daily volatility movements. Therefore, with 

the advent of UHFD in 1990s, an interest boomed in nonparametric approaches to the 

estimation of return volatility using high-frequency data. One of the very first of such 

nonparametric approaches was to use realized volatility measures, which became 

famous in the late 1990s and early 2000s.  

 

It was first pointed out by Andersen and Bollerslev [8] that squared daily returns 

provide a poor approximation of actual daily volatility. They suggested that more 

accurate estimates could be obtained by summing the squared intraday returns. 

Following this valuable contribution to the finance literature, Andersen et al. [12], 

Andersen et al. [10], and Barndorff-Nielsen and Shephard [24] were among the 

pioneers who studied the ‘‘realized’’ volatility (RV) and its relevance in volatility 

measurement. 

 

The availability of UHFD made RV measures popular in the finance literature during 

the last two decades because in theory sampling at increasingly higher frequencies 

should lead to, in the limit, a consistent estimator of the return volatility when asset 

prices satisfy a certain semimartingale representation. The semimartingale 

representation of asset prices is adopted widely in the studies because, as explained by 

Harrison and Pliska [63], with continuous trading allowed, an arbitrage free market is 

complete (every contingent claim is attainable) if and only if there is a unique 

probability measure ℙ∗ equivalent to ℙ under which the discounted asset prices are 

martingales, and, in this setting, asset prices must satisfy the semimartingale property. 

 

Regarding the semimartingale property of asset prices, one can choose among different 

specifications but the most popular specification in the finance literature is the 

Brownian semimartingale representation, which implies that asset prices do not exhibit 

any discontinuous behavior. In a Brownian semimartingale setting, the log of an asset's 

price is a real-valued process defined as the solution of a stochastic differential 

equation such that log of the asset’s price is a function of time, drift, a Brownian 

motion and return volatility. When return volatility is itself a stochastic process, the 

main object of interest is the quadratic variation or integrated variance (IV) and it is 

defined as the amount of variation at a certain point in time accumulated over a finite 

past time interval. Note that while the asset price can be observed, the volatility is an 

unobservable latent variable that scales the Brownian process continuously through 

time [96].  

 

The RV exploits the information in high-frequency returns and estimates volatility by 

summing the squares of intraday returns sampled at very short intervals [51]. RV per 

day in this context is calculated as the sum of all squared immediate returns within a 

day. 
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In the stochastic processes literature, the sum, RV, is shown to consistently estimate 

the integral IV and to converge to the true underlying integrated variance when the 

length of the intraday intervals goes to zero [11], [24].  

 

Barndorff-Nielsen and Shephard [24] prove the consistency of RV and show that its 

asymptotic distribution is normal. In this context, if asset prices follow a Brownian 

semimartingale, then the return volatility can be estimated consistently and effortlessly 

by calculating the RV at the highest frequency possible. However, sampling returns as 

many times as possible without any further consideration may not be the right 

approach since there are several aspects of UHFD that should be taken into account in 

volatility measurement. 

 

The first issue that should be examined when using an UHFD for estimating the IV of 

asset prices is the fact that UHFD exhibit interesting characteristics such as a 

tremendous number of ticks per day, temporal spacing of transactions/quotes, strong 

intraday patterns in the form of diurnal shapes in trade volume and/or returns per fixed 

amount of time, and the existence of errors and simultaneous entries for the same time 

stamp. Therefore, before using UHFD in volatility estimation, one should decide on 

how to handle these aspects before commenting on the results from any volatility 

estimation attempt.  

 

As a second issue, O’Hara [92] and many other market microstructure researchers 

claim that the observed asset prices can be decomposed as sum of the unobserved true 

price and the unobserved aggregate effect of the market microstructure (noise or 

MMN, henceforth). There are several arguments in the literature about the sources of 

the MMN but, in general, the MMN is accepted as a combination of factors such as 

frictions inherent in the trading process, informational effects, and measurement or 

data recording errors [3]. Many high frequency finance researchers such as Zhou [112], 

Andersen et al. [11], Andersen et al. [12], Barndorff-Nielsen and Shephard [24], [25], 

Bandi and Russell [19], Hansen and Lunde [58], Zhang et al. [111] provide abundant 

mathematical and empirical evidence of a noise contamination in observed asset prices 

as we increase the sampling frequency. 

 

Contamination of observed prices with market microstructure is a vital concern in 

volatility estimation via realized type of measures mainly because if there is such a 

contamination, then the quadratic variation of observed prices calculated over the 

highest frequency possible does not simply converge to the IV of true prices since an 

asymptotic bias appears due to the existence of MMN [10], [24], [25]. Accordingly, 

one would choose to sample at lower frequencies to eradicate the bias due to MMN 

but this would increase the variance of the total estimation error due to discretization. 

This is called “the bias-variance trade-off” in the literature. In order to examine how 

RV deviates from IV as we increase the sampling frequency and to come up with 

methods to handle those deviations and the bias-variance trade-off (mitigation of 

MMN effects on RV measures), we first have to make some assumptions regarding 

the statistical features of market microstructure noise. The most popular assumption in 

the RV literature states that the MMN is a sequence of independent and identically 

distributed (i.i.d) random variables with zero mean, constant variance and finite fourth 

moment, while the MMN and the true prices are orthogonal to each other. Therefore, 

it is of great importance to mitigate the effect of MMN when we try to estimate the 
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true price volatility of assets using high frequency data, especially considering that 

high frequency prices include more information compared to data sets of lower 

frequencies. 

 

The third aspect in volatility estimation using UHFD relates to the asynchronous 

characteristic of markets. In actual equity markets, transactions take place and quotes 

arrive asynchronously, leading to transaction and/or quote time series to be observed 

at discrete and irregularly spaced intervals. This asynchronous characteristic of the 

stock markets allows us to sample the returns in various ways, i.e., one can follow 

different sampling schemes for estimating return volatility over a fixed time period. 

The most common sampling scheme is calendar time sampling (CTS), under which 

sampling is done at equal intervals in physical time; for instance, sampling at every 1 

minute or 10 minutes. However, CTS has one big shortfall: the transactions and/or 

quotes are irregularly spaced in time and calendar time sampled data needs to be 

constructed artificially. Alternatively, one can sample prices whenever a transaction 

takes place, a.k.a. transaction time sampling (TTS). Similarly, if we sample data every 

time the stock price changes, then the sampling scheme is called tick time sampling 

(TkTS). Another option is called business time sampling (BTS) where the sampling 

times are determined to ensure that the IV of all intraday intervals are equal. On this 

issue, Oomen [94] shows that the mean squared error of the RV can be decreased by 

sampling returns on a transaction time scale as opposed to the common practice of 

sampling in calendar time. Hansen and Lunde [61] reveal that MMN is time-dependent 

and correlated to the unobservable true price under both CTS and TkTS. Likewise, 

Griffin and Oomen [55] argue that the return dynamics in TTS are different from those 

in TkTS and the choice of the sampling scheme may have a substantial effect on the 

properties of realized variance (microstructure noise is highly dependent under TkTS, 

so the bias correcting method should be decided accordingly). They find that tick time 

sampling is superior to transaction time sampling in terms of mean squared error, 

especially when the level of noise, number of ticks, or the arrival frequency of the 

efficient price moves is low [55]. Accordingly, it is also of great importance to shed 

light on the influence of the sampling scheme on the statistical properties of realized 

volatility whenever UHFD are used for IV estimation. 

 

The fourth aspect in measuring realized volatility is the presence of non-trading hours. 

Realized volatility may underestimate the IV if the RV is calculated by using prices 

sampled only during trading hours. A number of researchers advocate the upscaling of 

RV calculated over trading hours to reach the daily RV. Interestingly, only a small 

number of papers [58], [59], [60], [61], [28], [101] in the RV literature discuss the 

ways for adjusting the estimator for non-trading hours whereas the majority of studies 

on the estimation of the quadratic variation of asset prices using high frequency data 

stay silent about non-trading hours. Regarding this silence, one should acknowledge 

that there are several questions to be answered before upscaling the RV measures to 

find the daily RV: Does the existence of non-trading hours only cause a time shift in 

volatility and is the daily volatility the same regardless of the length of trading hours 

leading us to observe diurnal shapes in trading volumes and returns due to this fact? 

Are the trading incentives that accumulate overnight and during the lunch break 

reflected in the market or limit orders once the markets are open? When the return 

volatility is u-shape per session, would adjusting RVopentoclose for non-trading hours 

cause a double-counting of daily volatility? Should we include opening and closing 
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sessions or should we only work with sessions where only continuous auction is 

allowed? What is the best way to adjust the RV estimators under tick and transaction 

time sampling schemes? These questions underline the fact that adjusting the IV 

estimators for non-trading hours is not a straightforward step in the calculation of daily 

RVs. 

 

Returning back to the issue of the contamination of observed prices with MMN, we 

remind that the estimation of the IV of the true asset prices using observed prices leads 

to the estimation of the quadratic variation of the MMN as we increase the sampling 

frequency, however decreasing sampling frequency causes the variance of the 

estimation error to increase. This result forces researchers and practitioners to come 

up with methods to mitigate the bias in IV estimation while taking into account the 

bias-variance trade-off. The approaches in the literature with respect to handling an 

additive MMN in the calculation of the quadratic variance of the unobserved 

efficient/true price can be grouped into 4 categories:  

 

 Adjusting the RV estimator such as using kernel based estimators and 

subsampled kernel based estimators as in [27] and [28] or employing the two-

time-scale or multi-time-scale estimators suggested in [111] and [3].  

 

 Sparse sampling such that a bias-variance tradeoff is attained by choosing a 

sampling frequency at which MMN is supposed to be not too substantial, as in 

[11]. 

 

 Finding an optimal sampling frequency where the RV calculation is not adjusted 

but the sampling frequency is optimized such that the mean squared error is 

minimized or the forecasting performance is maximized as in [20], [21],[55] and 

[94]. 

 

 Pre-whitening of data such as smoothing the intraday returns by fitting a moving 

average or an autoregressive model as in [10] or [46] or pre-averaging of a 

certain number of observed prices as in [68]. 

 

Such methods to reduce/remove the impact of the noise component in IV estimation 

have been subject to a great deal of research but all these methods depend on the 

assumed structure of the MMN. For instance, Awartani et al. [16] draw attention to the 

fact that many methods to handle the MMN while estimating the IV of the unobserved 

true returns by using UHFD, including kernel based estimators, subsampling 

approaches, optimal sampling, and, simple bias correction methods, depend on the 

assumption that the MMN has an i.i.d and/or constant variance structure. Therefore, 

the success of the methods used to mitigate the MMN effects must be considered only 

after gathering empirical evidence from developed and developing markets regarding 

whether the assumptions underlying the aforementioned methods truly hold. 

Accordingly, rather than comparing the methods for handling the MMN in the IV 

estimation with respect to their forecasting performance or some other economical 

criteria, we delve into gathering evidence regarding the statistical structure of the 

MMN and aim to answer the question of whether popular assumptions about the 

statistical features of MMN are adoptable in light of the empirical findings. 
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We believe that such empirical evidence on the MMN structure should be collected 

taking into account all the dimensions/aspects of volatility estimation using high 

frequency data because the validity of methods for handling the MMN in the 

estimation of the IV may be compromised if all of these issues are not taken into 

account in the analysis. More specifically, we argue that the MMN evidence can be 

valid only after addressing the need to detect and clear errors, the need to aggregate 

simultaneous observations and to interpolate the data under CTS, the need to choose 

one or more sampling schemes, the need to make assumptions on the MMN structure 

and the need to consider non-trading hours in the estimation of the daily RV. In the 

literature, discussions and evidence on the IV estimation using RV only focus on some 

portion of these dimensions/aspects, such as the effect of sampling scheme on the 

return and RV dynamics [93], [61], [55], or, the effect of the aggregation methods on 

the RV calculation [27], or, the effect of cleaning procedures on the RV estimators [3], 

[27], or, the different ways for scaling RVs over trading hours to reach daily figures 

[58], [59], [60], [61], [28], [101]. In addition, the literature does not touch the issue of 

how to examine the existence and the statistical features of the MMN formally under 

sampling schemes other than CTS. Moreover, all the aforementioned studies use data 

coming from stock markets of developed economies such as the US or Japan and the 

literature lacks research on volatility estimation and the MMN structure providing 

empirical evidence from developing markets. In summary, to the best of our 

knowledge, none of the published literature on volatility estimation using UHFD  

 

 discusses dimensions/aspects of volatility estimation simultaneously, 

 

 considers how data handling methods in the form of cleaning and aggregation 

affect the characteristics of UHFD, and, whether the widely accepted outlier 

handling methods end up overscrubbing or underscrubbing the data, 

 

 examines what happens to the return and RV series dynamics under varying 

combinations of sampling schemes and data handling methods while controlling 

for the liquidity of the stock, and,  

 

 examines what happens to the visual and statistical evidence on the existence 

and/or statistical features of MMN under varying combinations of sampling 

schemes and data handling methods, and, whether findings about the MMN 

structure are robust with respect to the liquidity of the stock 

 

at the same time.  

 

Furthermore, we recognize that the liquidity of traded assets is an important issue that 

is discussed in the finance literature and there are many liquidity definitions and 

measures that find support in different studies. For instance, a widely accepted 

definition by Black [35] describes a liquid asset as an asset which can be sold in a short 

period of time for a price not too different from the price at which the seller would be 

able to sell if s/he opted to wait longer. Interestingly, when the high frequency finance 

literature is examined, it is seen that dealing with an asset's liquidity is somewhat 

problematic in the sense that many of the liquidity indicators/measures fall short when 

it comes to addressing the existence or the statistical properties of MMN embedded in 
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the observed stock prices, especially if such measures are calculated under different 

sampling schemes such as CTS. This postulation is accentuated especially when there 

is a relatively long time lag between two consecutive transactions. As it will be 

explained in detail in Chapter 2, Section 2.1, in such a case of infrequent trading, the 

previous tick method is typically used to construct artificial return series, but this, in 

turn, means that returns are calculated by using pieces of information that belong to 

distant points in time leading to inflated serial correlations due to long sequences of 

zero returns [37]. Hence, the previous tick method may work best in IV estimation for 

very actively traded stocks since we would not want to spur such correlation structures 

by artificially introducing additional autocorrelation (serial correlation) due to the 

interpolation method selected. These arguments pave the way for the introduction of a 

new method to classify stocks with respect to their liquidity (active trading) in a high 

frequency setting.  

 

In order to realize all these goals, we begin by discussing the dimensions of IV 

estimation using high frequency data sets in detail in Chapter 2.  

 

Next, in Chapter 3, subject to certain assumptions, we prove that the formal tests 

developed under CTS by Awartani et al. [16] for determining whether there is any 

statistically significant asymptotic bias due to the existence of MMN on the RV 

estimator and whether MMN increments have a constant variance independent of 

sampling frequency are also applicable under TTS.  

 

In Chapter 4, we first suggest a new approach to classify liquid and illiquid stocks that 

can be used in a high frequency setting, and then, by applying a grid of the data 

cleaning methods and different sampling schemes, TTS and CTS in particular, to six 

stocks that are listed on Borsa Istanbul National Equity Market, we examine what 

happens to the common characteristic of UHFD, the dynamics of the return and RV 

series, volatility signature plots and formal tests of the existence and the constant 

variance of MMN developed by Awartani et al. [16] as we move on the grid while we 

also look for any significant changes in results due to the liquidity of the sample stocks.  

 

Chapter 5 provides our conclusions. 
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CHAPTER 2 
 

 

 

DIMENSIONS OF VOLATILITY ESTIMATION USING UHFD 
 

 

 

 

2.1. Nature of UHFD and Errors in UHFD Sets 
 

 

As Brownlees and Gallo [37] put it, the term “financial high/ultra high frequency data” 

(UHFD) in the literature refers to the data sets including thorough reports of all 

available financial markets activity information. The term “ultra” also means that it is 

not possible to dive into finer details than that are provided in these data sets. The basic 

unit of information contained in the UHFD is called the “tick”, which represents a time 

stamp and a set of information summarizing specifics of the market activity [37]. With 

the advent and increasing availability of the UHFD, many researchers examined the 

common properties of such data sets that cause greater complexity in analysis 

(Andersen and Bollerslev [7], Engle and Russell [48], Dacorogna et al. [45] , 

Falkenberry [50], Brownlees and Gallo [37], Verousis and Gwilym [106], Engle and 

Russell [49] among many others). In this context, the literature reports the common 

properties of UHFD as follows: 

 

 Number of ticks can reach thousands (millions) per day (year), 

 

 The time interval between two consecutive ticks is random (temporal spacing), 

 

 There can be anomalies in the behavior of ticks due to particular market 

conditions such as openings, closings, trading halts, circuit breakers, etc. (strong 

intraday patterns), 

 

 The rules and procedures of the institution that records and disseminates UHFD 

affect the structure and sequence of ticks, 

 

 The data sets can contain wrong ticks such as zero prices or volumes and there 

is a diversity of possible errors and their causes. 

 

Although using historical high frequency data in finance applications became popular 

since the 2000’s, there is a limited number of studies that address the necessity of 

detecting errors/outliers while preparing the time series data at hand for further 

analysis. Furthermore, the literature does not agree on a single definition of what 
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constitutes an unclean data point/error/outlier. For instance, Dacorogna et al. [45] 

define a data error as “a piece of quoted data that does not conform to real situation 

of the market”, whereas Verousis and Gwilym [106] state that an outlier is an 

observation which does not reflect the trading process so that the real connection 

between market participants’ behavior and recorded observations are broken. 

Falkenberry [50] adds that ‘the most difficult aspect of cleaning data is the inability to 

universally define what is unclean’. In spite of the lack of a common definition, there 

is consensus in the high frequency finance literature that data errors (outliers) should 

be defined and removed somehow by a data filter/cleaning algorithm before any 

computation. Specifically, Dacorogna et al. [45] state that the problem of outliers 

distorting the reliability of calculations in high frequency setting gets accentuated for 

finance applications mainly because much of these applications work with returns and 

the difference operator is quite sensitive to outliers. Dacorogna et al. [45] also 

underline the fact that professional users may immediately detect erroneous pieces of 

information and clean the data using their immense practical knowledge, but 

researchers investigating historical data have a lesser understanding of what constitutes 

an erroneous tick and why such errors occur. In other words, using UHFD in academic 

research requires attention with respect to detecting errors and pinpointing the human 

and/or system failures that give rise to such errors.  

 

In addition to the lack of a common definition, the explanations regarding why bad 

data/erroneous data/outliers exist change from one researcher to the next. For instance, 

Falkenberry [50] associates bad data with the asynchronous and voluminous nature of 

financial data whereas Dacorogna et al. [45] list unintentional (such as typing) and 

intentional (such as dummy ticks produced just for technical testing) human errors as 

well as system errors caused by computer systems, their interactions and failures, and 

they do not make any reference to the trading intensity. Meanwhile, Brownlees and 

Gallo [37] assert that there are no clear reasons for the existence of erroneous data. 

 

There are a number of studies that mark the first few attempts that underline the 

importance of treating outliers in a high frequency finance setting. For instance, 

Dacorogna et al. [44] analyze large amounts of high frequency German mark - US$ 

quotes by market makers around the world (up to 5000 irregularly spaced prices per 

day) in order to develop a set of real-time intra-day trading models that give explicit 

trading recommendations under specific constraints. Likewise, Huang and Stoll [65]  

examine transaction data encompassing bid-ask quotations, transaction prices, and 

volumes in order to compare the execution costs for NASDAQ stocks with the 

execution costs for comparable NYSE stocks. Finally, Zhou [112] concentrates on 

high frequency exchange rate data for modeling the negative autocorrelation in 

observed time series and proposes a realized volatility estimator that is suitable for the 

high frequency setting. 

 

In order to detect outliers and clean the high frequency financial data, in addition to 

the detection and treatment of obvious errors such as corrected, negative or zero 

quotes/prices, the initial studies on the subject suggest comparing each quote/price 

with a median that is calculated by using data points within the close neighborhood of 

a given trade [112] or deleting trades (quotes) whenever the return calculated by using 

the previous trade exceeds 10% [65] or 25% [31]. Chung et al. [39] improve on [65] 

in the sense that the percentage of the return threshold is increased to 50% and the 
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return is calculated in absolute terms in order to make sure that negative returns also 

trigger outlier detection. Interestingly, although there are several papers published 

before 2008 which criticize the 10% return criterion and promote alternative criteria 

such as examining the distance of a data point from a rolling transform, Bandi et al. 

[21] and Pigorsch et al. [95] continue to adopt the 10% immediate return rule in their 

studies. 

 

Following such pioneering approaches, Dacorogna et al. [45], Falkenberry [50], 

Brownlees and Gallo [37], Oomen [94], Gutiérrez and Gregori [56], Verousis and 

Gwilym [106] and Barndorff-Nielsen et al. [27] also examine outlier handling in high 

frequency financial data.  

 

The algorithm suggested by Dacorogna et al. [45] concentrates on data from the FX 

spot and FX derivative markets while the algorithms by Brownlees and Gallo [37], 

[38] and Barndorff-Nielsen et al. [27] concentrate on data from the stock market and 

the algorithm by Verousis and Gwilym [106] concentrates on data from the stock 

option market. These different algorithms share some common characteristics. For 

instance, each quote/price is compared with a moving threshold that is calculated by 

using the neighboring data points where a symmetrical number of preceding and 

following quotes/prices are selected and then the ticks that exceed the threshold are 

classified and deleted as outliers. More specifically, in order to delete outliers in high 

frequency stock market data sets, Brownlees and Gallo [37] propose to delete prices 

whenever the absolute difference between a current price, 𝑝𝑖, and the 10% trimmed 

sample mean, �̅�𝑖(𝑘), is more than 3 sample standard deviations, 𝑠𝑖(𝑘), of a 

neighborhood of 𝑘 observations around the current tick plus a parameter, 𝜉, that 

represents a multiple of the minimum allowable price variation for the stock at hand:  

 

 

|𝑝𝑖 − �̅�𝑖(𝑘)| < 3𝑠𝑖(𝑘) + 𝜉 = {
true, observation 𝑖 is kept

false, observation 𝑖 is removed
       

       
 

 

 

Falkenberry [50] states that the higher velocity in trading induces a higher probability 

of an error in the reported trading data and advocates the use of transaction frequency 

as a criterion in determining the number of data points to be used in the calculation of 

a moving transform to which the data point is compared. Likewise, the Brownlees and 

Gallo [37] approach described above incorporates the trading intensity, 𝛾, in the 

selection of the number of neighboring data points, 𝑘, while calculating the moving 

average and moving standard deviations. Brownlees and Gallo [37] suggest that 

inactive trading should lead to a “reasonably small” 𝑘 so that the window of 

observations does not contain too distant prices, while active trading should lead to a 

“reasonably large” 𝑘 so that the window contains enough observations to produce 

reasonable estimates of the local characteristics of the price. In order to visually choose 

the pair of 𝑘 and 𝛾, they count the number of observations deleted for a grid of 

parameters 𝑘 and 𝜉. 

 

One can also choose not to delete the outliers but replace the outliers with corrected 

values. This is called the “Search and Modify” approach by Falkenberry [50] who 
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analyses stock market tick data. Falkenberry [50] describes the “Search and Modify” 

approach as follows. First, a moving transform of the tick is calculated where the 

number of points to be used in the moving transform calculation is a function of tick 

frequency in order to adapt the filter to the unique activity levels of various securities. 

Next, each tick’s distance (in standardized units across different securities) from its 

moving transform is found. If the tick’s distance exceeds a user-defined threshold, then 

it is defined as an outlier. Finally, the moving transform replaces the ticks that are 

classified as outliers.  

 

Some other studies focus on the bid-ask spread in order to detect and delete outliers. 

For instance, Chordia et al. [41] delete transaction data by using criteria that depends 

on the quote data. Chordia et al. [41] record an outlier whenever either of the following 

conditions are met: (i) the Quoted Spread exceeds $5, or, (ii) the Effective Spread to 

Quoted Spread ratio or the % Effective Spread  to % Quoted Spread ratio exceed 4.0, 

or, (iii) the Quoted Spread  to Transaction Price ratio exceeds 0.4. By using this criteria, 

Chordia et al. [41] end up removing less than 0.02 % of all transaction records. 

Meanwhile, Benston [30] deletes prices when (i) the effective spread exceeds 20% and 

the price or bid or ask quote exceeds $5, or, (ii) the effective spread exceeds 20% and 

the price is less than $5 but is between the bid and ask quotes. Likewise, Hansen and 

Lunde [61] exclude transaction prices that are more than 1 spread away from the bid 

and ask quotes and Barndorff-Nielsen et al. [27], [28] remove prices whenever the 

price is above the ask plus the bid-ask spread or below the bid minus the bid-ask 

spread. These approaches in general can be summarized as ‘disciplining trade data 

using quote data’ [27].  

 

Within the context of this Thesis, disciplining trade data using quote data is not 

applicable for our research because in Borsa İstanbul's National Equity Market, two 

continuous auction sessions (morning and afternoon) plus an “opening session” prior 

to each of the sessions to set the opening price for each session, and a “closing session” 

at the end of the second session to set the closing price of each trading day are held. 

During the opening and closing sessions, orders are received for a specific period of 

time, and then the price is set in order to achieve the highest trading volume where 

trading volume is defined as aggregate price times the amount traded. During these 

sessions, orders are executed at these single prices and the remaining orders are 

automatically cancelled. With such an auction mechanism in place, proper quote data 

are missing for securities included in BIST 100 Index as they are always subject to 

continuous auction system. In this context, our approach needs to utilize the existing 

trade information in the detection and deletion of outliers. Barndorff-Nielsen et al. 

[27], whose cleaning algorithm is also adopted by Koopman and Scharth [74], propose 

an important step in outlier handling when there is no quote data available. They 

propose that entries for which the price deviates by more than 10 mean absolute 

deviations from a rolling centered median of 50 observations (25 preceding, 25 

following) should be deleted. They justify the selection of the sample median and mean 

absolute deviations rather than the sample mean and sample standard deviation by 

arguing that the first pair is less sensitive to runs of outliers. Verousis and Gwilym 

[106], on the other hand, argue that the median absolute deviation is more resistant to 

outliers than the mean absolute deviation and add that if normality cannot be assumed, 

the median is more efficient than mean. In their study, MAD is defined as the median 

value of absolute deviations around the median. Verousis and Gwilym [106] first 
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calculate the daily median price, then take the median of the absolute deviations of the 

prices from that daily median, normalize the MAD, and finally delete a price if (after 

controlling for the minimum tick, price level and daily price effects) (i) the price is 

greater than one minimum tick compared to the previous tick, price is higher than a 

certain level, price is less than 90% or more than 110% of daily average price, simple 

return with respect to prior price exceeds 10% and/or normalized MAD is less than the 

standardized price, or, (ii) the price is equal to or less than one minimum tick compared 

to previous tick, price is lower than a certain level, price is less than 80% or more than 

120% of daily average price, simple return with respect to prior price exceeds 20% 

and/or normalized MAD is less than the standardized price. 

 

Another notable contribution to the data cleaning literature is the algorithm that is 

designed for transaction time sampling by Oomen [94]. Using IBM transaction data, 

Oomen [94] investigates the statistical properties of the RV estimator for varying 

sampling frequencies and sampling schemes. Before applying his methodology to IBM 

transaction prices, he cleans the data set from obvious errors and data points with time 

stamps outside of trading hours. He also removes days where trading begins late or the 

market is closed early. When it is time to detect and treat outliers, he prefers to filter 

the data for instantaneous price reversals in transaction time. In particular, 𝑝(𝑘) (kth 

transaction price) is deleted if the following two conditions are satisfied 

simultaneously,  

 

 

|𝑟(𝑘|1)| > 𝑐, 
 

 

and  

 

 

|𝑟(𝑘 + 1|1)| ∈ [−(1 − 𝑤)|𝑟(𝑘|1)|,−(1 + 𝑤)|𝑟(𝑘|1)|], 
 

 

for any 0 < 𝑤 < 1 , where 𝑟(𝑘|1) = 𝑝(𝑘) − 𝑝(𝑘 − 1), meaning that, for the kth 

transaction to be removed, the absolute price change from the k-1th transaction to the 

kth transaction should exceed both a threshold set arbitrarily as well as the price 

changes from the kth transaction to the k+1th transaction such that the absolute price 

reversal is included in the region of – (1 − 𝑤) and – (1 + 𝑤) times the price change 

from the k-1th transaction to the kth transaction. Based on experimentation, he chooses 

𝑤 as 0.25 and 𝑐 as eight times a robust interquantile volatility estimate of transaction 

returns (no further details are provided in the paper). 

 

Compared to Oomen [94], a simpler reversal rule is executed by Bessembinder et al. 

[32] who suggest a model to reveal the effect of transaction reporting on trade 

execution costs. In their study, Bessembinder et al. [32] test their model by using a 

sample of institutional trades in corporate bonds and eliminate “reversal” transactions 

when a given price exceeds both the preceding and the following prices by at least 

15% or is less than both prices by the same magnitude. 
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Marshall et al. [81] employ a high-frequency data cleaning rule inspired by Brownlees 

and Gallo [37] with the purpose of guaranteeing that outliers do not affect their 

findings regarding liquidity commonality in commodity futures markets. For the 

liquidity measures used in their study, their method estimates an 𝛼-trimmed sample 

mean and standard deviation. Marshall et al. [81] select 𝛼 as 5%, meaning that the top 

and bottom 2.5% of the observations are excluded in calculating the trimmed mean 

and standard deviation, and they remove observations that are outside the trimmed 

mean plus/minus three standard deviations. Unlike Brownlees and Gallo [37], 

Marshall et al. [81] neither mention whether the mean and standard deviation are 

calculated in a rolling 𝑘 neighborhood or for the whole day, nor incorporate trading 

intensity in their outlier detection rules. 

 

In another related study, Aït-Sahalia et al. [3] also draw attention to the fact that most 

of the empirical papers using high frequency data discuss cleaning procedures slightly 

or do not touch the issue at all. Obviously, raw high frequency financial data sets are 

preprocessed in order to remove data errors and/or outliers. However, as discussed 

earlier, cleaning data for evident errors is easy to visualize and implement. The tricky 

part of the cleaning procedures depend on the definition and treatment of marginal 

outliers. On this score, like the approach adopted by Oomen [94], Aït-Sahalia et al. [3] 

define an outlier as a “bounceback”:  

 

 

“a log return from one transaction to the next that is both greater in magnitude 

than an arbitrary cutoff, and is followed immediately by a log return of the same 

magnitude but of the opposite sign, so that the price returns to its original level 

before that particular transaction.” 

 

 

Their analysis is based on a 1% log return cutoff level. Moreover, their paper is the 

second in the literature after the paper by Barndorff-Nielsen et al. [27] which 

emphasizes the effects of cleaning procedures on RV estimators. We reviewed many 

papers on RV but few to none delve into the cleaning procedures or their impact on 

the RV calculation. Interestingly, in their study on detecting jump and other volatility 

components in high frequency data using stock market transaction and quotes, Aït-

Sahalia and Jacod [4] prefer to clean the data set only for obvious errors. Apart from 

this, they perform no further cleaning in order to produce “unfiltered transactions”.  

 

Rossi [99], who proposes a bond-specific, time-varying friction measure of round-trip 

liquidity costs, combines two rules: reversals and deviation more than a certain 

threshold calculated over 𝑘 neighboring data points. This combination of rules is 

described by Rossi [99] as follows: 

 

 

“eliminate 50% return reversal, i.e. eliminate a bond price if it is preceded and 

followed by a price increase or drop of more than 50% and |𝑝 −  𝑚𝑒𝑑(𝑝, 𝑘)|  >
5 ∗ 𝑀𝐴𝐷(𝑝, 𝑘)  +  𝑔, where 𝑔 is a granularity parameter which I set equal to 

$1, and 𝑚𝑒𝑑(𝑝, 𝑘), and 𝑀𝐴𝐷(𝑝, 𝑘) are respectively the centered rolling 
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median, and median absolute deviations of the price 𝑝 using 𝑘 observations (I 

set 𝑘 =  20). 

 

 

The common traits of algorithms proposed in the literature are that they are data-

specific (authors focus on data from a specific market such as FX or stock market) and 

data selection rules are arbitrary (10% return threshold, 3 standard deviations threshold 

etc) [106]. These traits make outlier detection and handling in high frequency finance 

an art. 

 

In the application of data cleaning algorithms to UHFD, one should also consider the 

risk of “overscrubbing/underscrubbing” as described by Falkenberry [50]. He states 

that filtering data too loosely might result in a data set with too many errors and 

filtering data too tightly might cause the data set’s statistical properties to be distorted. 

He concludes that a proper cleaning algorithm should manage the 

overscrub/underscrub tradeoff in such a way that the outliers in the user’s base unit of 

analysis (for instance 1 minute) are removed and the resulting time series can support 

historical backtesting without distorting the real-time properties of the data. Dacorogna 

et al. [45] discuss the same risk of unwanted side effects caused by cleaning algorithms 

and propose a general method to test the effects of the algorithm. They argue that the 

data cleaning application, whichever is chosen, should be implemented twice using 

two different filters where one filter is weaker in terms of being more tolerant and 

leading to lesser rejection rates. Comparison of the results from both applications 

reveals the robustness of the analysis against changes in the cleaning algorithm. 

Likewise, Jan Wrampelmeyer [108] states that  
 

 

“Removing outliers from the sample is not a meaningful solution since subjective 

outlier deletion or algorithms as described by Brownlees and Gallo (2006) have 

the drawback of risking to delete legitimate observations which diminishes the 

value of the statistical analysis.” 

 

 

Even after we complete detecting and deleting outliers/errors in UHFD, there are still 

other peculiar patterns that emerge in such data sets. Brownlees and Gallo [37], Hansen 

and Lunde [61], and Barndorff-Nielsen et al. [27] among others suggest some handling 

methods for such patterns: 

 

a. Simultaneous Observations: In order to demonstrate this pattern, 1 minute of 

transaction prices for TKCELL stock on the 2nd of January 2012 from 10:10:00 to 

10:11:00 are displayed in Figure 2.1. Each square marks a different transaction. Due 

to the asynchronous nature of trades, simultaneous transactions at different price levels 

are present in the data. Specifically, 4 transactions at prices ranging from 8.90 to 8.96 

TL have the same time stamp (10:10:56). Explanations regarding this phenomenon by 

Brownlees and Gallo [37] include executions of market orders resulting in more than 

one transaction report and approximations causing even non-simultaneous trades to be 

reported as simultaneous. 

 

 



 
16 

 
Figure 2.1: TCELL transaction data- 1 minute during the first session on 2nd of January, 2012. 

 

 

The UHFD literature agrees that simultaneous transaction and/or quotation data is 

common across many financial markets and since UHFD models necessitate having 

one observation per time stamp, some form of aggregation needs to be applied. 

Barndorff-Nielsen et al. [27] suggest that when there is more than one transaction 

reported per time stamp, either the median price for that time stamp should be used or 

a unique price should be determined and the volume should be aggregated by using 

one of the following rules: 

 

 Use the price that has the largest volume. 

 Use the volume weighted average price. 

 Use the log volume weighted average price. 

 Use the number of trades weighted average price. 

If multiple transactions have the same time stamp, Brownlees and Gallo [37] propose 

to use the median price that is less prone to discreteness of prices where Barndorff-

Nielsen et al. [27] favor the same approach but only after examining what happens to 

deleted observation counts, realized volatilities and realized kernels under each of the 

aggregation methods listed above. Interestingly, the Dacorogna et al. [45], Falkenberry 

[50] and Verousis and Gwilym [106] studies do not address the subject of handling 

prices when the data set includes more than one entry per time stamp. 

 

b. Irregularly Spaced Observations: Several of the studies on the subject reveal 

that UHFD sets may also include transactions with irregular spacing in time. For 

visualization purposes, Figure 2.2 presents TCELL transaction data over a 10–minute 

period on an arbitrarily selected date. 
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Figure 2.2: TCELL transaction data - 10 minutes during the first session on 2nd of January, 2012. 

 

 

Irregularly spaced transactions pose a problem since the majority of econometric 

models require data sets to be regularly spaced in time. Therefore, in order to use such 

econometric models, one needs to arbitrarily generate a regularly spaced time series 

by adopting an interpolation rule. The most favorable interpolation methods in the 

UHFD literature are (i) the previous tick method (if the data point for a time stamp is 

absent, then use the previously observed transaction [61], [101], [28]), (ii) linear 

interpolation (if the data point for a time stamp is absent, then take an average of the 

previous and the next observations with the weights depending on the distance between 

the time stamps [12]), and, (iii) other interpolation methods such as splines (curve 

fitting) as in [59] and [73]. Interpolation methods in general need to use information 

that is not available as of the time of the transaction and Engle and Russell [49] argue 

that such methods may induce spurious correlations. For instance, using splines with 

weighted averages causes spurious positive correlation because now the constructed 

price is a weighted average of the previous and following prices. Additionally, Hansen 

and Lunde [61] argue that because the quadratic variation of a straight line is zero1 and 

since the linear interpolation means fitting straight lines for missing parts, linear 

interpolation methods will distort quadratic variation (IV) estimations. Hansen and 

Lunde [61] prefer the previous tick method. On this issue, Brownlees and Gallo [37] 

direct readers’ attention to non-frequently traded stocks. They assert that when there 

are long periods between two consecutive transactions, the previous tick method will 

result in using a piece of information that belonged to some considerable time before 

which, in turn, will lead to inflated serial correlation due to long sequences of zero 

returns. In light of all the academic debate regarding the methods, the previous tick 

method is used as the interpolation method in this Thesis since the highly liquid and 

                                                           
1 A process X is said to have a finite variation if it has bounded variation over every finite time interval 

(with probability 1). Such processes are very common including, in particular, all continuously 

differentiable functions. The quadratic variation exists for all continuous finite variation processes, and 

is equal to zero. 
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actively traded BIST stocks included in the sample are unlikely to suffer from 

infrequent trading.  

 

 

2.2. Market Microstructure Contaminates Observed Prices 
 

 

The term “market microstructure” is first suggested in the seminal paper of the same 

title by German [53]: 

 

 

We depart from the usual approaches of the theory of exchange by (1) making 

the assumption of asynchronous, temporally discrete market activities on the 

part of market agents and (2) adopting a viewpoint which treats the temporal 

microstructure, i.e., moment to moment aggregate exchange behavior, as an 

important descriptive aspect of such markets. [p. 257] 

 

 

As Hasbrouck [64] puts it, there is no “microstructure manifesto”. Accordingly, 

O’Hara [92] defines market microstructure as the study of the process and outcomes 

of exchanging assets under explicit rules while Madhavan [79] states that the market 

microstructure field focuses on how investors’ latent or hidden demands are ultimately 

translated into prices and volumes and Hasbrouck [64] describes market 

microstructure as the study of the trading mechanisms used for financial securities. All 

in all, the field of market microstructure studies an undeniable truth: although the 

traditional finance theories assume frictionless and perfect capital markets, specific 

trading mechanisms and imperfections of the markets affect the price formation 

process. Some examples of these trading mechanisms are the existence of specific 

intermediaries such as stock specialists or order clerks, or the trading taking place at a 

centralized location such as an organized exchange or at a decentralized location as in 

the case of over the counter markets [92]. 

 

The traditional view of price formation predicts that the intersection of the demand and 

supply curves determines the price of an asset in equilibrium. O’Hara [92] emphasizes 

that the beginnings of the market microstructure research stems from the incompetency 

of the standard economics paradigm in providing answers to how the equilibrium price 

is actually attained and what coordinates the desires of demanders and suppliers in 

order for a trade to occur. 

 

O’Hara [92] discusses that before the advent of research on market microstructure, 

there were two traditional approaches to price formation mechanism. The first one 

opted for the irrelevance of the price formation process and focused mainly on the 

analysis of equilibrium and the properties of equilibrium prices and finding market 

clearing prices without considering how the clearing actually takes place [92]. A 

classic example of this traditional approach is the rational expectations literature2. This 

                                                           
2 An easy definition of rational expectations theory is provided by Wikipedia: 
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way of modeling expectations was originally proposed by Muth [88] and became 

widespread when other researchers adopted this assumption to study how economic 

agents make choices under uncertainty. The rational expectations assumption is used 

in many modern day macroeconomic models, game theory and applications of the 

rational choice theory. The rational expectations literature does not concern itself with 

behavior that is out of equilibrium. O’Hara [92] argues that implicit to this approach 

is the assumption that the trading mechanism has no effect on the equilibrium price 

and this assumption is problematic in modeling markets in which traders have 

differential information.  

 

The second traditional approach to the mechanics of price formation is the assumption 

of a Walrasian auction setting. In this setting, a Walrasian auctioneer takes no trading 

position and aggregates the demand for and the supply of an asset in order to set an 

equilibrium (market clearing) price in a market with perfect competition, perfect 

information and no transaction costs. Each trader submits his/her demand to the 

auctioneer and the auctioneer pronounces a possible trading price. After the 

announcement of this potential trading price, traders calculate their optimal demand at 

that price and resubmit their new demand to the auctioneer. The auctioneer re-

determines the potential price for traders to in order to reflect the changes in the 

demand schedule at this new price. This process continues until there is no further 

revision so that the quantity supplied equals quantity demanded. O’Hara [92] argues 

that this representation of market prices arising from a series of preliminary no-cost 

auctions where no trading is allowed outside of the equilibrium does not capture the 

actual process by which prices in financial markets are formed.  

 

One can easily pinpoint how traditional approaches to price formation fail to represent 

the actual pricing process of financial assets, especially in a market setting such as an 

organized stock exchange where there are many regulations governing the trading 

process which is itself assumed to be informationally efficient. O’Hara [92] states that 

a broad understanding of the securities market design is a prerequisite for the study of 

price behavior in stock markets. For instance, the most current trading mechanism 

regulations relevant for the National Equity Market of Borsa İstanbul A.Ş. (BIST) 

[109] demonstrate how the pricing process in practice may deviate from the traditional 

economic paradigm's somewhat unrealistic view of the market.  

 

All in all, regardless of the definition of market microstructure and the mechanisms 

that affect the price formation in stock markets, O’Hara [92] and many other market 

microstructure researchers claim that the observed asset prices can be decomposed as 

follows: 

 

 

𝑌𝑡 = 𝑋𝑡 + 𝜖𝑡, 0 ≤ 𝑡 ≤ 𝑇. 

 

 

                                                           
Rational expectations states that economic agents' predictions of the future value of economically 

relevant variables are not systematically wrong in that all errors are random. Equivalently, agents' 

expectations equal true statistical expected values. 

http://en.wikipedia.org/wiki/John_Muth
http://en.wikipedia.org/wiki/Macroeconomic_model
http://en.wikipedia.org/wiki/Game_theory
http://en.wikipedia.org/wiki/Rational_choice_theory
http://en.wikipedia.org/wiki/Perfect_competition
http://en.wikipedia.org/wiki/Perfect_information
http://en.wikipedia.org/wiki/Perfect_information
http://en.wikipedia.org/wiki/Transaction_cost
http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Expectation_(epistemic)
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Expected_value
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In this equation, 𝑌𝑡, 𝑋𝑡 and 𝜖𝑡 represent the observed price, the unobserved true price 

and the unobserved aggregate effect of market microstructure, respectively. 

Furthermore, Aït-Sahalia et al. [3] suggest that we can roughly divide the market 

microstructure effect into three classes. The first class represents the frictions inherent 

in the trading process such as bid-ask bounces, the discreteness of price changes and 

rounding, trades occurring on different markets or networks, etc. The second class 

captures the informational effects such as differences in trade sizes or the informational 

content of price changes, the gradual response of prices to a block trade, the strategic 

component of the order flow, inventory control effects, etc. The third class 

encompasses measurement or data recording errors such as prices entered as zero, 

misplaced decimal points, etc. 

 

One important note about this so called "market microstructure noise" is that the high 

frequency finance literature including research by Zhou [112], Andersen et al. [11], 

Andersen et al. [12], Barndorff-Nielsen and Shephard [24], [25], Bandi and Russell 

[19], Hansen and Lunde [58], Zhang et al. [111] all provide abundant mathematical 

and empirical evidence of a noise contamination in observed asset prices as we 

increase the sampling frequency, which leads to realized volatility to be a biased 

estimator of the quadratic variance of asset returns. Therefore, it is of great importance 

to mitigate/cleanse the effect of market microstructure noise when we try to estimate 

the true price volatility of assets using high frequency data, especially considering the 

fact that high frequency prices include more information compared to data sets of 

lower frequencies. 

 

 

2.3. A Choice for True Asset Prices 
 

 

During the last decades, many researchers endeavoring to model the stock price 

behavior increasingly nested in the theory of stochastic processes for describing the 

uncertainty in financial markets. Although the use of stochastic processes in modeling 

asset prices dates back to Bachelier [17], accepting that the logarithm of an asset price 

follows an Itô semimartingale became popular in the late 1960’s and early 1970’s 

thanks to the seminal papers by Robert Merton [84], [85], [86] and Black and Scholes 

[36]. The semimartingale representation of asset prices received wide acceptance 

because, as explained by Harrison and Pliska [63], with continuous trading allowed, 

an arbitrage free market is complete (every contingent claim is attainable) if and only 

if there is a unique probability measure ℙ∗ equivalent to ℙ under which discounted 

asset prices are martingales, and, in this setting, asset prices must satisfy the 

semimartingale property. Specifically, when the log price of an asset is accepted to 

follow a specific form of semimartingales, i.e. the Itô semimartingale3 (where elements 

of the characteristic triple stemming from a Levy-Itô decomposition are absolutely 

continuous with respect to the Lebesgue measure), the formal statement of the log asset 

price, denoted by 𝑋𝑡, is given as below: 

 

 

                                                           
3 Theoretical discussions in [5], [42], [47], [71], [72], [75] and [97] provide a comprehensive review 

of semimartingale representation of asset prices. 
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𝑋𝑡 = 𝑋0 +∫ 𝑏𝑠𝑑𝑠
𝑡

0

+∫ 𝜎𝑠𝑑𝐵𝑠

𝑡

0

+∫ ∫ 𝑥(𝜇 − 𝜛)(𝑑𝑠, 𝑑𝑥)
{|𝑥|≤𝜀}

𝑡

0

+∫ ∫ 𝑥(𝜇)
{|𝑥|>𝜀}

(𝑑𝑠, 𝑑𝑥)
𝑡

0

. 

 

 

In this equation, 𝑡 represents the time index up until a finite maturity 𝑇, 𝐵𝑡 is a real-

valued Brownian motion defined on a probability space (𝛺, 𝐹, ℙ), 𝜇 is the jump 

measure of the log asset price with the predictable compensator 𝜛, 𝜇 and 𝜛 are random 

positive measures on ℝ+ × ℝ and 𝜛(𝑑𝑡, 𝑑𝑥) = 𝑑𝑡𝐹𝑡(𝑑𝑥), ∫ 𝑏𝑠𝑑𝑠
𝑡

0
 represents the drift, 

∫ 𝜎𝑠𝑑𝐵𝑠
𝑡

0
 represents the continuous part, ∫ ∫ 𝑥(𝜇 − 𝜛)(𝑑𝑠, 𝑑𝑥)

{|𝑥|≤𝜀}

𝑡

0
 represents small 

jumps and finally ∫ ∫ 𝑥(𝜇)
{|𝑥|>𝜀}

(𝑑𝑠, 𝑑𝑥)
𝑡

0
 represents big jumps. The threshold that 

distinguishes small jumps from big jumps is arbitrary and a semimartingale generates 

a finite number of big jumps until a finite maturity with an infinite or a finite number 

of small jumps. Such a Levy-Itô decomposition of semimartingales shows that log 

asset prices in an arbitrage free market can be written as the sum of a drift, a continuous 

local martingale and discontinuous small and big jumps. Aït-Sahalia and Jacod [4] 

provide a mapping of each of these components to an economic source of risk: the 

continuous part may represent the part of the asset's total risk that can be hedged, the 

big jumps may capture the effect of the big news related events, and the small jumps 

may model price changes that are substantial for a short period of time but not 

significant over daily or longer sampling intervals. Aït-Sahalia and Jacod [4] further 

state that this type of small jumps may occur due to the market’s inability to absorb 

large transactions without any price effect. It should be noted that it is still being 

debated in the finance literature whether stock markets are a good candidate for asset 

prices to be modeled as discontinuous Itô semimartingales. In fact, some researchers 

promote Brownian semimartingales where jump components in a regular Itô 

semimartingale have a size of zero (asset prices do not jump) while others underline 

the fact that a portion of price changes in financial markets may be too large to be 

explained by continuous Brownian semimartingales and favor discontinuous Itô 

semimartingales for modeling log asset prices. 

 

At this point, before commencing with the discussions regarding whether a 

discontinuous or continuous Itô semimartingale better represents log asset prices, let 

us remember that the market microstructure literature provides abundant evidence of 

a noise contamination in observed asset prices as we increase the sampling frequency. 

Therefore, in a high frequency setting, assuming a proper form Itô semimartingale for 

the observed log asset prices means choosing a proper semimartingale form for the 

unobservable true log asset prices and making assumptions regarding the structure of 

the microstructure noise. With respect to the representation of true log asset prices, the 

high frequency finance literature’s most popular choice (for instance, [112], [8], [29], 

[80], [24], [25], [82], [60], [61], [111], [73], [2], [19], [20], [77], [14], [28], [43], [6], 

[23], [78] among many others) has been Brownian semimartingales, i.e., the true log 

asset prices are accepted to not exhibit any discontinuous behavior. In this Thesis, we 

also favor the Brownian semimartingale approach mainly because most of the 

researchers who promote jump-diffusions to model log asset prices ignore the market 
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microstructure noise, take observed prices as true prices and try to explain the big 

movements in observed asset prices with the existence of jumps in true prices. As Lee 

and Mykland [76] argue, interpreting the empirical results as evidence of the existence 

of jumps in financial markets may be erroneous in the sense that since both the true 

asset prices and the market microstructure noise are unobservable, sharp movements 

observed in asset prices may be caused by the microstructure noise and not a jump 

component within the asset's true price. In a setting where the observed prices are 

accepted to be composed of two unobserved parts, any interestingly large price change 

should not only be tied to jumps in only one of these parts. The existing literature does 

not provide a conclusive methodology for identifying the exact source of such price 

changes. Moreover, there are some practical problems attached to using discontinuous 

Itô semimartingales: difficulty of estimation as well as dealing with additional 

dimensions to volatility modeling such as the structure of jump intensity or jump size 

distribution.  

 

Another aspect to be noted when a researcher models true asset prices as Itô-

semimartingales with jumps is the disappearance of market completeness as we 

introduce jumps. Recall that market completeness and the availability of no arbitrage 

strategies allow us to price assets using replicating strategies. However, in an 

incomplete market, some payoffs (contingent claims) cannot be replicated by cash 

flows from other securities, i.e., in an incomplete market, we cannot be sure that each 

and every cash flow represented by a security can be replicated by trading in carefully 

selected other securities. Accordingly, asset pricing with jumps requires us to drop the 

assumption of market completeness.  

 

In light of above discussions, this Thesis adopts the Brownian semimartingale 

approach in the modeling of asset prices.  

 

 

2.4. Assumptions on Market Microstructure Noise 
 

 

Up until now, in order to generate consistent estimates of asset return volatilities we 

motivated ourselves to sample returns at intervals converging to zero causing number 

of returns going to infinity. However, the number of sampled returns during a fixed 

period of time cannot converge to infinity due to the fact that number of quotations 

and transactions in an organized market per a fixed period of time (for instance a day) 

are not infinitely many. Moreover, as stated earlier, observed prices at high frequencies 

deviate from the efficient theoretical prices as a result of the presence of the MMN.  

 

Recall that number of returns per period [0, 𝑇] is 𝑛. Then, the ith return 𝑟𝑖 = 𝑋𝑖 − 𝑋𝑖−1 
within the period [0, 𝑇] can be decomposed as  

 

 

𝑟𝑖 = 𝑟𝑖
∗ + 𝑣𝑖 ,         𝑖 = 1,2,⋯ , 𝑛. 
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where 𝑣𝑖 = 𝜖𝑖 − 𝜖𝑖−1 and the observed return consists of an efficient return, 𝑟𝑖
∗, and an 

intraday noise increment. As a result, the observed RV can be written as 

 

 

𝑅𝑉 = 𝑅𝑉∗ + 2∑𝑟𝑖
∗𝑣𝑖

𝑛

𝑖=1

+∑𝑣𝑖
2

𝑛

𝑖=1

, 

 

 

where the last term on the right-hand side (RHS) can be interpreted as the unobservable 

realized variance of the noise process and the second term is affected from the 

dependence between the efficient price and the noise [95].  

 

This decomposition of the observed RV implies that the aggregate effect of market 

microstructure on the properties of the RV estimator is shaped by the assumed 

structure of the noise process. In this context, the following are examples of the 

assumptions in the literature regarding noise structure, where first one is the most 

popular: 

 

Assumption 2.1. 

 

 The microstructure noise, 𝜖, has zero mean and is an independent and identically 

distributed (i.i.d) random variable. 

 The noise is independent of the efficient price process. 

 The variance of the noise is constant (the intraday noise increment, 𝑣, also has 

constant variance) and the noise has a finite fourth moment. 

 

Under this favorite set of assumptions about noise, conditionally on the efficient 

returns, 

 

 

𝔼[𝑅𝑉|𝑟∗] = 𝑅𝑉∗ + 2𝑛𝔼[𝜖2], 
 

 

and therefore RV for the period [0, 𝑇] is a biased estimator of the IV [10], [24], [25]. 

Moreover, under Assumption 2.1, Zhang et al. [111] show that i.i.d noise introduces a 

bias into the RV estimator and the asymptotic distribution of RV can be expressed as 

follows: 

 

 

(𝑅𝑉 − 2𝑛𝔼[𝜖2])

2√𝑛𝔼[𝜖4]

𝑑
→𝑁(0,1). 
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Considering the market microstructure of Borsa Istanbul National Stock Market as an 

example of organized equity markets, we believe assuming that the aggregate effect of 

microstructure on price process being i.i.d might be improper. Indeed, other 

researchers also realize how Assumption 2.1 is unrealistic and work under different 

set of assumptions as given in Assumption 2.2 and Assumption 2.3. 

 

Assumption 2.2. 

 

 The microstructure noise, 𝜖, has zero mean and is a strictly stationary stochastic 

process where joint density might alter depending on the sampling frequency. 

 The noise is independent of the efficient price process. 

 The variance of the noise increment is allowed to change with sampling 

frequencies; however, for a specific sampling frequency it is 𝒜 + 𝑜(1) where 

𝒜 > 0. 

 

Under this partially generalized version of Assumption 2.1, Bandi and Russell [20] 

prove that as the number of returns converges to infinity, the observed RV converges 

to infinity as well.  

 

Likewise, Aït-Sahalia et al. [3] examine a similar case where the noise is not i.i.d and 

adopt the following set of assumptions in estimation of RV: 

 

Assumption 2.3. 

 

 The microstructure noise, 𝜖, has zero mean, is stationary, and strong mixing 

stochastic process, with the mixing coefficients decaying exponentially. In 

addition, 𝔼[𝜖4+𝜅] < ∞, for some 𝜅 > 0 

 The noise is independent of the price process. 

Under Assumption 2.3, Aït-Sahalia et al. [3] demonstrate that the RV diverges to 

infinity linearly in 𝑛 and for large 𝑛, the realized variance may have no connection to 

true returns. 

 

Even Assumption 2.3 has a potentially problematic component, which says that noise 

is independent of the efficient price. On this issue, Hansen and Lunde [61] deviate 

from the existing literature to allow for dependence between true prices and noise 

where the research setting in [61] includes the following assumption on the MMN: 

 

Assumption 2.4. 

 

 The microstructure noise, 𝜖, has zero mean, is covariance stationary such that its 

autocovariance function is defined by 𝜋(𝑠) = 𝔼[𝜖𝑡𝜖𝑡+𝑠]. 
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Hansen and Lunde [61] not only show that when the true price follow a Brownian 

semimartingale form and the MMN satisfies Assumption 2.4, the asymptotic bias on 

the RV estimator grows linear in number of sampling intervals, but also do they 

provide evidence of serial dependence in the noise process and correlation with the 

efficient price for the case of Dow Jones Industrial Average stocks.  

 

All in all, in light of the literature providing abundant mathematical and empirical 

evidence pointing to the existence of MMN, which may not be i.i.d and be correlated 

to the true price, we believe the estimation of the IV of true prices must be carried out 

only after evidence on the MMN structure is gathered so that a proper method to 

mitigate the MMN effect could be chosen. Accordingly, we examine evidence from 

Borsa İstanbul National Equity Market while we control for factors such as sampling 

scheme, liquidity and data handling methods with the aim of deducing robustly 

whether the MMN visually and statistically exerts presence and whether it exhibits 

i.i.d behavior. 

 

 

2.5. Sampling Schemes  
 

 

In organized equity markets, transactions take place and quotes arrive asynchronously, 

leading to transaction and/or quote time series to be observed at discrete and irregularly 

spaced intervals. This asynchronous character of markets allows us to sample the 

returns in various ways, i.e., one can follow different sampling schemes to estimate 

the IV over a fixed time period, [0, 𝑇].  
 

The most common sampling scheme is calendar time sampling (CTS), under which 

sampling is done at equal intervals in physical time; i.e., 𝛿𝑖,𝑛 =
1

𝑛
 for all i. Sampling at 

every 1 or 10 minutes are examples of such a scheme. Even though it is commonly 

used, CTS has a shortfall: the transactions and/or quotes are irregularly spaced in time 

and calendar time sampled data need to be constructed artificially. As discussed in 

Section 2.1, in order to arbitrarily generate a regularly spaced time series, one needs 

to adopt an interpolation rule such as the previous tick method, the linear interpolation 

method or the cubic splines method. However, since some interpolation methods in 

general need to use information that is not available as of the time of the transaction, 

the researcher must be cautious of spurious correlations induced by the interpolation 

method selected. 

 

Alternatively, one can sample prices whenever a transaction takes place, which is 

called transaction time sampling (TTS). If we sample the data everytime the price is 

changed, the sampling scheme is called tick time sampling (TkTS). Another alternative 

is called business time sampling (BTS), where the sampling times are determined to 

ensure that the IV of all intraday intervals are equal; i.e., 𝐼𝑉İ =
𝐼𝑉

𝑁
. When these methods 

are compared, it is seen that an important feature of BTS pops out: under BTS, the 

observation times become latent, whereas under CTS, TTS, and TkTs they can be 

observed. Moreover, the BTS depends on the IV, the very unobservable parameter we 

would like to estimate. Pigorsch et al. [95] argue that since observing data under BTS 

requires us to estimate the IV before calculating the latent IV, this method is infeasible. 
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It is of great importance to shed light on the influence of the sampling scheme on the 

statistical properties of realized variance, if any. The first to contribute in this area is 

Oomen [93], who examines the following sampling alternatives: 

 

 calendar time sampling, 

 transaction time sampling, 

 tick time sampling, 

 business time sampling. 

 

Oomen [94] develops on Oomen [93] and provides a framework to examine the 

statistical properties of the RV when data are contaminated with the MMN. Oomen 

[94] emphasizes that in the absence of the MMN, regardless of the sampling scheme, 

the plain RV estimator is an unbiased estimator of the IV. His framework, diverting 

from the standard literature, which prefers diffusion type price processes, takes the 

efficient price process as a pure jump process (Compound Poisson Process) and adds 

on a moving average structure to incorporate the microstructure noise. This 

specification of the observed price models the price as the sum of a finite number of 

jumps, where the number of transactions is counted by a Poisson Process. Oomen 

states that, as in the case of the diffusion-based models, the RV is a biased estimator 

of the jump analogue of the IV under microstructure noise. However, unlike previous 

results, the bias does not diverge to infinity as the sampling frequency converges to 

infinity. Oomen derives the closed form expressions for the bias and the mean squared 

error (MSE) of the RV as functions of model parameters as well as the sampling 

frequency. It is shown that the MSE of the RV can be decreased by sampling returns 

on a transaction time scale as opposed to the common practice of sampling in calendar 

time. This result is shown to be more pronounced when the trading intensity pattern is 

volatile. 

 

At approximately the same time, in another study, Hansen and Lunde [61] assume that 

the efficient price follows a continuous diffusion process and use kernel-based 

estimators to unearth the properties of the MMN. The most notable of these 

characteristics is the noise being time-dependent and correlated with the unobservable 

efficient price. Interestingly, their findings are robust under both of CTS and TkTS. 

 

In a later study, Griffin and Oomen [55], propose a new model for transaction prices 

in order to study the properties of two different time scales, transaction versus tick 

time. Their results show the finding that the return dynamics in transaction time are 

different from those in tick time and the choice of the sampling scheme may have a 

substantial effect on the properties of the RV4. They find that tick time sampling is 

superior to transaction time sampling in terms of the MSE, especially when the level 

of noise is low and the number of ticks, or the arrival frequency of the efficient price 

moves are small.  

                                                           
4 Microstructure noise is highly dependent under TkTS, so bias correcting method should be decided 

accordingly. 
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Finally, in his unpublished master’s thesis, Şen [102] introduces a new concept of 

business intensity and names the sampler as “Optimizable Multiresolution Quadratic 

Variation Filter”. He concludes that his filter is less prone to microstructure effects 

than any other common sampling method for Turkish Interbank FX market.  

 

All of these aforementioned contributions to the literature underline the fact that the 

possible technics to sample returns in organized markets due to asynchronous nature 

of the trading have the potential to influence the return and RV dynamics, which may 

alter the evidence on the MMN. Consequently in Chapter 4, as we search for the 

evidence on the existence and the statistical structure of the MMN in Borsa İstanbul 

National Equity Market, we define sampling schemes as one factor to be controlled 

for (in addition to data handling methods and liquidity) and compare the evidence 

acquired under TTS and CTS to conclude if our findings are robust regardless of the 

sampling schemes we work under. 

 

 

2.6. Presence of Non-trading Hours  
 

 

Another problem in measuring the realized volatility is the presence of non-trading 

hours during a trading day. Organized stock exchanges are open for trading only for 

certain hours on each weekday. The realized volatility may underestimate the 

integrated volatility if the realized volatility is calculated by using prices sampled only 

during the trading hours. In order to avoid this underestimation bias, we may include 

returns on non-trading hours (overnight and/or lunch break) but such a calculation may 

cause discretization noise of returns to make realized volatility noisy [104]. In addition, 

Bannouh et al. [23] state that non-trading hours are not necessarily a source of the 

MMN in a strict sense, and, therefore in addition to a bias correction, we may need to 

adjust our estimator for other market microstructure effects such as bid-ask bounce 

etc. Quote by Bannouh et al. [23] explains this as follows: 

 

 

“For the RV estimator, non-trading increases the variance but does not cause a 

bias. In contrast, infrequent trading introduces a downward bias in RR 

estimators as the observed intraday high and low prices are likely to be below 

and above their ‘true’ values, respectively.” 

 

 

Hansen and Lunde study the adjustment of the RV estimates for non-trading hours in 

3 different papers [58], [59], [61]. In [58], they present 3 ways of adjusting the RV 

estimators in order to incorporate the variance over non-trading hours: (i) scaling of 

RVopentoclose by using a constant scaling factor (the scaling factor is same for each day), 

(ii) by adding the squared overnight return to RVopentoclose and, (iii) by optimally 

selecting weights to linearly combine the RVopentoclose and the squared overnight return 

(by minimizing the MSE as the objective function). Under the scaling approach, each 

original 6.5-hour variance estimate (before forecasting) is multiplied by a constant 

factor 𝜚 defined as 
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𝜚 =
∑ (𝑅𝑖 − �̅�)

2𝑁
𝑖=1

∑ 𝑅𝑉𝑖
𝑁
𝑖=1

, 

 

 

where 𝑅𝑖 is the daily log return on the stock/index for day 𝑖, 𝑁 is the total number of 

days in the sample and �̅� = 𝑁−1∑ 𝑅𝑖
𝑁
𝑖=1 . This procedure ensures that the average of 

the scaled realized volatility, i.e., 𝜚[𝑋, 𝑋]𝑇, is equal to the variance of the daily return. 

Hence, 𝜚 will inflate the 6,5-hour variance estimate. Unfortunately, [58] makes strong 

assumptions about the noise such as independence of efficient/true asset price. 

Therefore, there is a chance that the estimator employed in [58] by Hansen and Lunde 

may not fit the empirical findings if such findings pointed to a correlation between the 

noise increment and efficient/true return. Hansen and Lunde [58] state that this 

estimator is only slightly biased for the IV when the MMN is time dependent and 

correlated with the efficient returns. 

 

In [59], Hansen and Lunde use a different scaling factor given as follows: 

 

 

𝜚 =
𝑛−1∑ 𝑟𝑖

𝑁
𝑖=1

∑ 𝑅𝑉𝑖
𝑁
𝑖=1

, 

 

 

where 𝑟𝑖 is the daily return. Likewise, in [61], again an upscaling ratio is employed for 

Zhou’s kernel based RV estimator [112]. However, Hansen and Lunde state that the 

upward scaling as offered in [61] causes the variance of the estimator to become 

inflated and they switch to the Bartlett kernel in their RV estimation in [58]. 

 

Hansen and Lunde [58] discuss the conditions that justify a simple scaling. They state 

that for the scaled RV to be a proper estimator of the daily volatility, a particular 

scaling of the RVopentoclose is assumed to be informative about the daily IV and the 

scaling coefficient is assumed to be estimated consistently by incorporating 

information from an increasing number of days. In particular, their scaling approach 

assumes that (a) a fixed proportion of the daily integrated variance occurs during the 

active period (the validity of this assumption is checked in their empirical analysis), 

(b) the conditional bias of the RVopentoclose is proportional to the daily IV (they indicate 

that this requirement is fulfilled whenever the RV measure is unconditionally unbiased 

and for some of the biased estimators -under additional “mild suitable” assumptions 

such as MMN having constant variance independent of time-, the assumption still 

holds), and, (c) the squared overnight return is conditionally proportional to the 

overnight IV. This set of assumptions is problematic when we try to prove the 

statistical and economic gains of applying MMN adjusted methodologies in estimation 

of the IV using intraday data, since it is not clear what would happen if we divided 

several different estimates of the RV by the squared overnight return? More than 

likely, there would be no single proportion or no single scaling factor. Each RV 

estimator would have its own scaling factor but this would contradict the initial 

assumption that volatility calculated by using data from the trading hours is 

proportional to the volatility of the entire day. We believe that if this proposition holds, 

then the proportion should not change from one estimator to the next. 
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Martens [82] also emphasizes the idea that the absence of overnight trading should be 

reflected in RV measures by adjusting the RV estimator by summing the overnight 

squared returns with the RVopentoclose. He adds that since the square of overnight returns 

is a noisy estimator, an alternative volatility measure using only intraday returns would 

be to multiply the vanilla RV by (1 + 𝑐), where 𝑐 is the proportion of the sum of all 

RVopentoclose to the sum of all overnight RVs and it is a positive constant that makes the 

adjusted RV to be equal to the daily volatility (whereby the correct expected value is 

attained). Koopman et al. [73] follow Martens [82] in adjusting the vanilla RV to reach 

a better estimate of the daily IV. Meanwhile, Fleming et al. [51] prefer a dynamic 

scaling approach in the sense that the adjusting factor 𝜙 is calculated for each day 

separately in the following fashion: 

 

 

𝜙𝑖 =
∑ 𝜌𝑖𝑟𝑡−𝑖

2𝑡
𝑖=1

∑ 𝜌𝑖𝑅𝑉𝑡−𝑖
𝑡
𝑖=1

, 

 

 

where 𝜌 ∈ (0,1) is a factor that manages the weights allocated to the lagged values of 

the returns and RVs. Unlike Hansen and Lunde [58], [59], Fleming et al. [51] do not 

lay out the statistical effects and or the assumptions with respect to scaling. They do 

not show what happens to the consistency, unbiasedness and efficiency of the RV 

estimator when we scale it using their approach. 

 

Only a small number of papers [58], [59], [60], [61], [28], [101] in the RV literature 

discuss the methods for adjusting the bias corrected estimator for non-trading hours, 

whereas the majority of the literature on the estimation of quadratic variation of asset 

prices using high frequency data stays silent about non-trading hours. Examples of 

papers that do not address the non-trading hours issue are by Barndorff-Nielsen et al. 

[27] (kernel based), Barndorff-Nielsen et al. [28] (subsampling), Bandi and Russell 

[20] (optimal sampling when there is noise), Bandi et al. [22] (optimal sampling 

frequency in forecasting), Oomen [94] (pure jump process plus MA(q) to analyze the 

effect of varying sampling schemes and optimal sampling frequencies over realized 

variance estimator), Griffin and Oomen [55], Gatheral and Oomen [52], Andersen et 

al. [14] (forecasting in the presence of MMN), Ghysels and Sinko [54] (volatility 

forecasting and the MMN) etc. The same observation is also mentioned by Brownlees 

and Gallo [38].  

 

 

“Note that overnight information is not included in these series and this may 

have a consequence when we use intra-daily information to predict the 

conditional variance of daily (close-to-close) returns. Gallo (2001) shows that 

the overnight squared return has a significant impact when used as a 

predetermined variable in a GARCH for the open-to-close returns. For realized 

volatility measures, the problem is recognized, among others, by Martens 

(2002), Fleming, Kirby, and Ostdiek (2003), and Hansen and Lunde (2005).” 
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There may be a number of reasons why volatility over non-trading hours is not 

typically included in the RV literature. It may be that the existence of non-trading 

hours only causes a time shift in volatility and daily volatility is the same regardless of 

the length of the trading hours, and as a result a diurnal shape in trading volumes and 

returns is observed. Alternatively, trading incentives over the night and lunch are 

already reflected in the market or limit orders given once the market opens. Finally, it 

may be that when the return volatility displays a U shape per session, adjusting the 

RVopentoclose for non-trading hours leads to a double counting of the daily volatility. 

 

The first problem that arises when the IV estimates are adjusted for non-trading hours 

relates to the variety of the RV measures proposed in the literature. Depending on the 

empirical findings with respect to structure of the MMN, let’s say that one chooses 

subsampling or kernel based estimators that specifically fit the MMN findings. In such 

a case, it is not clear how the bias corrected estimator can be adjusted for non-trading 

hours. Moreover, in order to determine the statistical gains by bias correcting the 

estimators when there is MMN, one should compare the bias corrected and vanilla RV 

settings with respect to some criteria such as the MSE. Now, if the vanilla RV is 

adjusted for non-trading hours following Hansen and Lunde [58] and the bias corrected 

estimator is not, such comparisons are flawed from the very beginning.  

 

The second problem with adjusting the RV estimators for non-trading hours is the 

existence of opening and closing sessions in BIST. With such a market structure, it is 

necessary to decide whether the opening and closing sessions should be included in 

the adjustment process or whether we should only work with sessions where a 

continuous auction is allowed. There is also a lunch break in BIST. Hansen and 

Lunde’s [58] analogy applies to block trading hours, since there are no lunch breaks at 

the NYSE during the trading day. Therefore, a simple scaling of the RV as in Hansen 

and Lunde [58] cannot reflect the daily volatility of returns in BIST. 

 

Another major concern regarding the adjustment of RV estimators for non-trading 

hours is the effect of sampling schemes. More specifically, [58] and other papers such 

as [82] and [73] that adopt and adjustment for non-trading hours mainly work under 

CTS. In addition, the literature about upscaling the RVopentoclose for estimating the daily 

IV, regardless of whether the scaling factor is constant for the entire sample period 

[58] or recalculated for each day [51], accepts implicitly or explicitly that the 

relationship between RVopentoclose and RVovernight can be revealed. We believe that the 

same analogy may not apply for TTS and/or TkTS. 

 

In light of above discussions, depending on the structure of the MMN and the selected 

method for correcting the bias, we believe that it is best not to adjust estimators for 

non-trading hours, particularly if estimation is carried out under different sampling 

schemes and/or the organized market, from which the data is disseminated, defines a 

trading day as a combination of continuous auction sessions and single price opening 

and closing sessions. 
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CHAPTER 3
 

 

 

TESTING THE STATISTICAL STRUCTURE OF MMN UNDER 

CTS AND TTS 
 

 

 

 

3.1. Realized Variance formula under CTS and TTS5. 
 

 

Let 𝑆𝑡 denote the price process of a security and the log price of this security be 

represented by the process 𝑋𝑡 which satisfies the following stochastic differential 

equation on finite time horizon 𝑡 ∈ [0, 𝑇]: 
 

 

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡. (3.1) 

 

 

The log price 𝑋𝑡 of this security is assumed to belong to the Brownian semimartingale 

family, i.e. 𝑋0 is ℱ0-measurable, 𝑋𝑡 has continuous sample paths, drift 𝜇𝑡 is a locally 

bounded, predictable continuous process, the continuous stochastic process 𝜎𝑡 that 

derives the volatility of the log return of the security is square integrable, and 𝐵𝑡 
denotes the standard Wiener process. We assume that the leverage effect is ruled out, 

meaning that 𝜎𝑡 is orthogonal to 𝐵𝑡. In this setting, as discussed in the preceding 

chapters, the parameter of interest for the majority of financial applications is the 

integrated volatility of log return accumulated over a fixed period of time T, usually a 

trading day, which is written as follows: 

 

 

∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

. (3.2) 

 

 

Unfortunately, the integrated volatility accumulated until time 𝑇, 𝐼𝑉𝑇, is unobservable 

and latent, forcing us to estimate it. In doing so, we benefit from the concept of 

                                                           
5 Interested reader should consult to [71] and Chapter 2 of [97] for further discussions on Brownian 

motions and quadratic variation of semimartingales, respectively. 
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quadratic variation since the quadratic variation process of semimartingale 𝑋𝑡 denoted 

by  [𝑋, 𝑋] = ([𝑋, 𝑋]𝑡)𝑡≥0 is defined as  

 

 

[𝑋, 𝑋] = 𝑋2 − 2∫𝑋−𝑑𝑋, 

 

 

where 𝑋− at time s represents the value as lim
𝑢→𝑠,𝑢≤𝑠

𝑋𝑢  (Chapter 2, Section 6, p. 58 of 

[97]). Since we assume that the security price has continuous sample paths, 𝑋− at time 

s equals to 𝑋+, i.e., the price process has no jumps.  

 

Theorem 3.1. (Theorem 22 in Chapter 2, Section 6, p. 59 of [97]) The quadratic 

variation process of a semimartingale is a cádlág (abbreviation of right continuous with 

left limits in French), increasing and adapted process satisfying the conditions given 

below: 

 

i) [𝑋, 𝑋]0 = 𝑋0
2 and ∆[𝑋, 𝑋] = (∆𝑋)2, 

 

ii) If 𝜏 shows a finite sequence of stopping times, 0 ≤ 𝑡0 ≤ 𝑡1⋯ ≤ 𝑡𝑘 < ∞, it is 

called a random partition (the distance between two consecutive stopping times 

are random). In this context, if 𝜏𝑛 ∶= 𝑡0
𝑛 ≤ 𝑡1

𝑛⋯ ≤ 𝑡𝑘𝑛
𝑛  is a sequence of random 

partitions tending to identity, i.e., 

 

lim
𝑛
sup𝑘 𝑡𝑘

𝑛 = ∞ almost surely (a.s) and ‖𝜏𝑛‖ = sup𝑘|𝑡𝑘+1
𝑛 − 𝑡𝑘

𝑛| → 0 a.s., 

 

then  

 

 

𝑋0
2 +∑(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)

2
→ [𝑋, 𝑋]𝑡

𝑖

, 

 

 

where the convergence is in probability. In other words, if the maximum distance 

between observation times converges to 0 as the number of observation points 

(stopping times) converges to infinity, then the sum of squared differences of 

process 𝑋 with differences taken over consecutive stopping times converge in 

probability to the quadratic variation of 𝑋.  

 

A corollary (Corollary 1 in Chapter 2, Section 6, p. 60 of [97]) to Theorem 3.1 reveals 

that the quadratic variation of a semimartingale 𝑋 has paths of finite variation on 

compact sets and is also a semimartingale. Accordingly,  

 

 

lim
𝑛→∞

∑(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
2 ℙ
→

𝑡𝑖

∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

, (3.3) 
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showing that the estimation error of the realized variance on [0, 𝑇] defined as 

 

 

 ∑(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
2
−∫ 𝜎𝑡

2𝑑𝑡
𝑇

0

, 0 ≤ 𝑡𝑖 ≤ 𝑇

𝑡𝑖

 , 

 

 

shrinks to 0 when the number of stopping times (the observation points) increases to 

infinity and at the same time maximum of sampling intervals converge to zero. This 

suggests that from a financial applications point of view, the RV calculated over the 

highest data frequency should give the best possible estimate for the IV both under 

CTS and TTS because the RHS of the convergence in Equation (3.3) is defined over a 

sequence of random partitions tending to identity, i.e., the observations times are 

allowed to be random with CTS being a special case of equidistant observations. In 

practice, however, trading in organized markets introduces market microstructure 

frictions to the observed prices, which makes the estimation of return volatility of true 

prices a challenging task. 

 

 

3.2. Asymptotic bias of the RV when an MMN exists. 
 

 

Following the majority of the market microstructure noise literature discussed in the 

previous chapters, the observed price 𝑌𝑡 is assumed to be contaminated with an 

additive market microstructure noise. i.e., 

 

 

𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡, 0 ≤ 𝑡 ≤ 𝑇, (3.4) 

 

 

where T shows a finite horizon, 𝑋𝑡 denotes the logarithm of the true/efficient price of 

the security at time t and 𝜀𝑡 represents the logarithm of combined effect of all 

microstructure noise sources at time t including frictions in the market, trading rules, 

informational asymmetries, bid-ask bounces, non-trading hours etc. The 

contamination of observed prices with market microstructure noise is a very important 

assumption in volatility estimation via realized type of measures because if there is 

such a contamination, then the quadratic variation of observed prices calculated over 

the highest frequency possible does not simply converge to the IV of the true prices 

since an asymptotic bias, in addition to the discretization error appear due to existence 

of the MMN. In order to examine how RV deviates from IV as we increase the 

sampling frequency and to come up with methods to handle those deviations 

(mitigation of the market microstructure noise effect on RV measures), we first have 

to make some assumptions regarding the statistical properties of the MMN. Recall 

from the preceding chapter that regarding the MMN, the most popular assumptions in 

the RV literature are as follows: 

 



 
34 

Assumption 3.1. The market microstructure noise, 𝜀𝑡, is a sequence of independent 

and identically distributed (i.i.d) random variables with zero mean, constant variance 

and finite fourth moment. 

 

Assumption 3.2. Market microstructure noise and true prices are orthogonal to each 

other for each  𝑡 ∈ [0, 𝑇].  
 

These assumptions imply that  

 

a) 𝔼[𝜀𝑡𝑖+1] = 𝔼[𝜀𝑡𝑖] = 0 and 𝔼[𝜀𝑡𝑖+1] ⊥ 𝔼[𝜀𝑡𝑖] for any 0 ≤ 𝑖 ≤ n, 

 

b) the increment of the noise also has a constant variance. More specifically, if 𝑣𝑡𝑖  

represents the noise increment from time 𝑡𝑖 to 𝑡𝑖+1, ∀𝑡𝑖 ∈ [0, 𝑇], then 

 

Var[𝑣𝑡𝑖] = 𝔼[𝑣𝑡𝑖
2 ] − (𝔼[𝑣𝑡𝑖])

2
 

= 𝔼[𝑣𝑡𝑖
2 ] − (𝔼[𝜀𝑡𝑖+1 − 𝜀𝑡𝑖])

2
 

= 𝔼[𝑣𝑡𝑖
2 ] − (𝔼[𝜀𝑡𝑖+1] − 𝔼[𝜀𝑡𝑖])

2
 

= 𝔼[𝑣𝑡𝑖
2 ] 

= 𝔼 [(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
] 

= 𝔼 [(𝜀𝑡𝑖+1)
2
− 2(𝜀𝑡𝑖+1)(𝜀𝑡𝑖) + (𝜀𝑡𝑖)

2
] 

= 2(𝔼[𝜀𝑡
2] − 𝔼[𝜀𝑡]𝔼[𝜀𝑡]) 

= 2Var[𝜀𝑡], 

(3.5) 

 

 

where since Var[𝜀𝑡] is constant, Var[𝑣𝑡] constant as well. In order to continue with the 

examination of the asymptotic bias of the RV estimator when observed prices are 

contaminated with the MMN, as the next step, we restate6 the definition of the 

quadratic variation of a generic semimartingale {𝐾𝑡𝑖}𝑡𝑖∈[0,𝑇]
 relative to a grid (or 

partition) 𝒢 = {𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1}, 𝑡0 = 0, 𝑡𝑛−1 = 𝑇 as follows: 

 

 

[𝐾, 𝐾]𝑡
𝒢
= ∑(𝐾𝑡𝑖+1 − 𝐾𝑡𝑖)

2
𝑛−2

𝑖=0

. 

 

 

The number of data points in grid 𝒢 is denoted by |𝒢| and equals to 𝑛. Let ∆(𝒢) =
max
1≤𝑖≤𝑛

(𝑡𝑖+1 − 𝑡𝑖), then for 𝑛 → ∞ if ∆(𝒢) → 0, for all 𝑡 ∈ [0, 𝑇] there is a process 

[𝐾, 𝐾]𝑡 so that [𝐾, 𝐾]𝑡
𝒢
→ [𝐾,𝐾]𝑡 in probability (Theorem I.4.47 in [70]). This is the 

same theorem as the one given in Theorem 3.1. 

                                                           
6 The asymptotic distribution of the discretization error when there is no MMN under TTS is constructed 

in [91] and for ease of reading, we prefer following their notation for the rest of the chapter. For this 

purpose, please see that grid and partition terms are used interchangeably, ∆(𝒢) = ‖𝒢‖, condition 𝑛 →
∞ and ∆(𝒢) → 0 means partition 𝒢 tends to identity. 
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Under these notations, assumptions and definitions, following Zhang et al. [111], 

Hansen and Lunde [61], Awartani et al. [16] and many other authors, the conditional 

asymptotic bias of RV on [0, 𝑇] calculated using observed prices, 𝑌𝑡, that are 

themselves defined as the sum of true prices, 𝑋𝑡, and the aggregate effect of market 

microstructure, 𝜀𝑡, is derived as below: 

 

From Equation (3.4), applying the quadratic variation operator to both sides, we get 

 

 

[𝑌, 𝑌]𝑇
𝒢
= [𝑋, 𝑋]𝑇

𝒢
 + 2[𝑋, 𝜀]𝑇

𝒢
+ [𝜀, 𝜖]𝑇

𝒢
. (3.6) 

 

 

Taking the expectation conditional on the true price process 𝑋  on both sides yields 

 

 

𝔼[[𝑌, 𝑌]𝑇
𝒢
|𝑋] =  𝔼[[𝑋, 𝑋]𝑇

𝒢
|𝑋] + 2𝔼[[𝑋, 𝜀]𝑇

𝒢
|𝑋] + 𝔼[[𝜀, 𝜀]𝑇

𝒢
|𝑋]. (3.7) 

 

 

As 𝑛 → ∞ if ∆(𝒢) → 0, [𝑋, 𝑋]𝑇
𝒢
→ IV𝑇 and 

 

 

𝔼[[𝑌, 𝑌]𝑇
𝒢
|𝑋] − IV𝑇

= 2𝔼 [∑(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)

𝑛−2

𝑖=0

| 𝑋] + 𝔼 [∑(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2

𝑛−2

𝑖=0

| 𝑋]. 

 

 

By the linearity of the expectation operator and the independence of the true price and 

the MMN, where 𝔼[𝜀𝑡𝑖+1|𝑋] = 𝔼[𝜀𝑡𝑖|𝑋] = 0, as 𝑛 → ∞ and ∆(𝒢) → 0 

 

 

𝔼 [∑(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)

𝑛−2

𝑖=0

| 𝑋] = 𝔼 [∑(𝑋𝑡𝑖+1𝜀𝑡𝑖+1)

𝑛−2

𝑖=0

| 𝑋] + 𝔼 [∑(𝑋𝑡𝑖𝜀𝑡𝑖)

𝑛−2

𝑖=0

| 𝑋] 

                                                                 −𝔼 [∑(𝑋𝑡𝑖+1𝜀𝑡𝑖)

𝑛−2

𝑖=0

| 𝑋] − 𝔼 [∑(𝑋𝑡𝑖𝜀𝑡𝑖+1)

𝑛−2

𝑖=0

| 𝑋] 

=∑𝔼[𝑋𝑡𝑖+1𝜀𝑡𝑖+1|𝑋]

𝑛−2

𝑖=0

+∑𝔼[𝑋𝑡𝑖𝜀𝑡𝑖|𝑋]

𝑛−2

𝑖=0

 

                                                                 −∑𝔼[𝑋𝑡𝑖+1𝜀𝑡𝑖|𝑋]

𝑛−2

𝑖=0

−∑𝔼[𝑋𝑡𝑖𝜀𝑡𝑖+1|𝑋]

𝑛−2

𝑖=0

 

=∑𝔼[𝑋𝑡𝑖+1|𝑋]

𝑛−2

𝑖=0

𝔼[𝜀𝑡𝑖+1|𝑋] 
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+∑𝔼[𝑋𝑡𝑖|𝑋]

𝑛−2

𝑖=0

𝔼[𝜀𝑡𝑖|𝑋] 

−∑𝔼[𝑋𝑡𝑖+1|𝑋]

𝑛−2

𝑖=0

𝔼[𝜀𝑡𝑖|𝑋] 

−∑𝔼[𝑋𝑡𝑖|𝑋]

𝑛−2

𝑖=0

𝔼[𝜀𝑡𝑖+1|𝑋] 

= 0, 
 

 

and 

 

 

𝔼 [∑(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2

𝑛−2

𝑖=0

| 𝑋] =  ∑𝔼[(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
| 𝑋]

𝑛−2

𝑖=0

=  ∑𝔼[𝜀𝑡𝑖+1
2 + 𝜀𝑡𝑖

2 − 2𝜀𝑡𝑖+1𝜀𝑡𝑖|𝑋]

𝑛−2

𝑖=0

=  ∑𝔼[𝜀𝑡𝑖+1
2|𝑋] 

𝑛−2

𝑖=0

+∑𝔼[𝜀𝑡𝑖+1
2|𝑋] 

𝑛−2

𝑖=0

                                           

− 2∑𝔼[𝜀𝑡𝑖+1|𝑋]𝔼[𝜀𝑡𝑖|𝑋] 

𝑛−2

𝑖=0

                                     

= 2∑𝔼[𝜀𝑡
2|𝑋] = 2(𝑛 − 1) 𝔼[𝜀𝑡

2]

𝑛−2

𝑖=0

. 

(3.8) 

 

 

Therefore, as 𝑛 → ∞  

 

 

𝔼[[𝑌, 𝑌]𝑇
𝒢
|𝑋] − IV𝑇 = 2(𝑛 − 1) 𝔼[𝜀𝑡

2] → ∞  (3.9) 

 

 

We would like to underline that if we let the expectation of the MMN to be different 

than 0, as long as we take the variance of noise as constant, 𝔼 [(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
] equals 

to some constant by Equation (3.5) and the asymptotic bias, 𝔼[[𝑌, 𝑌]𝑇
𝒢
|𝑋] − IV𝑇, still 

explodes to infinity linear in n as n diverges because now Equation (3.8) becomes 

2(𝑛 − 1)Var[𝜀𝑡]. 
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Awartani et al. [16] point out that even if we take the true price as correlated to the 

MMN, the asymptotic bias, 2𝔼[[𝑋, 𝜀]𝑇
𝒢
|𝑋] + 𝔼[[𝜀, 𝜀]𝑇

𝒢
|𝑋],  is still dominated by 

𝔼[[𝜀, 𝜀]𝑇
𝒢
|𝑋]. Likewise, Bandi and Russell [20] state that [𝑋, 𝜀]𝑇 is stochastically 

dominated by [𝜀, 𝜀]𝑇. We hereby provide the reasoning of these statements as follows:  

 

A version of Cauchy-Schwarz Inequality,  

 

 

 ∑ 𝑎𝑖𝑏𝑖 ≤ √∑𝑎𝑖
2∑𝑏𝑖

2

𝑖
 (3.10) 

 

 

implies that 

 

 

[𝑋, 𝜀]𝑇
2 ≤ [𝑋, 𝑋]𝑇[𝜀, 𝜀]𝑇 . 

 

 

Due to the definition of Itô processes and Brownian semimartingales with square 

integrable 𝜎𝑡, we know that [𝑋, 𝑋]𝑇 is stochastically bounded, i.e. for any 𝜆 > 0, there 

exists a finite M > 0 such that  

 

 

ℙ[|[𝑋, 𝑋]𝑇| > M] < 𝜆, ∀𝑇, 
 

 

which is denoted by [𝑋, 𝑋]𝑇 = 𝑂𝑝(1). 
 

As Hansen and Lunde [61] state, rtic variation of the white noise type processes with a 

constant mean explode as data points in the partition diverges. Recall that, based on 

our assumptions, the MMN under Assumption 3.1 belongs to the white noise family. 

The explosion of the quadratic variation of the MMN as n goes to infinity can also be 

deduced from Equation (3.8) because from Equation (3.8), it is evident that under the 

assumption that MMN has constant variance, 𝔼[[𝜀, 𝜀]𝑇
𝒢
]  → ∞ as n diverges. If the 

quadratic variation of a stochastic process is stochastically bounded, then the 

expectation of the aforementioned quadratic variation cannot diverge in n. 

Accordingly, Assumption 3.1 and Equation (3.8) together ensure that as n goes to 

infinity, [𝜀, 𝜀]𝑇
𝒢
 explodes. 

 

Therefore, we can write  

 

 

[𝑋, 𝜀]𝑇
2 ≤ [𝑋, 𝑋]𝑇[𝜀, 𝜀]𝑇 < [𝜀, 𝜀]𝑇

2 , 
 

 

and 
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[𝑋, 𝜀]𝑇 < [𝜀, 𝜀]𝑇 , 
 

 

in probability. Taking expectations on both sides of the inequality, we get 𝔼[[𝑋, 𝜀]𝑇] <
𝔼[[𝜀, 𝜀]𝑇] and the asymptotic bias is dominated by [𝜀, 𝜀]𝑇 under both TTS and CTS, 

regardless whether MMN and true price are correlated and/or MMN has a constant 

mean other than 0.  

 

 

3.3. Testing the existence of MMN under TTS 
 

 

Awartani et al. [16] form the following null and alternative hypotheses in order to 

check whether, under CTS, there is any statistically significant asymptotic bias on RV 

estimator due to the existence of MMN:   

 

 

𝐻0: 𝔼 [(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
] = 0, (3.11) 

  

  

𝐻𝑎: 𝔼 [(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
] > 0. (3.12) 

 

 

We assert that the same set of hypotheses are also relevant for TTS because under both 

TTS and CTS, we have proved that if the observed prices are contaminated with the 

MMN which satisfies Assumption 3.1, then as we increase observation frequencies, 

the RV, scaled by (2 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠))−1  and calculated over 

observed prices, estimates more and more the variance of the MMN rather than the 

quadratic variation of the true price. 

 

Awartani et al. [16] develop a test statistic under CTS to test if we can reject 𝐻0 against 

𝐻𝑎 implying that the MMN has a statistically significant effect on the RV estimators 

of the IV at a given sampling frequency. The test statistic 𝑍𝑇,𝑛,ℎ employs the RVs 

calculated at two artificially selected frequencies, one low and one high, as well as the 

Realized Quarticity (𝑅𝑄) calculated at low frequency and is formulated as below:  

 

 

𝑍𝑇,𝑛,ℎ ∶=
√ℎ − 1(𝑅𝑉𝑇,𝑛 − 𝑅𝑉𝑇,ℎ)

√2(ℎ − 1)
3 𝑅𝑄𝑇,ℎ

, 
(3.13) 

 

 

where h and n stand for the number of observations for the whole estimation period, 

𝑇, (for instance, the number of observations per day) at low frequency and high 

frequency, respectively, and  
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𝑅𝑉𝑇,𝑛 = ∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

𝑛−2

𝑖=0

, (3.14) 

 

 

𝑅𝑉𝑇,ℎ =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

ℎ−2

𝑖=0

, 

 

 

(3.15) 

𝑅𝑄𝑇,ℎ =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
4

ℎ−2

𝑖=0

, (3.16) 

 

 

𝑛 > ℎ,
𝑛

ℎ
→ ∞  as  𝑛, ℎ → ∞. 

 

 

Beware that the notation in [16] requires to attach each observation with a time index 

that starts from 1, i.e., in prior and following sections, we take the grid on which 

observations are positioned in the form 𝒢 = {𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1}, 𝑡0 = 0, 𝑡𝑛−1 = 𝑇, where 

Awartani et al. [16] write same grid in a slightly different form 𝒢 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑛}, 𝑡1 =
0, 𝑡𝑛 = 𝑇. This is why we have differences in the upper and lower bounds in sigma 

operators between Equations (3.14), (3.15), (3.16) and calculations suggested in fifth 

equation in [16]. In addition, the multiplier (ℎ − 1) in Equation (3.13) is one less than 

the multiplier ℎ = 𝑁�̅� in eight equation in [16]. The reader should keep in mind these 

notation nuances while reading the following sections henceforth.  

 

 

3.3.1. Deriving a statistic to test the existence of MMN under CTS 

 

 

The test statistic 𝑍𝑇,𝑛,ℎ has a standard normal distribution asymptotically and its 

asymptotic distribution is constructed on two main pillars: 

 

1) Awartani et al. [16] first describe their setting as follows: 

 

 the true price is generated as in Equation (3.1), 

 

 ∫ 𝜎𝑡
4𝑑𝑡

𝑇

0
< ∞,  

 

 the MMN increments have a finite fourth moment on [0, 𝑇], 
 

 one can find at least one 𝜁 > 0 such that for 𝜓 ∈ (0,1), lim inf
𝑛→∞

 (𝑛 −

1)𝜓−1[𝜀, 𝜀]𝑇 >  𝜁 and lim inf
ℎ→∞

 (ℎ − 1)𝜓−1[𝜀, 𝜀]𝑇 >  𝜁. 
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Awartani et al. [16] then explain the expansion of the numerator in this setting as 

below: 

 

 

𝑍𝑇,𝑛,ℎ =
√ℎ − 1(𝑅𝑉𝑇,𝑛 − 𝐼𝑉𝑇 ) 

√2(ℎ − 1)
3 𝑅𝑄𝑇,ℎ

−
√ℎ − 1(𝑅𝑉𝑇,ℎ − 𝐼𝑉𝑇 ) 

√2(ℎ − 1)
3 𝑅𝑄𝑇,ℎ

, 
(3.17) 

 

 

reveals that the first term on the RHS of Equation (3.17) converges to 0 in probability 

and asymptotically speaking, the limiting distribution of 𝑍𝑇,𝑛,ℎ is determined by 

second term on the RHS of Equation (3.17). This argument is built on a result by Jacod 

and Protter [69], who show that in the absence of the MMN for equidistant 

observations, the estimation error of the 𝑅𝑉𝑇 scaled by the square root of the number 

of sampling intervals is stochastically bounded, i.e.,  

 

 

(𝑅𝑉𝑇,𝑛 − 𝐼𝑉𝑇) = 𝑂𝑝((𝑛 − 1)
−1/2), (3.18) 

 

 

(𝑅𝑉𝑇,ℎ − 𝐼𝑉𝑇) = 𝑂𝑝((ℎ − 1)
−1/2). (3.19) 

 

 

The Equations (3.18) and (3.19) show that estimation error when the total number of 

observations equals 𝑛 needs to grow at least by the square root of (𝑛 − 1) in order to 

be bounded asymptotically, and, any smaller amount that scales the estimation error 

causes it to converge to 0. Since we assumed that 
𝑛

ℎ
→ ∞ as 𝑛, ℎ → ∞,  

 

 

𝑙𝑖𝑚
ℎ,𝑛→∞

ℙ[|√ℎ − 1(𝑅𝑉𝑇,𝑛 − 𝐼𝑉𝑇)| ≥ 𝛾] = 0, ∀ 𝛾 ∈ (0,∞), 

 

 

and such convergence in probability is denoted by √ℎ − 1(𝑅𝑉𝑇,𝑛 − 𝐼𝑉𝑇 ) = 𝑜𝑝(1). 
 

2) Since the limiting distribution of the statistic 𝑍𝑇,𝑛,ℎ is driven by the second term 

on the RHS of Equation (3.17), Awartani et al. [16] benefit from a central limit theorem 

developed by Jacod and Protter [69] and a result in [24] which shows that the realized 

quarticity is a consistent estimate of the quadratic variation of the estimation error. The 

central limit theorem by Jacod and Protter [69] proves that, in the absence of the MMN, 

the estimation error of the RV with respect to the IV has a limiting mixed normal 

distribution under CTS, i.e.,  

 

 

√ℎ − 1(𝑅𝑉𝑇,ℎ − 𝐼𝑉𝑇 )
𝑑
→𝑁(0,2𝑇∫ 𝜎𝑠

4𝑑𝑠
𝑇

0

). 



 
41 

By using this central limit theorem combined with the realized quarticity being a 

consistent estimate of the variance of the estimation error, Awartani et al. [16] deduce 

that the second term on the RHS of Equation (3.17) is asymptotically standard normal 

under 𝐻0 defined in (3.11). They also demonstrate that 𝑍𝑇,𝑛,ℎ diverges under 𝐻𝑎, 

described in (3.12) if for 𝛾 > 0 

 

 

lim
𝑛,ℎ→∞

ℙ [
(ℎ − 1)𝜓+0.5

(𝑛 − 1)𝜓+0.5 − (ℎ − 1)𝜓+0.5
𝑍𝑇,𝑛,ℎ > 𝛾] = 1. 

 

 

If the statistic 𝑍𝑇,𝑛,ℎ for a certain calculation horizon, such as one day, is calculated to 

be negative and we reject the null hypothesis in (3.12) and conclude that the MMN has 

a statistically significant effect on the RV estimator, then for that day, there should be 

a negative correlation between the true price 𝑋𝑡, and the aggregate effect of market 

microstructure, 𝜀𝑡 due to the fact that the quadratic variation of the MMN is always 

nonnegative. In other words, for 𝑍𝑇,𝑛,ℎ to be negative, the RV calculated at higher 

frequency should be smaller than the RV calculated at lower frequency. However, we 

know that the quadratic variation of the MMN is non-decreasing in the number of 

observation points, and, therefore the only source of negativity of the test statistic 

𝑍𝑇,𝑛,ℎ should be a negative correlation between the true price and the MMN which 

becomes more accentuated as the sampling frequency increases. 

 

 

3.3.2. Deriving a statistic to test the existence of MMN under TTS 

 

 

Zhang et al. [111] and Mykland and Zhang [91] show that the two pillars providing 

the foundation for Awartani et al.’s [16] test statistic also hold under TTS. Based on 

[111] and [91], we suggest that the same test statistic 𝑍𝑇,𝑛,ℎ can be employed to 

examine the existence of MMN under TTS. Next, we explain how Awartani et al.’s 

[16] test statistic 𝑍𝑇,𝑛,ℎ  works under TTS by following the notations and proofs in 

[111] and [91]. 

 

 

Subsection 3.3.2.A: Step 1 

 

 

Let’s take a close look at the estimation error when observations are spaced irregularly 

in time (TTS) under the null hypothesis 𝐻0 in (3.11). Recall that when the observed 

prices are not contaminated by the MMN, the estimation error of the RV comes only 

from the discretization error regardless of the sampling scheme. The discretization 

error appears because, in practice, the number of observations during a trading day, in 

other words the number of data points in a grid, is limited. Also, for most financial 

applications, due to computational challenges, practitioners prefer to estimate the IV 

using the RV calculated at certain frequencies such as returns at every 3 or 30 

transactions. This is called calculating the RV using a subgrid of all available 

information. More specifically, if 𝒢 represents all available trading information, i.e., 
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all transaction prices recorded, then the estimation error, denoted by 𝒵𝑡, is written as 

[𝑌, 𝑌]𝑡
ℋ − IV𝑡 and it equals to [𝑋, 𝑋]𝑡

ℋ − IV𝑡, when there is no MMN over a subgrid 

ℋ,ℋ ⊆ 𝒢. Here, the number of data points in grids ℋ and 𝒢 are h and n, respectively. 

 

Following Mykland and Zhang [91], we make two assumptions in order to simplify 

the examination of estimation error under TTS: 

 

Assumption 3.3. The true price of the security has no drift and it is local martingale 

by definition, i.e., the logarithm of the true price of the security satisfies the following 

equation: for all 𝑡 ∈ [0, 𝑇] 
 

 

𝑋𝑡 = 𝑋0 +∫ 𝜎𝑠𝑑𝐵𝑠

𝑡

0

. (3.20) 

 

 

Assumption 3.4. The instantaneous true return volatility,𝜎𝑡, is bounded, i.e., there is a 

nonrandom 𝑎 such that 𝜎𝑡
2 ≤ 𝑎2 for all 𝑡 ∈ [0, 𝑇].  

 

Under Assumptions 3.3 and 3.4, 𝑋𝑡 becomes a martingale and we apply Itô’s formula 

to (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
2
. Recall that the Itô’s formula states that 

 

 

𝑑𝑓(𝑋𝑡) = 𝑓
′(𝑋𝑡)𝑑𝑋𝑡 +

1

2
𝑓′′(𝑋𝑡)𝑑[𝑋, 𝑋]𝑡. (3.21) 

 

 

Therefore, if 𝑓(𝑋𝑡) = 𝑋𝑡
2, 𝑑𝑓(𝑋𝑡) = 2𝑋𝑡𝑑𝑋𝑡 + 𝜎𝑡

2𝑑𝑡. Hence from 𝑡𝑖 to 𝑡𝑖+1,  
 

 

(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
2
= ∫ 2(𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠

𝑡𝑖+1

𝑡𝑖

+∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

𝑡𝑖

. 

 

 

If the last time point in the grid does not coincide with the end of the time horizon, as 

it happens frequently in market data when the last observation on a trading day is 

before the end of the trading session, then max{𝑡𝑖} ≠ 𝑡. At this point, following 

Mykland and Zhang [91], we consider the upper edge of the partition ℋ and set 

 

 

𝑡∗ = max{𝑡𝑖 ∈ ℋ, 𝑡𝑖 ≤ 𝑡}. 
 

 

Then,  
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(𝑋𝑡 − 𝑋𝑡∗)
2
= ∫ 2(𝑋𝑠 − 𝑋𝑡∗)𝑑𝑋𝑠

𝑡

𝑡∗

+∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡∗

, (3.22) 

 

 

and 

 

 

[𝑋, 𝑋]𝑡
ℋ = ∑ (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)

2

𝑡𝑖+1≤𝑡

+ (𝑋𝑡 − 𝑋𝑡∗)
2
. (3.23) 

 

 

Therefore, the estimation error, 𝒵𝑇, is rewritten as follows: 

 

 

𝒵𝑡 = [𝑋, 𝑋]𝑡
ℋ − IV𝑡 = ∑ (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)

2

𝑡𝑖+1≤𝑡

+ (𝑋𝑡 − 𝑋𝑡∗)
2
−∫ 𝜎𝑠

2𝑑𝑠
𝑡

0

. (3.24) 

 

 

Incorporating Equations (3.22) and (3.23) in Equation (3.24) gives,  

 

 

𝒵𝑡 = ∑ 2∫ (𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

+ ∑ ∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

 

           +∫ 2(𝑋𝑠 − 𝑋𝑡∗)𝑑𝑋𝑠

𝑡

𝑡∗

 

           +∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡∗

−∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

, 

 

 

where 

 

 

∑ ∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑇

= ∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

0

, 

 

 

and 

 

 

∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

0

+∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡∗

= ∫ 𝜎𝑠
2𝑑𝑠

𝑡

0

. 

 

 

Hence,  
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𝒵𝑡 = ∑ 2∫ (𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

+∫ 2(𝑋𝑠 − 𝑋𝑡∗)𝑑𝑋𝑠

𝑡

𝑡∗

. 

 

 

Since  

 

 

∑ 2∫ (𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

= ∫ 2(𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠,
𝑡𝑖+1

0

 

 

 

and 

 

 

∫ 2(𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠

𝑡𝑖+1

0

+∫ 2(𝑋𝑠 − 𝑋𝑡∗)𝑑𝑋𝑠

𝑡

𝑡∗

= ∫ 2(𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠

𝑡

0

. 

 

 

Then 

 

 

𝒵𝑡 = ∫ 2(𝑋𝑠 − 𝑋𝑡𝑖)𝑑𝑋𝑠,
𝑡

0

 

 

 

and the differential form of 𝒵𝑡 is 

 

 

𝑑𝒵𝑡 = 2(𝑋𝑡 − 𝑋𝑡𝑖)𝑑𝑋𝑡. 

 

 

Accordingly,  

 

 

𝑑[𝒵, 𝒵]𝑡 = 4(𝑋𝑡 − 𝑋𝑡𝑖)
2
𝑑[𝑋, 𝑋]𝑡 . (3.25) 

 

 

If we apply Itô’s formula to 𝑓(𝑋𝑡) = (𝑋𝑡 − 𝑋𝑡𝑖)
4
, then we get 
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(𝑋𝑡 − 𝑋𝑡𝑖)
4
= 𝑓(𝑋0) + ∫ 4(𝑋𝑠 − 𝑋𝑡𝑖)

3
𝑑𝑋𝑠

𝑡

0

+∫
1

2
12(𝑋𝑠 − 𝑋𝑡𝑖)

2
 𝑑[𝑋, 𝑋]𝑠

𝑡

0

 

= 𝑓(𝑋0) + ∫ 4(𝑋𝑠 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑠

𝑡

0

+∫
3

2

𝑡

0

𝑑[𝒵, 𝒵]𝑠. 

(3.26) 

 

 

Following Mykland and Zhang [91], let’s define the realized quarticity of the true price 

process, [𝑋, 𝑋, 𝑋, 𝑋]𝑡, relative to grid ℋ, as  

 

 

[𝑋, 𝑋, 𝑋, 𝑋]𝑡
ℋ ∶= ∑ (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)

4

𝑡𝑖+1≤𝑡

+ (𝑋𝑡 − 𝑋𝑡∗)
4
. (3.27) 

 

 

By Itô’s formula, Equation (3.27) can be written as 

 

 

𝑑[𝑋, 𝑋, 𝑋, 𝑋]𝑡
ℋ = ∑ 4(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)

3
𝑑𝑋𝑡

𝑡𝑖+1≤𝑡

+ ∑ 6(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
2

𝑡𝑖+1≤𝑡

𝑑[𝑋, 𝑋]𝑡 + 4(𝑋𝑡 − 𝑋𝑡∗)
3
𝑑𝑋𝑡

+ 6(𝑋𝑡 − 𝑋𝑡∗)
2
𝑑[𝑋, 𝑋]𝑡. 

(3.28) 

 

 

Now, since 

 

 

∑ 4(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑡

𝑡𝑖+1≤𝑡

= ∑ 4∫ (𝑋𝑠 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

, 

 

 

and for 𝑡𝑖+1 ≠ 𝑡∗ 
 

 

4(𝑋𝑡 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑡 = 4( ∑ ∫ (𝑋𝑠 − 𝑋𝑡𝑖)

3
𝑑𝑋𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

+ (𝑋𝑡 − 𝑋𝑡∗)
3
𝑑𝑋𝑡), 

 

 

and 
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6(𝑋𝑡 − 𝑋𝑡𝑖)
2
𝑑[𝑋, 𝑋]𝑡 = 6( ∑ ∫ (𝑋𝑠 − 𝑋𝑡𝑖)

3
𝑑[𝑋, 𝑋]𝑠

𝑡𝑖+1

𝑡𝑖

+(𝑋𝑡 − 𝑋𝑡∗)
2

𝑡𝑖+1≤𝑡

𝑑[𝑋, 𝑋]𝑡), 

 

 

and by Equation (3.25), Equation (3.28) evolves to 

 

 

𝑑[𝑋, 𝑋, 𝑋, 𝑋]𝑡
ℋ = 4(𝑋𝑡 − 𝑋𝑡𝑖)

3
𝑑𝑋𝑡 + 6(𝑋𝑡 − 𝑋𝑡𝑖)

2
𝑑[𝑋, 𝑋]𝑡  

= 4(𝑋𝑡 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑡 +

3

2
 𝑑[𝒵, 𝒵]𝑡. 

 

 

By defining 𝒥𝑡 as ∑ (𝑋𝑡 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑡𝑡𝑖+1≤𝑡

, we get 

 

 

[𝑋, 𝑋, 𝑋, 𝑋]𝑡
ℋ = 4𝒥𝑡 +

3

2
 [𝒵, 𝒵]𝑡. (3.29) 

 

 

Mykland and Zhang [91] then examine the quadratic variation of the estimation error 

process, 𝒵𝑡, written as 

 

 

[𝒵, 𝒵]𝑡 = 4 ∑ ∫ (𝑋𝑠 − 𝑋𝑡𝑖)
2
𝑑[𝑋, 𝑋]𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

+ 4∫ (𝑋𝑠 − 𝑋𝑡∗)
2
𝑑[𝑋, 𝑋]𝑠

𝑡

𝑡∗

, (3.30) 

 

 

to show that 2 3⁄ (ℎ − 1)[𝑋, 𝑋, 𝑋, 𝑋]𝑡
ℋis a consistent estimate of (ℎ − 1)[𝒵, 𝒵]𝑡. This 

result is also stated by Barndorff-Nielsen and Shephard [24] for the approximation of 

the quadratic variation of the estimation error of RV where returns are sampled 

equidistantly in time. Mykland and Zhang [91] reach the same result under TTS and 

prove that 𝒥𝑡 converges to 0 in probability at an order of (ℎ − 1)−1. 
 

Proposition 3.1. (Proposition 2.17, p.138 in [91]) If the true log price of the security 

is pure diffusion and the stochastic process 𝜎𝑡 which drives the return volatility is 

bounded, for a sequence of grids ℋℎ = {0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡ℎ−1 = T}, if as ℎ → ∞, 

∆(ℋℎ) = 𝑜𝑝(1) and ∑ (𝑡𝑖+1 − 𝑡𝑖)
3 = 𝑂𝑝((ℎ − 1)

−2)ℎ−1
𝑖=0 , then 

 

 

sup
0≤𝑡≤T

|[𝒵, 𝒵]𝑡 −
2
3⁄ [𝑋, 𝑋, 𝑋, 𝑋]𝑡

ℋℎ| = 𝑜𝑝((ℎ − 1)
−1). (3.31) 

 

 

Proof of this proposition is provided in Appendix A. 
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At this point, we make additional assumptions as in [91]. 

 

Assumption 3.5. The observation times 𝑡𝑖 in grid ℋℎ are independent of the true price 

process 𝑋𝑡. 
 

Assumption 3.6. Over small intervals, the following approximation holds 

 

 

(𝑋𝑡 − 𝑋𝑡∗)
2
≈ [𝑋, 𝑋]𝑡 − [𝑋, 𝑋]𝑡∗ . 

 

 

Under these assumptions, the quadratic variation of estimation error of the RV in 

Equation (3.30) changes to an approximation as follows: 

 

 

[𝒵, 𝒵]𝑡 ≈ 4 ∑ ∫ ([𝑋, 𝑋]𝑠 − [𝑋, 𝑋]𝑡𝑖)𝑑[𝑋, 𝑋]𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

+ 4∫ ([𝑋, 𝑋]𝑡 − [𝑋, 𝑋]𝑡∗)𝑑[𝑋, 𝑋]𝑠

𝑡

𝑡∗

. 

 

 

Assumption 3.7. The instantaneous true return variance, 𝜎𝑡
2, is continuous in mean 

square, which means that 

 

 

sup
0≤𝑡−𝑠≤α

𝔼(𝜎𝑡
2 − 𝜎𝑠

2)2 → 0 as 𝛼 → 0. 

 

 

Assumption 3.8. The maximum distance between two consecutive observation times 

in grid ℋℎ converges to 0 in probability at an order of (ℎ − 1)−1/2 as ℎ → ∞. 
 

Assumption 3.9. ∑ (𝑡𝑖+1 − 𝑡𝑖)
3 = 𝑂𝑝((ℎ − 1)

−2)𝑖 .  

 

Assumption 3.10. Asymptotic Quadratic Variation of Time (AQVT) calculated as 

 

 

𝒟𝑡 ∶= lim
ℎ→∞

ℎ − 1

𝑇
∑ (𝑡𝑖+1 − 𝑡𝑖)

2

𝑡𝑖+1≤𝑡

, 

 

 

and denoted by 𝒟𝑡 exists.  

 

Under Assumptions 3.5 through 3.10, Mykland and Zhang [91] show that  
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[𝒵, 𝒵]𝑡 = 2 ∑ ([𝑋, 𝑋]𝑡𝑖+1 − [𝑋, 𝑋]𝑡𝑖)
2

𝑡𝑖+1≤𝑡

+ 2([𝑋, 𝑋]𝑡 − [𝑋, 𝑋]𝑡∗)
2

+ 𝑜𝑝((ℎ − 1)
−1). 

(3.32) 

 

 

Since  

 

 

[𝑋, 𝑋]𝑡𝑖+1 − [𝑋, 𝑋]𝑡𝑖 = ∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

𝑡𝑖

, 

 

 

[𝑋, 𝑋]𝑡 − [𝑋, 𝑋]𝑡∗ = ∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡∗

. 

 

 

Equation (3.32) can be rewritten as 

 

 

[𝒵, 𝒵]𝑡 = 2 ∑ (∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

𝑡𝑖

)

2

𝑡𝑖+1≤𝑡

+ 2(∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡∗

)

2

+ 𝑜𝑝((ℎ − 1)
−1) 

= 2 ∑ ((𝑡𝑖+1 − 𝑡𝑖)𝜎𝑡𝑖
2)
2

𝑡𝑖+1≤𝑡

+ 2((𝑡 − 𝑡∗)𝜎𝑡∗
2)
2

+ 𝑜𝑝((ℎ − 1)
−1) 

= 2 ∑ (𝑡𝑖+1 − 𝑡𝑖)
2𝜎𝑡𝑖
4

𝑡𝑖+1≤𝑡

+ 2(𝑡 − 𝑡∗)
2𝜎𝑡∗
4 + 𝑜𝑝((ℎ − 1)

−1) 

= 2
𝑇

ℎ − 1
∫ 𝜎𝑠

4
𝑡

0

𝑑𝒟𝑠 + 𝑜𝑝((ℎ − 1)
−1). 

 

 

Therefore, as mentioned by Zhang et al. [111] and expressed in Proposition 2.23 in 

Chapter 2, p.147 of [91], for a fixed period of time [0, 𝑇], 
 

 

(ℎ − 1)[𝒵, 𝒵]𝑇
ℙ
→ 2𝑇∫ 𝜎𝑠

4
𝑡

0

𝑑𝒟𝑠. 

 

 

Subsection 3.3.2.B: Step 2 

 

The next step would be to examine the Central Limit Theorem (CLT) for continuous 

local martingales by Mykland and Zhang [91]. Before doing so, following Mykland 

and Zhang [91], it may be helpful to provide some definitions and concepts from 

probability theory and statistics. 
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We require a filtration (𝔉𝑡) to which all relevant processes such as the true price 

process 𝑋𝑡 and the instantaneous return volatility 𝜎𝑡 in our setting are adapted. We take 

the estimation error sequence 𝒵𝑡
ℎ, which is the error at time 𝑡 when the total number 

of data points in the grid is h, as being measurable with respect to a σ-field 𝔛, where 

𝔉𝑇 ⊆ 𝔛. 
 

Now, if 𝒵𝑡
ℎ is a sequence of 𝔛-measurable random variables with 𝔉𝑇 ⊆ 𝔛 and for a 𝒵𝑡 

that is adapted to an extention of 𝔛 such that for all 𝒰 ∈ 𝔉𝑇 and for all bounded 

continuous function g, 𝔼[I𝒰g(𝒵𝑡
ℎ)] → 𝔼[I𝒰g(𝒵𝑡)] as ℎ → ∞, then 𝒵𝑡

ℎ converges 𝔉𝑇-

stably in law to 𝒵𝑡 as ℎ → ∞.  

 

We adopt the notation in [91] and stable convergence is denoted by 
ℒ
→. 

 

As the number of observations increases, the number of data points in grid ℋ also 

increases and, at each frequency, there will be an estimation error. These estimation 

errors will construct a sequence and estimation errors are continuous martingales.  We 

are interested in such sequences of continuous martingales converging to a limit. 

Continuous martingales can be interpreted as random variables taking values in the set 

ℂ of continuous functions with domain [0, 𝑇] and range (−∞,∞). For this context, a 

function g is called a continuous function ℂ → ℝ if sup
0≤𝑡≤T

|𝑥ℎ(𝑡) − 𝑥(𝑡)| → 0 implies 

g(𝑥𝑛) → g(𝑥). 
 

Mykland and Zhang [91] note that the stable convergence of a sequence of random 

variables 𝒵𝑡
ℎ
ℒ
→𝒵𝑡 also implies 𝒵𝑇

ℎ
ℒ
→𝒵𝑇 as a random variable. 

 

Limits and the quadratic variation are interchangeable when a sequence of continuous 

local martingales stably converge to a process (Proposition 2.27, p.151 of [91]). 

 

These definitions and concepts pave the way for CLT for continuous local martingales 

(Theorem 2.28, p. 152 of [91]7) 

 

Theorem 3.2. If we assume that  

 

 Brownian motions 𝐵𝑡
1,⋯ , 𝐵𝑡

𝑘, for some 𝑘, generating the filtration (𝔉𝑡) exist,  

 

 (𝒵𝑡
ℎ)
0≤𝑡≤𝑇

 is a sequence of continuous local martingales that starts at 0 and is 

measurable with respect to (𝔉𝑡) for any 𝑡 ∈ [0. 𝑇], 
 

 A process 𝓅𝑡 exists such that for any 𝑡 ∈ [0. 𝑇],  [𝒵ℎ, 𝒵ℎ]𝑡
ℙ
→ ∫ 𝓅𝑠

2𝑡

0
𝑑𝑠, 

 

                                                           

7 The proof of this theorem is summarized in page 152 of [91], but is omitted here as it is beyond the 

scope of this Thesis. 
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 For each 𝑖 = 1,⋯ , 𝑘, the quadratic covariation of 𝐵𝑡
𝑘 and 𝒵𝑡

ℎ converge to 0 in 

probability, 

 

then, on [0, 𝑇], (𝒵𝑡
ℎ) stably converges to a martingale 𝒵𝑡 that is measurable with 

respect to filtration (𝔉𝑡
∗), an extension of (𝔉𝑡). Additionally, a Wiener process 𝐵𝑡

∗ 

exists where (𝐵𝑡
1, ⋯ , 𝐵𝑡

𝑘, 𝐵𝑡
∗ ) are all Wiener processes adapted to (𝔉𝑡

∗). Finally,  

 

 

𝒵𝑡 = ∫ 𝓅𝑠

𝑡

0

𝑑𝐵𝑠
∗. 

 

 

A very intriguing application of this CLT for the sequence of local martingales relates 

to the quadratic variation of the estimation error which comes from observing 

processes in discrete time while the processes are assumed to be continuous in time. 

Mykland and Zhang [81, [90], [91] work on this application and prove the following 

theorem: 

 

Theorem 3.3. When the estimation error process, (𝒵𝑡
ℎ)
0≤𝑡≤𝑇

= [𝑋, 𝑋]𝑡
ℋ − 𝐼𝑉𝑡, is 

scaled by the square root of the total number of sampling intervals in the grid ℋ, for 

fixed 𝑡 ∈ [0, 𝑇], 
 

 

√ℎ − 1𝒵𝑡
ℎ
ℒ
→𝑁(0,2𝑇∫ 𝜎𝑠

4𝑑𝒟𝑠

𝑡

0

), 

 

 

under conditions of Theorem 3.2 and Assumptions 3.3-3.5, 3.7-3.10 where AQVT is 

absolutely continuous. 

 

Subsection 3.3.2.C: Step 3 

 

From the beginning of Subsection 3.3.2 up to this point, the CLT and mixed normality 

of the estimation error due to discretization under TTS (where observations are 

randomly scattered in time) are built on the assumption that the true security prices are 

pure diffusions with no drift observed. This assumption as given in Assumption 3.3 is 

made by benefiting from the idea of changing measures in asset pricing literature such 

as Ross [98] or Harrison and Pliska [63] etc., where the studies suggest that discounted 

asset prices are martingales under a risk-neutral measure that is equivalent to the actual 

risky probability measure. Mykland and Zhang [90], [91] show that the consistency 

and the rate of convergence of the RV estimator calculated using grid ℋ is not affected 

by the change of measure due to the time period [0, 𝑇] being finite. More specifically, 

Mykland and Zhang [90] deduce that asymptotic variance of estimation error 𝒵𝑡
ℎ keeps 

unaltered even if we change the measure. As a simplification strategy for inference, 

Mykland and Zhang [90] rewrite 𝑑𝑋𝑡 under a probability measure ℙ∗, equivalent to 

the measure ℙ, where under the measure ℙ the true prices are observed with the drift 

and under the measure ℙ∗, the drift disappears, i.e., 
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𝑑𝑋𝑡 = 𝜎𝑡𝑑𝐵𝑡
∗, 𝑋0 = 𝑥0, 

 

 

where 𝐵𝑡
∗ is a Brownian motion measurable with respect to measure ℙ∗. In such a case, 

by Girsanov’s Theorem (see Theorem 2.37 in Chapter 2, p.159 of [91]),  

 

 

log
𝑑ℙ∗

𝑑ℙ
= −∫

𝜇𝑡
𝜎𝑡

𝑇

0

𝑑𝐵𝑡
∗ −

1

2
∫ (

𝜇𝑡
𝜎𝑡
)
2

𝑑𝑡
𝑇

0

, 

 

 

with 𝑑𝐵𝑡
∗ = 𝑑𝐵𝑡 +

𝜇𝑡

𝜎𝑡
𝑑𝑡. 

 

Mykland and Zhang [90] ask the question of excluding or including the drift in the true 

price process by offering to carry out the analysis under a risk neutral measure ℙ∗ so 

that the drift disappears and adjust results back to ℙ using the likelihood ratio 
𝑑ℙ∗

𝑑ℙ
. 

Recall that by the Radon-Nikodym Theorem (Theorem 2.35 in Chapter 2, p.158 of 

[91]), if the probability measure ℙ∗ is absolutely continuous under ℙ on a 𝜎-field 𝒜, 

then a random variable 
𝑑ℙ∗

𝑑ℙ
, adapted to 𝒜, exists such that for all events 𝐴 ∈ 𝒜, 

 

 

ℙ∗(𝐴) = 𝔼ℙ (
𝑑ℙ∗

𝑑ℙ
𝕀𝐴). 

 

 

Mykland and Zhang [90], [91] give the example of ∫ 𝜎𝑡
2𝑑𝑡

𝑇

0
 or ∫ 𝜎𝑡

4𝑑𝑡
𝑇

0
 as quantities 

to be estimated and propose to find an estimator for a quantity by working under ℙ∗ 
such that an asymptotic convergence in law is found under ℙ∗, then switch to ℙ relying 

on measure theoretic equivalence of ℙ and ℙ∗. Such equivalence of measures ensures 

that convergence under risk neutral measure ℙ∗ would also hold under the risky 

measure ℙ. For instance if √ℎ − 1𝒵𝑡
ℎ
ℒ
→𝑁(𝑎, 𝑏) under ℙ∗, √ℎ − 1𝒵𝑡

ℎ also converges 

in law under ℙ. 

 

Accordingly, following Mykland and Zhang [91], Aït-Sahalia et al. [3] and many other 

studies in the lierature, we assume that the true price process, which is continuous in 

time but can only be observed at discrete times, is observed with no drift. 

 

Similarly, Mykland and Zhang [91] discuss that it is possible to weaken Assumption 

3.4 on instantaneous true return volatility. In fact, Theorem 3.3 is shown to be holding 

even if condition 𝜎𝑡
2 ≤ 𝑎2 for all 𝑡 ∈ [0, 𝑇] is substituted with Assumption 3.11 as 

given below: 

 

Assumption 3.11. The instantaneous return volatility, 𝜎𝑡, is locally bounded so that 

for a sequence of stopping times 𝜏ℎ and a constant 𝜎ℎ,𝑡, ℙ[𝜏ℎ < 𝑇] → 0 as ℎ → ∞ and 

𝜎𝑡
2 ≤ 𝜎ℎ,𝑡

2  for all 𝑡 ∈ [0, 𝜏ℎ]. 
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All in all, under the null hypothesis 𝐻0 in Equation (3.11), for all 𝑡 ∈ [0, 𝑇], for 

contaminated observed prices 𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡, the total estimation error [𝑌, 𝑌]𝑡
ℋ − 𝐼𝑉𝑡 is 

equal to the discretization error, [𝑋, 𝑋]𝑡
ℋ − 𝐼𝑉𝑡. We assume that we observe 𝑌𝑡 on two 

different grids (meaning two different frequencies), ℋ and 𝒢, both tending to identity, 

where |ℋ| = ℎ and |𝒢| = 𝑛, then 

 

 

[𝑌, 𝑌]𝑇
ℋ − 𝐼𝑉𝑇 = 𝑂𝑝((ℎ − 1)

−1), 
 

 

[𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇 = 𝑂𝑝((𝑛 − 1)

−1). 
 

 

As shown in Section 3.3.1, if 
ℎ

𝑛
→ ∞ as ℎ, 𝑛 → ∞, then √ℎ − 1([𝑌, 𝑌]𝑇

𝒢
− 𝐼𝑉𝑇) =

𝑜𝑝(1). 
 

By this token, (√ℎ − 1([𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇) − √ℎ − 1([𝑌, 𝑌]𝑇

ℋ − 𝐼𝑉𝑇)) is driven by 

√ℎ − 1([𝑌, 𝑌]𝑇
ℋ − 𝐼𝑉𝑇). 

 

Following discussions and proofs in [90], [91], we apply Theorem 3.3 to the estimation 

error of the RV under conditions and assumptions mentioned in Theorem 3.3 but 

assume that the true prices have no drift at irregularly spaced times (on grid ℋ or 𝒢) 

and the process 𝜎𝑡
2 is locally bounded on [0, 𝑇]. So, we know that the amount that the 

RV over observed prices deviates from the IV of the true price converges in law to a 

mixed normal distribution asymptotically. The asymptotic distributions of the 

estimation errors on grid ℋ and grid 𝒢 have 0 mean and 2𝑇 ℎ − 1⁄ ∫ 𝜎𝑠
4𝑑𝒟𝑠

𝑇

0
  and 

2𝑇
𝑛 − 1⁄ ∫ 𝜎𝑠

4𝑑𝒟𝑠
𝑇

0
 variance, respectively. For instance, √ℎ − 1([𝑌, 𝑌]𝑇

ℋ − 𝐼𝑉𝑇)
ℒ
→𝑁(0,2𝑇 ∫ 𝜎𝑠

4𝑑𝒟𝑠
𝑇

0
) and 

 

 

(√ℎ − 1([𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇) − √ℎ − 1([𝑌, 𝑌]𝑇

ℋ − 𝐼𝑉𝑇))

√2𝑇 ∫ 𝜎𝑠4𝑑𝒟𝑠
𝑇

0

ℒ
→𝑁(0,1). (3.33) 

 

 

In order to estimate the RHS of the convergence in (3.33), we use Proposition 3.1 such 

that for any grid ℋ, where grid tends to identity, 2 3⁄ (ℎ − 1)[𝑋, 𝑋, 𝑋, 𝑋]𝑇
ℋ consistently 

estimates variance of (ℎ − 1)([𝑋, 𝑋]𝑇
ℋ − 𝐼𝑉𝑇) and under the null hypothesis in 

Equation (3.11), [𝑋, 𝑋]𝑇
ℋ − 𝐼𝑉𝑇 is equal to [𝑌, 𝑌]𝑇

ℋ − 𝐼𝑉𝑇. Hence,  
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(√ℎ − 1([𝑌, 𝑌]𝑇
𝒢
− [𝑌, 𝑌]𝑇

ℋ))

√2 3⁄ (ℎ − 1)∑ (𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
4ℎ−2

𝑖=0

ℒ
→𝑁(0,1). 

 

 

Under 𝐻𝑎 in (3.12) when the microstructure noise statistically affects the RV measure, 

𝑍𝑇,𝑛,ℎ will diverge because [𝑌, 𝑌]𝑇
𝒢

 will explode at a larger rate compared to [𝑌, 𝑌]𝑇
ℋ. 

Remember that as we increase the sampling frequency, [𝑌, 𝑌]𝑇 on any grid starts to be 

dominated by the quadratic variation of the microstructure noise. Similar supporting 

arguments are also presented in Lemma 2 in [61] and Lemma 1 and Proposition 1 in 

[111]. These studies calculate the total estimation error that is due to both of 

discretization and MMN. Their results agree that under slightly different conditions 

compared to conditions of Theorem 3.3, when there is MMN satisfying Assumptions 

3.1 and 3.2 and it is related to observed prices through Equation (3.4) on grid 𝒢, the 

asymptotic distribution of the estimation error is mixed normal with mean 

2(𝑛 − 1)𝔼[𝜖2] and variance is commanded by 4(𝑛 − 1)𝔼[𝜖4].  
 

In detail, when MMN is independently distributed with finite fourth moment almost 

surely such that for all 𝑡 ∈ [0, 𝑇], i.e., 𝔼[|∆𝜖𝑡|
4] < ∞ a.s., and Assumptions 3.2, 3.3, 

3.5-3.11 hold, then under alternative hypothesis defined in (3.12), following the 

discussions by Awartani et al. [16], the test statistic, 𝑍𝑇,𝑛,ℎ diverges if for 𝜓 ∈ (0,1) 
 

 

(𝑛 − ℎ)𝜓

(ℎ − 1)0.5−𝜓
→ ∞ 

 

 

holds. The reasoning is explained below: 

 

1) Under the alternative hypothesis, from Equation (3.6), we can expand the 

numerator and denominator of the test statistic 𝑍𝑇,𝑛,ℎ as 

 

 

(√ℎ − 1([𝑋, 𝑋]𝑇
𝒢
− [𝑋, 𝑋]𝑇

ℋ + [𝜖, 𝜖]𝑇
𝒢
− [𝜖, 𝜖]𝑇

ℋ + 2[𝜖, 𝑋]𝑇
𝒢
− 2[𝑋, 𝜖]𝑇

ℋ))

√2(ℎ − 1)([𝑋, 𝑋, 𝑋, 𝑋]𝑇
ℋ + [𝜖, 𝜖, 𝜖, 𝜖]𝑇

ℋ + 𝐴)
3

, 

 

 

where 

 

 

[𝑋, 𝑋, 𝑋, 𝑋]𝑇
ℋ ∶=∑(∆𝑋𝑡𝑖)

4
ℎ−2

𝑖=0

, 

 



 
54 

[𝜖, 𝜖, 𝜖, 𝜖]𝑇
ℋ ∶=∑(∆𝜖𝑡𝑖)

4
ℎ−2

𝑖=0

, 

 

 

𝐴 ∶=∑6(∆𝑋𝑡𝑖)
2
(∆𝜖𝑡𝑖)

2
ℎ−2

𝑖=0

+∑4∆𝑋𝑡𝑖(∆𝜖𝑡𝑖)
3

ℎ−2

𝑖=0

 +∑4(∆𝑋𝑡𝑖)
3
∆𝜖𝑡𝑖

ℎ−2

𝑖=0

. 

 

 

2) As justified in Sections 3.1. and 3.2, under both CTS and TTS, [𝑋, 𝑋]𝑇 is 

stochastically bounded where [𝑋, 𝜀]𝑇 < [𝜀, 𝜀]𝑇 causing [𝑌, 𝑌]𝑇 on any grid to be 

dominated by [𝜀, 𝜀]𝑇 asymptotically. Therefore, regarding the numerator of 𝑍𝑇,𝑛,ℎ, 

√ℎ − 1([𝑌, 𝑌]𝑇
𝒢
− [𝑌, 𝑌]𝑇

ℋ), under the alternative hypothesis, the asymptotic 

commanding term is [𝜖, 𝜖]𝑇
𝒢
− [𝜖, 𝜖]𝑇

ℋ.  

 

3) When a random variable has finite absolute moments of order 𝑘, it has absolute 

moments of orders 1,2, … , 𝑘 − 1 (Chapter 4, Section 21, p. 292 of [34]). By this token, 

𝔼[|∆𝜖𝑡|
4] < ∞ implies 𝔼[|∆𝜖𝑡|

3] < ∞, 𝔼[|∆𝜖𝑡|
2] < ∞ and 𝔼[|∆𝜖𝑡|] < ∞. By 

Markov’s Inequality, which states that for any nonnegative random variable 𝓍, 

 

 

ℙ[|𝓍| ≥ 𝛾] ≤
1

𝛾𝑘
𝔼[|𝓍|𝑘], ∀ 𝛾 ∈ (0,∞), 

 

 

𝔼[|∆𝜖𝑡|
4] < ∞ means stochastic boundedness of (∆𝜖𝑡)

4, (∆𝜖𝑡)
3, (∆𝜖𝑡)

2 and (∆𝜖𝑡)
4, 

i.e. for any 𝜆1, 𝜆2, 𝜆3, 𝜆4 > 0, there exist finite and nonnegative bounds 

M(∆𝜖𝑡)
4 ,M(∆𝜖𝑡)

3 ,M(∆𝜖𝑡)
2 and M(∆𝜖𝑡)

1 such that  

 

 

ℙ[|∆𝜖𝑡|
1 > M(∆𝜖𝑡)

1] < 𝜆1, ∀𝑡 ∈ [0, 𝑇], 

 

 

ℙ[|∆𝜖𝑡|
2 > M(∆𝜖𝑡)

2] < 𝜆2, ∀𝑡 ∈ [0, 𝑇], 

 

 

ℙ[|∆𝜖𝑡|
3 > M(∆𝜖𝑡)

3] < 𝜆3, ∀𝑡 ∈ [0, 𝑇], 

 

 

ℙ[|∆𝜖𝑡|
4 > M(∆𝜖𝑡)

4] < 𝜆4, ∀𝑡 ∈ [0, 𝑇]. 

 

 

Hence, supremum of [𝜖, 𝜖]𝑇
ℋ, supremum of [𝜖, 𝜖, 𝜖, 𝜖]𝑇

ℋ and supremum of 

[∑ (∆𝑋𝑡𝑖)
2
(∆𝜖𝑡𝑖)

2ℎ−2
𝑖=0 ] should be bounded with 
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(ℎ − 1)M(∆𝜖𝑡)
2 , 

 

 

(ℎ − 1)M(∆𝜖𝑡)
4 , 

 

 

and  

 

 

(ℎ − 1) sup
𝑡𝑖∈[0,𝑇]

(∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1

𝑡𝑖

)M(∆𝜖𝑡)
2 , 

 

 

respectively.  

 

Moreover, from Appendix C, we conclude that 𝔼[[𝑋, 𝑋, 𝑋, 𝑋]𝑇
ℋ], 𝔼 [∑ (∆𝑋𝑡𝑖)

3
∆𝜖𝑡𝑖

ℎ−2
𝑖=0 ] 

and 𝔼 [∑ (∆𝜖𝑡𝑖)
3
∆𝑋𝑡𝑖

ℎ−2
𝑖=0 ] are all stochastically bounded even if the sequence of MMN 

is not identically distributed, which by Markov’s Inequality causes [𝑋, 𝑋, 𝑋, 𝑋]𝑇
ℋ, 

∑ (∆𝑋𝑡𝑖)
3
∆𝜖𝑡𝑖

ℎ−2
𝑖=0  and ∑ (∆𝜖𝑡𝑖)

3
∆𝑋𝑡𝑖

ℎ−2
𝑖=0  to be also 𝑂𝑝(1). 

 

Hence, for 𝑍𝑇,𝑛,ℎ to diverge to plus infinity where  
ℎ

𝑛
→ ∞ as ℎ, 𝑛 → ∞,  

 

 
(𝑛 − ℎ)

√(ℎ − 1)

M(∆𝜖𝑡)
2

√𝑂𝑝(1) +M(∆𝜖𝑡)4 + sup
𝑡𝑖∈[0,𝑇]

(∫ 𝜎𝑠2𝑑𝑠
𝑡𝑖+1
𝑡𝑖

)M(∆𝜖𝑡)2

, 
(3.34) 

 

 

must diverge. Considering the fact that the second term on the RHS of (3.34) is finite 

but can take values in the close neighborhood of 0 depending on M(∆𝜖𝑡)
2 ,M(∆𝜖𝑡)

4  and 

sup
𝑡𝑖∈[0,𝑇]

(∫ 𝜎𝑠
2𝑑𝑠

𝑡𝑖+1
𝑡𝑖

), for (3.34) to go to infinity, the first term must reach infinity at a 

suitable rate, which is satisfied when  

 

 

(𝑛 − ℎ)𝜓

(ℎ − 1)0.5−𝜓
→ ∞ 

 

 

for 𝜓 ∈ (0,1). 
 

Thus, we completed the discussion regarding the test statistic 𝑍𝑇,𝑛,ℎ, developed by 

Awartani et al. [16] to be used for equidistant observations and we demonstrated that 

𝑍𝑇,𝑛,ℎ works also for irregularly spaced observations under conditions and assumptions 
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of Theorem 3.3. This postulation holds even if we release Assumption 3.4 such that 

the instantaneous return volatility is only locally bounded. 

 

 

3.4. Testing the constant variance of MMN increments under TTS 
 

 

As it is explained in detail in Chapter 2, many of the robust IV estimators in the 

literature, such as kernel based estimators or estimators built on subsampling, depend 

on the validity of the assumption that the MMN has constant variance through time. 

Likewise, handling the MMN in the estimation of the true price’s IV may be carried 

out via an “optimal sampling” of the returns following Bandi and Russell [19]. 

However, this method also relies on the assumption that the MMN has constant 

variance. Therefore, the failure to reject the model with the noise having constant 

variance would be quite interesting if one plans to employ aforementioned 

estimators/methods that take the variance of the MMN constant independent of the 

sampling frequency. To this end, Awartani et al. [16] suggest to test the following set 

of null and alternative hypotheses: 

 

 

𝐻0: ℊ𝑡,𝒢 = ℊ𝑡,ℋ , (3.35) 

 

 

𝐻𝑎: ℊ𝑡,𝒢 ≠ ℊ𝑡,ℋ , (3.36) 

 

 

where ℊ𝑡,𝒢 and ℊ𝑡,ℋ denote the variance of MMN increments on grids ℋ and 𝒢, 

respectively, and are defined as  

 

 

𝔼 [(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
] = 2ℊ𝑡,𝒢 , ∀𝑡𝑖+1, 𝑡𝑖 ∈ 𝒢, 

 

 

𝔼 [(𝜀𝑡𝑖+1 − 𝜀𝑡𝑖)
2
] = 2ℊ𝑡,ℋ , ∀𝑡𝑖+1, 𝑡𝑖 ∈ ℋ. 

 

 

The null hypothesis in (3.35) reflects the constant variance of MMN increments 

through time and the alternative hypothesis in (3.36) is consistent with presence of 

autocorrelation in MMN.  

 

For the purpose of testing whether the MMN increments have constant variance 

independent of the sampling frequency, Awartani et al. [16] advocate a test statistic 

𝑉𝑇,𝑛,ℎ, which combines RVs calculated at 3 different sampling frequencies (on 3 

different grids), one low, one high and one very very low compared to each other as 

well as the Realized Quarticity (𝑅𝑄) calculated at low frequency. This test statistic is 

defined as follows: 
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𝑉𝑇,𝑛,ℎ,𝑙 ∶= √ℎ − 1

(𝑅𝑉𝑇,𝑛 − 𝑅𝑉𝑇,𝑙)

2(𝑛 − 1)
−
(𝑅𝑉𝑇,ℎ − 𝑅𝑉𝑇,𝑙)

2(ℎ − 1)

√3(
𝑅𝑄𝑇,ℎ

2(ℎ − 1)2
− (

𝑅𝑉𝑇,ℎ
2(ℎ − 1)

)
2

)

, 
(3.37) 

 

 

where n, h and l stand for the number of observations for the whole estimation period 

, 𝑇 (for instance the number of observations per day), at high frequency, low frequency 

and very low frequency, respectively and as before 

 

 

𝑅𝑉𝑇,𝑛 =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

𝑛−2

𝑖=0

, 

 

 

𝑅𝑉𝑇,ℎ =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2
,

ℎ−2

𝑖=0

 

 

 

𝑅𝑄𝑇,ℎ =
2

3
√ℎ − 1∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)

4
ℎ−2

𝑖=0

, 

 

 

𝑛 > ℎ > 𝑙,
𝑛

ℎ
→ ∞,

ℎ

𝑙
→ ∞ 𝑎𝑠 𝑛, ℎ, 𝑙 → ∞. 

 

 

The very low frequency that is included in the test statistic 𝑉𝑇,𝑛,ℎ,𝑙 represents a 

frequency at which the consensus in the literature makes it possible to ignore MMN. 

In this context, Awartani et al. [16] suggest that l might be chosen at 20 minutes 

sampling interval under CTS by referring to sparse sampling literature and the 5-

minutes threshold promoted by Andersen et al. [11].  

 

 

3.4.1. Deriving a statistic to test the constant variance of MMN increments under 

CTS 

 

 

Similar to the test statistic 𝑍𝑇,𝑛,ℎ, the test statistic 𝑉𝑇,𝑛,ℎ,𝑙 has a standard normal 

distribution asymptotically and its asymptotic distribution is built on three main pillars: 

 

1) Awartani et al. [16] demonstrate that under the null hypothesis in (3.35) 
(𝑅𝑉𝑇,𝑛−𝑅𝑉𝑇,𝑙)

2𝑛−2
 and 

(𝑅𝑉𝑇,ℎ−𝑅𝑉𝑇,𝑙)

2ℎ−2
 converge to the same limit in probability, say the limit 

corresponds to ℊ𝑡, but the former term converges faster compared to the latter. Thus, 
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asymptotically, it is possible to ignore the term 
(𝑅𝑉𝑇,𝑛−𝑅𝑉𝑇,𝑙)

2𝑛−2
 and, in limit, as the number 

of observations at each frequency goes to infinity, Equation (3.37) boils down to 

 

 

√ℎ − 1
ℊ𝑡 −

(𝑅𝑉𝑇,ℎ − 𝑅𝑉𝑇,𝑙)
2ℎ − 2

√3(
𝑅𝑄𝑇,ℎ

2(ℎ − 1)2
− (

𝑅𝑉𝑇,ℎ
2(ℎ − 1)

)
2

)

. 

 

 

2) Awartani et al. [16] next illustrate that if a) the true price is generated as in 

Equation (3.1), b) ∫ 𝜎𝑠
4𝑇

0
𝑑𝑠 < ∞, c) MMN satisfies Assumption 3.1, then under the 

null hypothesis in (3.35), as 𝑛, ℎ, 𝑙 → ∞,
𝑛

ℎ
→ ∞,

ℎ

𝑙
→ ∞, 𝑉𝑇,𝑛,ℎ,𝑙

𝑑
→𝑁(0,1). They also 

show that when (a) and (b) hold and MMN increments have finite fourth moment, 

under the alternative hypothesis in (3.36), for any 𝜆 > 0 

 

 

lim
𝑛,ℎ,𝑙→∞

ℙ [
1

√ℎ − 1
|𝑉𝑇,𝑛,ℎ,𝑙| > 𝜆] = 1. 

 

 

In order to prove the asymptotic distribution of 𝑉𝑇,𝑛,ℎ,𝑙 under the null hypothesis in 

(3.35), Awartani et al. [16] employ a central limit theorem for the estimation error of 

RV with respect to IV under TTS, provided in Theorem A1 in [111]. The CLT 

proposed by Zhang et al. [111] is applicable to both CTS and TTS, making this CLT a 

breakthrough in IV estimation. 

 

Theorem 3.4. (Theorem A1 in [111]): Let’s assume that the true and observed prices 

are generated as in Equation (3.1) and (3.4), respectively. The observation times are 

represented by the grid 𝒢, tending to identity, where 𝒢 = {𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1}, 𝑡0 =
0, 𝑡𝑛−1 = 𝑇, |𝒢| = 𝑛 such that transactions take place irregularly in time. Then, under 

Assumptions 3.1 and 3.2, as the number of observations in the grid 𝒢 diverges to 

infinity, conditional on the true price process 

 

 

√𝑛 − 1(𝔼[𝜖2]̂ − 𝔼[𝜖2])
𝑑
→𝑁(0, 𝔼[𝜖4]), 

 

 
1

√𝑛 − 1
([𝑌, 𝑌]𝑇

𝒢
− [𝑋, 𝑋]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2])

𝑑
→𝑁(0,4𝔼[𝜖4]). 

 

 

Explanation of the proof of this theorem is provided here and proof in full version is 

given in Appendix B.  
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In summary, the proof is made in two steps: first it is shown that [𝑋, 𝜖]𝑇
𝒢
 and [𝑋, 𝑋]𝑇

𝒢
 

are both stochastically bounded (Lemma A.2 in [111]) so that a restatement of 

Equation (3.6) leads to 

 

 

[𝑌, 𝑌]𝑇
𝒢
= [𝑋, 𝑋]𝑇

𝒢
+ 2[𝑋, 𝜖]𝑇

𝒢
+ [𝜖, 𝜖]𝑇

𝒢
 

= 𝑂𝑝(1) + [𝜖, 𝜖]𝑇
𝒢
. 

 

 

Additionally, we know from Section 3.2 and Equation (3.9) that the asymptotic bias 

conditional on the true price is 2(𝑛 − 1)𝔼[𝜖2]. Hence, the expected estimation error 

conditional on the true price, 𝔼[[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
|𝑋] = 2𝔼[[𝑋, 𝜀]𝑇

𝒢
|𝑋] + 𝔼[[𝜀, 𝜀]𝑇

𝒢
|𝑋] 

is driven by 𝔼[[𝜀, 𝜀]𝑇
𝒢
|𝑋] since the expected value of a figure that is stochastically 

bounded cannot diverge while [𝜀, 𝜀]𝑇
𝒢
 inflates very erratically as the number of 

observations goes to infinity. 

 

Therefore, the second step includes investigating the convergence and distribution of 
1

√𝑛−1
([𝜖, 𝜖]𝑇

𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
|𝑋]). By showing that 

1

√𝑛−1
([𝜖, 𝜖]𝑇

𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
|𝑋]) can be 

written as the sum of two independent and asymptotically mixed normal terms and a 

term that converges to 0 in probability, the proof is complete. However, we differ from 

Zhang et al. [111] in this step such that while they use CLT for martingale differences 

given in Theorem 3.2 and Condition 3.1 in Chapter 3, p.58 of [57], we employ Law of 

Large Numbers (LLN) and CLT for triangular arrays laid out in Theorem 27.2 in 

Chapter 5, Section 27, p. 352 of [34]. This Theorem 2.27 in [34] is also known as the 

Lindeberg Theorem and states that if for each 𝑛 and 𝑘, the sequence 𝓍1,𝑛, ⋯ , 𝓍𝑘,𝑛 

represents independently distributed random variables with 0 means and finite 

variances, then  

 

 

∑ 𝓍𝑖,𝑛
𝑘
𝑖=1

√∑ Var[𝓍𝑖,𝑛]
𝑘
𝑖=1

𝑑
→𝑁(0,1), 

 

 

provided that Lindeberg’s condition is satisfied, i.e., for each sequence 𝓍1,𝑛,⋯ , 𝓍𝑘,𝑛 

for any 𝛿 > 0, 

 

 

1

∑ Var[𝓍𝑖,𝑛]
𝑘
𝑖=1

∑𝔼[𝓍𝑖,𝑛
2 𝕀

{|𝓍𝑖,𝑛|≥𝛿√∑ Var[𝓍𝑖,𝑛]
𝑘
𝑖=1 }

]

𝑘

𝑖=1

, 

 

 

converge to 0 as 𝑛 → ∞.  
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Concurrently, Theorem 3.2 and Condition 3.1 in Chapter 3, p.58 of [57] assert that if 

for each 𝑛 and 𝑘, the sequence 𝑆1,𝑛,⋯ , 𝑆𝑘,𝑛 represents a 0 mean, square integrable 

martingale array with respect to filtration ℱ𝑘,𝑛 with differences 𝓍1,𝑛, ⋯ , 𝓍𝑘,𝑛 such that 

for 𝔶 < ∞ a.s. and 𝛿 > 0 

 

 

∑𝓍𝑖,𝑛
2

𝑘

𝑖=1

ℙ
→ 𝔶, 

 

 

ℱ𝑘,𝑛 ⊆ ℱ𝑘,𝑛+1, 
 

 

∑𝔼[𝓍𝑘,𝑛
2 𝕀{|𝓍𝑖,𝑛|≥𝛿}| ℱ𝑘−1,𝑛]

𝑘

𝑖=1

→ 0, 

 

 

then  

 

 

∑𝓍𝑖,𝑛

𝑘

𝑖=1

ℒ
→ 𝑍, 

 

 

where random variable 𝑍 has characteristic function 𝔼 [exp (−
1

2
𝔶𝑡2)]. 

 

3) Zhang et al. [111] state but do not prove that  

 

 

𝔼[𝜖4]̂ ∶=
1

2(𝑛 − 1)
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

𝒢
− 3(𝔼[𝜖2]̂)

2
, 

 

 

is a consistent estimator of 𝔼[𝜖4] where  

 

 

𝔼[𝜖2]̂ ∶=
1

2(𝑛 − 1)
[𝑌, 𝑌]𝑇

𝒢
. 

 

 

The proof of this postulation is provided in Appendix C. 

 

As the third pillar, Awartani et al. [16] then exploit the estimator with respect to 𝔼[𝜖4] 
suggested by Zhang et al. [111] and propose that  
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√ℎ − 1
ℊ𝑡 −

(𝑅𝑉𝑇,ℎ − 𝑅𝑉𝑇,𝑙)
2ℎ − 2

√3(
𝑅𝑄𝑇,ℎ

2(ℎ − 1)2
− (

𝑅𝑉𝑇,ℎ
2(ℎ − 1)

)
2

)

𝑑
→𝑁(0,1). 

 

 

Accordingly, Awartani et al. [16] comment that if we reject the null hypothesis, we 

can conclude that the MMN increments do not have constant variance independent of 

grids (sampling frequencies) so that it is possible to reject at the same time that MMN 

has an i.i.d structure with constant variance independent of time. 

 

 

3.4.2. Deriving a statistic to test the constant variance of MMN increments under 

TTS 

 

 

We suggest that the same statistic 𝑉𝑇,𝑛,ℎ,𝑙 can be employed to examine the constant 

variance of the MMN increment under TTS since three pillars which Awartani et al. 

[16] built their test statistic on are developed under TTS in the first place. In detail, 

Proposition 1 in [111] suggests that under similar but slightly different conditions of 

Theorem 3.3 (true price and observed prices satisfy Equations (3.1) and (3.4), 

respectively, |𝜇𝑡| and 𝜎𝑡 are bounded above by a constant, Assumptions 3.1, 3.2, 3.4-

3.6, 3.8-3.10 hold but the law of MMN is allowed to depend on the number of 

observations) where grid 𝒢 represents observation/transaction times that are scattered 

irregularly in time, |𝒢| = 𝑛, 𝒢 tends to identity, and 𝒰𝑡𝑜𝑡𝑎𝑙 is a quantity that is 

asymptotically standard normal, conditional on true price 

 

 

[𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇

ℒ
→2(𝑛 − 1)𝔼[𝜖2]

+ (4(𝑛 − 1)𝔼[𝜖4] + 8[𝑋, 𝑋]𝑇
𝒢
𝔼[𝜖2] − 2var[𝜖2]

+
2𝑇

𝑛 − 1
∫ 𝜎𝑠

4
𝑇

0

𝑑𝒟𝑠)𝒰𝑡𝑜𝑡𝑎𝑙 + 𝑂𝑝 ((𝑛 − 1)
−
1
4(𝔼[𝜖2])−

1
2)

+ 𝑜𝑝 ((𝑛 − 1)
−
1
2). 

(3.38) 

 

 

Meanwhile, Hansen and Lunde [61] advocate that again under similar but slightly 

different conditions of Theorem 3.3 (true price and observed prices satisfy Equations 

(3.1) and (3.4), respectively, 𝜎𝑡 is a random function that is independent of Brownian 

motion 𝐵𝑡, |𝜎𝑡
2 − 𝜎𝑡+𝜃

2 | ≤ 𝜃𝜀 for some 𝜀 and all 𝑡 and 𝜃 with probability one, 

Assumption 3.3 holds, 𝜖𝑡𝑖 ⊥ 𝜖𝑡𝑗 , 𝑡𝑖 ≠ 𝑡𝑗, 𝔼[𝜖𝑡] = 0, 𝔼[|𝜖𝑡|
2] < ∞, and 𝔼[|𝜖𝑡|

4] < ∞, 

for all 𝑡) where grid 𝒢 represents observation times that are scattered irregularly in 

time, |𝒢| = 𝑛, 𝒢 tends to identity and 𝒰𝑡𝑜𝑡𝑎𝑙 is a quantity that is asymptotically 

standard normal 
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[𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇

𝑑
→ 2(𝑛 − 1)𝔼[𝜖2]

+ (4(𝑛 − 1)𝔼[𝜖4] + 8𝔼[𝜖2]∑𝜎𝑡𝑖
2

𝑛−1

𝑖=0

− 2var[𝜖2]

+ 2(𝔼[𝜖2])2 + 2∑𝜎𝑡𝑖
4

𝑛−1

𝑖=0

)𝒰𝑡𝑜𝑡𝑎𝑙. 

(3.39) 

 

 

Results in [61] and [111] differ depending on the assumptions regarding  

 

 the form of the true price (whether or not the true price has a bounded drift, or 

whether the instantaneous return volatility 𝜎𝑡 is bounded above or Lipschitz 

almost surely),  

 

 the MMN (whether it is identically distributed or not). 

 

However, we would like to underline the fact that both of the convergences in (3.38) 

and (3.39) tell us that as the number of observations tend to infinity, conditional on 

true price 

 

 

([𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇 − 2(𝑛 − 1)𝔼[𝜖

2])

√4(𝑛 − 1)𝔼[𝜖4]

𝑑
→𝑁(0,1), 

 

 

since the scaled asymptotic variance of the estimation error, 
([𝑌,𝑌]𝑇

𝒢
−𝐼𝑉𝑇)

√(𝑛−1)
 , is completely 

determined by the estimation error due to noise as the discretization error divided by 

the number of sampling intervals diminishes to 0. 

 

In this context, we, by following methods offered in proofs of Lemma 1 and 

Proposition 1 in [111] as well as Lemma 2 in [61], also prove in Appendix D that the 

estimation error of the RV with respect to the IV is asymptotically mixed normal. 

 

Theorem 3.5. Once we assume that we observe the contaminated prices as in Equation 

(3.4) on a grid = {𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1}, 𝑡0 = 0, 𝑡𝑛−1 = 𝑇, |𝒢| = 𝑛, 𝒢 tends to identity, 

conditions of Theorem 3.2 are satisfied, the Assumptions 3.1, 3.2, 3.3, 3.5-3.11 hold 

and AQVT is absolutely continuous, 

 

 

[𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇

𝑑
→ 2(𝑛 − 1)𝔼[𝜖2]

+ (4(𝑛 − 2)𝔼[𝜖4] + 8𝔼[𝜖2] ([𝑋, 𝑋]𝑇
𝒢
−𝑂𝑝(1))

+
2𝑇

𝑛 − 1
∫ 𝜎𝑠

4𝑑𝒟𝑠

𝑇

0

)𝒰𝑡𝑜𝑡𝑎𝑙, 

(3.40) 
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where the convergence in law is conditional on the true price and 𝒰𝑡𝑜𝑡𝑎𝑙 is a quantity 

that is asymptotically standard normal.  

 

Hence, 

 

 

[𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇 − 2(𝑛 − 1)𝔼[𝜖

2]

𝑑
→𝑁(0,4(𝑛 − 2)𝔼[𝜖4] + 8𝔼[𝜖2] ([𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1))

+
2𝑇

𝑛 − 1
∫ 𝜎𝑠

4𝑑𝒟𝑠

𝑇

0

) 

⇒
[𝑌, 𝑌]𝑇

𝒢
− 𝐼𝑉𝑇 − 2(𝑛 − 1)𝔼[𝜖

2]

2√𝑛 − 1

𝑑
→𝑁(0, 𝔼[𝜖4]), 

 

 

where 
𝐼𝑉𝑇

2√(𝑛−1)
= 𝑜𝑝(1), 

8𝔼[𝜖2]([𝑋,𝑋]𝑇
𝒢
−𝑂𝑝(1))

4(𝑛−1)
= 𝑜𝑝(1) and 

2𝑇

4(𝑛−1)2
∫ 𝜎𝑠

4𝑑𝒟𝑠
𝑇

0
= 𝑜𝑝(1) as 

𝑛 → ∞. 

 

Therefore, ℊ𝑡 equaling to 𝔼[𝜖2], we have 

 

 

[𝑌, 𝑌]𝑇
𝒢

2(𝑛 − 1)
−ℊ𝑡

𝑑
→𝑁(0,

𝔼[𝜖4]

(𝑛 − 1)
) 

⇒√𝑛 − 1(
[𝑌, 𝑌]𝑇

𝒢

2(𝑛 − 1)
−ℊ𝑡)

𝑑
→𝑁(0, 𝔼[𝜖4]). (3.41) 

 

 

As stated before, inspired by Zhang et al. [111], we have proved in Appendix C that  

 

 

𝔼[𝜖4]̂ ∶=
1

2(𝑛 − 1)
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

𝒢
− 3 (

1

2(𝑛 − 1)
[𝑌, 𝑌]𝑇

𝒢
)
2

, 

 

 

is a consistent estimator of 𝔼[𝜖4]. Therefore, we can estimate the asymptotic 

distribution in (3.41) as  

 

 

√𝑛 − 1(
[𝑌, 𝑌]𝑇

𝒢

2(𝑛 − 1)
−ℊ𝑡)

1
2(𝑛 − 1)

[𝑌, 𝑌, 𝑌, 𝑌]𝑇
𝒢
− 3(

1
2(𝑛 − 1)

[𝑌, 𝑌]𝑇
𝒢
)
2

𝑑
→𝑁(0,1). 

 

 



 
64 

In order to benefit from the above convergence in law, we will manipulate the test 

statistic 𝑉𝑇,𝑛,ℎ,𝑙 as defined in Equation (3.37) such that for the observations of 

contaminated prices on three different grids, 𝒢,ℋ and 𝒲, where all the grids tend to 

identity, |𝒢| = 𝑛 and |ℋ| = ℎ and |𝒲| = 𝑙, 𝑛 > ℎ > 𝑙,
𝑛

ℎ
→ ∞,

ℎ

𝑙
→ ∞  as 𝑛, ℎ, 𝑙 → ∞ 

if conditions of Theorem 3.2 are satisfied, the Assumptions 3.1, 3.2, 3.3, 3.5-3.11 hold 

and AQVT is absolutely continuous, then 

 

 

𝑉𝑇,𝑛,ℎ,𝑙 = √ℎ − 1

([𝑌, 𝑌]𝑇
𝒢
− [𝑌, 𝑌]𝑇

𝒲)

2(𝑛 − 1)
−
([𝑌, 𝑌]𝑇

ℋ − [𝑌, 𝑌]𝑇
𝒲)

2(ℎ − 1)

√
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

ℋ

2(ℎ − 1)
− 3(

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
)

2
 

             = √ℎ − 1

[𝑌, 𝑌]𝑇
𝒢

2(𝑛 − 1)
− 𝑜𝑝(1) −

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
+ 𝑜𝑝(1)

√
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

ℋ

2(ℎ − 1)
− 3 (

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
)

2
. 

(3.42) 

 

 

Adding and subtracting ℊ𝑡 to and from numerator of Equation (3.42) produces 

 

 

𝑉𝑇,𝑛,ℎ,𝑙 = √ℎ − 1

(
[𝑌, 𝑌]𝑇

𝒢

2(𝑛 − 1)
− ℊ𝑡) − (

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
− ℊ𝑡) + 𝑜𝑝(1)

√
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

ℋ

2(ℎ − 1)
− 3(

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
)

2
. (3.43) 

 

 

Since convergence in (3.41) as √𝑛 − 1(
[𝑌,𝑌]𝑇

𝒢

2(𝑛−1)
− ℊ𝑡)

𝑑
→𝑁(0, 𝔼[𝜖4]) entails that  

√𝑛 − 1(
[𝑌,𝑌]𝑇

𝒢

2(𝑛−1)
− ℊ𝑡) is stochastically bounded, Equation (3.43) develops into 

 

 

𝑉𝑇,𝑛,ℎ,𝑙 = √ℎ − 1
−(

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
− ℊ𝑡)

√
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

ℋ

2(ℎ − 1)
− 3 (

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
)

2
+ 𝑜𝑝(1), 

 

 

which was proved to converge to standard normal distribution asymptotically.  
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Under the alternative hypothesis in (3.36), when we observe the contaminated prices 

as in Equation (3.4) on grids 𝒢 = {𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1}, |𝒢| = 𝑛, ℋ = {𝑡0, 𝑡1, ⋯ , 𝑡ℎ−1},
|ℋ| = ℎ,𝒲 = {𝑡0, 𝑡1, ⋯ , 𝑡𝑙−1},  |𝒲| = 𝑙, 𝑡0 = 0, 𝑡𝑛−1 = 𝑡ℎ−1 = 𝑡𝑙−1 = 𝑇, all grids 

tending to identity, conditions of Theorem 3.2 are satisfied, the Assumptions 3.2, 3.3, 

3.5-3.11 hold and AQVT is absolutely continuous, then if the MMN is independently 

distributed with finite fourth moment almost surely for all 𝑡 ∈ [0, 𝑇], then following 

the discussions by Awartani et al. [16], we claim that the absolute value of the test 

statistic, 𝑉𝑇,𝑛,ℎ,𝑙 diverges. The reasoning is explained below: 

 

Under the alternative hypothesis, we can organize the test statistic 𝑉𝑇,𝑛,ℎ,𝑙 in (3.43) as  

 

 

√ℎ − 1(
[𝑌, 𝑌]𝑇

𝒢

2(𝑛 − 1)
− ℊ𝑡,𝒢 −

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
+ ℊ𝑡,ℋ)

√
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

ℋ

2(ℎ − 1)
− 3 (

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
)

2

+
√ℎ − 1(ℊ𝑡,𝒢 − ℊ𝑡,ℋ)

√
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

ℋ

2(ℎ − 1)
− 3(

[𝑌, 𝑌]𝑇
ℋ

2(ℎ − 1)
)

2
, 

(3.44) 

 

 

where the first term on the RHS of (3.44) is asymptotically normal because although 

we broke the i.i.d structure of the MMN by assuming that the MMN increments have 

different variances on different grids, since we accept that all other conditions of 

Theorem 3.5 are satisfied and on a single grid the MMN increments have constant 

variance, the first term on the RHS of (3.44) still has a mixed normal limiting 

distribution. Furthermore, since we assumed that the MMN has finite fourth moment, 

the denominator of (3.44), being a consistent estimate of the fourth moment of the 

MMN, is finite, therefore as ℎ → ∞, the second term on the RHS of (3.44) diverges. 

 

This completes the discussion that 𝑉𝑇,𝑛,ℎ,𝑙 can be used under TTS to test whether MMN 

increments have constant variance independent of sampling frequency (grid) and, 

therefore, is also orthogonal to time. 
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CHAPTER 4
 

 

 

EMPIRICAL EVIDENCE FROM THE BORSA ISTANBUL 

NATIONAL STOCK MARKET 
 

 

 

 

As discussed in Chapter 2, in organized stock exchanges, the observed stock prices are 

subject to distortions due to reasons such as trading rules and regulations, frictions in 

the markets and informational asymmetries. The aggregate effect of such distortions 

in observed prices is called the MMN and may cause the observed prices to deviate 

from the true prices of assets. In Chapter 3, it is shown that if the MMN is additive, 

then as the sampling frequency for observed prices increases, the bias of the RV 

explodes while estimating the IV of the true prices. In theory, sampling the observed 

prices as many times as possible should yield an IV estimate with a smaller total 

estimation error since the discretization error is expected to diminish with more 

frequent sampling. However, in the presence of the MMN, the quadratic variation of 

the observed prices calculated over the highest frequency possible does not simply 

converge to the IV of the true prices. The existence of such a bias needs to be addressed 

in the empirical estimation of the IV. There are several methods developed in the 

literature for mitigating the effect of the MMN on the IV estimate and the success of 

such methods should be evaluated based on empirical evidence obtained from both 

developed and developing markets.  

 

We believe that such empirical evidence on the MMN structure should be collected by 

taking into account the dimensions/aspects of volatility estimation using high 

frequency data. Such an effort should address issues like the characteristics of UHFD, 

contamination of the observed prices with the MMN, specification options regarding 

an asset’s true and unobservable price, the need make some assumptions in order to 

handle the unobservable MMN, the possibility of calculating returns using different 

sampling schemes, and, finally, the existence of non-trading hours. The existence of 

such issues may threaten the validity of methods developed to handle the MMN in the 

estimation of the IV. Typically, studies in the related literature take into account one 

or a few of these issues while estimating the IV without addressing all of the potential 

issues simultaneously. In addition, most of the studies use UHFD obtained from 

developed economies such as the US or Japan. Accordingly, one of the main objectives 

of the analyses conducted in this Chapter is to take into account all relevant MMN 

issues simultaneously while using UHFD from an emerging market. 
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The liquidity of traded assets is an important issue that is discussed in the finance 

literature and there are many liquidity definitions and measures that find support in 

different studies. For instance, a widely accepted definition by Black [35] describes a 

liquid asset as an asset which can be sold in a short period of time for a price not too 

different from the price at which the seller would be able to sell if s/he opted to wait 

longer. Interestingly, with respect to the high frequency finance literature, it is seen 

dealing with an asset's liquidity is somewhat problematic in the sense that many of the 

liquidity indicators/measures fall short when it comes to addressing the existence or 

the statistical properties of MMN embedded in the observed stock prices, especially if 

such measures are calculated under different sampling schemes such as CTS. This 

postulation is accentuated especially when there is a relatively long time lag between 

two consecutive transactions. As explained in Chapter 2, Section 2.1, in such a case of 

infrequent trading, the previous tick method is typically used to construct artificial 

return series, but this, in turn, means that  returns are calculated by using pieces of 

information that belong to distant points in time leading to inflated serial correlations 

due to long sequences of zero returns [37]. Hence, the previous tick method may work 

best in IV estimation for very actively traded stocks since we would not want to spur 

such correlation structures by artificially introducing additional autocorrelation (serial 

correlation) due to the interpolation method selected. These arguments pave the way 

for the introduction of a new method to classify stocks with respect to their liquidity 

(active trading) in a high frequency setting.  

 

In this Chapter, we first suggest a new liquidity measure for UHFD. Next, we apply a 

grid of data cleaning methods and different sampling schemes, to a sample of 6 stocks 

that are listed on Borsa Istanbul's National Equity Market. By applying this 

methodology, we are able to observe the common characteristics of the UHFD at hand 

and to understand the dynamics of the return and RV series obtained from these data. 

We also generate volatility signature plots and run formal tests of the existence of 

MMN and the constant variance of MMN increments, as suggested by Awartani et al. 

[16]. By moving across the grid, we also note any significant changes that result from 

the liquidity levels of the sample stocks.  

 

In accordance with proofs and discussions in Chapter 3, all analyses in this Chapter 

are carried out under the following assumptions: 

 

 The observed price 𝑌𝑡 is contaminated with an additive market microstructure 

noise. i.e., 

 

 

𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡, 0 ≤ 𝑡 ≤ 𝑇  

 

 

where T shows a finite horizon, 𝑋𝑡 denotes the logarithm of the true/efficient 

price of a security at time 𝑡 and 𝜀𝑡 represents the logarithm of the combined 

effect of all microstructure noise sources at time 𝑡.  
 

 Conditions and assumptions of Theorem 3.2 hold, 
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 The true price of the security is observed with no drift and it is a local martingale 

such that if St denotes the true price process of a security, the log price of this 

security is represented by the process 𝑋𝑡 and it satisfies the following stochastic 

differential equation over a finite time horizon 𝑡 ∈ [0, 𝑇]: 
 

 

𝑑𝑋𝑡 = 𝜎𝑡𝑑𝐵𝑡 
 

 

The log price 𝑋𝑡 is assumed to belong to Brownian semimartingale family so 

that 𝑋0 is ℱ0-measurable, 𝑋𝑡 has continuous sample paths with no drift, the 

continuous stochastic process 𝜎𝑡 that derives the volatility of log return of the 

security is locally bounded and continuous in mean square, 𝐵𝑡 denotes standard 

Wiener process, and finally 𝜎𝑡 is orthogonal to 𝐵𝑡.  
 

 The observation times are independent of the true price process 𝑋𝑡, and the 

maximum distance between two consecutive observation times converges to 0 

in probability at an order of 

 

 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 − 1)−
1
2  

 

 

as the number of observations tend to infinity. 

 

 For any two consecutive observation times 𝑡𝑖+1 and 𝑡𝑖, ∑ (𝑡𝑖+1 − 𝑡𝑖)
3

𝑖

= 𝑂𝑝((𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 − 1)
−2) . 

 

 The Asymptotic Quadratic Variation of Time (AQVT) is calculated as 

 

 

𝒟𝑡 ∶= lim
ℎ→∞

ℎ − 1

𝑇
∑ (𝑡𝑖+1 − 𝑡𝑖)

2

𝑡𝑖+1≤𝑡

 

 

 

𝒟𝑡  exists and is absolutely continuous. 

 

 

4.1. Data 
 

 

The original data set consists of tick by tick transaction data for all BIST 30 Index 

constituent stocks between January 1, 2010 and December 31, 2014. The data are 

obtained directly from Borsa Istanbul. When the five year period between 2010 and 

2014 is analyzed, it is seen that there are some important political/economic events 

that may have an influence on the price formation process in Borsa Istanbul:  
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 12/09/2010: Constitutional referendum, 

 

 12/06/2011: General elections, 

 

 2012: Relatively stable period, closing sessions begin taking place on 

02.03.2012, therefore our sample period cannot start before 02.03.2012. We 

choose 01.07.2012-31.12.2012 as the sample period. 

 

 2010-2012: Arabian Spring and its effects on Turkey (Dispute between Turkish 

and Syrian Prime Ministers) 

 

 2013:Gezi Park Events (June 2013) and corruption allegations about high level 

government officials and 4 ministers (17-25 December 2013)  

 

 2014: Local elections on 30/03/2014 and Presidency elections on 10/08/2014  

 

In order to avoid the possibility of these events confounding the price formation 

process, we have chosen the six-month horizon between July 1 and December 31, 2012 

as the sample period. There are a total of 124 trading days in our sample period. The 

distribution of these days over the sample months is as follows: 

 

 
Table 4.1: The Number of Trading Days in the Sample Period by Month  

 

July 22 

August 20 

September 20 

October 19 

November 22 

December 21 

 

 

In addition, due to the computational burden of our methodology, 6 of the BIST-30 

Index constituents are included in the final sample. These stocks are AKBNK (Akbank 

T.A.Ş. – commercial bank), MIGRS (Migros Ticaret A.Ş. - chain of supermarkets), 

GARAN (Türkiye Garanti Bankası A.Ş. – commercial bank), ISCTR (Türkiye İş 

Bankası A.Ş. – commercial bank), NETAS (Netaş Telekomünikasyon A.Ş. - 

telecommunications) and ARCLK (Arçelik A.Ş. - home appliances). The selection of 

these particular stocks is random to some extent but the inclusion of financial 

institutions, manufacturing and telecommunications companies as well as a fast 

moving consumer products seller is on purpose in order to introduce an acceptable 

level of diversification to our data set. 

 

Table 4.2 reports descriptive statistics regarding each stock in our sample set. All 

descriptive statistics in the table reflect transactions data prior to any data handling 

except for summarizing the opening and closing sessions. The transaction data for the 

morning and afternoon opening sessions and the afternoon closing session are included 

in the set as 3 singular transaction entries at 09:49:59, 14:19:59, and 17:30:01, 
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respectively. Log returns and durations are calculated between consecutive 

transactions starting with the second transaction in each session. Minimum - maximum 

returns, average – maximum durations and respective standard deviations are 

computed over the full sample period. None of the log return series in Table 4.2 exhibit 

normality as revealed by the corresponding Jarque-Bera statistics and skewness-

kurtosis figures.
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4.2. A New Measure of Liquidity in a High Frequency Setting 
 

 

Liquidity in economics and finance literature has several definitions depending on the 

context and purpose. For instance, macroeconomic liquidity refers to the monetary 

base controlled by a central bank through its monetary tools such as open market 

operations or reserve requirements. Alternatively, an asset’s liquidity refers to the ease 

and speed of selling the asset without triggering drastic changes in its price, and, 

accounting liquidity refers to the ability of a company to fulfill its financial 

commitments with the liquid assets on hand. Among the different definitions the most 

relevant to our attempt for uncovering the MMN structure using individual stock data 

is the concept of “an asset’s liquidity”. Although there is no single definition of an 

asset’s liquidity, a widely accepted definition by Black [35] describes a liquid asset as 

an asset which can be sold in a short period of time for a price not too different from 

the price at which seller would be able to sell if s/he opted to wait longer. Sarr and 

Lybek [100] add on to this definition and argue that liquid financial assets are 

identified by low transaction costs, easy trading, prompt settlement, and, a limited 

effect of large trades on the asset’s price. Sarr and Lybek [100] also draw attention to 

the possible changes in the perception of investors with respect to liquidity due to time 

and economic developments:  

 

 

“…during periods of stability, the perception of an asset’s liquidity may 

primarily reflect transaction costs. During period of stress and significantly 

changing fundamentals, prompt price discovery and adjustment to a new 

equilibrium becomes much more important.[p.5]” 

 

 

Sarr and Lybek [100] distinguish between an asset’s liquidity and the liquidity of a 

financial market and state that liquid markets possess five characteristics. These 

characteristics are tightness, referring to low transaction costs, immediacy, 

representing the speed at which orders can be executed, depth, showing the existence 

of abundant orders at below or above the current transaction price, breadth, pointing 

to the volume and number of orders at each price tick (lower and higher compared to 

the current price) so that large orders in either direction have a minimal impact on 

price, and, finally, resiliency, referring to new orders arriving immediately to correct 

order imbalances [100]. 

 

In line with the aforementioned diverse understanding of what constitutes an asset’s 

liquidity, a closer look at the literature on the liquidity of financial assets reveals that 

several measures/indicators are proposed to gauge the liquidity of stocks. For instance, 

transaction cost measures focus on costs of trading assets and frictions in secondary 

markets, volume-based measures assess breadth and depth by looking at the volume 

of transactions while controlling for price volatility, equilibrium-price based measures 

identify orderly movements towards equilibrium prices and are used as indicators of 

resiliency, and market-impact measures try to distinguish between price changes 

stemming from liquidity such that they are used to comment on resiliency and the 

speed of price discovery [100].  
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Unfortunately, none of these definitions/indicators/measures are usable when 

analyzing the existence of MMN, especially when such analyses are carried out under 

different sampling schemes. Recall from the discussions in Chapter 2, Sections 2.1 and 

2.5 that due to trading data being observed at discrete and irregularly spaced intervals, 

it is possible to calculate returns from UHFD under different sampling schemes such 

as CTS (sampling prices every 10 minutes or 5 seconds or 2 hours etc.), TkTS 

(sampling prices whenever there is a price change), TTS (sampling prices whenever 

there is a transaction) and BTS (sampling prices so that the integrated volatility (IV) 

for all sampling periods throughout a day is constant). The most popular one in 

literature amongst these sampling schemes is the CTS. However, as explained in 

Section 2.1, the asynchronous nature of trading in stock exchanges makes it necessary 

to artificially construct a time series where all time stamps of interest (for instance 

every five seconds) become attached to a transaction price. The liquidity measures 

proposed in the literature are not designed to accommodate such artificially 

constructed time series and would result in misleading liquidity assessments if they are 

used in the high frequency data setting. 

 

When the methods for building the artificial time series under CTS are examined, it is 

seen that the previous tick method may be more appropriate compared to other linear 

or nonlinear interpolation methods since methods that employ information which is 

not available at a particular time may induce spurious correlations [49] and linear 

interpolation will distort quadratic variation (IV) estimations [61]. On this issue, let’s 

demonstrate how the previous tick method is implemented. Suppose that a small 

portion of transaction data for Stock X are given in Table 4.3. 

 

After the application of previous tick method, the artificial calendar sampled time 

series should look like information reported in Table 4.4 (no quantity or short selling 

information is provided because the time series is artificially constructed only for 

prices). 
 

From Table 4.3 and Table 4.4, it is evident that when there is a long time lag between 

two consecutive transactions, the previous tick method will use a piece of information 

that belonged to some considerably older time and this may lead to inflated serial 

correlation due to long sequences of zero returns [37]. Taking into consideration all 

pros and cons of several interpolation methods, we concluded in Section 2.1 that the 

previous tick method works best in IV estimation for very liquid and actively traded 

stocks listed on BIST, as we would not want to spur such correlation structures by 

artificially introducing additional autocorrelation (serial correlation) due to the 

interpolation method selected.  
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Table 4.3: A hypothetical portion of transaction information on a stock  

 

Date 

(Day/Month/Year) 

Time Ticker Price (TL) Quantity 

02-01-2012 09:50:00 X 8.88 5 

02-01-2012 09:50:03 X 8.86 10 

02-01-2012 09:50:06 X 8.88 300 

02-01-2012 09:50:08 X 8.90 24567 

02-01-2012 09:50:11 X 8.92 562 

 

 
Table 4.4: Previous tick method applied to information on Table 4.3 

 

Date 

(Day/Month/Year) 

Time Ticker Price (TL) 

02-01-2012 09:50:00 X 8.88 

02-01-2012 09:50:01 X 8.88 

02-01-2012 09:50:02 X 8.88 

02-01-2012 09:50:03 X 8.86 

02-01-2012 09:50:04 X 8.86 

02-01-2012 09:50:05 X 8.86 

02-01-2012 09:50:06 X 8.88 

02-01-2012 09:50:07 X 8.88 

02-01-2012 09:50:08 X 8.90 

02-01-2012 09:50:09 X 8.90 

02-01-2012 09:50:10 X 8.90 

02-01-2012 09:50:11 X 8.92 

 

 

This is the point where the frequency of trading in a stock becomes crucial in the MMN 

analysis under different sampling schemes. The results of visual and/or statistical 

analyses regarding the existence and statistical features of the MMN should be 

interpreted keeping in mind that results may be distorted by the artificial correlation 

induced by the previous tick method. Therefore, any study that attempts to analyze the 

empirical features of the MMN via using UHFD should take into account the liquidity 

(how transactions are distributed in time) of the assets under analysis. Unfortunately, 

not only the aforementioned liquidity measures do not serve properly to distinguish 

transaction frequencies per each trading day but also the average number of 

transactions/quotations per session or trading day is insufficient to pinpoint the liquid 

versus illiquid stocks. We would like to explain this insufficiency as follows: Suppose 

that over a given trading session we have collected transaction data for Stocks A and 

B with the same number of transactions taking place in each stock. This would imply 

that the average number of transactions per session in each stock equals each other. 

However, if the percentage of simultaneous transactions in Stock A is greater than that 

of Stock B, then the time gap between transactions in Stock A will be longer compared 

to Stock B causing the researcher, working under CTS, to fill a greater number of blank 

time points in the data, and, therefore, increasing serial autocorrelation artificially.  

 

In this context, inspired by the approach adopted by Aït-Sahalia et al. [3], who employ 

the average duration between two consecutive transactions as an indicator of liquidity, 

we introduce a new approach to sort stocks with respect to liquidity to be used in 

UHFD and define the liquidity in a high frequency setting as the number of all time 

stamps (under calendar time) having at least one transaction entry. In other words, 
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during the sample period, if the number of sessions with no transactions during a given 

time period, such as 10 minutes, for a stock exceeds the same number for another stock, 

then the first stock is characterized as being less liquid, which means that this 

classification of stocks is specific to the sample set at hand. Based on this definition, 

we analyze the raw data on our sample stocks to find the number of continuous auction 

sessions for which the maximum duration between two consecutive transactions 

exceeds a set of arbitrarily selected 300 seconds, 600 seconds, 1200 seconds, 1800 

seconds and 3600 seconds (coded in MATLAB). The results are given in Tables 4.5 

and 4.6. The findings are in line with what average durations suggest and show that 

ISCTR, GARAN and NETAS stocks are more liquid compared to the others in the 

sample. We interpret the liquidity of AKBNK as moderate and classify the ARCLK 

and MIGRS stocks as illiquid. These classifications are reflected in the Table 4.5 and 

Table 4.6 with colors, where blue, red and yellow are used to highlight liquid, illiquid 

and in-between stocks, respectively. 
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4.3. Data Handling – A Necessary Step in Analyzing UHFD 
 

 

4.3.1. Data Handling in the Form of Cleaning and Aggregating  

 

 

As previously discussed in detail in Chapter 2, Section 2.1, UHFD may include 

erroneous entries distorting the validity of results coming from any type of analysis 

conducted with the data set. Moreover, due to recording algorithms of stock exchanges 

as well as the asynchronous nature of trading, many transactions are attached to a 

single time stamp. Correspondingly, before commencing with testing the existence of 

MMN and the validity of popular assumptions on the MMN, we apply data handling 

methods as combinations of cleaning and aggregation algorithms. In doing so, for each 

continuous auction session in the sample, the cleaning rules are applied separately. 

Therefore, an entry from one session is not compared with an entry from the preceding 

or following sessions. 

 

A comprehensive list of all of the cleaning and aggregation rules that are available in 

the literature and mentioned in Chapter 2, Section 2.1 are turned into algorithms that 

are applied to each stock in our sample before carrying out any return calculations 

under the calendar or transaction time sampling schemes. The summary of these data 

cleaning and aggregation algorithms in application order is given below: 

 

1) Delete entries with time stamps that lie outside of opening, closing and 

continuous auction sessions. 

 

2) Delete entries when price or volume is zero or negative. 

 

3) Delete entries when price is not a multiple of the respective price tick. 

 

4) Delete entries that satisfy one of the following criteria of being an outlier: 

 

4.i.) Delete entries if the immediate return (absolute or not – percentage 

return since last transaction) exceeds an arbitrarily selected threshold (rule 

proposed by Huang and Stoll [65] and Bessembinder [31] and improved by 

Chung et al. [39] and later adopted by Bandi et al. [21], Bandi et al. [22] and 

Pigorsch et al. [95]) 

 

4.i.a) Delete the entry if percentage return since last transaction 

exceeds 10% [65], [21] [22] [95]. 

 

4.i.b) Delete the entry if percentage return since last transaction 

exceeds 25% [31]. 

 

4.i.c) Delete the entry if absolute percentage return since last 

transaction exceeds 50% [39]. 
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4.ii) Delete entries for which the price deviates by more than a threshold 

from an average of daily or arbitrarily selected neighborhood prices. This 

approach was first introduced by Zhou [112] and later developed by Dacorogna 

et al. [45], Falkenberry [50], Brownlees and Gallo [37]8, Verousis and Gwilym 

[106] and Barndorff-Nielsen et al. [27] among others. 

 

4.ii.a) Delete the entry if the absolute difference between the current 

price and the 10% trimmed sample mean over a k transaction 

neighborhood exceeds or equals to 3 (k neighborhood) standard 

deviations over the same neighborhood plus a granularity parameter λ, 

which is used to introduce a lower positive bound on price variations 

accepted as admissible and is equal to a multiple of the relevant tick 

size for the stock price [37]. 

 

4.ii.b) Delete the entries for which the price deviates by more than 

10 mean absolute deviations from a rolling centered median of 50 

observations (25 preceding, 25 following) (proposed by Barndorff-

Nielsen et al. [27] and adopted by Koopman and Scharth [74] among 

others). 

 

4.ii.c) Delete the entries for which the price deviates by more than 

2.9652 median absolute deviations from a daily median (inspired by 

Verousis and Gwilym [106]). 

 

4.iii) Delete entries which are bouncebacks/reversals as defined by Aït-

Sahalia et al. [3] or Oomen [94] and Bessembinder et al. [32]. 

 

4.iii.a) Filter data for instantaneous price reversals in transaction 

time. For the kth transaction to be removed, (i) the absolute price change 

from the k-1th transaction to the kth transaction exceeds a threshold set 

arbitrarily, and, (ii) the price change from the kth transaction to the k+1th 

transaction is such that the absolute price reversal is included in the 

region of –(1-w) and –(1+w) times the price change from the k-1th 

transaction to the kth transaction [94]. 

 

4.iii.b) Delete a particular entry if the log return from one transaction 

to the next is both greater in magnitude than an arbitrary cutoff and 

followed immediately by a log return of the same magnitude but of the 

opposite sign, so that the price returns to its original level before that 

particular transaction [3]. 

 

4.iii.c) Eliminate “reversal” transactions, where a given price 

exceeds both the preceding and following prices by at least 15%, or is 

less than both prices by the same magnitude [32]. 

 

                                                           
8 This paper of Brownlees and Gallo is cited 136 times, making it quite popular in high frequency 

literature. 
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5) If there are multiple entries per second (trades that took place at different or same 

prices at the same time, i.e. there is more than one entry that have the same time stamp), 

then aggregate the price and calculate a single price for that time stamp: 

 

5.i) Determine unique prices and aggregate volume. Use the price that has 

the largest volume. 

 

5.ii) Determine unique prices and aggregate volume. Use the volume 

weighted average price. 

 

5.iii) Determine unique prices and aggregate volume. Use the logvolume 

weighted average price. 

 

5.iv) Determine unique prices and aggregate volume. Use the number of 

trades weighted average price. 

 

5.v) Use the median price. 

 

We implement steps 1, 2 and 3 for the detection of obvious errors, and then select one 

option under step 4 and one option under step 5 and go through each possible 

combination of the options. As a result, the number of cleaning and aggregation 

combinations is 45.   

 

The results from the application of the various options under step 4 are summarized in 

the Table 4.7. 
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By examination of Table 4.7, we deduce that only cleaning methods 4.ii.a and 4.ii.b 

shall be included in the analysis of testing the existence and statistical features of the 

MMN under different data handling and sampling schemes (recall overscrubbing and 

underscrubbing risks discussed in Section 2.1.) because: 

 

 10% price limit per session rule as applied by Borsa Istanbul’s for stocks quoted 

on National Market nullify the error detection by method 4.i.a and 4.i.b and 4.i.c.  

 

 Cleaning method 4.ii.c identifies many entries as errors because the 2.96 MAD 

(MAD over session) criterion might be too low (MADs are close to 0) and 

therefore, the errors caught by method 4.ii.c are most probably correct entries 

that artificially signified as errors. Due to this high probability of artificial 

success at catching errors, method 4.ii.c is not included in our analysis. 

 

 Cleaning methods 4.iii.a, 4.iii.b and c do not catch significant amount of errors, 

so application of these rules is practically same as not cleaning the data at all. 

 

 

4.3.2. Does Data Handling Alter UHFD’s Characteristics? 

 

 

Now that all of the obvious errors, outliers and simultaneous ticks are cleaned and/or 

aggregated, it is time to discuss what happens to the common characteristics of the 

UHFD after cleaning and aggregation procedures are applied as we want to make sure 

that the data handling procedures do not overscrub the UHFD and distort its original 

characteristics, such as discreteness, irregular temporal spacing, and diurnal patterns.  

 

i) Discreteness: Transaction price changes occurring as multiples of ticks causes 

price discreteness [20]. Organized exchanges introduce rules such as price limits in the 

form of price bands and minimum allowed price changes that are called ticks. Borsa 

Istanbul is no exception. Recall that for any session in National Equity Market of Borsa 

Istanbul, the price of a stock is allowed to oscillate between 90% and 110% of its base 

price where the base price is determined using information from previous session. In 

addition, the smallest price variation that may occur between consecutive trades is 0.01 

TL or 0.02 TL or 0.50 TL or 0.10 TL depending on the range of the base price. These 

trading rules result in prices to assume a small set of possible outcomes [49]. As Engle 

and Russell [49] underline, such discreteness will affect the characteristics of prices 

especially when they are small relative to the tick size. In this context, the discreteness 

of transaction prices holds under CTS and TTS for all data handling methods and for 

all stocks in our sample because as long as there are price ticks, especially when the 

ticks are large in size, discreteness is a natural consequence.  

 

ii) Irregular temporal spacing is defined as the arrival of transactions being random 

in calendar time. Comparing this characteristic under CTS and TTS is meaningless 

because the random arrival of transactions is relevant only for TTS. Additionally, this 

characteristic cannot change from one cleaning method to the other or amongst 

aggregation methods, since errors or transactions recorded with the exact same time 
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stamp are not the cause of irregular temporal spacing. Therefore, this characteristic 

holds for all data handling methods and for all stocks in our sample.  

 

iii) There can be diurnal patterns in the behavior of stocks due to particular market 

conditions such as openings, closings, trading halts, circuit breakers, etc. A few of the 

pioneering researchers who examined patterns of average intraday financial market 

returns and reported a U-shape pattern in return volatility over the trading day are 

Woodi McInish and Ord [107], Harris [62], Müller et al. [87] and Baillie and 

Bollerslev [18], Andersen and Bollerslev [7]. In more recent studies, similar strong 

periodic patterns in intraday financial data are observed in many dimensions such as 

trading frequency, trading volume or returns per some predetermined amount of time 

such as 15 minutes. A set of similar findings was reported for the Borsa İstanbul 

National Equity Market by Bildik [33].  

 

By examining 15-min, 5-min and 1-min. interval stock returns in the İstanbul Stock 

Exchange National Equity Market for the period from 1996 to 1999, Bildik [33] finds 

that stock returns follow a W-shaped pattern over the trading day, where such patterns 

are tied to the existence of lunch breaks and two continuous auction sessions per 

trading day. He adds that return volatility is higher at the market openings and exhibits 

an L-shaped pattern (if we ignore the relative increase in return volatility at the opening 

of the second session) during both of the sessions. Bildik [33] argues that the relatively 

higher mean return and standard deviation at the openings of the trading sessions may 

be explained by the existence of non-trading hours, i.e., information accumulates 

overnight and during the lunch breaks so that once the market is open, traders 

immediately take positions in light of the information flow during the non-trading 

hours.  

 

The existence of such behaviors is very important for us since we argue in Chapter 2, 

Section 2.6 that such intraday patterns may remove the need for adjusting RVs for non-

trading hours. These patterns can be analyzed only under CTS because of their 

definitions such as the number of trades per x minutes or the absolute return per y 

seconds. Examples of these aforementioned diurnal patterns over cleaned and 

aggregated AKBNK transaction data under CTS is provided in Figure F.3. 

 

In order to check the diurnal patterns in all stocks and to find out whether data handling 

distorts such diurnal patterns, we calculate 10-minute average transaction volumes, 

10-minute absolute percentage returns, 10-minute average trade intensities, and, 10-

minute average absolute returns for each stock 11 times, i.e., once for the raw data and 

10 times for cleaned and aggregated data (there are 10 combinations of cleaning rules 

4.ii.a and 4.ii.b and aggregation rules 5.i, 5.ii, 5.iii, 5.iv and 5.v). Results, which are 

summarized in Table 4.8 and given in detail in Appendix E, suggest that for all the 

stocks in our sample, there are significant diurnal patterns in returns and trading 

activity in the form of intensity and volume under CTS and these patterns look exactly 

the same even after various combinations of cleaning and aggregation methods are 

applied. This finding suggests that the data handling methods do not distort the 

naturally occurring diurnal patterns in stock returns. 
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4.4. Calculating Returns and RVs - CTS and TTS 
 

 

Calculating Returns and RV under Calendar Time Sampling: 

 

After the data sets are cleaned of errors and all simultaneous entries are successfully 

aggregated, we prepare 11 different (1 uncleaned, 10 cleaned and aggregated) artificial 

transaction time series for each stock in our sample by applying the previous tick 

method for continuous auction sessions and summarizing opening and closing session 

information as entries at 09:50:00, 14:20:00 and 17:30:00 if there are no entries in the 

original data for those time stamps. Due to the existence of non-trading hours in Borsa 

Istanbul (recall that first and second continuous auction sessions take place between 

09:50-12:30 and 14:20-17:30, respectively, with a lunch break), the resulting artificial 

time series has 9601 entries for the first session and 11401 entries for the second 

session on each trading day. The total number of entries in a trading day is 21002.  

 

In agreement with the discussions in Chapter 2, Sections 2.1. and 2.6, we pick prices 

at frequencies appropriate for the analyses in this Chapter while acknowledging the 

trading halt due to the lunch break. With the first and second session’s continuous 

auction periods corresponding to 9601 and 11401 seconds, respectively, a plausible 

set of frequencies is given Table 4.9: 

 

 
Table 4.9: A plausible set of sampling frequencies under CTS 

 

Sampling Interval 

in Seconds 

Sampling Interval 

in Minutes 

Number of Returns 

During First Session 

Number of Returns 

During Second Session 

10 0.17 960 1140 

30 0.50 320 380 

60 1.00 160 190 

150 2.50 64 76 

300 5.00 32 38 

600 10.00 16 19 

900 15.00 10 12 

1200 20.00 8 9 

 

 

Since the majority of empirical research in the RV literature uses UHFD coming from 

the New York Stock Exchange (NYSE) where trading is carried out without any lunch 

breaks, there are not many studies that address the non-trading hours over lunch. The 

existence of a lunch break complicates return sampling. As an illustration of this 

complication we present the starting and ending time stamps for 15, 20, 30 and 60 

minutes sampling. For these frequencies, it is not possible to include the last several 

minutes of the morning sessions causing the session hours to be shrunk and we cannot 

benefit from the information (highlighted in grey) that is contained in the trimmed last 

minutes of each session. 
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This complication is discussed by papers that examine the RV of transaction prices in 

Tokyo Stock Exchange and Hong Kong Exchanges and Clearing Limited. Ishida and 

Watanabe [67], Chow et al. [40], Masuda and Morimoto [83], Takaishi et al. [105] and 

Ubukata and Watanabe [103] are the studies that we reference for handling the lunch 

breaks in the RV calculation. 

 

Ishida and Watanabe [67] apply the ARFIMA-GARCH model to the RV and the 

continuous sample path variations constructed from high-frequency Nikkei 225 data 

coming from the Tokyo Stock Exchange (TSE). The TSE sets trading hours as 09:00-

15:00 over two sessions with a lunch break between 11:00 and 12:30, where price limit 

rules apply in each session. Ishida and Watanabe [67] treat each session individually 

and calculate 23 and 30 five-minute returns for session 1 and 2, respectively. They 

calculate the RV for each day using all of the five-minute returns from the entire day. 

Although they consider that it is possible to adjust the RV for non-trading hours by 

adding squared returns during night and lunch, they state that since the TSE is open 

only for 4.5 hours during a day, such an adjustment might be “stretch”ing the 

information available. In summary, they do not take squared returns from closing 

session 1 to opening session 2 and do not adjust the daily RV for the lunch breaks or 

the overnight period. 

 

Chow et al. [40] underline the fact that many of the studies on volatility structures 

using high-frequency financial data are concentrated on developed markets but there 

is little evidence regarding emerging markets such as Hong Kong. Accordingly, using 

transaction data, they investigate the statistical properties of the return volatility of 

shares listed on the Hong Kong Exchanges and Clearing Limited (HKEx). Similar to 

the approach adopted by Ishida and Watanabe [67], Chow et al. [40] use all available 

5 min returns coming from session 1 and session 2 separately to calculate the daily 

RV. They do not mention lunch breaks or non-trading hours and, therefore, do not 

make any adjustments to the daily RV calculation for overnight or lunch breaks. 

 

Masuda and Morimoto [83] also carry out an empirical study with data from TSE and 

treat each session separately while adding the RV from each session to get RV_daily. 

However, they divert from Ishida and Watanabe [67] in the sense that the adjustment 

of the RV as the sum of RV_session1 and RV_session2 for non-trading hours is taken 

as a requirement. They modify Hansen and Lunde’s [58] approach and solve for the 

optimal weights for RV_session1, RV_session2, squared overnight return and squared 

lunch return. They argue that adding the optimally weighted squared returns overnight 

and the lunch break onto the RVs from session 1 and session 2 improves forecasting 

performance. 

 

Takaishi et al. [105] claim that, consistent with a mixture of distributions hypothesis, 

price returns standardized by realized volatilities on the TSE become approximately 

Gaussian. In the calculation of the RVs, they acknowledge the complexity induced by 

the lunch break and in order to avoid the adjustment for non-trading hours, they 

calculate RVs of each session separately and then divide the returns in each session 

with the corresponding RV. 

 

More recently, Ubukata and Watanabe [103] investigate whether handling the 

microstructure noise, the non-trading hours and large jumps in the calculation of 
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realized volatilities would change the pricing performance of options on the Nikkei 

225 index. Regarding non-trading hours, they emphasize that adding the squares of 

overnight and lunchtime returns may yield a noisy RV (due to price discreteness) and 

opt for scaling RV, as is done by Hansen and Lunde [58], calculated over all available 

transaction data. They claim that the adjustment for non-trading hours in [58] improves 

the option pricing performance and if the Hansen–Lunde adjustment is used, other 

methods (such as kernel or subsampling based estimators) that mitigate noise induced 

bias are not necessarily needed. 

 

By distilling all these papers, depending on the analysis we carry out, we sample prices 

at a subset (or full set) of Table 4.9 to calculate stock returns at each frequency and 

calculate RV_session1 and RV_session2, then sum these figures to find the RV_open 

to close. For plotting the volatility signature plots and calculating the Average RV, we 

take the simple average of daily RVs over the whole sample period at each frequency.  

 

Following arguments in Chapter 2, Section 2.6, no adjustment is made to RV_open to 

close for the existence of non-trading hours since we claim that the existence of diurnal 

patterns in trading intensity and returns already reflect the volatility accumulated 

during the non-trading hours. 

 

Calculating Returns and RV under Transaction Time Sampling: 

 

Sampling prices under TTS does not require the artificial construction of time series 

except for cleaning and aggregating the raw data as well as summarizing the opening 

and closing sessions at the beginning and end of each session. After the data sets are 

cleaned of errors and all simultaneous entries are successfully aggregated, we get 11 

different (1 uncleaned, 10 cleaned and aggregated) transaction time series for each 

stock in our sample. Obviously, the asynchronous nature of trading causes entries in 

the actual transaction data per each session to be different in number. Accordingly, the 

set of frequencies (in terms of the number of transactions), reported in Table 4.10, are 

determined to make sure that such frequencies fit the purpose of the analyses in this 

Chapter rather than ensuring the number of returns from the first  and second sessions 

from different trading days are always equal. The decision with regards to sampling 

intervals in transactions is made by also taking into consideration the liquidity of 

stocks defined in Section 4.2. of this Chapter, for instance, the number of returns in a 

session may be very small for relatively illiquid stocks for the longer intervals such as 

100 transactions.  

 

 
Table 4.10: A plausible set of sampling frequencies under TTS 

 

Sampling Interval 

in Transactions 

3 

6 

10 

15 

20 

30 
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Following our discussions on calculating returns and RVs under CTS, depending on 

the analysis we carry out, we again sample prices at a subset (or full set) of Table 4.10 

to calculate returns at each frequency and find the RV_open to close by adding 

RV_session1 and RV_session2. For the Average RV, we again take the simple average 

of daily RVs over the whole sample period at each frequency.  

 

In line with the arguments in Chapter 2, Section 2.6, we still do not make any 

adjustments to the RV_opentoclose for the existence of non-trading hours since we 

claim that the existence of diurnal patterns in trading intensity and returns may already 

reflect the volatility accumulated during the non-trading hours. 

 

 

4.5. Is Temporal Dependence in Returns Distorted By Data Handling 

Procedures and/or Sampling Schemes? 
 

 

Literature is abundant with evidence from stock exchanges scattered around the world 

that points to the existence of first order autocorrelation and volatility clustering in 

intraday returns. Correspondingly, checking whether the data handling procedures 

and/or sampling schemes alter the return structure becomes vital before commencing 

the analysis of the MMN's significance and structure, keeping in mind that such 

analyses use the RV as an input and any change in the return (consequently the RV) 

structure due to data handling and/or sampling scheme should be carefully scrutinized 

before commenting on what happens to the MMN under different data handling or 

sampling schemes. 

 

In order to shed some light on this question, work by Andersen and Bollerslev [7], 

Andersen et al. [11] and Engle and Russell [49] leads us to delve into correlograms of 

returns and durations under different sampling schemes and data handling procedures. 

We give special importance to these correlograms because an intriguing finding of 

Griffin and Oomen [55] reveals that while moving from transaction time to tick time, 

the dependence structure of returns is altered dramatically which, in turn, affects the 

properties of the RV. In order to illuminate the robustness of this finding across 

securities, they list the first five autocorrelations of returns in both transaction time and 

tick time for all DJ30 components and show that in tick time all first and third (second 

and fourth) autocorrelations are negative (positive) without exception. 

 

By comparing the autocorrelation and partial autocorrelation functions of 60-second 

and/or 600-seconds9 absolute returns and log returns under CTS (clean and aggregated 

and interpolated) as well as absolute returns, log returns and durations in seconds from 

one transaction to the next under TTS (raw versus clean and aggregated) for each stock 

in our sample set for December of 2012, we observe that for stocks in our sample: 

 

                                                           
9 Since first order autocorrelation was observed in 10-min returns for all cleaning and aggregation 

methods under CTS, we do not feel the urgency to check for 1-min returns under CTS for ARCLK, 

AKBNK, GARAN and ISCTR. We examine 1-min returns in addition to 10-min returns under CTS for 

MIGRS and NETAS because the 10-min log returns exhibit no autocorrelation at all. 
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 There are differences between the ACF and PACF structures of absolute and log 

returns between 10-minutes CTS and 1 transaction TTS, i.e., transforming 1 

transaction sampled data by first cleaning, then aggregating and then 

interpolating (all needed for CTS) to 600-seconds sampled data distorts the ACF 

and PACF of log and absolute return series. The absolute return autocorrelation 

structure is changed under CTS at the 600-seconds sampling interval compared 

to results under TTS at the 1 transaction interval. Likewise, switching to CTS 

and calculation returns at 600 seconds suppresses partial autocorrelation figures 

at several lags of both absolute and log returns. 
 

 Regardless of the cleaning or aggregation methods, volatility clustering is 

verified in the form of very slow decay in ACF and PACF of absolute returns 

under TTS and durations between two consecutive transactions- lags are positive 

and significant up to 20. 

 

 In line with findings by Griffin and Oomen [55], return dynamics in transaction 

time are different from those in calendar time and the choice of sampling scheme 

may have a substantial effect on the properties of realized variance.  

 

 In general, comparing data handling combinations to each other, any 

combination of the cleaning and aggregation methods (compared to other 

combinations) does not cause any major change in the total and partial 

correlation structures once we move under a sampling scheme, whether it is 

either TTS or CTS, regardless of liquidity. However, cleaning and aggregation 

under TTS yields different PACF structures in the absolute and/or log returns10 

compared to the results produced with raw data. 

 

 Working at different frequencies under CTS distorts the autocorrelation structure 

of absolute returns and log returns in the same way: returns become less 

autocorrelated as we sample a smaller number of prices. 

 

 

4.6. Do Sampling Schemes or Data Handling Methods Change the 

Empirical Distributions, Correlograms and Stationarity of RV 

Series? 
 

 

A number of papers analyze the properties of the RV. Andersen et al. [12] focus on 

currencies, Andersen et al. [10] examine individual stocks, Ebens [46] studies the Dow 

Jones Industrial Average, and Areal and Taylor [15] work on stock index futures. The 

results are interesting such that the RV appears to be lognormally distributed and daily 

returns standardized by the RV are approximately normal [51]. Moreover, the RV 

exhibits long-memory dynamics consistent with a fractionally integrated process with 

                                                           
10 For AKBNK, GARAN, and NETAS, PACF of log returns is affected. For ARCLK and MIGRS, 

PACF of both of log and absolute returns are different when data handling methods are applied under 

TTS. With regards to ISCTR, such an effect of data handling methods is not observed. 
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a degree of integration around 0.4, volatility clustering is apparent at as long as the 

monthly level, and the RV obeys precise scaling laws under temporal aggregation [51]. 

 

Accordingly, in addition to assessing the effects (if any) of data handling and/or 

sampling schemes on return dynamics in the form of temporal dependence, we also 

inquire whether sampling schemes and/or data handling procedures have a significant 

impact on the RV dynamics by focusing on the empirical distributions, correlograms 

and stationarity of the RV series (by session and daily) for each of the 6 stocks in our 

sample.  

 

For each frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 

600 seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 4.ii.b) 

-aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination, we construct two RV time 

series, namely session-based RVs and daily RVs. Consequently, the number of RV 

series per stock becomes 36 (6- TTS–raw, 30-CTS-clean and aggregated). Each daily 

RV time series has 124 data points, whereas each session-based RV time series is 

comprised of 248 entries.  

 

For each RV series under each sampling scheme, for each frequency and for each 

cleaning and aggregation method combination we calculate preliminary statistics, 

conduct ACF and PACF analyses and lastly check the existence of a unit root wherever 

autocorrelations exhibit a slow decay.  

 

With regards to preliminary statistics, we analyze the mean, skewness and kurtosis 

values and Jarque-Bera (JB) test results at the 5% significance level in order to 

determine the normality or lognormality of the RV series at hand. The preliminary 

statistics also allow us to determine whether the mean of the session-based and daily 

RVs become smaller as the sampling interval is lengthened or whether there is an 

identifiable relationship between the sampling frequency and the change in skewness, 

kurtosis or the JB statistic values.  

 

By constructing the correlograms with 20 lags, we check for the existence of 

autocorrelation in our RV series.  

 

In order to test for stationarity, i.e. whether the series moves around a constant mean 

or diverges as time passes, the Augmented Dickey Fuller (ADF) test is preferred. By 

a visual inspection of graphs, we do not observe any trend in any of our RV series, 

and, therefore, the ADF test is run with an intercept and no trend. The number of lags 

to be used in the stationarity tests is chosen by the Schwarz criterion as it is the default 

choice suggested by E-views.  

 

Respective sections of Appendix E are summarized in Table 4.11, Table 4.12, Table 

4.13 and Table 4.14
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By careful examination of summarized and aggregated information reported in Table 

4.11, Table 4.12, Table 4.13 and Table 4.14 as well as results in Appendix E, we find 

that 

 

 Regardless of liquidity, sampling scheme, daily or session-based calculations, 

cleaning and aggregation methods or frequency, the mean of the RV series 

becomes smaller as the sampling interval is lengthened. 

 

 Regardless of liquidity or frequency or daily or session calculation, all RV series 

under raw-TTS are non-normal (except for the AKBNK 20 tr daily RV series). 

Normality is achieved for only some of the liquid stocks under CTS and only at 

the highest 1 min frequency. 

 

 Liquidity matters in terms of the RV normality: for illiquid stocks, no RV series, 

either under raw-TTS or CTS (for all combinations of cleaning and aggregation 

algorithms), session or daily or at any frequency is normal. Therefore, sampling 

scheme or cleaning and aggregation or sampling frequency or session-daily 

calculation do not change the non-normality of RV series if the stock is illiquid. 

 

 However, for liquid stocks, although all the RV series under raw-TTS are non-

normal, switching to CTS and increasing frequency and calculating RVs on a 

daily basis make the RV series more and more normal such that at 1 min 

frequency, we cannot reject the null hypothesis of the daily 1 min RV sample 

coming from a normally distributed population at the 5 significance level for 

ISCTR and GARAN. We also see that for GARAN, daily-session-based 

calculation changes normality, where such a calculation choice does not affect 

ISCTR or NETAS. 

 

 The cleaning and aggregation algorithm combinations do not affect the 

normality if we work under CTS, whether the stock is liquid or not. 

 

 Unlike the results on normality, liquidity turns out to be ineffective on the log 

normality of the RV series.  

 

 Generally speaking (except for GARAN), session-based-daily choice, frequency 

and sampling scheme are found to be effective on the log normality of the RV 

series. For GARAN, and only under CTS-daily calculations, switching between 

cleaning methods 4.ii.a and 4.ii.b alters the frequencies at which the RV series 

is lognormal. 

 

 Under CTS, the ACFs of session and daily RVs change as the sampling 

frequency changes, such that for increasing frequencies, RV series exhibit 

significant positive total autocorrelation up to a higher number of lags. Such a 

particular relationship between frequency and decay patterns in ACF is not so 

obvious under raw-TTS for GARAN, MIGRS and ISCTR (for AKBNK, 

ARCLK and NETAS, inflating frequencies yields stronger total 

autocorrelations). 
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 Under raw-TTS and CTS, regardless of liquidity, although the correlograms of 

all the daily RVs resemble one another, compared to the correlogram of session-

based series, the autocorrelation structure of daily RVs looks different, i.e., under 

both raw-TTS and CTS, session-based-daily calculation matters as it influences 

the autocorrelation decay patterns. 

 

 The cleaning and aggregation methods do not affect autocorrelation decay 

patterns and the structure of the RV series. 

 

 Liquidity does not alter the stationarity of the RV series in a specific way. 

 

 Regardless of liquidity, under raw-TTS, all RV series, either session-based or 

daily at all frequencies are found to be stationary at the 5% significance level. 

Non-stationarity becomes a problem only under CTS for some RV series.  

 

 Under CTS, no particular patterns are observed with respect to effect of UHFD 

dimensions on stationarity of the RV series. Irrespective of liquidity, some stocks 

for some frequencies for some cleaning and/or aggregation methods and 

depending on session-based-daily calculation, turn out to be non-stationary at 

the 5% significance level. In detail, for ISCTR and NETAS, stationarity results 

are affected from the sampling schemes, frequencies, the cleaning/aggregation 

methods, or, the session/daily basis choice, while for GARAN, the sampling 

scheme, frequency and the cleaning methods, for  AKBNK, the sampling 

scheme, frequency, the cleaning methods and session-based/daily basis choice, 

for ARCLK, the sampling scheme, daily-session-based calculation, frequency 

and the aggregation method and, lastly, for MIGRS, sampling scheme, daily-

session-based calculation and frequency distort the stationarity of the respective 

RV series. 

 

 

4.7. Do Sampling Schemes or Data Handling Methods Alter Volatility 

Signature Plots? 
 

 

Recall from Chapter 3, Section 3.1 that when the observed price, 𝑌𝑡, is contaminated 

by an additive market microstructure noise, as in Equation (3.4) such that 

 

 

𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡, 0 ≤ 𝑡 ≤ 𝑇  

 

 

where T shows a finite horizon, 𝑋𝑡 denotes the logarithm of true/efficient price of the 

security at time 𝑡 and 𝜀𝑡 represents the logarithm of the combined effect of all 

microstructure noise sources at time 𝑡, the quadratic variation of observed prices 

calculated over the highest frequency possible does not converge to the IV of the true 

prices since an asymptotic bias (quantified in Equation (3.9)) appears due to the 

existence of MMN. Basically, applying the quadratic variation operator to both sides 

of Equation (3.4), we get 
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[𝑌, 𝑌]𝑡
𝒢
= [𝑋, 𝑋]𝑡

𝒢
 + 2[𝑋, 𝜀]𝑡

𝒢
+ [𝜀, 𝜖]𝑡

𝒢
  

 

 

Where the last and first terms are always positive so that if the RV becomes smaller 

with increasing sampling frequency, then such a decrease in the RV should stem from 

the large enough negativity of the second term which can offset the positive last term. 

Hansen and Lunde [58] interpret decreasing RVs accompanying increasing sampling 

returns in the same way. Moreover, Hansen and Lunde [61] state that  

 

 

“…if the correlation is sufficiently negative, the second bias component can 

more than offset the first component. Thus the total bias may be negative, as is 

often seen when RV(m) is based on midquotes.” 

 

 

Hansen and Lunde [61] conclude that the negative correlation between the noise and 

the efficient price could be due to the nonsynchronous revision of the bid and ask 

prices once efficient prices change. In order to back their argument, they present actual 

versus bid and ask prices over a 20-minute window and show that the bid-ask spread 

tends to get wider when prices move up or down. 

 

In addition, we prove in Chapter 3, Section 3.2 that the asymptotic bias is shown to be 

dominated by 𝔼[[𝜀, 𝜀]𝑡|𝑋] under both TTS and CTS, regardless of the fact that the 

MMN and the true price are correlated and/or MMN has a constant mean other than 0. 

 

Therefore, it is important to confirm the existence of MMN as well as to test the 

assumptions regarding the statistical features of the MMN in order to examine how the 

RV deviates from the IV as we increase the sampling frequency. Remember from 

Chapter 2, Section 2.4 that the most popular assumptions in the RV literature on the 

MMN state that the MMN is a sequence of i.i.d random variables with a 0 mean, a 

constant variance and a finite fourth moment where the MMN and the true prices are 

orthogonal to each other at each point in time within the time horizon.  

 

One tool to reveal if there is any bias in the RV due to the MMN as well as the 

frequency at which the MMN becomes evident and the direction of the bias is the 

visual inspection of volatility signature plots. A volatility signature plot (VSP), a 

version of which can be traced back to Zhou’s work in 1996 [112], is defined as a plot 

of average realized volatility (Ave RV) against sampling frequencies and is made 

popular by Andersen et al. [11]. Andersen et al. [11] explain how to derive inferences 

via volatility signature plots. If Ave RV falls or rises as frequency increases, there is a 

MMN that kicks in with higher frequencies. A fall in Ave RV as frequency increases 

is tied to a negative correlation between the efficient returns and the noise. In detail, 

Andersen et al. [11] state that this negative correlation may be caused by the bid-ask 

bounce, one of the reasons suggested in the literature for the existence of MMN in 

stock exchanges such as the NYSE where market making is the usual practice. 

Andersen et al. [11] interpret a rise in the Ave RV when frequency increases as 

evidence of the existence of positive correlation between the efficient returns and the 
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noise and state that this positive correlation may be caused by inactive trading, which 

is another reason for the existence of MMN.  

 

Since VSPs are used as a visual inspection tool for deriving conclusions regarding the 

existence of MMN and/or correlations (including the direction of correlations) 

between the true price of an asset and the MMN, we believe that it is crucial to test 

whether the results driven from VSPs are consistent across sampling schemes and data 

handling approaches. In this attempt, we analyze VSPs for each stock under various 

data handling procedures and sampling schemes (CTS and TTS) to conclude about the 

potential bias problems of the RV type estimators due to the existence and statistical 

characteristics of the MMN. We plot 3 VSPs, one from session 1 RV series, one from 

session 2 RV series and one from daily RVs, per each data handling procedure. We 

compare VSPs produced under CTS for 10 different combination of cleaning rules 

4.ii.a and 4.ii.b with aggregation methods 5.i, 5.ii, 5.iii, 5.iv and 5.v and VSPs 

produced under TTS for raw data and cleaned and aggregated data. At this point, we 

would like to emphasize that regarding VSPs under TTS, we skip 4.ii.a-5.i-5.ii-5.iii-

5.iv-5.v combinations, mainly because the number of cleaned points under 4.ii.a is so 

small that cleaning makes no real difference. Any possible difference stemming from 

cleaning may be observed under cleaning method 4.ii.b, which ends up deleting more 

data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we additionally 

search for any marginal effect that the cleaning method 4.ii.b has over the cleaning 

method 4.ii.a. By this logic, the resulting number of VSPs produced per stock is 48. 

Discussions on these VSPs are given in Appendix E, while we provide Figure 4.1 to 

summarize our findings regarding VSPs of each stock under TTS and CTS (cleaned 

and aggregated).  
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Based on Figure 4.1 as well as the results in Appendix E, we observe that 

 

 The sampling schemes or the cleaning and aggregation techniques do not alter 

the fact that inflating sampling frequency, either in seconds or in transactions, 

causes the average realized volatility of return based on transaction prices to 

boom, irrespective of the liquidity. This observation is valid both for session-

based and daily figures. 

 

 Explosion becomes trivial for the sampling intervals that are less than 300 

seconds or 15 transactions. These frequencies serve as optimal sampling 

frequencies at which market microstructure noise dominates the RV of observed 

prices. 

 

 In all possible dimensions (sampling scheme, liquidity, data handling methods, 

and session-daily calculation) for all stocks, we find visual proof regarding the 

existence of market microstructure noise and pointing to a positive relationship 

between the noise increment and true price return, under both CTS and TTS.  

 

 

4.8. Do Sampling Schemes or Data Handling Methods Affect Results 

of Formal Tests on the Statistical Structure of MMN? 
 

 

In order to search whether there is a MMN effect on observed prices and whether the 

popular assumptions regarding the MMN structure are backed by empirical data, we 

employ Awartani et al.'s [16] formal statistical tests of the no noise and noise 

increments with constant variance assumptions. Their approach depends on the 

comparison of two or more realized volatilities computed over different frequencies 

under CTS where the artificial construction of price series ensures that prices are 

regularly spaced in time. In Chapter 3, as a contribution to the available literature, we 

provide discussions and proofs that the same tests can be used under TTS where prices 

are scattered irregularly over time. In line with those arguments and proofs, we 

examine  

 

a) in Section 4.8.1 whether the formal test results confirm the existence of MMN 

under CTS and TTS for varying data handling procedures,  

 

b) in Section 4.8.2 whether the formal test results confirm the constant variance of 

MMN increments under CTS and TTS for varying data handling procedures, 

 

while liquidity in the sense of Section 4.2 is also taken into account.  
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4.8.1. Formal Tests of the Existence of MMN under Different Sampling Schemes 

and Data Handling Procedures 

 

 

Suppose that the observed price 𝑌𝑡 is assumed to be contaminated by an additive 

market microstructure noise as in Equation (3.4) such that 

 

 

𝑌𝑡 = 𝑋𝑡 + 𝜀𝑡, 0 ≤ 𝑡 ≤ 𝑇  

 

 

where T shows a finite horizon, 𝑋𝑡 denotes the logarithm of true/efficient price of the 

security at time t and 𝜀𝑡 represents the logarithm of the combined effect of all 

microstructure noise sources at time t. Moreover, 𝑋𝑡, the log price of an asset, satisfies 

the Equation (3.1) which gives the following stochastic differential equation on the 

finite time horizon 𝑡 ∈ [0, 𝑇]: 
 

 

𝑑𝑋𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝐵𝑡  

 

 

where 𝑋0 is ℱ0-measurable, 𝑋𝑡 has continuous sample paths, drift 𝜇𝑡 is a locally 

bounded, predictable continuous process, the continuous stochastic process 𝜎𝑡 that 

derives the volatility of log return of the security is square integrable, 𝐵𝑡 denotes a 

standard Wiener process and 𝜎𝑡 is orthogonal to 𝐵𝑡. 
 

In this setting, Awartani et al. [16] propose to check whether, due to the existence of 

MMN, there is any statistically significant asymptotic bias on the RV estimator under 

CTS by testing the null hypothesis in Equation (3.11) which asserts that the second 

moments of all MMN increments equal zero against the alternative hypothesis in 

Equation (3.12) which claims that the second moments of all MMN increments are 

greater than zero.  

 

We claim in Chapter 3, Section 3.3 that the same set of hypotheses are also relevant 

for TTS because under both TTS and CTS, as shown in Chapter 3, Section 3.2, if 

observed prices are contaminated with a MMN where the MMN is a sequence of i.i.d 

random variables with a 0 mean and a finite fourth moment while the noise increments 

have constant variance as we increase observation frequencies, the RV, scaled by 

(2 ∙ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠))−1  and calculated over observed prices, 

estimates more and more the variance of MMN rather than the quadratic variation of 

the true price. 

 

Awartani et al. [16] develop a test statistic under CTS to test if we can reject the null 

hypothesis in Equation (3.11) against the alternative hypothesis in Equation (3.12) so 

that the MMN has a statistically significant effect on RV estimators of the IV at a given 

sampling frequency. The test statistic 𝑍𝑇,𝑛,ℎ employs RVs calculated at two artificially 

selected frequencies, one low and one high, as well as the Realized Quarticity (𝑅𝑄) 

calculated at low frequency and is formulated in Equation (3.13) as follows: 
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𝑍𝑇,𝑛,ℎ ∶=
√ℎ − 1(𝑅𝑉𝑇,𝑛 − 𝑅𝑉𝑇,ℎ)

√2(ℎ − 1)
3 𝑅𝑄𝑇,ℎ

 
 

 

 

where h and n stand for the number of observations for the whole estimation period, T 

(for instance, the number of observations per day) at low frequency and high 

frequency, respectively, and  

 

 

𝑅𝑉𝑇,𝑛 = ∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

𝑛−2

𝑖=0

 

 

 

 

 

𝑅𝑉𝑇,ℎ =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

ℎ−2

𝑖=0

 

 

 

 

 

𝑅𝑄𝑇,ℎ =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
4

ℎ−2

𝑖=0

 

 

 

 

 

𝑛 > ℎ,
𝑛

ℎ
→ ∞ 𝑎𝑠 𝑛, ℎ → ∞ 

 

 

Awartani et al. [16] prove that the test statistic 𝑍𝑇,𝑛,ℎ has a standard normal distribution 

asymptotically under the following assumptions: 

 

 the true price is generated as in Equation (3.1),  

 

 ∫ 𝜎𝑡
4𝑑𝑡

𝑇

0
< ∞,  

 

 the MMN increments have a finite fourth moment on [0, 𝑇] 
 

 there is at least one 𝜁 > 0 such that for 𝜓 ∈ (0,1), lim inf
𝑛→∞

 (𝑛 − 1)𝜓−1[𝜀, 𝜀]𝑇 >

 𝜁 and lim inf
ℎ→∞

 (ℎ − 1)𝜓−1[𝜀, 𝜀]𝑇 >  𝜁. 

 

We suggest and show in Chapter 3, Section 3.3 that the same test statistic 𝑍𝑇,𝑛,ℎ can 

be employed to examine the existence of MMN under TTS where 
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 conditions and assumptions of Theorem 3.2 hold, 

 

 the true price of the security is observed with no drift and it is a local martingale 

by definition as in Equation (3.20), 

 

 the instantaneous true return variance, 𝜎𝑡
2, is locally bounded and continuous in 

mean square, 

 

 the observation times are independent of the true price process 𝑋𝑡, and the 

maximum distance between two consecutive observation times converges to 0 

in probability at an order of (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 − 1)−1 2⁄   as the 

number of observations tend to infinity, 

 

 for any two consecutive observation times 𝑡𝑖+1 and 𝑡𝑖, ∑ (𝑡𝑖+1 − 𝑡𝑖)
3

𝑖

= 𝑂𝑝((𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 − 1)
−2) , 

 

 Asymptotic Quadratic Variation of Time (AQVT) is calculated as 

 

 

𝒟𝑡 ∶= lim
ℎ→∞

ℎ − 1

𝑇
∑ (𝑡𝑖+1 − 𝑡𝑖)

2

𝑡𝑖+1≤𝑡

 

 

 

and denoted by 𝒟𝑡  exists and is absolutely continuous. 

 

For both TTS and CTS, since bias of the RV estimator is dominated by the expectation 

of the square of the noise increment, if we reject the null hypothesis in Equation (3.11), 

this implies that a MMN exerts a statistically significant impact on the realized 

estimator of the IV.  

 

In this context, we calculate the 𝑍𝑇,𝑛,ℎ statistic testing the null hypothesis in Equation 

(3.11) by comparing RVs that are calculated over different frequency pairs, under 

sampling schemes CTS and TTS for raw and cleaned and aggregated data series. The 

high-low frequency pairs are (60,600) (10,1200), (30, 1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds for CTS and (3,30), (6,30), (10,30), 

(15,30), and (20,30) transactions for TTS. Regarding data handling methods, we 

consider test results for 10 different combinations of cleaning methods 4.ii.a and 4.ii.b 

with aggregation methods 5_i, 5_ii, 5_iii, 5_iv and 5_v once under CTS and once 

under TTS. For each day in the sample period of 124 days and each frequency pair, 

we run the aforementioned test at a 5% significance level. 

 

The results for each stock, for each frequency pair, under each data handling method 

and sampling scheme are given in the respective sections of Appendix E. To 

summarize, carefully selected examples of these findings comparing each stock for 

two different data handling procedures under CTS (4.ii.a_5.i versus 4.ii.b_5.i) and TTS 

(raw versus 4.ii.b_5.i) are reported in Figure 4.2.
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Based on Appendix E and Figure 4.2, we learn the following: 

 

 The existence of MMN is verified statistically (i.e. there is a significant decrease 

in the rejection percentages as we increase the "high frequency" leg of each pair) 

under both CTS and TTS for all stocks, regardless of the liquidity of the stock 

or the data handling method.  

 

o Rejection rate graphs reveal that the MMN starts to accentuate as the 

sampling frequency converges to 10-15 transactions under TTS, and 250-300 

seconds under CTS. These findings are in conformity with those supplied by 

the VSP analysis. The MMN is felt strongly once we cross over the sampling 

interval thresholds of 15 transactions or 5 minutes under TTS and CTS, 

respectively. For higher frequencies, rejection rates turn out to be quite high, 

and especially after 150 seconds under CTS and 10 transactions under TTS, 

rejection rates explode.  

 

 The liquidity and the data handling methods matter such that for all stocks in our 

sample we observe the following: 

 

o The lower the liquidity, the lower the rejection percentage at all frequency-

pairs under TTS (raw or clean and aggregated). 

 

o Cleaning and aggregating the data do not amend the downward trend in 

rejection percentages under TTS, but make it steeper. 

 

o A visual inspection of the test statistic 𝑍𝑇,𝑛,ℎ for several frequency pairs, 

either under TTS or CTS, reveals that majority of the time the test statistic is 

positive and outside the 5% standard normal confidence interval, meaning 

that there is a positive correlation between the noise and efficient price, which 

is again in conformity with the exploding VSPs. 

 

 

4.8.2. Formal Tests of the Constant Variance of MMN Increments under 

Different Sampling Schemes and Data Handling Procedures 

 

 

In addition to developing a formal test to find out whether the MMN has a statistically 

significant effect over the RV estimator, Awartani et al. [16] also suggest testing the 

popular assumption stating that the MMN has constant variance independent of time. 

Their effort in revealing whether the MMN has constant variance over time is 

particularly important since, as explained in Chapter 2, methods proposed in the 

literature for handling the MMN effects while estimating the IV of the true price 

depend on the validity of this assumption. Hence, before using any of the methods to 

mitigate the MMN effects on the IV estimators, one has to make sure that this 

assumption is backed by empirical evidence. For this purpose, as we delve into detail 

in Chapter 3, Section 3.4, Awartani et al. [16] suggest testing the null hypothesis in 

Equation (3.45) which states that that the variance of the MMN increments, defined as 

2 times the second moment of the increments while the mean of MMN is taken as zero, 
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observed over different grids ℋ and 𝒢 under CTS are equal whereas the alternative 

hypothesis given in Equation (3.46) claims that such variances over different grids are 

not equal.  

 

The null hypothesis in (3.35) employs the analogy that if the MMN increments have 

constant variance through time, then the variance of MMN increments over different 

grids under CTS should also be equal to each other. Therefore, the alternative 

hypothesis in Equation (3.36) is consistent with the presence of autocorrelation in the 

MMN.  

 

As explained in Chapter 3, Section 3.4, for the purpose of testing whether MMN 

increments have constant variance independent of the sampling frequency, Awartani 

et al. [16] develop a test statistic 𝑉𝑇,𝑛,ℎ, that compares RVs calculated at 3 different 

sampling frequencies (on 3 different grids), one low, one high and one very low 

compared to each other and requires the Realized Quarticity (𝑅𝑄) to be calculated at 

low frequency. 𝑉𝑇,𝑛,ℎ, is defined as follows: 

 

 

𝑉𝑇,𝑛,ℎ,𝑙 ∶= √ℎ − 1

(𝑅𝑉𝑇,𝑛 − 𝑅𝑉𝑇,𝑙)

2(𝑛 − 1)
−
(𝑅𝑉𝑇,ℎ − 𝑅𝑉𝑇,𝑙)

2(ℎ − 1)

√3 (
𝑅𝑄𝑇,ℎ

2(ℎ − 1)2
− (

𝑅𝑉𝑇,ℎ
2(ℎ − 1)

)
2

)

 
 

 

 

where n, h and l stand for the number of observations for the whole estimation period, 

T (for instance, number of observations per day), at high frequency, low frequency and 

very low frequency, respectively and as before 

 

 

𝑅𝑉𝑇,𝑛 = ∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

𝑛−2

𝑖=0

 

 

 

𝑅𝑉𝑇,ℎ =∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)
2

ℎ−2

𝑖=0

 

 

 

𝑅𝑄𝑇,ℎ =
2

3
√ℎ − 1∑(𝑌𝑡𝑖+1 − 𝑌𝑡𝑖)

4
ℎ−2

𝑖=0

 

 

 

𝑛 > ℎ > 𝑙,
𝑛

ℎ
→ ∞,

ℎ

𝑙
→ ∞ 𝑎𝑠 𝑛, ℎ, 𝑙 → ∞ 
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The very low frequency that is employed in the test statistic 𝑉𝑇,𝑛,ℎ,𝑙 represents a 

frequency at which we can safely ignore the MMN according to the literature. On this 

issue, Awartani et al. [16] argue that l might be chosen as a 20-minute sampling 

interval under CTS following the sparse sampling literature and the 5-minute threshold 

promoted by Andersen et al. [11].  

 

In addition, Awartani et al. [16] show that if  

 

 the true price is generated as in Equation (3.1),  

 

 ∫ 𝜎𝑠
4𝑇

0
𝑑𝑠 < ∞,  

 

 the MMN satisfies Assumption 3.1,  

 

then under the null hypothesis in (3.35), as 𝑛, ℎ, 𝑙 → ∞,
𝑛

ℎ
→ ∞,

ℎ

𝑙
→ ∞, 𝑉𝑇,𝑛,ℎ,𝑙

𝑑
→𝑁(0,1).  
 

We suggest and show in Chapter 3, Section 3.4 that the same statistic 𝑉𝑇,𝑛,ℎ,𝑙 can be 

used to test the constant variance of MMN increments under TTS due to the fact that 

the three pillars that are used by Awartani et al. [16] for building their test statistic are 

developed by Zhang et al. [111] under TTS in the first place. Therefore, since the 

alternative hypothesis is in harmony with the presence of autocorrelation in the MMN, 

following Awartani et al. [16] we argue in Chapter 3, Section 3.4 that the rejection of 

the null hypothesis in Equation (3.35) under CTS and/or TTS would provide the 

empirical evidence that we need to reject the assumption of an i.i.d MMN with a 

constant variance.  

 

In this context, we calculate the 𝑉𝑇,𝑛,ℎ,𝑙 statistic testing the null hypothesis in Equation 

(3.35) by comparing RVs that are calculated over different frequency triples, where 

various frequency pairs are combined with a sampling interval of 20 minutes, under 

sampling schemes CTS and TTS for raw and cleaned and aggregated data series. 

Frequency triples are (3,10,30), (3,15,30), (3,20,30), (6,15,30) (6,20,30) and 

(10,20,30) transactions under TTS, (60,150,1200), (60,600,1200), (150,300,1200), 

(150,600,1200) and (300,600,1200) seconds under CTS. Regarding data handling 

methods, we consider the test results for 10 different combinations of cleaning 

methods 4.ii.a and 4.ii.b with aggregation methods 5_i, 5_ii, 5_iii, 5_iv and 5_v once 

under CTS and once under TTS. For each day in the sample period of 124 days and 

each frequency triple, we run the aforementioned test at a 5% significance level. 

 

The results for each stock, for each frequency triple, under each data handling method 

and sampling scheme are given in the respective sections of Appendix E. To 

summarize, carefully selected examples of these findings comparing each stock for 

two different data handling procedures under CTS (4.ii.a_5.i versus 4.ii.b_5.i) and TTS 

(raw versus 4.ii.b_5.i) are reported in Figure 4.3.
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Based on Appendix E and Figure 4.3, we learn the following: 

 

 Under CTS, assuming an i.i.d MMN with a constant variance may be appropriate 

for frequencies lower than 1 min but under TTS, this assumption fails especially 

for liquid stocks. The finding regarding CTS is in line with results provided by 

Awartani et al. [16] and Pigorsch et al. [95].  

 

o Awartani et al. [16] conclude that for ultra-high frequencies, the assumption 

of an i.i.d noise with a constant variance is not verified by their empirical 

findings. Likewise, Pigorsch et al. [95] find that the constant variance 

assumption is rejected only at very high frequencies.  

 

 The liquidity and the sampling schemes are discovered to be very influential on 

the rejection of the null hypothesis that the MMN increments have a constant 

variance independent of sampling frequency. 

 

o For liquid stocks, the assumption of an i.i.d MMN with a constant variance 

may be appropriate under CTS but under raw-TTS, for more than 50% of the 

days, the null of the MMN increments having constant variance is rejected 

for triples with very high frequencies combined with very low. This may be 

evidence of the i.i.d assumption not holding at frequencies lower than 15 

transactions. As liquidity diminishes, rejection percentages also shrink to a 

point that, for the least liquid stocks ARCLK and MIGRS, the null of the 

MMN increments having constant variance is only rejected for a maximum 

of 13% of the days for any frequency triples. This finding implies that the 

assumption of an i.i.d MMN having constant variance across sampling 

frequencies may be more appropriate for MIGRS and ARCLK instead of the 

other more liquid stocks.  

 

 Cleaning algorithms have a suppressive effect on rejection percentages 

particularly under TTS. For all stocks in our sample, cleaning and aggregating 

the data shift the rejection rate graphs downwards under TTS. 

 

 The liquidity of the stocks and the data handling methods do not present a 

particular relationship under CTS: moving across the grid of cleaning and 

aggregation algorithm combinations does not change the rejection results 

substantially for any of the stocks in our sample.   
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CHAPTER 5
 

 

 

CONCLUSION 
 

 

 

 

It is first pointed out by Andersen and Bollerslev [8] that the squared daily returns 

provide a poor approximation of the actual daily volatility. They suggest that more 

accurate estimates could be obtained by summing the squared intraday returns. 

Following this valuable contribution to the finance literature, Andersen et al. [12], 

Andersen et al. [10], and Barndorff-Nielsen and Shephard [24] are among the pioneers 

who studied ‘‘realized’’ volatility (RV) and its relevance in volatility measurement. 

RV exploits the information in high-frequency returns and estimates volatility by 

summing the squares of intraday returns sampled at very short intervals [51]. 

 

Barndorff-Nielsen and Shephard [24] prove the consistency of the RV and show that 

its asymptotic distribution is normal. In this context, if asset prices follow a Brownian 

semimartingale, return volatility can be estimated consistently and effortlessly by 

calculating the RV at the highest possible frequency. However, sampling returns as 

many times as possible without any further consideration on the characteristics of the 

high frequency data set may not be the right approach. UHFD should be analyzed first 

to determine whether there are any effects on the observed asset prices that become 

more significant as we increase the sampling frequency, whether the Brownian 

semimartingale representation of asset prices is appropriate, whether there are different 

ways of sampling returns, and, whether non-trading hours limit the accuracy of 

volatility estimation. All of these issues constitute the dimensions of volatility 

estimation using UHFD. 

 

Among the aforementioned concerns of a researcher/practitioner who aims to measure 

return volatility using UHFD, one issue stands out: the observed prices are 

contaminated with a noise component which represents the aggregate effect of all 

market microstructure frictions. If there is such a contamination, then the quadratic 

variation of the observed prices calculated over the highest frequency possible does 

not simply converge to the integrated variance of the true prices because an asymptotic 

bias appears due to the existence of MMN [10], [24], [25]. In order to examine how 

RV deviates from the IV as we increase the sampling frequency and to come up with 

methods to handle these deviations (mitigation of the MMN effects on RV measures), 

we first have to make some assumptions regarding the statistical features of the MMN. 

The most popular assumption in the RV literature states that MMN is a sequence of 

i.i.d random variables with zero mean, constant variance and finite fourth moment, 
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while MMN and true prices are orthogonal to each other for each  𝑡 ∈ [0, 𝑇]. 
Therefore, although it is of great importance to mitigate the effect of the MMN in the 

estimation of the true price volatility using high frequency data, success of the 

available methods in literature to suppress the MMN effects must be considered only 

if empirical evidence from developed or developing markets support the assumptions 

made by these methods regarding MMN.  

 

We realize that empirical evidence including visual and formal tests on MMN structure 

should be collected taking into account the dimensions of volatility estimation using 

high frequency data as these dimensions might result in impairment to validity of 

methods adopted to handle the MMN in estimation of the IV in the first place. 

However, none of the available literature on the IV estimation using UHFD takes into 

account all of these dimensions simultaneously. Besides, the literature does not touch 

the issue of how to examine existence and statistical features of the MMN under 

sampling schemes other than CTS formally. Meanwhile, the published literature on 

the IV estimation using UHFD relies on data coming from stock markets of developed 

economies such as US or Japan and the literature lacks research on volatility estimation 

and MMN structure with empirical evidence from developing markets. 

 

Additionally, we recognize that the generally accepted definition of an asset's liquidity 

-the speed and ease of the sale of a stock at a price not too different from the price at 

which the seller would be able to get if s/he opted to wait longer- may not be 

appropriate to use for analyzing the MMN embedded in the observed stock prices, 

especially if such analyses are carried out under CTS. This observation is underlined 

particularly when there are long periods between two consecutive transactions and the 

interpolation method selected causes an artificially introduced additional 

autocorrelation in returns. Therefore, there is room in the literature about offering 

alternative methods for measuring the liquidity of assets by taking into account how 

evenly tick by tick data are distributed in time.  

 

In this framework, In Chapter 2, we elaborate on  

 

1. the characteristics of UHFD sets and the methods to detect and clean errors, ways 

to aggregate simultaneous observations, approaches on interpolating the data for 

constructing artificial series if returns are to be calculated based on a fixed 

frequency over time,  

 

2. observed prices being contaminated by a MMN,  

 

3. how the semimartingale representation of the true/efficient/equilibrium asset 

prices necessitates implicit decisions regarding the structure of the MMN and 

whether the asset prices should be taken as continuous or discontinuous,  

 

4. popular assumptions regarding the statistical features of the MMN,  

 

5. the sampling schemes and their relevance to RV estimation, and, 

 

6. how the presence of non-trading hours is reflected in daily RV estimations by 

various researchers and the types of problems that accompany such approaches.  
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After providing comparative discussions on the available literature regarding the 

dimensions of volatility estimation using UHFD in Chapter 2, we show in Chapter 3 

that formal tests developed under CTS by Awartani et al. [16] can be used under TTS 

as well for determining whether there is any statistically significant asymptotic bias in 

the RV estimator due to the existence of MMN and whether the MMN increments have 

constant variance independent of the sampling frequency. In our discussions, we 

benefit from the fact that if the true price of an asset fulfills a Brownian semimartingale 

specification then 

 

 the RV calculated over the highest data frequency should give the best possible 

estimate for the IV both under CTS and TTS provided that there is no MMN 

contamination, 

 

 when observed prices are not contaminated by a MMN, the estimation error of 

RV only stems from the discretization error that appears as a result of the number 

of observations per trading day being limited in practice, regardless of the 

sampling scheme, 

 

 in the presence of an additive MMN and if the MMN is a sequence of i.i.d 

random variables with a constant mean and a finite fourth moment, its 

increments having constant variance, while MMN and true price are 

independent, then the conditional asymptotic bias of RV calculated using 

observed prices explodes to infinity as the number of observations increases, 

 

 the test statistic developed by Awartani et al. [16] to examine the existence of 

MMN under CTS also can be employed for the same task under TTS since the 

two pillars supporting the Awartani et al. [16] test statistic are shown to hold 

under TTS in [111] and [91], 

 

 the test statistic developed by Awartani et al. [16] to find out if the MMN 

increments possess a constant variance orthogonal to sampling frequency can 

also be used for the same purpose under TTS since the three pillars supporting 

the Awartani et al. [16] test statistic are developed under TTS in the first place. 

 

In the next step, in Chapter 4, we gather evidence from Borsa Istanbul National Equity 

Market regarding the validity of the most popular assumptions on the market 

microstructure noise, i.e., whether the aggregate effect of deviations from perfect 

capital markets lead to i.i.d MMN or whether the unobservable true prices and MMN 

are independent, under combinations of CTS or TTS with data handling methods and 

if liquidity is important in terms of the assumed MMN structure. For these analyses, 

we use tick by tick transaction data for 6 stocks listed on Borsa Istanbul National 

Equity Market for the sample period of 01.07.2012-31.12.2012, (a total of 124 trading 

days). The data are retrieved directly from Borsa Istanbul. The 6 stocks are selected 

with the purpose of having an acceptable level of diversification in the sample. 

As explained earlier, if the previous tick method is used to construct return series under 

CTS then there is a risk of introducing artificial serial correlation into the returns for 

inactively traded stocks. In order to avoid this problem, in Chapter 4 we propose a new 
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approach for classifying stocks with respect to their liquidity in the high frequency 

data setting. Our approach defines the liquidity as the number of all time stamps (under 

calendar time) having at least one transaction entry. In other words, during the sample 

period, if the number of sessions with no transactions during a given time period, such 

as 10 minutes, for a stock exceeds the same number for another stock, then the first 

stock is characterized as being less liquid. Coherent with our definition, we examine 

the raw data to find the number of continuous auction sessions in which the maximum 

duration between two consecutive transactions exceeds a set of arbitrarily selected 

thresholds. Based on this definition, we categorize three stocks in our sample set as 

more liquid, one stock as moderately liquid, and two stocks as illiquid. This 

categorization is relative and specific to the existing sample set in the sense that 

inclusion of additional stocks with different trading activities has the potential of 

inducing a different categorization. 

 

Before any return calculations under calendar or transaction time sampling are carried 

out, we apply data handling methods as combinations of cleaning and aggregation 

algorithms. With these methods, we address the possibility that the UHFD we use in 

our analyses may include erroneous entries due to the recording algorithms of the stock 

exchange and there may be transactions that are attached to a single time stamp due to 

the asynchronous nature of trading. After covering all the available literature on data 

handling methods, we design a data cleaning methodology in four steps, where the first 

three steps aim to detect obvious errors such as zero prices or volumes, and step four, 

with nine options regarding detection, finds and removes outliers. By considering the 

number of deleted entries under each option of step 4 and taking into account the 

overscrubbing and underscrubbing risks, we conclude that only two cleaning methods 

should be included in the analysis of testing existence and statistical features of MMN 

under different data handling and sampling schemes. These two methods delete entries 

for which the price deviates by more than a threshold from an average of daily or 

arbitrarily selected neighborhood prices. After cleaning, we apply five different 

aggregation rules, resulting in a total of ten different data handling method 

combinations. 

 

Now that all obvious errors, outliers and simultaneous ticks are cleaned and/or 

aggregated, we explore whether there are any changes in the common characteristics 

of UHFD due to the application of these cleaning and aggregation procedures since we 

want to make certain that our data handling procedures do not overscrub the UHFD 

set and distort its original traits such as discreteness, irregular temporal spacing and 

diurnal patterns. Regarding the discreteness of prices, we observe that it holds under 

CTS and TTS for all data handling methods and stocks in our sample because as long 

as there are price ticks, especially when the ticks are large in size, discreteness seems 

to be a natural occurrence. On irregular temporal spacing, since the errors or 

transactions recorded at the same second are not the cause of irregular temporal 

spacing, this characteristic is found to hold for all data handling methods and stocks in 

our sample as well. In order to check the diurnal patterns in the sample stocks, we 

calculate average transaction volumes, absolute percentage returns, average trade 

intensities and average absolute returns over 10-minute intervals for each stock 11 

times, i.e., one time for raw data and 10 times for cleaned and aggregated data. Results 

suggest that, under CTS, all stocks in our sample exhibit significant diurnal patterns in 
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returns, trading intensity and volume, and these patterns look exactly the same 

regardless of the various combinations of cleaning and aggregation methods applied. 

 

In order to calculate returns and RV series under CTS, we prepare 11 different (one 

uncleaned, 10 cleaned and aggregated) artificial transaction time series for each stock 

in our sample. These series are formed by applying the previous tick method for 

continuous auction sessions and summarizing opening and closing session information 

as entries at 09:50:00, 14:20:00 and 17:30:00 if there are no entries in the original data 

for these time stamps. The resulting artificial time series has 9601 entries for the first 

(morning) sessions and 11401 entries for the second (afternoon) sessions in each 

trading day. Hence, the total number of entries under CTS in a trading day is 21002.  

 

For calculating returns and RV series under TTS, since sampling prices under TTS 

does not require the artificial construction of time series, after the data sets are cleaned 

of errors and all simultaneous entries are successfully aggregated, we produce 11 

different (1 uncleaned, 10 cleaned and aggregated) transaction time series for each 

stock in our sample. In accordance with our discussions on calculating returns and RVs 

when there are lunch breaks during the trading day, we sample prices at the appropriate 

frequencies and calculate the RV over trading hours by adding the RV from session 1 

and RV from session 2. Following arguments in Chapter 2, Section 2.6, we do not 

make any adjustments for the non-trading hours since the existence of diurnal patterns 

in trading intensity and returns imply that volatility accumulated during non-trading 

hours is reflected in these patterns, regardless of sampling scheme. 

 

The literature provides abundant evidence that points to the existence of first order 

autocorrelation and volatility clustering in intraday returns. Accordingly, checking to 

see whether the data handling procedures and/or sampling schemes alter the return 

structure becomes vital before continuing with the analyses on MMN significance and 

structure. By comparing autocorrelation and partial autocorrelation functions of 60-

second and/or 600-second absolute returns and log returns under CTS (clean and 

aggregated and interpolated) as well as absolute returns, log returns and durations in 

seconds from one transaction to the next under TTS (raw versus clean and aggregated) 

for each stock in our sample for December 2012, we observe that for stocks in our 

sample 

 

 volatility clustering is verified, 

 

 in line with the findings of Griffin and Oomen [55], return dynamics in 

transaction time are different from those in calendar time, 

 

 any combination of cleaning and aggregation methods (compared to other 

combinations) does not cause any major change in total and partial correlation 

structures once we move under a sampling scheme, either TTS or CTS,  

 

 data handling under TTS yields different PACF structures in absolute and/or log 

returns compared to results produced with raw data under TTS. 
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In addition to assessing the effects (if any) of data handling and/or sampling schemes 

on return dynamics in the form of temporal dependence, we also inquire whether the 

sampling schemes and/or data handling procedures have a significant impact on RV 

dynamics. For each sample stocks, each RV series under each sampling scheme, for 

each frequency and for each cleaning and aggregation method combination, we 

calculate preliminary statistics and conduct ACF and, PACF analyses and unit root 

tests. Results show that 

 

 liquidity matters in terms of RV normality such that the sampling scheme or 

cleaning and aggregation or sampling frequency or session-daily calculation do 

not change the non-normality of RV series if the stock is illiquid, 

 

 unlike results for normality, liquidity does not have an effect on the log normality 

of RV series, 

 

 the session-daily choice and the frequency and sampling schemes have an effect 

on the log normality of RV series, 

 

 autocorrelation decay patterns and structures of RV series are affected by the 

sampling scheme, regardless of liquidity, 

 

 decreasing the sampling frequency depresses the autocorrelation structure of the 

RV series under CTS regardless of liquidity or session-daily calculation,  

 

 cleaning and aggregation methods do not affect the autocorrelation decay 

patterns of the RV series significantly, 

 

 liquidity does not alter the stationarity of the RV series in a specific way, 

 

 regardless of liquidity, under raw-TTS, all RV series, both the  session or daily 

at all frequencies are stationary at the 5% significance level. Non-stationarity 

becomes a problem only under CTS for some RV series. 

 

In the next step, in order to determine the frequency at which MMN becomes evident 

as well as the direction of the bias, we compare the VSPs  produced under CTS for 10 

different combinations of cleaning rules and aggregation methods with the VSPs 

produced under TTS for raw data and cleaned and aggregated data. In all possible 

dimensions (sampling scheme, liquidity, data handling methods, and session-daily 

calculation) for all stocks, we find visual proof regarding the existence of MMN and a 

positive relationship between the noise increment and the true price return, under both 

CTS and TTS. More specifically, sampling intervals of 300 seconds under CTS and 

15 transactions under TTS appear to be the thresholds at which MMN begins to 

dominate the RV of the observed prices. 

 

Following the visual inspection via VSPs, we employ formal statistical tests of the no 

noise and the noise with increment of constant variance assumptions proposed by 

Awartani et al. [16]. Their approach depends on the comparison of two or more 

realized volatilities computed over different frequencies under CTS where the artificial 
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construction of price series ensures that prices are regularly spaced in time. In line with 

the arguments and proofs in Chapter 3 that the same tests can be used under TTS where 

prices are scattered irregularly in time, we examine the formal test results under CTS 

and TTS for 10 different combinations of data handling methods compared with raw 

data in order to confirm the existence of MMN and the constant variance of MMN 

increments. Test results show that 

 

 MMN exhibits statistically significant existence under both CTS and TTS for all 

stocks regardless of the data handling methods and liquidity such that MMN 

starts to accentuate as the sampling interval converges to 10-15 transactions 

under TTS and 250-300 seconds under CTS (in conformity with the results from 

VSPs) 

 

 liquidity and data handling methods matter under TTS such that for all stocks in 

our sample the lower the liquidity, the lower the rejection percentage at all 

frequency-pairs under TTS (raw or clean and aggregated) and data handling does 

not change the downward trend in the rejection percentages under TTS, but 

makes it steeper, 

 

 there is evidence of positive correlation between noise and efficient price, which 

is again in conformity with exploding VSPs, 

 

 liquidity and sampling schemes are very influential on the rejection of the null 

hypothesis that the MMN increments have constant variance that is independent 

of sampling frequency; in particular, under CTS, assuming an i.i.d MMN with 

constant variance is appropriate for frequencies lower than 1 min but under TTS, 

this assumption fails especially for liquid stocks,  

 

 data handling has a suppressive effect on the rejection percentages of the null 

hypothesis that the MMN increments have constant variance that is independent 

of sampling frequency particularly under TTS while it does not exhibit a 

particular effect under CTS. 

 

All in all, in this Thesis we 

 

 discuss many dimensions/aspects of volatility estimation, 

 

 consider how data handling methods in the form of cleaning and aggregation 

affect the characteristics of UHFD and whether the widely accepted outlier 

handling methods end up overscrubbing or underscrubbing the data, 

 

 examine what happens to return and RV series dynamics under varying 

combinations of sampling schemes and data handling methods while controlling 

for liquidity of the stock, 

 

 examine visual and statistical evidence regarding the existence and/or statistical 

features of MMN under varying combinations of sampling schemes and data 
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handling methods and whether our findings on the MMN structure are robust 

with respect to the liquidity of the stocks 

 

simultaneously. Our efforts justify our hesitance regarding deriving conclusions on the 

significance and structure of MMN using empirical evidence without considering as 

many dimensions of volatility estimation using UHFD as possible because we show 

that liquidity, sampling scheme and data handling methods have the potential to affect 

the return and RV dynamics. If these dimensions are not taken into account, then 

findings regarding the validity of popular assumptions about the statistical features of 

MMN have the potential of telling different tales in different research settings. Thus, 

we hope that our findings will serve as additional bricks in the wall of high frequency 

finance research and future researchers will benefit from the theoretical 

discussions/proofs made and empirical evidence gathered in this Thesis. 
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APPENDIX A
 

 

 

PROOF OF PROPOSITION 3.1 
 

 

 

 

The proof depends on showing that 𝒥𝑡 defined as (𝑋𝑡 − 𝑋𝑡𝑖)
3
𝑑𝑋𝑡 converges to 0 in 

probability at a rate of 1 (ℎ − 1)⁄  where [𝑋, 𝑋, 𝑋, 𝑋]𝑡
ℋ=4𝒥𝑡 +

3

2
 𝑑[𝒵, 𝒵]𝑡. To do so, 

we first focus on quadratic variation of 𝒥𝑡 to benefit from the Burkholder-Davis-Gundy 

inequality which connotes that there are universal constants 𝑐𝑝 and 𝐶𝑝 so that for all 

generic continuous martingales 𝑁𝑡, 
 

 

𝑐𝑝‖[𝑁,𝑁]𝑇‖𝑝/2
1/2
≤ ‖ sup

0≤𝑡≤T

|𝑁𝑡|‖
𝑝

≤ 𝐶𝑝‖[𝑁,𝑁]𝑇‖𝑝/2
1/2
, 

 

 

where ‖𝑁𝑡‖ = (𝔼[|𝑁𝑡|
𝑝])1/𝑝, and 

 

 

𝐶𝑝
2 = 𝑞𝑝

𝑝(𝑝 − 1)

2
,    
1

𝑝
+
1

𝑞
= 1. 

 

 

In this effort, the quadratic variation of 𝒥𝑡 is as follows: 

 

 

[𝒥, 𝒥]𝑡 = ∑ (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)
6
𝑑[𝑋, 𝑋]𝑡

𝑡𝑖+1≤𝑡

+ (𝑋𝑡 − 𝑋𝑡∗)
6
𝑑[𝑋, 𝑋]𝑡 

= ∑ ∫ (𝑋𝑠 − 𝑋𝑡𝑖)
6
𝑑[𝑋, 𝑋]𝑠

𝑡𝑖+1

𝑡𝑖𝑡𝑖+1≤𝑡

+∫ (𝑋𝑠 − 𝑋𝑡∗)
6
𝑑[𝑋, 𝑋]𝑠.

𝑡

𝑡∗

 

 

 

Moreover, application of Itô’s formula to 𝑓(𝑋𝑡) = (𝑋𝑡 − 𝑋𝑡𝑖)
8
 with 𝑋0 = 0, under 

Assumption 3.3, yields 
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(𝑋𝑡 − 𝑋𝑡𝑖)
8
= 𝑓(𝑋0) + ∫ 8(𝑋𝑠 − 𝑋𝑡𝑖)

7
𝑑𝑋𝑠

𝑡

0

+∫ 28(𝑋𝑠 − 𝑋𝑡𝑖)
6
𝑑[𝑋, 𝑋]𝑠

𝑡

0

, 

 

 

where on a grid ℋ, [𝑋; 8]𝑡
ℋ denotes (𝑋𝑡 − 𝑋𝑡𝑖)

8
 and 

 

 

(𝑋𝑡 − 𝑋𝑡𝑖)
8
= ∑ (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)

8
+

𝑡𝑖+1≤𝑡

(𝑋𝑡 − 𝑋𝑡∗)
8
. 

 

 

Hence, 

 

 

[𝒥, 𝒥]𝑡 =
1

28
[𝑋; 8]𝑡

ℋ −
8

28
∫ (𝑋𝑠 − 𝑋𝑡𝑖)

7
𝑑𝑋𝑠

𝑡

0

. (A.1) 

 

 

By Theorem 20 in Chapter 2, p.56 of [97], because under Assumptions 3.3 and 3.4, 𝑋𝑡 

is locally square integrable local martingale and (𝑋𝑠 − 𝑋𝑡𝑖)
7
 is an adapted process with 

cádlág paths, the second term on the RHS of the Equation (A.1) is a locally square 

integrable local martingale.  

 

Additionally, for any stopping time 𝜏 ≤ T, [𝑋; 8]𝜏
ℋ = ∑ (𝑋𝜏∧𝑡𝑖+1 − 𝑋𝜏∧𝑡𝑖)

8
𝑖 . 

 

To show that supremum of |𝒥𝑡| converge to 0 in probability at an order of (ℎ − 1)−1, 

i.e., ℙ [ℎ sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿] = 0, for any 𝛿 > 0 we need to look at [𝒥, 𝒥]𝑡 and prove that  

 

 

‖ sup
0≤𝑡≤T

|𝒥𝑡|‖
𝑝

≤ 𝐶𝑝‖[𝒥, 𝒥]𝑇‖𝑝/2
1/2

. 

 

 

Let’s define 𝜏ℎ as 𝜏ℎ ∶= inf{𝑡 ∈ [0, 𝑇]: (ℎ − 1)
2∑ (𝑡𝑖+1 ∧ 𝑡 − 𝑡𝑖 ∧ 𝑡)

4
𝑖 < 𝜑} for any 

𝜑 > 0. Then, 

 

 

ℙ [(ℎ − 1) sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿] ≤ ℙ [(ℎ − 1) sup
0≤𝑡≤𝜏ℎ

|𝒥𝑡| > 𝛿] + ℙ[𝜏ℎ ≠ 𝑇]. 

 

 

Recall that Chebyshev’s inequality requires that for any integrable random variable 𝐴 

and positive 𝑟,  
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ℙ[|𝐴| ≥ 𝑘] ≤
𝔼[|𝐴|𝑟]

𝑘𝑟
. 

 

 

For the proof, we take 𝑟 = 2 and write  

 

 

ℙ [(ℎ − 1) sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿] ≤
1

𝛿2
𝔼 [((ℎ − 1) sup

0≤𝑡≤𝜏ℎ

|𝒥𝑡|)

2

] + ℙ[𝜏ℎ ≠ 𝑇]. 

 

 

By definition,  

 

 

‖ sup
0≤𝑡≤𝜏ℎ

|𝒥𝑡|‖
2

= (𝔼 [( sup
0≤𝑡≤𝜏ℎ

|𝒥𝑡|)

2

])

1/2

. 

 

 

Now, we apply the last part of Burkholder-Davis-Gundy inequality 

 

 

(‖ sup
0≤𝑡≤𝜏ℎ

|𝒥𝑡|‖
2

)

2

≤ (𝐶2‖[ℐ, 𝒥]𝜏ℎ‖1

1
2)

2

 

⇒𝔼 [( sup
0≤𝑡≤𝜏ℎ

|𝒥𝑡|)

2

] ≤ 𝐶2
2𝔼[[𝒥, 𝒥]𝜏ℎ] 

⇒ℙ[(ℎ − 1) sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿] ≤
1

𝛿2
(ℎ − 1)2𝐶2

2𝔼[[𝒥, 𝒥]𝜏ℎ] + ℙ[𝜏ℎ ≠ 𝑇]. 

(A.2) 

 

 

At this stage, let’s examine the term 𝔼[[𝒥, 𝒥]𝜏]. Since 𝜎𝜏 ⊥ 𝐵𝜏 , (𝑋𝜏 − 𝑋𝑡𝑖) ⊥  𝑑𝑋𝜏, 

𝔼[𝑑𝐵𝜏] , the true price 𝑋𝑡 is a local martingale from Assumption 3.3, and by Theorem 

2.13 in Chapter 2, p.129 of [91], which explains that it is possible to write difference 

of a martingale at different times in terms of difference of quadratic variation of the 

same martingale at those times, 

 

 

[[𝒥, 𝒥]𝜏] =
1

28
𝔼[[𝑋; 8]𝜏

ℋ] −
8

28
𝔼 [(𝑋𝜏 − 𝑋𝑡𝑖)

7
𝑑𝑋𝜏] 

=
1

28
𝔼[[𝑋; 8]𝜏

ℋ] −
8

28
𝔼 [(𝑋𝜏 − 𝑋𝑡𝑖)

7
] 𝔼[𝑑𝑋𝜏] 

=
1

28
𝔼[[𝑋; 8]𝜏

ℋ] −
8

28
𝔼 [(𝑋𝜏 − 𝑋𝑡𝑖)

7
] 𝔼[𝜎𝜏𝑑𝐵𝜏] 

=
1

28
𝔼[[𝑋; 8]𝜏

ℋ] −
8

28
𝔼 [(𝑋𝜏 − 𝑋𝑡𝑖)

7
] 𝔼[𝜎𝜏]𝔼[𝑑𝐵𝜏] 
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=
1

28
𝔼[[𝑋; 8]𝜏

ℋ] 

=
1

28
𝔼 [∑(𝑋𝜏∧𝑡𝑖+1 − 𝑋𝜏∧𝑡𝑖)

8

𝑖

] 

=
1

28
𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)

4

𝑖

]. 

(A.3) 

 

 

When we set 𝑐𝑝 as √1 28⁄
8

, Burkholder-Davis-Gundy inequality yields 

 

 

√
1

28

8

(𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)
4

𝑖

])

1
8

≤ √
1

28

8

𝐶8 (𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)
4

𝑖

])

1
8

. 

 

 

Taking the 8th power of both sides gives 

 

 

1

28
𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)

4

𝑖

]

≤
1

28
𝐶8
8𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)

4

𝑖

]. 

(A.4) 

 

 

By the linearity of expectation operator, 

 

 

𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)
4

𝑖

] =∑𝔼([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)
4
.

𝑖

 

 

 

By the definition of quadratic variation and Assumption 3.4,  

 

 

𝔼([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)
4
= 𝔼[(∫ 𝜎𝑠

2𝑑𝐵𝑠

𝜏∧𝑡𝑖+1

𝜏∧𝑡𝑖

)

4

] 

≤ 𝔼[𝑎8(𝜏 ∧ 𝑡𝑖+1 − 𝜏 ∧ 𝑡𝑖)
4]. 
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Hence, from Equation (A.3) and Burkholder-Davis-Gundy inequality,  

 

 

𝔼[[𝒥, 𝒥]𝜏] ≤
1

28
𝐶8
8𝔼 [∑([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)

4

𝑖

] 

≤
1

28
𝐶8
8∑𝔼([𝑋, 𝑋]𝜏∧𝑡𝑖+1 − [𝑋, 𝑋]𝜏∧𝑡𝑖)

4

𝑖

 

≤
1

28
𝐶8
8∑𝔼[𝑎8(𝜏 ∧ 𝑡𝑖+1 − 𝜏 ∧ 𝑡𝑖)

4]

𝑖

 

=
1

28
𝐶8
8𝑎8∑𝔼[(𝜏 ∧ 𝑡𝑖+1 − 𝜏 ∧ 𝑡𝑖)

4]

𝑖

 

=
1

28
𝐶8
8𝑎8𝔼 [∑(𝜏 ∧ 𝑡𝑖+1 − 𝜏 ∧ 𝑡𝑖)

4

𝑖

]. 

 

 

Since we assumed that 𝜏ℎ satisfies the condition inf{𝑡 ∈ [0, 𝑇]: (ℎ − 1)2∑ (𝑡𝑖+1 ∧ 𝑡 −𝑖

𝑡𝑖 ∧ 𝑡)
4 < 𝜑}  for any 𝜑 > 0, therefore ∑ (𝜏 ∧ 𝑡𝑖+1 − 𝜏 ∧ 𝑡𝑖)

4 < (ℎ − 1)−2𝜑𝑖 , 

Inequality (A.2) is restated as below: 

 

 

ℙ[(ℎ − 1) sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿] ≤
1

𝛿2
(ℎ − 1)2𝐶2

2𝔼[[𝒥, 𝒥]𝜏ℎ] + ℙ[𝜏ℎ ≠ 𝑇] 

≤
1

𝛿2
(ℎ − 1)2𝐶2

2
1

28
𝑎8𝐶8

8(ℎ − 1)−2𝜑 + ℙ[𝜏ℎ ≠ 𝑇] 

                                                 ≤
1

𝛿2
𝑎8
1

28
𝐶2
2𝐶8
8𝜑 + ℙ[𝜏ℎ ≠ 𝑇]. 

 

 

It is time we consider ℙ[𝜏ℎ ≠ 𝑇] as ℎ → ∞. If we assume that 

 

 

(ℎ − 1)2∑(𝑡𝑖+1 ∧ 𝑡 − 𝑡𝑖 ∧ 𝑡)
4

𝑖

≤ (ℎ − 1)2∆(ℋ)∑(𝑡𝑖+1 − 𝑡𝑖)
3
ℙ
→

𝑖

0, 

 

 

then as Mykland and Zhang [91] put it, ℙ[𝜏ℎ ≠ 𝑇] → 0 as ℎ → ∞. Accordingly,  

 

 

ℙ [ sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿] ≤
1

ℎ − 1

1

𝛿2
𝑎8
1

28
𝐶2
2𝐶8
8𝜑.  

 

 

ℙ [ sup
0≤𝑡≤T

|𝒥𝑡| > 𝛿]→0 as ℎ → ∞. 
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We have proved that supremum of |𝒥𝑡| converge to 0 in probability at an order of 

(ℎ − 1)−1.  Finally from Equation (3.29) and because supremum of absolute value of 

a stochastic process going to 0 in probability implies that the process itself is also 

convergent in probability, we have 

 

 

sup
0≤𝑡≤T

|[𝒵, 𝒵]𝑡 −
2
3⁄ [𝑋, 𝑋, 𝑋, 𝑋]𝑡

ℋℎ| = 𝑜𝑝((ℎ − 1)
−1)  as ℎ → ∞. 
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APPENDIX B
 

 

 

PROOF OF THEOREM 3.4 
 

 

 

 

Step 1: Showing that [𝑿, 𝝐]𝑻
𝓖
= 𝑶𝒑(𝟏) following Lemma A.2 in [111] 

 

On a full grid 𝒢 with |𝒢| = 𝑛 

 

 

[𝑋, 𝜖]𝑇
𝒢
=∑(∆𝑋𝑡𝑖)(∆𝜖𝑡𝑖)

𝑛−2

𝑖=0

=∑(∆𝑋𝑡𝑖)(𝜖𝑡𝑖+1 − 𝜖𝑡𝑖)

𝑛−2

𝑖=0

 

=∑(∆𝑋𝑡𝑖)𝜖𝑡𝑖+1

𝑛−2

𝑖=0

−∑(∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=0

 

= ∆𝑋𝑡0𝜖𝑡1 − ∆𝑋𝑡0𝜖𝑡0 + ∆𝑋𝑡1𝜖𝑡2 − ∆𝑋𝑡1𝜖𝑡1 + ⋯ 

                + ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1 − ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−2  

= 𝜖𝑡1(∆𝑋𝑡0 − ∆𝑋𝑡1) + 𝜖𝑡2(∆𝑋𝑡1 − ∆𝑋𝑡2) 

                +𝜖𝑡3(∆𝑋𝑡2 − ∆𝑋𝑡3) + ⋯ 

                +𝜖𝑡𝑛−2(∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2) − ∆𝑋𝑡0𝜖𝑡0 + ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1 

=∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

− ∆𝑋𝑡0𝜖𝑡0 + ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1  

= 𝑎 + 𝑏 − 𝑐, 

(B.1) 

 

where  

 

 

∆𝑋𝑡𝑖 = (𝑋𝑡𝑖+1 − 𝑋𝑡𝑖), 

 

 

∆𝜖𝑡𝑖 = (𝜖𝑡𝑖+1 − 𝜖𝑡𝑖), 

 

 

𝑎 = ∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

, 
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𝑏 = ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1 , 

 

 

𝑐 = ∆𝑋𝑡0𝜖𝑡0 . 

 

 

Now, under Assumptions 3.1 and 3.2, we calculate Var[[𝑋, 𝜖]𝑇
𝒢
|𝑋] = 𝔼 [([𝑋, 𝜖]𝑇

𝒢
)
2
| 𝑋] 

where 𝔼[[𝑋, 𝜖]𝑇
𝒢
|𝑋] = 0 from the true price and the MMN being orthogonal to each 

other, i.e., on the grid 𝒢, 𝑋𝑡𝑖 ⊥ 𝜖𝑡𝑖 , ∆𝑋𝑡𝑖 ⊥ ∆𝜖𝑡𝑖 for all 𝑡𝑖 ∈ 𝒢. Moreover, 𝔼[𝜖𝑡𝑖|𝑋] =

𝔼[𝜖𝑡] = 0. 

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] = 𝔼[𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑐 − 2𝑏𝑐 + 2𝑎𝑏|𝑋], (B.2) 

 

 

𝔼[𝑏2|𝑋] =  𝔼 [(∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1)
2
| 𝑋] 

=  𝔼 [(∆𝑋𝑡𝑛−2)
2
| 𝑋] 𝔼 [(𝜖𝑡𝑛−1)

2
| 𝑋] 

=  𝔼 [(∆𝑋𝑡𝑛−2)
2
| 𝑋] 𝔼[(𝜖𝑡)

2], 

 

 

𝔼[𝑐2|𝑋] =  𝔼 [(∆𝑋𝑡0𝜖𝑡0)
2
| 𝑋] 

=  𝔼 [(∆𝑋𝑡0)
2
| 𝑋] 𝔼 [(𝜖𝑡0)

2
| 𝑋] 

=  𝔼 [(∆𝑋𝑡0)
2
| 𝑋] 𝔼[(𝜖𝑡)

2], 

 

 

[𝑎2|𝑋] = 𝔼 [(∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

)

2

| 𝑋] 

= 𝔼

[
 
 
 
 
 
 
 
 
 
 
 𝜖𝑡1
2 (∆𝑋𝑡0 − ∆𝑋𝑡1)

2
+⋯+ 𝜖𝑡𝑛−2

2 (∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)
2

+2𝜖𝑡1(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡2(∆𝑋𝑡1 − ∆𝑋𝑡2)

+2𝜖𝑡1(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡3(∆𝑋𝑡2 − ∆𝑋𝑡3)

⋮
+2𝜖𝑡1(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡𝑛−2(∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)

+2𝜖𝑡2(∆𝑋𝑡1 − ∆𝑋𝑡2)𝜖𝑡3(∆𝑋𝑡2 − ∆𝑋𝑡3)

⋮
+2𝜖𝑡2(∆𝑋𝑡1 − ∆𝑋𝑡2)𝜖𝑡𝑛−2(∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)

⋮
+2𝜖𝑡𝑛−3(∆𝑋𝑡𝑛−4 − ∆𝑋𝑡𝑛−3)𝜖𝑡𝑛−2(∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)

|

|

|

|

𝑋

]
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= 𝔼 [

𝜖𝑡1
2 (∆𝑋𝑡0 − ∆𝑋𝑡1)

2
+⋯+ 𝜖𝑡𝑛−2

2 (∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)
2

+2∑ ∑ (∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖 (∆𝑋𝑡𝑗−1 − ∆𝑋𝑡𝑗) 𝜖𝑡𝑗

𝑛−2

𝑗=2

𝑛−3

𝑖=1

| 𝑋] , 𝑖 ≠ 𝑗. 

 

 

Recall that from i.i.d structure of MMN, if  𝑖 ≠ 𝑗, 𝜖𝑡𝑖 ⊥ 𝜖𝑡𝑗. Hence, 

 

 

𝔼 [2∑ ∑ (∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖 (∆𝑋𝑡𝑗−1 − ∆𝑋𝑡𝑗) 𝜖𝑡𝑗

𝑛−2

𝑗=2

𝑛−3

𝑖=1
| 𝑋] 

= 2∑ ∑ 𝔼[(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖 (∆𝑋𝑡𝑗−1 − ∆𝑋𝑡𝑗) 𝜖𝑡𝑗| 𝑋]
𝑛−2

𝑗=2

𝑛−3

𝑖=1
 

 = 2∑ ∑ 𝔼[𝜖𝑡𝑖|𝑋]𝔼[∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖|𝑋]𝔼 [∆𝑋𝑡𝑗−1 − ∆𝑋𝑡𝑗| 𝑋]
𝑛−2

𝑗=2

𝑛−3

𝑖=1
𝔼 [𝜖𝑡𝑗| 𝑋] 

= 0, 
 

 

and 

 

 

𝔼[𝑎2|𝑋] =  𝔼 [𝜖𝑡1
2 (∆𝑋𝑡0 − ∆𝑋𝑡1)

2
+⋯+ 𝜖𝑡𝑛−2

2 (∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)
2
| 𝑋]. 

 

 

Incorporating 𝔼[𝑎2|𝑋], 𝔼[𝑏2|𝑋] and 𝔼[𝑐2|𝑋] into Equation (B.2) gives rise to 

 

 

𝔼[𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑐 − 2𝑏𝑐 + 2𝑎𝑏|𝑋]

=  𝔼 [∑ 𝜖𝑡𝑖
2(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)

2
𝑛−2

𝑖=1

| 𝑋]

+  𝔼 [(∆𝑋𝑡𝑛−2)
2
| 𝑋] 𝔼[(𝜖𝑡)

2]             

+  𝔼 [(∆𝑋𝑡0)
2
| 𝑋] 𝔼[(𝜖𝑡)

2] − 2𝔼[𝑎𝑐 + 𝑏𝑐 − 𝑎𝑏|𝑋]. 

(B.3) 

 

 

To calculate the last term on the RHS of Equation (B.3), we focus on 𝔼[𝑎𝑐|𝑋], 
𝔼[𝑎𝑏|𝑋], and 𝔼[𝑏𝑐|𝑋]. 
 

 

𝔼[𝑎𝑐|𝑋] =  𝔼 [(∑𝜖𝑡𝑖(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)

𝑛−2

𝑖=1

)∆𝑋𝑡0𝜖𝑡0| 𝑋] 

=  𝔼[𝜖𝑡1𝜖𝑡0∆𝑋𝑡0(∆𝑋𝑡0 − ∆𝑋𝑡1)|𝑋]

+ 𝔼[𝜖𝑡2𝜖𝑡0∆𝑋𝑡0(∆𝑋𝑡1 − ∆𝑋𝑡0)|𝑋] + ⋯ 

                                          + 𝔼[𝜖𝑡𝑛−2𝜖𝑡0∆𝑋𝑡0(∆𝑋𝑡𝑛−3 − ∆𝑋𝑡𝑛−2)|𝑋], 

(B.4) 
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where as long as  𝑖 ≠ 𝑗, 𝜖𝑡𝑖 ⊥ 𝜖𝑡𝑗 and 𝔼[𝜖𝑡1𝜖𝑡0∆𝑋𝑡0(∆𝑋𝑡0 − ∆𝑋𝑡1)|𝑋] = 0, so each 

term on the RHS of Equation (B.4) equals to 0. By this token, 𝔼[𝑎𝑐|𝑋] = 0, 

𝔼[𝑎𝑏|𝑋] = 0, and 𝔼[𝑏𝑐|𝑋] = 0. Therefore, Equation (B.2) becomes 

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] 

=  𝔼 [∑𝜖𝑡𝑖
2(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)

2
𝑛−2

𝑖=1

| 𝑋] +  𝔼 [(∆𝑋𝑡𝑛−2)
2
| 𝑋] 𝔼[(𝜖𝑡)

2] 

+ 𝔼 [(∆𝑋𝑡0)
2
| 𝑋] 𝔼[(𝜖𝑡)

2] 

 = 𝔼[(𝜖)2] 𝔼 [(∆𝑋𝑡0)
2
+ (∆𝑋𝑡𝑛−2)

2
+∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)

2
𝑛−2

𝑖=1

| 𝑋] 

= 𝔼[(𝜖)2] 𝔼

[
 
 
 
 (∆𝑋𝑡0)

2
+ (∆𝑋𝑡𝑛−2)

2

+∑(∆𝑋𝑡𝑖−1)
2
+∑(∆𝑋𝑡𝑖)

2
− 2

𝑛−2

𝑖=1

𝑛−2

𝑖=1

∑∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖

𝑛−2

𝑖=1

|| 𝑋

]
 
 
 
 

 

= 𝔼[(𝜖)2] 𝔼 [2∑(∆𝑋𝑡𝑖)
2
− 2

𝑛−2

𝑖=0

∑∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖

𝑛−2

𝑖=1

| 𝑋], 

(B.5) 

 

 

where  

 

 

(∆𝑋𝑡𝑛−2)
2
+∑(∆𝑋𝑡𝑖−1)

2
=

𝑛−2

𝑖=1

∑(∆𝑋𝑡𝑖)
2

𝑛−2

𝑖=0

, 

 

 

(∆𝑋𝑡0)
2
+∑(∆𝑋𝑡𝑖)

2
=

𝑛−2

𝑖=1

∑(∆𝑋𝑡𝑖)
2

𝑛−2

𝑖=0

, 

 

 

Since (𝛼 − 𝛽) ≤ |𝛼| + |𝛽| and for any duo of real numbers 𝛼  and 𝛽, we can rewrite 

Equation (B.5) as an inequality, 

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] ≤  2𝔼[(𝜖)2] 𝔼 [|∑(∆𝑋𝑡𝑖)

2
𝑛−2

𝑖=0

| + |∑∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖

𝑛−2

𝑖=1

|| 𝑋] 

= 2𝔼[(𝜖)2] (𝔼 [∑(∆𝑋𝑡𝑖)
2

𝑛−2

𝑖=0

| 𝑋] + |∑∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖

𝑛−2

𝑖=1

|). 

(B.6) 
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By using the inequality |∑ 𝛼𝑖𝑖 𝛽𝑖| ≤ ∑ |𝛼𝑖𝛽𝑖|𝑖  and the interchangeability of expectation 

and sigma operators, Inequality (B.6) is restated as  

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] ≤  2𝔼[(𝜖)2] (𝔼 [|∑(∆𝑋𝑡𝑖)

2
𝑛−2

𝑖=0

| +∑|∆𝑋𝑡𝑖−1||∆𝑋𝑡𝑖|

𝑛−2

𝑖=1

| 𝑋]) 

= 2𝔼[(𝜖)2] [∑(∆𝑋𝑡𝑖)
2

𝑛−2

𝑖=0

| 𝑋] 

                              +2𝔼[(𝜖)2]∑𝔼 [|∆𝑋𝑡𝑖−1||∆𝑋𝑡𝑖|| 𝑋] .

𝑛−2

𝑖=1

 

(B.7) 

 

 

From the Cauchy-Schwarz Inequality, which says that for two random variables 𝒮 and 

𝒬, |𝔼[𝒮𝒬]|2 ≤  𝔼[𝒮2]𝔼[𝒬2],  
 

 

𝔼 [|∆𝑋𝑡𝑖−1||∆𝑋𝑡𝑖|| 𝑋] ≤  𝔼
1
2 [(∆𝑋𝑡𝑖)

2
| 𝑋] 𝔼

1
2 [(∆𝑋𝑡𝑖−1)

2
| 𝑋], 

 

 

and Inequality (B.7) becomes 

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋]

≤  2𝔼[(𝜖)2] (𝔼 [∑(∆𝑋𝑡𝑖)
2

𝑛−2

𝑖=0

| 𝑋]

+∑𝔼
1
2 [(∆𝑋𝑡𝑖−1)

2
| 𝑋] 𝔼

1
2 [(∆𝑋𝑡𝑖)

2
| 𝑋]

𝑛−2

𝑖=1

). 

 

 

By application of the version of Cauchy-Schwarz Inequality laid out in Inequality 

(3.10) and [𝑋, 𝑋]𝑇 > 0,  (∆𝑋𝑡0)
2
> 0,  (∆𝑋𝑡𝑛)

2
> 0, 𝔼 [∑ (∆𝑋𝑡𝑖)

2𝑛−2
𝑖=0 | 𝑋] = [𝑋, 𝑋]𝑇, 

we get 
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∑𝔼
1
2 [(∆𝑋𝑡𝑖−1)

2
| 𝑋] 𝔼

1
2 [(∆𝑋𝑡𝑖)

2
| 𝑋]

𝑛−2

𝑖=1

≤ √(∑𝔼[(∆𝑋𝑡𝑖)
2
| 𝑋]

𝑛−2

𝑖=1

)(∑𝔼[(∆𝑋𝑡𝑖−1)
2
| 𝑋]

𝑛−2

𝑖=1

)

= √𝔼 [∑(∆𝑋𝑡𝑖)
2
− (∆𝑋𝑡0)

2
𝑛−2

𝑖=0

| 𝑋] 𝔼 [∑(∆𝑋𝑡𝑖−1)
2
− (∆𝑋𝑡𝑛−2)

2
𝑛−2

𝑖=0

| 𝑋]

= √([𝑋, 𝑋]𝑇 − 𝔼 [(∆𝑋𝑡𝑛−2)
2
| 𝑋]) ([𝑋, 𝑋]𝑇 − 𝔼 [(∆𝑋𝑡0)

2
| 𝑋])

≤ √[𝑋, 𝑋]𝑇[𝑋, 𝑋]𝑇 . 
 

 

Then, the final version of Inequality (B.7) is as follows: 

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] ≤ 4𝔼[(𝜖)2][𝑋, 𝑋]𝑇 . 

 

 

From Assumption 3.1, 𝔼[(𝜖)2] is constant and from the stochastic boundedness of 
[𝑋, 𝑋]𝑇, mentioned in Section 3.2 before,  

 

 

𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] = 𝑂𝑝(1), 

 

 

We now apply the Markov Inequality to [𝑋, 𝜖]𝑇
𝒢
 with  

 

 

ℙ[|[𝑋, 𝜖]𝑇
𝒢
|𝑋| ≥ 𝛾] ≤

1

𝛾2
𝔼 [([𝑋, 𝜖]𝑇

𝒢
)
2
| 𝑋] , ∀ 𝛾 ∈ (0,∞). (B.8) 

 

 

Because 𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] is stochastically bounded, the RHS of Inequality (B.8) 

equals to a real number 𝜌. As it is possible to find a 𝛾 for any 𝜌, the definition of 

stochastic boundedness is satisfied and [𝑋, 𝜖]𝑇
𝒢
= 𝑂𝑝(1). 

 

 

Step 2: Showing asymptotical convergence and distribution of 
𝟏

√𝒏−𝟏
([𝝐, 𝝐]𝑻

𝓖
−

𝔼[[𝝐, 𝝐]𝑻
𝓖
|𝑿])  
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[𝜖, 𝜖]𝑇
𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
]|𝑋 = [𝜖, 𝜖]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2] 

= ∑(∆𝜖𝑡𝑖)
2

𝑛−2

𝑖=0

− 2(𝑛 − 1)𝔼[𝜖2] 

= (∑𝜖𝑡𝑖+1
2 − 2𝜖𝑡𝑖+1𝜖𝑡𝑖 + 𝜖𝑡𝑖

2

𝑛−2

𝑖=0

) − 2(𝑛 − 1)𝔼[𝜖2] 

= 𝜖𝑡1
2 + 𝜖𝑡0

2 +⋯+ 𝜖𝑡𝑛−1
2 + 𝜖𝑡𝑛−2

2  

                                         −2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

) − 2(𝑛 − 1)𝔼[𝜖2] 

= 2𝜖𝑡1
2 +⋯+ 2𝜖𝑡𝑛−2

2 + 𝜖𝑡0
2 + 𝜖𝑡𝑛−1

2  

                                        −2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

) − 2(𝑛 − 1)𝔼[𝜖2] 

= ∑𝜖𝑡𝑖
2

𝑛−2

𝑖=1

+ (𝜖𝑡0
2 + 𝜖𝑡𝑛−1

2 ) − 2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

) 

                                         −2(𝑛 − 1)𝔼[𝜖2] 

= 2(∑𝜖𝑡𝑖
2

𝑛−2

𝑖=1

−∑𝔼[𝜖2]

𝑛−2

𝑖=1

) + (𝜖𝑡0
2 − 𝔼[𝜖2]) 

                                       +(𝜖𝑡𝑛−1
2 − 𝔼[𝜖2]) − 2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

) 

= 2(∑𝜖𝑡𝑖
2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

) + (𝜖𝑡0
2 − 𝔼[𝜖2]) 

+(𝜖𝑡𝑛−1
2 − 𝔼[𝜖2]) − 2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

), 

(B.9) 

 

 

where  

 

 

2(𝑛 − 1)𝔼[𝜖2] = 2∑𝔼[𝜖2]

𝑛−2

𝑖=1

+ 2𝔼[𝜖2]. 

 

 

As stated in Assumption 3.1, we take 𝔼[𝜖4] as finite, then by the Markov’s Inequality, 

 

 

ℙ[|𝔼[𝜖2]| ≥ 𝛾] ≤
1

𝛾2
𝔼[𝜖4], ∀ 𝛾 ∈ (0,∞), 
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and for any finite value on the RHS of the above inequality, we can find at least one 

finite and positive 𝛾, which shows that 𝔼[𝜖2] is stochastically bounded. Embedding 

this fact into Equation (B.9) leads to 

 

 

[𝜖, 𝜖]𝑇
𝒢
− 2(𝑛 − 1)𝔼[𝜖2] = 2(∑ 𝜖𝑡𝑖

2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

) − 2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

) + 𝑂𝑝(1), 𝑛 ≥ 3. 

 

 

If we make the following definitions: 

 

 

𝑀𝑇
(1)
∶=

1

√𝑛 − 2
∑𝜖𝑡𝑖

2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

, 

 

 

𝑀𝑇
(2)
∶=

1

√𝑛 − 2
∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

, 

 

 

Then, Equation (B.9) is rewritten as  

 

 

[𝜖, 𝜖]𝑇
𝒢
− 2(𝑛 − 1)𝔼[𝜖2] = 2√𝑛 − 2(𝑀𝑇

(1) −𝑀𝑇
(2)) + 𝑂𝑝(1). 

 

 

If 𝑛 = 3, 

 

 

𝑀𝑇
(1)
=
1

√1
(𝜖𝑡1
2 − 𝔼[𝜖2]) =

1

√1
(𝑏1,1), 

𝑏1,1 ∶= 𝜖𝑡1
2 − 𝔼[𝜖2], 

 

 

𝑀𝑇
(2)
=

1

√1
(𝜖𝑡1𝜖𝑡0 + 𝜖𝑡2𝜖𝑡1) =

1

√1
(𝑐1,1 + 𝑐1,2), 

𝑐1,1 ∶= 𝜖𝑡1𝜖𝑡0 , 𝑐1,2 ∶= 𝜖𝑡2𝜖𝑡1 . 

 

 

If 𝑛 = 4, 

 

 

𝑀𝑇
(1)
=
1

√2
(𝜖𝑡1
2 − 𝔼[𝜖2] + 𝜖𝑡2

2 − 𝔼[𝜖2]) =
1

√2
(𝑏2,1 + 𝑏2,2), 

𝑏2,1 ∶= 𝜖𝑡1
2 − 𝔼[𝜖2], 𝑏2,2 ∶= 𝜖𝑡2

2 − 𝔼[𝜖2], 
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𝑀𝑇
(2)
=
1

√2
(𝜖𝑡1𝜖𝑡0 + 𝜖𝑡2𝜖𝑡1 + 𝜖𝑡3𝜖𝑡2) =

1

√2
(𝑐2,1 + 𝑐2,2 + 𝑐2,3), 

𝑐2,1 ∶= 𝜖𝑡1𝜖𝑡0 , 𝑐2,2 ∶= 𝜖𝑡2𝜖𝑡1 , 𝑐2,3 ∶= 𝜖𝑡3𝜖𝑡2 . 

 

 

If 𝑛 = 5, 

 

𝑀𝑇
(1)
=
1

√3
(𝜖𝑡1
2 − 𝔼[𝜖2] + 𝜖𝑡2

2 − 𝔼[𝜖2] + 𝜖𝑡3
2 − 𝔼[𝜖2]) =

1

√3
(𝑏3,1 + 𝑏3,2 + 𝑏3,3), 

𝑏3,1 ∶= 𝜖𝑡1
2 − 𝔼[𝜖2], 𝑏3,2 ∶= 𝜖𝑡2

2 − 𝔼[𝜖2], 𝑏3,3 ∶= 𝜖𝑡3
2 − 𝔼[𝜖2], 

 

 

𝑀𝑇
(2)
=
1

√3
(𝜖𝑡1𝜖𝑡0 + 𝜖𝑡2𝜖𝑡1 + 𝜖𝑡3𝜖𝑡2 + 𝜖𝑡4𝜖𝑡3) =

1

√3
(𝑐3,1 + 𝑐3,2 + 𝑐3,3 + 𝑐3,4), 

𝑐3,1 ∶= 𝜖𝑡1𝜖𝑡0 , 𝑐3,2 ∶= 𝜖𝑡2𝜖𝑡1 , 𝑐3,3 ∶= 𝜖𝑡3𝜖𝑡2 , 𝑐3,4 ∶= 𝜖𝑡4𝜖𝑡3. 

 

 

Accordingly, as 𝑛 → ∞, if we organize terms in the form 𝑏𝑛−2,𝑖 and 𝑐𝑛−2,𝑖+1  in a 

triangular way separately, we have two arrays in the following forms  

 

 

𝑏1,1 
𝑏2,1 𝑏2,2 
𝑏3,1 𝑏3,2 𝑏3,3 

⋮ 
 

 

𝑐1,1 𝑐1,2 
𝑐2,1 𝑐2,2 𝑐2,3 
𝑐3,1 𝑐3,2 𝑐3,3 𝑐3,4 

⋮ 
 

 

Then, for a specific 𝑛, 𝑀𝑇
(1)

 and 𝑀𝑇
(2)
 are separate sums of the row 𝑛 − 2 in first and 

second triangular array divided by 
1

√𝑛−2
, respectively.  

 

Entries in each row of each triangular array are i.i.d with mean 0 and finite variance, 

since for 𝑖 ≠ 𝑗, ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝒢,  by Assumptions 3.1 and 3.2 

 

 

𝜖𝑡𝑖
2 − 𝔼[𝜖2] ⊥ 𝜖𝑡𝑗

2 − 𝔼[𝜖2], 𝜖𝑡𝑖𝜖𝑡𝑖+1 ⊥ 𝜖𝑡𝑗𝜖𝑡𝑗+1 , 𝜖𝑡𝑖 ⊥ 𝑋𝑡𝑖 , 

 

 

𝔼[𝜖𝑡𝑖
2 − 𝔼[𝜖2]|𝑋] = 𝔼[𝜖2] − 𝔼[𝜖2] = 0, 
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[𝜖𝑡𝑖𝜖𝑡𝑖+1|𝑋] = 𝔼[𝜖𝑡𝑖]𝔼[𝜖𝑡𝑖+1] =  𝔼[𝜖
2]𝔼[𝜖2] = 0, 

 

 

Var[𝜖𝑡𝑖
2 − 𝔼[𝜖2]|𝑋] = 𝔼 [(𝜖𝑡𝑖

2 − 𝔼[𝜖2])
2
] − (𝔼 [𝜖𝑡𝑖

2 − 𝔼[𝜖2]])
2

=  𝔼 [(𝜖𝑡𝑖
2 − 𝔼[𝜖2])

2
] 

= 𝔼 [𝜖𝑡𝑖
4+(𝔼[𝜖2])2 − 2𝜖𝑡𝑖

2𝔼[𝜖2]] = 𝔼[𝜖𝑡𝑖
4 ] − (𝔼[𝜖2])2 

= Var[𝜖2] < ∞, 
 

 

Var[𝜖𝑡𝑖𝜖𝑡𝑖+1|𝑋] = 𝔼 [(𝜖𝑡𝑖𝜖𝑡𝑖+1)
2
] − (𝔼[𝜖𝑡𝑖𝜖𝑡𝑖+1])

2
=  𝔼 [(𝜖𝑡𝑖𝜖𝑡𝑖+1)

2
]

= 𝔼[𝜖𝑡𝑖
2 ]𝔼[𝜖𝑡𝑖+1

2 ] 

= (𝔼[𝜖2])2 < ∞, 
 

 

In this context, application of LLN and CLT for triangular arrays (Theorem 27.2 in 

Chapter 5, Section 27, p. 352 of [34]) yields  

 

 
ℨ𝑛
𝔍𝑛

𝑑
→𝑁(0,1), 

⇒ 
∑ 𝑏𝑛−2,𝑖
𝑛−2
𝑖=1

√(𝑛 − 2)Var[𝜖2]

𝑑
→𝑁(0,1) ⇒

√(𝑛 − 2)

√(𝑛 − 2)

𝑀𝑇
(1)

√Var[𝜖2]

𝑑
→𝑁(0,1), 

⇒𝑀𝑇
(1) 𝑑
→𝑁(0, Var[𝜖2]) as 𝑛 → ∞, 

 

 
𝔎𝑛
𝔏𝑛

𝑑
→𝑁(0,1), 

⇒ 
∑ 𝑐𝑛−2,𝑖+1
𝑛−2
𝑖=0

√(𝑛 − 1)(𝔼[𝜖2])2

𝑑
→𝑁(0,1) ⇒

√(𝑛 − 2)

√(𝑛 − 1)

𝑀𝑇
(2)

√(𝔼[𝜖2])2

𝑑
→𝑁(0,1), 

⇒𝑀𝑇
(2) 𝑑
→𝑁(0, (𝔼[𝜖2])2) as 𝑛 → ∞,

√(𝑛 − 2)

√(𝑛 − 1)
→ 1, 

 

 

where  

 

 

ℨ𝑛 ∶=∑𝑏𝑛−2,𝑖

𝑛−2

𝑖=1

, 

𝔍𝑛
2 ∶= Var[𝔍𝑛] =∑Var[𝑏𝑛−2,𝑖]

𝑛−2

𝑖=1

= ∑Var[𝜖2]

𝑛−2

𝑖=1

= (𝑛 − 2)Var[𝜖2], 
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𝔎𝑛 ∶=∑𝑐𝑛−2,𝑖+1,

𝑛−2

𝑖=0

 

𝔏𝑛
2 ∶= Var[𝔎𝑛] =∑Var[𝑐𝑛−2,𝑖+1]

𝑛−2

𝑖=0

= ∑(𝔼[𝜖2])2
𝑛−2

𝑖=0

= (𝑛 − 1)(𝔼[𝜖2])2, 

 

 

required that the Lindeberg’s condition is satisfied for each row in each triangular 

array, i.e., whether or not for any 𝛿 > 0, 

 

 

1

𝔍𝑛2
∑𝔼[𝑏𝑛−2,𝑖

2 𝕀{|𝑏𝑛−2,𝑖|≥𝛿𝔍𝑛}| 𝑋]

𝑛−2

𝑖=1

, 

 

 

and 

 

 

1

𝔏𝑛2
∑𝔼[𝑐𝑛−2,𝑖+1

2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}| 𝑋]

𝑛−2

𝑖=0

 

 

 

converge to 0 as 𝑛 → ∞.  

 

Since i.i.d characteristic of MMN under Assumption 3.1 makes 𝑏𝑛−2,𝑖 and 𝑐𝑛−2,𝑖+1   
i.i.d as well,  

 

 

∑𝔼[𝑏𝑛−2,𝑖
2 𝕀{|𝑏𝑛−2,𝑖|≥𝛿𝔍𝑛}| 𝑋]

𝑛−2

𝑖=1

=∑𝔼[𝑏𝑛−2,𝑖
2 𝕀{|𝑏𝑛−2,𝑖|≥𝛿𝔍𝑛}]

𝑛−2

𝑖=1

= 𝔼 [𝑏𝑛−2,1
2 𝕀{|𝑏𝑛−2,1|≥𝛿𝔍𝑛}] + ⋯+ 𝔼 [𝑏𝑛−2,𝑛−2

2 𝕀{|𝑏𝑛−2,𝑛−2|≥𝛿𝔍𝑛}]

= (𝑛 − 2)𝔼 [𝑏𝑛−2,1
2 𝕀

{|𝑏𝑛−2,1|≥𝛿√(𝑛−2)Var[𝜖2]}
], 

 

 

∑𝔼[𝑐𝑛−2,𝑖+1
2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}| 𝑋]

𝑛−2

𝑖=0

=∑𝔼[𝑐𝑛−2,𝑖+1
2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}]

𝑛−2

𝑖=0

= 𝔼 [𝑐𝑛−2,1
2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}] + ⋯+ 𝔼 [𝑐𝑛−2,𝑛−1

2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}]

= (𝑛 − 1)𝔼 [𝑐𝑛−2,1
2 𝕀{|𝑐𝑛−2,1|≥𝛿𝔏𝑛}]. 

 

 

Then, 
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lim
𝑛→∞

1

𝔍𝑛2
∑𝔼[𝑏𝑛−2,𝑖

2 𝕀{|𝑏𝑛−2,𝑖|>𝛿𝔍𝑛}]

𝑛−2

𝑖=1

= lim
𝑛→∞

1

(𝑛 − 2)Var[𝜖2]
∑𝔼 [𝑏𝑛−2,𝑖

2 𝕀
{|𝑏𝑛−2,𝑖|>𝛿√(𝑛−2)Var[𝜖2]}

]

𝑛−2

𝑖=1

= lim
𝑛→∞

1

(𝑛 − 2)Var[𝜖2]
(𝑛 − 2)𝔼 [𝑏𝑛−2,1

2 𝕀
{|𝑏𝑛−2,1|>𝛿√(𝑛−2)Var[𝜖2]}

]

= lim
𝑛→∞

1

Var[𝜖2]
𝔼 [𝑏𝑛−2,1

2 𝕀
{|𝑏𝑛−2,1|>𝛿√(𝑛−2)Var[𝜖2]}

], 

(B.10) 

 

 

lim
𝑛→∞

1

𝔏𝑛2
∑𝔼[𝑐𝑛−2,𝑖+1

2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}]

𝑛−2

𝑖=0

= lim
𝑛→∞

1

(𝑛 − 1)(𝔼[𝜖2])2
∑𝔼[𝑐𝑛−2,𝑖+1

2 𝕀
{|𝑐𝑛−2,1|≥𝛿√(𝑛−1)(𝔼[𝜖2])2}

]

𝑛−2

𝑖=0

= lim
𝑛→∞

1

(𝑛 − 1)(𝔼[𝜖2])2
(𝑛 − 1)𝔼 [𝑐𝑛−2,1

2 𝕀
{|𝑐𝑛−2,1|≥𝛿√(𝑛−1)(𝔼[𝜖2])2}

]

= lim
𝑛→∞

1

(𝔼[𝜖2])2
𝔼 [𝑐𝑛−2,1

2 𝕀
{|𝑐𝑛−2,1|≥𝛿√(𝑛−1)(𝔼[𝜖2])2}

]. 

(B.11) 

 

 

Next, we apply the Dominated Convergence Theorem which allows us to interchange 

limit and expectation in Equations (B.10) and (B.11)  

 

 

lim
𝑛→∞

1

𝔍𝑛2
∑𝔼[𝑏𝑛−2,𝑖

2 𝕀{|𝑏𝑛−2,𝑖|≥𝛿𝔍𝑛}]

𝑛−2

𝑖=1

=
1

Var[𝜖2]
𝔼 [ lim

𝑛→∞
𝑏𝑛−2,1
2 𝕀

{|𝑏𝑛−2,1|≥𝛿√(𝑛−2)Var[𝜖2]}
], 

 

 

lim
𝑛→∞

1

𝔏𝑛2
∑𝔼[𝑐𝑛−2,𝑖+1

2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}]

𝑛−2

𝑖=0

=
1

(𝔼[𝜖2])2
𝔼 [ lim

𝑛→∞
𝑐𝑛−2,1
2 𝕀

{|𝑐𝑛−2,1|≥𝛿√(𝑛−1)(𝔼[𝜖2])2}
]. 

 

 

At this moment, we return to Assumption 3.1, and recall that we take second and fourth 

moment of the MMN finite, so  

 

 

𝔼[𝑏𝑛−2,1
2 |𝑋] = 𝔼[𝑏𝑛−2,1

2 ] = 𝔼 [(𝜖𝑡1
2 − 𝔼[𝜖2])

2
] = 𝔼[𝜖𝑡𝑖

4 ] − (𝔼[𝜖2])2 < ∞, 
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[𝑐𝑛−2,1
2 |𝑋] = 𝔼[𝑐𝑛−2,1

2 ] = 𝔼 [(𝜖𝑡1𝜖𝑡0)
2
] = (𝔼[𝜖2])2 < ∞, 

 

 

and  

 

 

𝔼[𝑏𝑛−2,1
2 ] =  𝔼 [𝑏𝑛−2,1

2 𝕀
{|𝑏𝑛−2,1|≥𝛿√(𝑛−2)Var[𝜖2]}

] + 𝔼 [𝑏𝑛−2,1
2 𝕀

{|𝑏𝑛−2,1|<𝛿√(𝑛−2)Var[𝜖2]}
], 

 

 

𝔼[𝑐𝑛−2,1
2 ] =  𝔼 [𝑐𝑛−2,1

2 𝕀
{|𝑐𝑛−2,1|≥𝛿√(𝑛−1)(𝔼[𝜖2])2}

] + 𝔼 [𝑐𝑛−2,1
2 𝕀

{|𝑐𝑛−2,1|<𝛿√(𝑛−1)(𝔼[𝜖2])2}
], 

 

 

𝛿√(𝑛 − 2)Var[𝜖2] → ∞, 𝛿√(𝑛 − 1)(𝔼[𝜖2])2 → ∞ as 𝑛 → ∞ . 
 

 

The postulations 𝔼[𝑏𝑛−2,1
2 ] < ∞ and 𝔼[𝑐𝑛−2,1

2 ] < ∞ contradict with positive 

probabilities of the event that |𝑏𝑛−2,1| ≥ 𝛿√(𝑛 − 2)Var[𝜖2] or |𝑐𝑛−2,1| ≥

𝛿√(𝑛 − 1)(𝔼[𝜖2])2, because if there is at least one event where |𝑏𝑛−2,𝑖| → ∞ or 

|𝑐𝑛−2,𝑖| → ∞  with positive probability, then 𝔼[𝑏𝑛−2,1
2 ] → ∞ or 𝔼[𝑐𝑛−2,1

2 ] → ∞ but 

now Assumption 3.1 is broken.  

 

Hence, Assumption 3.1 ensures that 𝔼[𝑏𝑛−2,1
2 ] < ∞ and 𝔼[𝑐𝑛−2,1

2 ] < ∞, which in turn 

requires both 𝕀
{|𝑏𝑛−2,𝑖|≥𝛿√(𝑛−2)Var[𝜖2]}

 and 𝕀
{|𝑐𝑛−2,1|≥𝛿√(𝑛−1)(𝔼[𝜖2])2}

 to converge to 0 as 

𝑛 → ∞. Thus, Equations (B.10) and (B.11) should equal to 0, i.e., 

 

 

lim
𝑛→∞

1

𝔍𝑛2
∑𝔼[𝑏𝑛−2,𝑖

2 𝕀{|𝑏𝑛−2,𝑖|≥𝛿𝔍𝑛}]

𝑛−2

𝑖=1

=
1

Var[𝜖2]
𝔼[0] = 0, 

 

 

lim
𝑛→∞

1

𝔏𝑛2
∑𝔼[𝑐𝑛−2,𝑖+1

2 𝕀{|𝑐𝑛−2,𝑖+1|≥𝛿𝔏𝑛}]

𝑛−2

𝑖=0

=
1

(𝔼[𝜖2])2
𝔼[0] = 0. 

 

 

It follows that, the final job to be done with regards to asymptotic distribution of 

[𝜖, 𝜖]𝑇
𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
|𝑋] is to find covariance of 𝑀𝑇

(1)
 and 𝑀𝑇

(2)
. 

 

 

Cov [𝑀𝑇
(1), 𝑀𝑇

(2)|𝑋] = 𝔼 [(𝑀𝑇
(1) − 𝔼[𝑀𝑇

(1)]) (𝑀𝑇
(2) − 𝔼[𝑀𝑇

(2)])| 𝑋] 

= 𝔼[𝑀𝑇
(1)𝑀𝑇

(2)] 
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= 𝔼[(
1

√𝑛 − 2
∑𝜖𝑡𝑖

2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

)(
1

√𝑛 − 2
∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

)] 

=
1

𝑛 − 2
𝔼 [(∑𝜖𝑡𝑖

2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

)(𝜖𝑡0𝜖𝑡1 +∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=1

)] 

=
1

𝑛 − 2
(𝔼 [∑𝜖𝑡0𝜖𝑡1𝜖𝑡𝑖

2 − 𝜖𝑡0𝜖𝑡1𝔼[𝜖
2]

𝑛−2

𝑖=1

] + 𝔼 [∑𝜖𝑡𝑖
2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=1

]) 

=
1

𝑛 − 2
𝔼 [(∑𝜖𝑡0𝜖𝑡1𝜖𝑡𝑖

2 − 𝜖𝑡0𝜖𝑡1𝔼[𝜖
2]

𝑛−2

𝑖=1

) + (∑𝜖𝑡𝑖
2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=1

)] 

=
1

𝑛 − 2
𝔼[(𝜖𝑡0𝜖𝑡1

3 + 𝜖𝑡0𝜖𝑡1𝜖𝑡2
2 +⋯+ 𝜖𝑡0𝜖𝑡1𝜖𝑡𝑛−1

2 − (𝑛 − 2)𝜖𝑡0𝜖𝑡1𝔼[𝜖
2])] 

 +
1

𝑛 − 2
𝔼 [

𝜖𝑡1
2 𝜖𝑡0𝜖𝑡1 + 𝜖𝑡1

2 𝜖𝑡1𝜖𝑡2 +⋯+ 𝜖𝑡1
2 𝜖𝑡𝑛−2𝜖𝑡𝑛−1

+𝜖𝑡2
2 𝜖𝑡0𝜖𝑡1 +⋯+ 𝜖𝑡2

2 𝜖𝑡𝑛−2𝜖𝑡𝑛−1 +⋯

+𝜖𝑡𝑛−2
2 𝜖𝑡0𝜖𝑡1 + 𝜖𝑡𝑛−2

2 𝜖𝑡1𝜖𝑡2 +⋯+ 𝜖𝑡𝑛−2
3 𝜖𝑡𝑛−1

] 

 −
𝑛 − 2

𝑛 − 2
𝔼 [𝜖𝑡0𝜖𝑡1𝔼[𝜖

2] + 𝜖𝑡1𝜖𝑡2𝔼[𝜖
2] + ⋯+ 𝜖𝑡𝑛−2𝜖𝑡𝑛−1𝔼[𝜖

2]] 

=
1

𝑛 − 2
(

𝔼[𝜖𝑡0]𝔼[𝜖𝑡1
3 ] + 𝔼[𝜖𝑡0]𝔼[𝜖𝑡1]𝔼[𝜖𝑡2

2 ]

+⋯+ 𝔼[𝜖𝑡0]𝔼[𝜖𝑡1]𝔼[𝜖𝑡𝑛−1
2 ]

−(𝑛 − 2)𝔼[𝜖𝑡0]𝔼[𝜖𝑡1]𝔼[𝜖
2]

)                               

+
1

𝑛 − 2

(

 
 
 
 

𝔼[𝜖𝑡0]𝔼[𝜖𝑡1
3 ] + 𝔼[𝜖𝑡2]𝔼[𝜖𝑡1

3 ] +

⋯+ 𝔼[𝜖𝑡𝑛−2]𝔼[𝜖𝑡𝑛−1]𝔼[𝜖𝑡1
2 ]

+𝔼[𝜖𝑡0]𝔼[𝜖𝑡1]𝔼[𝜖𝑡2
2 ] + 𝔼[𝜖𝑡1]𝔼[𝜖𝑡2

3 ]

+⋯+ 𝔼[𝜖𝑡𝑛−2]𝔼[𝜖𝑡𝑛−1]𝔼[𝜖𝑡2
2 ] + ⋯

+𝔼[𝜖𝑡0]𝔼[𝜖𝑡1]𝔼[𝜖𝑡𝑛−2
2 ] + ⋯+ 𝔼[𝜖𝑡𝑛−1]𝔼[𝜖𝑡𝑛−2

3 ])

 
 
 
 

 

−(𝔼[𝜖𝑡0]𝔼[𝜖𝑡1]𝔼[𝜖
2] + ⋯+ 𝔼[𝜖𝑡𝑛−2]𝔼[𝜖𝑡𝑛−1]𝔼[𝜖

2]) 

= 0. 
 

 

Thus, we have shown that [𝜖, 𝜖]𝑇
𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
]|𝑋 can be written in terms of 𝑀𝑇

(1)
 and 

𝑀𝑇
(2)

 that are independent, centered normal asymptotically with variances Var[𝜖2] and 

(𝔼[𝜖2])2.  
 

Because as 𝑛 → ∞ 

 

 

1

√𝑛 − 1
([𝜖, 𝜖]𝑇

𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
]|𝑋) =

2√𝑛 − 2(𝑀𝑇
(1)
−𝑀𝑇

(2)
) + 𝑂𝑝(1)

√𝑛 − 1
 

                                                           → 2(𝑀𝑇
(1)
−𝑀𝑇

(2)
) + 𝑜𝑝(1) , 
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asymptotic distribution of 
1

√𝑛−1
([𝜖, 𝜖]𝑇

𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
]|𝑋) is also centered normal while 

its asymptotic variance is calculated as follows: 

 

 

  Var [
1

√𝑛 − 1
([𝜖, 𝜖]𝑇

𝒢
− 𝔼[[𝜖, 𝜖]𝑇

𝒢
]|𝑋)] → Var [2(𝑀𝑇

(1) −𝑀𝑇
(2))]

= 4Var[𝑀𝑇
(1)] + 4Var[𝑀𝑇

(2)] − 4Cov[𝑀𝑇
(1), 𝑀𝑇

(2)]

= 4 Var[𝜖2] + 4(𝔼[𝜖2])2 = 4 𝔼[𝜖4] − 4(𝔼[𝜖2])2 + 4(𝔼[𝜖2])2

= 4 𝔼[𝜖4]. 
 

 

Furthermore, we have proved in Step 1 that [𝑋, 𝜖]𝑇
𝒢
= 𝑂𝑝(1), and Equation (3.6) 

converts to  

 

 

[𝑌, 𝑌]𝑇
𝒢
= [𝑋, 𝑋]𝑇

𝒢
+ [𝜖, 𝜖]𝑇

𝒢
+ 𝑂𝑝(1) = [𝜖, 𝜖]𝑇

𝒢
+ 𝑂𝑝(1). 

 

 

Correspondingly with 𝔼[[𝜖, 𝜖]𝑇
𝒢
|𝑋]=2(𝑛 − 1)𝔼[𝜖2], 

 

 

[𝑌, 𝑌]𝑇
𝒢
− 2(𝑛 − 1)𝔼[𝜖2]|𝑋 = ([𝜖, 𝜖]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2])|𝑋 + 𝑂𝑝(1) 

⇒
([𝑌, 𝑌]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2]|𝑋)

√𝑛 − 1  𝑛→∞
→   

([𝜖, 𝜖]𝑇
𝒢
− 2(𝑛 − 1)𝔼[𝜖2]|𝑋)

√𝑛 − 1
+ 𝑜𝑝(1), 

 

 

and 

 

 

[𝑌, 𝑌]𝑇
𝒢
= [𝑋, 𝑋]𝑇

𝒢
 + 2[𝑋, 𝜀]𝑇

𝒢
+ [𝜀, 𝜖]𝑇

𝒢
= [𝑋, 𝑋]𝑇

𝒢
+ [𝜖, 𝜖]𝑇

𝒢
+ 𝑂𝑝(1) 

⇒[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2] = [𝜀, 𝜖]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2] + 𝑂𝑝(1). 

 

Then, 

 

 

([𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2])|𝑋

√𝑛 − 1 𝑛→∞
→   

([𝜀, 𝜖]𝑇
𝒢
− 2(𝑛 − 1)𝔼[𝜖2])|𝑋

√𝑛 − 1
+ 𝑜𝑝(1). 

 

 

From above convergences, we deduce that conditional distribution of 
1

√𝑛−1
([𝜖, 𝜖]𝑇

𝒢
−

2(𝑛 − 1)𝔼[𝜖2]) is also conditional distribution of both of 
1

√𝑛−1
([𝑌, 𝑌]𝑇

𝒢
−

2(𝑛 − 1)𝔼[𝜖2]) and 
1

√𝑛−1
([𝑌, 𝑌]𝑇

𝒢
− [𝑋, 𝑋]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2]), i.e., conditional on 

true price 
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[𝑌, 𝑌]𝑇
𝒢
− 2(𝑛 − 1)𝔼[𝜖2]

𝑑
→𝑁(0,4(𝑛 − 1)𝔼[𝜖4]), 

 

 

([𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2])

𝑑
→𝑁(0,4(𝑛 − 1)𝔼[𝜖4]). 

 

 

Let’s define 𝔼[𝜖2]̂ as [𝑌, 𝑌]𝑇
𝒢
2(𝑛 − 1)⁄  like it is suggested by Zhang et al. [111]. Then, 

2(𝑛 − 1)𝔼[𝜖2]̂ = [𝑌, 𝑌]𝑇
𝒢

 and conditional on true price 

 

 

2(𝑛 − 1)𝔼[𝜖2]̂ − 2(𝑛 − 1)𝔼[𝜖2]
𝑑
→𝑁(0,4(𝑛 − 1)𝔼[𝜖4]) 

⇒ 2(𝑛 − 1)(𝔼[𝜖2]̂ − 𝔼[𝜖2])
𝑑
→𝑁(0,4(𝑛 − 1)𝔼[𝜖4]) 

⇒√𝑛 − 1(𝔼[𝜖2]̂ − 𝔼[𝜖2])
𝑑
→𝑁(0, 𝔼[𝜖4]). 
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APPENDIX C 
 

 

 

AN UNBIASED AND CONSISTENT ESTIMATOR OF THE 

FOURTH MOMENT OF MMN 
 

 

 

 

Suppose that we observe security prices on a grid 𝒢 = {𝑡0, 𝑡1, ⋯ , 𝑡𝑛−1}, 𝑡0 = 0, 𝑡𝑛−1 =
𝑇, where the number of data points in grid 𝒢 is denoted by |𝒢| and equals to 𝑛. Let 

∆(𝒢) = max
1≤𝑖≤𝑛

(𝑡𝑖+1 − 𝑡𝑖), then for 𝑛 → ∞, ∆(𝒢) → 0. In this setting, 

 

 

[𝑌, 𝑌, 𝑌, 𝑌]𝑇
𝒢
∶=∑(∆𝑌𝑡𝑖)

4
𝑛−2

𝑖=0

= ∑((∆𝑋𝑡𝑖 + ∆𝜖𝑡𝑖)
2
)
2

𝑛−2

𝑖=0

 

= ∑((∆𝑋𝑡𝑖)
2
+ (∆𝜖𝑡𝑖)

2
+ 2∆𝑋𝑡𝑖∆𝜖𝑡𝑖)

2
𝑛−2

𝑖=0

 

= ∑(∆𝑋𝑡𝑖)
4

𝑛−2

𝑖=0

+∑(∆𝜖𝑡𝑖)
4

𝑛−2

𝑖=0

 

                                                +∑6(∆𝑋𝑡𝑖)
2
(∆𝜖𝑡𝑖)

2
𝑛−2

𝑖=0

 

                                                +∑4∆𝑋𝑡𝑖(∆𝜖𝑡𝑖)
3

𝑛−2

𝑖=0

+∑4(∆𝑋𝑡𝑖)
3
∆𝜖𝑡𝑖

𝑛−2

𝑖=0

 

                                               = [𝑋, 𝑋, 𝑋, 𝑋]𝑇
𝒢
+ [𝜖, 𝜖, 𝜖, 𝜖]𝑇

𝒢
+ 𝐴, 

(C.1) 

 

 

where 

 

 

[𝑋, 𝑋, 𝑋, 𝑋]𝑇
𝒢
∶=∑(∆𝑋𝑡𝑖)

4
,

𝑛−2

𝑖=0
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[𝜖, 𝜖, 𝜖, 𝜖]𝑇
𝒢
∶=∑(∆𝜖𝑡𝑖)

4
𝑛−2

𝑖=0

, 

 

 

𝐴 ∶=∑6(∆𝑋𝑡𝑖)
2
(∆𝜖𝑡𝑖)

2
𝑛−2

𝑖=0

+∑4∆𝑋𝑡𝑖(∆𝜖𝑡𝑖)
3

𝑛−2

𝑖=0

 +∑4(∆𝑋𝑡𝑖)
3
∆𝜖𝑡𝑖 .

𝑛−2

𝑖=0

 

 

 

Taking expectation on the both sides of Equation (C.1) conditional on true price yields 

 

 

𝔼[[𝑌, 𝑌, 𝑌, 𝑌]𝑇
𝒢
|𝑋] = 𝔼[[𝑋, 𝑋, 𝑋, 𝑋]𝑇

𝒢
|𝑋] + 𝔼[[𝜖, 𝜖, 𝜖, 𝜖]𝑇

𝒢
|𝑋] + 𝔼[𝐴|𝑋]. (C.2) 

 

 

Handling terms in the RHS of Equation (C.2) one by one under Assumptions 3.1, 3.2, 

3.3, 3.11 and the null hypothesis that the MMN increments have constant variance 

gives us 

 

 

𝔼[[𝑋, 𝑋, 𝑋, 𝑋]𝑇
𝒢
|𝑋] =  𝔼 [∑(∆𝑋𝑡𝑖)

4
𝑛−2

𝑖=0

| 𝑋] 

 =  𝔼 [([𝑋, 𝑋]𝑇
𝒢
)
2
| 𝑋] − 2∑∑𝔼[(∆𝑋𝑡𝑖)

2
(∆𝑋𝑡𝑗)

2

| 𝑋]

𝑛−2

𝑗=0

𝑛−2

𝑖=0
𝑖≠𝑗

 

=  𝔼 [([𝑋, 𝑋]𝑇
𝒢
)
2
| 𝑋] − 2∑∑𝔼[(∆𝑋𝑡𝑖)

2
| 𝑋] 𝔼 [(∆𝑋𝑡𝑗)

2

| 𝑋]

𝑛−2

𝑗=0

𝑛−2

𝑖=0
𝑖≠𝑗

 

=  𝔼 [([𝑋, 𝑋]𝑇
𝒢
)
2
| 𝑋] 

         −2∑∑(𝜎𝑡𝑖+1
2 𝑡𝑖+1 − 𝜎𝑡𝑖

2𝑡𝑖) (𝜎𝑡𝑗+1
2 𝑡𝑗+1 − 𝜎𝑡𝑗

2 𝑡𝑗)

𝑛−2

𝑗=0

𝑛−2

𝑖=0
𝑖≠𝑗

 

         = 𝑂𝑝(1) − 𝑂𝑝(1) 

= 𝑂𝑝(1), 
 

 

where by no leverage effect, the definition of Brownian Motion and Assumptions 3.3 

and 3.11, ∆𝑋𝑡𝑖 ⊥ ∆𝑋𝑡𝑗, ∆𝑋𝑡𝑖 ⊥ 𝑋𝑡𝑖,  𝔼[𝑋𝑡𝑖|𝑋] = 0, Var[𝑋𝑡𝑖+1|𝑋] = 𝜎𝑡𝑖+1
2 𝑡𝑖+1,

[𝑋, 𝑋]𝑇
𝒢
= 𝑂𝑝(1) and 𝑂𝑝(1)𝑂𝑝(1) = 𝑂𝑝(1), so that ([𝑋, 𝑋]𝑇

𝒢
)
2
= 𝑂𝑝(1) and 

𝔼 [([𝑋, 𝑋]𝑇
𝒢
)
2
| 𝑋] = 𝑂𝑝(1), while  
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[(∆𝑋𝑡𝑖)
2
| 𝑋] = 𝔼[𝑋𝑡𝑖+1

2 |𝑋] + 𝔼[𝑋𝑡𝑖
2 |𝑋] − 2𝔼[𝑋𝑡𝑖𝑋𝑡𝑖+1|𝑋] 

= Var[𝑋𝑡𝑖+1|𝑋] + (𝔼[𝑋𝑡𝑖+1|𝑋])
2
+ Var[𝑋𝑡𝑖|𝑋]

+ (𝔼[𝑋𝑡𝑖|𝑋])
2
 − 2𝔼 [𝑋𝑡𝑖 ((𝑋𝑡𝑖+1 − 𝑋𝑡𝑖) + 𝑋𝑡𝑖)| 𝑋]

= 𝜎𝑡𝑖+1
2 𝑡𝑖+1 + 𝜎𝑡𝑖

2𝑡𝑖 − 2 𝔼[𝑋𝑡𝑖
2 |𝑋] + 2𝔼[𝑋𝑡𝑖(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)|𝑋] 

= 𝜎𝑡𝑖+1
2 𝑡𝑖+1 + 𝜎𝑡𝑖

2𝑡𝑖 − 2 𝔼[𝑋𝑡𝑖
2 |𝑋]

+ 2𝔼[𝑋𝑡𝑖|𝑋]𝔼[(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)|𝑋] 

= 𝜎𝑡𝑖+1
2 𝑡𝑖+1 + 𝜎𝑡𝑖

2𝑡𝑖 − 2𝔼[𝑋𝑡𝑖
2 |𝑋] 

= 𝜎𝑡𝑖+1
2 𝑡𝑖+1 + 𝜎𝑡𝑖

2𝑡𝑖 − 2𝜎𝑡𝑖
2𝑡𝑖 = 𝜎𝑡𝑖+1

2 𝑡𝑖+1 − 𝜎𝑡𝑖
2𝑡𝑖 

= 𝑂𝑝(1), 

(C.3) 

 

 

because under Assumption 3.1, 𝔼[|𝜎𝑡|
2] < ∞ for all 𝑡 ∈ [0, 𝑇] and if a random 

variable has finite absolute moments of order 𝑘, then it has absolute moments of orders 

1,2, … , 𝑘 − 1 (Chapter 4, Section 21, p. 292 of [34]) so that  𝔼[|𝜎𝑡|] < ∞ also holds. 

First moment of 𝜎𝑡 being finite opens the way for the Markov’s Inequality,  

 

 

ℙ[|𝜎𝑡| ≥ 𝛾] ≤
1

𝛾
𝔼[|𝜎𝑡|], ∀ 𝛾 ∈ (0,∞), 

 

 

so that as 𝛾 → ∞, ℙ[|𝜎𝑡| ≥ 𝛾] → 0. Recall that definition of stochastic boundedness 

requires that for any 𝜆 > 0, there exists a finite M > 0 such that  

 

 

ℙ[|𝜎𝑡| > M] < 𝜆, ∀𝑡, 
 

 

Setting  𝛾 = M and 
1

𝛾
𝔼[|𝜎𝑡|] = 𝜆, we get 𝜎𝑡 = 𝑂𝑝(1) and 𝜎𝑡

2 = 𝑂𝑝(1)𝑂𝑝(1) = 𝑂𝑝(1) 

for all 𝑡 ∈ [0, 𝑇]. 
 

Regarding remaining terms on the RHS of Equation (C.2), we have 
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[[𝜖, 𝜖, 𝜖, 𝜖]𝑇
𝒢
|𝑋] = 𝔼 [∑(∆𝜖𝑡𝑖)

4
𝑛−2

𝑖=0

| 𝑋] =  𝔼 [∑(∆𝜖𝑡𝑖)
4

𝑛−2

𝑖=0

]

= 𝔼 [∑𝜖𝑡𝑖+1
4 + 𝜖𝑡𝑖

4 + 6𝜖𝑡𝑖
2𝜖𝑡+1
2 − 4𝜖𝑡𝑖

3𝜖𝑡+1

𝑛−2

𝑖=0

− 4𝜖𝑡𝑖 𝜖𝑡+1
3 ]

= ∑𝔼[𝜖𝑡𝑖+1
4 ] + 𝔼[𝜖𝑡𝑖

4 ] + 6𝔼[𝜖𝑡𝑖
2 ]𝔼[𝜖𝑡+1

2 ] − 4𝔼[𝜖𝑡𝑖
3 ]𝔼[𝜖𝑡𝑖+1]

𝑛−2

𝑖=0

− 4𝔼[𝜖𝑡𝑖 ]𝔼[𝜖𝑡+1
3 ] = ∑2𝔼[𝜖4] + 6(𝔼[𝜖2])2

𝑛−2

𝑖=0

= 2(𝑛 − 1)𝔼[𝜖4] + 6(𝑛 − 1)(𝔼[𝜖2])2, 
 

 

𝔼 [∑(∆𝑋𝑡𝑖)
2
(∆𝜖𝑡𝑖)

2
𝑛−2

𝑖=0

| 𝑋]

= 𝔼 [(∑∆𝑋𝑡𝑖∆𝜖𝑡𝑖

𝑛−2

𝑖=0

)

2

| 𝑋] − 𝔼

[
 
 
 
2∑∑∆𝑋𝑡𝑖∆𝜖𝑡𝑖∆𝑋𝑡𝑗∆𝜖𝑡𝑗

𝑛−2

𝑗=0

𝑛−2

𝑖=0
𝑖≠𝑗

|| 𝑋

]
 
 
 

= 𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] − 2∑∑𝔼[∆𝑋𝑡𝑖∆𝜖𝑡𝑖∆𝑋𝑡𝑗∆𝜖𝑡𝑗| 𝑋]

𝑛−2

𝑗=0

𝑛−2

𝑖=0
𝑖≠𝑗

= 𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋]

− 2∑∑𝔼[∆𝑋𝑡𝑖|𝑋]𝔼[∆𝜖𝑡𝑖|𝑋]𝔼 [∆𝑋𝑡𝑗| 𝑋] 𝔼 [∆𝜖𝑡𝑗| 𝑋]

𝑛−2

𝑗=0

𝑛−2

𝑖=0
𝑖≠𝑗

= 𝔼 [([𝑋, 𝜖]𝑇
𝒢
)
2
| 𝑋] = 𝑂𝑝(1), 

 

 

𝔼 [∑(∆𝑋𝑡𝑖)
3
∆𝜖𝑡𝑖

𝑛−2

𝑖=0

| 𝑋] = ∑𝔼[(∆𝑋𝑡𝑖)
3
| 𝑋]

𝑛−2

𝑖=0

 𝔼[∆𝜖𝑡𝑖|𝑋] = 0, 

 

 

𝔼 [∑(∆𝜖𝑡𝑖)
3
∆𝑋𝑡𝑖

𝑛−2

𝑖=0

| 𝑋] = ∑𝔼[(∆𝜖𝑡𝑖)
3
| 𝑋]

𝑛−2

𝑖=0

 𝔼[∆𝑋𝑡𝑖|𝑋] = 0. 

 

 

Consequently, Equation (C.2) is found out to be sum of a stochastically bounded term 

and 𝔼[[𝜖, 𝜖, 𝜖, 𝜖]𝑇
𝒢
|𝑋], i.e., 
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[[𝑌, 𝑌, 𝑌, 𝑌]𝑇
𝒢
|𝑋] = 2(𝑛 − 1)𝔼[𝜖4] + 6(𝑛 − 1)(𝔼[𝜖2])2 + 𝑂𝑝(1). (C.4) 

 

 

Adopting the estimators proposed by Zhang et al. [111], let’s make the following 

definitions: 

 

 

𝔼[𝜖2]̂ ∶=
1

2(𝑛 − 1)
([𝑌, 𝑌]𝑇

𝒢
)
2
, 

 

 

𝔼[𝜖4]̂ ∶=
1

2(𝑛 − 1)
[𝑌, 𝑌, 𝑌, 𝑌]𝑇

𝒢
− 3(𝔼[𝜖2]̂)

2
, 

 

 

Then, from Equation (C.4) and above definitions, we obtain 

 

 

𝔼 [|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋] = 𝔼 [
2(𝑛 − 1)𝔼[𝜖4] + 6(𝑛 − 1)(𝔼[𝜖2])2

2(𝑛 − 1)
|𝑋] 

                                    +𝔼 [
𝑂𝑝(1)

2(𝑛 − 1)
| 𝑋] − 3𝔼 [(

([𝑌, 𝑌]𝑇
𝒢
)

2(𝑛 − 1)
)

2

| 𝑋] − 𝔼[𝔼[𝜖4]|𝑋]  

                                       
𝑛→∞
→   3(𝔼[𝜖2])2 + 𝑜𝑝(1) − 3𝔼 [(

[𝑌, 𝑌]𝑇
𝒢

2(𝑛 − 1)
)

2

| 𝑋]. 

(C.5) 

 

 

Since  

 

 

𝔼 [([𝑌, 𝑌]𝑇
𝒢
)
2
| 𝑋] = Var [([𝑌, 𝑌]𝑇

𝒢
)
2
| 𝑋] + (𝔼[[𝑌, 𝑌]𝑇

𝒢
|𝑋])

2
, 

 

 

and following Barndorff-Nielsen and Shephard [24], Zhang et al. [111] and Hansen 

and Lunde [61] we have verified that as 𝑛 → ∞ 

 

 

Var [([𝑌, 𝑌]𝑇
𝒢
)
2
| 𝑋] → 4(𝑛 − 1) 𝔼[𝜖4], 

 

 

𝔼 [([𝑌, 𝑌]𝑇
𝒢
)
2
| 𝑋] → 2(𝑛 − 1) 𝔼[𝜖2]. 

 

 

Equation (C.5) converts to 
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[|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋]

→ 3(𝔼[𝜖2])2 + 𝑜𝑝(1)

−
3

4(𝑛 − 1)2
(4(𝑛 − 1) 𝔼[𝜖4] + 4(𝑛 − 1)2 (𝔼[𝜖2])2)

→ 3(𝔼[𝜖2])2 + 𝑜𝑝(1) − 𝑜𝑝(1) − 3(𝔼[𝜖
2])2 = 𝑜𝑝(1) 

 

 

as 𝑛 → ∞. Thus, 𝔼[𝜖4]̂ is an unbiased estimator of 𝔼[𝜖4]. Remember that for an 

estimator to be consistent, it should converge to the parameter estimated as sample size 

goes to infinity, i.e., 𝔼[𝜖4]̂ is called a consistent estimator of 𝔼[𝜖4] if 
 

 

lim
𝑛→∞

ℙ [|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋 ≥ 𝛾] = 0, ∀ 𝛾 ∈ (0,∞). 

 

 

By Markov’s Inequality, as 𝑛 → ∞ 

 

 

lim
𝑛→∞

ℙ [|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋 ≥ 𝛾] ≤  
𝔼 [|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋]

𝛾
 

lim
𝑛→∞

ℙ [|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋 ≥ 𝛾] ≤  
𝑜𝑝(1)

𝛾
 

⇒ lim
𝑛→∞

ℙ [|𝔼[𝜖4]̂ − 𝔼[𝜖4]|| 𝑋 ≥ 𝛾] = 0. 
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APPENDIX D
 

 

 

PROOF OF THEOREM 3.5 
 

 

 

 

From Equation (3.6)  

 

 

[𝑌, 𝑌]𝑇
𝒢
= [𝑋, 𝑋]𝑇

𝒢
 + 2[𝑋, 𝜀]𝑇

𝒢
+ [𝜀, 𝜖]𝑇

𝒢
 

[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
 − 2(𝑛 − 1)𝔼[𝜖2] = 2[𝑋, 𝜀]𝑇

𝒢
+ [𝜀, 𝜖]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2]. 

(D.1) 

 

 

We blend Equations (B.9) and (B.1) in Equation (D.1) so that 

 

 

[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
 − 2(𝑛 − 1)𝔼[𝜖2]

= 2(∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

− ∆𝑋𝑡0𝜖𝑡0 + ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1)

+ 2(∑𝜖𝑡𝑖
2 − 𝔼[𝜖2]

𝑛−2

𝑖=1

) + (𝜖𝑡0
2 − 𝔼[𝜖2]) + (𝜖𝑡𝑛−1

2 − 𝔼[𝜖2])

− 2(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

). 

 

 

Since ∆𝑋𝑡0𝜖𝑡0 + ∆𝑋𝑡𝑛−2𝜖𝑡𝑛−1 and (𝜖𝑡0
2 − 𝔼[𝜖2]) + (𝜖𝑡𝑛−1

2 − 𝔼[𝜖2]) are both 𝑂𝑝(1), as 

𝑛 → ∞ 
 

 

[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
 − 2(𝑛 − 1)𝔼[𝜖2]

√𝑛 − 2

=
2∑ (∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2
𝑖=1 + 2(∑ 𝜖𝑡𝑖

2 − 𝔼[𝜖2]𝑛−2
𝑖=1 ) − 2(∑ 𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2
𝑖=0 )

√𝑛 − 2
+ 𝑜𝑝(1). 

(D.2) 
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Recall that in proof of the Theorem 3.4 that by defining 𝑀𝑇
(1)

 as 
1

√𝑛−2
∑ 𝜖𝑡𝑖

2 − 𝔼[𝜖2]𝑛−2
𝑖=1  

and 𝑀𝑇
(2)

 as 
1

√𝑛−2
∑ 𝜖𝑡𝑖+1𝜖𝑡𝑖
𝑛−2
𝑖=0  and applying CLT for triangular arrays after checking 

for Lindeberg’s conditions, we demonstrated that 𝑀𝑇
(1)

 and 𝑀𝑇
(2)

 are asymptotically 

independent and centered Gaussian with variances Var[𝜖2] and (𝔼[𝜖2])2, respectively. 

At this point, if we define 𝑀𝑇
(3)

 as 
1

√𝑛−2
∑ (∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖
𝑛−2
𝑖=1 , then Equation (D.2) 

is affirmed to be 

 

 

[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
 − 2(𝑛 − 1)𝔼[𝜖2]

= 2√𝑛 − 2(𝑀𝑇
(1) +𝑀𝑇

(3) −𝑀𝑇
(2)) + 𝑂𝑝(1). 

(D.3) 

 

 

So, to find asymptotic distribution of the LHS of Equation (D.2) conditional on true 

price, we need to examine applicability of the CLT for triangular arrays or martingale 

sequences with respect to 𝑀𝑇
(3)

. In this endeavor, let’s write 

 

 

𝑀𝑇
(3)
∶=

1

√𝑛 − 2
∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

=
1

√𝑛 − 2
∑𝑑𝑛−2,𝑖

𝑛−2

𝑖=1

. 

 

 

If 𝑛 = 3, 

 

 

𝑀𝑇
(3)
=
1

√1
(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 =

1

√1
(𝑑1,1), 

𝑑1,1 ∶= (∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1. 

 

 

If 𝑛 = 4, 

 

 

𝑀𝑇
(3)
=
1

√2
((∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 + (∆𝑋𝑡1 − ∆𝑋𝑡2)𝜖𝑡2) =

1

√2
(𝑑2,1 + 𝑑2,2), 

𝑑2,1 ∶= (∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 , 𝑑2,2 ∶= (∆𝑋𝑡1 − ∆𝑋𝑡2)𝜖𝑡2 . 

 

 

If 𝑛 = 5, 

 

 

𝑀𝑇
(3)
=
1

√3
((∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 + (∆𝑋𝑡1 − ∆𝑋𝑡2)𝜖𝑡2 + (∆𝑋𝑡2 − ∆𝑋𝑡3)𝜖𝑡3)

=
1

√3
(𝑑3,1 + 𝑑3,2 + 𝑑3,3), 
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𝑑3,1 ∶= (∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 , 𝑑3,2 ∶= (∆𝑋𝑡1 − ∆𝑋𝑡2)𝜖𝑡2 , 𝑑3,3 ∶= (∆𝑋𝑡2 − ∆𝑋𝑡3)𝜖𝑡3 . 

 

 

If we organize the terms in the form 𝑑𝑛−2,𝑖   in a triangular fashion as 𝑛 → ∞, we get 

the following array  

 

 

𝑑1,1 
𝑑2,1 𝑑2,2 
𝑑3,1 𝑑3,2 𝑑3,3 

⋮ 
 

 

See that, for a specific 𝑛, 𝑀𝑇
(3)

 is the sum of the row 𝑛 − 2 in the above triangular array 

divided by 
1

√𝑛−2
 while entries in each row of the above triangular array are i.i.d with 

mean 0 and finite variance, since for 𝑖 ≠ 𝑗, ∀ 𝑡𝑖, 𝑡𝑗 ∈ 𝒢,  by Assumptions 3.1, 3.2 and 

3.3, with respect to the filtration ℱ𝑖 = 𝜎 (𝜖𝑡𝑗 , 𝑗 ≤ 𝑖, 𝑋𝑡, ∀𝑡 ∈ [0, 𝑇] ) (∆𝑋𝑡𝑖 is ℱ𝑡𝑖 

measurable) 

 

 

𝜖𝑡𝑖 ⊥ 𝑋𝑡𝑖 , ∆𝑋𝑡𝑖 ⊥ ∆𝑋𝑡𝑗 , 𝜖𝑡𝑖 ⊥ 𝜖𝑡𝑗 , Var[𝑋𝑡𝑖] = 𝜎𝑡𝑖
2𝑡𝑖, 𝔼[𝑋𝑡𝑖] = 0, ∆𝑋𝑡𝑖 ⊥ 𝑋𝑡𝑖+1 , 

𝜖𝑡𝑖 ⊥ ℱ𝑡𝑖−1 , ∆𝑋𝑡𝑖 ⊥ ℱ𝑡𝑖−1 , ∆𝑋𝑡𝑖 ⊥ ℱ𝑡𝑖 , 

 

 

𝔼[(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖|ℱ𝑖−1] = 𝔼[(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)|ℱ𝑖−1]𝔼[𝜖] = 0. (D.4) 

 

 

Var[(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖|ℱ𝑖−1] 

= 𝔼 [((∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖)
2

| ℱ𝑖−1] − (𝔼[(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖|ℱ𝑖−1])
2
 

=  𝔼 [((∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖)
2

| ℱ𝑖−1] 

= (
𝔼 [(∆𝑋𝑡𝑖−1)

2
| ℱ𝑖−1] + 𝔼 [(∆𝑋𝑡𝑖)

2
| ℱ𝑖−1]

−2𝔼[(∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖)|ℱ𝑖−1]
 )𝔼[𝜖2] 

= (𝔼 [(∆𝑋𝑡𝑖−1)
2
| ℱ𝑖−1] + 𝔼 [(∆𝑋𝑡𝑖)

2
| ℱ𝑖−1] ) 𝔼[𝜖

2] 

= (𝔼 [(∆𝑋𝑡𝑖−1)
2
] + 𝔼 [(∆𝑋𝑡𝑖)

2
] ) 𝔼[𝜖2] = 𝑂𝑝(1)𝔼[𝜖

2] < ∞, (D.5) 

 

 

where by Equation (C.3), 𝔼 [(∆𝑋𝑡𝑖−1)
2
| ℱ𝑖−1] and 𝔼 [(∆𝑋𝑡𝑖)

2
| ℱ𝑖−1] are deduced to be 

stochastically bounded and 𝔼[(∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖)|ℱ𝑖−1] equals to 0, because 𝑋𝑡𝑖+1 =

((𝑋𝑡𝑖+1 − 𝑋𝑡𝑖) + 𝑋𝑡𝑖) and  
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[(𝑋𝑡𝑖𝑋𝑡𝑖+1)|ℱ𝑖−1] = 𝔼 [(𝑋𝑡𝑖 ((𝑋𝑡𝑖+1 − 𝑋𝑡𝑖) + 𝑋𝑡𝑖))|ℱ𝑖−1] 

= 𝔼[𝑋𝑡𝑖
2 |ℱ𝑖−1] + 𝔼 [(𝑋𝑡𝑖(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖))|ℱ𝑖−1] 

= 𝔼[𝑋𝑡𝑖
2 |ℱ𝑖−1] + 𝔼[𝑋𝑡𝑖|ℱ𝑖−1]𝔼[(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)|ℱ𝑖−1] 

=  𝔼[𝑋𝑡𝑖
2 |ℱ𝑖−1] 

= Var[𝑋𝑡𝑖|ℱ𝑖−1], 

 

 

so that 

 

 

𝔼[(∆𝑋𝑡𝑖−1∆𝑋𝑡𝑖)|ℱ𝑖−1] = 𝔼[(𝑋𝑡𝑖 − 𝑋𝑡𝑖−1)(𝑋𝑡𝑖+1 − 𝑋𝑡𝑖)|ℱ𝑖−1] 

= 𝔼[(𝑋𝑡𝑖𝑋𝑡𝑖+1)|ℱ𝑖−1] − 𝔼[(𝑋𝑡𝑖−1𝑋𝑡𝑖+1)|ℱ𝑖−1] − 𝔼[(𝑋𝑡𝑖
2)|ℱ𝑖−1] 

                                         +𝔼[(𝑋𝑡𝑖−1𝑋𝑡𝑖)|ℱ𝑖−1] 

= Var[𝑋𝑡𝑖|ℱ𝑖−1] − Var[𝑋𝑡𝑖−1|ℱ𝑖−1] − Var[𝑋𝑡𝑖|ℱ𝑖−1]                   

                                        +Var[𝑋𝑡𝑖−1|ℱ𝑖−1] 

= 0. 
 

 

In summary, from Equations (D.4) and (D.5), we infer that each sequence of 

summands 
𝑑𝑛−2,𝑖

√𝑛−2
 in each 𝑀𝑇

(3)  for all 𝑛 ≥ 3 is a martingale difference sequence, i.e.,  

 

 

𝔼 [
𝑑𝑛−2,𝑖

√𝑛 − 2
|ℱ𝑖−1] = 0. 

 

 

Additionally, each summand is square integrable, i.e., 𝔼 [(
𝑑𝑛−2,𝑖

√𝑛−2
)
2

| ℱ𝑖−1] is finite. 

 

Then, we immediately check for the conditional Lindeberg’s condition as given in 

Condition 3.31, Chapter VIII in [70] to conclude if the CLT for triangular array of 

martingale sequences is applicable, i.e., whether or not for any 𝛿 > 0, 

 

 

∑𝔼[|
𝑑𝑛−2,𝑖
2

𝑛 − 2
| 𝕀
{|
𝑑𝑛−2,𝑖

√𝑛−2
|≥𝛿}

| ℱ𝑖−1]

𝑛−2

𝑖=1

ℙ
→ 0 

 

 

as 𝑛 → ∞. With 𝑛 ≥ 3 and 𝑑𝑛−2,𝑖
2 ≥ 0 by definition, the convergence in probability 

given above can be rewritten as 
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lim
𝑛→∞

ℙ[|∑𝔼[
𝑑𝑛−2,𝑖
2

𝑛 − 2
𝕀
{|
𝑑𝑛−2,𝑖

√𝑛−2
|≥𝛿}

| ℱ𝑖−1] − 0

𝑛−2

𝑖=1

| < 𝛾] = 1, ∀𝛾 ∈ (0,∞). 

 

 

We benefit from the idea that for proving an arbitrary sequence of random variables 

{𝔳𝑛}𝑛≥1 converging in probability to a constant 0, i.e., lim
𝑛→∞

ℙ[|𝔳𝑛 − 0| < 𝛾] = 1, ∀𝛾 ∈

(0,∞), we can examine if lim
𝑛→∞

ℙ[|𝔶𝑛 − 0| < 𝛾] = 1, ∀𝛾 ∈ (0,∞) for |𝔶𝑛| > |𝔳𝑛|, 

since if |𝔶𝑛| > |𝔳𝑛| and lim
𝑛→∞

ℙ[|𝔶𝑛 − 0| < 𝛾] = 1, then lim
𝑛→∞

ℙ[|𝔳𝑛 − 0| < 𝛾] =

1, ∀𝛾 ∈ (0,∞). From |∑ 𝔶𝑖𝑖 | ≤ ∑ |𝔶𝑖|𝑖  

 

 

|∑𝔼[
𝑑𝑛−2,𝑖
2

𝑛 − 2
𝕀
{|
𝑑𝑛−2,𝑖

√𝑛−2
|≥𝛿}

|ℱ𝑖−1] − 0

𝑛−2

𝑖=1

| ≤ ∑ |𝔼 [
𝑑𝑛−2,𝑖
2

𝑛 − 2
𝕀
{|
𝑑𝑛−2,𝑖

√𝑛−2
|≥𝛿}

| ℱ𝑖−1] − 0|

𝑛−2

𝑖=1

 

=
1

𝑛 − 2
∑ |𝔼 [𝑑𝑛−2,𝑖

2 𝕀
{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}

| ℱ𝑖−1]|

𝑛−2

𝑖=1

. 

 

 

From Equations (D.4) and (D.5) and the definition of identity function, we realize that 

as 𝑛, 𝑖 → ∞ 

 

 

a) 𝕀
{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}

+ 𝕀
{|𝑑𝑛−2,𝑖|<𝛿√𝑛−2}

= 1, 

 

 

b) 𝔼[𝑑𝑛−2,𝑖
2 |ℱ𝑖−1] ≥ 𝔼 [𝑑𝑛−2,𝑖

2 𝕀
{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}

| ℱ𝑖−1], 

 

 

c) 𝔼[𝑑𝑛−2,𝑖
2 |ℱ𝑖−1] < ∞, 

 

 

d) 𝔼 [𝑑𝑛−2,𝑖
2 𝕀

{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}
| ℱ𝑖−1] < ∞. 

 

 

Hence, as 𝑛, 𝑖 → ∞, 𝛿√𝑛 − 2 → ∞ and probability of |𝑑𝑛−2,𝑖| being greater than or 

equal to 𝛿√𝑛 − 2 should reach 0 and stay at there, otherwise 𝔼[𝑑𝑛−2,𝑖
2 |ℱ𝑖−1] would 

diverge. Therefore, 

 

 

sup𝑖 ℙ [𝕀{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}
= 0] → 1, 
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and 

 

 

1

𝑛 − 2
∑ |𝔼 [𝑑𝑛−2,𝑖

2 𝕀
{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}

| ℱ𝑖−1] − 0|
ℙ
→

𝑛−2

𝑖=1

0, 

 

 

should be true as 𝑛, 𝑖 → ∞, since contribution of 

 

 

𝔼 [𝑑𝑛−2,𝑖
2 𝕀

{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}
| ℱ𝑖−1] 

 

to 

 

 

∑|𝔼 [𝑑𝑛−2,𝑖
2 𝕀

{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}
| ℱ𝑖−1] − 0|

𝑛−2

𝑖=1

 

 

 

should shrink to 0 as 𝑛, 𝑖 → ∞ such that the growth rate of  

 

 

∑|𝔼 [𝑑𝑛−2,𝑖
2 𝕀

{|𝑑𝑛−2,𝑖|≥𝛿√𝑛−2}
| ℱ𝑖−1] − 0|

𝑛−2

𝑖=1

 

 

 

is less than growth rate of 
1

𝑛−2
. 

 

In this context, the application of the LLN and the CLT for the triangular arrays of 

martingale difference sequences (Chapter 3, p.58 of [57]) yields conditional on true 

price 

 

 
𝔖𝑛
𝔗𝑛

𝑑
→𝑁(0,1) 

 

⇒
𝑀𝑇
(3)

√𝔼[𝜖
2]

𝑛 − 22 (
[𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1))

𝑑
→𝑁(0,1) 

 

⇒𝑀𝑇
(3) 𝑑
→𝑁(0,

2[𝑋, 𝑋]𝑇
𝒢
𝔼[𝜖2] − 𝑂𝑝(1)

𝑛 − 2
), 
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where from Equation (D.5) 

 

 

𝔖𝑛 ∶=
1

√𝑛 − 2
∑𝑑𝑛−2,𝑖

𝑛−2

𝑖=1

, 

 

 

𝔗𝑛
2 : = Var[𝔖𝑛|ℱ𝑖−1] =

1

𝑛 − 2
∑Var[𝑑𝑛−2,𝑖|ℱ𝑖−1]

𝑛−2

𝑖=1

 

=
1

𝑛 − 2
∑(𝔼 [(∆𝑋𝑡𝑖−1)

2
] + 𝔼 [(∆𝑋𝑡𝑖)

2
] ) 𝔼[𝜖2]

𝑛−2

𝑖=1

 

=
𝔼[𝜖2]

𝑛 − 2
𝔼 [∑(∆𝑋𝑡𝑖−1)

2
𝑛−2

𝑖=1

+∑(∆𝑋𝑡𝑖)
2

𝑛−2

𝑖=1

] 

=
𝔼[𝜖2]

𝑛 − 2
𝔼 [[𝑋, 𝑋]𝑇

𝒢
− (∆𝑋𝑡𝑛−2)

2
+ [𝑋, 𝑋]𝑇

𝒢
− (∆𝑋𝑡0)

2
] 

=
𝔼[𝜖2]

𝑛 − 2
2 ([𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1)). 

 

 

Now, we have illustrated that the LHS of Equation (D.3) divided by √𝑛 − 2, is sum of 

3 asymptotically centered Gaussian terms, namely 𝑀𝑇
(1)
, 𝑀𝑇

(2)
 and 𝑀𝑇

(3)
, with 

respective conditional variances as Var[𝜖2], (𝔼[𝜖2])2 and 
𝔼[𝜖2]

𝑛−2
2 ([𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1)). 

 

Consequently, the final step in order to find asymptotic conditional distribution of the 

LHS of Equation (D.3) is to find covariances between 𝑀𝑇
(3)

 and 𝑀𝑇
(2)

 as well as 𝑀𝑇
(3)

 

and 𝑀𝑇
(1)

 and calculate the asymptotic conditional variance where by Theorem 3.4 

Cov [𝑀𝑇
(1), 𝑀𝑇

(2)|𝑋] is already known to be 0. 
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Cov [𝑀𝑇
(3), 𝑀𝑇

(2)|ℱ𝑖−1] = 𝔼 [(𝑀𝑇
(3) − 𝔼[𝑀𝑇

(3)]) (𝑀𝑇
(2) − 𝔼[𝑀𝑇

(2)])|ℱ𝑖−1]

= 𝔼 [𝑀𝑇
(3)𝑀𝑇

(2)|ℱ𝑖−1]

=
1

𝑛 − 2
𝔼 [(∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

)(∑𝜖𝑡𝑖+1𝜖𝑡𝑖

𝑛−2

𝑖=0

)|ℱ𝑖−1]

=
1

𝑛 − 2
𝔼 [(

(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 +⋯

+(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2
)(
𝜖𝑡1𝜖𝑡0 +⋯

+𝜖𝑡𝑛−1𝜖𝑡𝑛−2
)| ℱ𝑖−1]

=
1

𝑛 − 2
𝔼

[
 
 
 
 
 

(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1𝜖𝑡1𝜖𝑡0 +⋯

+(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1𝜖𝑡𝑛−1𝜖𝑡𝑛−2
⋮

(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2𝜖𝑡1𝜖𝑡0 +⋯

+(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2𝜖𝑡𝑛−1𝜖𝑡𝑛−2

|

|
ℱ𝑖−1

]
 
 
 
 
 

 

= 0, 

 

 

and  

 

 

Cov [𝑀𝑇
(3), 𝑀𝑇

(1)|ℱ𝑖−1] = 𝔼 [(𝑀𝑇
(3) − 𝔼[𝑀𝑇

(3)]) (𝑀𝑇
(1) − 𝔼[𝑀𝑇

(1)])| ℱ𝑖−1] 

= 𝔼 [𝑀𝑇
(3)𝑀𝑇

(1)|ℱ𝑖−1] 

=
1

𝑛 − 2
𝔼 [(∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

𝑛−2

𝑖=1

)(∑𝜖𝑡𝑖
2 − 𝔼[𝜖2]

𝑛−2

𝑖=0

)|ℱ𝑖−1] 

=
1

𝑛 − 2
𝔼 [(

(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1 +⋯

+(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2
)(
𝜖𝑡0
2 +⋯+ 𝜖𝑡𝑛−2

2

−(𝑛 − 1)𝔼[𝜖2]
)|ℱ𝑖−1] 

=
1

𝑛 − 2
𝔼

[
 
 
 
 
 
 
 
 

(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1𝜖𝑡0
2 +⋯

+(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1𝜖𝑡𝑛−2
2

−(∆𝑋𝑡0 − ∆𝑋𝑡1)𝜖𝑡1(𝑛 − 1)𝔼[𝜖
2]

⋮
(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2𝜖𝑡0

2 +⋯

+(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2𝜖𝑡𝑛−2
2

−(∆𝑋𝑡𝑛−2 − ∆𝑋𝑡𝑛−2)𝜖𝑡𝑛−2(𝑛 − 1)𝔼[𝜖
2]

|

|

|

ℱ𝑖−1

]
 
 
 
 
 
 
 
 

 

=
1

𝑛 − 2
𝔼 [∑(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)𝜖𝑡𝑖

3

𝑛−2

𝑖=1

| ℱ𝑖−1] 

=
1

𝑛 − 2
𝔼[𝜖𝑡𝑖

3 |ℱ𝑖−1]∑𝔼[(∆𝑋𝑡𝑖−1 − ∆𝑋𝑡𝑖)|ℱ𝑖−1]

𝑛−2

𝑖=1

 

=
1

𝑛 − 2
𝔼[𝜖3]∑𝔼[(𝑋𝑡𝑖 − 𝑋𝑡𝑖−1 + 𝑋𝑡𝑖−𝑋𝑡𝑖+1)]

𝑛−2

𝑖=1

 

=
1

𝑛 − 2
𝔼[𝜖3]0 
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= 0. 
 

 

Then,  

 

 

Var [[𝑌, 𝑌]𝑡
𝒢
− [𝑋, 𝑋]𝑡

𝒢
 − 2(𝑛 − 1)𝔼[𝜖2]]

= Var [2√𝑛 − 2(𝑀𝑇
(1) −𝑀𝑇

(2) +𝑀𝑇
(3))]                                                    

= 4(𝑛 − 2) (Var[𝑀𝑇
(1)] + Var[𝑀𝑇

(2)] + Var[𝑀𝑇
(2)] − Cov[𝑀𝑇

(1), 𝑀𝑇
(2)]

− Cov[𝑀𝑇
(3), 𝑀𝑇

(2)] + Cov[𝑀𝑇
(1), 𝑀𝑇

(3)])

= 4(𝑛 − 2)(Var[𝜖2] + (𝔼[𝜖2])2 + 2
𝔼[𝜖2]

𝑛 − 2
([𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1)))

= 4(𝑛 − 2) (𝔼[𝜖4] − (𝔼[𝜖2])2 + (𝔼[𝜖2])2

+ 2
𝔼[𝜖2]

𝑛 − 2
([𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1)))

= 4(𝑛 − 2)𝔼[𝜖4] + 8𝔼[𝜖2] ([𝑋, 𝑋]𝑇
𝒢
− 𝑂𝑝(1)). 

 

 

As a conclusion, the asymptotic distribution of [𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
 − 2(𝑛 − 1)𝔼[𝜖2] 

conditional on true price turns out to be also centered normal, i.e., conditional on true 

price as 𝑛 → ∞ 

 

 

([𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢
− 2(𝑛 − 1)𝔼[𝜖2])

𝑑
→𝑁(0,4(𝑛 − 2)𝔼[𝜖4] + 8𝔼[𝜖2] ([𝑋, 𝑋]𝑇

𝒢
− 𝑂𝑝(1))) 

 

 

or with 𝑈𝑛𝑜𝑖𝑠𝑒 being a random variable that is asymptotically standard normal, 

  

 

[𝑌, 𝑌]𝑇
𝒢
− [𝑋, 𝑋]𝑇

𝒢

= 2(𝑛 − 1)𝔼[𝜖2] + (4(𝑛 − 2)𝔼[𝜖4]

+ 8𝔼[𝜖2] ([𝑋, 𝑋]𝑇
𝒢
−𝑂𝑝(1)))

1/2

𝑈𝑛𝑜𝑖𝑠𝑒 . 

 

 

Finally, following Zhang et al. [111], to gauge the total estimation error, [𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇, 

stemming from discretization and existence of noise at the same time, we merge the 

results on asymptotic distribution of discretization error with those on asymptotic 
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distribution of error due to noise. From Theorem 3.3, under conditions explained 

therein, we can write (stably in law) 

 

 

[𝑋, 𝑋]𝑇
𝒢
= 𝐼𝑉𝑇 + (

2𝑇

𝑛 − 1
∫ 𝜎𝑠

4𝑑𝒟𝑠

𝑇

0

)

1/2

𝑈𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

 

where 𝑈𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 represents another random variable that is also asymptotically 

standard normal. As Zhang et al. [111] argue, since MMN is taken as orthogonal to 

the true price process, 𝑈𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is also orthogonal to 𝑈𝑛𝑜𝑖𝑠𝑒. Then,  

 

 

[𝑌, 𝑌]𝑇
𝒢
− 𝐼𝑉𝑇 =

2(𝑛 − 1)𝔼[𝜖2] + (4(𝑛 − 2)𝔼[𝜖4] + 8𝔼[𝜖2] ([𝑋, 𝑋]𝑇
𝒢
− 𝑂𝑝(1))

+
2𝑇

𝑛 − 1
∫ 𝜎𝑠

4𝑑𝒟𝑠

𝑇

0

)

1/2

𝑈𝑡𝑜𝑡𝑎𝑙 

 

 

such that 𝑈𝑡𝑜𝑡𝑎𝑙 denotes a third random variable which is again asymptotically standard 

normal. 
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APPENDIX E
 

 

 

CHAPTER 4 RESULTS 
 

 

 

 

AKBNK SUMMARY AND REVIEW OF CHAPTER 4 RESULTS 

 
1) UHFD Characteristics Under Different Sampling Schemes and Error 

Cleaning and Data Filtering Combinations 

 

a) Irregular Temporal Spacing 
 

 

 
 

Figure F.1: Plot of durations between consecutive transactions (inside a session) for AKBNK TTS-

raw data throughout second half of 2012. 

 

 

b) Temporal dependence: By comparing autocorrelation and partial 

autocorrelation functions of 600 seconds11 absolute returns and log returns under 

CTS (clean and aggregated and interpolated) as well as absolute returns, log 

                                                           
11 We also included 1 min returns under CTS for MIGRS and NETAS just because 10 min log returns 

exhibited no autocorrelation at all. 
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returns and durations in seconds from one transaction to the next under TTS (raw 

versus clean and aggregated) for December of 2012, we see that there are 

differences between ACF and PACF structure of absolute and log returns 

between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction 

sampled data by first cleaning, then aggregating and then interpolating (all 

needed for CTS) to 600 second sampled data distorts ACF and PACF of return 

series.  

 

 TTS-Raw-Durations: ACF (slowly decaying positive significant up to 20 

lags) and PACF (moderate decay, positive significant up to 10 lags) 

(shocks persist) 

 

 TTS-Raw-Absolute Returns: ACF (hyperbolic slow decay, positive 

significant up to 20 lags) and PACF (moderate decay, positive and 

significant up to 11 lags) (shocks persist) 

 

 TTS-Raw-Log returns: ACF (quick decay, first three lags negative-

positive-negative significant) PACF(slower hyperbolic decay, first 14 lags 

negative significant) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (slowly wave like 

decaying positive significant up to 20 lags) (shocks persist) and PACF 

(wave like decay, positive significant up to 20 lags) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying 

positive and significant up to 20 lags ) and PACF (hyperbolic decay, lags 

up to 10th lag positive significant)  

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay, 

first three lags negative-positive-negative significant) PACF(slower 

hyperbolic decay, first 8 lags negative significant) 

 

 CTS-Durations: Meaningless, after interpolation duration from one entry 

to the next is always 1 second 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF 

(lags 1, 2,3 and 6 positive significant), PACF (lags 1 and 2 are positive 

significant) 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (only 

first lag is negative significant) and PACF (first order negative partial 

autocorrelation)  

 

Under TTS, with raw or clean and aggregated data, there is significant positive 

autocorrelation up to 20 lags in absolute returns, significant up to third order 

autocorrelation in log returns and very significant positive autocorrelation up to 

20 lags in seconds elapsed between two transactions, thus volatility clustering is 

verified. Whereas, for 10 min returns under CTS, log returns display first order 
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autocorrelation, which is in conformity with evidence laid out by the finance 

literature in general, that very short term returns exhibit strong autocorrelation 

especially on the first lag. Absolute return autocorrelation structure is changed 

under CTS at 600 seconds sampling interval compared to results under TTS at 1 

transaction interval. Likewise, switching to CTS and calculation returns at 600 

seconds suppresses partial autocorrelation figures at several lags of both absolute 

and log returns. Meanwhile, comparing data handling combinations to each 

other, any combination of cleaning methods and aggregation methods (compared 

to other combinations) does not cause any major change in total and partial 

correlation structures once we move under a sampling scheme, it being either 

TTS or CTS. However, cleaning and aggregation under TTS yield different 

PACF structures in log returns compared to results produced with raw data. 
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Figure F.2: ACFs and PACFs of logreturn and absolute return series of AKBNK for December 2012 

under TTS and CTS  
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c) Diurnal Patterns: These patterns can be sought only under CTS because of their 

definitions such as number of trades per x minutes or absolute return per y 

seconds. For AKBNK case, there are strong W shapes which are persistent 

across cleaning and aggregation methods in 10 minutes trade volumes and 10 

minutes trade intensities throughout days in second half of 2012, whereas 

patterns in 10 minutes absolute returns and 10 minutes absolute percentage 

returns are closer to W without last spike at the end of the day12. All in all, there 

are significant diurnal patterns in returns and trading activity in the form of 

intensity and volume under CTS and these patterns look exactly same when 

various combinations of cleaning and aggregation methods are applied. 

 

 

  
  

  
 

 
Figure F.3: Diurnal patterns - AKBNK cleaned and aggregated transaction data under CTS  

  

                                                           
12 Unlike the rough L shape in MIGROS and ISCTR or rough W without last spike in NETAS, for 10 

min absolute percentage returns. 
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2) Visual and Formal Statistical Tests of Existence and Statistical Features of 

Market Microstructure Noise 

 

a) VSP: In line with findings for MIGRS, ISCTR and ARCLK, sampling schemes 

or cleaning and aggregation techniques do not alter the fact that inflating 

sampling frequency, either in seconds or in transactions, causes average realized 

volatility of return on transaction price to boom. Specifically, 6 month VSPs 

explode as the sampling frequency increases under raw or cleaned TTS as well 

as under CTS. At this point, we would like to emphasize that for VSPs, we 

skipped 4.ii.a-5.i-5.ii-5.iii-5.iv-5.v combinations under TTS, mainly because the 

number of cleaned points under 4.ii.a is so small, cleaning makes no real 

difference comparing to no cleaning of the data set. Any possible difference 

might have been observed under cleaning method 4.ii.b, which ended up deleting 

more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we 

additionally search for any marginal effect that cleaning method 4.ii.b has over 

cleaning method 4.ii.a.  

 

 

  
 

 
 

 
Figure F.4: VSPs for AKBNK over Daily RVs using clean and aggregated data under CTS, raw data 

under TTS, and clean and aggregated data under TTS. 

 

 

Explosion becomes trivial for the sampling intervals that are less than 200 

seconds or 15 transactions. This observation is valid both for session and daily 

figures, serving as a visual proof regarding existence of market microstructure 
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noise and pointing to a positive relationship between noise increment and true 

price return, both under CTS and raw or cleaned TTS, showing that sampling 

scheme, or cleaning or aggregation do not affect the results.  

 

 

b) Statistical Tests Regarding Existence and Statistical Features of MMN :  

 

 Existence of MMN is verified statistically under both of CTS and TTS. 

We calculated 𝑍𝑇,𝑛,ℎ testing null hypothesis in (3.11) by comparing RVs 

that are calculated over different frequency pairs composed of high-low 

frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30), 

(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias 

of the RV estimator is dominated by expectation of square of the noise 

increment. Therefore, if we reject the null hypothesis, it means that the 

MMN has statistically significant impact on realized estimator of the IV. 

 

For each day in the sample period of 124 days and each frequency pair, we 

run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis are 100% under raw-TTS, 99% under clean 

and aggregated TTS and around 99% under CTS for all cleaning and 

aggregation method combinations when we compare RVs calculated over 

3 and 30 transactions under TTS and 60 and 600 seconds under CTS13. As 

we decrease the sampling frequency at the high frequency leg, rejection 

percentages of null hypothesis shrink, which is true under both of TTS and 

CTS. For raw-TTS, the rejection percentages begin with 100% and 

decrease gradually to 40% as high frequency leg moves toward 20 

transactions when low frequency leg is 30 transactions. Cleaning and 

aggregating the data does not amend the downward trend in rejection 

percentages under TTS, but make it steeper. For all aggregation choices 

with cleaning method 4.ii.b applied under TTS, the rejection percentages 

begin with 99% and decrease gradually to 24% as high frequency leg 

moves toward 20 transactions. Switching to CTS as well as moving across 

the grid of cleaning and aggregation combinations do not change the 

results either. For CTS, the rejection percentages begin with around 100% 

for 10 to 1200 seconds pair and goes down the hill to 15% as high 

frequency legs are slowed to 900 seconds.  

 

Following representative rejection rate graphs reveal that MMN starts to 

accentuate as the sampling frequency converges to 10-15 transactions 

under TTS, and 300 seconds under CTS. These findings are in conformity 

with those supplied by VSP analysis. MMN is felt strongly once we cross 

over the sampling interval thresholds of 15 transactions or 5 minutes under 

TTS and CTS, respectively. Moreover, visual inspection of the test statistic 

𝑍𝑇,𝑛,ℎ for several frequency pairs either under TTS or CTS reveals that for 

the majority of the time test statistic is positive and outside 5% standard 

                                                           
13 These rejection percentages resemble to those for NETAS, GARAN and ISCTR cases, but are higher 

than those for ARCLK. 
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normal confidence interval, which can be interpreted as a positive 

correlation between noise and efficient price, again in conformity with 

exploding VSPs. 

 

 

 
 

 

 
 

 

Figure F.5: AKBNK - Plots of 𝑍𝑇,𝑛,ℎ for each day in the sample period with upper and lower tail 

critical values of standard normal under TTS and CTS. 
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 Summary: Model of an i.i.d MMN with constant variance might be proper 

under CTS but not under raw-TTS (cleaned and aggregated TTS), for more 

than 40% (19%) of the days, null of constant variance is rejected for triples 

with very high frequencies combined with very low. This might be 

evidence of i.i.d assumption not holding at frequencies lesser 15 

transactions under TTS. Sampling scheme, but not the aggregation 

method, is discovered to very influential on rejection of null hypothesis 

that the MMN has variance independent of sampling frequency. 

Meanwhile, like NETAS and ISCTR cases cleaning algorithms have some 

suppressive effect on rejection percentages particularly under TTS.  

 

Awartani et al. [16] derive a test with the idea that if the MMN has constant 

variance, then noise variances calculated over frequencies 1/M or 1/N 

should be same independent of M or N chosen. Their null and null 

hypotheses are as in (3.35) and (3.36). 

 

Since alternative hypothesis is in harmony with the presence of 

autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde 

[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign 

of the rejection of the null hypothesis that the MMN is a sequence of i.i.d  

random variables with constant variance. To test the validity of this null 

hypothesis, a test statistic compares RV differences using two frequency 

pairs, where pairs are M,L and N,L. L represents a frequency at which we 

can ignore the MMN safely, say 20 minutes and M and N are frequencies 

at which the MMN is considered to be significant. Therefore, the test is 

build on RVs calculated over frequency triples i.e. for each high frequency 

pair combined with 20 minutes, we test null hypothesis that E(noise 

increment square at low frequency)=E(noise increment square at high 

frequency). If we reject the null hypothesis, it means that the MMN has 

variance that is NOT independent of sampling frequency, therefore any 

assumptions regarding i.i.d nature of MMN can be taken as invalidated. 

Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30) 

(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200), 

(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200) 

seconds under CTS. 

 

For each day in the sample period of 124 days and each frequency triple, 

we run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis clearly change from one triple to another 

and as we clean and aggregate data. Beware that under raw-TTS especially 

for combinations of frequencies with highest differences between frequent 

legs, rejection percentages exceed 40%, while they fall to 15% for 3-10-

30 triple with lowest distance between first two legs. However, once we 

clean and aggregate the data, rejection percentages range decline to levels 

19-7% depending on the triple14. For CTS 4.ii.a and 4.ii.b, constant 

                                                           
14 In a sense, these findings agree with findings for MIGRS and ISCTR cases, where rejection 

percentages are highest for triples with distant constituents and TTS-raw data; however, MIGRS and 
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variance assumption rejection percentages vary between at most 6% and 

at least 1%, both of which are just a fraction of rejection percentages under 

TTS-raw or TTS-cleaned. Therefore, unlike ARCLK but like NETAS, 

GARAN and ISCTR results, sampling scheme is discovered to be 

influential on rejection of null hypothesis that the MMN has variance 

independent of sampling frequency. We reject this null hypothesis under 

TTS, either raw or cleaned and aggregated but cannot reject for any 

combination of cleaning and aggregation methods under CTS confidently 

and conclude that i.i.d with constant variance MMN assumption does not 

reflect the real life structure of the MMN under TTS, whereas under CTS, 

such an assumption seems to hold for all frequencies. Evidence reveals 

that aggregation method does not affect rejection percentages and for 

triples with high frequency legs being close to very slow frequency leg, 

rejection percentages are severely damaged independent of the sampling 

scheme. 

                                                           
ARCLK rejection percentages are way below those of ISCTR’s or NETAS’ or AKBNK’s rejection 

percentages. 
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3) RV Analysis 

 

We constructed two RV time series, namely session RVs and daily RVs, for each 

frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600 

seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 

4.ii.b) - aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time 

series has 124 data points, whereas session RV time series is constituted of 248 

entries. Each time, RV series under each sampling scheme and cleaning and 

aggregation method combinations is subjected to preliminary statistics, ACF and 

PACF analysis and lastly unit root is checked where autocorrelation exhibits 

slow decay.  

 

 The factors that have any effect on RV series’ normality-lognormality and 

autocorrelation structure turn out to be whether the RV is on a session or daily 

basis, whether it is under raw-TTS or CTS and the frequency at which the RV 

is calculated. Under raw-TTS, session and daily RV series at all frequencies 

except daily 20 are found to be nonnormal. Higher frequencies also lead to 

skewness and kurtosis values to converge to those of normal distribution to 

such an extent that on the level, daily RV series at 1 min frequency under 

CTS can be inferred to come from a normally distributed population at 5% 

significance level. Taking logarithm makes daily RV series at frequencies 10 

and 5 minutes normal under CTS, while such a transformation only works in 

terms of normality for RV session series at 3 and 20 transactions under raw-

TTS15. All of remaining log RV series, either under raw-TTS or CTS, either 

raw or cleaned and aggregated, either on a session or daily basis, are not 

normally distributed as JB statistics and kurtosis-skewness values suggest.  

 

 Decreasing frequencies cause less number of lags being significant with lesser 

significant levels, i.e. decreasing frequency again depresses autocorrelation 

structure of RV series regardless of sampling scheme, the cleaning and 

aggregation methods or session-daily calculation, which is in line with the 

existence of MMN. In fact, ACFs of session and daily RVs change as the 

sampling frequency changes, such that for increasing frequencies RV series 

exhibit significant positive total autocorrelation up to higher number of lags. 

Calculating RVs on a session basis make the RV series more autocorrelated 

at higher lags under both of raw-TTS and CTS. Once we are working on a 

daily or session series at a particular frequency under CTS, cleaning and 

aggregation methods do not alter RV series’ non-normality/normality or 

autocorrelation structure. 

 

 Sampling scheme, frequency and cleaning methods or session/daily basis 

choice affects the stationarity results16. E-views ADF Test results reveal that 

we can reject null of unit root at 5%significance level for RV series under 

raw-TTS at all frequencies17; however, switching to CTS and moving 

between cleaning methods or session or daily RV calculation basis while 

                                                           
15 Unlike the case of MIGRS 
16 Unlike the findings for ISCTR, NETAS and ARCLK cases. 
17 Unlike the case of MIGRS. 
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increasing the frequency changes the game such that under cleaning method 

4.ii.a, regardless of aggregation method, the null hypotheses that daily or 

session 1 min RV series have unit root cannot be rejected even weakly. 

Whereas, adopting cleaning method 4.ii.b makes session 1 min series 

stationary at 1% significance level orthogonal to aggregation methods18. On 

the contrary, only frequency and daily/session choice matter if we change the 

tests parameters. ADF test with fixed two lags and an intercept in MATLAB 

show us that all RV series session or daily, TTS or CTS at 10 min or 5 min 

frequencies are stationary but with 1 min daily RV series, at 5%significance 

level, we cannot reject null of unit root. 

 

a) Descriptive statistics by frequency, by sampling scheme and by cleaning and 

aggregation methods:  

 

 TTS-Raw: For all frequencies, the session and daily RV series except 

daily RV series at 20 transactions frequency are not normally distributed 

as skewness, kurtosis and JB test statistic values reveal. Nevertheless, JB 

test gives that the null of daily RV series at 20 transaction frequency 

coming from a normally distributed population cannot be rejected at 5% 

significance level. Unlike other stocks in our sample, skewness and 

kurtosis values of this daily RV series are close to 0 and 3. Mean of the 

session and daily RVs become smaller as the sampling interval is 

lengthened, but there is no clear relationship between sampling frequency 

and change in skewness, kurtosis or JB statistic values, which deviates 

from the findings for MIGRS and ISCTR19. Correlograms of all session 

RV series look alike such that even lags are positive significant up to 20th 

lag with odd lags being insignificant where decreasing the sampling 

frequencies depresses significance levels. Lags 1, 2, 4, and 6 are positive 

significant in PACF of all session RV series at all frequencies, where lag 

6 drops from the significant lags list at 30 transactions frequency. Although 

correlograms of all daily RVs resemble one another, compared to 

correlogram of session series, autocorrelation structure of daily RVs looks 

different. ACFs of daily RV series exhibit similar shapes where decreasing 

frequencies cause less number of lags being significant with lesser 

significant levels, i.e. frequency again depresses autocorrelation structure, 

which is in line with existence of the MMN. Generally speaking, for daily 

RV series, lags 1, 2, 3 and 14 are significant in the PACF. The change in 

autocorrelation structure of RV series by looking at session and daily RVs 

separately calls for stationarity test and accordingly, we checked for unit 

roots in daily series to see if summing RV from session one and session 

two to reach daily RV distorts anything in RV stationarities at different 

frequencies. 

 

 
  

                                                           
18 Matlab ADF test with NO INTERCEPT reveals that taking logarithm ensures stationarity at all 

frequencies under CTS with all cleaning and aggregation methods. 
19 For MIGRS and ISCTR, a decrease in skewness, kurtosis and JB statistic was observed as we sample 

less frequently. 
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TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions 

 
 

  

TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions 

  

 

 

Figure F.8: AKBNK - Correlograms of session and daily RV series under TTS for different sampling 

intervals 

 

 

 CTS: The session RV series at all frequencies, plus daily RV series at 10 

min and 5 min frequencies are not normally distributed as skewness, 

kurtosis and JB statistic values reveal. However, JB test produces such a 

test statistic that we cannot reject the null of normality for the daily RV 

series at 1 min frequency. This finding is in line with we have found for 

ISCTR. Like the case under TTS,   

 

i. mean of the session and daily RVs become smaller as the sampling 

interval is lengthened.  

 

 However, contrary to findings for RV series under TTS,  

 

i. decrease in skewness, kurtosis and JB statistic values is observed as 

we sample more and more frequently (resembles to MIGRS, 

ARCLK and ISCTR, deviates from NETAS and GARAN) 

 

ii. ACFs of session and daily RVs change as the sampling frequency 

changes, such that for increasing frequencies RV series exhibit 

significant positive total autocorrelation at higher number of lags 

with higher significances. Apart from this common trait, the decay 
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patterns in total correlation of daily and session RVs are different, 

especially obvious at 1 min frequency. 

 

 
CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series 

  
  

CTS-4.ii.a-5.i-Daily 10 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series 

  
 

 
Figure F.9: AKBNK - Correlograms of session and daily RV series under CTS for different sampling 

intervals 

 

 

iii. PACFs of session RVs differ slightly from one another depending 

on the frequency. For frequency 1 min, lags 1, 2, 4 and 6 are 

significant in PACF, whereas lags 1, 2, and 4 and only 2 are 

significant for 5 min and 10 min frequencies, respectively.  

 

iv. PACFs of daily RVs differ slightly from one another depending on 

the frequency. For frequency 1 min, lags 1 and 9 are significant in 

PACF, whereas lags 1 and 2 and lags 1, 2, 3, and 8 are significant 

for 5 min and 10 min frequencies, respectively. 

 

 Regardless of the shapes, slow decay in some of the ACFs calls for 

stationarity tests.  

 

 All of these observations hold under all cleaning methods and aggregation 

algorithms. 
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b) Stationarity-Unit root test:  

 

 To test for stationarity and unit root, i.e. if the series move around a 

constant mean or diverge as time passes, Augmented Dickey Fuller (ADF) 

Test is preferred. By visual inspection of graphs, no trend is observed in 

any of our RV series, therefore, ADF Test is run with an intercept and no 

trend, the number of legs to be involved in the analysis is chosen by 

Schwarz criterion as it is the default choice suggested by E-views.  

 

 TTS-Raw-: In the E-views setting, where number of lags are optimized 

by E-views according to Schwarz criterion, R-squared values vary in a 

band of 19-54% (higher for session values). The null of nonstationarity is 

rejected at 1% significance level for all session and daily series20 except 

session series for 3, 6 and 10 transactions sampling intervals, for which the 

rejection significance level increases to 5%. 

 

 CTS: In the E-views setting, where number of lags are optimized by E-

views according to Schwarz criterion, R-squared values have a range of 

29% to 59%. At 1% significance level, RV series calculated at 5 and 10 

min sampling intervals, either session or daily or under any cleaning or 

aggregation combination, are found to be stationary. The frequency 1 min 

is intriguing in the sense that under cleaning method 4.ii.a, regardless of 

aggregation method, the null hypotheses that daily or session RV series 

have unit root cannot be rejected even weakly. Whereas, adopting cleaning 

method 4.ii.b makes session 1 min series stationary at 1% significance 

level. It can be inferred that cleaning methods as well as frequencies matter 

for stationarity such that increasing frequency to 1 min under CTS and 

calculating RVs on a daily basis makes the RV series nonstationary. 

                                                           
20 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we 

switch to daily series. Here, switching between daily or session series does not affect significance level 

at which we can reject null for half of the frequencies. For the remaining half, switching to session 

calculations deteriorates rejection significance levels. 
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ARCLK SUMMARY AND REVIEW OF CHAPTER 4 RESULTS 

 

1) UHFD Characteristics Under Different Sampling Schemes and Error 

Cleaning and Data Filtering Combinations 

 

a) Irregular Temporal Spacing 
 

 

 
 

Figure F.10: Plot of durations between consecutive transactions (inside a session) for ARCLK TTS-

raw data throughout the second half of 2012. 

 

 

b) Temporal dependence: By comparing autocorrelation and partial 

autocorrelation functions of 600 seconds21 absolute returns and log returns under 

CTS(clean and aggregated and interpolated) as well as absolute returns, log 

returns and durations in seconds from one transaction to the next under TTS (raw 

versus clean and aggregated) for December of 2012, we see that there are 

differences between ACF and PACF structure of absolute and log returns 

between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction 

sampled data by first cleaning, then aggregating and then interpolating (all 

needed for CTS) to 600 second sampled data distorts ACF and PACF of return 

series.  

 

 TTS-Raw-Durations: ACF (slowly wave like decaying positive significant 

up to 20 lags) and PACF (wave like decay, positive significant up to 15 

lags) (shocks persist) 

 

                                                           
21 Recall that we also included 1 min returns under CTS for MIGRS and NETAS just because 10 min 

log returns exhibited no autocorrelation at all. 
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 TTS-Raw-Absolute Returns: ACF (hyperbolic decay, positive significant 

up to 20 lags) and PACF (hyperbolic decay, positive and significant up to 

9 lags) 

 

 TTS-Raw-Log returns: ACF (quick decay, first two-three lags negative 

significant) PACF(slower hyperbolic decay, first 14 lags negative 

significant)  

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (slowly wave like 

decaying positive significant up to 20 lags) and PACF (wave like decay, 

positive significant up to 15 lags) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying 

positive and significant up to 20 lags ) and PACF (quick decay, first lag 

positive significant, other lags are significant but close to critical value 

boundaries)22  

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay, 

first lag negative significant) PACF(slower hyperbolic decay, first 6 lags 

negative significant)  

 

 CTS-Durations: Meaningless, after interpolation duration from one entry 

to the next is always 1 second. 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: 10 min 

Absolute Returns: ACF (no autocorrelation), PACF(no significant partial 

autocorrelation) Except 4.ii.b-5.iv. Under this combination, lags 1,2, 4 and 

5 and 1, 2 and 4 are positive significant in ACF and PACF, respectively23.  

  

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (only 

first lag is negative significant) and PACF (first two legs are negative 

significant)  

 

Under TTS, with raw or clean and aggregated data, there is significant positive 

autocorrelation up to 20 lags in absolute returns, significant up to third order 

autocorrelation in log returns and very significant positive autocorrelation up to 

20 lags in seconds elapsed between two transactions, thus volatility clustering is 

verified. Whereas, for 10 min returns under CTS, log returns display first order 

autocorrelation, which is in conformity with evidence laid out by the finance 

literature in general, that very short term returns exhibit strong autocorrelation 

especially on the first lag. Absolute return autocorrelation structure is changed 

under CTS at 600 seconds sampling interval compared to results under TTS at 1 

transaction interval. Likewise, switching to CTS and calculating returns at 600 

seconds suppresses partial autocorrelation figures at several lags of both absolute 

                                                           
22 Unlike findings on MIGRS, ISCTR and NETAS. 
23 For MIGRS, ISCTR and NETAS, aggregation or cleaning did not major differences in absolute 

returns correlograms. Now, aggregation method 5iv yields different results under 4iib-CTS, compared 

to other aggregation methods under CTS. 
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and log returns. Meanwhile, comparing data handling combinations to each 

other, any combination of cleaning methods and aggregation methods (compared 

to other combinations) does not cause any major change in total and partial 

correlation structures once we move under a sampling scheme, it being either 

TTS or CTS. Nevertheless, this postulate fails at aggregation method 5.iv, since 

it yields different results under 4.ii.b-CTS, compared to other aggregation 

methods. Moreover, cleaning and aggregation under TTS yields different PACF 

structures in log and absolute returns compared to results produced with raw 

data. 
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Figure F.11: ACFs and PACFs of logreturn and absolute return series of ARCLK for December 2012 

under TTS and CTS. 

 

 

c) Diurnal Patterns: These patterns can be sought only under CTS because of their 

definitions such as number of trades per x minutes or absolute return per y 

seconds. For ARCLK case, there are strong W shapes which are persistent across 

cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes 

trade intensities throughout days in second half of 2012, whereas patterns in 10 

minutes absolute returns are closer to W without last spike at the end of the day24. 

Regarding 10 minutes absolute percentage returns, there are so many churnings 

throughout the day such that we cannot name the pattern as W or U or L. 

Nonetheless, the unnamed pattern is same across all cleaning and aggregation 

                                                           
24 Unlike the rough L shape in MIGROS and ISCTR or rough W without last spike in NETAS, for 10 

min absolute percentage returns. 
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methods. All in all, there are significant diurnal patterns in returns and trading 

activity in the form of intensity and volume under CTS and these patterns look 

exactly same when various combinations of cleaning and aggregation methods 

are applied. 

 

 

  
  

  
 

 
Figure F.12: Diurnal patterns - ARCLK cleaned and aggregated transaction data under CTS  

 

 

2) Visual and Formal Statistical Tests of Existence and Statistical Features of 

Market Microstructure Noise 

 

 

a) VSP: In line with findings for MIGRS and ISCTR, sampling schemes or 

cleaning and aggregation techniques do not alter the fact that inflating sampling 

frequency, either in seconds or in transactions, causes average realized volatility 

of return on transaction price to boom. Specifically, 6 month VSPs explode as 

the sampling frequency increases under raw or cleaned TTS as well as under 

CTS.  
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Figure F.13: VSPs of ARCLK over Daily RVs using clean and aggregated data under CTS, raw data 

under TTS, and clean and aggregated data under TTS. 

 

 

Explosion becomes trivial for the sampling intervals that are less than 200 

seconds or 15 transactions. This observation is valid both for session and daily 

figures, serving as a visual proof regarding existence of market microstructure 

noise and pointing to a positive relationship between noise increment and true 

price return, both under CTS and raw-TTS.  

 

However, for clean and aggregated TTS, first session average RVs in June, 

August, September and December and second session average RVs in June 

exhibit a somehow erratic behavior in the sense that rising sampling frequencies 

does not inflate average RVs hyperbolically. These erratic shapes do not change 

from one aggregation method to the next under a particular cleaning method. To 

be more precise, please consider the following VSPs.  
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Figure F.14: VSPs of ARCLK over Session RVs using clean and aggregated data under CTS, raw data 

under TTS, and clean and aggregated data under TTS. 
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December are especially hard to comment, since examination of the disclosures 

by ARCLK throughout second half of 2012 reveals that no specific information 

that is disclosed to public seems responsible for unexpected VSP patterns in 

aforementioned months. 

 

Recall that we found another extraordinary pattern in VSP of NETAS for session 

1 in June, which caused 6 month daily averages to exhibit a swing for all cleaned 
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session RVs still increase hyperbolically as the sampling frequency converges 

to lowest available value under TTS, with all combinations of cleaning method 

4.ii.b and aggregation methods 5.i, 5.ii, 5.iii, 5.iv and 5.v. 

 

This piece of information supports our finding that in general, sampling scheme, 

or cleaning or aggregation do not affect the result that market microstructure 

becomes dominant after 15 transactions under TTS and 200 seconds under CTS 

and that the shape of VSPs suggest a positive correlation between noise 

increment and true price return.  

 

b) Statistical Tests Regarding Existence and Statistical Features of MMN :  

 

 Existence of MMN is verified statistically under both of CTS and TTS. 

We calculated 𝑍𝑇,𝑛,ℎ testing null hypothesis in (3.11) by comparing RVs 

that are calculated over different frequency pairs composed of high-low 

frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30), 

(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias 

of the RV estimator is dominated by expectation of square of the noise 

increment. Therefore, if we reject the null hypothesis, it means that the 

MMN has statistically significant impact on realized estimator of the IV. 

 

For each day in the sample period of 124 days and each frequency pair, we 

run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis are 90% under raw-TTS, 68% under clean 

and aggregated TTS and around 76% under CTS for all cleaning and 

aggregation method combinations when we compare RVs calculated over 

3 and 30 transactions under TTS and 60 and 600 seconds under CTS25. As 

we decrease the sampling frequency at the high frequency leg, rejection 

percentages of null hypothesis shrink, which is true under both of TTS and 

CTS. For raw-TTS, the rejection percentages begin with 90% and decrease 

gradually to 18% as high frequency leg moves toward 20 transactions 

when low frequency leg is 30 transactions. Cleaning and aggregating the 

data does not amend the downward trend in rejection percentages under 

TTS, but make it steeper. For all aggregation choices with cleaning method 

4.ii.b applied under TTS, the rejection percentages begin with 68% and 

decrease gradually to 10% as high frequency leg moves toward 20 

transactions. Switching to CTS as well as moving across the grid of 

cleaning and aggregation combinations do not change the results either. 

For CTS, the rejection percentages begin with around 94% for 10 to 1200 

seconds pair and goes down the hill to 14% as high frequency legs are 

slowed to 900 seconds.  

 

Following representative rejection rate graphs reveal that MMN starts to 

accentuate as the sampling frequency converges to 10-15 transactions 

under TTS, and 300 seconds under CTS. These findings are in conformity 

with those supplied by VSP analysis. MMN is felt strongly once we cross 

                                                           
25 These rejection percentages are significantly lower than those for NETAS and ISCTR cases. 
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over the sampling interval thresholds of 15 transactions or 5 minutes under 

TTS and CTS, respectively. Compared to NETAS and ISCTR findings, 

although steady increase in ARCLK rejection rates as sampling frequency 

is increased still suggest accentuating MMN depending on frequency, we 

have to underline the fact that unlike NETAS and ISCTR results, now, the 

marginal increase in the rejection rates with inflating sampling frequencies 

do not fall, i.e., there seems to be a positive linear relationship between 

rejection rates and sampling frequencies, holding both under CTS and 

TTS. Moreover, visual inspection of the test statistic 𝑍𝑇,𝑛,ℎ for several 

frequency pairs either under TTS or CTS reveals that for the majority of 

the time test statistic is positive and outside 5% st. normal confidence 

interval, which can be interpreted as a positive correlation between noise 

and efficient price, again in conformity with exploding VSPs. 
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Figure F.15: ARCLK - Plots of 𝑍𝑇,𝑛,ℎ for each day in the sample period with upper and lower tail 

critical values of standard normal under TTS and CTS. 
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 Summary: Model of an i.i.d MMN with constant variance might be proper 

under both of CTS and TTS, for more than 90% of the days, the null 

hypothesis of constant variance is not rejected for triples with very high 

frequencies combined with very low. This might be evidence of i.i.d 

assumption holding at all frequencies. Sampling schemes or aggregation 

methods are discovered to be not influential on rejection of the null 

hypothesis that MMN has variance independent of sampling frequency. 

Additionally, cleaning algorithms do not have any substantial suppressive 

effect on rejection percentages unlike NETAS and ISCTR cases.  

 

Awartani et al. [16] derive a test with the idea that if the MMN has constant 

variance, then noise variances calculated over frequencies 1/M or 1/N 

should be same independent of M or N chosen. Their null and null 

hypotheses are as in (3.35) and (3.36). 

 

Since alternative hypothesis is in harmony with the presence of 

autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde 

[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign 

of the rejection of the null hypothesis that the MMN is a sequence of i.i.d 

random variables with constant variance. To test the validity of this null 

hypothesis, a test statistic compares RV differences using two frequency 

pairs, where pairs are M,L and N,L. L represents a frequency at which we 

can ignore the MMN safely, say 20 minutes and M and N are frequencies 

at which the MMN is considered to be significant. Therefore, the test is 

build on RVs calculated over frequency triples i.e. for each high frequency 

pair combined with 20 minutes, we test null hypothesis that E(noise 

increment square at low frequency)=E(noise increment square at high 

frequency). If we reject the null hypothesis, it means that the MMN has 

variance that is NOT independent of sampling frequency, therefore any 

assumptions regarding i.i.d nature of MMN can be taken as invalidated. 

Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30) 

(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200), 

(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200) 

seconds under CTS. 

 

For each day in the sample period of 124 days and each frequency triple, 

we run the aforementioned test at 5% significance level. Sample rejection 

percentages of the null hypothesis clearly change from one triple to another 

and as we clean and aggregate data. Beware that under raw-TTS especially 

for combinations of frequencies with highest differences between frequent 

legs, rejection percentages exceed only 10%, while they stagger around 

4% for 3-10-30 triple with lowest distance between first two legs. 

However, once we clean and aggregate the data, rejection percentages 

range decline to levels 6-4% depending on the triple26. For CTS 4.ii.a and 

4.ii.b, constant variance assumption rejection percentages vary between at 

                                                           
26 In a sense, these findings agree with findings for MIGRS and ISCTR cases, where rejection 

percentages are highest for triples with distant constituents and TTS-raw data; however, MIGRS and 

ARCLK rejection percentages are way below those of ISCTR’s or NETAS’ rejection percentages. 
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most 3% and at least 1%, resembling the rejection percentages under 

cleaned TTS. Therefore, unlike NETAS, AKBNK, GARAN and ISCTR 

results, sampling scheme is discovered NOT to be influential on rejection 

of null hypothesis that the MMN has variance independent of sampling 

frequency. We cannot reject this null hypothesis under either of TTS and 

CTS confidently and conclude that i.i.d with constant variance MMN 

assumption might reflect the real life structure of MMN. Evidence reveals 

that cleaning or aggregation method does not affect rejection percentages 

substantially. 
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3) RV Analysis 

 

We constructed two RV time series, namely session RVs and daily RVs, for each 

frequency  in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600 

seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 

4.ii.b) - aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time 

series has 124 data points, whereas session RV time series is constituted of 248 

entries. Each RV series under each sampling scheme and cleaning and 

aggregation method combinations is subjected to preliminary statistics, ACF and 

PACF analysis and lastly unit root is checked where autocorrelation exhibits 

slow decay.  

 

 The factors that have any effect on RV series’ lognormality and autocorrelation 

structure turn out to be whether the RV is on a session or daily basis, whether it 

is under raw-TTS or CTS and the frequency at which the RV is calculated. 

Normality is not affected by any of these factors. All of RV series, either under 

raw-TTS or CTS, either raw or cleaned and aggregated, either on a session or 

daily basis, are not normally distributed as JB statistics and kurtosis-skewness 

values suggest. Taking logarithm makes daily and session RV series at all 

frequencies normal under raw-TTS except session RV series at 20 transactions 

frequency, while such a transformation works in terms of normality for 10 and 

5 min RV session and daily series under CTS but not for 1 min session or daily 

series under any cleaning or aggregation combination.  

 

 Specifically, frequency is effective on RV autocorrelation structure under both 

of raw-TTS and CTS, regardless of the cleaning and aggregation methods. ACFs 

of all session RV series look alike for frequencies 3, 6, 10, 15 and 30 

transactions. Likewise, ACFs of all daily RV series look alike for frequencies 3, 

6, 10, 15 and 30 transactions. ACFs of session and daily RVs change as the 

sampling frequency changes, such that for increasing frequencies RV series 

exhibit significant positive total autocorrelation up to higher number of legs 

under CTS. Moreover, calculating RVs on a session basis makes the RV series 

more autocorrelated at higher lags under both of raw-TTS and CTS.  

 

  Once we are working on a daily or session series at a particular frequency 

under CTS, cleaning and aggregation methods do not alter RV series’ non-

normality/normality or autocorrelation structure.  

 

 When it comes to stationarity, the picture changes. E-views ADF Test results 

reveal that under raw-TTS, all RV series are found to be stationary at 5% 

significance level, while turning to CTS alters the stationarity at certain 

frequencies for certain cleaning methods and certain aggregation algorithms. 

Under CTS, daily/session calculation of RV, the frequency and aggregation 

method affect ADF test results. For instance, daily 10 min RV series is 

nonstationary and stationary at 5% significance level for cleaning method 4.ii.a 

and 4.ii.b, respectively. Moreover, even under a cleaning method, stationarity 

results might differ from one aggregation method to next, which is obvious for 

1 min RV series being not stationary under 5.i and 5.ii aggregation methods 
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while becoming stationary under remaining aggregation techniques combined 

with cleaning method 4.ii.a27. Likewise, if we run ADF test for fixed lag length 

(2) and intercept in MATLAB, test results leads us to reject null hypothesis of 

unit root for all session RV series under CTS or raw-TTS, for all daily series 

under raw-TTS, and daily series under CTS for 1 and 5 min frequencies. 

MATLAB results also support our finding that aggregation method affect 

stationarity such that daily RV series at all frequencies are nonstationary at 5% 

significance level under 4.ii.a-5.i and 4.ii.a-5.ii, while daily RV series at 

frequencies 5 and 1 minutes become stationary for remaining aggregation 

method combinations under cleaning method 4.ii.a. Surprisingly, MATLAB 

results unveil the fact that cleaning method alters stationarity results for daily 

RV series, because under cleaning method 4.ii.b, all daily RV series regardless 

of the aggregation method turn out to be stationary at 5% significance level. 

 

a) Descriptive statistics by frequency, by sampling scheme and by cleaning and 

aggregation methods:  

 

 TTS-Raw: For all frequencies, the session and daily RV series are not 

normally distributed28 as very high skewness, kurtosis and JB statistic 

values reveal. Mean of the session and daily RVs become smaller as the 

sampling interval is lengthened, but there is no clear relationship between 

the sampling frequency and any change in skewness, kurtosis or JB 

statistic values, which deviates from the findings for MIGRS and ISCTR29. 

Correlograms of all session RV series look alike for frequencies 3, 6, 15 

and 30. At these frequencies total autocorrelation is significant up to 20th 

lag but significance decreases and increases as the lag number converges 

to 20. Meanwhile, at frequency of 10 transactions, session RV series is 

autocorrelated up to 6th lag, then significance disappears just to emerge at 

lags 9 and 12. Only first three lags are significant in PACF of all session 

RV series at all frequencies except 20 transactions frequency. At sampling 

interval of 20 transactions, no total or partial autocorrelation is detected30. 

Compared to correlogram of session series, autocorrelation structure of 

daily RVs looks different. Correlograms of all daily RV series look alike 

for sampling intervals of 3, 6, 15 and 30 transactions but compared to 

correlograms of session series at 3, 6, 15 and 30 transaction sampling 

intervals, autocorrelation structure of daily RVs looks different. Now, first 

10 lags and lags 1, 2 and 6 are positive significant in ACF and PACF, 

respectively. Differing from the findings for MIGRS, NETAS and ISCTR 

cases, for both of session and daily RV series under raw-TTS, the lags at 

which there is or there is not significant autocorrelation changes for 

sampling intervals 10 and 20 transactions, compared to remaining 

sampling intervals. The change in autocorrelation structure of RV series 

by looking at session and daily RVs separately calls for stationarity test 

                                                           
27 Matlab ADF test with NO INTERCEPT reveals that taking logarithm ensures stationarity at all 

frequencies under CTS with all cleaning and aggregation methods. 
28 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies. 
29 For MIGRS and ISCTR, a decrease in skewness, kurtosis and JB statistic was observed as we 

sample less frequently. 
30 Unlike the case of MIGRS. 
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and accordingly, we checked for unit roots in daily series to see if summing 

RV from session one and session two to reach daily RV distorts anything 

in RV stationarities at different frequencies. 

 

 
TTS- Raw-Session-Frequency:20 Transactions TTS- Raw-Daily-Frequency:20 Transactions 

  
  

TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions 

  

 

 
Figure F.18: ARCLK - Correlograms of session and daily RV series under TTS for different sampling 

intervals 

 

 

 CTS: For all frequencies, the session and daily RV series are not normally 

distributed as very high skewness, kurtosis and JB statistic values reveal31. 

Like the case under raw-TTS,   

 

i. mean of the session and daily RVs become smaller as the sampling 

interval is lengthened.  

 

 However, contrary to findings for RV series under raw-TTS,  

 

i. decrease in skewness, kurtosis and JB statistic values is observed as 

we sample more and more frequently (resembles to MIGRS and 

ISCTR, deviates from NETAS) 

 

                                                           
31 Like MIGRS and NETAS, unlike ISCTR. 
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ii. ACFs of session and daily RVs change as the sampling frequency 

changes, such that for increasing frequencies RV series exhibit 

significant positive total autocorrelation at higher number of lags 

with higher significances. 

 

 
CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series 

  
  

CTS-4.ii.a-5.i-Daily 10 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series 

  
 

 
Figure F.19: ARCLK - Correlograms of session and daily RV series under CTS for different sampling 

intervals 

 

 

iii. PACFs of session RVs differ slightly from one another depending 

on the frequency. For frequency 1 min, lags 1, 2, 3 and 12 are 

significant in PACF, whereas lags 1, 2, 3, and 11 and lags 1, 2, 5, 12 

and 13 are significant for 5 min and 10 min frequencies, respectively.  

 

iv. PACFs of daily RVs differ slightly from one another depending on 

the frequency. For frequency 1 min, lags 1, 2 and 6 are significant in 

PACF, whereas lags 1, 2, and 16 and lags 1, 2, 3, 6 and 14 are 

significant for 5 min and 10 min frequencies, respectively. 

 

 Regardless of the shapes, slow decay in the ACFs calls for stationarity 

tests.  
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 All of these observations hold under all cleaning methods and aggregation 

algorithms. 

 

b) Stationarity-Unit root test:  

 

 To test for stationarity and unit root, i.e. if the series move around a 

constant mean or diverge as time passes, Augmented Dickey Fuller (ADF) 

Test is preferred. By visual inspection of graphs, no trend is observed in 

any of our RV series, therefore, ADF Test is run with an intercept and no 

trend, the number of legs to be involved in the analysis is chosen by 

Schwarz criterion as it is the default choice suggested by E-views.  

 

 TTS-Raw-: In the E-views setting, where number of lags are optimized 

by E-views according to Schwarz criterion, R-squared values vary in a 

band of 33-45%. The null of nonstationarity is rejected at 1% significance 

level for all session and daily series32.  

 

 CTS: In the E-views setting, where number of lags are optimized by E-

views according to Schwarz criterion, R-squared values have a range of 

11% to 40%. At 5% significance level, session RV series at all frequencies 

under all cleaning and aggregation methods and daily RV series at 5 min 

under 4.ii.b and 4.ii.a as well as daily RV series at 10 min under 4.ii.b are 

found to be stationary. However, unlike ISCTR and NETAS but like 

MIGRS, daily/session calculation of RV, the frequency and aggregation 

method affects ADF test results. Under CTS, daily 10 min RV series is 

nonstationary and stationary at 5% significance level for cleaning method 

4.ii.a and 4.ii.b, respectively. Moreover, even under a cleaning method, 

stationarity results might differ from one aggregation method to next, 

which is obvious for 1 min RV series being not stationary under 5.i and 

5.ii aggregation methods while becoming stationary under remaining 

aggregation methods combined with cleaning method 4.ii.a. 

                                                           
32 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we 

switch to Daily series. Here, switching between Daily or session series does not affect significance level 

at which we can reject null. 
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GARAN SUMMARY AND REVIEW OF CHAPTER 4 RESULTS 

 

1) UHFD Characteristics Under Different Sampling Schemes and Error 

Cleaning and Data Filtering Combinations 

 

a) Irregular Temporal Spacing  
 

 

 
 

Figure F.20: Plot of durations between consecutive transactions (inside a session) for GARAN TTS-

raw data throughout the second half of 2012. 

 

 

b) Temporal dependence: By comparing autocorrelation and partial 

autocorrelation functions of 600 seconds33 absolute returns and log returns under 

CTS (clean and aggregated and interpolated) as well as absolute returns, log 

returns and durations in seconds from one transaction to the next under TTS (raw 

versus clean and aggregated) for December of 2012, we see that there are 

differences between ACF and PACF structure of absolute and log returns 

between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction 

sampled data by first cleaning, then aggregating and then interpolating (all 

needed for CTS) to 600 second sampled data distorts ACF and PACF of return 

series. 

 

                                                           
33 Since first order autocorrelation was observed in 10 min returns under all cleaning and aggregation 

methods under CTS, we did not feel the urgency to check for 1 min returns under CTS. Recall that we 

included 1 min returns under CTS for MIGRS just because 10 min log returns exhibited no 

autocorrelation at all. 
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 TTS-Raw-Durations: ACF (very very slowly decaying positive 

significant up to 20 lags) and PACF (hyperbolic decay, significant up 

to 11 lags) (shocks persist) 

 

 TTS-Raw-Absolute Returns: ACF (very very slow decay, significant 

upto 20 lags) and PACF (decaying positive and significant up to 15 

lags) (shocks persist) 

 

 TTS-Raw-Log returns: ACF (quick decay, first two lags negative-

positive significant) PACF( slower hyperbolic decay, first 14 lags 

significant) 

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (very very 

slowly decaying positive and significant up to 20 lags) and PACF 

(hyperbolic decaying positive and significant up to 18 to 20 lags) 

(shocks persist) 

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF 

(decaying positive and significant up to 20 lags ) and PACF (decaying 

positive and significant up to 12-13 lags)  

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay, 

first two legs negative-positive significant) PACF(slower hyperbolic 

decay, first 7-8 lags negative significant) 

 

 CTS-Durations: Meaningless, after interpolation duration from one 

entry to the next is always 1 second. 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF 

(first lag is positive significant), PACF(positive significant at first lag) 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (only 

first lag is negative significant) and PACF (first lag is negative 

significant) 

 

Under TTS, with raw or clean and aggregated data, there is significant positive 

autocorrelation up to 20 lags in absolute returns, significant up to third order 

autocorrelation in log returns and very significant positive autocorrelation up to 

20 lags in seconds elapsed between two transactions, thus volatility clustering is 

verified. Whereas, for 10 min returns under CTS, log returns display first order 

autocorrelation, which is in conformity with evidence laid out by the finance 

literature in general, that very short term returns exhibit strong autocorrelation 

especially on the first lag. Absolute return autocorrelation structure is changed 

under CTS at 600 seconds sampling interval compared to results under TTS at 1 

transaction interval. Likewise, switching to CTS and calculation returns at 600 

seconds suppresses partial autocorrelation figures at several lags of both absolute 

and log returns. Meanwhile, comparing data handling combinations to each 

other, any combination of cleaning methods and aggregation methods (compared 
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to other combinations) does not cause any major change in total and partial 

correlation structures once we move under a sampling scheme, it being either 

TTS or CTS. However, cleaning and aggregation under TTS yield different 

PACF structures in log returns compared to results produced with raw data. 

 

 

  

  

  
 

 
Figure F.21: ACFs and PACFs of logreturn and absolute return series of GARAN for December 2012 

under TTS and CTS  

 

 

c) Diurnal Patterns: These patterns can be sought only under CTS because of their 

definitions such as number of trades per x minutes or absolute return per y 

seconds. For GARAN case, there are strong W shapes which are persistent 

across cleaning and aggregation methods in 10 minutes trade volumes and 10 

minutes trade intensities throughout days in second half of 2012, whereas 

patterns in 10 minutes absolute returns are closer to W without last spike at the 
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end of the day. The existence of several spikes around lunch break in 10 min 

absolute returns is interesting. Likewise, 10 minutes absolute percentage returns 

exhibit a shape, but although the shape is persistent across cleaning and 

aggregation methods, it does not resemble to a W or L34. All in all, there are 

significant diurnal patterns in returns and trading activity in the form of intensity 

and volume under CTS and these patterns look exactly same when various 

combinations of cleaning and aggregation methods are applied. 

 

 

  
  

  
 

 
Figure F.22: Diurnal patterns - GARAN cleaned and aggregated transaction data under CTS 

 

 

2) Visual and Formal Statistical Tests of Existence and Statistical Features of 

Market Microstructure Noise 

 

a) VSP: Regardless of the sampling schemes or cleaning and aggregation 

techniques combinations, average realized volatility of return on transaction 

price explode as we increase the sampling frequency, either in seconds or in 

transactions. Explosion becomes trivial for the sampling intervals that are less 

than 200 seconds or 15 transactions. This observation is valid both for session 

and daily figures, serving as a visual proof regarding existence of market 

microstructure noise and pointing to a positive relationship between noise 

increment and true price return, both under CTS and TTS even if the data set is 

cleaned or aggregated. At this point, we would like to emphasize that for VSPs, 

we skipped 4.ii.a-5.i-5.ii-5.iii-5.iv-5.v combinations under TTS, mainly because 

                                                           
34 Unlike the W or L shapes in other stocks. 
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the number of cleaned points under 4.ii.a is so small, cleaning makes no real 

difference comparing to no cleaning of the data set. Any possible difference 

might have been observed under cleaning method 4.ii.b, which ended up deleting 

more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we 

additionally search for any marginal effect that cleaning method 4.ii.b has over 

cleaning method 4.ii.a. However, as put forward previously, cleaning or 

aggregation does not affect the result that market microstructure becomes 

dominant after 15 transactions under TTS and 200 seconds under CTS and that 

the shape of VSP suggest a positive correlation between noise increment and 

true price return. 

 

 

 

  
 

 
Figure F.23: VSPs of GARAN over Daily RVs using clean and aggregated data under CTS, raw data 

under TTS, and clean and aggregated data under TTS. 

 

 

b) Statistical Tests Regarding Existence and Statistical Features of the MMN 
35:  

 

 Existence of the MMN is verified statistically under both of CTS and TTS. 

We calculated 𝑍𝑇,𝑛,ℎ testing null hypothesis in (3.11) by comparing RVs 

that are calculated over different frequency pairs composed of high-low 

frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30), 

(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias 

of the RV estimator is dominated by expectation of square of the noise 

                                                           
35 Findings under this section are very much alike to those for ISBANK. 
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increment. Therefore, if we reject the null hypothesis, it means that the 

MMN has statistically significant impact on realized estimator of the IV.  

 

For each day in the sample period of 124 days and each frequency pair, we 

run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis are 100% under raw-TTS, 99% under clean 

and aggregated TTS and around 98% under CTS for all cleaning and 

aggregation method combinations when we compare RVs calculated over 

3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As 

we decrease the sampling frequency at the high frequency leg, rejection 

percentages of null hypothesis shrink, which is true under both of TTS and 

CTS. For raw-TTS, the rejection percentages begin with 100% and 

decrease gradually to 55% as high frequency leg moves toward 20 

transactions when low frequency leg is 30 transactions. Cleaning and 

aggregating the data does not amend the downward trend in rejection 

percentages under TTS, but make it steeper. For all aggregation choices 

with cleaning method 4.ii.b applied under TTS, the rejection percentages 

begin with 99% and decrease gradually to levels around 25% as high 

frequency leg moves toward 20 transactions. Switching to CTS as well as 

moving across the grid of cleaning and aggregation combinations do not 

change the results either. For CTS, the rejection percentages begin with 

around 100% for 10 to 1200 seconds pair and goes down the hill to 12-

15% as high frequency legs are slowed to 900 seconds.  

 

 The following representative rejection rate graphs reveal that MMN starts 

to accentuate as the sampling frequency converges to 10-15 transactions 

under TTS, and 250-300 seconds under CTS. These findings are in 

conformity with those supplied by VSP analysis. MMN is felt strongly 

once we cross over the sampling interval thresholds of 15 transactions or 

5 minutes under TTS and CTS, respectively. For higher frequencies, 

rejection rates turn out to be quite high, especially after 150 seconds under 

CTS and 10 transactions under TTS, rejection rates become flat in a band 

of 95-100%. Moreover, visual inspection of the test statistic 𝑍𝑇,𝑛,ℎ for 

several frequency pairs either under TTS or CTS reveals that for the 

majority of the time test statistic is positive and outside 5% st. normal 

confidence interval, meaning there is positive correlation between noise 

and efficient price, which is again in conformity with exploding VSPs. 
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Figure F.24: GARAN - Plots of 𝑍𝑇,𝑛,ℎ for each day in the sample period with upper and lower tail 

critical values of standard normal under TTS and CTS. 
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 Summary: Model of i.i.d MMN with constant variance might be proper 

under CTS but under raw-TTS, for more than 50% of the days, null of 

constant variance is rejected for triples with very high frequencies 

combined with very low. This might be evidence of i.i.d assumption not 

holding at frequencies lesser than 15 transactions. Sampling scheme, but 

not the aggregation method, is discovered to very influential on rejection 

of null hypothesis that MMN has variance independent of sampling 

frequency. Meanwhile, cleaning algorithms have some suppressive effect 

on rejection percentages particularly under TTS.  

 

Awartani et al. [16] derive a test with the idea that if the MMN has constant 

variance, then noise variances calculated over frequencies 1/M or 1/N 

should be same independent of M or N chosen. Their null and null 

hypotheses are as in (3.35) and (3.36). 

 

Since alternative hypothesis is in harmony with the presence of 

autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde 

[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign 

of the rejection of the null hypothesis that the MMN is a sequence of i.i.d  

random variables with constant variance. To test the validity of this null 

hypothesis, a test statistic compares RV differences using two frequency 

pairs, where pairs are M,L and N,L. L represents a frequency at which we 

can ignore the MMN safely, say 20 minutes and M and N are frequencies 

at which the MMN is considered to be significant. Therefore, the test is 

build on RVs calculated over frequency triples i.e. for each high frequency 

pair combined with 20 minutes, we test null hypothesis that E(noise 

increment square at low frequency)=E(noise increment square at high 

frequency). If we reject the null hypothesis, it means that the MMN has 

variance that is NOT independent of sampling frequency, therefore any 

assumptions regarding i.i.d nature of MMN can be taken as invalidated. 

Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30) 

(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200), 

(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200) 

seconds under CTS. 

 

For each day in the sample period of 124 days and each frequency triple, 

we run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis clearly changes from one triple to another 

and as we clean and aggregate data. Beware that under raw-TTS especially 

for combinations of frequencies with highest differences between frequent 

legs, rejection percentages exceed 60%, while they stagger around 15% 

for 3-10-30 triple with lowest distance between first two legs. However, 

once we clean and aggregate the data, rejection percentages, except for 3-

10-30 triple, are severed to levels 31% or 12% depending on the triple36. 

Regarding 3-10-30 triple, rejection percentage slightly increases. For CTS 

                                                           
36 In a sense, these findings agree with findings for MIGRS case, where rejection percentages are 

highest for triples with distant constituents and TTS-raw data; however, MIGRS rejection percentages 

are way below those of ISCTR or GARAN rejection percentages. 
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4.ii.a (b), constant variance assumption rejection percentage varies 

between 0% and 6.4%, both of which are just a fraction of rejection 

percentages under TTS-raw or TTS-cleaned. Therefore, sampling scheme 

is discovered to very influential on rejection of null hypothesis that MMN 

has variance independent of sampling frequency. We can reject this null 

under TTS confidently and conclude that i.i.d with constant variance 

MMN assumption does not reflect the real life structure of MMN, whereas 

under CTS, such an assumption seems to hold especially for frequencies 

higher than 150 seconds. Evidence reveals that aggregation method does 

not affect rejection percentages and for triples with high frequency legs 

being close to very slow frequency leg, rejection percentages are 

substantially damaged independent of the sampling scheme. 
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3) RV Analysis 

 
We constructed two RV time series, namely session RVs and daily RVs, for each 

frequency  in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600 

seconds  under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 

4.ii.b) -aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time 

series has 124 data points, whereas session RV time series is constituted of 248 

entries. Each time RV series under each sampling scheme and cleaning and 

aggregation method combinations is subjected to preliminary statistics, ACF and 

PACF analysis and lastly unit root is checked where autocorrelation exhibits 

slow decay.  

 

 The factors that have any effect on RV series’ normality and autocorrelation 

structure turn out to be whether the RV is on a session or daily basis, whether it 

is under raw-TTS or CTS and the frequency at which the RV is calculated. For 

all frequencies, the session and daily RV series are not normally distributed 

under raw-TTS as skewness, kurtosis and very high JB statistic values reveal. 

Switching to CTS and increasing frequency and calculating RVs on a daily basis 

make RV series more and more normal such that at 1 min frequency, we cannot 

reject null hypothesis of daily 1 min RV sample coming from a normally 

distributed population at 5 or 1% significance levels. For 5 min and 10 min 

frequencies with daily calculation and all frequencies with session calculations, 

under CTS, RV series are not coming from a normally distributed population. 

Taking logarithm of RV series converts them to normal for all frequencies 

(except session 20) under raw-TTS and for daily 5 and 10 min frequencies under 

cleaning method 4.ii.a, but only for daily 10 min under cleaning method 4.ii.b 

under CTS37. All session CTS series are non-lognormal. Therefore, session-daily 

choice, cleaning method, frequency and sampling scheme are found to be 

effective on lognormality of RV series. 

 

 Decreasing frequencies cause less number of lags being significant with lesser 

significant levels, i.e. decreasing frequency again depresses autocorrelation 

structure of RV series regardless of sampling scheme or session-daily 

calculation, which is in line with existence of MMN. However, the suppression 

effect is not too strong under raw-TTS. Unlike findings for AKBNK, ISCTR and 

NETAS, calculating RVs on a session basis DOES NOT make the RV series 

more autocorrelated under CTS. Still, session-daily choice alters autocorrelation 

decay patterns under CTS and raw-TTS.  

 

 Once we are working on a daily or session series at a particular frequency under 

CTS, cleaning and aggregation methods do not alter RV series’ non-

normality/normality or autocorrelation structure. 

 

 Sampling scheme, frequency and cleaning methods affects the stationarity 

results. 38. E-views ADF Test results reveal that we can reject null of unit root at 

                                                           
37 Unlike the case of MIGRS. 
38 Unlike the findings for ISCTR, NETAS and ARCLK cases, alike to AKBNK. 
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5% significance level for RV series under raw-TTS at all frequencies39; however, 

switching to CTS and moving between cleaning methods or session or daily RV 

calculation basis while increasing the frequency changes the game such that 

under cleaning method 4.ii.a, regardless of aggregation method, the null 

hypotheses that daily or session 1 min RV series have unit root cannot be rejected 

at 5% significance level. Whereas, adopting cleaning method 4.ii.b makes 

session and daily 1 min series stationary at 5% significance level orthogonal to 

aggregation methods40. Likewise, if we run ADF test for fixed lag length (2) and 

intercept in MATLAB, test results leads us not to reject null hypothesis of unit 

root for 1 min daily RV series under CTS with cleaning method 4.ii.a, where 

switching to cleaning method 4.ii.b ensures stationarity for RV series at all 

frequencies, either session or daily. For raw-TTS, results of MATLAB ADF test 

for 2 lags and an intercept coincide with results from E-Views ADF test, i.e., RV 

series session or daily at all frequencies are stationary at 5% significance level. 

 

a) Descriptive statistics by frequency, by sampling scheme and by cleaning and 

aggregation methods:  

 

 TTS-Raw: For all frequencies, the session and daily RV series are not 

normally distributed41 as skewness, kurtosis and high JB statistic values 

reveal. Mean of the session and daily RVs become smaller as the sampling 

interval is lengthened, but there is no clear relationship between sampling 

frequency and change in skewness, kurtosis or JB statistic values, which 

deviates from the findings for MIGRS and ISCTR but is in line with 

findings for AKBNK. Still, normality of the any of these series is out of 

question. Correlogram of all session RV series look alike but are not 

exactly same. Generally speaking, ACFs and PACFs of RVs are decaying 

but not hyperbolically such that total and partial autocorrelations are strong 

at even lags and weak at odd legs42 (ACF positive significant up to 13rd at 

odd lags -up to 20th lag at even lags and PACF positive significant 

selectively at legs, 1, 2, 4, and 8)43. Although correlograms of all daily RVs 

resemble one another, compared to correlogram of session series, 

autocorrelation structure of daily RVs looks different. Now, a quick decay 

with first two lags and lag 4 being positive significant in PACF is evident, 

while decay in ACF is wave like with significant positive values up to lag 

11-13. Unlike case of AKBNK but similar to ISBNK, the decrease in 

sampling frequency does only have minimal suppression effect over the 

significance levels and the number of significant lags. The change in 

autocorrelation structure of RV series by looking at session and daily RVs 

separately, calls for stationarity test and accordingly, we checked for unit 

roots in daily series to see if summing RV from session one and session 

                                                           
39 Unlike the case of MIGRS. 
40 Matlab ADF test with NO INTERCEPT reveals that taking logarithm erases stationarity at all 

frequencies under CTS with all cleaning and aggregation methods. Unlike ISCTR. 
41 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies 

either Daily or session, except session-20 transactions. 
42 Like ISCTR. 
43 Unlike the case of MIGRS. 
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two to reach daily RV distorts anything in RV stationarities at different 

frequencies. 

 

 

 
TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions 

  
  

TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions 

  
 

 
Figure F.27: GARAN - Correlograms of session and daily RV series under TTS for different sampling 

intervals 

 

 

 CTS: For 1 min frequency, we cannot reject null hypothesis that the daily 

RV series come from a normally distributed population at 5% significance 

level, whereas rejection of such hypothesis for all remaining RV series 

(daily or session) at all frequencies is evident by skewness, kurtosis and 

high JB statistic values. Like the case under raw-TTS,  

 

i. mean of the session and daily RVs become smaller as the sampling 

interval is lengthened.  

 

ii. there is no clear relationship between sampling frequency and 

change in skewness, kurtosis or JB statistic values, which deviates 

from the findings for MIGRS, ARCLK and ISCTR but resembles to 

findings for NETAS. 
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 However, contrary to findings for RV series under RAW-TTS,  

 

i. ACFs of session and daily RVs change as the sampling frequency 

changes, such that for increasing frequencies RV series exhibit 

significant positive total autocorrelation up to higher number of legs. 

Apart from this common trait, the decay patterns in total correlation 

of daily and session RVs are different, especially obvious at 1 min 

frequency. 

 

 
CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series 

  
  

CTS-4.ii.a-5.i-Daily 10 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series 

  
 

 
Figure F.28: GARAN - Correlograms of session and daily RV series under CTS for different sampling 

intervals 

 

 

ii. PACFs of session RVs differ slightly from one another depending 

on the frequency. For frequency 1 min, lags 1,2,4 and 6 are 

significant in PACF, whereas lags 2 and 1,2 and 6 are significant (on 

the edge) for 5 min and 10 min frequencies, respectively.  

 

iii. PACFs of daily RVs differ slightly from one another depending on 

the frequency. For frequency 1 min, lags 1,2 and 3 are significant in 

PACF, whereas lags 1 and 3 and lags 1, 3, and 6 are significant for 

5 min and 10 min frequencies, respectively. 
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 Slow decay in some of the ACFs calls for stationarity tests.  

 

 All of these observations hold under all cleaning methods and aggregation 

algorithms.  

 

b) Stationarity-Unit root test:  

 

 To test for stationarity and unit root, i.e. if the series move around a 

constant mean or diverge as time passes, Augmented Dickey Fuller 

(ADF) Test is preferred. By visual inspection of graphs, no trend is 

observed in any of our RV series, therefore, ADF Test is run with an 

intercept and no trend, the number of legs to be involved in the analysis 

is chosen by Schwarz criterion as it is the default choice suggested by 

E-views.  

 

 TTS-Raw-: In the E-views setting, where number of lags are optimized 

by E-views according to Schwarz criterion, R-squared values vary in a 

band of 29-55%. The null of nonstationarity is rejected at 1 and 5% 

significance level for all session and daily series44.  

 

 CTS: In the E-views setting, where number of lags are optimized by E-

views according to Schwarz criterion, R-squared values has a wide 

range of 39% to 57%. At 1% significance level, all RV series, either 

session or daily and at 5 and 10 min frequencies, are found to be 

stationary. However, both of session and daily 1 min RV series under 

cleaning method 4.ii.a turn out to be nonstationary at 5 % significance 

level. Interestingly, 1 min session or day based series become stationary 

under cleaning method 4.ii.b. 

                                                           
44 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we 

switch to Daily series. Here, switching between Daily or session series does not affect  p-values of test 

statistic (like ISCTR) 
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ISCTR SUMMARY AND REVIEW OF CHAPTER 4 RESULTS 

 

1) UHFD Characteristics Under Different Sampling Schemes and Error 

Cleaning and Data Filtering Combinations 

 

a) Irregular Temporal Spacing  
 

 

 
 

Figure F.29: Plot of durations between consecutive transactions (inside a session) for ISCTR TTS-raw 

data throughout the second half of 2012. 

 

 

b) Temporal dependence: By comparing autocorrelation and partial 

autocorrelation functions of 600 seconds45 absolute returns and log returns 

under CTS(clean and aggregated and interpolated) as well as absolute returns, 

log returns and durations in seconds from one transaction to the next under 

TTS( raw versus clean and aggregated) for December of 2012, we see that there 

are differences between ACF and PACF structure of absolute and log returns 

between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction 

sampled data by first cleaning, then aggregating and then interpolating (all 

needed for CTS) to 600 second sampled data distorts ACF and PACF of return 

series. 

 

 TTS-Raw-Durations: ACF (very very slowly decaying positive significant 

up to 20 lags) and PACF (hyperbolic decay, significant up to 20 lags) 

(shocks persist) 

                                                           
45 Since first order autocorrelation was observed in 10 min returns under all cleaning and aggregation 

methods under CTS, we did not feel the urgency to check for 1 min returns under CTS. Recall that we 

included 1 min returns under CTS for MIGRS just because 10 min log returns exhibited no 

autocorrelation at all. 
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 TTS-Raw-Absolute Returns: ACF (very very slow decay) and PACF 

(decaying positive and significant up to 16-20 lags) (shocks persist) 

 

 TTS-Raw-Log returns: ACF (quick decay, first three lags negative-

positive-negative significant) PACF( slower hyperbolic decay, first 14 lags 

significant) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (very very slowly 

decaying positive and significant up to 20 lags) and PACF (hyperbolic 

decaying positive and significant up to 18 to 20 lags) (shocks persist) 

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying 

positive and significant up to 20 lags ) and PACF (decaying positive and 

significant up to 18-20 lags) (shocks persist) 

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay, 

first two-three lags negative-positive-negative significant) PACF(slower 

hyperbolic decay, first 10-12 lags negative significant) 

 

 CTS-Durations: Meaningless, after interpolation duration from one entry 

to the next is always 1 second. 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF 

(first 2 lags are positive significant), PACF(positive significant up to 2nd 

lag) 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (only 

first lag is negative significant) and PACF (first two legs are negative 

significant)  

 

Under TTS, with raw or clean and aggregated data, there is significant positive 

autocorrelation up to 20 lags in absolute returns, significant up to third order 

autocorrelation in log returns and very significant positive autocorrelation up to 

20 lags in seconds elapsed between two transactions, thus volatility clustering is 

verified. Whereas, for 10 min returns under CTS, log returns display first and 

second order autocorrelation, which is in conformity with evidence laid out by 

the finance literature in general, that very short term returns exhibit strong 

autocorrelation especially on the first lag. Absolute return autocorrelation 

structure is changed under CTS at 600 seconds sampling interval compared to 

results under TTS at 1 transaction interval. Likewise, switching to CTS and 

calculation returns at 600 seconds suppresses partial autocorrelation figures at 

several lags of both absolute and log returns. Meanwhile, comparing data 

handling combinations to each other, any combination of cleaning methods and 

aggregation methods (compared to other combinations) does not cause any 

major change in total and partial correlation structures once we move under a 

sampling scheme, it being either TTS or CTS.  

 

 



 
230 

  
  

  

  

  
 

 
Figure F.30: ACFs and PACFs of logreturn and absolute return series of ISCTR for December 2012 

under TTS and CTS  
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c) Diurnal Patterns: These patterns can be sought only under CTS because of their 

definitions such as number of trades per x minutes or absolute return per y 

seconds. For ISCTR case, there are strong W shapes which are persistent across 

cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes 

trade intensities throughout days in second half of 2012, whereas patterns in 10 

minutes absolute returns are closer to W without last spike at the end of the day. 

10 minutes absolute percentage returns strongly exhibit L shape. All in all, there 

are significant diurnal patterns in returns and trading activity in the form of 

intensity and volume under CTS and these patterns look exactly same when 

various combinations of cleaning and aggregation methods are applied. 

 

 

  
  

  
 

 
Figure F.31: Diurnal patterns - ISCTR cleaned and aggregated transaction data under CTS  

 

 

2) Visual and Formal Statistical Tests of Existence and Statistical 

Features of Market Microstructure Noise 
 

a) VSP: Regardless of the sampling schemes or cleaning and aggregation 

techniques combinations, average realized volatility of return on transaction 

price explode as we increase the sampling frequency, either in seconds or in 

transactions. Explosion becomes trivial for the sampling intervals that are less 

than 200 seconds or 15 transactions. This observation is valid both for session 

and daily figures, serving as a visual proof regarding existence of market 

microstructure noise and pointing to a positive relationship between noise 

increment and true price return, both under CTS and TTS even if the data set is 

cleaned or aggregated. At this point, we would like to emphasize that for VSPs, 
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we skipped 4.ii.a-5.i-5.ii-5.iii-5.iv-5.v combinations under TTS, mainly because 

the number of cleaned points under 4.ii.a is so small, cleaning makes no real 

difference comparing to no cleaning of the data set. Any possible difference 

might have been observed under cleaning method 4.ii.b, which ended up deleting 

more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we 

additionally search for any marginal effect that cleaning method 4.ii.b has over 

cleaning method 4.ii.a. However, as put forward previously, cleaning or 

aggregation does not affect the result that market microstructure becomes 

dominant after 15 transactions under TTS and 200 seconds under CTS and that 

the shape of VSP suggest a positive correlation between noise increment and 

true price return. 

 

 

  
  

 
 

 
Figure F.32: VSPs of ISCTR over Daily RVs using clean and aggregated data under CTS, raw data 

under TTS, and clean and aggregated data under TTS. 

 

 

b) Statistical Tests Regarding Existence and Statistical Features of MMN :  

 

 Existence of MMN is verified statistically under both of CTS and TTS. 

We calculated 𝑍𝑇,𝑛,ℎ testing null hypothesis in (3.11) by comparing RVs 

that are calculated over different frequency pairs composed of high-low 

frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30), 

(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias 

of the RV estimator is dominated by expectation of square of the noise 
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increment. Therefore, if we reject the null hypothesis, it means that the 

MMN has statistically significant impact on realized estimator of the IV. 

 

For each day in the sample period of 124 days and each frequency pair, we 

run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis are 100% under raw-TTS, 100% under 

clean and aggregated TTS and around 98% under CTS for all cleaning and 

aggregation method combinations when we compare RVs calculated over 

3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As 

we decrease the sampling frequency at the high frequency leg, rejection 

percentages of null hypothesis shrink, which is true under both of TTS and 

CTS. For raw-TTS, the rejection percentages begin with 100% and 

decrease gradually to 65% as high frequency leg moves toward 20 

transactions when low frequency leg is 30 transactions. Cleaning and 

aggregating the data does not amend the downward trend in rejection 

percentages under TTS, but make it steeper. For all aggregation choices 

with cleaning method 4.ii.b applied under TTS, the rejection percentages 

begin with 100% and decrease gradually to 32% as high frequency leg 

moves toward 20 transactions. Switching to CTS as well as moving across 

the grid of cleaning and aggregation combinations do not change the 

results either. For CTS, the rejection percentages begin with around 100% 

for 10 to 1200 seconds pair and goes down the hill to 12% as high 

frequency legs are slowed to 900 seconds.  

 

 Following representative rejection rate graphs reveal that the MMN starts 

to accentuate as the sampling frequency converges to 10-15 transactions 

under TTS, and 250-300 seconds under CTS. These findings are in 

conformity with those supplied by the VSP analysis. The MMN is felt 

strongly once we cross over the sampling interval thresholds of 15 

transactions or 5 minutes under TTS and CTS, respectively. For higher 

frequencies, rejection rates turn out to be quite high, especially after 150 

seconds under CTS and 10 transactions under TTS, rejection rates become 

flat in a band of 95-100%. Moreover, visual inspection of the test statistic 

𝑍𝑇,𝑛,ℎ for several frequency pairs either under TTS or CTS reveals that for 

the majority of the time, test statistic is positive and outside 5% st. normal 

confidence interval, meaning that there is positive correlation between 

noise and efficient price, which is again in conformity with the exploding 

VSPs. 

 

  



 
234 

 
 

 

 
 

 

 
Figure F.33: ISCTR - Plots of 𝑍𝑇,𝑛,ℎ for each day in the sample period with upper and lower tail 

critical values of standard normal under TTS and CTS. 
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 Summary: Model of an i.i.d MMN with constant variance might be proper 

under CTS but under raw-TTS, for more than 50% of the days, null of 

constant variance is rejected for triples with very high frequencies 

combined with very low. This might be evidence of i.i.d assumption not 

holding at frequencies lesser 15 transactions. Sampling scheme, but not the 

aggregation method, is discovered to very influential on rejection of null 

hypothesis that MMN has variance independent of sampling frequency. 

Meanwhile, cleaning algorithms have some suppressive effect on rejection 

percentages particularly under TTS. 

 

Awartani et al. [16] derive a test with the idea that if the MMN has constant 

variance, then noise variances calculated over frequencies 1/M or 1/N 

should be same independent of M or N chosen. Their null and null 

hypotheses are as in (3.35) and (3.36). 

 

Since alternative hypothesis is in harmony with the presence of 

autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde 

[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign 

of the rejection of the null hypothesis that the MMN is a sequence of i.i.d  

random variables with constant variance. To test the validity of this null 

hypothesis, a test statistic compares RV differences using two frequency 

pairs, where pairs are M,L and N,L. L represents a frequency at which we 

can ignore the MMN safely, say 20 minutes and M and N are frequencies 

at which the MMN is considered to be significant. Therefore, the test is 

build on RVs calculated over frequency triples i.e. for each high frequency 

pair combined with 20 minutes, we test null hypothesis that E(noise 

increment square at low frequency)=E(noise increment square at high 

frequency). If we reject the null hypothesis, it means that the MMN has 

variance that is NOT independent of sampling frequency, therefore any 

assumptions regarding i.i.d nature of MMN can be taken as invalidated. 

Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30) 

(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200), 

(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200) 

seconds under CTS. 

 

For each day in the sample period of 124 days and each frequency triple, 

we run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis clearly changes from one triple to another 

and as we clean and aggregate data. Beware that under raw-TTS especially 

for combinations of frequencies with highest differences between frequent 

legs, rejection percentages exceed 50%, while they stagger around 15% 

for 3-10-30 triple with lowest distance between first two legs. However, 

once we clean and aggregate the data, rejection percentages decline to 

levels 40% or 20% depending on the triple46. For CTS 4.ii.a (b), constant 

variance assumption rejection percentage varies between 2% and 8%, both 

                                                           
46 In a sense, these findings agree with findings for MIGRS case, where rejection percentages are 

highest for triples with distant constituents and TTS-raw data; however, MIGRS rejection percentages 

are way below those of ISCTR rejection percentages. 
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of which are just a fraction of rejection percentages under TTS-raw or 

TTS-cleaned. Therefore, sampling scheme is discovered to be very 

influential on rejection of the null hypothesis that the MMN has variance 

independent of sampling frequency. We can reject this null hypothesis 

under TTS confidently and conclude that assumption of an i.i.d MMN with 

constant variance does not reflect the real life structure of the MMN, 

whereas under CTS, such an assumption seems to hold especially for 

frequencies lower than 150 seconds. Evidence reveals that aggregation 

method does not affect rejection percentages and for triples with high 

frequency legs being close to very slow frequency leg, rejection 

percentages are severely damaged independent of the sampling scheme. 
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3) RV Analysis 

 

We constructed two RV time series, namely session RVs and daily RVs, for each 

frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600 

seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 

4.ii.b) -aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time 

series has 124 data points, whereas session RV time series is constituted of 248 

entries. Each RV series under each sampling scheme and cleaning and 

aggregation method combinations is subjected to preliminary statistics, ACF and 

PACF analysis and lastly unit root is checked where autocorrelation exhibits 

slow decay.  

 

 The factors that have any effect on RV series’ normality and autocorrelation 

structure turn out to be whether the RV is on a session or daily basis, whether it 

is under raw-TTS or CTS and the frequency at which the RV is calculated. 

Regarding lognormality, frequency and sampling scheme are found to be 

influential. For all frequencies, the session and daily RV series are not normally 

distributed under raw-TTS as very high skewness, kurtosis and JB statistic 

values reveal. Switching to CTS and increasing frequency makes RV series more 

and more normal such that at 1 min frequency (session or daily), we cannot reject 

null hypothesis of RV sample coming from a normally distributed population at 

5 or 1% significance levels. Taking logarithm of RV series converts them to 

normal for all frequencies under raw-TTS and for 10 min frequency under 

CTS47.  

 

 Decreasing frequencies cause less number of lags being significant with lesser 

significant levels under CTS, i.e. decreasing frequency again depresses 

autocorrelation structure of RV series regardless of session-daily calculation, 

which is in line with the existence of MMN. However, the suppression effect is 

not evident under raw-TTS. Moreover, calculating RVs on a session basis makes 

the RV series more autocorrelated under CTS. Regarding raw-TTS, only 

daily/session calculation of RV is found to have effect on correlogram such that 

daily RVs at all frequencies have some significant negative autocorrelations at 

lags that are greater than 14. 

 

 Once we are working on a daily or session series at a particular frequency under 

CTS, cleaning and aggregation methods do not alter RV series’ non-

normality/normality or autocorrelation structure. 

 

 Neither sampling schemes, nor frequencies or cleaning/aggregation methods or 

session/daily basis choice affect the stationarity results as E-views ADF Test 

results reveal that we can reject null of unit root at 5%significance level for all 

RV series under TTS or CTS at all frequencies48. On the contrary, if we run ADF 

test for fixed lag length (2) and intercept in MATLAB, test results leads us not 

to reject null hypothesis of unit root for 1 min and 5 min daily RV series under 

CTS. 

                                                           
47 Unlike the case of MIGRS. 
48 Unlike the case of MIGRS. 
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a) Descriptive statistics by frequency, by sampling scheme and by cleaning and 

aggregation methods:  

 

 TTS-Raw: For all frequencies, the session and daily RV series are not 

normally distributed49 as very high skewness, kurtosis and JB statistic 

values reveal. Mean of the session and daily RVs become smaller as the 

sampling interval is lengthened, which is accompanied by a decrease in 

skewness, kurtosis and JB statistic as we sample less frequently. Still, 

normality of the any of these series is out of question. Correlogram of all 

session RV series look alike but are not exactly same. Generally speaking, 

ACFs and PACFs of RVs are decaying but not hyperbolically such that 

total and partial autocorrelations are strong at even lags and weak at odd 

legs (ACF positive significant up to 12th - 14th and PACF positive or 

negative significant selectively at legs, 1, 2, 4, 6 and 11)50. Although 

correlograms of all daily RVs resemble one another, compared to 

correlogram of session series, autocorrelation structure of daily RVs looks 

different. Now, a quick decay with first two lags being positive significant 

in PACF is evident, while decay in ACF starts from significant positive 

values, hit 0, then become negative significant where first 7-8 legs are 

positive significant, legs 8-12 are not significant and legs 13-20 are 

negative significant. The change in autocorrelation structure of RV series 

by looking at session and daily RVs separately, calls for stationarity test 

and accordingly, we checked for unit roots in daily series to see if summing 

RV from session one and session two to reach daily RV distorts anything 

in RV stationarities at different frequencies. 

  

                                                           
49 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies. 
50 Unlike the case of MIGRS. 
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TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions 

  

  
TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions 

  

 

 
Figure F.36: ISCTR - Correlograms of session and daily RV series under TTS for different sampling 

intervals 

 

 

 CTS: For 1 min frequency, we cannot reject the null hypothesis that the 

session and/or daily RV series come from a normally distributed 

population at 5% significance level, whereas rejection of such hypothesis 

for session and/or daily RV series at 5 and 10 min frequencies is evident 

by high skewness, kurtosis and JB statistic values. Like the case under 

TTS,  

 

i. mean of the session and daily RVs become smaller as the sampling 

interval is lengthened.  

 

 However, contrary to findings for RV series under RAW-TTS,  

 

i. decrease in skewness, kurtosis and JB statistic values is observed as 

we sample more and more frequently, to a point that while session 

and daily 10 min RV series are not normal, JB tests on session and 

daily 1 min RV series fail to reject normality at 5% significance 

level. 
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ii. ACFs of session and daily RVs change as the sampling frequency 

changes, such that for increasing frequencies RV series exhibit 

significant positive total autocorrelation up to higher number of legs. 

Apart from this common trait, the decay patterns in total correlation 

of daily and session RVs are different, especially obvious at 1 min 

frequency. 

 

 
CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series 

  
  

CTS-4.ii.a-5.i-Daily 10 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series 

  
 

 
Figure F.37: ISCTR - Correlograms of session and daily RV series under CTS for different sampling 

intervals 

 

i. PACFs of session RVs differ slightly from one another depending 

on the frequency. For frequency 1 min, lags 1, 2, 4 and 6 are 

significant in PACF, whereas lags 1, 2 and 4 and 1, 2 and 6 are 

significant (on the edge) for 5 min and 10 min frequencies, 

respectively.  

 

ii. PACFs of daily RVs differ slightly from one another depending on 

the frequency. For frequency 1 min, lags 1 and 2 are significant in 

PACF, whereas lags 1, 2 and 13 and lags 1 and 3 are significant for 

5 min and 10 min frequencies, respectively. 

 

 Slow decay in some of the ACFs calls for stationarity tests.  
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 All of these observations hold under all cleaning methods and aggregation 

algorithms.  

 

b) Stationarity-Unit root test:  

 

 To test for stationarity and unit root, i.e. if the series move around a 

constant mean or diverge as time passes, Augmented Dickey Fuller (ADF) 

Test is preferred. By visual inspection of graphs, no trend is observed in 

any of our RV series, therefore, the ADF Test is run with an intercept and 

no trend, the number of legs to be involved in the analysis is chosen by the 

Schwarz criterion as it is the default choice suggested by E-views.  

 

 TTS-Raw-: In the E-views setting, where number of lags are optimized 

by E-views according to the Schwarz criterion, R-squared values vary in a 

band of 46-55%. The null hypothesis of nonstationarity is rejected at 5% 

significance level for all session and daily series51.  

 

 CTS: In the E-views setting, where number of lags is optimized by E-

views according to Schwarz criterion, R-squared values has a wide range 

of 11% to 54%. At 1% significance level, all RV series, either session or 

daily and at all frequencies, are found to be stationary.  

                                                           
51 In MIGRS analysis, significance level of rejection regarding nonstationarity incereases when we 

switch to Daily series. Here, switching between Daily or session series does not affect p-values of test 

statistic. 
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MIGRS SUMMARY AND REVIEW OF CHAPTER 4 RESULTS 

 

1) UHFD Characteristics Under Different Sampling Schemes and Error 

Cleaning and Data Filtering Combinations 

 

a) Irregular Temporal Spacing  
 

 

 
 

Figure F.38: Plot of durations between consecutive transactions (inside a session) for MIGRS TTS-

raw data throughout the second half of 2012. 

 

 

b) Temporal dependence: By comparing autocorrelation and partial 

autocorrelation functions of 60 and 600 seconds absolute returns and log returns 

under CTS (clean and aggregated and interpolated) as well as absolute returns, 

log returns and durations in seconds from one transaction to the next under TTS 

(raw versus clean and aggregated) for December of 2012, we see that there are 

differences between ACF and PACF structure of absolute and log returns 

between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 transaction 

sampled data by first cleaning, then aggregating and then interpolating (all 

needed for CTS) to 600 second sampled data distorts ACF and PACF of return 

series.  

 

 TTS-Raw-Durations: ACF and PACF very very slowly decaying positive 

and significant up to 20 lags (shocks persist) 

 

 TTS-Raw-Absolute Returns: ACF and PACF decaying positive and 

significant up to 20 lags (shocks persist) 

 

 TTS-Raw-Log returns: ACF (quick decay, first two lags negative 

significant) PACF (slower decay, first 10 lags significant)  
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 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF and PACF very 

very slowly decaying positive and significant up to 18 to 20 lags (shocks 

persist) 

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying 

positive and significant up to 20 lags ) and PACF (decaying positive and 

significant up to 8-10 lags)  

 

 TTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay, 

first lag negative significant) PACF (slower decay, first 5 lags negative 

significant)  

 

 CTS-Durations: Meaningless, after interpolation duration from one entry 

to the next is always 1 second. 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: ACF 

(positive decaying, significant up to 10th lag), PACF (quick decay, 

positive significant up to 3rd lag)  

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF and 

PACF (no lag is significant at all)  

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Absolute Returns: ACF 

(positive slowly decaying, significant up to 20th lag), PACF (slow decay, 

positive significant up to 12 lags) 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Log returns: ACF and PACF 

quick decay, first lag negative significant)  

 

Under TTS, with raw or clean and aggregated data, there is significant positive 

autocorrelation up to 20 lags in absolute returns, significant up to third order 

autocorrelation in log returns and very significant positive autocorrelation up to 

20 lags in seconds elapsed between two transactions, thus volatility clustering is 

verified. Whereas, for 10 min returns under CTS, log returns display no 

autocorrelation at all, which is quite contrary to general consensus in the finance 

literature, that very short term returns exhibit strong autocorrelation especially 

on the first lag. Thus, we check for ACF and PACF of 1 min log returns and 

observe negative first order autocorrelation. Absolute return autocorrelation 

structure is changed under CTS at 600 seconds sampling interval compared to 

results under TTS at 1 transaction interval. Likewise, switching to CTS and 

calculating returns at 600 seconds suppresses partial autocorrelation figures at 

several lags of both absolute and log returns. Meanwhile, comparing data 

handling combinations to each other, any combination of cleaning methods and 

aggregation methods (compared to other combinations) does not cause any 

major change in total and partial correlation structures once we move under a 

sampling scheme, it being either TTS or CTS. However, cleaning and 

aggregation under TTS yield different PACF structures in absolute and log 

returns compared to results produced with raw data. Under CTS, rather than 
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cleaning and aggregation methods, sampling interval matters in terms of return 

autocorrelation structure. 

 

 

  

 
 

  
 

 
Figure F.39: ACFs and PACFs of logreturn and absolute return series of MIGRS for December 2012 

under TTS and CTS  

 

 

c) Diurnal Patterns: These patterns can be sought only under CTS because of their 

definitions such as number of trades per x minutes or absolute return per y 

seconds. For MIGRS case, there are strong W shapes which are persistent across 

cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes 

trade intensities throughout days in second half of 2012, whereas patterns in 10 

minutes absolute returns and 10 minutes absolute percentage returns are closer 

to W without last spike at the end of the day and a L shape, respectively. All in 

all, there are significant diurnal patterns in returns and trading activity in the 

form of intensity and volume under CTS and these patterns look exactly same 

when various combinations of cleaning and aggregation methods are applied. 
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Figure F.40: Diurnal patterns at MIGRS cleaned and aggregated transaction data under CTS  

 

 

2) Visual and Formal Statistical Tests of Existence and Statistical Features of 

Market Microstructure Noise 

 

a) VSP: Regardless of the sampling schemes or cleaning and aggregation 

techniques combinations, average realized volatility of return on transaction 

price explode as we increase the sampling frequency, either in seconds or in 

transactions. Explosion becomes trivial for the sampling intervals that are less 

than 200 seconds or 15 transactions. This observation is valid both for session 

and daily figures, serving as a visual proof regarding existence of market 

microstructure noise and pointing to a positive relationship between noise 

increment and true price return, both under CTS and TTS even if the data set is 

cleaned or aggregated. At this point, we would like to emphasize that for VSPs, 

we skipped 4.ii.a-5.i-5.ii-5.iii-5.iv-5.v combinations under TTS, mainly because 

the number of cleaned points under 4.ii.a is so small, cleaning makes no real 

difference comparing to no cleaning of the data set. Any possible difference 

might have been observed under cleaning method 4.ii.b, which ended up deleting 

more data points. Moreover, since we compare 4.ii.a and 4.ii.b under CTS, we 

additionally search for any marginal effect that cleaning method 4.ii.b has over 

cleaning method 4.ii.b. However, as put forward previously, cleaning or 

aggregation does not affect the result that market microstructure becomes 

dominant after 15 transactions under TTS and 200 seconds under CTS and that 

the shape of VSP suggest a positive correlation between the noise increment and 

the true price return. 
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Figure F.41: VSPs of MIGRS over Daily RVs using clean and aggregated data under CTS, raw data 

under TTS, and clean and aggregated data under TTS. 

 

 

b) Statistical Tests Regarding Existence and Statistical Features of MMN :  

 

 Existence of MMN is verified statistically under both of CTS and TTS. 

We calculated 𝑍𝑇,𝑛,ℎ testing null hypothesis in (3.11) by comparing RVs 

that are calculated over different frequency pairs composed of high-low 

frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30), 

(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias 

of the RV estimator is dominated by expectation of square of the noise 

increment. Therefore, if we reject the null hypothesis, it means that the 

MMN has statistically significant impact on realized estimator of the IV. 

 

For each day in the sample period of 124 days and each frequency pair, we 

run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis are 100% under raw-TTS, 90% under clean 

and aggregated TTS and around 91% under CTS for all cleaning and 

aggregation method combinations when we compare RVs calculated over 

3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As 

we decrease the sampling frequency at the high frequency leg, rejection 

percentages of null hypothesis shrink, which is true under both of TTS and 

CTS. For raw-TTS, the rejection percentages begin with 100% and 

decrease gradually to 26% as high frequency leg moves toward 20 
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transactions when lowfrequency leg is 30 transactions. Cleaning and 

aggregating the data does not amend the downward trend in rejection 

percentages under TTS. For all aggregation choices with cleaning method 

4.ii.b applied under TTS, the rejection percentages begin with 80-90% and 

decrease gradually to 12% as high frequency leg moves toward 20 

transactions. Switching to CTS as well as moving across the grid of CTS 

cleaning and aggregation combinations do not change the results either. 

For CTS, the rejection percentages begin with around 98% for 10 to 1200 

seconds pair and goes down the slope to 19% as high frequency legs are 

slowed to 900 seconds.  

 

 Following representative rejection rate graphs reveal that the MMN starts 

to accentuate as the sampling frequency converges to 10-15 transactions 

under TTS, and 300 seconds under CTS. These findings are in conformity 

with those supplied by the VSP analysis. The MMN is felt strongly once 

we cross over the sampling interval thresholds of 15 transactions or 5 

minutes under TTS and CTS, respectively. For higher frequencies, the 

rejection rates turn out to be quite high. Moreover, visual inspection of the 

test statistic 𝑍𝑇,𝑛,ℎ for several frequency pairs either under TTS or CTS 

reveals that for the majority of the time the test statistic is positive and 

outside 5% st. normal confidence interval, meaning that there is positive 

correlation between noise and efficient price, which is again in conformity 

with the exploding VSPs. 
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Figure F.42: MIGRS - Plots of 𝑍𝑇,𝑛,ℎ for each day in the sample period with upper and lower tail 

critical values of standard normal under TTS and CTS. 
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 Summary: Model of i.i.d MMN with constant variance might be proper 

under CTS but under raw-TTS, for more than 10% of the days, null of 

constant variance is rejected for triples with very high frequencies 

combined with very low. This might be evidence of i.i.d assumption not 

holding at frequencies lesser 15 transactions.  

 

Awartani et al. [16] derive a test with the idea that if the MMN has constant 

variance, then noise variances calculated over frequencies 1/M or 1/N 

should be same independent of M or N chosen. Their null and null 

hypotheses are as in (3.35) and (3.36). 

 

Since alternative hypothesis is in harmony with the presence of 

autocorrelation in the MMN, by reminding corollary 3 of Hansen and 

Lunde [61], Awartani et al. [16] interpret the rejection of null hypothesis 

as a sign of the rejection of the null hypothesis that the MMN is a sequence 

of i.i.d  random variables with constant variance. To test the validity of this 

null hypothesis, a test statistic compares RV differences using two 

frequency pairs, where pairs are M,L and N,L. L represents a frequency at 

which we can ignore the MMN safely, say 20 minutes and M and N are 

frequencies at which the MMN is considered to be significant. Therefore, 

the test is build on RVs calculated over frequency triples i.e. for each high 

frequency pair combined with 20 minutes, we test null hypothesis that 

E(noise increment square at low frequency)=E(noise increment square at 

high frequency). If we reject the null hypothesis, it means that the MMN 

has variance that is NOT independent of sampling frequency, therefore any 

assumptions regarding i.i.d nature of MMN can be taken as invalidated. 

Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30) 

(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200), 

(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200) 

seconds under CTS. 

 

For each day in the sample period of 124 days and each frequency triple, 

we run the aforementioned test at 5% significance level. Sample rejection 

percentages of null hypothesis clearly changes from one triple to another 

and as we clean and aggregate data. Beware that under raw-TTS especially 

for combinations of frequencies with highest differences, rejection 

percentages spike to 14%. However, once we clean and aggregate the data, 

rejection percentages decline to levels 7% or 1-2% depending on the triple. 

For CTS 4.ii.a (b), constant variance assumption rejection percentage is 

14% (9%) for 60-150-1200 seconds triple, which represents the highest 

distance between high pair and very low third leg. Evidence reveals that 

the aggregation method does not affect the rejection percentages and for 

triples with high frequency legs being close to very slow frequency leg, 

the rejection percentages are severely damaged. 
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3) RV Analysis 

 

We constructed two RV time series, namely session RVs and daily RVs, for each 

frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600 

seconds  under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 

4.ii.b) -aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time 

series has 124 data points, whereas session RV time series is constituted of 248 

entries. Each time RV series under each sampling scheme and cleaning and 

aggregation method combinations is subjected to preliminary statistics, ACF and 

PACF analysis and lastly unit root is checked where autocorrelation exhibits 

hyperbolic decay.  

 

 The factors that have any effect on RV lognormality and autocorrelation 

structure turn out to be whether the RV is on a session or daily basis, whether it 

is under raw-TTS or CTS and the frequency at which the RV is calculated. 

Normality is affected by no dimension. For all frequencies, the session and daily 

RV series under raw-TTS or CTS are not normally distributed as very high 

skewness, kurtosis and JB statistic values reveal. Taking logarithm does not 

change the non-normality under CTS for any frequency or session/daily 

calculation choice. However, for log daily RV series at 10, 20 and 30 transaction 

under raw-TTS, we are not able to reject the null hypothesis of normality. 

 

 Decreasing frequency suppresses autocorrelation significance and number of 

significant lags in ACFs under CTS. The suppression effect is not very evident 

under raw-TTS. Moreover, calculating RVs on a session basis, makes the RV 

series more autocorrelated, which holds under both of raw-TTS and CTS. 

 

 If we run ADF test for fixed lag length (2) and intercept in MATLAB, test 

results leads us to reject the null hypothesis of unit root for all RV series, session 

or daily, under CTS or raw-TTS at any frequency. However, running stationarity 

test in E-views with different settings cause different conclusions to be reached. 

Now, frequency/daily or session combination matters, such that none of the 10 

min session RV series is stationary at even 10% significance level under any 

cleaning and aggregation method combination if we let E-views optimize 

number of lags to include and the structure of regression according to Schwarz 

Info Criterion. However, if we choose number of lags as 2, the resulting p-values 

for all of 10 min RV series decrease to levels less than 5%, with R-squared values 

decreasing as well.  

 

 Once we are working on a daily or session series at a particular frequency under 

CTS, the cleaning and aggregation methods do not alter the RV series’ non-

normality or autocorrelation structure or ADF test results in E-views 

significantly. 
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a) Descriptive statistics by frequency, by sampling scheme and by cleaning and 

aggregation methods:  

 

 TTS-Raw: For all frequencies, the session and daily RV series are not 

normally distributed52 as very high skewness, kurtosis and JB statistic 

values reveal. Mean of the session and daily RVs become smaller as the 

sampling interval is lengthened, which is accompanied by a decrease in 

skewness, kurtosis and JB statistic as we sample less frequently. Still, 

normality of the any of these series is out of question. Correlogram of all 

session RV series look same, RVs are autocorrelated up to 11th lag and lags 

1, 3, 4 and 10 are significant in PACF. Although correlograms of all daily 

RVs resemble one another, compared to correlogram of session series, 

autocorrelation structure of daily RVs looks different. Now, a quick decay 

in ACF and PACF is evident, only five lags are significant in ACF and 

first, second and sixth lags are significant in PACF. We checked for unit 

roots in daily series to see if summing RV from session one and session 

two to reach daily RV changed anything in RV stationarities at different 

frequencies. 

 

 
TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions 

 
 

TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions 

  

 

 
Figure F.45: MIGRS - Correlograms of session and daily RV series under TTS for different sampling 

intervals 

                                                           
52 Log normality is also rejected at all frequencies. 
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 CTS: For all frequencies, the session and daily RV series are not normally 

distributed as very high skewness, kurtosis and JB statistic values reveal. 

Like the case under RAW-TTS,  

 

i. mean of the session and daily RVs become smaller as the sampling 

interval is lengthened.  

 

ii. ACFs of session and daily RVs change as the sampling frequency 

changes, such that for increasing frequencies RV series exhibit 

significant positive total autocorrelation up to higher number of legs. 

Apart from this common trait, the decay patterns in total correlation 

of daily and session RVs are different, especially obvious at 1 min 

frequency.  

 

 
CTS-4.ii.a-5.i-Session 1 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series 

  
  

CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Daily 10 min RV series 

  
 

 
Figure F.46: MIGRS - Correlograms of session and daily RV series under CTS for different sampling 

intervals 

 

 

 However, contrary to findings for RV series under RAW-TTS,  

 

i. decrease in skewness, kurtosis and JB statistic values is observed as 

we sample more and more frequently, 
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ii. PACFs of session RVs differ slightly from one another depending 

on the frequency. For frequency 1 min legs 1, 2, 4 and 13 are 

significant in PACF, whereas legs 1, 3, 5 and 8 and legs 1, 3, 5, 8, 

and 9 are significant for 5 min and 10 min frequencies, respectively.  

 

iii. PACFs of daily RVs differ slightly from one another depending on 

the frequency. For frequency 1 min, legs 1, 2 and 6 are significant in 

PACF, whereas legs 1 and 6 and legs 1, 4, 5 and 6 are significant for 

5 min and 10 min frequencies, respectively. 

 

 Correlograms of all session and daily RV series under all cleaning and 

aggregation combinations remind that of an AR (1) process. 

 

 Slow decay in the ACFs calls for stationarity tests. First, second and sixth 

legs are significant in PACF. 

 

 All of these observations hold under all cleaning methods and aggregation 

algorithms.  

 

b) Stationarity-Unit root test:  

 

 To test for stationarity and unit root, i.e. if the series move around a 

constant mean or explode as time passes, Augmented Dickey Fuller (ADF) 

Test is preferred. By visual inspection of graphs, no trend is observed in 

any of our RV series, therefore, ADF Test is run with an intercept and no 

trend, the number of lags to be involved in the analysis is chosen by 

Schwarz criterion as it is the default choice suggested by E-views.  

 

 TTS-Raw-: In the E-views setting, where the number of lags is optimized 

by E-views according to the Schwarz criterion, R-squared values vary 

around 30-35%. The null hypothesis of nonstationarity is rejected at 10% 

significance level for all session series in contrast to p-values of test 

statistic being around or less than 1% in unit root hypothesis testing in all 

daily series. Only session RV series calculated at 3 transactions, 20 

transactions and 30 transactions are found to be stationary at 5% 

significance level. Taking logarithm helps with significance levels53. 

 

 
P-values of ADF Test –Log RV series 

 Frequency 

Sess. Based / Daily 3tr 6tr 10tr 15tr 20tr 30tr 

Sess. Based 0.0551 0.0280 0.0368 0.0000 0.0000 0.0000 

Daily 0.0489 0.0314 0.0178 0.0101 0.0004 0.0111 

 

 

                                                           
53 E-views ADF test with INTERCEPT, lags chosen automatically by E-views according to Schwarc 

info criterion. 
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 CTS: In the E-views setting, where number of lags are optimized by E-

views according to Schwarz criterion, R-squared values have a range of 

23% to 47%. At 5% significance level, all RV series, either session or daily 

and at all frequencies, are found to be stationary except 10 min session 

row. None of the 10 min session RV series is stationary under any cleaning 

and aggregation method combination if we let E-views optimize number 

of lags to include and the structure of regression according to Schwarz Info 

Criterion. However, if we choose number of lags as 2, the resulting p-

values for all of 10 min RV series decrease to levels less than 1%, with R-

squared values shrinking as well. 
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NETAS SUMMARY AND REVIEW OF CHAPTER 4 RESULTS 

 

1) UHFD Characteristics Under Different Sampling Schemes and Error 

Cleaning and Data Filtering Combinations 

 

a) Irregular Temporal Spacing  
 

 

 
 

Figure F.47: Plot of durations between consecutive transactions (inside a session) for NETAS TTS-

raw data throughout the second half of 2012. 

 

 

b) Temporal dependence: By comparing autocorrelation and partial 

autocorrelation functions of 60 and 600 seconds54 absolute returns and log 

returns under CTS (clean and aggregated and interpolated) as well as absolute 

returns, log returns and durations in seconds from one transaction to the next 

under TTS (raw versus clean and aggregated) for December of 2012, we see that 

there are differences between ACF and PACF structure of absolute and log 

returns between 10 min CTS and 1 transaction TTS, i.e.: transforming 1 

transaction sampled data by first cleaning, then aggregating and then 

interpolating (all needed for CTS) to 600 second sampled data distorts ACF and 

PACF of return series.  

 

 TTS-Raw-Durations: ACF (very very slowly decaying positive significant 

up to 20 lags) and PACF (hyperbolic decay, positive significant up to 20 

lags) (shocks persist) 

 

                                                           
54 Recall that we also included 1 min returns under CTS for MIGRS just because 10 min log returns 

exhibited no autocorrelation at all. 
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 TTS-Raw-Absolute Returns: ACF (slow hyperbolic decay, positive 

significant up to 20 lags) and PACF (decaying positive and significant up 

to 20 lags) (shocks persist) 

 

 TTS-Raw-Log returns: ACF (quick decay, first two-three lags negative 

significant) PACF( slower hyperbolic decay, first 12-14 lags negative 

significant) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Durations: ACF (very very slowly 

decaying positive and significant up to 20 lags) and PACF (hyperbolic 

decay, positive and significant up to 18 to 20 lags) (shocks persist) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Absolute returns: ACF (decaying 

positive and significant up to 20 lags ) and PACF (decaying positive and 

significant up to 18-20 lags) (shocks persist) 

 

 TTS(4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-Log returns: ACF (quick decay, 

first lag negative significant, second lag positive and slightly significant) 

PACF(slower hyperbolic decay, first 8 lags negative significant)  

 

 CTS-Durations: Meaningless, after interpolation duration from one entry 

to the next is always 1 second. 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Absolute Returns: 

ACF(wave pattern in decaying positive significance up to 11th lag, while 

lags 18, 19 and 20 become positive significant again), PACF (decaying, 

lags 1, 2, 4 and 7 are positive significant)  

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-10 min Log returns: ACF (lags 1, 

6 and 11 are negative significant, significances are on the edge), PACF 

(lags 1, 6 and 11 are negative significant) 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Absolute Returns: ACF 

(wave pattern in decaying positive significance up to 20th lag), PACF 

(slow decay, positive significant up to 12 lags) 

 

 CTS (4.ii.a and b-5.i-5.ii-5.iii-5.iv-5.v)-1 min Log returns: ACF (first lag 

negative significant) and PACF (quick decay, first 5 lags negative 

significant)  

 

Under TTS, with raw or clean and aggregated data, there is significant positive 

autocorrelation up to 20 lags in absolute returns, significant up to third order 

autocorrelation in log returns and very significant positive autocorrelation up to 

20 lags in seconds elapsed between two transactions, thus volatility clustering is 

verified. Whereas, for 10 min returns under CTS, log returns display irregular 

and hard to comment autocorrelations at lags 1, 6 and 11 with significance levels 

very close to critical values. Thus, we check for ACF and PACF of 1 min log 

returns and observe negative first order autocorrelation. Absolute return 
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autocorrelation structure is changed under CTS at 600 seconds sampling interval 

compared to results under TTS at 1 transaction interval. Likewise, switching to 

CTS and calculating returns at 600 seconds suppresses partial autocorrelation 

figures at several lags of both absolute and log returns. Meanwhile, comparing 

data handling combinations to each other, any combination of cleaning methods 

and aggregation methods (compared to other combinations) does not cause any 

major change in total and partial correlation structures once we move under a 

sampling scheme, it being either TTS or CTS. However, cleaning and 

aggregation under TTS yield different PACF structures in log returns compared 

to results produced with raw data. Under CTS, rather than cleaning and 

aggregation methods, sampling interval matters in terms of return 

autocorrelation structure. Supporting MIGRS case, working at different 

frequencies under CTS distorts autocorrelation structure of absolute returns and 

logreturns same way, returns become less autocorrelated as we sample lesser 

number of prices. 
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Figure F.48: ACFs and PACFs of logreturn and absolute return series of NETAS for December 2012 

under TTS and CTS  

 

 

c) Diurnal Patterns: These patterns can be sought only under CTS because of their 

definitions such as number of trades per x minutes or absolute return per y 

seconds. For NETAS case, there are strong W shapes which are persistent across 

cleaning and aggregation methods in 10 minutes trade volumes and 10 minutes 

trade intensities throughout days in second half of 2012, whereas patterns in 10 

minutes absolute returns and 10 minutes absolute percentage returns are closer 

to W without last spike at the end of the day55. All in all, there are significant 

diurnal patterns in returns and trading activity in the form of intensity and 

volume under CTS and these patterns look exactly same when various 

combinations of cleaning and aggregation methods are applied. 

  

                                                           
55 Unlike the L shape in MIGROS and ISCTR for 10 min absolute percentage returns. 
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Figure F.49: Diurnal patterns - NETAS cleaned and aggregated transaction data under CTS  

 

 

2) Visual and Formal Statistical Tests of Existence and Statistical Features of 

Market Microstructure Noise 

 

a) VSP: In line with the findings for MIGRS and ISCTR, sampling schemes or 

cleaning and aggregation techniques do not alter the fact that inflating sampling 

frequency, either in seconds or in transactions, causes average realized volatility 

of return on transaction price to boom. Specifically, 6 month VSPs explode as 

the sampling frequency increases under raw-TTS as well as under CTS.  

 

 

  
 

 
Figure F.50: VSPs of NETAS over Daily RVs using clean and aggregated data under CTS and raw 

data under TTS. 

 

 

0

10000

20000

30000

40000

50000

60000

1 4 7 10 13 16 19 22 25 28 31 34

Average of 10 Minutes Volume

0

0,001

0,002

0,003

1 3 5 7 9 11131517192123252729313335

Average of 10 Minutes Absolute 

Percentage Returns

0

20

40

60

80

100

120

140

1 3 5 7 9 11131517192123252729313335

Average of 10 Minutes Trade Intensity

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

1 3 5 7 9 11131517192123252729313335

Average of 10 Minutes Absolute Returns

0,0000

0,0020

0,0040

0,0060

0,0080

0,0100

0 500 1000 1500

CTS-4iib-5i

Volatility Signature Plot of 

OpentoClose 

0,0000

0,0050

0,0100

0,0150

0 20 40 60 80

TTS-Raw

Volatility Signature Plot of 

OpentoClose 



 
266 

Explosion becomes trivial for the sampling intervals that are less than 200 

seconds or 15 transactions. This observation is valid both for session and daily 

figures, serving as a visual proof regarding the existence of MMN and pointing 

to a positive relationship between noise increment and true price return, both 

under CTS and raw-TTS.  

 

However, for clean and aggregated TTS, and only for first session RVs in June, 

rising sampling frequencies first deflate then inflate average RVs, leading to a 

swing in the shape of VSP. This extraordinary pattern causes 6 month averages 

to exhibit a swing as well for all cleaned and aggregated average RV series under 

TTS. To be more precise, please consider the following VSPs. The plot on the 

left is 6 month average of session 1 RVs against sampling frequencies, whereas 

the same plot is reproduced for 5 months, with June exluded on the right, where 

both VSPs are drawn under clean and aggregated TTS.  

 

 

  
 

 
Figure F.51: VSPs of NETAS over Session RVs using clean and aggregated data under CTS and raw 

data under TTS. 

 

 

As it is clear from the plots above, data coming from June is responsible for 

unexpected movement in the VSP of session 1 RV averages. Examination of 

disclosures of material information throughout June, 2012 by NETAS if there is 

anything pushing VSPs in a different direction reveals that  

 

i) NETAS applied to Capital Markets Board (CMB) in April, 2012 for new 

shares to be registered to increase registered capital by 800%, source of 

the capital raise being internal, i.e., a stock split of 8-for-1 was on the way 

when June 2012 came. 

 

ii) There had been tremendous extraordinary price movements in NETAS 

stock before June. 

 

iii) CMB decided to register the free shares on the 19th of June, but at the same 

time, directed Borsa Istanbul to hold NETAS stock trade until the capital 

increase was completed. Therefore, on the 20th of June, a trade halt in 

NETAS stock was active. It ended on the 21st of June.  
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iv) Even so, the extraordinary price movements in NETAS market dominated 

the return series for June, 2012. 

 

v) Sampling scheme is not the cause of the swing in VSP, but it is the tool 

that helps us detect such irregularities in direction of the average RVs as 

the sampling frequencies change. 

 

This piece of information supports our finding that in general, (when there is no 

unexpected information specific to the stock), sampling scheme, or cleaning or 

aggregation do not affect the result that market microstructure becomes 

dominant after 15 transactions under TTS and 200 seconds under CTS and that 

the shape of VSPs suggest a positive correlation between noise increment and 

true price return.  

 

b) Statistical Tests Regarding Existence and Statistical Features of MMN :  

 

 Existence of MMN is verified statistically under both of CTS and TTS. 

We calculated 𝑍𝑇,𝑛,ℎ testing null hypothesis in (3.11) by comparing RVs 

that are calculated over different frequency pairs composed of high-low 

frequencies, namely (60,600) (10,1200), (30,1200) (60,1200), (150,1200), 

(300,1200), (600,1200) (900,1200) seconds under CTS and (3,30), (6,30), 

(10,30), (15,30), and (20,30) transactions under raw-TTS. Recall that bias 

of the RV estimator is dominated by expectation of square of the noise 

increment. Therefore, if we reject the null hypothesis, it means that the 

MMN has statistically significant impact on realized estimator of the IV. 

 

For each day in the sample period of 123 days (recall that on 20th, the 

trading halt lasted for whole day) and each frequency pair, we run the 

aforementioned test at 5% significance level. Sample rejection percentages 

of null hypothesis are 99% under raw-TTS, 97% under clean and 

aggregated TTS and around 86% under CTS for all cleaning and 

aggregation method combinations when we compare RVs calculated over 

3 and 30 transactions under TTS and 60 and 600 seconds under CTS. As 

we decrease the sampling frequency at the high frequency leg, rejection 

percentages of null hypothesis shrink, which is true under both of TTS and 

CTS. For raw-TTS, the rejection percentages begin with 99% and decrease 

gradually to 46% as high frequency leg moves toward 20 transactions 

when low frequency leg is 30 transactions. Cleaning and aggregating the 

data does not amend the downward trend in rejection percentages under 

TTS, but make it steeper. For all aggregation choices with cleaning method 

4.ii.b applied under TTS, the rejection percentages begin with 98% and 

decrease gradually to 20-22% as high frequency leg moves toward 20 

transactions. Switching to CTS as well as moving across the grid of 

cleaning and aggregation combinations do not change the results either. 

For CTS, the rejection percentages begin with around 93% for 10 to 1200 

seconds pair and goes down the hill to 17% as high frequency legs are 

slowed to 900 seconds.  
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Following representative rejection rate graphs reveal that the MMN starts 

to accentuate as the sampling frequency converges to 10-15 transactions 

under TTS, and 250-300 seconds under CTS. These findings are in 

conformity with those supplied by the VSP analysis. The MMN is felt 

strongly once we cross over the sampling interval thresholds of 15 

transactions or 5 minutes under TTS and CTS, respectively. For higher 

frequencies, rejection rates turn out to be quite high, especially after 150 

seconds under CTS and 10 transactions under TTS, rejection rates become 

flat in a band of 95-100%. Moreover, the visual inspection of the test 

statistic 𝑍𝑇,𝑛,ℎ for several frequency pairs either under TTS or CTS reveals 

that for the majority of the time the test statistic is positive and outside 5% 

st. normal confidence interval, meaning that there is positive correlation 

between the noise and the efficient price, which is again in conformity with 

the exploding VSPs. 

  



 
269 

 
 

 

 
 

 
Figure F.52: NETAS - Plots of 𝑍𝑇,𝑛,ℎ for each day in the sample period with upper and lower tail 

critical values of standard normal under TTS and CTS. 
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 Summary: Model of an i.i.d MMN with constant variance might be proper 

under CTS but under raw-TTS, for more than 50% of the days, the null 

hypothesis of constant variance is rejected for triples with very high 

frequencies combined with very low. This might be evidence of i.i.d 

assumption not holding at frequencies lesser than 15 transactions. The 

sampling scheme, but not the aggregation method, is discovered to very 

influential on rejection of the null hypothesis that the MMN has variance 

independent of the sampling frequency. Meanwhile, the cleaning 

algorithms have some suppressive effect on rejection percentages 

particularly under TTS56.  

 

Awartani et al. [16] derive a test with the idea that if the MMN has constant 

variance, then noise variances calculated over frequencies 1/M or 1/N 

should be same independent of M or N chosen. Their null and null 

hypotheses are as in (3.35) and (3.36). 

 

Since alternative hypothesis is in harmony with the presence of 

autocorrelation in MMN, by reminding corollary 3 of Hansen and Lunde 

[61], Awartani et al. [16] interpret the rejection of null hypothesis as a sign 

of the rejection of the null hypothesis that the MMN is a sequence of i.i.d  

random variables with constant variance. To test the validity of this null 

hypothesis, a test statistic compares RV differences using two frequency 

pairs, where pairs are M,L and N,L. L represents a frequency at which we 

can ignore the MMN safely, say 20 minutes and M and N are frequencies 

at which the MMN is considered to be significant. Therefore, the test is 

build on RVs calculated over frequency triples i.e. for each high frequency 

pair combined with 20 minutes, we test null hypothesis that E(noise 

increment square at low frequency)=E(noise increment square at high 

frequency). If we reject the null hypothesis, it means that the MMN has 

variance that is NOT independent of sampling frequency, therefore any 

assumptions regarding i.i.d nature of MMN can be taken as invalidated. 

Frequency triples are as follows: (3,10,30), (3,15,30), (3,20,30), (6,15,30) 

(6,20,30) and (10,20,30) transactions under TTS, (60,150,1200), 

(60,600,1200), (150,300,1200), (150,600,1200) and (300,600,1200) 

seconds under CTS. 

 

For each day in the sample period of 123 days and each frequency triple, 

we run the aforementioned test at 5% significance level. Sample rejection 

percentages of the null hypothesis clearly change from one triple to another 

and as we clean and aggregate data. Beware that under raw-TTS especially 

for combinations of frequencies with highest differences between frequent 

legs, rejection percentages exceed 50%, while they stagger around 16% 

for 3-10-30 triple with lowest distance between first two legs. However, 

once we clean and aggregate the data, the rejection percentages range 

                                                           
56 Same conclusions were made for ISCTR case as well. 
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decline to levels 12-40% depending on the triple57. For CTS 4.ii.a and 

4.ii.b, rejection percentages vary between at most 10% and at least 3%, 

both of which are just a fraction of rejection percentages under TTS-raw 

or TTS-cleaned. Therefore, sampling scheme is discovered to be very 

influential on the rejection of the null hypothesis that the MMN has 

variance independent of sampling frequency. We can reject this null 

hypothesis under TTS confidently and conclude that the assumption of an 

i.i.d MMN with constant variance does not reflect the real life structure of 

the MMN, whereas under CTS, such an assumption seems to hold 

especially for frequencies higher than 150 seconds. Evidence reveals that 

the aggregation method does not affect the rejection percentages and for 

triples with high frequency legs being close to very slow frequency leg, 

the rejection percentages are severely damaged independent of the 

sampling scheme. 

                                                           
57 In a sense, these findings agree with findings for MIGRS and ISCTR cases, where rejection 

percentages are highest for triples with distant constituents and TTS-raw data; however, MIGRS 

rejection percentages are way below those of ISCTR’s or NETAS’ rejection percentages. 
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3) RV Analysis 

 

We constructed two RV time series, namely session RVs and daily RVs, for each 

frequency in a frequency set of 3, 6, 10, 15, 20, 30 transactions and 60, 300, 600 

seconds under each sampling scheme (raw-TTS, CTS) and cleaning (4.ii.a, 

4.ii.b) -aggregation method (5.i, 5.ii, 5.iii, 5.iv, 5.v) combination. Daily RV time 

series has 123 data points, whereas session RV time series is constituted of 246 

entries. Each RV series under each sampling scheme and cleaning and 

aggregation method combinations is subjected to preliminary statistics, ACF and 

PACF analysis and lastly unit root is checked where autocorrelation exhibits 

slow decay.  

 

 The factors that have any effect on RV series’ lognormality and autocorrelation 

structure turn out to be whether the RV is on a session or daily basis, whether it 

is under raw-TTS or CTS and the frequency at which the RV is calculated. 

Normality is not affected by any of these factors. All of RV series, either under 

raw-TTS or CTS, either raw or cleaned and aggregated, either on a session or 

daily basis, are not normally distributed as JB statistics and high kurtosis-

skewness values suggest. Taking logarithm makes RV series at all frequencies 

normal under raw-TTS, while such a transformation only works in terms of 

normality for 5 min RV session and daily series under CTS58.  

 

 Decreasing frequencies cause lesser number of lags being significant with 

lesser significant levels, i.e. decreasing frequency again depresses 

autocorrelation structure of RV series under CTS but not under TTS regardless 

of session-daily calculation. Supression effect of decreasing frequency is in line 

with existence of MMN under CTS. In fact, ACFs of session and daily RVs 

change as the sampling frequency changes, such that for increasing frequencies 

RV series exhibit significant positive total autocorrelation up to higher number 

of lags under CTS. Calculating RVs on a session basis, makes the RV series 

more autocorrelated, which holds under both of raw-TTS and CTS. 

 

 Once we are working on a daily or session series at a particular frequency under 

CTS, cleaning and aggregation methods do not alter RV series’ non-normality 

or autocorrelation structure.  

 

 Neither sampling schemes, nor frequencies or cleaning/aggregation methods or 

session/daily basis choice affects the stationarity results, E-views ADF test 

results reveal that we can reject null of unit root at 1% significance level for all 

RV series under raw-TTS or CTS at all frequencies59. MATLAB ADF test with 

fixed two lags and an intercept supports results in E-views that all RV series at 

hand are stationary for all frequencies, cleaning and aggregation methods, 

daily/session calculations and sampling schemes.  

 

 

                                                           
58 Unlike the case of MIGRS 
59 Unlike the case of MIGRS. 
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a) Descriptive statistics by frequency, by sampling scheme and by cleaning and 

aggregation methods:  

 

 TTS-Raw: For all frequencies, the session and daily RV series are not 

normally distributed60 as very high skewness, kurtosis and JB statistic 

values reveal. Mean of the session and daily RVs become smaller as the 

sampling interval is lengthened, but there is no clear relationship between 

sampling frequency and change in skewness, kurtosis or JB statistic 

values, which deviates from the findings for MIGRS and ISCTR61. 

Correlogram of all session RV series look very much alike. Total 

autocorrelation is significant up to 20th lag but significance decreases and 

increases as the lag number converges to 20. Only first two lags and lag 14 

are significant in PACF62. Although correlograms of all daily RVs 

resemble one another, compared to correlogram of session series, 

autocorrelation structure of daily RVs looks different. Now, first 10 lags 

and first lag are positive significant in ACF and PACF, respectively. The 

change in autocorrelation structure of RV series by looking at session and 

daily RVs separately, calls for stationarity test and accordingly, we 

checked for unit roots in daily series to see if summing RV from session 

one and session two to reach daily RV distorts anything in RV 

stationarities at different frequencies. 

  

                                                           
60 By application of JBTEST in MATLAB, we are not able to reject log normality at all frequencies. 
61 For MIGRS and ISCTR, a decrease in skewness, kurtosis and JB statistic was observed as we 

sample less frequently. 
62 Unlike the case of MIGRS. 
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TTS- Raw-Session-Frequency:3 Transactions TTS- Raw-Daily-Frequency:3 Transactions 

  

  
TTS- Raw-Session-Frequency:30 Transactions TTS- Raw-Daily-Frequency:30 Transactions 

  

 

 
Figure F.55: NETAS - Correlograms of session and daily RV series under TTS for different sampling 

intervals 

 

 

 CTS: For all frequencies, the session and daily RV series are not normally 

distributed as very high skewness, kurtosis and JB statistic values reveal63. 

Like the case under RAW-TTS,   

 

i. mean of the session and daily RVs become smaller as the sampling 

interval is lengthened.  

 

ii. there is no clear relationship between sampling frequency and 

change in skewness, kurtosis or JB statistic values, which deviates 

from the findings for MIGRS and ISCTR. 

 

 However, contrary to findings for RV series under RAW-TTS,  

 

i. ACFs of session and daily RVs change as the sampling frequency 

changes, such that for increasing frequencies RV series exhibit 

significant positive total autocorrelation up to higher number of lags 

with higher significances. Apart from this common trait, the decay 

                                                           
63 Like MIGRS, unlike ISCTR. 
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patterns in total correlation of daily and session RVs are different, 

especially obvious at 1 min frequency. 

 

 
CTS-4.ii.a-5.i-Session 10 min RV series CTS-4.ii.a-5.i-Session 1 min RV series 

 
 

CTS-4.ii.a-5.i-Daily 10 min RV series CTS-4.ii.a-5.i-Daily 1 min RV series 

 
 

 

 
Figure F.56: NETAS - Correlograms of session and daily RV series under CTS for different sampling 

intervals 

 

 

ii. PACFs of session RVs differ slightly from one another depending 

on the frequency. For frequency 1 min, lags 1, 2, 4 and 12 are 

significant in PACF, whereas lags 1, 2, 5 and 14 and lags 1,2, and 5 

are significant for 5 min and 10 min frequencies, respectively.  

 

iii. PACFs of daily RVs differ slightly from one another depending on 

the frequency. For frequency 1 min, lags 1, 2 and 10 are significant 

in PACF, whereas lags 1, 2, 3 and 7 are significant for both of 5 min 

and 10 min frequencies. 

 

 Slow decay in some of the ACFs calls for stationarity tests.  

 

 All of these observations hold under all cleaning methods and aggregation 

algorithms.  
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b) Stationarity-Unit root test:  

 

 To test for stationarity and unit root, i.e. if the series move around a 

constant mean or diverge as time passes, Augmented Dickey Fuller (ADF) 

Test is preferred. By visual inspection of the graphs, no trend is observed 

in any of our RV series, therefore, ADF Test is run with an intercept and 

no trend, the number of legs to be involved in the analysis is chosen by the 

Schwarz criterion as it is the default choice suggested by E-views.  

 

 RAW-TTS-Raw-: In the E-views setting, where the number of lags is 

optimized by E-views according to the Schwarz criterion, R-squared 

values vary in a band of 28-34%. The null hypothesis of nonstationarity is 

rejected at 1% significance level for all session and daily series64.  

 

 CTS: In the E-views setting, where number of lags are optimized by E-

views according to the Schwarz criterion, R-squared values have a range 

of 25% to 49%. At 1% significance level, all RV series, either session or 

daily and at all frequencies, are found to be stationary.  

                                                           
64 In MIGRS analysis, significance level of rejection regarding nonstationarity increases when we 

switch to Daily series. Here, switching between Daily or session series does not affect significance level 

at which we can reject null. 
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