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ABSTRACT

OPTIMAL CONTROL AND REDUCED ORDER MODELLING OF
FITZHUGH-NAGUMO EQUATION

Kiictlikseyhan, Tugba
PhD, Department of Scientific Computing
Supervisor : Prof. Dr. Biilent Karasézen

Co-Supervisor : Assist. Prof. Dr. Murat Uzunca

May 2017, [T112] pages

In this thesis, we investigate model order reduction and optimal control of FitzHugh-
Nagumo equation (FHNE). FHNE is coupled partial differential equations (PDEs) of
activator-inhibitor types. Diffusive FHNE is a model for the transmission of electrical
impulses in a nerve axon, whereas the convective FHNE is a model for blood coagula-
tion in a moving excitable media.

We discretize these state FHNEs using a symmetric interior penalty Galerkin (SIPG)
method in space and an average vector field (AVF) method in time for diffusive FHNE.
For time discretization of the convective FHNE, we use a backward Euler method. The
diffusive FHNE has a skew-gradient structure. We show that the fully discrete energy
of the diffusive FHNE satisfying the mini-maximizing property of the discrete en-
ergy of the skew-gradient system is preserved by SIPG-AVF discretization. Depending
on the parameters and the non-linearity, specific patterns in one and two dimensional
FHNE:S occur like travelling waves and Turing patterns. Formation of fronts and pulses
for the one dimensional (1D) diffusive FHNE, patterns and travelling waves for the two
dimensional (2D) diffusive and convective FHNEs are studied numerically.

Because the computation of the pattern formations is very time consuming, we apply
three different model order reduction (MOR) techniques; proper orthogonal decom-
position (POD), discrete empirical interpolation (DEIM), and dynamic mode decom-
position (DMD). All these MOR techniques are compared with the high fidelity fully
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discrete SIPG-AVF solutions in terms of accuracy and computational time. Due to the
local nature of the discontinuous Galerkin (DG) method, the nonlinear terms can be
computed more efficiently by DEIM and DMD than for the continuous finite elements
method (FEM). The numerical results reveal that the POD is the most accurate, the
DMD the fastest, and the DEIM in between both.

We also investigate sparse and non-sparse optimal control problems governed by the
travelling wave solutions of the convective FHNE. We also show numerically the va-
lidity of the second order optimality conditions for the local solutions of the sparse
optimal control problem for vanishing Tikhonov regularization parameter. Further, we
estimate the distance between the discrete control and associated local optima numeri-
cally by the help of the perturbation method and the smallest eigenvalue of the reduced
Hessian. We use the DMD as an alternative method to DEIM in order to approximate
the nonlinear term in the convective FHNE. Applying the POD-DMD Galerkin projec-
tion gives rise to a linear discrete equation for the activator, and the discrete optimal
control problem becomes convex. FOM and sub-optimal control solutions with the
above mentioned MOR techniques are compared for a variety of numerical examples.

Keywords : FitzHugh-Nagumo equations, Turing patterns, travelling waves, discontin-
uous Galerkin method, average vector field method, proper orthogonal decomposition,
discrete empirical interpolation, dynamic mode decomposition, (sparse) optimal con-
trol
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0z

FITZHUGH-NAGUMO DENKLEMININ ENiYILEMELI KONTROLU VE
INDIRGENMIS DERECELI MODELLEMESI

Kiiciikseyhan, Tugba
Doktora, Bilimsel Hesaplama Boliimii
Tez YOneticisi : Prof. Dr. Biilent Karasézen

Ortak Tez Yoneticisi : Yrd. Dog. Dr. Murat Uzunca

Mayis 2017, sayfa

Bu tezde, FitzHugh-Nagumo denkleminin (FHNE) indirgenmis dereceli modeli (MOR)
ve eniyilemeli kontrolii aragtirilmistir. FHNE aktiflestirici-yavaglatici tiplerinin birlesti-
rilmis kismi diferansiyel denklemleridir (PDEs). Difiizif FHNE bir sinir aksonunda
elektrik diirtiilerinin iletimi i¢in bir model iken, konvektif FHNE hareketli uyarilabilir
ortamdaki kan pihtilagmasi i¢in bir modeldir.

FHNE’ler uzayda simetrik siireksiz elemanlar Galerkin (SIPG) yontemi ve zamanda
difiiziv FHNE i¢in ortalama vektor alan1 (AVF) yontemi kullanilarak ayristirildi. Kon-
vektif FHNE’yi zamanda ayristirmak icin, geriye doniik Euler yontemi kullanildi.
Difiizif FHNE carpiklik gradyani yapisina sahiptir. Carpiklik gradyan sisteminin tam
olarak ayristirilmis enerjisinin mini-maksimize edici 6zelligini karsilayan difiizif FHNE’
nin tamamen ayrik enerjisinin SIPG-AVF ayriklastirmas: ile korundugu gosterildi.
Reaksiyon ve difiizyon parametreleri arasindaki iligkiye ve dogrusal olmayan terime
bagli olarak, bir ve iki boyutlu FHNE’lerde hareketli dalgalar ve Turing desenleri gibi
0zel desenler goriilmektedir. Bir boyutta difiisiv FHNE icin cephe ve darbe olusumu,
iki boyutta difiiziv ve konvektif FHNE’ler icin desenler ve hareketli dalgalar sayisal
olarak incelenmistir.

Desen olusumlarinin hesaplanmasi ¢cok zaman alic1 oldugundan, ii¢ farkli MOR teknigi
uygulandi: 6z dik ayristm (POD), ayrik ampirik enterpolasyon (DEIM) ve dinamik
mod ayristirma (DMD). Tiim bu MOR teknikleri, dogruluk ve hesaplama siiresi bakimin-
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dan yiiksek giivenilirlige sahip tamamen ayrik SIPG-AVF ¢oziimleri ile kargilagtiriimis-
tir. Siireksiz Galerkin (DG) yonteminin yerel dogas1 geregi dogrusal olmayan terimler,
DEIM ve DMD tarafindan siirekli sonlu elemanlar yontemi (FEM) icin oldugundan
daha verimli hesaplanabilir. Sayisal sonuglar, POD’yi en dogru, DMD’yi en hizli ve
DEIM’1 her ikisi arasinda gostermektedir.

Ayrica, konvektif FHNE’ nin hareketli dalga ¢oziimleri tarafindan yonetilen seyrek
ve seyrek olmayan eniyilemeli kontrol problemlerini aragtirilmigtir. Sifira yaklasan
Tikhonov normallestirme parametresinin seyrek optimal kontrol probleminin yerel ¢o-
zlimleri icin ikinci dereceden optimallik kosullarinin sayisal olarak gecerliligini de
gosterildi. Dahasi, pertiirbasyon yontemi ve indirgenmis Hessian’1n en kiiciik 6zdegeri
ile ayrik kontrol ve iligkili yerel optima arasindaki mesafe sayisal olarak tahmin edildi.
Konvektif FHN denklemindeki dogrusal olmayan terime yakinlagmak i¢in DEIM’e
alternatif bir yontem olarak DMD kullanildi. POD-DMD Galerkin projeksiyonunun
uygulanmasi, aktivator i¢in dogrusal bir ayrik denklem olusmasina neden olur ve ayrik
eniyilemeli kontrol problemi konveks olur. Yukarida belirtilen MOR teknikleriyle
FOM ve alt iyilemeli kontrol ¢oziimleri ¢esitli sayisal drnekler i¢in karsilagtirilmistir.

Anahtar Kelimeler: FitzHugh-Nagumo denklemleri, Turing desenleri, hareketli dal-
galar, kesintili Galerkin yontemleri, ortalama vektor alam1 yontemi, 6z dik ayrigim,
ayrik ampirik enterpolasyon, dinamik mod ayristirma, (seyrek) eniyilemeli kontrol
problemleri
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CHAPTER 1

INTRODUCTION

Spatially and temporally varying structures in form of patterns, travelling waves, fronts,
periodic pulses are observed in variety of physical, chemical and biological systems far
from equilibrium, for instance, pattern formation. In nature, pattern formation has a
wide variety in many living and non-living systems. Just think about some examples of
this formation like stripes on zebras, spots on leopards, patterns on fishes, or hexagons
on honeycombs. There are also examples that can only be seen with a microscope like
the patterns in the connectivity of neurons or fingerprints. Those examples are shown
in Figure [I.T](Source: https://pixabay.com/tr).

Figure 1.1: Patterns in nature.

Despite the great variability, they exhibit many common properties. Therefore, use
of the simplest models plays a vital role in understanding the mechanisms of propa-
gation in excitable, oscillatory, or bistable media. In 1952, a British mathematician
Alan Turing explained this phenomena in his the only article, “The chemical basis of
morphogenesis” [91]. According to this, the models explaining these phenomena are



usually in form of nonlinear system of reaction-diffusion equations:

0
g diAuy + f(ur, ug),

ot (1.1)

Ouy _ daAuy + g( )

a 20U2 T g U, Uz ).
Alan Turing showed that under certain conditions any stable homogeneous equilibrium
solution of (I.I) without diffusion terms can be converted into an unstable state of
system (I.I)). This phenomena is known as ”Turing instability” or “diffusion driven
instability”. These conditions for system (1.1)) are given by

of
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One of the simplest and widely used models for pattern formation is FitzHugh-Nagumo
equation (FHNE) [67]]. The FHNE is an activator-inhibitor system, that is, it consists
of two substances, an inhibitor and an activator. While the activator facilitates and
enhances its own production, the inhibitor suppresses the production of the activator.
Therefore, patterns of activator and inhibitor concentrations result from fast diffusion
of the inhibitor or slow diffusion of the activator. In the literature, the most known type
of FHNE is classical FHNE consisting of a partial differential equation (PDE) with a
non-monotone nonlinear term for the activator u; and an ordinary differential equation
(ODE) for the inhibitor uy [36), [69]:

Uy = diAuy — f(ul) — Vg,

(1.2
Ugy = — Pug + yus — 9, )

where d; is a diffusion coefficient of u;, v, 0 are constants, and f(u;) = k(u; —
Cl>(U1 — CQ)(UI — 03) withk > 0and ¢ < ¢y < C3.

In this thesis, we study two different types of the classical FHNE ((1.2]), which are not
intensively investigated in the literature. The first model which we are interested in is
the diffusive FHNE consisting of two PDEs:

U1 = dlAul + f(ul) — U2 + K,
TolUgy = doAug + Uy — Yus + €

(1.3)

with homogeneous (zero-flux) Neumann boundary conditions and suitable initial con-
ditions in a smooth bounded domain 2 in R™(n < 2), and on a time period [0, 7] with
uy = up(x,t) and us = us(z,t), x € Q, t € [0, 7). Here 71, 75 and d;, dy correspond
to time scales and diffusion coefficients of u; and wus, respectively. Here, x, v, € are
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constants and f(u;) = u(u — )(1 — u) is a bistable nonlinearity with suitably chosen
a constant [3.

FHNE (1.2)-(1.3) was proposed for modelling the electrical impulses in a nerve axon
[36, 169]. Neurons, the building blocks of the central nervous system, are highly
complex dynamical systems. The diffusive FHNE as the simplified version of the
Hodgkin—Huxley equation models in a detailed manner activation and deactivation dy-
namics of a spiking neurons. The FHN equation can describe the bifurcations with
the variation of the key parameters for neuron dynamics. Within time FHNE became
a favorite model for simulation of wave propagation in excitable media, such as heart
tissue or nerve fiber. Understanding the complex behaviour of patterns in neuroscience
can have a big impact for dealing and preventing with various diseases.

It is not possible to explain all patterns in nature by a system of reaction-diffusion
equations, considering, for instance, blood coagulation process, shown in Figure [I.2]
(Source: http://www.dovemed.com/common-procedures/procedures-laboratory/coagu-
lation-factors-blood-test/). It is essential to use a convective term. So, the second
model equation which we focus on in this thesis is the convective FHNE:

U1y = dlAul — V 3 Vu1 + f(ul) — U9, 1 4

TolUgy = dgAUg — V 3 VUQ 4 6(03u1 = UQ) ( ' )
on a space time cylinder Q7 := 2 x (0,7), where 2 = (0, L) x (0, H) with zero flux
boundary condition except the left boundary, which is Dirichlet type as u; = us = 0.1.
As initial conditions we set u; = 0.1 inside a narrow triangle 0 < z < 0.5, 0 <y <
H, and u; = 0 outside this rectangle; u, = 0 everywhere. Here, d; and ds correspond
to diffusion coefficients of u; and u,, respectively. f(u1) = cyug(ug — c2)(1 — ) is
a monostable nonlinearity and ¢y, ¢y, c3 are constants. The divergence free velocity
field V = (V,,,V,,) is given along the z;-direction with a parabolic profile

1
Ve (22) = amo(H — 13),  Vipaw = ZaHz, a>0, V=0, (1.5)

where V. denotes the maximum wave speed of the velocity field.

The convective FHNE has been proposed as a model for a wave propagation
in blood coagulation and bioreactor systems. The flow plays an important role by
the regularization of the excitation threshold and travelling wave propagation. There
exists a large number of proteins, special blood cells, and platelets in blood coagulation
process. The complex process of coagulation consists of cascadic enzymatic reactions
and feedback loops, differentiated into three stages, initiation (localized at the vascular
damage site); propagation, or spatial expansion of coagulation wave into the vessel;
termination of the biochemical reactions and clot enlargement stoppage [59]. These
ultimately catalyze fibrinogen conversion into fibrin, which polymerizes to form a clot.
These reactions allows autocatalytic thrombin generation far from the damage site. The
most important property of blood coagulation process is the formation of autowaves
with the velocity independent of the initial conditions [35}34,59]. The flow propagates
within the impermeable channel walls (Neumann boundary conditions). Different type
of standing and triggering waves occur depending on the constants of the convective
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FHNE [35]. The waves became more curved when the maximum wave speed of the
velocity field (I.5)) increases.
Blood clot

Activated platelets Fibrin

Figure 1.2: Blood coagulation.

Both types of the FHNE occur in pattern formation [61]] and as waves in excitable
media. [33]. So, it is quite natural and challengeable to investigate the behaviour of
such systems.

Numerous numerical techniques have been developed for the space discretization of
reaction-diffusion-convection equations, like finite difference, finite volume, spectral
elements, continuous finite element, and discontinuous Galerkin (DG) finite element
methods. We use DG finite element method of symmetric interior penalty Galerkin
(SIPG) type [9, [74]], using discontinuous polynomials for the discretization of PDEs.
The DG discretization supports high order local approximations that can vary non-
uniformly over the mesh. Therefore patterns, like travelling fronts, travelling pulses,
and layers, can be captured better than the other methods. Besides, they are more stable
than continuous finite element method (FEM) for convection dominated problems [[11}

32]].

As a special case of the diffusive FHNE, it is a skew-gradient system [101] coupling
two energy dissipating systems. For time discretization we apply the energy preserving
average vector field integrator (AVF) 42]]. The AVF method preserves the energy
of conservative systems (e.g. the Hamiltonian) and the energy dissipation of gradient
systems [27) 42]]. We show that the AVF integrator combined with the SIPG space
discretization preserves the mini-maximizing property of the skew-gradient systems
in the discrete form of the diffusive FHNE.

Discretization of PDEs with nonlinear terms like the FHNE lead to very large nonlin-
ear system. The computation of pattern formations for different parameters are time
consuming. In order to overcome this issue, we apply model order reduction (MOR)
techniques; proper orthogonal decomposition (POD), with a discrete empirical inter-
polation (DEIM) 28] and a dynamic mode decomposition (DMD) [60]. The goal
in the MOR methods is to reduce the computational complexity and time of large-scale
sized systems by approximating with lower dimension. The combination of DEIM as
well as DMD with SIPG turns out to be very efficient approach for the computation of
the nonlinear term in the reduced systems.

We also consider optimal control problems (OCPs) of the convective FHNE occurring
in blood coagulation. Optimal control problems governing the classical FHNE and
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its activator equation, called Schlogl or Nagumo equations, were investigated theoret-
ically and numerically in [21} 23, 24, [77].

To control pattern solutions is really exciting, yet numerically it is difficult. Control
problems require much more time than the numerical solution of the PDEs. Therefore,
we apply the three MOR techniques POD, POD-DEIM and POD-DMD to optimal
control of the convective FHNE. Reduced order modelling of linear and semi-linear
PDE-constrained optimal control problems has been recently investigated in the liter-
ature intensively. [45, 156, 189,49, 86, 53].

In this thesis, we obtain the following main results:

e The selection criteria for Turing pattern formation of the diffusive FHNE is given
using the skew-gradient structure.

e The stability of the any steady state solutions of diffusive FHNE with skew-
gradient system is proved using Yanagida’s result [[100], which states any steady
state of a skew-gradient system is stable if and only if it is a mini-maximizer
of the energy functional. According to this result, we proved that the space-
time discrete form of skew-gradient diffusive FHNE by the SIPG-AVF methods
preserves the mini-maximizing property of its discrete energy functional.

e We use the POD based and Galerkin projection MOR techniques with SIPG to
solve the pattern formations of our model problems in an efficient way. To the
best of our knowledge, besides the pattern formation in lambda-omega systems
[65], there exist no other work concerning the reduced order modelling in pattern
formation.

e The discontinuous Galerkin discretization is used first time in reduced order
modelling as a computationally efficient method alternative to the classical FEM.

e We consider optimal control and sub-optimal control of convective FHNE occur-
ring in blood coagulation. We compare three different reduced order approaches
the POD, the POD with the DEIM, and the POD with DMD by comparing the
accuracy and computational time of the reduced order sub-optimal solutions. To
our best knowledge, reduced order OCPs using POD-DMD are not yet investi-
gated in the literature.

The rest of the thesis is structured in the following form:

e In Chapter[2] we perform a parameter study using “Turing instability” analysis to
determine formation of patterns for the diffusive FHNE. We prove that the AVF
time integrator with the SIPG space discretization preserves the skew-gradient
structure and the energy function of the diffusive FHNE. Numerical results show
that the front and pulse solutions of the one dimensional diffusive FHNE with
two and three components are computed accurately. For the 2D diffusive FHNE,
the computed patterns are close to those in the literature.
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e In Chapter[3] we present the three ROM techniques POD, POD-DEIM and POD-
DMD with the SIPG discretization in space. The DEIM and DMD is the first
time applied as a ROM technique in connection with the DG discretization. The
SIPG discretization with the DEIM turns out to be more efficient than the classi-
cal continuous FEM, because the support of DG basis functions consist of only
a single element, and vanishing outside that element. For the continuous FEM,
DEIM points are connected by the neighbouring elements [S)]. We also perform
a parametric reduced order modelling for the diffusive FHNE. Comparison of
the three ROM techniques show that the POD is the most accurate and DMD is
the fastest.

e In Chapter 4, we derive optimality conditions for the OCP problem governed
by a convective FHNE. The OCP problem is discretized using the so called first
optimize then discretize approach using the backward Euler time discretization.
We apply the nonlinear conjugate method [41] for solving the resulting discrete
optimization problem. We present numerical results for sparse and non-sparse
controls in the whole space-time domain and at the terminal time. We also inves-
tigate the effect of the Tikhonov parameter as it goes to zero as well as finding
a bound for the distance between the local minima and discrete solution as done
in [24, [77].

Finally, we apply POD, POD-DEIM, and POD-DMD for the sub-optimal con-
trol of the convective FHNE. The POD with the DMD is applied first time for

reduced order OCPs. Again the speed-up and accuracy of the sub-optimal con-
trol results are compared for the POD, POD-DEIM, and POD-DMD.

The thesis ends with some conclusions and discussions for future work.



CHAPTER 2

FITZHUGH-NAGUMO EQUATIONS

Pattern formation is observed in many natural systems like biology, chemistry, and
physics. Examples of patterns in real life are fingerprints, stripes on zebras, spots
on leopards, pulses travelling inside nerve cells, spiral waves in sunflower and red
cabbage, hexagons on honeycomb, geometric designs on seashells [67]. Reaction-
diffusion equations are typical models for pattern formation. Alan Turing explained
the formation of patterns resulting from the instability, called afterwards “Turing in-
stability”, in reaction-diffusion equations in his seminal work on the chemical basis
for morphogenesis in 1952 [91]. In general, the patterns are classified into three types
according to the characteristics of media: excitable, Turing-Hopf (oscillatory), and
bistable.

In this thesis, we study excitable and bistable pattern formation of FitzHugh-Nagumo
equation (FHNE), which was first introduced by FitzHugh [36] and Nagumo et al.
[69] for modelling the electrical impulses in a nerve axon as a simplified version of the
Hodgkin-Huxley model. In spite of the fact that the FHNE is developed as a model in
physiology, it is used as a generic model that exhibits many phenomena in excitable,
oscillatory or bistable chemical media. The well-known classical FHNE consists of
a partial differential equation (PDE) with a bistable cubic nonlinear term, known as
activator equation, and an ordinary differential equation (ODE), known as inhibitor
equation. We study here two other types of FHNE. The first one is diffusive FHNE
consisting of an activator PDE with a bistable cubic-nonlinear term, and one or two
linear PDEs as inhibitors [61, 93, 94]. Depending on the reaction and diffusion pa-
rameters and on the bistable nonlinearity, specific patterns occur in one dimensional
FHNE, like travelling waves (e.g. fronts and pulses) [30], and in two dimensional
FHNE, like spots or labyrinth-like patterns [61]]. Fronts and pulses are the most well-
known one dimensional waves in reaction-diffusion systems, connecting two different
states of a reaction-diffusion system with bistable nonlinearity. In all these systems
the time evolution of the energy plays an important role in formation of travelling
waves, pulses and patterns. The other one is convective FHNE, proposed as a model
for wave propagation in excitable medium blood coagulation and bioreactor systems
(34, 35, 159]. Convection leads to complex wave phenomena, like pulses, triggering
and autonomous waves in a moving excitable media.

For space discretization we use interior penalty discontinuous Galerkin finite element
method [8, [74]. The original discontinuous Galerkin (DG) methods were first intro-



duced by Reed and Hill in order to solve first order linear hyperbolic neutron trans-
port equation in 1973 [73] and developed in the following years by many authors
(114 12, 205 132, 33, [72]]. DG methods have a place between finite element and finite
volume methods owning good features of both methods. Although continuous finite
elements methods (FEMs) require continuity of the solution along element interfaces,
DG methods do not require continuity of the solution along the interfaces. They can
support high order local approximations that can vary non-uniformly over the mesh,
by which fronts, pulses and layers can be captured better. In contrast to the stabilized
continuous Galerkin FEM, DG methods produce stable discretization without the need
for extra stabilization strategies for convection dominated problems, and damp the un-
physical oscillations. Due to the local structure of DG discretization, the DG method
is parallelizable and adaptive meshing techniques can be implemented efficiently. In
addition, the boundary conditions are imposed weakly in DG methods.

For large class of reaction-diffusion systems there exist Lyapunov functions, so that all
the solutions converge to equilibria. But it is difficult to derive a gradient structure for
all reaction-diffusion systems, because the reaction terms contain quite general nonlin-
earities. For certain classes, gradient structures can be constructed. Among these are
the activator-inhibitor type reaction-diffusion systems which are not order preserving
and their linearized forms around the steady states are not self-adjoint. Yanagida [101]
introduced the concept of skew-gradient systems to investigate the stability of these
systems. It was shown in [[101] under some restrictions on the parameters the diffusive
FHNE exhibits a skew-gradient structure. In short, these activator-inhibitor diffusive
FHNE:S consist of two gradient systems. Nevertheless, for convective-diffusive equa-
tion, there do not exist Lyapunov function.

For time discretization of diffusive FHNE, we applied average vector field (AVF)
method [27, 42]] which preserves the energy for conservative systems, like Hamilto-
nian, and the energy dissipation for gradient systems. It is well suited for time dis-
cretization of the diffusive FHN with skew-symmetric gradient structure. It is second
order in time and reduces to the mid-point rule for ODE with quadratic potentials. We
show that the AVF integrator combined with the SIPG space discretization preserves
the mini-maximizing property of the skew-gradient systems [100] in the discrete form
of diffusive FHNE [50]. For convective FHNE, since it has no gradient structure we
have used a semi-implicit Euler method as a time integrator.

In this chapter, we first give diffusive FHNE in one and two space dimensions, of two
and three component type, and skew-gradient property in Section In Section
convective FHNE is introduced. In Section [2.3] the space discretization by the DG
method is presented. Then, the fully discrete form of the diffusive FHNE with the
gradient stable AVF method in time and convective FHNE with the semi-implicit Euler
method are derived. The energy analysis of the fully discrete scheme of the diffusive
FHNE is given in Section [2.4] In Section [2.5] numerical simulations are shown for
the diffusive and convective FHNEs exhibiting patterns in one or two dimensional
domains.



2.1 Pattern Formation in Diffusive FitzHugh-Nagumo Equation

In this section, we study diffusive FHNE
Tu; = DAu + f(u), 2.1

=[5 ] ee[8 a] w-[hE] e

with homogeneous (zero-flux) Neumann boundary conditions and suitable initial con-
ditions in a smooth bounded domain €2 in R"(n < 2) and on a time period [0, 7'] with
u = [uy(x,t),us(x, t)]*, z € Q,t € [0,T]. Here 7y, 7 and d;, do correspond to
time scales and diffusion coefficients of u; and us, respectively. fi(u;,us) denotes a
cubic nonlinear term. For instance, fi(u1,u2) = ui(u; — 5)(1 — uy) — us + k with
0<p< %, and fo(uy, us) = u —~yv + € for some suitable constants x, 7, €. The FHNE

is an activator-inhibitor system, where wu; is the activator since it activates us in
the second component of (2.1)), i.e. leads to an increase of uy. On the other hand, uy
is the inhibitor since it leads to a decrease in u; and uy in both component of (2.T)).
In this thesis, we consider the diffusive FHNE (2.T)) with a fast inhibitor diffusion, i.e.
dy/dy > 1, or it can be called as a slow activator diffusion.

where

A Reaction-diffusion system with pattern formation was first proposed by Turing in
1952 in his only paper on biological pattern formation [91]. In a single reaction-
diffusion equation, the presence of the diffusion term does not change the stability
of the steady state solution, in other words, the stable steady state solution can not be
unstable when the diffusion term is added to the equation. On the contrary, the diffu-
sion makes any stable steady state solution more stable. However, when two or more
reaction-diffusion equations are considered, there can be a stable steady state solution
turned into an unstable state under the presence of the diffusion term. Alan Turing first
proposed this relationship between the parameters of reaction-diffusion equations and
pattern formation. He explained that under certain conditions any stable steady state
can be converted into an unstable state. This is known as “diffusion driven instabil-
ity” or “Turing instability”. Some examples of pattern-generating reaction-diffusion
equations are Gierer-Meinhardt [37], Gray-Scott [81]], Lengyel-Epstein [S8]]

For “Turing instability”, the homogeneous steady state solution in the absence of dif-
fusion terms must be linearly stable. Any homogeneous steady state solution u =
(uy,u2)T = (¢,9)T of equation (2.I) can be found as

f(u) =0, (2.3)

or equivalently, F(60) = 0
e 2.4
Fa6.1) = 0. .

These homogeneous steady state solutions are linearly stable if and only if all eigen-
values of the stability matrix have negative real part. The stability matrix is

A { (fi)1 (f1)2

(f2)1 (f2)2 qu)’ 2.5)



where (f;); for i, j € {1,2} are the partial derivatives of f;, i = 1,2 with respect to u,
and us. The eigenvalues of the stability matrix A are found by

A IED) (f1)2
A=MI= 100 (f)e = A ()

— N = A1+ (2)2) + ((f)1(f2)2 = (f1)2(f2)1) T(pw) =0
((f)1+ (f2)2) FA/((Fr + (f2)2)2 — 4((f1)1(f2)2 — (f1)2(f2)1)

— )\172 = .
2 (¢,%)
Hence, linear stability of homogeneous steady state solutions is guaranteed iff
tr(4) = (fii1 + (f2)2 < 0, (2.6)
Al = (f1(f2)2 = (f)2(f21 > 0. 2.7)

In the presence of diffusion terms, stable steady states may be converted into unsta-
ble ones. We will derive other conditions, in addition to (2.6)-(2.7), for the “Turing
instability”.

Linearizing equation (2.1)) around the homogeneous steady state solution u = (¢, )7
leads to
Tu; = DAu + Au. (2.8)

The general form of the solution for the diffusion equation u; = DAu,

oo

u(z,t) = Z ajekjte_ikjm

J=0

with corresponding wave modes k; and eigenvalues \; = A(k;), obtained by Fourier
expansion. The general solution of (2.8)) by substituting this formula into (2.8) gives

IMI—A+ kD] =0,
for each k;. Thus,

o _ |A = (fi)1 + KPdy —(f1)2
M — A+ DE| = —(fah A= (f2)2 + K*dy

(6:9)

- )\2 —Xb+e |(¢7w) = O,

—-bF Vb2 —4c

— )\ =
b2 2 63)

where

b = (fr+ (fa)2 — K*(dy + do)
= tr(A) — k*(di + da),
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¢ = (fi(f2)2 = (f1)2(fo)1 — K (da(f1)1 + di(f2)2) + K*dids
= |A] - kQ(d2(f1)1 + di(f2)2) + kdyds.

For the “Turing instability” or “diffusion driven instability”, steady state solutions must
be unstable. So some eigenvalues of the stability matrix must have positive real part.
The condition (2.6)), and —k?(d; + dy) < 0 imply A\; + Ay = b < 0, there is at least
one eigenvalue with negative real part. However, in order to get an eigenvalue with
positive real part, the other eigenvalues must have positive real part. Hence, either the
inequality A\; Ay = ¢ < 0 must be satisfied or some value of ¢ must be negative. So if
A1 Ay = ¢ < 0 is satisfied, then a third condition for “Turing instability” becomes

do(f1)1 +di(f2)2 >0 (2.9)

with dy # ds. Otherwise this contradicts with the condition (2.6). On the other hand, if
c 1s negative for some values, then its minimum value must be negative. For this, one
must check first and second derivatives of ¢

(k) = —(da(fi)r + di(f2)2) + 2kdids,
C”(l;?) = 2d1d2

with k = k2.

Note that, c is concave up and its minimum occurs at the critical point

\/E_\/dQ Ji)1 +di(f2)2 ‘

2dyds

Hence, the minimum value is found as
(do(f1)1 + di(f2)2)?
k") =|A| — )
(k) = 4] s

In order to make this value negative, we obtain the last “Turing instability” condition,
which is given by

2
(fi)i(f2)z2 = (f)2(fo)r < (dQ(fl)Z;jl(fQ)Q) . (2.10)
162
In summarize, “Turing instability” conditions for equation (2.1]) can be written as
(f)i+(f2)2 < 0, (2.11a)
(f)i(f2)2 = (f)2(for > 0, (2.11b)
do(fi)r +di(f2)2 > 0, (2.11¢)
(do(fi)i +di(fo)2)® > ddada((f1)i(fo)o — (f)2(fo)r),  (2.11d)

where all functions are evaluated at homogeneous stable steady state solution u =
(¢,%)T. Take in mind that either third or last condition is enough for “Turing instabil-
ity”. For a detailed derivation of these conditions, see [68]].

We firstly focus on one dimensional problems, although many real world patterns are
two or three dimensional. We do not study three-dimensional problems.
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2.1.1 Pattern Formation in 1D

Localized structures like fronts and pulses are the most well-known one dimensional
patterns in reaction diffusion systems [30].

TIU = AU 4y + f(ul) — U2,

2.12
TolUgy = AUy, + Uy — YUz + €, ( )

where f(u;) = u; — Bui® with 0 < 3 < %, Ty, T are time scales, and v, € are positive
constants.

Existence of fronts and pulses for the diffusive FHNE are shown in [30]. In this section,
we derive conditions for the parameters of the diffusive FHNE (2.12) with travelling
fronts and pulses satisfying “Turing instability” conditions (2.11)).

A travelling front is a travelling wave that connects two different stable states of a
reaction-diffusion system with a bistable nonlinearity. Such trajectories are called het-
eroclinic orbits. Pulses exist far away from the homogeneous equilibrium and results
from the balance between the dissipation and nonlinearity. Its trajectories are called
homoclinic orbits since they start and end at the same steady state solutions.

Without diffusion terms, the homogeneous steady state solutions of are deter-
mined by the intersection of the following equations

f(u1) —ug =0,

2.13
Uy — yug + € = 0. ( )

Depending the number of solutions of the system (2.13), mono/bi-stability of the ho-
mogeneous steady state solutions of equation (2.12)) are determined.

When all the parameters, other than ~, are fixed as [16]]

(7_17 T2, dl) d27 /87 6) = (17 o
we obtain from (2.13)) for us

uy + =+

Uy = U1 + € _ 1 10 .
v Y

Substituting this in the first equation of (2.13)) gives

1, 1 7
- 1— = )u — — =0.
3 + ( 7) Uy 107

For the bistable case, this equation must have three distinct real roots, such that the

first derivative .
—U12+ (1——) :O
/')/

must have two distinct real roots. Therefore, for v > 1, the equation (2.12]) exhibits
for bistable case travelling fronts. For the monostable case solution will be travelling
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pulses. For example, we obtain for v = 8 > 1 travelling front, and for vy = 0.8 < 1
travelling pulse solutions.

We will show that, equation (2.12) satisfies “Turing instability” conditions (2.11) for
the following choice of the parameters:

[ —1.66804 _{ 0.10039 _( 1.56766
W= 012101 /0 "=\ 010005 ) W=\ 028346 |-

The equilibrium solutions uy, ug are stable and us is unstable. So, for u; and us the
stability matrices are given as

—1.78236 —1 —1.45756 —1
AU1:|: 1 _8:|7 AU3:|: 1 _8:|

Except third condition, all conditions of (2.11) are satisfied for both u; and us. Hence,
front solutions of (2.12)) are indeed Turing patterns.

Similarly for travelling pulse solutions, the only homogeneous steady state solution of

equation (2.12) is given as
[ —1.19941
U\ 062426 )

—0.43858  —1
Au = { 1 —0.8 ] '

Again, except third condition, all conditions of (2.11]) are satisfied for the equilibrium
solution u. Hence, pulse solutions are also Turing patterns.

which is stable with

2.1.2 Pattern Formation in 2D

Now, we will investigate a pattern formation for the two-dimensional diffusive FHNE

T1Us = dlAul + f(ul) — U2 + K, (214)

Tolg; = daAug — uz + uy,
where f(uy) = u; — Buy® with 0 < 8 < %, and « is a positive constant. Turing pat-
terns for 2D diffusive FHNE occur in form of spots or labyrinth-like patterns,
depending on the number of global minima of the Lyapunov energy functional [61].
Lyapunov energy functional will be introduced in the next subsection. If the Lyapunov
energy functional of the system has a unique global minimum, spot will be formed.
Otherwise, labyrinth-like patterns emerge. An analytical criteria is determined in [61]
in order to determine the number of global minima of Lyapunov energy functional.
The number of global minima can be determined by that the nonlinear reaction func-
tion contain quadratic terms or not. If the reaction function does not include even
polynomial terms, then its continuous energy function contains only even polynomial
terms. Hence, this energy functional will have two different points having the same
minimum value. So, its pattern structure will be labyrinth-like patterns. Otherwise,
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under the presence of a quadratic term in reaction term in (2.14)), the pattern formation
will appear as spots.

When we apply this criteria to our equation (2.14), the reaction term includes the only
even order term ~. So, for k = 0 the pattern formation will be labyrinth-like patterns,
and for non-zero values of x the pattern formation will be spots.

When we fix the parameters, other than ds as
(71,72, d1, k) = (1,1,0.00028,0 or 0.1),

arbitrarily and determine the values of d for the “Turing instability” conditions (2.11)),
the only equilibrium solution of (2.14) is

[ 0.46416
U=\ 0.46416

0.35367 —1
A= 257 .

The first two conditions of are clearly satisfied. So, for the “Turing instability”
third or last conditions of (2.T1) are satisfied by choosing dy > 0.00079 or dy >
0.07666. Hence, for “Turing instability” it is enough to take dy > 0.07666.

with

2.1.3 Three Component FitzHugh-Nagumo System

An example of a three component reaction-diffusion equation is a model for gas dis-
charge dynamics [79]

TIULE = Uig + U — Up® — e(aug + Pus + ),
1

T2U2t = G Uan + Uy — u, (2.15)
d2

T3Ugy = 6—2U3m + up — us,

where 0 < ¢ < 1, d > 1, and « and 3 denote the reacting rates and the constant -y
is the source term. The equation (2.15)) consists of one activator u; and two inhibitors
U9, ug components. It can be considered also as a generalized FHNE. First inhibitor wus
diffuses more rapidly than the second inhibitor u3. The equation became a stan-
dard model for studying the dynamics and interactions of spatially localized structures
like multi-pulses and multi-fronts in one dimensional reaction-diffusion equations [93]]
through mathematical analysis and numerical simulations.

Different patterns are determined by looking at the homogeneous steady state solutions
of (2.15) by the intersection of the following equations

up — uy® — e(aug + Buz + ) =0,
up —ug =0, (2.16)

ul—u3:0.
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The last two equations of (2.16]) imply that stationary solution components are equal.
Hence, for u; = uy = ug = u the solution of equation (2.16) reduces to

u? —u+ elau+ fu+v) = 0. (2.17)

For the bistable case, the first order derivative of the equation (2.17) has two distinct
roots
3u? — 1 +e(a+B)=0. (2.18)

if its discriminant satisfies
A=-12-(e(a+p)—1) > 0.

Hence for ¢(a + 8) < 1, (2.13) has bi-stable nonlinear term, and the three component
FHNE (2.15]) has front solutions. Depending on the initial conditions, (2.15) may have
one-front, two-front, or multi-front solutions [93]].

For the one and two front solutions, we fix the parameter values as

1 1 100
d =(3,1,—,—-,5,1,—, 100
(Cﬁﬁﬂfa% a7_177_277_3) ( ) 71007 47 D) 3 ) )7
in which some of the parameters are chosen from [93] and the rest we choose accord-
ing to the skew-gradient structure, introduced in the following subsection and
“Turing instability” conditions.

We show that the equation (2.15)) satisfies “Turing instability” conditions (2.11) for
these parameters. The equilibrium solution is

—0.0026
u= | —0.0026
—0.0026
with
0.99998 —0.03 —-0.01
A, = 1 -1 0
1 0 -1

Since tr(A,) = —1.00002 < 0 and |A,| = 0.95997972 > 0, the first two “Turing
instability” conditions (2.11) are satisfied. After a some calculation we obtian

c = kOdydyds + k*(dydz + dydy) + k*(dy — 2-0.99998d3 — 0.01d5) — 2-0.99998 — 0.01.

The minimum value of ¢ is —2705.11889, which is negative and the last condition
of (2.11) is also satisfied. Therefore, one-front and two-front solutions of (2.15]) are
Turing patterns. In a similar way, one can show that “Turing instability” conditions are

clearly satisfied for multi-front solutions of (2.15]) with chosen parameters

1 1
(Oé, Ba €7, da T1, T2, T3) = (1007 1007 ma _Zv 57 17 17 1)

in the same way as the previous one and two front solutions.
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2.1.4 Skew-Gradient Structure of the Diffusive FHNE

The two component diffusive FHNE

Tuy = diAug + f1(uq, ug),

2.19
Tollyy = dalAuy + fo(ur, uz), 19

has a skew-gradient structure if there exists a function F' satisfying
VF = (fi(u1,u2), — fa(u, us)), (2.20)

where V denotes the gradient operator. The alternative form of this definition is given

asin [101]:
0 (fl(ul,w)> _ 9 (f2(“17“2)), (2.21)

a’UQ T aul T2

This skew-gradient structure was first introduced by Yanagida in [[101] for a general-
ized activator-inhibitor system in order to determine whether the steady states of (2.19)
are stable or not. The diffusive FHNE satisfies the skew-gradient condition (2.20)) or
(2.21).

The steady state of is a critical point of the energy functional
E(ul, U,2> = E|VU1| — E|VU2| — F(Ul, UQ) dz (222)
Q

with the corresponding potential function F'(uq, us) satisfying

oF oF
_8 = fl(ul,UQ) and — — = fQ(UhUQ).
Uy

8“2

For instance, the potential function for the diffusive FHNE, defined in[2.1.1} is

u4 1+ u3 u2 u2
F(Ul,UQ):—%—F( 3ﬁ) 1 _521 _u1u2+7 2

— €U9Q.

The first equation (activator) of is a gradient flow with the potential F'(u, us),
and the second (inhibitor) with the potential —F(uy, u2) [100]. The energy functional
E(uy,us) does not correspond to the Lyapunov functional, because it is not necessarily
non-increasing or non-decreasing in time. However, it was proved in [100] that a
steady state of a skew-gradient system is stable if and only if it is a mini-maximizer of
the energy functional F(uq, us):

o If u; = ¢ is a local minimizer of E(uy,n) and us = 7 is a local maximizer of
E(&, ug), then (uy,us) = (£, 7n) is a mini-maximizer of F(uq, us).

o If £(¢,uy) < E(&,m) < E(uy,n) for any neighborhoods #;, s of & and 7,
respectively, then we say that (uy, us) = (£, n) is a mini-maximizer of E(uq, us).
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This result generalizes the stability criteria for gradient systems.

The n—component system with the skew-gradient structure has the form

ey f A F ) =1

S e —%F(ul,---,un) i=0+1,...,n,

where F' denotes the corresponding potential function. The first £ components of sys-
tem {uy,--- ,u,} are activators, whereas the remaining {us 1, - - , u, } are inhibitors.

2.2 Pattern Formation in Convective FitzHugh-Nagumo Equation

In this section, we study a convective FHNE [35]

U1y = dlAul -V VUl + fl(ul, Ug),

2.23
ToUgy = daAuy — V - Vug + foug, ug) (2.25)

on a space time cylinder Q7 := Q2 x (0,7), where 2 = (0, L) x (0, H) with zero flux
boundary condition except the left boundary, which is Dirichlet type as u; = uy = 0.1.
As initial conditions we set u; = 0.1 inside a narrow triangle 0 < z < 0.5, 0 <y <
H, and u; = 0 outside this rectangle; us = 0 everywhere. Here, d; and ds correspond
to diffusion coefficients of u; and us, respectively. The first component of a reaction
term f;(uq, us) involves a cubic nonlinear term of u;.

In the absence of flow, i.e., V = 0, equation (2.23)) is the diffusive FHNE (2.1)). There
is also a three component convective FHNE like diffusive FHNE [34]. However, in this
work we focus on only this two dimensional, coupled version of convective FHNE.

The convective FHNE (2.23)) was developed as a model for wave propagation in blood
coagulation and bioreactor systems [34,135,159]]. Although the blood is a non-Newtonian
fluid, this FHNE is described with the assumption that the blood is an incompressible
fluid with divergence free velocity field, i.e. divV = 0 [35,59]. Among the state
variables, u; represents the activator of coagulation (thrombin), and u, represents the
inhibitor (usually protein C) [59], which are described more detail in [10].

The waves of the convective FHNE are autonomous, that is, changing the initial con-
dition does not affect the form and velocity of occurring waves [35]]. These waves can
either spread over the whole spatial domain or localize in some part of the domain,
called restrictions. In this thesis, we study formation of patterns in an excitable media,
driven by a convective field in both activator and inhibitor components of a diffusive
FHNE for two-dimensional space.

2.2.1 Parameter Analysis for Wave Type Solutions of the Convective FHNE

For the convective FHNE (2.23), the reaction terms are chosen as

fi(ur, ug) = crug(u — c2)(1 — uy) — uy, fa(ur, ug) = e(czuy — uy)
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for some positive real constants ¢y, ¢z, c3 [35]. The homogeneous steady state solution
u = (uy,us)? = (¢,9)T of equation (2.23)) becomes

16(¢ — c2)(1 = ¢) —h =0,

e(esg — 1) = 0. (224

The equation (2.24) is reduced to

¢(Cl¢2 — 01(1 + CQ)¢ — (0102 + 03)) = 0 (225)

In an excitable medium, (2.23)) is monostable, i.e., it has only one equilibrium solution,
which is (¢, 1) = (0,0). Therefore, the discriminant of ¢;¢* — 1 (1+ca)d+ (crea+c3)
is less than zero:

A =1+ cp)* —4dei(cren +e3) < 0. (2.26)

If we choose ¢, and ¢3 as 0.02 and 5, respectively, then (2.26) is simplified as
0.9614¢? — 20¢; < 0. (2.27)

Hence, for 0 < ¢; < 20.803 the excitable medium is monostable.

2.3 Space-Time Discretization

In this section, we give a space-time discretization of 2D diffusive and convective
FHNE with homogeneous Neumann and non-homogeneous Dirichlet boundary condi-
tions
Ty, — diAuy + V- Vg — fi(ur,up) =0, in Qr,
Tollyy — daAuy + 'V - Vug — fo(ur, us) =0, in Qr,
Oou;  Ous

% = % = O, on Eg, (228)

U = Wip, Uz =usp, onXy,
ur(2,0) = uig, uz(x,0) = ug, in Q

on a space-time domain Q7 := 2 x (0,7) with Q = [0, L] x [0, H]. The lateral
surface is denoted by Y = I' x (0,T). We use the notation X2 := TI'p x (0,7T)
for Dirichlet and ¥4 := T'y x (0,7 for Neumann boundaries. Dirichlet boundary
conditions are given by Urp, Usp € H3/ 2(T'p). Moreover, the initial functions are
given as g, usg € L>(€2). We denote the outward unit normal vector and the associ-
ated outward normal derivative on 9€) by n and 0,, respectively. Further, the function
f1(u1,uy) denotes a cubic polynomial nonlinearity and f5(u;,uz) is a linear polyno-
mial. For both diffusive and convective FHNEs (2.1)-(2.23)), reaction terms f;(uy, us)
for s = 1,2 can be written as a summation of separable functions of u; and us:

Ji(ur,ug) = fuy) + £ (ug),

2.2
fa(ur, ug) = lo(uy) + l3(uz), (2.29)
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where f denotes cubic polynomial nonlinearity, ¢;, {5, {3 denote linear polynomials.
The divergence free velocity field V = (V,,, V,,) is given along the z;-direction with
a parabolic profile

1
Vi (2) = axo(H — 23), Ve = ZaHz, a>0, V,=0, (2.30)

where V. denotes the maximum wave speed of the velocity field.

For space discretization of equation (2.28]), we use the symmetric interior penalty
Galerkin (SIPG) method and as a time discretization we use the average vector field
(AVF) method for the diffusive FHNE, the semi-implicit Euler method for the convec-
tive FHNE.

2.3.1 Space Discretization

Let {7}, be a family of shape-regular meshes of a polygonal domain €2 such that
each mesh 7}, consists of closed triangular elements, i.e, Q= U KeT K. We assume
that the mesh is a conforming mesh, i.e., the intersection of two elements K; N K is
either empty, a vertex, an edge, or a face. A face occurs only if 7+ = j. The diameter
of an element K is denoted by hg, and the length of an edge F is denoted by hg. In
addition, the maximum diameter is A~ = max hy. Also we assume that the mesh is
shape-regular, i.e., there is a constant C' > 0 such that

h
K <0, VKeT,
PK

with the maximum diameter of ball pg, enclosed by the element K.

We split the set of all edges &, into the set of interior edges £, Dirichlet boundary
edges &P, and Neumann boundary edges & so that £, = EPUEY with EF = EPUEN.
Let n denote the unit outward normal to 0€). For the activator u; and the inhibitor s,
we define the inflow and outflow boundaries of 02 by

I"={z€dQ: V(z) -n(z) <0}, TT=90\00".
In a similar way, we can define the inflow and outflow boundaries of an element K as
0K~ ={x€0K: V(z) ng(z) <0}, OKT=0K\0K",
where ny denotes the unit normal vector on the boundary 0K of an element K.

Let the edge £ be a common edge for two elements K and K°. For a piecewise
continuous scalar function u, there are two traces of u along F, denoted by u|g from
inside K and u°|g from inside K. Then, the jump and average of u across the edge £
are defined by

<U|E+U6|E) (231)

N | —

[u] = u|lpng + u|pnge, {u} =
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Similarly, for a piecewise continuous vector field Vu, the jump and average across an
edge E are given by

1
[Vu| = Vu|g - ng + Vullp - nge, {Vu} = §(VU|E + Vue\E). (2.32)

For a boundary edge £ € K N0, we set {u} = v and [u] = un.

For DG methods, we do not impose continuity constraints on the trial and test functions
across the element interfaces. Therefore, the weak formulation of (2.28)) must include
jump terms across interfaces. In order to control these jump terms, penalty terms are
added. The discontinuous discrete space is defined as

Wy, ={we L*(Q): w|xkcP"K), VKET), (2.33)

where P¥(K) is the set of all polynomials defined on K € T, of degree at most k. We
note that the space of discrete states and the space of test functions are identical due to
the weak treatment of boundary conditions for DG methods.

Then by using the identities (2.29), a semi-discrete formulation of (2.28) for Vw € W,
and t € (0,7T] becomes

duyp,

(717770) + an(dy; urp, w) — (f(uip), w) = (41 (ugp), w) = Thuy (w),
) 0 ; — P P
] (u1n(+,0), w) (u19, w) (2.34)
U
(7'2 dzh’w) + ap(da; ugp, w) — (Ca(uyy), w) — (C3(ugy), w) = Thoug (w),
(Ugh(',()),UJ) = (UQO)w))
where the (bi)-linear terms are defined for: = 1, 2, Vw € W,
an(di; wip, w) = Z d;Vugp, - Vw dx
KETh i
= Y [ (@vuwl)dsee 3 [ (@Ve)- ) ds
EcElUEP 7 Ecgluel
O'dz'
w3 58 - wlds+ Y [V Vugwds
Eegduep B KeTh i
+ Z / V- n(u; — up)w ds — Z / V - nu;,w ds,
KeTh o=\ 00 KeTh o ~Ar-
O'di
T, (W) = Z /UiD( I n-|(w] — {d@-Vw}) ds
EEE‘,?E
— Z V -nu;pw ds,
KeTh gi~nr-
(2.35)
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where the parameter o € R{ is called a penalty parameter which should be sufficiently
large to ensure the stability of the DG discretization; independent of the mesh size h
and of the diffusion coefficients d; as described in [74] with a lower bound depending
only on the polynomial degree.

Depending on the choice of , there exists three different types of DG methods

e For k = 1, the resulting method is called the symmetric interior penalty Galerkin
(SIPG) method [38]].

e For kK = —1, the resulting method is called non-symmetric interior penalty
Galerkin (NIPG) method [98|, 8]].

e For k = 0, the resulting method is called incomplete interior penalty Galerkin
method.

In this thesis, we use the SIPG method. For each time step, we can expand the discrete
solutions of the activator and inhibitor variables .}, w9, as

Ne Ne

(¢ ZZulj ), uan(t ZZ% (2.36)

=1 j5=1 =1 j5=1

where u;; and uy} are the unknown coefficients and ¢; are the basis functions for
g =12...,np,and ¢ = 1,2,...,n.. The number n. denotes the number of DG
elements and n;, = (k + 1)(k + 2)/2 is the local dimension of each DG element
depending on the order k of the polynomial basis. The degree of freedoms (DoFs) for
DG methods is given by N = n, X ny.

Plugging (2.36) into the scheme (2.34), we get 2 x N dimensional ODEs for the un-
known vectors u] and us

_i - (ullla"' 7“17{,&"' 7u1ine7"' 7u1::)7
Uy = (U/2117"' 7u271k7'” 7u2ine7'” 7U’27?k6)7
as following
du; - -
TlM dt + Aulul f(ul) - Mgl(U/Q) = Ty,
i (2.37)
TQMd—2 + AUQUQ MEQ(U_i) — Mﬁg(u_é) = Iy,

Here, M is the mass matrix, A, is the stiffness matrices corresponding to ay, (d;; w;p,, w);
f(u}) is the vector corresponding to nonlinear term (f(uyj), w); r,, are vectors corre-
sponding to linear terms ry, ,,, (w) for i € {1,2}.

The semi-discrete form of the diffusive FHNE is almost the same except the convection
term in the bilinear form (2.35).
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2.3.2 Time Discretization: Average Vector Field Method

Energy stable time discretization methods preserve the dissipative structure of the nu-
merical solution of gradient flow equations and skew-gradient systems like the dif-
fusive FHNE (2.1)). After the spatial discretization, the small values of the diffusion
parameters d; and ds lead to stiff systems. Therefore, we need to choose an appropriate
time integrator technique, especially for diffusive FHNE (2.T)).

Explicit methods, like forward Euler’s method, were developed to calculate the state of
the system at a future time without solving a nonlinear equation. Then implicit-explicit
methods were developed, like semi-implicit Euler method, where the linear stiff part
is treated implicitly, and the nonlinear part is explicitly. So to calculate the state of
the system, again it is not needed to solve nonlinear equation. These methods do not
preserve the energy dissipation (2.1). Implicit methods are more stable for solving stiff
systems with a larger time step size. So we prefer to use energy stable implicit time
discretization methods, which are implicit (backward) Euler’s and average vector field
(AVF) methods. These methods are robust with small diffusion parameters. The AVF
method is the only second order implicit energy stable method and it preserves en-
ergy decreasing property for the gradient systems, like the Allen-Cahn and the Schlogl
equations. In this part, we apply the AVF method [27,42] to solve the system of ODEs
arising from the semi-discretization of the diffusive FHNE (2.37).

We split the time interval [0, 7] into J equally-length subintervals (t;_1,t;] with 0 =
tg <ty < --- <ty =T with a uniform step-size At =t, —t, 1, n=1,2,---,J.
The AVF method for an arbitrary ODE 4 = f(u) is given by

n+l _ . n 1
= /0 Fleam™ 4+ (1= &)um)de, (2.38)

where u™ ~ u(t,) forn =1,...,J — 1 and u® = u(ty).

Forn =0,1,---,J — 1 the AVF method applied to the semi-discretized form (2.37)
reads as

u—»n-‘,—l _.mn

1
u —n —-n
TIM# :/ [rzl+1 — A, (& oy (1—=¢&)uq )] d¢
0

J/

-—
linear

1 1
+ / f(eay™™ + (1 — &uy™)de + / MY (€™ + (1 — &)up™)d,
0

(N J/

VvV TV
nonlinear linear
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1
—»n+1 —»
M2t / e A€ (1 Oa)] dé
0

7

-~
linear

1
+ / IMeo(6™ + (1 )i™) + Mb (™ + (1 — &)a)] de,
0

J/

TV
linear

where we use the separable property of reaction terms as given in equation (2.29).

Since the AVF method coincides with the midpoint rule for the linear terms, this dis-
crete formulation can be simplified as

At At
(TlM + 7A ) U_in+1 = (TlM — 7Au1) U,_in
1

+AE [ (& + (1 - &)ur")dg
[

(2.39)
gMe (B + B,

At At At
<7—2M + 7A1Q> u_én+1 = (TZM — TAug) U/_én 7M€ ( i -+ u_in)
At
+ TME ( e + U_én)

The fully discrete system of nonlinear equations (2.39) are solved by Newton’s method
on each time-interval (t,,_1,t,],n =0,1,...,J — 1.

We set the functions of system residuals for (2.39)

At At
Ry(uy™™ "t = (ﬁM + 7A ) "t — (ﬁM - 7Aul) "

1
At
+ At/f1(§ 0" 4 (1= &)um)deE + — M (i "),

0

—-n —n At —n At —n

Ry(uj T +1) = (TzM + 7Au2) "t — (TQM — TAUQ) Ug

At At
+ 5 Ml (™ + ") + —Meg( B ).
(2.40)

To solve the coupled nonlinear equations (2.40), we start with initial guesses ul(OJ)rl,
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UQ?J)rl Then, the k" Newton iteration step reads as

T ws”] = —[Ra (G5 wagis): RoCifys! s ),
-n —n k
aigely = i+ wl?,
Uiy = g+ wi k=0,1,2,...,

where the matrix J stands for the Jacobian matrix of the coupled system (2.40) evalu-
ated at [u; ?’;1 u}% ']. We further notice that the integral terms in (2.40) are approxi-
mated using the fourth order Gaussian quadrature rule so that the cubic nonlinear terms

are evaluated exactly.

2.4 Preservation of the Discrete Energy for the Diffusive FHNE

In this section, we will show that the AVF time integrator combined with the SIPG
space discretization method preserves the mini-maximizing property of the skew-gradient
system [100] in the discrete form for diffusive FHNE (2.1). We will examine the
relation between the stability of a steady state solution (£,7) of (2.I) and the mini-
maximizing property of the critical point of the energy functional for the SIPG-
AVF fully discrete system for diffusive FHNE (2.1).

The SIPG discretized energy functional at a time ¢,, = nAt is given as
n ny __ dl ni|2 dQ nl 2 n n
E(uy, uap) = — HvuthL2(Q) ) ||Vu2hHL2 @ T (F(u1p, uap), Do

ody N
+Z( (o). Lo+ GGl )
- % (O s + G2kl i) ).

Eeg?

where (-, -)q is the L? inner product over the domain 2 and F(-,-) is the potential
function, see subsection [2.1.4]

When we integrate the semi-discrete system (2.34) in time by the AVF method, Yw;, €

Wi | 1
At (urp ™ — uag, wn) + §ah(d1; uyp ™+ ug, wp)

1

—/(f(ulh),wh)df - jgl(uzh,wh)df =0,

. 0 . (2.42)
Ar (uap ™ — uap, wy) + San(dz; gy ™+ uapy, wh)
1 1
_ / (6o ), wp )€ — / (63(uzp), wr)dE = 0,
0 0
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where the bilinear form is given by for: = 1, 2

ap(d;; wip, wy) = Z d;Vu;y, - Vwy, do

KeTh
- Z / {d;Vuip} - wh]) ds — Z / ({divwh} ' [%h]) ds
EESS E Eeg) g
uzh wh
EESO

Choosing wy, € {ui}™ — w}, ug)™ — uyl}, respectively in ([2:42)), and using the
identity (a + b, a — b) = (a® — b?, 1) with the bilinear form of a;, lead:

1

1
n—+ n n+1 n . n+1
At (Ulh — Uip, Uty — Ulh) + san(di;ury ™ wy) +

5 —ah(dl; Ulz, wh)

2
1
. / / (Fleud™ + (1 — ) uf™ — wf)de | da

0
1

- / / (Ca(€us + (1= E)ugf) (™ — e | dar = 0,

0
. (2.43)

At ( n+1

—ap(do; ugy T, wy) + §ah(d2; Ua),, W)

n+1 n n+1 n
Ugp,  — — Ugp, U2y — UQh) + 5

1
- / / (La(€unf ™ + (1 — ) (ol — )€ |

0
1

=[] [ teusi o+ (- uai) e — uspde | do =0,
Q

0

In order to simplify the integral terms in (2.43), we make the following change of
variables

21 = fulzﬂ‘i‘(l f)ulz+lv
Zop = §U2Z+1+<1_§)U2Z+1
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Then the integral terms in (2.43) can be simplified as

1 UlZH
Jiteur 4 1= guipent —uids = [ e,
0 “12
1 up
/(£1(§u2n+1 (1-— €)U22)(U12“ —uyp)dg = / 1 (22p)d 21,
0 Uy
1 up
[t 4 (1= Quipuatt —uspas = [ ol
u1Z
1 urp !
[t 4 (1 - Quap syt~ uspyas = [ talem)dan
0 u1y
If we add the first two equations of (2.44), we obtain
UlZ-H UIZ+1 UIZ-H
/ f(zin)dzy + / l1(22p)d21p, = / (f(z1) + la(21p))d21p,
; i urj
u12+1
oF
= / (f1(z1p, 22p)d21, = E
uipy
using the property of skew-gradient, see subsection 2.21]
In a similar way, the last two equation of (2.44) results in
ulz+1 u12+1 UlZJrl
/ lo(21p)dz1p + / ls(22n)dz1) = / (62(214) + €3(z10) )21
ulﬁ UlZ Ul}t
u12+1
OF
/ (f2(21p, 22)d 21y, Doy,
UlZ

Therefore, when we substitute (2.45)) and (2.46) into (2.43)), we obtain

1 1 1
(Kt Hulz - UthLz + 3 ah(dlau1h+1 UlZH) - §ah(dléulz,ulz)

)> (2.47)
~ ((Fluiy ™ uap™), Do — (F(uay, uzp), 1a)

2

_<AtHu2 i thHLZ +2ah(d2,uzh L ugp ) — S n(da; s, uzp
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This is equivalent to
1

n n n n n n 2
E(ury ™, up™™) — E(ury, w™) = — At H“th - u1h||L2(Q)
) (2.48)
n+1 n
+ At [Juapt — u2hHL2(Q) :
Now, at the steady state point (u1}, usj) = (£, 1), if ua}! is fixed to n(z), then
1 2
n+1 n —
At Hu% - u2hHL2(Q) = 0.

So, from (2.48))
E(£n+17 7)) S E(£n7 77)

Similarly, if u,} is fixed to {(z), then
E<£7 77n+1) Z E(£> 7771>

Thus, the first equation of (2.1]) describes a gradient flow with E(u,}, ) and the second
equation of (2.1)) describes a gradient flow with — E/(, uo}'), meaning that (u}, us}) =
(&,7) is stable as a steady state of (2.1)) since it is a mini-maximizer of F(u1}, us})
[100].

2.5 Numerical Results

In this section, we provide numerical results for 1D-2D diffusive and 2D convective
FHNEs.

2.5.1 Diffusive FHNE in 1D

As described in subsection [2.1.1] travelling fronts and pulses occur for 1D diffusive
FHNE.

2.5.1.1 Travelling Fronts

We consider the diffusive FHNE (2.12)) on a spatial domain 2 = [—60, 60] with the
spatial mesh size Ax = 0.1 and the temporal step size At = 0.5. The parameter set is

chosen as
25

(7-177—27d17d27ﬁ7677) = (17 ?7 )

We set the initial conditions for travelling fronts

uy(z,0) = tanh(z),
us(x,0) = 1— tanh(x).

27



In the following Figure[2. 1] travelling fronts are shown in the whole space-time domain.
As it is seen, fronts are moving in time. To understand better, Figure [2.2] displays the
fronts at some different times. The results we obtained here are very similar to our
reference solutions in [29] [17].

The discrete energy is also shown in Figure2.1] It is decaying very slowly after a sharp
increase at the beginning.
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Figure 2.1: Travelling front solutions for both state component w4, us (top), evolution
of the discrete energy (bottom).
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Figure 2.2: Travelling front solutions at different time instances.
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2.5.1.2 Travelling Pulses

For travelling pulses, all parameters other than v = 0.8 are the same with travelling
fronts. Initial conditions are taken as

ui(z,0) = tanh(x),
ug(z,0) = —0.6.

The travelling pulse solutions obtained for Az = 0.1 and At = 0.1 are shown in
Figures 2.3} 2.4} As it is seen, the travelling pulse solutions are moving in time. The
discrete energy remains constant after an oscillation. Again, the results are good agree-
ment with those in [29, [17]].
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Figure 2.3: Travelling pulse solutions for both state component w4, uy (top), evolution
of the discrete energy (bottom).
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Figure 2.4: Travelling pulse solutions at different time instances.

29



2.5.2 Diffusive FHNE in 2D

As described in subsection[2.1.2] we have spot and labyrinth-like pattern solutions de-
pending on the value of x for the 2D diffusive FHNE (2.14). We consider the equation
(2-14) on the spatial domain 2 = [—1, 1]*> with the spatial mesh size Az = Ay = 1/32
and the temporal step size At = 1/10. We fix the following set of parameters for both
pattern solutions

(11,72, dy, da, k) = (1,1,0.00028,0.005, 0 or 0.1)

satisfying the skew-gradient condition (2.21)) and “Turing instability” conditions (2.11).
The initial conditions are uniformly distributed randomly numbers between —1 and 1.

The results agree with the reference solutions in [61]. The energy plots show that
the spot and labyrinth-like patterns reach the steady state after ¢ ~ 150 and ¢ ~ 20,
respectively.

2.5.2.1 Spot Patterns

For x = 0.1, the pattern formation of diffusive FHNE (2.14) will be spots as it is seen
in Figure 2.5

-0.8

0 50 100 150 200
t

Figure 2.5: Spot patterns solutions for both state component u;, us (top), evolution of
the discrete energy (bottom).
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2.5.2.2 Labyrinth-like Patterns

For k = 0, the pattern formation of the diffusive FHNE (2.14) will be labyrinth-like
patterns as it shown in Figure 2.6
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-0.8
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Figure 2.6: Labyrinth-like patterns solutions for both state component u;, us (top),
evolution of the discrete energy (bottom).

2.5.3 Three Component Diffusive FHNE in 1D

As described in subsection[2.1.3] we have one-pulse (two-front), two-pulse (four front),
and multi-pulse (multi-front) solutions for triple 1D diffusive FHNE (2.15)). The refer-
ence solutions can be found in [93, [84], 194].

2.5.3.1 One-pulse

We consider the equation (2.13)) on the spatial domain 2 = [—1000, 1000] with the
spatial and temporal step sizes Az = At = 0.5. For one pulse and two pulse solutions
we fix the following set of parameters

11 100
5,1, —,100)

d =(3,1,—,—=
(Oé,,B,E,’Y, 77_177_277—3) (a 71007 47 3
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satisfying the skew-gradient condition (2.21)) and “Turing instability” conditions (2.11))
under the homogeneous Neumann boundary conditions on both ends in one dimen-
sional spatial domain.

We set the initial conditions for one-pulse solutions as
B 1 if x € [-50,50] B B
u(z,0) = { 1 otherwise . v(x,0) = s(z,0) =0.

The solution profiles up to final time 7" = 200 and at ¢ = 25, 100, 200 together with
the energy plots are shown in Figures[2.7} 2.§]
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Figure 2.7: One-pulse solutions for three state components wu;, us, u3, evolution of the
discrete energy.
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Figure 2.8: One-pulse solutions at different time instances.
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2.5.3.2 Two-pulse

For two-pulse solutions, we set the initial conditions as

[ 1 if @€ [—350,—150] U [150, 350] B B
u(z,0) = { 1 otherwise , v(z,0) = s(z,0) =0.

The solution profiles up to 7' = 100 and at ¢ = 20, 50, 100 together with the energy
plots, are shown in Figures 2.9} 2.10]
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Figure 2.9: Two-pulse solutions for three state components u, us, u3, evolution of the
discrete energy.
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Figure 2.10: Two-pulse solutions at different time instances.
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2.5.3.3 Multi-pulse
For multi-pulse solutions, the set of parameters is chosen

1 1
(O(, 67 €7, d: T1, T2, 7—3) = (1007 1007 PP 5) ]-a ]-7 ]-)

100" 4
with the following initial conditions
B 0 if = € [50,50] B B
u(z,0) = { "1 otherwise , v(x,0) = s(z,0) =0.
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Figure 2.11: Multi-pulse solutions for three state components w1, us, us, evolution of
the discrete energy.
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Figure 2.12: Multi-pulse solutions at different time instances.
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The solution profiles up to 7" = 50 and at ¢ = 10, 20, 50 together with the energy
plots, are given in Figures[2.T1} 2.12] After an oscillation, the discrete energy remains
constant, which means that the solution reaches the steady state at ¢ ~ 22.

2.5.4 Convective FHNE in 2D

As described in subsection 2.2.1} we consider the convective FHNE (2.23) on the
space-time domain 2 = [0, L] x [0, H] with the spatial mesh size Az; = Azy = 0.5
and the temporal mesh size At = 0.05. We choose the parameters as [35]]

(Tl, T2, dQ, C1,C9,C3, 6) = (1, 1, 1, 1, 9, 002, 5, 01)

satisfying the mono-stability condition (2.27).
We have obtained similar results, shown in Figures [2.13} 2.14] as obtained in [35]].
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Figure 2.13: Wave-type pattern solutions for state u; at different time instances.
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u, - t=50
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u, - t=100
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Figure 2.14: Wave-type pattern solutions for state u, at different time instances.
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CHAPTER 3

REDUCED ORDER MODELLING

Discretization of PDEs by finite differences, finite volumes, spectral methods or fi-
nite element methods, leads to very large algebraic systems. The high-fidelity or full
order approximate solutions require very long computational times. When the prob-
lem involves the repetitive solution of the PDEs for different parameters (parametrized
PDEs), or PDE-constrained optimization, optimal control and design, parameter esti-
mation, and inverse problems, then CPU time increases more. In the last two decades,
reduced order modelling (ROM) has emerged as an efficient way to reduce computing
time and produce reliable solutions. A common purpose of the model order reduction
(MOR) techniques is to reduce the computational time by approximating the large-
scale sized full order models (FOMs) with lower dimensional models essentially cap-
turing their dynamics. There exists a variety of ROM methods: balanced truncation,
proper orthogonal decomposition, moment matching methods, Krylov subspace based
methods [6].

The proper orthogonal decomposition (POD) method, also known as Karhunen-Loeve
decomposition or principal component analysis, is one of the most popular and suc-
cessful MOR technique for linear and nonlinear PDEs. The POD is used to project
the dynamical system onto subspaces comprising of basis elements inheriting the main
characteristics of the expected or unknown solution. In the literature, the POD method
has been successfully used in many areas including coherent structures [46}, [82]], fluid
dynamics [S5,157]]. It is based on the snapshots, i.e. FOM solutions of the discretized
PDE based method. The POD is optimal in terms of energy content [82]. Even tough
the POD is a heuristic method, i.e. there exists no a-priori error estimate, it is used
widely in the literature. Despite the fact that the POD is extremely effective MOR
technique for linear problems, for nonlinear problems the computational complexity
of the evaluation of the nonlinear terms still depends on the dimension of FOM. The
empirical interpolation method [28]], discrete empirical interpolation method (DEIM)
[13] are the mostly used techniques to overcome this issue. The DEIM was origi-
nally developed for nonlinear functions which depend componentwise on single vari-
able, arising from the finite difference discretization of nonlinear PDEs. The nonlinear
terms are computed at selected DEIM interpolation points from the POD basis of the
nonlinear function in a greedy algorithm, then interpolation and projection are com-
bined to derive approximation in the low dimensional POD-DEIM space. The cost
and overall quality of the ROM is directly influenced by the POD-DEIM. For the finite
element discretization, the nonlinear functions depend on the mesh and on the polyno-
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mial degree of the finite elements. Therefore the efficiency of the POD-DEIM can be
degraded. Using the unassembled finite elements such that each DEIM point is related
to one element, the number of nonlinear function calls during the online computation
can be reduced, but the size of the nonlinear snapshots are enlarged, which increases
the offline computational cost [5]. For the DG discretization, each component of the
nonlinear functions depends only on the local mesh in contrast to the continuous finite
element discretization where the nonlinear function depends on multiple components
of the state vector. Therefore the number of POD-DEIM function evaluations for DG
discretization is comparable with the finite elements discretization, which will be il-
lustrated in the next sections.

The Dynamic Mode Decomposition (DMD) method [60] is emerged in the recent years
as an alternative to the above mentioned projection based ROM techniques. The DMD
was first introduced by Schmid [80] and Rowley [76]] for the time evaluation of fluid
flows; however, it is also related to the Koopman operator [52]. The Koopman oper-
ator is a linear infinite dimensional operator that represents and provides information
about nonlinear, finite dimensional dynamics of a dynamical system. The DMD can
be considered as an approximation of the Koopman operator. The DMD can use the
snapshots obtained by numerical simulations, but at the same time it is a data driven
MOR technique, using for example experimental data. The DMD is equation-free, 1.e.
there is no need to solve small sized reduced order systems as in case of the POD. We
apply here the DMD to approximate the nonlinear terms as an alternative to the DEIM

[3].

In Section [3.1} application of the POD to the diffusive FHNE is described for the DG
discretization. The DEIM under DG discretization is given in Section [3.2] The POD-
DMD approximation of the nonlinear terms are described in Section The chapter
is concluded with some numerical results for the diffusive (2.1) and convective FHNEs
(2.23), comparing the ROM solutions for SIPG discretization with application of the
POD, POD-DEIM and POD-DMD in terms of computational time and accuracy in
Section

3.1 Proper Orthogonal Decomposition

In the following, we consider the SIPG semi-discretized form

d e
ﬁM% = A0+ £(d)) — Miiy + K,
d e
TQM% = A,,uy; — Mus + Mu, 3.1

U_i<,0) = u_»O

7
UE(, 0) = u_é(b

[y

of the 2D diffusive FHNE

Tiuyy = diAug + f(ug) — ug + K,

3.2
Tollyy = doAugy — ug + Uy, 6.2
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where 11}, 15, € RY denote the given initial data. A, , A,, € RV*¥ are the stiffness
matrices, M € RY*¥ g the mass matrix, K € R" is the constant vector related to the
integral containing the parameter #, and f € R¥ is the vector of the bi-stable nonlinear
terms of 47 = (w1, Ugg, ..., UNN)-

We note that the nonlinear vector f is uniformly Lipschitz continuous with respect to
u; with a Lipschitz constant Ly = 1 > 0, i.e., V u11(t), u1,(t) € RN and t € [0, T,

[£(uiy(2)) = £(aia(0))]] < L [Juas (t) — ana (D] (3.3)
The Lipschitz continuity (3.3)) ensures that (3.1]) has a unique solution for any ¢ values.

The diffusive FHNE has spot and labyrinth-like patterns depending on the values
of k. Because the computation of those Turing patterns for equation (3.I) is time
consuming, we develop a POD reduced order model [54] for the SIPG semi-discretized
system (3.1) of small dimension k < N.

The semi-discrete solutions of (3.1]) in ordered form using the basis functions are given

wt) =YD wlol@) = wl) = 3 wlthnte) = owlo)

withw; €R, ¢, € RV, i=1,2,..., N, and
w(t) = (wi(t),w;(t), .. ,wlk(t), o wie(t), whe(t), ... ,w"e(t))T

n ngk

forw € {uy,us}, and

1 1 1 T
¢:(¢1’¢2""’¢nk""’ ?67 367>¢22) :

The reduced-order system of (3.1]) is constructed using the Galerkin projection which
approximates u1(t) and wus(t) of the full system (3.1]) from the subspaces, spanned by
sets of orthogonal basis {t,, ;}*_; and {t,,;}*_, of dimension k in RY:

k k
w(t) & Y ()i uz(t) = ) i (t)husis
P i=1

where u; = (1 (1), ..., u1(t)T and uh(t) = (ay(t), . .., 124 (t))" are the solutions
of the reduced system. On the other hand, because the basis functions are spanned by
the DG basis functions {¢; }1¥ ;, the functions {t,, ;} and {¢,, ;} are given by

N N
Y = O Wuyidi (@), Pupi = Y Wy jidy(2),
j=1 i=1

where the i — th columns of the matrices V,,, = [¥,, 1,..., P, x| € R¥** and
Uiy = [Wup1y -+, Vo x] € RV*F are the coefficient vectors of the ¢ — th reduced
basis functions v, ; and 1), ;, respectively.
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In order to find the orthogonal (in L?-sense) basis functions {1, ;} and {¢,,,}, 1 =
1,2,...,k, the matrices ¥,, and V,, are constructed from the coefficient vectors
through an application of the POD method [54]].

The snapshot matrices are defined as
-1 = -1 ~J
Ulz[ul,...,ul ], UQZ[UQ,...,UQ ],

where Uy, U; € RY*/ | and each member of the snapshot matrices are the correspond-
ing coefﬁ01ent Vectors of the discrete solutions {ul}J , and {uj};,, respectively,
of the FOM (( at the time trajectories ¢;, i = 0,1,...,J with ! ~ wu;(¢;) and
ub & ug(t;).

Definition 3.1. For w € {uj,us}, the L?-orthogonal POD basis functions {t,,;},
1 =1,2,...,k, are given by the solution of the minimization problem

J 2

) 1
min —
ww,lz"www,k J Z

k

Z wwz L2(Q) ¢wz

(3.4)

L2(Q)
subject to (Y, Yuw ;) r2(0) = \I/wy_ﬂ-M\I/w,.’j =0, 1 <14, <k, (3.5)

where 0;; is the Kronecker delta, i.e., ;; = 1 for i = j, 9;; = 0 otherwise.

Then, the coefficient vectors ¥,,, .; and W¥,, .; of the POD basis functions 1, ; and
Y, i» Tespectively, are given by the solutions of the following eigenvalue problem [54]]

DU MY, ;=00 W, ., Uy MV, s =00 Wy i 1=1,2,... k.
. . 3.6)
Defining U, = RU, and U, = RU, with the lower triangular matrix RT as the
Cholesky factor of the mass matrix M, M = RT R, we obtain the equivalent for-
mulations

—~~T ~ —~~T ~

U1U1 \I]ul,-,i = 0'2 ‘{I\]ul,-,i y U2U2 \Dug,-,i = 0'2 (I\/u%.’i y Z = 1,2, ey k (37)

U1, u2,?

with \Tll = RV._;. The solution {I\IZ of the above problems (3.7) can be computed
using the first £ left singular vectors ¢, ; and (,, ; of the singular value decomposition

(SVD) of the matrices f]\l and U, respectively:

C’U,l Zul uy? CUQ EUQ ug?

and the diagonal matrices >J,,, and X, contain the singular values o, ; and o, ; on

their diagonals, respectively. Then, since (I\ll = RV. ,, the coefficient vectors V. _;
of the POD basis functions are computed as

q;ulfyi = Ril(ﬂl,i ) \Ijuz,-,i = Rilc'u,%i ; Z = 1, 27 e k

Note also that for i # j



which means that the coefficient vectors of the POD basis functions satisfy the M-
orthogonality.

Meanwhile, letting ¢ = [¢y,...,¢n] € R¥*Y and using the corresponding linear
combinations, we have for w € {u, us}

w(t) =PuW,  w(t) = oW, Py = oWy
=  ow= oV, W
= w=VU,w. (3.8)
On the other hand, using the fact that the singular vectors \/I\full of are orthogonal
and that ¥,,.; = R™'W,, ;, we obtain
w=U'w=U_'"Rw=UTRw = V.R"Rw = U Mw
= W=Vl Mw. (3.9)

Now, in order to obtain the k-dimensional reduced systems, we substitute for w €
{11, 1y} the relation (3.8)) in the full system (3.1)) and we project the systems onto the
reduced spaces spanned by {1y, 1, ..., %y, &} and {¢u, 1, ..., Yy, }, respectively, to
get

O MV, iy, = T Ay, Vo aq + 80 F(W, u1) — U8 MW, 0 + VY K,
T MU, 105, = O Ay Wity — O MW, 05 + T MT,, 1.
Or using the M-orthogonality of the POD basis coefficients, we obtain
Ui = Agui + VI F(U07) — My + DK,
~ v (Wutit) = Muyiiy + 0, (3.10)
uy = A, u2 - u2 + MuQul

with the reduced matrices

Ay =90 4,9, A,=9A,0,,, M, =Y MY, M,=VMV,.

To find the solutions w7 and u5 of the reduced system, the system of k-dimensional
ODEs is solved with the same time integrator of the full system. Then, the
approx1mate solutions 7 and u3 of the full system (3.1)) can be calculated via the
relation (3.8]).

Here, the choice of the dimension of the ROM or POD modes k is important, since
there is no a-priori estimates for the choice of £. The number of the POD basis func-
tions are determined according to the following relative information content [82]:

k 2
e(k) = —23?1 % (3.11)
Zizl ‘71'2

which represents the energy captured by the first £ POD modes over all K POD modes,
and o; is the corresponding singular value of :—th mode. The choice of this indicator
(3.11) is supported by the following fact:
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Theorem 3.1. The error in (3.4) is given with \; = o2,

J
j=1

2 K

= > A (3.12)

L2(Q) i=k+1

=

wj - Z(UJj, ww,i)LQ(Q)ww,i
i=1

~l =

For a detailed proof of this theorem, see, e.g., [96].

Algorithm 1 The POD Algorithm

Input: Snapshots {ui",...,@"}, {w', ..., w7}
Output: POD basis functions ¥,,,, ¥,,,.
1: Construct the snapshot matrices

-1 - J -1 —J
Ulz[ul,...,ul ], UQI[UQ,...,UQ ]
2: Compute the mean of the columns
| i
. E s . i
Ul—J;OUh UQ_J.E 2 -

3. Construct new snapshot matrices

-1

Ulz[u —7,[1,...,'&1 —U,l], UQZ[UQ —/(ZQ,...,UQ —’LLQ].
4: Calculate the empirical correlation matrix
~ 1 s ~ 1 gy
U, = jU1U1 , Uy= jUQUZ )

where U,”, U," denote the transposes of the corresponding mean-subtracted snap-
shot matrices U,, Us,.

5: Calculate the singular values of the matrices Uy, U,:

(ji¢u1 = Aiqu)ul? Utéqu)u2 = )\Z/l/}’U/Q fori = ]-a s 7K7

where K denotes total number of eigenvalues.

6: Find the number of POD basis functions & according to the energy criteria (3.11))
capturing at least 99.99% of the energy.

7: Choose the first k eigenvectors {¢y, 1, ..., %u, &} and {u, 1, . .., Y,k } yielding
the following POD basis functions of order &

; 1
U/T U1 qjuz =
)\i 1 ¢ 1 )\@

1

U, = Uy, fori=1,-- k.

8: Project the system onto the reduced spaces.
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Remark 3.1. Here we use a version of the POD constructed from mean-subtracted
snapshots [18] according to the Algorithm I}

J . .
with U = % Z _iz, Uy = L U_)QZ.

The reduced system is written as

[y

0y = Ay (@ +ay) + T F(W,05 + 1) — My, (3 + 6) + T K, .
Uy = Ay (U3 + 102) — ti + My, (Ui + 10y) '

with the reduced matrices

Ay, =LA, 0, A,=YA,V,, M,=VMY,, M,=VMV,.

There is no a significant difference between the reduced form of our system (3.1) from
the reduced form using classical POD (3.10), whereas both (3.10)-(3.13) satisfy the
same boundary conditions [[18]].

3.2 Discrete Emprical Interpolation

The computation of the nonlinear term £’ (\Ifulu:l) of the reduced system still depends
on the dimension of the full order model NV:

N(i) = WF F(W,10).
Further, the reduced system (3.10) has to be solved by the Newton method

0 -,
—N(w) =V, Jp¥,,
8u1

which requires the computation of the Jacobian matrix Jp € RV*N

0

8U1j

(Jr)ij = F;(a) , i,j=1,2,...,N,

where u,;’s are the components of the solution «; of the full system (3.1). To re-
duce the computational complexity of the nonlinear term, we apply DEIM [28]] to the
nonlinear term F'(W,, u1), which approximates the nonlinear function F'(V,, u}) by
projecting it onto a subspace of the space generated by the nonlinear functions and
spanned by a basis of dimension m < N. Let

F=[F,F,... FjeRYY

denotes the snapshot matrix of the nonlinear functions at each time instances ¢4, . .., t;
computed during the solution of the full system (3.1) with F; = F(W,, ud(t;)), i =
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1,2,...,J. Through the SVD of the matrix /, we can find the m < N orthogo-
nal POD basis functions {IV;}!", spanning the m-dimensional subspace of the space
spanned by F. Then, for W = [Wy, ..., W,,] € RV*™ we use the ansatz

F(U, uy) ~ Ws(t) (3.14)

with the corresponding coefficient vector s(t). Note that the system above is overde-
termined. Thus, to compute the coefficient vector s(t), we take m distinguished
rows from the system W s(¢) through the projection using a permutation matrix P =
[€pys- -y ep,] € RY*™ with ey, is the i-th column of the identity matrix I € RV*Y,
and it is computed using the DEIM algorithm [28] in Algorithm 2] so that PTW is
non-singular.

Algorithm 2 DEIM Algorithm

Input: POD basis functions {W;}7,.

Output: Index vector p = [p1,...,pm]T

Permutation Matrix P = [e,,, ..., €, ]
+ [lpl, pa] = max{[WA}.

: W= W], P = [ey, ], p=[pal.

: forl =2tomdo

Solve (PTW)s = PTW, for s.

r=W; —Ws.

(1o, i) = max{]r[}.

W [W Wi, P« [P ey p« l;}.

—

A A

~

8: end for

The projection of (3.14]) leads to the system
PTF(U,a(t)) = (PTW)s(t)

= s(t) = (PT"W) 'PTF(V,a(t)). (3.15)
Then, using (3.14) and (3.15)), the nonlinear term can be approximated as

N(a(t)) ~ N(a(t)) = QF, (3.16)

where the matrix Q = WIW (PTW)~" € R™"™ can be precomputed only once, and

F = PTF(V,,u;) € R™ is the m-dimensional nonlinear vector which can be com-
puted in an efficient way.

For instance, if m = 4, g, = 6 and p3 = 2, we obtain

0 ... ... 1 ...0 P F,,
o |0 1 0 Sl R

PPE=\0o 1 .0 O i I N I
0 ... 0 ... 1 0 Fn F

4

which means that, instead of N entries, only m < N entries are computed.
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Now before giving a priori error bound for the DEIM approximation of the nonlinear
vector F'(W,,, u1), let us define the interpolatory projector.

Definition 3.2. Let W = [Wy,--- ,W,,] and P = [e,, - ,€,,,] be N x m real ma-
trices with linearly independent columns. Suppose (P7TW)~! exists, then

P.=w(P'w)tpt
is called an interpolatory projector onto the range of V.

Lemma 3.2. Let W = [Wy, Wy, -+, W,,,| be a N x m real matrix whose columns are
orthonormal DEIM basis vectors. The DEIM approximation PF satisfies

|F—PF| < C¢, (3.17)
where C := ||(P"W)~!|| and e* = ||(I - WWT)F||.

Proof. Let F* := WWTF be the optimal 2-norm approximation to F in Ran(1W) and
lly|| = min{||F" — G|| : G € Ran(IW)}. So we can write F' as

F=(F-F )+ F=y+F" (3.18)
In addition, the DEIM approximation can be written as
PF =Py + F*) =Py + F~* (3.19)

since F™ is already in the range of W, i.e. PF™* = ™.
Subtracting (3.19) from (3.18)) and using sub-unitary of W and P lead

F—PF=y-Py=(-Ply = |F-PF| < [[I-P|]yl
2] Jly)
= [[W(PW) Pyl
= |P"W) M Iyl (3.20)

which gives the result. O

In the case of the entries { £}, they are just integrals of the form

F(@)= | [fl@)gde, i=12,...,N, (3.21)

Ey,

where I, is the triangular element on which the ¢-th basis function ¢; is defined. For
instance, if linear basis functions are used (n, = 3), then {¢;}?_, are defined on F,
whereas, {¢;}}2,5 are defined on F;. The DG requires only computation of the inte-
grals on a single triangular element, which is not the case in continuous finite elements
where all the interior degrees of freedoms are shared by usually 6 triangular elements
(see Figure [3.1). The unassembled finite element approach is used in [5] so that each
DEIM point is related to one element. This reduces the online computational cost but
increases the number of snapshots and therefore the cost of the offline computation.
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Classical FEM DG

Figure 3.1: Connectivity of degrees of freedoms for linear basis

Due to its’ local nature, the DG discretization is automatically in the unassembled
form and it does not require computation of additional snapshots (see Figure [3.1).

The integrals in (3.21)) are computed by Gaussian quadrature of order 4, which are com-
puted exactly for the cubic nonlinear terms. When n, denotes the number of quadrature
points in the reference triangular, then, through an affine map from the reference trian-
gle to the physical triangles, once the values of basis functions at n. x n, quadrature
points are evaluated in the very-beginning, the entries F;’s can be computed in an effi-
cient way since the triangular elements £,’s on which the integral related to the entries
are unique.

For the solution of the nonlinear system by Newton’s method, the entries of the Jaco-
bian Jr € RY*Y of the nonlinear terms are of the formi,j = 1,2,..., N

0

3u1j

(Jr)ij = Fi(u1) = /E af(uq)¢idw = [ f(u1)g;didx.

0u1j Eti

Because the DG basis functions are defined only a single element and they vanish
outside that element, the integral terms of the Jacobian matrix (Jp);; vanish on the
triangular elements [£;, where the basis function ¢; is not defined. Unlike the contin-
uous finite elements where the Jacobian matrix contains overlapping blocks, Jacobian
matrix in DG appears in block diagonal form, and has the form

All 0 0
0 Ay O 0

Jp = .
O
whose of blocks A;; € R™*"™ ¢ = 1,2,...,n,, corresponds to a single triangular
element £; (remember that N := n; X n.). As a consequent, every component of
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an arbitrary block A;; of the Jacobian matrix Jr only depends on the n; components
Uyt 1, Upt2, - - - 5 Uy, TOr 1 = (4 — 1)ny,. The Jacobian matrix arising from the DEIM
has the form:

0 - 0 - -~
——N(wq) =V Jp¥,,, —=N(u)=Q(P"Jr)V,,.
(‘3u1 aul

We note that (P7Jp) € R™¥ is the matrix whose i-th row is the gp;-th row of the
Jacobian Jp, ¢t = 1,2,...,m, and in each row of the Jacobian there are only n; non-
zero terms because of the local structure of the DG. For instance, again, if m = 4,
(2 = 6, 3 = 2 and linear DG basis functions are used (n; = 3), we get

0 OFs 0Fg 0OFs 0
PTJ _ U Ouy Ous Jug e
F= 0B 0B 0B | 0

Ouq Ous Ousg

Hence, only m x n;, entries are needed to compute for the term P? Jr, whereas without
DEIM, it requires the computation of n. x n? entries for the term Jp.

3.3 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) was first proposed in fluid dynamics by Schmid
[80] spatio-temporal decomposition of the complex fluid flow. Afterward the DMD
was shown as an approximation of the infinite dimensional Koopman operator [52],
see, e.g., [63176]. It is an equation-free, data-driven and snapshot based reduced order
method. Without explicit knowledge of the dynamical system, the DMD algorithm
determines eigenvalues, eigenmodes, and spatial structures for each mode and com-
bines each mode with its Fourier series in time. Although the Koopman operator is an
infinite dimensional linear operator, the DMD approximates this operator by a finite
dimensional linear operators, say A [31} [80].

If we consider the following dynamical system
at = g(a)
on a manifold M, then the Koopman operator .4 maps any observable function f :
M — C such that
Af (@) = f(g(a")).

For DMD, this observable function is chosen as linear: f(@") = «". Then, the DMD
algorithm determines eigen-elements of the Koopman operator directly from the snap-
shots.

Afterwards, the expansion of the function f can be written as
o0
F@) = Na(wo)vy,
j=1
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where \; = €%t denotes the complex-valued Ritz eigenvalues of the modal de-
composition Av; = \;v; with the corresponding growth rate o; and the frequency w;,
v; € C denotes the dynamic modes as Koopman functions, and a;; € C denotes the
amplitutes of the Koopman modes [18]].

We consider the following two sets of shifted snapshot matrices for

Ul(J—=1) =@t ..,a7 Y, U(J)=[a?, ... a7,
1( ) [Ull UlJ 1] 1() [U12 UlJ] (3.22)
UQ(‘]_l):[u_é7 U_é ]7 UQ(J>:[UE ,...,U_é ]7

where Uy (J—1), Uy (J), Up(J—1), Us(J) € RV*/~1 and each member of the snapshot
matrices are the corresponding coefficient vectors of the discrete solutions {u¢}7_, and
{ub}/_,, respectively, of the FOM (B.1)) at J — 1 equally spaced time instances.

There are two main assumptions for the construction of the DMD algorithms:

e There exists two linear operator A; and A, such that

—t+1
U1+ — Alula

—t+1
U2+ = A2U27

(3.23)

fort € {1,...,J —1}.

e The final snapshots can be written as a linear combination of the previous snap-
shots as

~J -1 S J-1 o
" =cu; +...+cCpmo1ur + T,

. . e . (3.24)
UQJ = d1U21 + ...+ dm_1U2J 1 + o,

where 71, 75 denote residual vectors.

The goal in the DMD algorithm is to detemine the eigen-elements of A;, . 45. Since
the dimension of the problem is very large, the matrices A, Ay are generally ill-
conditioned. Instead, the DMD provides a lower rank approximations in terms of the
POD-projected matrix A, As.

From the first assumption, the collected snapshot sets correspond to the (J — 1)—th
Krylov subspace generated by the Koopman operators .A;, A, from ;' and 0y’ re-
spectively. So, using the first assumption (3.23) leads the following relation between
the snapshot matrices

Uy(J—1)= AUL(J),

3.25
Up(J —1) = AyUn(]), (3-25)
and using the second assumption (3.24)) leads
AU =1)= U(J-1DA +rel_,
1UL( ) 1( DA +7ie_4 (3.26)

AQUQ(J— 1) = U (J )AQ +T’2€J 15
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where e” denotes i—th Euclidean unitary vector of length J — 1 and A, A, are the
companion matrices defined as

0 0 C1 0 0 dl
~ 1 0 (&) ~ 1 0 d2
Av=1 s A= :

0 - 1 Cno 0 - 1 dpo

Therefore, it follows from (3.26)) that the matrices .A;, .A; are similar to the companion
matrices Ay, As, respectlvely Also note that, (3.26)) implies the matrices A;, A, are
low dimensional representations of .4;, A, in the subspaces spanned by the POD
modes of snapshot matrices U;(J — 1), Us(J — 1). It follows that eigen-elements
of A;, A, can be approximated by the low dimensional companion matrices A;, As,
respectively.

The matrices A;, A, can be determined by the following minimization problems with
respect to the Frobenious norm:

min HUl(J) U - 1)/\1Hi, min HUQ(J) _Uy(J — 1)/@“1. (3.27)

Frobenious norm of a matrix A is defined as
|| A||% = trace(A*A) = trace(AA*),

where A* denotes a complex conjugate transpose of A.

Solutions to these minimization problems (3.27) are given in [90] by
A =U(J = DU, Ay =Us(J = 1D)TU(J), (3.28)

where 1 denotes the Moore-Penrose pseudoinverse.

In the literature, there are different DMD algorithms [31), 90]. Here, we consider the
exact DMD algorithm by Tu et al. in [90]:
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Algorithm 3 Exact DMD Algorithm
Input: Snapshots Uy (J — 1), Ui(J), Us(J — 1), Us(J).
Output: DMD modes W)MP, ¥PMP.

1: Compute SVDs of Uy (J — 1), Us(J — 1):

Ur(J — 1) = SV, Ua(J — 1) = Uy S,V

2: Substitute into fll, AZ:
Ay = UrU (ST, Ay = U US(N) Vs
3. Find eigen-elements of fh, Ay

./lewl - )\1W1, A1W2 = )\QWQ.

4: Get DMD modes WPMP wPMP:

UOMD — 7y (VST W, WM = 1 () VA, W,

3.3.1 DMD Modes with Optimal Amplitudes

In spite of the fact that POD modes are ranked according to their energy contribution,
for DMD there is not such criteria for the selection of the DMD modes. Depending on
the context of the problem, different criteria are developed, for instance based on their
frequency/growth rates or amplitudes. However all these have some disadvantages.
For example, the criteria based on frequency/growth rates relies on a-priori physical
knowledge, and there can be some modes with high amplitudes but fast damped when
the criteria based on amplitudes are used [87]. Moreover, since the DMD modes are not
orthogonal, it makes this situation more complicated. Therefore, several algorithms are
developed for the optimal selection of the DMD modes, like gradient-based algorithm,
optimal amplitudes weighted its temporal coefficient [87]], construction of the mode
shapes forming the low rank basis [99], or spatial structures using combinatorial search
[31].

Here, we use the optimal modes selection according to the sparsity-promoting frame-
work [48]. We consider the following reduced dynamical system:

—t+1 1 -t
u1+ =A1U1,

—t+1 1 -t
U2+ =A2U2,

(3.29)

fort € {1,...,J — 1} and reduced matrices
AL = UrU (NETY, Ay = Uz UL (T)VaX5
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obtained from Algorithm
The reduced solution of (3.29) can be written as

T

Uy = = aj\i(u1)'¢l,
= (3.30)
=) = as\(w)'d,,
i=1
where
@ulz[gbilv"'? Zi]? q)uzz[gbqlwv'”? Zg]
are the matrices of the DMD modes, A;(u1), Ai(uz) are the corresponding complex
eigenvalues of ¢;, , ¢, respectively, and ¢ € {0,...,m — 1}. The unknown am-
plitudes a; = [af,...,at], a; = [ad,...,a}] are found by solving the following
minimization problems
: 2
min HU1(J -1) - ‘I)ulD(Oél)ValndHF, (3.31)
: 2 :
min |Uy(J — 1) = @, D(02) V2o y ||
where
D(ay) = diag(aj,...,a}), D(ay) = diag(ay, ..., ab),
and
Vana = i (u), - A (w)), Vang = (M(ua), - A (ua))
are Vandermonde matrices.
Finally the approximate DMD solutions are given as
i =) = ay(0)g, exp(wy),
= (3.32)
B =) = ay(0)¢),exp(w))

=1

with w! = log(\i(uy))/At, wy = log(N\;(ug))/At.

For a detailed information, we refer [48]] to the reader.

3.3.2 POD with DMD

In this part, we apply DMD for nonlinear reaction part of the diffusive FHNE (3.2)) as
an alternative method to DEIM, described in Section So, we try to approximate
the nonlinear term f (7 ) of the dynamical system (3.1]) by means of the DMD approx-
imation [3]. We construct the following snapshot matrix for nonlinear vector of the
SIPG semi-disretized FHNE (3.1):

F = [Fl,FQ,...,FJ] E]RNXJ.
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We apply the DMD Algorithm [3|to nonlinear snapshots F
> ai(0)d}, exp(w)), (3.33)
i=1

where ¢!, denotes DMD basis functions of rank r for the nonlinear vector f(u}). In a
closed form, the nonlinearity can be approximated as

fla) = UPMPdiag(exp(wPMPt))b, (3.34)

where b = (UWPMD)Tf((4}),) denotes initial amplitude of each mode, determined by
projecting back to the initial data. Hence, the nonlinear term is approximated by its
DMD representation, which implies that no further evaluation of the nonlinear term
is needed. When we plug this approximation (3.34) into the POD system (3.10), we
obtain the following ROM for POD-DMD

. o (3.35)

u = A, u:—i—\I!T \IIDMDdlag(exp( DMDp\Yo — M, up + 0L K
iy = Ay,

QU
oL
+
§
)

:.l

N(ui) = U, PP diag(exp(w”"'P1))b.

~
c Rkxr € R"

The most powerful feature that distinguishes the POD-DMD from the POD-DEIM
model is that the ROM obtained from POD-DMD (3.33) is linear which makes POD-
DMD significantly faster than the other ROM methods. However, the DMD modes
obtained from DMD Algorithm [3|are not orthogonal.

The POD-DMD algorithm is given in [3]]

Algorithm 4 POD-DMD Algorithm

Input: k (number of POD Basis), r (number of DMD basis).

Output: 7, u5.

Construct the snapshot matrices Uy, U; for both state variables w7, u5.
Compute POD basis functions {t,, i, Vu, i},

Construct the snapshot matrix F for the nonlinear term.

Compute DMD modes PP according to the Algorithm

Calculate the DMD approximation for the nonlinear term (3.34)).
Solve the ROM (3.35).

A A R ol e

3.4 Randomized Singular Value Decomposition

Accurate and fast computation of the randomized (rSVD) is described [62, 4]].

Let A € R™ " be a given arbitrary matrix. We construct a random low-dimensional
basis Q¥ for the column space of A satisfying the following relation:

A=~ (@B,
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where B € R¥*", We use here a random projection matrix, a Gaussian random matrix
Qm*k whose entries is formed using Gaussian distribution. Then we construct the
sample matrix Y for the column space of A as

Y = AQ.

The orthonormal basis for the column space of A, are computed by the () R—decomposition
of YasY =QR
A~ QQA.

As a result, B is defined as the projection of the matrix A onto the low-dimensional
subspace ()
B=Q*AeR"™"

Restricting the column space of A to small matrix B, we apply SVD to the relatively
small matrix B to obtain right singular vectors and singular elements of A.

The rSVD algorithm is given as

Algorithm 5 rSVD Algorithm

Input: A matrix A™*", target rank k, over-sampling parameter p.
Output: Singular vectors U.

Construct Gaussian random matrix 2 of dimension m X k as €2 = randn(m, k+p).
Form the corresponding sample matrix: ¥ = A().

Compute () R— decomposition of A: A = QR.

Set the matrix B: B = Q*A.

Compute SVD of B: B =UXV™. R

Obtain right singular vectors U: U = QU.

A ol >

The over-sampling parameter p is used to reduce the approximation error of the rSVD
[43]. Instead of using k samples, extra p samples can be added (K = k + p) which
improve the quality of the basis. In general, a small value for p, for instance p = 5, is
sufficient.

3.5 Numerical Results

In this section, we present some numerical results supporting the ROM techniques de-
scribed in the previous Sections POD, POD-DEIM, DMD as an equation-free,
and POD-DMD for both diffusive and convective FHNEs. As a space discretization,
we use DG method, as a time discretization we use the average vector field method for
the diffusive FHNE, implicit Euler for the convective FHNE.

Since there is no a-priori error estimates for the ROMs, we compare the ROM solutions
with the FOM solutions in terms of the Frobenious error. We compare the performance
of the ROM techniques in terms of CPU times, and speed-up of the ROM solutions
with respect to the FOM solutions.
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3.5.1 Diffusive FHNE

We consider the diffusive FHNE (3:2)) with labyrinth-like patterns on 2 = [—1, 1]? with
zero flux boundary conditions and with the initial conditions as uniformly distributed
random numbers between —1 and 1. Space mesh size and time step size are taken as
Ax; = Azy = 1/16 and At = 1/10, respectively. According to the energy plot, we
see that the steady state is reached at approximately ¢ = 100. So, we can take 7" = 100
as a final time. We set the parameters d; = 0.00028, dy = 0.005 and x = 0.

We present numerical results for FOM and ROMs computed by only POD, POD-
DEIM, and POD-DMD. We use k& = 20 POD basis functions, m = 30 DEIM basis
functions, and r = 70 DMD basis functions. The snapshot matrices is formed by the
solutions at 1001 time instances resulting in a matrix in R?4576%1001 which has the rank
150 and 144 for u] and u3, respectively. After the POD basis computation, we obtain
a steep descent in the sinr values of the system related to u;, u3, and the nonlinear

term f, shown in Figure The average number of Newton iterations is 1 and toler-
ance number for the Newton iteration is 1e — 10 for the computation of the FOMs and
ROMs except POD-DMD on each time step.

FOM u,

Figure 3.2: FOM solutions for the component u; (left), us (right).

—*—u

—e— Uy

10-10 L

1071° : . :
0 50 100 150 200

Figure 3.3: Decay of the singular values for u;, us and the non-linearity f.
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The computed labyrinth-like Turing pattern solutions of the FOM are given in Fig-
ure[3.2] the same with the Figure[2.6] The corresponding solution profiles of the ROMs
with errors for the first state component in Figure [3.4] and for the second state compo-
nent in Figure [3.5]are consistent with the solution profiles of the FOMs. As expected,
POD error is smaller than the other ROM errors. Moreover, POD-DMD approximates
to FOM solutions better than POD-DEIM.

The CPU time to compute the POD, DEIM and DMD basis functions, which are in-
cluded in offline stage, are 5.30, 2.36, 337.70 seconds, respectively.

20 POD u, ]
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0.5
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N

<" 0 0.02

0.5

-1
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-0.05
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0.02

o

-0.02

Figure 3.4: From top to bottom POD, DEIM, DMD solutions (left) and errors (right)
for the component u; .
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Figure 3.5: From top to bottom POD, DEIM, DMD solutions (left) and errors (right)
for the component u,.

The corresponding energy plots for FOM and ROMs are shown in Figure[3.6] Besides,

the energy errors are also shown in Figure[3.7] As it is seen, all ROM methods preserve

the energy; however, the POD method captures the energy better than the other ROM
methods as expected.
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Figure 3.6: Energy plots.
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Figure 3.7: Energy errors.

In Table 3.1 we show the computed Frobenious errors between FOM and ROM solu-
tions. POD errors are less than the other methods, which is acceptable since POD-
DEIM and POD-DMD methods approximate the nonlinearity in the POD reduced
form. Besides, for all ROM methods the errors for the first state variable is greater
than the other component.

The speed-up’s are calculated according to the following equations:

CPU time for FOM g B CPU time for FOM
CPU time for POD *  ~PF™ ™ CPU time for POD-DEIM '’

Spop =

CPU time for FOM
CPU time for POD-DMD ’

where Spop, Sperv, Spup are the speed-up factors of POD- POD-DEIM, and
POD-DMD, respectively.

SDMD =

Table 3.1: FOM-ROM errors & speed-up with 20 POD, 30 DEIM, and 70 DMD basis
functions.

Lo—Error uy | Lo—Error us | Energy Error | Speed-up
POD 1.81e-02 8.95e-03 2.60e-03 1.73
POD-DEIM 1.72e-01 4.49¢-02 8.23e-03 14.11
POD-DMD 3.78e-01 1.00e-01 8.40e-03 173.10
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Figure 3.8: (Top) FOM-ROM L?(Q) errors for the states u; (left), us (right) with
increasing number of POD for POD solution, and increasing number of DEIM and
DMD basis functions with 20 fixed POD basis functions for POD-DEIM and POD-
DMD solutions; (bottom) corresponding CPU times.

Choosing the number of basis functions for POD, DEIM, and DMD is crucial for nu-
merical simulations. In general, in order to improve the numerical results, or decrease
the error between FOM and ROM solution, we have to increase the number of modes.
However, what should be the relation between the number of POD, DEIM, and DMD
basis functions is an important subject. Although there is no a-priori error estimates
for ROMs, we focus on heuristic energy criteria for POD (3.11). So, when the basis
functions contain at least %99.99 of the energy of the full system, we use that num-
ber as a number of POD basis functions. Although increasing the number of POD
modes improves the result for POD solution, for POD-DEIM and POD-DMD it is
not the case all the time. Hence, in order to find the relation between POD and the
other basis functions we check two cases. The first one is after we fix the number of
POD basis functions according to the energy criteria (3.11), we increase the number
of DEIM modes and DMD modes for POD-DEIM and POD-DMD solutions, respec-
tively to show the Frobenious error as it seen in Figure[3.8] On the other hand, we show
the Frobenious errors with respect to the same increasing number of POD, DEIM and
DMD basis functions in Figure 3.9

Increasing the number of POD basis functions leads to more accurate solutions for
both cases. The error for POD is monotonically decreasing. However, this situation
is not that much good for POD-DEIM and POD-DMD solutions. In order to obtain
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more accurate solutions, the number of DEIM and DMD modes must be more than
POD modes. So, we have used different number of modes to obtain POD-DEIM and
POD-DMD solutions in Figures The errors in all ROM methods are decreased,
when the number of basis functions are increased.

5 5
10 ——POD 10 ——POD
——POD-DEIM ——POD-DEIM
POD-DMD POD-DMD
5 10°f e S 10° e
S S ‘
w w
10t 108}
10710 | | | | 10710 | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Number of modes Number of modes

10°
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~—#%— POD-DEIM
POD-DMD

CPU-time

—%— Full

100 . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Number of modes

Figure 3.9: (Top) FOM-ROM L?(Q) errors for the states u; (left), uy (right) with the
same increasing number of POD, DEIM and DMD basis functions; (bottom) corre-

sponding CPU times.

On the other hand, we have to consider also CPU times to show the efficiency of ROM
solutions. As it seen in Figures [3.8}{3.9] all ROM methods we use requires less time
than FOM except for the method that we use many modes in the POD method. As
expected, POD-DMD provides a significant reduction since DMD approximates the
nonlinear equation by a linear one. So, it is solved directly without using Newton’s
method.

3.5.2 Parametrized Model Order Reduction for Diffusive FHNE

In this section, we give the numerical results for the parametrized diffusive FHNE [51]].
We consider the following diffusive parametrized FHNE [61]:

uy, = diAuy + furs p) — alug — uy),

3.36
Ut = dQAUQ — /B(UQ — Ul), ( )
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where the parametrized bistable nonlinear term is defined as f(uj;pu) = (v — pu) —
B(u* — 1) on [—10,10]* x [0, 1000] with uniformly distributed initial conditions be-
tween —1 and 1. The other parameters d; = 0.04, dy = 1, « = 0.3, = 1 are fixed
as in [61]. We use linear DG polynomials (n; = 3), and as the discrete mesh, we
form the partition of [—10, 10]2, by 5 times uniform refinement with 2048 triangular
elements leading to 6144 DoFs. Different from the usual time discretization technique,
here we use implicit Euler method. Snapshots are taken in the time interval [0, 1000]
with the time step At = 0.5. For POD/POD-DEIM basis construction, we use the pa-
rameter samples 1 € {—0.04, —0.02,0,0.02,0.04}, ny, = 5. The reduced systems are
solved for the set {—0.03, —0.01,0.01,0.03} of parameter values of x, which are not
contained in the set of sample parameters. The average number of Newton iterations
is 1 and the Newton tolerance is 1e — 10 for the computation of the FOMs and ROMs
on each time step.

Let U, V, F denote the singular values for the solution snapshots 71, u3 and nonlinear
snapshots. Then, the decay of those singular values is given in Figure left, and
the CPU times of the FOMs and ROMs for the parameter value ;¢ = 0.03 are shown in

Figure right.
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Figure 3.10: (Left) Decay of the singular values of solution snapshots ¢/, V and of
the nonlinear snapshots J; (right) CPU times for the computation of FOMs, POD and
POD-EIM ROMs for the parameter value p = 0.03.

Table 3.2: The computation times (in sec), speed-up factors Spop and Spgras, and the
DEIM projection error bounds ||(PTW)™!|5.

p | FOM | POD | POD-DEIM | Spop | Sper | [[(PTW) Yo
-0.03 [ 527.3 | 345 7.5 1531 | 70.21 28
-0.01 | 501.9 | 334 13.2 15.05 | 38.08 33
0.01 | 522.3 | 329 11.9 15.88 | 43.67 41
0.03 | 505.9 | 38.6 9.0 13.10 | 56.43 33

In Table [3.2] we give the CPU times for FOMs, POD and POD-DEIM ROMs together
with the speed-up factors Spop and Spgras, which demonstrate the efficiency of the
DEIM. We note that in the POD-DEIM algorithm, the nonlinearity is discretized at
six points of the mesh by linear continuous FEM, whereas at three points of the mesh
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by linear DG method (see Figure [3.1). Therefore, during the online computation, the
DG requires less more work than the continuous FEM. In Figure [3.11] the patterns of
FOMs, POD and POD-DEIM reduced solutions are shown at the final time 7" = 1000.
The ROM patterns in Figure [3.11] computed with POD are very close to those of the
FOMs as in [61]. But the patterns computed with POD-DEIM are less accurate than
those with the POD computed ones for some parameter values in Figure [3.11] The
DEIM does not improve the accuracy of the POD reduced model, but enormously
reduces the computational complexity [3]. The error bounds || (PTW)~1||, of moderate
size for the DEIM approximations are also given in Table[3.2]

R=-0.03 6-POD 6-POD, 18-DEIM

Figure 3.11: Pattern solutions for w; at the final time 7' = 1000 with FOM
(left), POD (middle) and POD-DEIM (right) for the parameter values p €
{-=0.03,—-0.01,0.01,0.03} from top to bottom.

3.5.3 Convective FHNE

In this part, we consider the convective FHNE on 2 = [0,60] x [0, 15] with zero
flux except the left boundary, which is Dirichlet 0.1. As initial conditions we set
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u; = 0.1 inside a narrow triangle 0 < =z < 0.5, 0 < y < 15 and u; = 0 outside
this rectangle; us = 0 everywhere. The spatial and temporal mesh size are chosen
as Azr; = Axy = 0.5 and At = 0.05, respectively. The parameters are chosen as
(7'1, T2, dz, C1,C9,C3, 6) = (1, 1, 1, 1, 9, 002, 5, 01)

We show numerical results for FOM and ROMs computed by POD, POD-DEIM, DMD
(as an equation-free), and POD-DMD. We use £ = 15 POD basis functions, m = 15
DEIM basis functions, and » = 21 DMD basis functions. To form the snapshot matrix
we use 101 time instances resulting in a matrix in R2!609%101 which has the rank 60
and 53 for u; and us, respectively. POD basis computation leads a steep descent in
the singular values of the system related to 3, u> and the nonlinear term f shown in
Figure[3.13] The average number of Newton iterations are 2, 3, 1 and tolerance number
for the Newton iteration is 1e — 10 for FOM, POD, and POD-DEIM, respectively.

FOMu, FOM u,

15
10 _
N
x
5 .
0
0 20 40 60

X, X,

0.1

0.05

Figure 3.12: FOM solutions for the component u; (left), uy (right).

——u

0 20 40 60 80

Figure 3.13: FOM solutions for the component u; (left), uy (right).
The computed wave type solutions, given in Figure[3.12] for the FOM is consisted with
the results in [35]. The corresponding solution profiles with ROMs are given for the

first state component in Figure [3.14] for the second component in Figure [3.13] Also,
their errors are given in the same Figures.
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The CPU time to compute POD, DEIM, and DMD basis functions are 1.12, 0.91, 9.51
seconds, respectively.

15 POD u, x107

104
15 DEIM u, ><10

-2

21DMD u, x107
1.5

Figure 3.14: From top to bottom POD, DEIM, DMD solutions (left) and errors (right)
for the component u; .
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15 POD u, x10°

15

0.1

0.05

0

o
N
o
N
o
(o))
o

15 DEIM u, x10®
15

0.05

21 DMD u,
15

0.05

Figure 3.15: From top to bottom POD, DEIM, DMD solutions (left) and errors (right)
for the component us.

Table 3.3: FOM-ROM errors & speed-up with 15 POD, 15 DEIM, and 21 DMD basis
functions.

Lo—Error uy | Ly—Error uy | Speed-up
POD 2.48e-03 9.48e-05 1.49

POD-DEIM 3.13e-03 2.96e-04 51.77

POD-DMD 3.66e-03 2.18e-04 805.60

In Table [3.3] the computed Frobenious errors between FOM and ROM solutions are
shown. As expected, the POD errors are less than the other methods, which is ac-
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ceptable. Also the other errors are close to FOM errors. Here, the main contribution
is having really high speed-up factor for POD-DMD solutions with almost the same
errors with POD-DEIM. This makes POD-DMD method more preferable. In a simi-
lar to diffusive FHNE results, the errors for the first state variable is greater than the
other component. It is again due to the fact that the non-linear term occurs in the first
equation.

In order to choose the number of basis functions for ROM methods, we try two cases
mentioned in the diffusive FHNE results. If we increase all of them at once, or keep
one constant and increase the others, we obtain similar results. There is not much
difference between these two cases, as it is seen in Figures [3.16} 3.17] So we prefer
to use the second one. First, we check the energy criteria (3.11) in order to choose the
number of POD basis functions. When the basis functions contain at least %99.99 of
the energy of the full system, we cut from there, and use that number as a number of
POD basis functions. Then, the number of the DEIM and the DMD basis functions is
increased until the errors are less than a certain and acceptable tolerance.

i i 10° ; ;
——POD ——POD
0 —+—POD-DEIM ——POD-DEIM
10 POD-DMD | POD-DMD
— N
35 S
S S
i ]
B B 105}
105}
0 10 20 30 40 50 0 10 20 30 40 50
Number of modes Number of modes

(6]
£
)
o PRSI Ll k|
o ——POD
100t —+—POD-DEIM
POD-DMD
——Full

0 10 20 30 40 50
Number of modes

Figure 3.16: (Top) FOM-ROM L?(Q) errors for the states u; (left), uy (right) with
increasing number of POD for POD solution, and increasing number of DEIM and
DMD basis functions with 15 fixed POD basis functions for POD-DEIM and POD-
DMD solutions; (bottom) corresponding CPU times.

As expected, increasing the number of POD basis functions leads to more accurate
solutions for both cases. The error for the POD is solutions monotonically decreasing.

65



However, for the POD-DEIM and the POD-DMD it is not much obvious. The rate of
decline of their errors is slower.

On the other hand, we have to consider also CPU times to show the efficiency of ROM

solutions. As it is seen in Figures all ROM methods we use requires less
time than FOM except for the first second case in which when we use many modes

in the POD method. Increasing the number of bases does not much affect the time.
There is not a big difference between CPU times. As expected again, the POD-DMD

provides a significant reduction.

i i i i 10° i i i i
——POD ——POD
0 —+—POD-DEIM —+—POD-DEIM
10 \ POD-DMD | POD-DMD
— N
S5 > %,
S S
m [
R 107
10
0 10 20 30 40 50 0 10 20 30 40 50
Number of modes Number of modes
102 /WM
[¢]
£
)
& M
© ——POD
10°t ——POD-DEIM
POD-DMD
——Full

0 10 20 30 40 50
Number of modes

Figure 3.17: (Top) FOM-ROM L?(Q) errors for the states u; (left), u (right) with the
same increasing number of POD, DEIM and DMD basis functions; (bottom) corre-

sponding CPU times.
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CHAPTER 4

OPTIMAL CONTROL AND SUB-OPTIMAL CONTROL USING
REDUCED ORDER MODELLING

In the current years, control of PDEs with wave type solutions received more attention:
the control for spiral waves of Schlogl or Nagumo equation [21], spiral and travelling
waves of classical FHNE [23] 24} [77]], spiral waves of lambda—omega systems [[19]],
and pattern formation [|85]].

In this Chapter, we investigate a numerical approximation of optimal control of the
convective FHNE. As described in Chapter [3] the uncontrolled solutions of the con-
vective FHNE are in the form of travelling waves [35]. Our aim is to control those
waves by sparse and non-sparse control in the whole space-time domain and at the
terminal time. The sparse control is more efficient and realistic, but the cost function
becomes non-smooth. When the controls are localized in some part of the regions, the
sparse control provides solutions without any a priori knowledge of these sub-areas.
Sparse optimal control was investigated in [83]] for linear elliptic equations, and for
semi-linear elliptic and parabolic equations in [22, 24, 97].

The DG methods were successfully implemented in a variety of the optimal control
problems (OCPs), for instance, for the steady state OCPs [[102, [103], the time depen-
dent linear convection-diffusion-reaction OCPs [} 2], and the semi-linear steady state
OCPs [104]. There are two approaches for solving OCPs with PDE-constrained. The
first one is the discretize-then-optimize approach, where the objective function is dis-
cretized and the discrete Lagrangian is built, and then the optimality conditions are de-
rived in the discrete setting. The second one is the optimize-then-discretize approach,
where the Lagrangian is built for the infinite dimensional problem and then continuous
form of the first order optimality conditions are discretized. There is no preferred ap-
proach between them, here we follow the optimize-then-discretize approach. The first
order optimality conditions are derived and then they are discretized by using the DG
method. We employ the projected nonlinear conjugate gradient (CG) method [41] for
solving the nonlinear discrete optimization problem.

The OCP problem governed by the convective FHNE is non-convex because of the
semi-linearity of the activator equation. Therefore, the fulfillment of the first order nec-
essary conditions does not guarantee the optimality. Also the second order sufficient
optimality conditions (SSCs) have to be checked. In the recent years, the fulfillment of
the SSCs for infinite dimensional and finite dimensional semi-linear PDE-constrained
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optimal control problems has been investigated extensively [25]. The proof of the SSCs
for the infinite dimensional problems is not possible because of the necessity of opti-
mal solution, except for few examples whose analytical solutions exist. Therefore the
finite dimensional approximations of the infinite dimensional problem are considered.
Provided that the local minima satisfies the SSCs, one can check the SSCs numerically
by finding a bound for the distance between the local minima and discrete solution
[75]. For this purpose, the associated coercivity constant of the reduced Hessian oper-
ator is estimated numerically by computing its smallest eigenvalue. Similar techniques
were applied to measure how far the control obtained by a reduced order optimization
model is away from a local full order control solution [49]]. Moreover, the Tikhonov
regularization parameter in the cost function expresses the cost of the control, and it
increases the numerical stability of the optimal solution. Recently the second order op-
timality conditions have been investigated for semi-linear parabolic control problems
with the objective function, not including the Tikhanov regularization term [25]. We
test the discrete optimization problem for vanishing Tikhonov regularization param-
eter as done in [24]. The numerical results of the control of two dimensional waves
confirm the convergence of the optimal solutions for vanishing Tikhonov regulariza-
tion parameter as it was demonstrated for the one dimensional wave solutions of the
classical FHNE in [24. [77].

The numerical solution of OCP governed by PDEs are time consuming due to the repet-
itive solutions of PDEs during the optimization. To reduce the computational time and
complexity, the sub-optimal control problems with reduced solutions are considered
[15]. The reduced order OCPs are solved usually applying the Galerkin projection
based on the proper orthogonal decomposition (POD) using the snapshots of the dis-
cretized state equation. Increasing the number of the POD basis functions leads to more
accurate reduced order or sub-optimal controls, which can be considered as a compen-
sate for the lack of an a priori analysis of the POD. ROMs using the POD-Galerkin
projection for OCPs with linear PDE-constrained are investigated in [43, 156, [89] and
with semi-linear PDE-constrained in [49, 86, 53]]. To deal efficiently with the nonlinear
term in the activator equation of the convective FHNE, we use the DEIM [28]] and the
DMD (3], 4] as described in Chapter 3]

To our best knowledge, reduced order optimal controls using POD-DMD approach
have not discussed in literature yet. When dealing with the MOR techniques, having
a balance between the cost of calculation and the accuracy of the reduced solutions is
indispensable. The fastest of these three methods is obviously POD-DMD, because
the reduced system in the discrete form becomes linear and the OCP problem will be
convex. Again the POD is the most accurate, but it is the slowest. The success of MOR
techniques depends on the type of the problem. The reduced or sub-optimal control
of semi-linear PDEs [21]] and convection dominated problems with travelling wave
solutions require greater number of POD basis functions [66], which is also confirmed
by numerical results in Section 4.5]

The outline of this chapter is as follows: We give basic definition of function spaces in
Section[d.1] In Section4.2] the FOM of sparse optimal control problem with pointwise
box constraints governed by convective FHNE is described. We first prove the exis-
tence and uniqueness of a convective FHNE, called as state equation, by transforming
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into the one with monotone nonlinearity. Then, we introduce the first and second order
optimality conditions. The fully discrete form of the optimality system is derived in
Section In Section we propose reduced order models as, POD, POD-DEIM
and POD-DMD for the OCP. We compare these three approaches to solve our sparse
optimal control problem and to give POD-DEIM and POD-DMD algorithms for OCPs.
Finally, we present numerical examples to confirm the accuracy and efficiency of the
MOR techniques in Section

4.1 Preliminaries

In this section, we introduce the function spaces which we use in this chapter.

Definition 4.1. (Lebesgue integrable functions) Let ) be a Lebesgue measurable and
bounded subset of R"™, n > 1. The Lebesgue spaces L” are defined

()= {u: Q5 R | [ull oy < o0}

el oy = ( / |u<x>|pdx) |

with the endowed norm

for1 < p < oo.

For p = oo,
L>(Q) ={u: Q=R | ||u||r=@) < oo}
with the norm
[ull (o) := esssup |u(x)].
e

For 1 < p < o0, locally Lebesgue spaces are defined as

LP

loc

(Q) :={u:Q — R |ue L() for any compact subset 2y C Q}.

The space (LP(), ||| 1»q)) is @ Banach space for 1 < p < oo. In the case p = 2, the

L?(92) space is also a Hilbert space and denotes the set of square integrable functions
with the inner product

(u, )20 :/Qu(x)v(x)dx.

Definition 4.2. (Weak derivative) Let « = (aq, -+, ) € N be a multi-index with
order || = oy + -+ - + v, Foru € L} (Q),

loc

olal
D = —————u
Ox(* - - 0x "

is called a—th weak partial derivative of w.
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Definition 4.3. (Sobolev spaces) Let €2 be a bounded subset of R”, n > 1. Then the
Sobolev spaces WP (Q) are defined by

WEP(Q) := {u € LP(Q) | D*u € LF(Q) for 0 < |a| < k}

with the endowed norm

ey = | 3 [ IDut)ar |
0<lal<k ¢

forp > 1.

The space (W*?(Q), ||"|[yyr.(q) is a Banach space. In the case p = 2, the Sobolev

spaces are defined as W*2(Q) := H*(Q), and constitutes Hilbert spaces. The set of
Hilbert spaces H* () is given as

H*(Q) := {u € L*(Q) | Du € L*(Q) for 0 < |a| < k},
associated with the following inner product
(u, ’U)Hk(Q) == Z (Do‘u, DaU>L2(Q).
0<a|<k
In the case k = 1, the set of the Hilbert space H'(2) is written as
0
HY(Q) :={u € L*(Q) | 5l € L*(Q),i=1,---,n}
a’/‘.

7

with the norm

2
ol ey = ( J1uk+ |w|2dx)

Furthermore, the set of measurable functions spaces defined from (0, 7") to the normed
space X are written as

L0, T X) = {u: [0,T] = X | [Ju(®)]| oo rxy < 00

with the norm

. :
] P / ()% de |
0

for 1 < g < oco. For p = oo,

[ ()|l oo o0,75x) = €55 sup |u(t)]|x -
te[0,7

We can define also the following Hilbert space
W(0,T) :={ue L*0,T;V); | v € L*0,T;V*},
associated with the norm

1
2

T
fulbvan = ([ (I + ol )ar)
where V' = H'(Q) and V* is the dual space of V.
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4.2 Full Order Optimal Control

We consider the following OCP

min J(u) := I(u) + pj(u), 4.1

uEULq

where

I() :%(/T/ (wr(2.1) — urg(x, 1) dacdt+/T/ (us(z, ) — wsg(z, 1)) dxdt)
+“7T / (ua (2, T) — urp(2))” dor + / (ua(z, T) — uzp(z))’ dx)
—l—%/T/(u(x,t))z dz dt,

j(u) Z/T/\u(a:,t)] dz dt,

subject to the convective FHNE in Q)7

ur(z,t) — diAug (z,t) + V- Vug (2, 1) + fur (2, 1)) + ug(z, t) = u(z,t), 42)

ugy(x,t) — doAug(z,t) + V- Vug(z,t) + €(ug(z,t) — csus(z,t)) =0

with the Neumann and Dirichlet boundary conditions on X%

Oguy(z,t) =0, Oyus(x,t) =0,

ui(x,t) = uip(z,t), wus(x,t) =usp(z,t)
and with the initial conditions
uy(z,0) = urg(x), ua(x,0) = ugy(x) in €,
and subject to the pointwise box constraints
U € Upg :={u e L™(Q) : u <u(z,t) <u, forae(z,t) € Qr} (4.3)

with the real numbers u; < u,.
The function f(u;) denotes the cubic polynomial nonlinearity

f(ul) = C1U1<U1 — CQ)(Ul — 1) (44)

with the non-negative real numbers c¢;, ¢ = 1,2, which is monostable for 0 < ¢; <
20.803 and ¢y = 0.02.

The functions w7, ugr € L®(Q2) and uyg, usg € L*(Qr) denote the given targets
or desired states for the state variables u; and u» in the final domain or whole domain
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control, respectively. We have given constants wg, wy. The parameter A > 0 stands
for the Tikhonov regularization parameter, and p > 0 for the sparse parameter.

Here, we make the following assumption for the solutions uq, us
0=:up <u <uiy, 0=tugg <up <uyy ae. Qr, 4.5)

for some constant value bounds. This presumption is acceptable for physical authen-
ticity.

The aim of the OCP is to ensure that the state variables u;, us are as close as possible
to the desired states u1¢, uzq for the whole domain with chosen parameters wg =
1, wr = 0, or to uyp, upy for the final time control with wg = 0, wpr = 1. The
activator component u; of the state equation (4.2)) is to be controlled by u, while the
inhibitor u5 has only some auxiliary character regarding the control with respect to the
established classical FHNE [23] 24, [7/]] since just controlling the activator appears to
be plausible [95]].

From the biological point of view, a mathematical modelling of an excitable medium
requires at least two equations with activator and inhibitor components. In blood co-
agulation process, although the activator component variable 1, describes the concen-
trations of thrombin the excitation itself, the inhibitor component variable describes
the inhibition of this excitation and recovery of the medium variables, uy activated
factor XI [34]. The complex process of coagulation comprises of cascadic enzymatic
reactions and feedback loops, separated into three phases, initiation (restricted at the
vascular harm site); propagation, or spatial expansion of coagulation wave into the
vessel; end of the biochemical responses and cluster expansion stoppage [S9]. These
ultimately catalyze fibrinogen conversion into fibrin, which polymerizes to form a clot.
These reactions allow autocatalytic thrombin generation far from the damage site. The
most important property of blood coagulation process is the formation of autowaves
with the velocity independent of the initial conditions [135} 134, 59]].

4.2.1 Well-posedness of the State Equation

In this Section, we prove that the state equation (4.2)) has a unique solution for each
u € U,q. Because of the non-monotonicity of the state equation which results from
nonlinearity in the activator component, the existence-uniqueness theory for the solu-
tion of the state equation is a bit delicated [21, 23]. The well-posedness of the
state equation can be proved in the literature using different methods like the Schauder
fixed point theorem applied to the classical FHNE [47], the Leray-Schauder fixed-
point theorem for the weak solution of semi-linear parabolic equations, Brouwer’s
fixed point theorem for non-monotone quasi-linear elliptic discrete problem [39], and
the Faedo—Galerkin method for an anti-periodic quasi-linear hemivariational inequal-
ity [/1]. After transforming the non-monotone nonlinearity in the activator equation
to a monotone one [21]], we derive upper and lower solutions [14, [/0] to prove the
well-posedness of the state equation (4.2)).

We transform the state equation (4.2)) by substituting u; = " v;. Since the derivative
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of the cubic nonlinearity f(u;) is a quadratic, then it is bounded from below by a
constant, say ¢, then 7 is chosen as |c| [21]]. Then , we obtain the following system:

vy, — diAvy + V- Vo, + e T f(emv) +noy = e (u — ug),

. (4.6)
Ug; — doAus +V - Vug + €(ug — cze™vy) =0
with the boundary conditions

8,,@1 = 0, 8,,uQ = 0,

ey = U1p, U2 = U2p,
and the initial conditions
v1(z,0) = u1p(z), ua(z,0) = ugg(x).

Here, the nonlinear term

f o — e Mg(e™uy) + nuy
is a monotone non-decreasing function with respect to v; for all (z,t) € Qr [88,
Sec. 4.3]:
(i) For every fixed v; € R is Lebesgue measurable in Q7.

(ii) For almost all (z,t) € Qr, fl is twice continuously differentiable with respect to
vy and locally Lipschitz continuous of order 2 with respect to vy, i.e., there exists
L(p) = 6¢1e*™ > 0 such that

9f (z,t,v1) —
v 0vy + ! 0v10v,

holds with for all vy, v15 € R with |vy;| < p,i=1,2.
The nonlinearity is uniformly bounded and monotone increasing:

(iii) There exists a constant C' = c¢y¢o + 1 + 2€™(c102 4 ¢1) > 0 such that
’fl(xata O)’ + ’flv($7t70)‘ + |f~11;v(x7t7 O)’ S C.

(iv) Itholds 0 < flvl (x,t,vy) for almost all (z,t) € Qr, all v; € R.

Definition 4.4. A pair of functions (vy,uy) € (W(0,T) N L>®(Qr))? is called weak
solution of the system (4.6)) if

T
/ (010, @)y dt + / / (d1V01 - Voo +V - Vorp + fo — ™ (u— up)p) da dt =0,
0 T

T
/ (U2, p)yev dt + // (dgVUg Vo + V- -Vusp + €(ug — 03e"tv1)g0) dz dt =0
0 T
“4.7)

73



with V' = H'(Q) and its dual space V* and

Ul('a 0) = Uy, Ug(‘,O) = U2p

are satisfied for all o € L?(0,T; H*(€2)). Here V denotes the gradient with respect to
x.

Definition 4.5. The pair functions (0, u3) and (01, @) in (W(0,7T) N L>(Qr))* are
said to be ordered upper and lower solutions of (4.6)), respectively, if they satisfy

(01, U2) < (v1,u2)

and
Gy — AT + V- V3 + fla,t,01) — e " (u—3) <0
< Gy — BAG + V- Vo + fla,t,6) — 7 (u— ),
I/L\Qt - dlAﬁ\Q = V. V?j\z ot €<U2 - Cgentlf)\i) S 0
S 17215 - dzA?IQ + V. VITQ + E(Ug - c;;e"thl),
Oph < 0 < Oy,
Optty < 0 < Onua,
{]\l S 6_77tulD S {)\ia
12\2 S U2 p S @7
'{}\1(1‘70) S ulO(:E) S 1’71(1'70)7
uy(z,0) < uge(z) < up(w,0).
Taking

o(z,t) = Z(z,t) = M, v(z,t) =2(z,t) =0
for some M > 0 in (4.6) leads the following system:
vy — diAuy +V - Vo, + f(e"““) —e Mu— M) =e"™(M —uy),
Uy — doAug + V - Vuy + €(ugy — c3e™ M) = ecze™ (M — vy),
0,1 =0, Oyus =0,
v1 =e¢ Mup, uy =usp,
v1(2,0) = uig(z), ua(z,0) = uge(x).
Here, we have

Ae (M —ug))  I(ecze™(M — vy))

81}1 ’ 8%2 B O’
d(e (M —ug))  Oecse™(M — vy)) < 0
8U2 ’ 81}1 -

for all vy, us € [0, M].

The existence and uniqueness of the system (4.6) for each control variable u is given
by the following theorem:
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Theorem 4.1. Suppose that the initial conditions u,, and usy, are non-negative func-
tions, and (.5) holds. Then, the system [&.0) admits a unique solution (vq,us) €
(W(0,T) N C(Q7))? for each control u € Uyg.

Proof. We adopt the iteration technique introduced in [70] and construct sequences
{(oF, k) }52,, {(vF, ub) 5o, with initial elements

=7, = M, uy =ty = M,

W=70,=0, uj=u=0.
TEF —  ATETT VT 4 e ot — e (u — M) = e (M — ub),
ustt — dy AT 4+ V- Vbt + e(ubt! — c3e™ M) = ecze™ (M — v}),
gu*tt =0, 9u"t =0,
@]{H—l = e_ntulDa a§+1 = U2p,
U (@,0) = wip(z), s (x,0) = ug(w)
and
VR @y AVETT £ VUV et — e (u — M) = e ™(M — @k),
st — o AuStT + V- VU (U — c3e” M) = ecze™ (M — oY),
a Vk+1 0 a uk‘+1 0
) Y
vitt = e Muyp,  ust = uyp,
vitH(z,0) = up(x), us™(z,0) = ug(),
respectively. The constructed sequence { (o7, u%)}2°, is monotone non-increasing and

upper solution for all k. Conversely {(v¥,u})}%°, is monotone non-decreasing and
lower solution for all k. Further, we have

u¥(z,t) < @F(x,t) and vF(x,t) < 0"(x,t)
forall k € Nand (z,t) € Qr.

By induction, we can verify the monotonicity of the sequence {v;%}2° : For k = 0,
o1, — di AT +V - Vor + §(e"0)) — e M (u— M) = e (M — ),
iy, — doAtiy + V - Viiy + e(uy — cze™ M) = ecze™ (M —vY),
0,08 =0, Opts =0,
vy = e Muyp, Uy = uyp,
01 (2,0) = wo(2),  y(x,0) = ugo(2).
The property that ©;° is an upper solution
) — A+ V-V + f(em0) — e (u— M) > e (M —u)),
0 — do AU+ V - VU + e(u) — cze™ M) > ecze (M —vY),
0,07 >0,  ,uf >0,
v > e Muyp, ) > usp,
0} (2,0) > uig(x),  wy(x,0) > ug().
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Consequently, we obtain

W =0, — diA(@) — 0}) + V- V() — o) + f(e"D)) — f(e™Dy) > 0,
ug, — g, — oAUy — U *) + V- V(uy — u3) + e(ug — uh) > 0,

Ou(0) — 1) >0,  8,(u) —1uy) >0,

(o) —vy) >0, (a5 —uy) >0,

So it follows from the comparison principle for nonlinear parabolic equations 79 —

vl, 4y —u} > 0. Now if we assume that 771 — o @5~' — @5 > 0, one can easily
show that of — o# ™ @k — @5™ > 0. Analogously, the monotonocity of (v¥, u¥) can

be proved.

Now, we show the convergence of the sequence {o}, 45} to a solution of (#.6). The
sequence {¥}} is monotone non-increasing and bounded from below by @ = 0. Hence
by Lebesgue dominated convergence theorem [14} [70], it converges to v; in space
L*(Q), p < oo. On the other hand, the sequence {1>"} is monotone non-decreasing
and bounded from above by w; = M. It converges to us in a similar way.

Finally, we prove the uniqueness of the solution of (@.6)). Suppose that (v{, uj), (v, u3)
are solutions of and set vy := v{ — v}, uy := ul — u3. Then v; and u, satisfy the
initial conditions obviously. Moreover, the following equations

T
/ (vies @)y di+ // (diVvr - Vo + V- Vg + f(z,t,07)p
0 T
— flz,t,v3)p — €™ (u — uy)p) dz dt = 0,

T
/ (ugt, @)y di+ // (daVug - Vo + V- Vugp
0 T

+ €(up — c3e™vy)p) do dt = 0

4.8)

hold for all ¢ € W(0,T)). Then, following the steps by taking ¢ = v; in the first
equation of (4.8) and ¢ = wsy in the second equation of (4.8]), we obtain the desired
result v; = 0 and us = 0. ]

The existence of an optimal control u for the optimal control problem (.1)) is given by
the following theorem.

Theorem 4.2. The optimal control problem (1)) has at least one optimal solution u
with associated optimal state uy.

Proof. Here we simply outline the key ideas of the proofs in [88, Sec. 5.3, Thm. 7.4].
Since U, is non-empty and bounded in L*(Qr), it is bounded in any space L”(Q7)
and it follows from the existence and uniqueness of the state variables that they are
also bounded. It follows that, the cost functional is bounded below, and so it has an
infimum point. Therefore, because of the boundedness of this sequence, we can find
a weakly convergent minimizing sequence. Then, the compact embedding results give
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us the strong convergence of the state in a weaker norm. Consequently, there exists a
feasible limit point, and using the continuity argument one can show the convergence
of the objective function. O

4.2.2 First Order Optimality Conditions

In this Section, we derive first order optimality conditions for the minimization prob-

lem (4.1])
min J(u) == f(u,ug,u) = I(u) + pj(u), 4.9)

uEULq

which is non-convex due to the nonlinearity of f(u;) (4.4). Therefore, different local
minima might occur.

We introduce the Lagrangian for deriving the optimality conditions by

L(u1,ug,u,p1,p2) = J(u) + (pr1, Ri(u, uz, u)) + (p2, Ra(u1,uz)),

where R; and R, are the first two equations in (4.2), and the adjoint variables p;
and p, are the Lagrange multipliers [88, Chapter 1]. Hence, the first order optimality
conditions are obtained as

Lul(uhu%u P, pz)ul
‘Cug(u’ UQ,U,pth)uQ
( )

)

Y

Y

0
0
0, (4.10)
0
0

£p1 U1, U2, U; P1,P2)P1
£p2(U1,U2,U/;p1,p2 D2
Lo (w1, ug, u; pr,p2)(v —u) >

?

Yu € Usa,

where £,,,, £, denote Fréchet derivatives with respect to u; and p;. The first two equa-
tions of (4.10) are the adjoint equations and the last one is the variational inequality.
These equations (4.10) with state equations (4.2) constitute the first order optimality
conditions.

The cost functional J(u) in (.9) comprises of two terms with different smoothness.
While the first part I(u) is smooth, the second part j(u) : L'(Q) — R is non-smooth.
Although it is not differentiable, it has sub-derivative and its directional derivative is
given by

!/

J (u,v—u) = max < A\v—u> 4.11)
o€dj(u)
with
T
dj(u) =< o€ L=Qr) :j —i—//av—u )dx dt Vv e L®Qr) p,
0
where



Now, we consider the following weak form of the state equations (4.2))

(ur, w)q + dra(ug, w) + blug, w) + (f(ur), w)q + (ug, w)q = (u, w)q,
(U1< 70)7 )Q - (ulovw)Q7

(ugy, w)q + daa(ug, w) + blug, w) + €(uz, w)g — ecg(u, w)q =0,

( ( 70) ) <U2O>U)Qv

where (-, -)q denotes the Lo inner product in €2, and from now, we set (-,-) := (-, *)q
for easy notation. Here, bilinear forms for diffusive and convective part is separated.
The diffusive terms a(uy, w) = (Vuy, Vw), a(ug, w) = (Vuy, Vw) are symmetric and
convective terms are b(uy, w) = (V-Vuy, w), b(ug, w) = (V- Vug, w) non-symmetric
form. We also use w € HY() as the test function.

(4.12)

Using Lagrangian framework (4.10), we obtain the following weak form for the adjoint
equations

—(p1p,w) + dra(pr, w) — b(pr, w) + (fu,p1,w) — €c3(p2,w) =0,
(p(, T),w) = (u1 — wrp, w),

—(p2s, w) + daa(pa, w) — b(p2, w) + €(p2, w) + (p1,w) = 0,
(p2(, 1), w) = (uz — uar, w)

(4.13)

with the mixed boundary conditions
di0,p1(2,t) + (V-n)pi(x,t) =0,  doOupa(w,t) + (V-n)pa(w,t) =0,  (4.14)
the Dirichlet boundary conditions
pi(z,t) =0, po(x,t) =0,
and the final time conditions
p(z,T) =u(x,T) —uip(x), pa(z,T)=us(x,T) — usp(z).

As it is observed, the bilinear forms of the convection terms b(p;, w), b(pz, w) in @.13)
and b(uy,w), b(ug, w) in (4.12)) have opposite directions.

In addition to adjoint equations, we obtain the following variational inequality

/

I'(w)(v—u)+pj (w,v—u) >0, Vv & Uy, (4.15)

or equivalently,

// pi(z,t) + Mu(z, t) 4+ po(z, 1)) (v(z,t) — u(z,t)) dz dt >0, Vv € U,

where p; is the first adjoint variable and solution of the (4.13).
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For positive Tikhonov regularization A and sparse ;. parameters, we have the following
projection formulas [24, 77, 22| 23], 88]] resulting from the variational inequality (4.15])

u(,t) = Py {—%(pl(a:,t) + /w(a:,t))} , foraa(z,t) € Qr, (4.16)

1
Mz, t) = P {—Ep(m,t)} , foralmost all (z,t) € Qr (4.17)

with the following projection operator

Ploy(f) = max{a, min{f,b}}.

Moreover, we have the following relation

_ Ip(x, )| < p, if u, <O,
u(z,t) =0 < { p,t) > —p, if w, =0, (4.18)

for almost all (z,t) € Q.

4.2.3 Second Order Optimality Conditions

The cubic nonlinearity makes the minimization problem non-convex. Hence,
the fullfillment of the first order optimality conditions is not sufficient for proving
global optimality. We need to check the SSCs related to certain critical cones. These
critical cones must be chosen as small as possible. In our OCP (@.1)) the presence of the
Tikhonov regularization parameter A is crucial for the selection of the critical cones.
The standard second-order optimality conditions are not valid for vanishing Tikhonov
parameter A = 0. For sparse optimal control governed by classical FHNE, new crit-
ical cones are presented [24] for the second order optimality conditions. In addition,
second order conditions is established for a simple equation, but with more general
nonlinear functions in [26]]. Therefore, the second order conditions with suitable cho-
sen critical cones are needed in order to prove the stability of locally optimal solutions
with respect to A — 0. Here, we use the following critical cones introduced in [24]

C, = {v e L*(Qr) : v satisfies the sign condition and I' (u)v + pj (u) = O}

with satisfying the sign condition

v(x,t) >0, if u(x,t) = ug,
v(z,t) <0, if u(z,t) = uy.

Note that, the set of critical cones C, is a convex and closed cone in L?*(Qr). Besides,
a local minima for our OCP (4.1]) satisfies the following inequalities [24] Theorem 3.3]

I"(wv? >0 YoeC\{0}, equivalently I"(u)v?> 5||v||%2(QT) Yve C, 0>0.
(4.19)
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Then, under the assumption /" (u)v?* >0 VYo € C,\{0}, there exits § > O and ry > 0
such that

)
J(u) + 5Hu —ullf2igp < J(V)  Vu € Usa N Byy(u), (4.20)

where B, (u) is the L?*(Qr) ball centered at u with radius . This shows the existence
of a local minima. For a detail information, one can see [24), Theorem 3.4].

Now we compute the SSCs to measure the distance a numerical solution u;, of a
dicretization (4.1)) and a local minima u. However, the fulfillment of the SSCs is com-
plicated since it requires the solution of the infinite dimensional problem. Nonetheless,
there exist some numerical studies on the SSCs [49, 64].

Here, we compute the smallest eigenvalue of the reduced Hessian and determine the
constant 9 [64] even though it is not reliable in estimating the constant § for the infinite
dimensional optimal control problem.

Theorem 4.3. Suppose that a local minima of @.1)) u satisfies the SSCs @.19) and
(4.20). Then the discrete solution uy, satisfying uy, € B,,(u) implies

1
lu = unllr2@e) < 53¢l E2@n (4.21)
with defined perturbation function ¢

—min{0, Auy, + p1j, + ppnt,  if up = g,
((x) =9 —(Aun+ prj, + pAn), if w <up <u,
= maX{O, )\uh + P1p == ,LL,uh}, lf Up = Uy,

where py},, 1, are corresponding adjoint and sparse solutions to uy, and 0 < 6 " <6

Proof. Let (up, p1,, i) be discrete solutions, which need not to be optimal, for the
OCP (4.1]). If uy, is optimal solution, then

1y, + Aup + ppn, =0
holds for almost all points z € € with u; < u; < w,. If not, then
iy + Aup + ppp 4+ ¢ =0,

where ( is a perturbation function adapted from [7]. So, when w;, is not optimal solu-
tion of (4.1), it is optimal solution for the following perturbed minimization problem

min J(u) + (¢, ) 12(Qq)-

UEULq

Then, both the local minima u and discrete solution u;, of (4.1]) have to satisfy varia-
tional inequality for optimality system as

(Jl(uh) —|—C,u—uh)
(J,(u) + C, up —u) > 0.

v

0,
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Adding these inequalities leads

(J’(uh) i

’

(u),u—uh> + (¢ u—up) > 0.

Using mean value theorem implies

"

(J/(uh) —J (u),u— uh> =—J () (u—up)?,

forsome u € {v € Upyg : v =u+t(up, —u), t € (0,1)}. Inserting this to above
inequality and using Cauchy-Schwarz inequality lead the following desired result

O |lup — U|’%2(QT) < ICllz2@m llun — ullL2(@q)-

Now, we can select §  := §/2 as in [49]], which produces the following estimate

2
le = unllrz@ey < 5lICHz2@n), (4.22)

where u;, belongs to the neighborhood of u.

4.3 Space-Time Discretization of the Optimality System

In this section, we give the space-time discrete forms of the state and adjoint equations
by the SIPG in space and the backward Euler discretization in time.

4.3.1 Space Discretization of the State and Adjoint Equations

Before giving SIPG semi-discretized system of state (4.12)) and adjoint equations (4.13),
we define the discontinuous discrete spaces as follows:

Wy ={we L*Q) | w|gcP(K), VKET,}, (4.23)

where P!(K) is the set of piecewise linear polynomials defined on an element K.
Then, SIPG discretized forms of the state and adjoint equations read as: Vw € W), and
ae. te (0,7

)

du
< d;hﬂ)) + dyap(urp, w) + bp(urg, w) + (f (urn), w) + (uzp, w) = o, (W) + (up, w
<u1h<'70)>w) (ulo’
du
( 2h7w) + daap (ugp, w) + by (ugp, w) + €(uzp, w) — ecz(Urp, W) = Ly, (W

dt
<u2h('7 0)7 w) (u207
4.24)

Y

)

)
)
)
),
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d
_ ( Z;h,w> + dyapp, (p1p, w) — b(p1p,, w) + (fU1hp1h>w> — ec3(pay,, w) =0,
(plh('aT)7w) = (Ul — U1T7w)7
d
— ( Zih,w) + daap, p, (P21, W) — b(P2y, w) + €(pay, w) + (p1j,, w) = 0,

(th('a T)? U)) = (u2 — Uz, U)),
(4.25)
where the bilinear terms are defined forz = 1,2 as

ap(uip, w) = Z Vu,, - Vw dx
KeTh

- > / {Vu} - [w] + {Vw} - [uih]> ds

Eesous}? E

Eegduep E

bp (wip,, w /V Vu;w dx

KETh 3

+ Z / V - n(uy, — uip)w ds — Z V - nu;,w ds,
KeTh o= \00 KeTn

aw) = Y [oo(Pn w] - (47w} ds

EeceP

- E / V -nu;pw ds,
KeTh prc~rr-

u’Lh7 Z /f uzh w dl’ fuh Usip, W Z /fulh u’Lh Uip W dl‘

KG'ThK KE,ThK

OK—NI'~

(4.26)

where - is the penalty parameter. The bilinear forms for the adjoint equations ay,y, ,
and ay,p,, in are similar to the ones for states a; in (4.24)), but contain extra
terms, the contribution of the mixed boundary conditions as

Z/ V nplhwds and Z/ V npghwds

BeeN i EeE) |

The solutions of (4.24)) are given by

Ne Ne

uyp(t ZZulj > uap (t ZZug and  wup(t ZZu

=1 j5=1 =1 j=1 i=1 j5=1

(4.27)
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with

- 1 1 n, n, N
1 (ull’...’ulnk’...’ulle’...’uln;)ER ,
- 1 1 n, n, N

u2 (u2l’... ’uznk’... ’u21e’... ’u2n;) ER ,
— 1 1 Ne n N

u = (ula 7unk7"'7u1?7"'7un;)€R ’

where N = n, X ng.

Then, we obtain the SIPG semi-discretized system of state equations (4.24) in form of
ODE:s as following

d —
M% + di St + B + F(ad)) + M = £y, + M,

d -
M% + doStBy + Biih + €My — ecsMa, = {,,

where M is the mass matrix, S and B are symmetric and non-symmetric parts of the
stiffness matrices corresponding to the diffusive and convective terms, F(u) is the
nonlinear vector, and /,,, and /,,, are the vectors corresponding to the linear forms ¢}, ,,,
and ¢}, ,,,, respectively. In a similar setting, we obtain the SIPG semi-discretized system
of the adjoint equations (4.23)) as following

(4.28)

d d
—M% + diSp, — Bp, + Fo, 7, — eccsMy = 0,
t A (4.29)
—M% + dsSpis — By + eMps + My, = 0,

where the matrix F,, is related to the form f,, (p1,, w) which is defined in (4.3.1).

4.3.2 Fully Discrete Form of State and Adjoint Equations

We split the time intervals [0, 7] into J equally-length At = t, — t, 1 for n =
1,2,---,J subintervals as 0 = ¢, < t; < --- < t; = T. Then, an application
of the backward Euler method to (4.28) and (#.29) leads the following fully discrete
system

1
EM(u_in-&-l — u]n) Fdi ST 4 Ba 4 F(a" ) + Myt = Ezj-l M,
1
EM(UETZH — U_ﬁn) + dQSu_ﬁn+1 + B?fgnH + 61\/[1[’2"‘|r1 _ €C3Mu_i"+1 _ ﬁﬁjla
(4.30)

forn=1,2,...,J — 1, and

1 -n —n -n —-n —n —n —n
—M(pi" = pi"t) + diSpi" — Bpi" + F, (0" )pi" — eesMpy" = 0,

At
]_ —n —n —n =N =" >n
EM(ZE — D2 +1) + dySps” — Bps" + eMpy" + Mp1" =0,
(Mqu)i = (MU_iJ)i - (UlT, ¢z’)> (Mpéj)i = (Mu_éJ)i - (Uzt; ¢z‘) i=1,2,...,N,

(4.31)
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forn=J-1,...,2, 1.

Although the full discrete state equation (4.30) is solved forward in time, the full dis-
crete adjoint equation (4.31) is solved backward in time.

4.4 Reduced Order Optimal Control

We apply three MOR techniques: POD, POD-DEIM, POD-DMD, introduced in Chap-
ter (3| to find the sub-optimal solutions of the full order OCP problem. The POD was
successfully applied for distributed and boundary optimal control for classical FHNE
without using nonlinear reduction techniques in 21} [78]].

4.4.1 POD Approach for the State and Adjoint System
The reduced system of the state equations is given by

d = ~ = 5 = = v =
Eul -+ dISulul —+ Bulul -+ \IjglF(\I/uli,Ll) -+ MHLUQUQ = \Il?:lgul —+ \Ifgll\/[u,

. . 5 p . (4.32)
Eu_'g + dyS,,un + By,us + eMy,,un — ecsM, 4,101 = \1152&2,
ui(0) = W Mg, u(0) = Wl Mz,
where
S., =¥l Sv,,, S., = ¥ Sw,,, B, =9’ BvY,,, B,, =Y. BY,,

M,, = VI MW,,, M., ., = VL MU,,,, M., w, = UL MU,,,.

The reduced system for the adjoint equation (4.31)) can be constructed either by con-
structing its own basis or we can use the same POD basis for the state equations.
Different basis for adjoint and state equations does not improve the accuracy of the
sub-optimal controls [49], which increases only the computational cost. Therefore, we
use the same POD basis functions for the state and adjoint equations. The reduced
system for the adjoint equation (4.31)) is given by

d - 5 S5 o ~ A ~ =
_Epl + di1Sy,p1 — By, pi + M, Fy, (uq)p1 — ecsMy, 4,02 = 0,
d

_E :2 + dQSUszé - Buzpzé + EMuzpzé + Muzﬂupzi = 07

(4.33)

pi(T) =¥ Mpir,  p5(0) = WE Mpsr,

in addition with the reduced matrix 1\~/Iu1 = \IlflM\I!ul. As it is seen, the reduced
system of ODE’s for adjoint equation (4.33)) are solved backward in time.
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Although we reduce the dimension of the state and adjoint equations (4.30)-(#.31), the
dimension of the nonlinear term still depends on the dimension N of the FOM. We
approximate the reduced nonlinear terms using the DEIM and the DMD in the next
subsections.

4.4.2 Discrete Emprical Interpolation

The ROM for the state equation is given by

d - S S 5 3 - =~ oA

prids diSu i + Byt + F + M, 05 = UL 6, + UL Mu,
; (4.34)
— i) + oSy, s + By iy + €My, 5 — €cs My, 7 = UL Ly,

dt
with reduced dimension m of nonlinearity F = U W (PTW)~'PTF(T, u}).
The algorithm for POD-DEIM for the OCP (4.1) is outlined below.

Algorithm 6 POD-DEIM Optimization Algorithm for Reduced Order OCP

Input: u°, Toly, Tol, (Stopping criteria tolerances for the optimization algorithm), &
(Number of POD basis functions), m (Number of DEIM basis functions)
Output: o, uy, us

1: Solve the full order optimal control problem and save the solutions.

2: Collect snapshot data for state variables

(g, ug;) = (un(ta), ua(ti),

fort; =iAt, i =0,---,J.
3. Construct the snapshot matrices U, U, for state variables {u7, u3}.
4. Compute POD basis functions {1, ;, ¥, }¥_; using snapshot matrices.
Find the number of POD basis functions capturing 99.99% of the snapshot energy
(3.11).
if the state equation is nonlinear then
compute a new basis of order m for the nonlinear term using DEIM.
end if
Solve the reduced order optimal control problem using projected nonlinear conju-
gate gradient (CG)) algorithm [40, 41]].

bed

° ® 2D

4.4.3 Dynamic Mode Decomposition

The ROM state equation (4.28) is given by

d - S5 s S R ~ =

T S,y B+ Ul FPMP (1) 4+ My, y,un = UL 4, + UL Mu,
. i i i ) (4.35)
E@ + dyS,,us + By, us + €My, un — ecsMy,, 4,11 = \IIZQEUQ
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with reduced dimension r of nonlinearity FPMP (17)
FPMP (411) = UPMPdiag(exp(wP1))o, (4.36)
where b = (UVPMPYIF ((47),).

Although the dimension of the system (4.35]) can be the same with (4.34) when k = r,
the main contribution of the system is that the DMD makes the system linear, so
the OCP becomes convex. Hence, it is not needed to use Newton method. Therefore,
the POD-DMD is significantly much faster than the other ROM methods which will
be supported with the numerical results in the last Section {.5]

The algorithm for POD with DMD for the OCP is given below.

Algorithm 7 POD-DMD Optimization Algorithm for Reduced Order OCP

Input: u", Toly, Tol, (Stopping criteria tolerances for the optimization algorithm), &
(Number of POD basis functions), » (Number of DMD basis functions)
Output: o, uy, us

1: Solve the full order optimal control problem and save the solutions.

2: Collect snapshot data for state variables

(g, ;) = (ui(ts), ua(ts)),

fort; =iAt, 1 =0,---,J.
3: Construct the snapshot matrices Uy, U, for state variables {47, u3}.
4: Compute POD basis functions {1, i, ¥u, i}, using snapshot matrices.
Find the number of POD basis functions capturing at least 99.99% of the snapshot
energy (3.11).
if the state equation is nonlinear then
compute DMD modes according to Algorithm 3
end if
Calculate reduced order approximation of the nonlinear term in terms of DMD
modes.

10: Solve the reduced order optimal control problem using projected nonlinear CG
algorithm [40, 41]].

bed

© ® 2D

4.5 Numerical Results

In this section, we demonstrate numerical results related to OCP (4.1]) governed by the
convective FHNE in the whole space-time domain and terminal time domain, and also
by the diffusive FHNE at the terminal time and in the whole-space time domain with or
without sparse controls. We show the effectiveness of the POD-DEIM and the POD-
DMD in contrast to the POD in terms of accuracy and speed up’s factors for solving our
OCPs. The projected nonlinear CG method [40] is used to solve the discrete optimality
system. This method was successfully applied to the OCP of Schlégl and classical
FHNES in [21} 23] 24]].
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Algorithm 8 Nonlinear CG Algorithm

Input: Initial control guess wu, initial step size s and stopping criteria tolerances Tol;
and Tols.
Output: Optimal states u}, u3, optimal control u, and optimal objective value of J(u).

1: Compute

e initial state variables: (u1°, us") = (U140, Uzyy)>

e initial adjoint variables: (p1°, P2°) = (D10 4,0 P20 50)5
e sub-gradient of j: fg = iy p,0,

e sub-gradient of J: gy = Aug + po + o,

e anti—sub-gradient of J: dy = —gy.

Set k := 0.
2: Update new gradient

e control: ug,1 = ug + Spdg,

e state variables: (u,*™, uy"*!) = (uy,, ,,, Usy, )

. - k1, k+1
e adjoint variables (p1" ", po" ™) = (Pry a1 upht1, D2yt yyhtt )

e sub-gradient of j: fig1 = fly, | pi+1s
e sub-gradient of J: g1 = g1 + p1 T+ .

3: Stop if ||gxs1|| < Toly or || Jxr1 — Ji|| < Tols.

4: Compute the conjugate direction .1 according to one of the update formulas
such as Hestenes-Stiefel, Polak-Ribiere, Fletcher-Reeves, and Hager-Zhang, see
e.g., [21,140] for details.

dk+1 = —Gr+1 + Brr1dy.

5: Select step size s, 1 according to some standard options such as bisection, strong
Wolfe-Powell, see e.g., [21,41] for details. Set £k =: k¥ + 1 and go to Step 2.

In order to compute of the reduced Hessian for FOM of OCPs governed by the con-
vective FHNE, we use the BFGS algorithm [44]:

e Set Hy = 1.
e Update for k= 1,2,...

Qqr (Hire) (Hkm)T
qkT""k TngSk

Hyi1 = Hi +
where 7y = ug1 — ug and gx = g1 — G-
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In all numerical tests, we begin with the underlying control « = 0. If it is not specified,
the tolerances Tol;, Toly for the stopping criteria of the optimization algorithm are
chosen as 1073 and 107, respectively. The penalty parameter  in is chosen as
6, 12 on the interior edges and boundary edges, respectively.

4.5.1 FOM Results for OCP of Convective FHNE

In this subsection, we give the FOM results of the OCP for convective FHNE. If it is
not specified, our parameter spaces are chosen as following in all numerical examples

C1 :9, 02:0.02, 03:5, 620.1, dl :d2:1

on a rectangular box Q = [0, L] x [0, H] with L = 100 and H = 5 as in [35]. In
addition, the final time is taken as 7' = 1.

4.5.1.1 Optimal Control in the Space-Time Domain

First of all, we consider the OCP (#.1)) with the desired state functions defined in the
whole space-time domain Q)7 with wg = 1, wr = 0, and Tikhonov regularization
parameter A = 10~°. The step sizes are taken as Az; = Az, = 0.5 in spatial,
and At = 0.05 in temporal domain. The desired states are chosen as the solution of
uncontrolled FHNE

— Ulnat(%t)a if t< T/27 _ u2nat<x7t)7 if ¢ < T/Z’
uig(e,t) = { 0, otherwise, taq(w,t) = 0, otherwise,

with the initial conditions given by

0.1, if 0<2;<0.1, 0< 29 < H,
ol ) = { 0, otherwisé, 2 2o, 0) = 0.

Here, (U1, U2nat) Shows the uncontrolled solutions of the convective FHNE.

Further, the set of admissible control is chosen as

Upg = {u € L=(Q) : —0.2 <wu(x,t) <0 forae (z,t) € Q}.

First, we examine the numerical solutions of our optimization problem (4.1I)) without
sparsity, i.e., 4 = 0. As it is seen in Figure with increasing values of V., the
computed solutions of the control u is bounded with our chosen box contraints and the
corresponding state u; becomes more curved, as expected [35)]. Additionally, optimal
values of the cost functional ./, the number of iterations, line searches and Newton steps
in Table occurring in the optimization algorithm are increasing with the increasing
values of V.. This is due to the fact that the higher value of V., makes the character
of our minimization problem (.1]) more stiff.
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Figure 4.1: Optimal controls u (top) and associated states u; (bottom) at ¢ = 0.75
without sparse control for V},,,,=16, 32, 64, 128 (from left to right).

Table 4.1: Cost functional .J, number of nonlinear CG iterations, line searches, Newton
steps without sparse control.

Vinar | J =1 | #ite. | #search | #Newton
16 | 2.91e-2 64 245 787
32 | 5.80e-2 77 297 956
64 | 1.16e-1 96 373 1203

128 | 2.30e-1 | 123 481 1554

Secondly, we test the effect of the sparsity parameter j in our optimization problem
(4.1). As it is observed in Figure higher values of x induces the sparsity of the
optimal control with their associated states behaviours u;. As increasing values of (i,
the smooth / and non-smooth y17 cost functional increase in Table In addition to
this, the number nonlinear CG iterations, line searches and Newton iterations increase
in Table 4.2] which is expected result since the larger value of p increases the non-
smoothness of the problem (#.1). However as it can be seen in the next terminal control
problem, this situation can be just the opposite. That is, the number of nonlinear CG
iterations, line searches and Newton iterations can diminish while the sparse parameter
is increasing [23]].
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Figure 4.2: Optimal controls u (top) and associated states u; (bottom) for the sparsity
parameters 1 = 1/500,1/100,1/50, 1/35 (from left to right) and Vi,.x = 32 att =
0.75.

Table 4.2: Optimal values of 7, 7, and number of iterations, line searches, and Newton
steps for V4. = 32.

0 Lopt Ujopt | 7FFite. | #search | #Newton
1/35 | 1.10e-0 | 1.30e-1 | 170 666 2193
1/50 | 7.31e-1 | 8.21e-2 | 156 610 1971

1/100 | 3.60e-1 | 3.47e-2 | 121 470 1516
1/500 | 1.21e-1 | 5.93e-3 88 341 1099
0 | 5.80e-2 0 77 297 956

Eventually for vanishing Tikhonov parameter A for 4 = 0 and g # 0, the conver-
gence of the optimal control and corresponding state are examined in Figure
which assumes an essential part in order to check SSCs for OCPs without exact so-
lution [24} 26]]. In Figured.3] our reference solutions for states and control are @y ¢ :=
U1 1e—10> U2ref ‘= U21e—10> AN Uper := U1e_19 With fixed V. = 64. Asitis observed in
Figure for both sparsity parameters . = 0, p = 1/100 the errors decay as A | 0.
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Figure 4.3: L*(Q) errors for |[T1\ — Uiyell, [[Tan — Waretll, and ||y — Uyer|| for the
sparsity parameter ;o = 0 (left), u = 1/100 (right).

In Table L?(Q) errors for the desired functions are shown. With decreasing val-
ues of Tikhonov regularization parameter A the errors are decreasing. Hence, desired
functions are quite achieved with decreasing values of \.

Table 4.3: L*(Q) errors for ||[ury — u1gl| and |[uzy — usg]|-

p=0 pu = 1/100
A [y — wigll | [[Way — uagll | [ty — wigll | [[w2y — waql
1 5.77e-1 1.09e-1 5.29e-1 991e-2
le—1 3.84e-1 7.32e-2 4.48e-1 8.48e-2
le — 2 3.42e-1 6.53e-2 4.02e-1 7.44e-2
le—3 3.39¢-1 6.47¢e-2 3.95¢-1 7.25e-2
le—4 3.39¢-1 6.46e-2 3.95e-1 7.23e-2
le—5 3.39¢-1 6.46¢-2 3.95¢-1 7.23e-2
le—6 3.39¢-1 6.46e-2 3.95¢-1 7.23e-2
le—7 3.39¢-1 6.46e-2 3.95¢e-1 7.23e-2
le —8 3.39e-1 6.46e-2 3.95e-1 7.23e-2
le—9 3.39¢-1 6.46e-2 3.95¢e-1 7.23e-2
le — 10 3.39¢-1 6.46e-2 3.95¢-1 7.23e-2
4.5.1.2 Terminal Control
Here, we consider terminal control, that is, wg = 0, wy = 1. The regularization

parameter is chosen A = 1073, and we consider the sparse optimal control, i.e., u # 0.
The step sizes are Ax; = Axy = 0.125 in spatial and At = 0.05 in temporial domain.
The desired state functions are constructed as

ulT(xa T) = Ulnat ('Tu T/2) and UQT(xa T) = U2npat (xa T/2>7
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where (U1, Uonag) 1 the solution of the uncontrolled convective FHNE at the final
time 7" = 1 with the initial conditions

1
ulO(x7t) - { 07

The admissible set of controls is chosen as

if 2§$1§22,0§1’2§H,

otherwise, ugp(,0) = 0.

Upg :={u e L®(Q): 0 <u(z,t)<0.2 forae (z,t) € Q}.

0.02

0.015

0.01

0.005

Figure 4.4: Optimal controls u (top) and associated states u; (bottom) for the sparse
parameters x = 1/500,1/100,1/50, 1/35 (from left to right) and V,,.x = 32 at ¢t =
0.75.

Table 4.4: Optimal value of I, pj, and number of nonlinear CG iterations, line
searches, and Newton steps for Vi,.x = 64.

I Lopt Wiopt | FHite. | #£search | #Newton
1/100 | 1.37e-1 | 1.15e-2 2 5 16
1/150 | 9.24e-2 | 7.70e-3 3 7 18
1/200 | 7.00e-2 | 5.88e-3 4 8 19

1/2000 | 8.79¢-3 | 6.43e-4 19 74 238

0] 1.42e-3 0 22 89 289

While the value of the sparsity parameter p is increasing, the sparsity is seen more
obvious in the optimal control u and corresponding optimal states u;, u, in Figure[d.4]
As we said in the previous part, the sparsity parameter ;. increases while the number
of nonlinear CG iterations, line searches, and Newton steps decrease Table similar

to the result in [23]].
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Table 4.5: Numerical errors of |Ju — uy|| and error estimates 2||C|| for sparse controls
with g = 1/200.

Azy = Azy | flu — sl | 2|
2.5 2.43e-2 | 5.92e-2
1.25 2.43e-2 | 5.60e-2

0.625 2.46e-2 | 4.78e-2

In the Table the SSCs are checked. Since the exact solution is not known, we
consider the reference solution computed with Az = Axy = 0.3125 to show that the
result (4.22) of the Theorem [4.3|is satisfied.

4.5.2 ROM Results for OCP of Convective FHNE

Here, we consider the OCP with desired state functions defined at the final time 7" = 1
only, that is, wg = 0, wp = 1. There is no sparse control, i.e. ;t = 0, and A = 1073,
The maximum wave speed of the velocity field is V,,,,, = 128. We use a uniform step
size in space Ax; = Axy = 0.5 and in time At = 0.05. Stopping criteria for this
problem is different than before: the criteria |/, — J| <= le — 5 is changed with
|Jora — J|/|Joa] <= le — 3 for the FOM solutions. Then, the corresponding sub-
gradient of J: g1 := Tol; is saved and used as a stopping criteria as ||g+1| < Toly
for the ROM solutions.

The desired states are chosen as
ulT($a T) = Uinat ($a T/Q) and UZT(xv T) = U2nat (il?, T/Q)
Initial conditions are chosen as

(1, if2<a <22 0<ay < H, B
uro(z, 1) = { 0, otherwise, uzo(z,0) = 0.

The admissible set of controls is chosen as

Upg == {u € L=(Q) : —0.01 < wu(z,t) <0.01 forae (z,t) € Q}.
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Figure 4.5: Optimal states u; and us (top), optimal control (bottom) for the full system
at the final time.
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Figure 4.6: Decay of the singular values for u;, us and the nonlinearity f.

For the FOM, optimal control and corresponding optimal states are given in Figure.5]
which coincides with the results in [92]]. In Figure[4.6] the decay of the singular values
of the snapshot matrices for both state variables w1, us, and the nonlinearity f(u;) are
shown. As it is seen, all of them are linearly decreasing almost with the same rate.

For the ROM solutions to approximate FOM solutions as in Figure 4.3] we rely on the
relative information content (3.11). We choose number of POD modes & according
to the solution of miny e(k) > 99.99%. Here, for this problem £ is chosen as 8. We
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choose also m = r = 8, the number of DEIM and DMD modes. The errors for the
ROM solutions for both state components w1, us and control u, which are calculated
according to the difference between FOM and ROM solutions, are given in Figure

with almost the same rate.
5 4
4 3
3 2
><N 1
2
0
1 Kl
0 -2
0 50 100
X1

0 50 100 0 50 100

X X X

1 1 1

Figure 4.7: Errors of POD, POD-DEIM and POD-DMD with 8 basis functions (from
top to bottom): optimal control errors u (left), associated states u; (middle), us (right)
errors at the final time.

The results in Table 4.6 shows optimal values of the cost functional .J, the number of
iterations, line searches, Newton steps, CPU times (in seconds) with speed-up factors
for FOM and our using ROM techniques. The speed-up factors for ROMs are defined
in Chapter 3

Here, the important contribution in optimization problem with ROM is POD-DMD
technique, which is a new approach in optimization problems. There is no literature
searches related to this as far as we know. As one can see, the speed-up factor for
POD-DMD is really promising, of course, with accepted accuracy and efficiency. This
is due to the fact that POD-DMD reduced state system (4.33)) is linear which makes
the resulting OCP problem (4.1)) convex. Instead of using nonlinear CG, we prefer to
use linear CG. Therefore, there is no Newton iteration as it is seen in Table 4.6] In
addition, the values of the cost functional are really close to each other.
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Table 4.6: Optimal value of cost functional ./, average number of nonlinear CG itera-
tions, line searches, Newton steps, and speed-up’s factors.

Jopt + Wopt | FFite. | #£search | #Newton | CPU (s) | Speed-up
Full | 1.72788e-04 | 54 205 11.91 6994.80 -
POD | 2.14017e-04 | 13 44 9.38 275.80 25.36
POD-DEIM | 1.99148e-04 | 14 48 9.64 171.69 40.74
POD-DMD | 1.98408e-04 | 14 48 - 50.44 138.69

We also check L%(Q) errors in the whole space-time domain and L*(Q2) errors at the
final time for the control » and state variables u,, uy with the same increasing number
of POD-DEIM-DMD modes in Figures As expected, the POD reduced sub-
optimal solutions are the most accurate one. After around £ = m = r = §, the whole
domain and terminal domain errors, shown in Figures do not change much for
the ROMs. Therefore, it is not needed to use greater number of modes.

—%— POD
~—%— POD-DEIM
POD-DMD

—%— POD
\ ——¥— POD-DEIM

POD-DMD

L, Erroru,
=
5]

L, Erroru,

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Number of Modes Number of Modes

10°

—*— POD
~——#— POD-DEIM
POD-DMD

L, Erroru
=
5
N
/
/

102 . . . . . . . .
0 2 4 6 8 10 12 14 16 18
Number of Modes

Figure 4.8: Errors for states w1, uy (top), and control u (bottom) in the whole domain
with increasing number of modes.
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Figure 4.9: Errors for states u;, us (top), and control v (bottom) at the final time with
increasing number of modes.

In Figure [d.10} we check the cost functional values. After almost 9 basis functions for
all ROM techniques, the objective function value does not change much and they all
approach the FOM optimal control. Besides, the CPU times are shown in the same
Figure .10} As expected, the CPU-time for the POD-DMD is always less than the
other ROM techniques, and the CPU-time for all three reduced sub-optimal is always
less than for the FOM optimal control.

102 10*
—%— POD
~—%— POD-DEIM
POD-DMD
—*—FOM
10°
~
° L
£ L
= 103[ 35 102 1
S
IR 10" 3
\\_‘ oo
N e ~—%— POD-DEIM
T POD-DMD
—%— FOM
10 . . . . . . . . 100 . . . .
] 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

Number of modes Number of modes

Figure 4.10: Objective function values (left) and CPU times (right) with increasing
number of modes.
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CHAPTER 5

CONCLUSION AND DISCUSSION

In the first part of the thesis, we have investigated pattern formation by the diffusive
and convective FHNEs. We have shown that patterns like pulses, fronts, spots and
labyrinths for the diffusive FHNE are computed accurately using the skew gradient
structure preserving time integrator AVF in combination with DG finite elements in
space. In addition, the wave type solutions of the convective FHNE have been cap-
tured in an efficient way with DG method. For convection dominated problems, DG
methods are more stable than the continuous finite element methods. Due to the large
amount of computing time of the high fidelity DG solutions, we have applied pro-
jection based MOR techniques. MOR can dramatically reduce simulation costs by
preserving the behavior of parametrized PDEs, which was demonstrated here for the
diffusive FHNE with Turing patterns and for the convective FHNE with wave types
solutions. The DEIM and DMD are especially used to reduce the dimension of the
nonlinear term in the activator equation. In the literature, DEIM is applied usually for
the finite differences and the continuous finite elements discretized PDEs. We have
shown that the DG discretization in space can save the computational cost and due
its local structure DG is more efficient than the continuous finite elements. However,
in terms of error convergence, the performance of the nonlinear dimension reduction
techniques needs to be improved. For POD-DEIM solutions, increasing the number of
DEIM modes leads an oscillation in the error. More accurate solutions can be obtained
using exponential time integrators, like the exponential AVFE. Pattern formation prob-
lems require much more POD mode than the parabolic problems. New approaches
are needed to overcome this drawback. For POD-DMD solutions, a drawback of this
method is that although the number of DMD modes increases, the resulting error does
not decrease beyond some tolerance. This is because the DMD modes are not orthog-
onal. To overcome this issue, the DMD modes should be orthogonalized.

In the second part of the thesis we solved the OCP governed by the convective FHNE
in blood coagulation. Numerical results of the optimal control governed by the con-
vective FHNE model with travelling waves reveal different aspects of the parabolic
semi-linear optimal control problems investigated. The second order optimality con-
ditions for local solutions in form of 2D travelling waves are verified numerically for
vanishing Tikhonov regularization parameter with sparse controls as done for one di-
mensional waves of the classical FHNE in the literature. By using the second order
optimality conditions, we estimate the measure between the discrete solution and the
local minima. Since the control of the convection dominated problems with wave so-
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lutions requires a large amount of computing time, the MOR techniques have been
applied. Among the three MOR techniques the POD is the most accurate as expected.
The POD-DEIM and POD-DMD ROM errors are close, but in contrast to DEIM, POD-
DMD ROM results are linear reduced order systems. Therefore in the computation of
the reduced optimal control of the convective FHNE, the POD solutions are the most
accurate, but the POD-DMD solutions are the fastest. Usually the optimality con-
ditions are not satisfied exactly in the reduced model, therefore the called “reduced
optimality system” approach should be applied.

As a future work, in order to compensate of deviations from the optimized trajectory,
to diminish unwanted disturbances and errors in the optimal control, it is important
to utilize a feedback mechanism like model predictive control. Since this would take
more time than solving the optimal control problem, MOR techniques can be applied
to speed up this method. As an entirely different subject, to capture some patterns of
the reaction-diffusion equations we can also study parameter estimation based on the
OCP.
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