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ABSTRACT

ALGORITHMIC TRADING STRATEGIES USING DYNAMIC MODE
DECOMPOSITION: APPLIED TO TURKISH STOCK MARKET

Savaş, Mehmet Can

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Yeliz Yolcu Okur

Co-Supervisor : Prof. Dr. Bülent Karasözen

July 2017, 48 pages

Algorithmic trading schemes are growing of importance in modern financial world.
Each year, increasing proportion of the total trading volume is handled by algorithmic
trading systems and they have become a fundamental element of modern day trading.
We demonstrate the application of an algorithmic trading strategy using dynamic mode
decomposition and genetic algorithm. The dynamic mode decomposition is a data
analysis tool which is capable of characterizing the dynamical systems in an equation-
free manner by decomposing the system into low-rank structures, dynamic modes,
whose temporal evolution is known. The method enables financial market prediction
using dynamic modes. In order to improve the prediction success of the method, we use
a complementary technical analysis tool which is optimized with genetic algorithm.
We are able to build algorithmic trading strategies using dynamic mode decomposition
and test them in Turkish stock market. We conclude that dynamic mode decomposition
is a capable method to analyze stock markets.

Keywords : Algorithmic trading, dynamic mode decomposition, portfolio selection,
market timing, Koopman operator, dynamical system
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ÖZ

DİNAMİK MOD AYRIŞIMI KULLANARAK ALGORİTMİK TİCARET
STRATEJİLERİ: TÜRK HİSSE SENEDİ PİYASASINA UYGULAMASI

Savaş, Mehmet Can

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Yeliz Yolcu Okur

Ortak Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Temmuz 2017, 48 sayfa

Algoritmik ticaretin önemi modern finans dünyasında gün geçtikçe artmaktadır. Her
yıl, algoritmik ticaretin ticaret hacmindeki payı artmakta ve modern ticaretin önemli
bir parçası haline gelmektedir. Bu çalışmada dinamik mod ayrışımı kullanan bir algo-
ritmik ticaret stratejisi geliştireceğiz. Dinamik mod ayrışımı, dinamik sistemleri zaman
dinamiği bilenen daha küçük kerteli yapılara ayırarak karakterize eden, denklemsiz bir
veri analiz metodudur. Metot bu yapılar sayesinde finansal tahmin yapmamıza imkan
vermektedir. Metodun tahmin yeteneğini geliştirmek için genetik algoritma ile opti-
mize edilmiş tamamlayıcı bir finansal teknik analiz stratejisi kullanılmıştır. Bu sayede
dinamik mod ayrışımı kullanan algoritmik ticaret stratejileri geliştirilmiştir. Sonuç
olarak, dinamik mod ayrışımı hisse senedi piyasalarını analiz edebilecek uygun bir
metottur.

Anahtar Kelimeler : algoritmik ticaret stratejisi, dinamik mod ayrışımı, portfolyo seçimi,
ticaret zamanlaması, dinamik sistemler, Koopman operatörü
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CHAPTER 1

INTRODUCTION

Developments of computers and computer sciences in last decades led a significant
change in the finance industry. Nowadays, finance industry experiences a digital age.
Markets have become fully electronic, therefore, investors can reach to a market from
anywhere almost instantly. Information of all kind can be transferred from exchanges
to data centers and investors with the speed of light. These advancements have re-
shaped the finance industry and have promoted growth and development.

The finance industry adopts technological advancements to improve the accessibil-
ity of exchanges, increase demand, and ease trading. An appropriate example is the
ticker tape system. Basically, the system works by transmitting the latest transaction
information from exchange to receiver’s machine via telegraph wires. The receiver’s
machine which is called ticker tape machine prints the information on the tape. This
system was used from the late nineteenth century to the mid-twentieth century. Follow-
ing the advent of the computer networks and powerful computers, the finance industry
adopted them in the same manner. In the 1960s, computers replaced ticker tape system
made it obsolete. Major exchanges became electronic after the mid-1990s and early
2000s. This transition indeed improved the activity of the exchanges. According to
the World Bank data, the total value of stocks traded increased substantially in United
States from 3.6 trillion US dollars in 1994 to 29.7 trillion US dollars in 2000 then to
42 trillion US dollars in 2016 (The World Bank 2016). Moreover, the average daily
volume has soared by 164% since 2005, according to the data from New York Stock
Exchange. Trading costs plummeted and everyone can trade effortlessly.

The technological advancements triggered the growth of cheap computer power and
made available for sophisticated trading as well as trading strategy development and
testing platforms. This growth changed the way of trading. Physical pits in the ex-
changes replaced by computer terminals. Orders started to be placed electronically
and executed electronically. A new trading mechanism called algorithmic trading
emerged. Algorithmic trading has many definitions but basically, it refers to the trad-
ing of securities based strictly on the buy/sell decisions of computer algorithms [6].
The computer algorithms are designed and programmed by traders or experts through
rigorous research. They employ mathematical, statistical and financial models incor-
porated with relevant data. Algorithmic trading schemes include the decision-making
process and trading execution process. Often, definitions overlap each other. Quantita-
tive trading is also used to refer to algorithmic trading or its decision-making process
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and sometimes algorithmic trading is used to refer solely to the execution algorithm.
In this thesis, we will use algorithmic trading and quantitative trading interchangeably
to refer the decision making process.

The trading strategy is a plan of action designed to achieve a profitable return by going
long or short in markets on organized financial exchanges [27]. Algorithmic trading
strategies try to achieve this profitable return by computer algorithms. The ultimate
goal of algorithmic trading is having an edge over other traders in the means of fore-
casting ability and speed. The latest technological improvements in exchanges have
pushed down their latencies and promoted high-speed trading. For example, Nas-
daq reports required time to handle an average order is 98 microseconds. The special
type of algorithmic trading strategy called high-frequency trading seeks statistical ar-
bitrage opportunities, inefficiencies in the market and tries to exploit them with this
speed advantage to have an edge. The forecasting ability of the algorithmic trading
strategies depends on the models used and how well they optimized and put together.
At first glance, the forecasting ability of computer algorithm seems to be disadvan-
taged in a field such as investing, where returns may be affected by almost any type of
human activity. The human mind has the ability to digest and synthesize a wide vari-
ety of information. A computer algorithm, on the other hand, acts only according to
instructions given them. However, the computer algorithm has two significant advan-
tages.The first advantage is the speed advantage. It can quickly process a huge amount
of data. The second one which seems irrelevant at first, it does not have emotions. The
second one is especially important. Fenton et al. showed in [10] that emotions and
their regulation play a central role in traders decision making, even though the work
is predominantly theorized and dominated by rational analysis. The properly designed
algorithmic trading strategy pursues trading profit with the persistent consistency and
objectivity of computer logic. This shows the importance of algorithmic trading and
provides a rational reason to use it.

Building an algorithmic trading strategy involves many technical steps but the first
step is the decision strategy. This strategy sometimes called alpha model [24]. An
algorithmic trading strategy usually consists several parts which handle different tasks
of the trading. Alpha model is the part of the algorithmic trading strategy that forecasts
the market and tries to make a profit. Usually, most of the research are focused on this
part. There may be other parts such as risk model, transaction cost model, portfolio
construction model and execution model. In this thesis, we discard these parts and
focus on the alpha model only. Henceforth, when we use the term algorithmic trading
strategy, we actually refer to the alpha model of the algorithmic trading strategy.

Basically, we can categorize algorithmic trading strategies into two main categories:
theory-driven and data-driven [24]. Theory-driven strategies assume a theory to ex-
plain the certain behaviors of the markets and then test these theories whether they can
be used to predict the future. These theories are usually backed with economical and
mathematical concepts. There are many theory-driven strategies, e.g., trend follow-
ing strategies [3, 12], mean reversion strategies [2, 9, 20] and mathematical, statistical
models [1, 14, 32]. In the case of data-driven models, what they do basically is data
mining at some level. The usual inputs are sourced from markets, e.g., price, volume
data. Typically these strategies make no assumptions and seek to find patterns that may
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have some explanatory power about the future. They are based on the premise that the
data has sufficient information to predict future and it can be extracted by using certain
analytical techniques. Data-driven strategies are usually less widely practiced. The
reasons for that are data-driven strategies are significantly more difficult to understand
and the mathematics are far more complicated [24]. However, since data-driven strate-
gies are more technically challenging when compared with theory-driven strategies,
there are fewer competitors.

Both strategy types have advantages and disadvantages. The advantage of using theory-
driven strategy is when the theory is in hand that means we have a complete under-
standing of the phenomenon. We know how it works and we can forecast it in accor-
dance with the theory. But the prominent disadvantage is formulating the theory. Also,
most of the time the theory is an approximation or is simplified version of the reality
which many parameters are discarded. This makes theory suitable for some cases and
not suitable or invalid for others. The advantage of using the data-driven strategy is
that they are able to discern the behaviors regardless of their true reason. Simply put,
data-driven strategies can favor empirical approaches without concerning the theory
or rationalization behind behaviors. Employing a data-driven strategy is considerably
more challenging but at the same time, it is more flexible and rewarding. The important
disadvantage of data-driven strategies is the data itself. These strategies are sensitive to
the data. It should be sufficiently large to reveal essential information. Also, it should
be bias and noise free. Noisy data may contain many false signals. The convenient
data can be obtained by data preperation step before feeding it to the strategy which
can be time consuming. Another way is buying it from data vendors which may be
costly.

After choosing the appropriate strategy type, the next steps are formulating the strat-
egy and backtesting it. The aim of this thesis is building algorithmic trading strategies
by adopting the data-driven technique. It is a judicious assumption to think a financial
market as a dynamical system. A financial market involves countless traders and their
decisions which affect the market. Also, many securities bought and sold prices are
changing continuously, financial markets have a strong relevance to time as well. It
is difficult to reveal all these relationships and formulate them, instead, we want to
use the data created by the financial market to have essential information to specu-
late. Because of this purpose the fundamental element of the strategy is the dynamic
mode decomposition. Dynamic mode decomposition (DMD)[7, 18, 28, 30, 31, 34] is
an equation-free data analysis tool capable of extracting coherent structures of the dy-
namical systems. The DMD method requires no assumptions or equations about the
system, uses only collected data. Using the DMD method, we will reveal important
information which will be sufficient for us to speculate in the financial market.

The significance of this thesis is that it builds an accurate connection between the DMD
and the financial market. It shows DMD is a capable tool to use as a building block for
algorithmic trading strategies. Also, it shows that accuracy of the DMD strategy can
be improved by combining it with other technical analysis tools such as simple moving
average.

In the literature, there are several applications of the DMD method in finance. Mann
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and Kutz [21] applied the DMD method in finance. They showed it is possible to make
market predictions using temporal structures of dynamic modes. Also, they used a
learning algorithm to find the best inputs for the DMD method for trading in a financial
market. We use the same learning algorithm for that purpose. In addition to that, we
introduce a search algorithm to find the best parameters for the DMD method if more
than one hotspot exists. Hua et al. [13] used the DMD method to find persistent cyclic
activities in the market. Cui and Long [8] showed that portfolio selection can be done
using dynamic modes and tested their strategy in Chinese stock market. In this thesis,
we introduce an asset allocation method to allocate the stocks which are found using
their way.

The thesis consists of three chapters. In the next chapter, the dynamic mode decompo-
sition will be introduced. The connection between dynamic mode decomposition and
the Koopman theory will be given. In Chapter 3, the application method of the DMD
in finance will be defined. Also, we define the algorithmic trading strategies and then
we present their backtest results. Chapter 4 concludes the thesis and gives an outlook
of the future work.
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CHAPTER 2

DYNAMIC MODE DECOMPOSITION

Dynamical systems spontaneously appear in almost every model which is related to a
real physical phenomenon. We should write down and solve its governing equations to
have a solid understanding of the system. However, this approach poses several chal-
lenges. The first challenge emerges from the complexity of the dynamical systems.
Dynamical systems are often complicated without expert knowledge about the under-
lying system and it is almost impossible to write down actual governing equations for
most cases. For nearly every case, models are simplified leading to an approximation,
sketchy formulation of the system in hand. Sometimes this makes models incapable
of explaining the complete phenomenon. The second challenge is after prescribing the
governing equations, solving them. Most of the cases, they do not have exact solutions.
But numerical solutions can overcome this challenge and they are abundant. Because
of the challenges mentioned, data analysis and data minining methods are grown vast
in number. The goal of these methods is extracting useful information from data and
transform it to the structure for further use.

As mentioned before, we assume that a financial market is a dynamical system. Un-
der this assumption, we adopted dynamic mode decomposition method to analyze the
system. Instead of writing down the theory of the financial market, we want to use the
data which creates for speculating.

The dynamic mode decomposition is a data analysis tool to extract coherent struc-
tures from the data. It can be seen as an ideal combination of spaital dimensionality-
reduction techniques, such as the proper orthogonal decomposition ( POD ) with Fourier
transforms in time [19]. At the highest level, the DMD constructs the best-fit linear dy-
namical system in the least-square sense to the nonlinear dynamical system that gener-
ates the data [19]. By using this approximate linear dynamical system we can diagnose
the system and even we can make predictions for the future.

The important aspect of the DMD method is the dynamic modes. The dynamic modes
are spatially coherent meaning that they are physically more meaningful. Also, they
are correlated with time. Each mode is associated with temporal structure that gives
growth rate and frequency of oscillation.

The computation of the DMD method is simple. It only takes the collected snapshots
of the data. Snapshots are data vectors which represent the data in one state. They
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contain measurements of the system from different spatial locations. They can be
thought as slices in time, together they make up the data. The snapshots can be sam-
pled with regularly spaced intervals with different intervals. The DMD method takes
data snapshots vi from a dynamical system for i ∈ {1, 2, 3, ...,m}. m represents the
total number of snapshots. Then, it tries to find best fit A of vi+1 = Avi over the
{i = 1, 2, 3, ...,m− 1} snapshots. The A represents proxy, approximate linear dynam-
ics of the underlying system. Eigendecomposition of the approximate linear dynamics
gives dynamic modes and associated eigenvalues. Using them in approximate solution,
the best-fit data can be reconstructed.

The DMD method is related with the Koopman operator. The Koopman operator is
an infinite-dimensional linear operator that evolves a non-linear dynamical system in
time on space of all scalar observable functions. The DMD method approximates the
Koopman operator, constructs a linear dynamical system directly from data without
using observable functions [19].

The DMD method originated from fluid dynamics community. A brief history about
dynamic mode decomposition starts with 2005 when Mezic brought together the ideas
of Koopman operator and relating with nonlinear dynamical systems [22]. In 2008,
Schmid and Sesterhenn introduced the dynamic mode decomposition [31]. In 2009,
Rowley et al. introduced the spectral analysis and decomposition of nonlinear flows [28].
In 2010, Schmid published the dynamic mode decomposition algorithm [30]. In 2014,
Williams et al. introduced the kernel based approach for data-driven koopman analy-
sis [36]. In 2014, Tu et al. showed that the dynamic modes computed using Schmid’s
algorithm computes projections of dynamic modes and improved the algorithm to com-
pute the exact dynamic modes. Also, Tu et. al. DMD algorithm allows using data
sampled with irregularly spaced time intervals [34].

The aim of this chapter is to give a solid understanding about the dynamic mode de-
composition. The chapter organized to be parallel to the historical evolution of the
DMD method. First, Schmid’s definition of the DMD method will be given then ex-
act DMD definition defined by Tu et al. will be given as well. The chapter will be
concluded with the solution of an important problem of the DMD method.

2.1 DMD Definition

This is the dynamic mode decomposition algorithm defined by Schmid [30]. This
definition later improved by Tu et al. [34]. The dynamic modes computed by this
definition are not exact modes but their projection. Because of this reason, in this
thesis, the dynamic modes are computed by Tu et al. definition.

m = number of snapshots taken,
n = number of spatial points saved per time snapshot.

Consider ordered data snapshots vi where i = 1, 2, 3, ...,m, sampled by a constant
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sampling time ∆t. These snapshots are concatenated into a data matrix V m
1 as follows,

V m
1 =

 v1 v2 . . . vm

 .
Each snapshot is a column of the data matrix and the oldest snapshot is the first column,
the newest snapshot is the last column of the data matrix. V m

1 is n × m matrix. The
subscript of the V m

1 indicates from which snapshot the data matrix starts and the su-
perscript indicates the last snapshot. So, V m

1 starts from the first snapshot and finishes
with the last snapshot.

It is assumed that there is a linear mapping A connects the snapshot vi to the subse-
quent snapshot vi+1 ,

vi+1 = Avi .

In fact, this A is the Koopman operator that will be discussed in the last section. The
mapping is assumed to be constant and holds for whole sampling window. This as-
sumption allows formulating the data snapshots as a Krylov sequence in the following
form,

V m
1 =

 v1 Av1 A2v1 . . . Am−1v1

 .
The goal here is to extract the characteristics of the dynamical process described by A.

As the number of the snapshots increases the matrix V m
1 becomes large enough to

capture the dominant features of the underlying system. But after a critical number of
snapshots, the snapshots becomes linearly dependent. After that point, adding more
snapshot does not improve the vector space spanned by the data matrix V m

1 . After this
critical point, we can express the last snapshot as a linear combination of previous and
linearly independent snapshots.

vm = a1v1 + a2v2 + ...+ am−1vm−1 + r (2.1)

or in matrix form
vm = V m−1

1 a+ r,

with aT = {a1, a2, a3, ..., am−1} and r is the residual vector. Continue the following,

A

 v1 v2 . . . vm−1

 =

 v2 v3 . . . vm

 =

 v2 v3 . . . V m−1
1 a


+ reTm−1

or in matrix form
AV m−1

1 = V m
2 = V m−1

1 S + reTm−1 (2.2)
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with em−1∈ Rm−1 as the (m− 1)th unit vector. S corresponds the following matrix,

S =


0 a1
1 0 a2

. . . . . . ...
1 0 am−2

1 am−1

 .

This S matrix is a companion matrix. It shifts the vectors by one column and approx-
imates the last column of V m

2 in the form of (2.1). The only unknows in S are the
coefficients (a1, a2, a3, ..., am−1). By (2.2), the eigenvalues of A can be approximated
by the eigenvalues of S through similarity transformation. Then the computation of the
least-squares solution for a full rank matrix V m−1

1 is given by,

QRS = QQHV m
2 ,

RS = QHV m
2 ,

S = R−1QHV m
2 ,

a = R−1QHvm,

with QR = V m−1
1 as the economy-size QR-decomposition of the data sequence

V m−1
1 and QH denotes the conjugate-transpose of Q. Another method to get a similar

decomposition is a reduction of A to Hessenberg form by the Arnoldi iteration. We
can take QR-decomposition of our Krylov matrix which is V m−1

1 as V m−1
1 = QR.

Then construct H = RSR−1 as a Hessenberg matrix. This yields a decomposition
AQ ≈ QH . Again through similarity transformation eigenvalues of H approximate
some of the eigenvalues of A. Another way to get the Hessenberg matrix is projections
onto successive Krylov spaces but for that we should have A explicitly available . This
makes classic Arnoldi iteration unattractive for us.

Despite the fact that above formulation is mathematically true, it can lead an ill-
conditioned algorithm which is often not capable of extracting more than the first or
the first two dominant dynamic modes [30]. For this reason, more robust implemen-
tation is taken into account using singular value decomposition (SVD) and orthogonal
similarity transform (see Appendix A for SVD). The SVD of V m−1

1 is

V m−1
1 = UΣWH ,

substituting this into (2.2) results

AUΣWH = V m
2 .

Rearranging the expression with similarity transform, Ã = UHAU gives

UHAU = UHV m
2 WΣ−1 ≈ Ã.

Another advantage of this operation is dimensionality reduction achieved by the sin-
gular value decomposition of V m−1

1 = UΣWH where U ∈ Cn×r , Σ ∈ Cr×r and
W ∈ C(m−1)×r. The parameter r can be choosen to keep the largest dominant modes
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only. Now, the eigenvalues can be approximated by finding the eigenvalues of the
matrix Ã which is computationally more advantageous. The matrix Ã is a least-square
sense optimal low-dimensional representation of the original dynamical mapping A on
the subspace spanned by the proper orthogonal modes (POD) of V m−1

1 [18]. Consider
the eigenvalue problem:

Ãvk = λkvk,

where k = 1, 2, 3, ..., r. r is the rank of the approximation chosen for the SVD. The
eigenvalues λk capture the time dynamics of the originial map A. In order to construct
the DMD modes, these eigenvalues and eigenvectors mapped back to higher dimen-
sional space of A:

φk = Uvk,

where φk denotes the k’th DMD mode and U is the right singular vector of V m−1
1 .

The aim was to find the low-rank eigendecomposition of the proxy, locally approxi-
mate, linear dynamical system A that fits optimally to the measured trajectory vi for
i = 1, 2, . . . ,m in a least-square sense that,

‖vi+1 −Avi‖2 ,

which is minimized for all i. The optimality condition holds only for the snapshots
window. Hovewer, it allows prediction for the future for a limited time.

It is important to note that the DMD modes constructed with this definition are later
called projected DMD modes by Tu et al. [34] and proven that they are simply projec-
tion of the exact DMD modes onto the range of V m−1

1 .

Algorithm of the DMD method introduced in Algorithm 1.

Algorithm 1 DMD (Schmid)

1: Arrange the snapshots

 v1 v2 . . . vm

 into two matrices,

V m−1
1 =

 v1 v2 . . . vm−1

 , V m
2 =

 v2 v2 . . . vm

 .
2: Compute SVD of V m−1

1 ,
V m−1
1 = UΣWH .

3: Define the matrix Ã ,
Ã = UHV m

2 WΣ−1.

4: Solve the eigenvalue problem to compute eigenvalues and eigenvectors of Ã ,

Ãvk = λkvk.

5: Compute the DMD modes,
φ = Uv.

9



2.2 Exact DMD Definition

In this section we present the necessary definition to compute the DMD modes. We
indicated that the dynamic modes computed by using Schmid’s definition are a projec-
tion of the exact dynamic modes. Also, this definition allows using snapshots which
are sampled at irregularly spaced intervals.

Definition 2.1 (Exact DMD (Tu et al. [34])). For dataset of two n×m data matrices,

X = [x1, ..., xm] , Y = [y1, ..., ym] ,

define the operator
A = Y X†, (2.3)

where X† is the pseudoinverse of X (see Appendix A). The dynamic mode decomposi-
tion of the pair (X, Y ) is given by the eigendecomposition of A. The dynamic modes
are the eigenvectors of A.

The operator A is a least squares solution of the problem AX = Y , which is potentially
over- or under-constrained problem. If there is an exact solution to this problem (2.3)
minimizing ‖A‖F , where ‖A‖F =

√
Tr(AAH) denotes Frobenius norm. If there is

no exact solution then (2.3) minimizes ‖AX − Y ‖F .

Computing eigendecomposition of A directly could be demanding and inefficient if n
is large. I nstead of directly computing A, rank-reduced and POD- projected represen-
tation Ã will be computed.

Algorithm of Exact DMD formulation:

Algorithm 2 Exact DMD

1: Arrange the data pairs {(v1, v2), (v3, v4)..., (vm−1, vm)} into matrices,

V1 = {v1, v2, v3, ..., vm−1} , V2 = {v2, v3, v4, ..., vm} .

2: Compute the reduced SVD of V1,

V1 = UΣWH . (2.4)

3: Define the matrix Ã,
Ã = UHV2WΣ−1.

4: Solve the eigenvalue problem to compute eigenvalues and eigenvectors of Ã,

Ãv = λv.

Each non-zero eigenvalue λ is a DMD eigenvalue.
5: Compute the DMD modes,

φ = V2WΣ−1v.

10



The SVD of V1 at (2.4) can be utilized to perform a low-rank truncation of the data if
low-rank structure is present. It is no necessarity to take all of the singular values into
computation but only the dominant ones would be sufficient to explore the underlying
dynamics. It is important to note that sometimes this truncation step poses an impor-
tant problem regarding how many singular values should be kept. It has shown that
problems related with control, low-energy singular values are important for balanced
models. For the application of this thesis we do not truncate, all singular values are
taken into consideration.

The computation of the matrix A could be directly done from A = V2WΣ−1UH , how-
ever, it is more efficient to compute Ã as in the algorithm. Next theorem gives proof
of the DMD modes which computed considering projection of exact DMD modes.

Theorem 2.1 (Koopman mode decomposition and DMD theorem [19]). Let Ãv = λv,
with λ 6= 0, and let PV1 denote the orthogonal projection onto the image of V1. Then φ
given by (1.18) is an eigenvector of PV1 with eigenvalue λ. Furthermore, if φ̂ is given
by (1.24), then φ̂ = PV1φ.

2.3 Time-Delay Coordinates

This section gives a solution to a central issue with the DMD method. It is observed by
Tu et al. [34] that the DMD method fails to capture a standing wave in the data. It was
startling because the DMD had been successful to extract spatial modes that oscillate
at a single fixed frequency. If only measurements of a single sine or cosine wave are
collected, the DMD fails to return the conjugate pair of complex eigenvalues and in-
stead returns a single real eigenvalue, which does not capture periodic oscillations [19].
Another problem which is related to this one when data has fewer measurement points
than time points. The DMD method was developed and used by the fluid mechanics
community to study of large fluid flow fields, where usually n > m. n represents
measurement points, the number of rows of the data and m represents time point, the
number of columns of the data. When n < m then the SVD step of the DMD process
produces at most n singular values and this restricts the number of DMD modes and
eigenvalues to n. The number of DMD modes and eigenvalues may be insufficient to
capture the dynamics over m snapshots in time. The solution of this rank mismatch
problem is stacking multiple time-shifted copies of the data in order to construct aug-
mented data matrix.

We can demonstrate this problem and its solution with an example case from finance.
If we try to construct the DMD solution of a financial index because of the large dif-
ference between the number of rows and the columns of the data matrix, we will have
a rank mismatch issue. We are going to use BIST100 Index which is the index of the
largest one hundred company that trades on Borsa Istanbul. Figure 2.1 shows the data.
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Figure 2.1: An overview of the historical data of BIST 100 Index.

For the simplicity, we smoothed the data by using Savitzky-Golay filter (see Appendix
A). It is a filter that is used for smoothing the data to increase the signal-to-noise ratio
without distorting the signal. Another filter such as moving average filter can also be
used for this purpose [23]. The parameters for the filter are picked to have several
peaks on the smooth data for the purpose of demonstration. The next figure shows the
smoothed data.
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Figure 2.2: Smoothed data using Savitzky-Golay filter.

When we use the smoothed data to construct the DMD solution, the DMD method fails
to capture the dynamics and the solution is completely inaccurate. In fact, this problem
is quite similar to the standing wave problem [34, 19]. Again, the DMD method returns
only one real eigenvalue which fails to capture the dynamics. The reason is we have a
great rank mismatch issue. Figure 2.3 shows the DMD solution of the smoothed data.
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Figure 2.3: The DMD solution of the smoothed data.

In order to overcome the rank mismatch issue, we can use delay coordinates to augment
the data matrix. Then we can perform the DMD method on the augmented data matrix.

Delay coordinates refer to an augmented vector obtained by stacking the states at the
current time with copies of the states at future times. This stacking can be done either
with past measurements or with future measurements even permuting the order will
not impact the DMD method. We can construct the augmented data matrix as follows:

XAUG =



x1 x2 . . . xm−h

x2 x3 . . . xm−h+1

...

xh xh+1 . . . xm−1



,

and similarly for X ′
AUG

X
′

AUG =



x2 x3 . . . xm−h+1

x3 x4 . . . xm−h+2

...

xh+1 xh+2 . . . xm



.
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It is important that we must preserve the relation X ′
AUG = AXAUG. This shift-stacking

matrix idea is inspired by the Hankel matrix constructed in the Eigenvalue Realization
Algorithm (ERA) [15].

By using augmented data matrix instead of original data matrix, it is possible to in-
crease the rank of the matrix until the system reaches the full rank numerically. The
DMD method can be applied to augmented data matrices, the computed DMD mode
matrix is now hn×m matrix, the computed DMD modes are also stacks of h repeats.

Now, we are going to perform the DMD method on augmented data matrix for the
example case. In general, there is no principled way to determine to the number of
stacking for the augmented matrix. Following the strategy in [5], we choose h such
that hn > m and we use the first n elements of the each mode.

Figure 2.4 shows the solution of the DMD method using the augmented data matrix.
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Figure 2.4: The DMD solution of the augmented data matrix.

Figure 2.4 shows that the DMD solution obtained by the augmented data matrix cap-
tures the dynamics of the solution well. The figure is quite similar to Figure 2.2. This
shows that augmenting data matrix greatly increases the performance of the DMD
method if we have rank related issues.

2.4 Connection with Koopman Theory

The DMD method can be thought as a special case of Koopman Theory, defined by
Bernard Koopman in 1931 [17]. In this section, first we give the definition Koopman
operator. Then we reveal connection between the DMD method and the Koopman
operator.

Definition 2.2. Let x ∈ M is a state on a smooth n-dimensional manifold M. Given a
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continuous-time dynamical system,

d

dx
= f(x), (2.5)

The Koopman operator K is an infinite-dimensional linear operator that acts on all
observable functions g: M → C such that

Kg(x) = g (f (x)) .

The Koopman operator is an infinite-dimensional linear operator that acts on Hilbert
space of all scalar observable functions g [22, 28]. Thus, this transformation trades
nonlinear finite-dimensional dynamics with linear but infinite-dimensional dynamics.
This trade-off certainly poses some problems but, linear differential equations can be
solved using spectral representation. Also, infinite-dimensional representation can be
approximated by sum of modes that finite but sufficiently large.

The Koopman operator can also be defined for discrete-time dynamical systems. The
Koopman operator K defined for a discrete dynamical system is

ξk+1 = f(ξk)

evolving on a finite dimensional manifold M . The Koopman operator acts on scalar
functions g : M → C according to

Kg(ξ) , g(f(ξ)). (2.6)

It is important to note that the linearity property of the Koopman operator is the result
of the definition 2.6. It should not be understood as linearization.

In order to use the spectral decomposition of the Koopman operator, we consider the
eigenvalue problem

Kφj(ξ) = λjφj(ξ), j = 1, 2, . . . , (2.7)

of the Koopman operator K. The functions φj(ξ) are Koopman eigenfunctions. The
Koopman eigenfunctions define a set of coordinates on which it is possible to advance
these observables with a linear dynamical system. The λj are the eigenvalues of the
Koopman operator. From spectral theory, we can represent the evolution of the dynam-
ics, in this case on the observables, using an eigenfunction expansion solution of the
Koopman operator. So, we can express vector-valued observable functions in terms of
the Koopman eigenfunctions φj as

g(ξ) =
∞∑
j=1

φj(ξ)vj, (2.8)

where (vj)
∞
j=1 represents the set of vector coefficients called Koopman modes associ-

ated with the j’th Koopman eigenfunction. The important assumption here is that we
assume that each component of g lies in the span of the eigenfunctions. Using 2.7 and
2.8, we can write

Kg(ξk) =
∞∑
j=1

λkjφj(ξ0)vj. (2.9)
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From the last expression, the future solutions can be computed directly by simple mul-
tiplication with the Koopman eigenvalue. The Koopman eigenvalues {λj}∞j=1 dictates
the growth rate and frequency of each mode [7]. The DMD is used to approximate to
Koopman eigenvalues λj and modes vj . Using equation 2.9, we can find the values
of observable function at specific time and even we can evolve it in time using the
Koopman eigenvalues.

The connection between the DMD method and the Koopman method is elegant. The
DMD method approximates the Koopman eigenvalues and the modes directly from the
data under suitable conditions. Simply put, the DMD method computes the eigenvalues
and the eigenvectors of a finite-dimensional linear model that approximates the infinite-
dimensional Koopman operator. There is a crucial point here. The Koopman spectral
analysis 2.9 requires observable functions g to provide a better mapping from one
state to another. Finding these observable functions are challenging and often requires
expert knowledge about the system in hand. Also, there is no principled way of finding
these functions. The DMD does not require them, the Koopman modes and eigenvalues
are directly approximated from the measured data. So, the data plays critical role in the
DMD methods performance. The measurement should be appropriate to have accurate
prediction from the DMD method.

In order to explore the connection with the DMD and the Koopman operator, the Koop-
man framework is constructed. Consider the set of p observables,

gj :M→ C, j = 1, 2, . . . , p.

Let g = [g1, g2, ..., gp]
T denote the column vector of observables. Now, construct data

matrices Y and Y
′ with a set of initial conditions {x1, x2, ..., xm−1} to (2.5). The

column of matrix Y are given by yk = g(xk). The column of Y ′ are given by evolving
the dynamical system (2.5) forward by ∆t and getting the output vector via observables
as y′

k = g (f (xk)). Applying the DMD on the data of observables produces AY =
Y

′
Y †, which is the needed Koopman approximation. It is important to note that Y and

Y
′ computes the DMD on the space of observables instead of on the state-space. The

following theorem concludes the connection between DMD method and the Koopman
theory [28, 34, 35].

Theorem 2.2 (Koopman mode decomposition and DMD [19] ). Let φk be an eigen-
function of K with eigenvalue λk, and suppose φk ∈ span {gj}, so that

φk(x) = w1g1(x) + w2g2(x) + ...+ wpgp(x) = w · g

for some w = [w1, w2, ..., wp]
T ∈ Cp. If w ∈ R(Y ) where R is the range, then w is a

left eigenvector of AY , where AY = Y
′
Y † with eigenvalue λk so that w̃∗AY = λkw̃

∗.

This shows that the Koopman eigenvalues are the DMD eigenvalues under assumptions
that the set of observables is large so that φk(x) ∈ span {gj : j = 1, 2, . . . , p} and the
data is sufficiently rich so that w ∈ R(Y ). This also shows the importance of the
choice of observables which allows one to connect the DMD to the Koopman Theory.
If this can be done, data snapshots from finite nonlinear dynamical systems can be
taken and parametrized as linear infinite-dimensional system that allows to a spectral
decomposition.
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CHAPTER 3

IMPLEMENTATION OF THE DMD TO FINANCE AND
BUILDING THE ALGORITHMIC TRADING STRATEGY

In this chapter, the aim is to build a profitable algorithmic trading strategy that based on
dynamic mode decomposition. In order to reach this aim, we first define the method
of using dynamic mode decomposition in finance. Then we build our algorithmic
strategies using the method and tested them on Borsa Istanbul.

The algorithmic strategies in this chapter are applicable to other stock exchanges as
well. But before deploying the strategies for testing, as explained in forthcoming sec-
tions, we need to find a couple of parameters to adjust the strategies for the market.
In fact, this is a step of building the DMD based algorithmic trading strategy method.
These parameters vary for different stock markets. By following the given method,
algorithmic trading strategies for other exchanges can be build.

The Borsa Istanbul is a major stock exchange in Turkey. According to the official
reports of Borsa Istanbul, more than 290 companies are listed as July of 2017. The
total market capitalization of Borsa Istanbul is 187 million US dollars. The BIST 100
Index is the index consists the largest one hundred stocks from Borsa Istanbul, in the
means of market capitalization and trading volume. It can be used to measure the
performance of the Borsa Istanbul.

The algorithms try to make profits by trading listed stocks in BIST 100 Index.

In the next section, we build a solid framework of using the DMD in finance. In
preliminary training method section, we explain the method we follow to build the
algorithmic trading strategies. In data section, we give detailed information about
data that used. In algorithmic trading strategies section, we explain the algorithms
and their trading rules explicitly. In performance evaulation section, we evaulate the
performances of our algorithms and compare them with major benchmarks.

In this application, the same learning algorithm to adapt the DMD method in the stock
market used as [21] with different hot spot definition to choose the best timing strategy
and a similar method used as [8] to construct a portfolio from the modes. As noted
before [8], DMD method fails to capture the underlying system properly if there is
an exogenous effect on market and makes false predictions. In order to increase the
success of the DMD prediction, one of the widely used and accepted technical analysis
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tool called simple moving average is employed to reinforce the trading decision of the
model. It will be observed that this tool is increased the prediction success of the
model.

3.1 The DMD in Finance

Mann & Kutz [21] used the DMD method to have market timing strategies for different
market sectors . They showed that the DMD method can be useful analysis tool for
financial markets. Hua et al. [13] used the DMD method to extract cyclic behaviors
from financial markets. Cui et al. [8] used the DMD method to build a financial trading
strategy and tested in Chinese stock market. We use a similar approach to theirs but
our implementation of the DMD method in finance differs at some critical points.

The main difference of this thesis from the literature is that it provides a way of picking
a DMD parameter according to it’s success when more than one hotspot exists and
also it provides the connection between stock performances and their appearance in
the dynamic modes using return data measure. Using this connection we can have a
legitimate portfolio asset allocation method.

The contribution of this thesis that it gives a way of implementing the DMD method
in finance. We explain the way of using the dynamic modes and eigenvalues to make
predictions for the financial market. We want to have a rational, functional market
timing and portfolio selection strategies.

The DMD method can be thought as decomposing a data matrix into space and time.
These components are represented by the DMD modes and the eigenvalues respec-
tively. The key observation here that the DMD method builds a proxy linear dynami-
cal system that approximates the non-linear dynamical system in hand. By using the
spectral theory, this proxy linear dynamical system can be decomposed into space and
time components. From this rationale, the DMD solution of discrete dynamical system
can be written as follows [4]:

X ≈ ΦΛtb , (3.1)

where Φ represents the DMD modes matrix that each column is a DMD mode, Λt

represents the eigenvalues matrix in a form of Vandermonde matrix, b represents the
coefficients of the initial condition v1 ( this is the first column of the data matrix ) in
the eigenvector basis, so that b = v1Φ

†, where Φ† is the pseudoinverse of Φ. In this
solution, Φ contains the DMD modes that are spatial (space) components. The Λ is
often called time dynamics and contains the powers of the eigenvalues in the form of
Vandermonde matrix as follows:

V m =


1 λ1 λ21 . . . λt1
1 λ2 λ22 . . . λt2
...

...
...

...
...

1 λm λ2m . . . λtm

 , (3.2)

where t is the time index and m represents the number of eigenvalues.
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By using equation 3.1, we can construct an approximation of our data matrix at every
time point. So, using the DMD method we can get the DMD modes and the eigenval-
ues. Gathering them in matrices resulting time dynamics and the DMD mode matrix
and by using them we can construct an approximate solution. Theoretically, with the
DMD modes and eigenvalues, we captured the dynamics of our original dynamical
system.

An important thing to know is that the DMD modes are not orthogonal like POD
modes. But, unlike POD modes, each of the DMD modes has associated time structure
which is the DMD eigenvalue. Therefore, we know how each DMD mode evolves in
time. This is the information we are going to use for our market timing strategy.

The DMD eigenvalues represent the time evolution of the approximate linear dynami-
cal system. They are computed using the eigendecomposition of best-fit linear operator
A from Chapter 2. Most of the time, the eigenvalues are complex numbers. The real
parts of the DMD eigenvalues give the growth rate and the complex parts give the fre-
quency of the oscillation. For our purposes, we do not use the complex part of the
eigenvalues, we only focus on the real parts. We represent the DMD eigenvalues on
the complex plane along with the unit circle, see Figure 3.1.
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Figure 3.1: An example plot of the DMD eigenvalues on the complex plane along with
the unit circle.
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The real part of the DMD eigenvalue represents the growth rate of the associated DMD
mode. Since we do not interested with their complex part, we can separate them into
two groups: The first group is the eigenvalues which have growth rate larger than one
and the second group is the eigenvalues which have growth rate smaller than one. We
are interested with the first group, we call them growing eigenvalues.

Our market timing strategy is simply, get into the market before a stock market rally.
The stock market rally means sustained increases in the prices of the stocks. We should
be able to detect it before it starts or right after it starts in order to exploit it. The DMD
eigenvalues help us to achieve this goal.

We stated that the DMD eigenvalues capture the time dynamics of the dynamical sys-
tem and we are interested in the growing eigenvalues. In equation 3.1, we constructed
our solution with the help of time dynamics and the DMD mode matrix. If we fix the
time index t the column number of our original data matrix minus one(the reason is
that from first column of the data matrix we get the initial condition.), we exactly get
the approximation of our original data matrix. By changing the t we can get a solution
for a particular time point. The argument is: for financial speculation we do not have
to construct this solution. We just need to know when the stock market will increase
and which stocks will increase. It turns out that, if we pay particular attention to the
growing eigenvalue we can see that from 3.2, the values in the row of the eigenvalue
increase over time. At the same time, the other row values decrease because they are
smaller than one and we are taking their powers. This means that the growing eigen-
value will be dominant in the calculation of 3.1. When we think it over 3.1, the growing
DMD mode which is associated with the growing eigenvalue will be dominant for the
calculation and will increase as time passes. So, we do not really have to consider all
the DMD modes and eigenvalues but the growing ones are enough to speculate in the
stock market.

Thus, for the market timing strategy we need a growing DMD eigenvalue. When we
spot the growing eigenvalue we can say that the growing eigenvalue and its associated
mode will be dominant in the calculation of the solution. Therefore, since they increase
over time, we expect the overall stock market increase.

In fact, we also set a base framework for our portfolio selection strategy idea. The
argument for portfolio selection strategy: We can use the growing DMD mode to de-
termine which stocks are expected to increase as a result of the DMD analysis. Since
we are considering only the growing components to approximate the full solution, the
growing DMD mode will be scaled only with the growing eigenvalue. This means that
we can use the individual components of the growing DMD mode to determine the
portfolio stocks. Figure 3.2 and Figure 3.3 will help us to comprehend the idea.
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Figure 3.2: The amplitudes of DMD modes.

In Figure 3.2 we see the DMD modes which are associated with the DMD eigenvalues
in Figure 3.1. The eigenvalue number two is a growing eigenvalue and the associated
DMD mode number two is a growing mode. From Figure 3.2, the second DMD mode
has the largest amplitude. The amplitudes are the norms of the DMD modes and they
are scaled by multiplying with the real part of the associated eigenvalue then divided
by the number of components that each mode has. The amplitude of the mode two
will increase as time passes and other mode amplitudes will decrease, thus they can be
discarded for the calculation of equation 3.1. Figure 3.3 shows the components of the
DMD mode number two.
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Figure 3.3: The components of the growing DMD mode.

Recall that the DMD modes are spatially coherent means that they are physically mean-
ingful. Each component here represents a particular stock. (This is completely relevant
to the way that how the data is gathered as a matrix). Each of them has different val-
ues on the dynamic modes, we call these values contribution weights. Now we know
that the growing DMD mode scaled only by the growing eigenvalue then each stock
contribution weights scaled as well. Since the growth rate of the growing eigenvalue
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is larger than one, the positive contribution weights remain positive and the negative
contribution weights remain negative after scaling.

Thus, under two conditions we can say that the stocks which have the positive contri-
bution on the growing DMD mode will increase in the future time horizon. The first
condition is: the information of the DMD modes that we make the inference about the
stocks future state should be meaningful. The second one is: the DMD approximation
should be good. These conditions especially the first one, are closely related to the
data used for the DMD analysis.

If we have growing DMD eigenvalue obtained from the given data then we conclude
the market is feasible for trading. Then we select the stocks which have positive con-
tribution weights on the growing DMD mode. Still, this method is not complete and
we further improve it in this section.

If we get back to the conditions, we emphasized they are closely related to the data.
Generally, if we use a good data measure, we should be able to get meaningful infor-
mation from the DMD modes as we explained. Since they are spatially coherent, we
should be able to know how strong is the contribution of the each spatial location to the
current state of the dynamical system. The important thing here is that since the DMD
method uses only the data, the measurement plays a critical role to have functional and
accurate information. Recall that, in the Koopman framework, the observable func-
tions are used to enrich this process but in the DMD framework we do not have that.
Now, if we focus on the finance case; we have many data measurement options to
choose such as price, volume, return, etc. Since we are speculating about stocks value
in the future, price and return should be reasonable choice. Daily price data is used in
different applications [8, 21]. But there is a problem related to our portfolio selection
strategy if we use the price data. We observed that when price data is used, the expen-
sive stocks have large positive contribution weights on the growing DMD mode. So,
this leads to inaccurate portfolio selection strategy. Instead, we use return data. When
return data is used, the mentioned problem is solved because all stock contribution
weights are normalized. In this case, if a stock was performing well in the historical
window that is the data used for the DMD analysis, that stock has higher contribution
weight on the dynamic mode.

So far we built the outline of our implementation method of the DMD in finance but
still there are several problems need to be considered. The DMD method uses some
amount of data, in financial market case, tells us if we should enter the market or not.
The problem here is how many days of daily data we should use to have an accurate
signal. Another problem is when we enter the market, how many days we should
keep our portfolio? The solution of the both problems is using an exhaustive search
algorithm to find the best parameters for the DMD method. The idea is similar to the
machine learning training and it will be discussed in Section 3.3.

We know which stocks to select into our portfolio from the DMD analysis but how we
allocate our capital between the stocks? There could be several soluton to this problem.
We can equally invest our capital in every stock. Another way could be investing
according to the stocks contribution weights on the growing DMD mode. The rationale
behind this idea is: since we use return data we assume that stock contributions on
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Figure 3.4: The flowchart of the DMD implementation in finance.

the DMD modes reflect the performances of the stocks. Simply put, the contribution
weights show if market is increasing how much a particular stock is contributing to
that trend. Because of this we should invest more in the stocks which have larger
contribution weights. The equal allocation and the proposed way will be tested.

We finish this section by giving the flowchart of the implementation of the DMD in fi-
nance. The chart in Figure 3.4 explains the decision making steps of the DMD analysis
for trading.

3.2 Data

In the previous chapters, we emphasized the importance of the data in the DMD
method. In this section, we present the structure of the data that we use for the al-
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gorithmic trading strategy.

We use the daily stock returns of the stocks which are listed in the BIST 100 Index. The
return data is obtained by observed price data using price2ret function of the MATLAB
software. We used Google Finance as the data source [11].

The data contains of the daily returns of the available BIST 100 companies from Jan-
uary 2010 to Jan 2016 and for the DMD analysis, we put the data into the matrix as
follows:

X =



. . .
... . . .

. . . ′AEFES ′ . . .

. . . ′AFY ON ′ . . .

. . . ′AKBNK ′ . . .

. . . ′AKENR′ . . .

. . .
... . . .


↓ companies (3.3)

→ daily returns.

By this way, each spatial location in the DMD mode is associated with a particular
stock. Also, the oldest data is in the first column and the newest data is in the last
column of the data matrix.

We split the data into two parts. The first part contains the data from January 2010
to January 2015 and this part will be used for the training of the algorithm. We refer
to this data as training data. The second part contains the data from January 2015 to
January 2016 which will be used for out-of-sample testing of the algorithmic trading
strategy.

3.3 Preliminary Training Method

In the last section, we explained the way of implementation of the dynamic mode
decomposition method in finance. In this section, we address that problem and define
a method to deploy the algorithmic trading strategy that uses the DMD.

As we explained in Chapter 2, the DMD method takes some data and computes the
DMD modes and eigenvalues. In Section 3.1, we defined a way of using these DMD
modes and eigenvalues to speculate in a stock market. Our data consists daily returns
of stocks. One of the problems was how many days of data should we feed into the
DMD in order to get accurate DMD market timing signals? The other problem is what
is our exit strategy? We use an exhaustive search algorithm to solve both of these
problems.

Our exit strategy is to hold the portfolio for fixed time. Let us define two parameters
(m, p), m represents the number of historical days and p represents the number predic-
tion days. m indicates the historical data number that we feed into the DMD method.
For example, if m = 50, this means that fifty days of the daily return data will be
used for the DMD analysis. p is the number of days we should hold our portfolio. For
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example, if p = 5, this means we should hold our portfolio for five days. The goal is to
find the best (m, p) pairing in the means of market timing prediction ability. The mar-
ket timing prediction ability means that the success rate of prediction for a particular
(m, p).

We use the approach proposed in [21] to find all success rate of predictions. We define
an exhaustive search algorithm which evaluates the success rates of every (m, p) pair-
ing over a data. The algorithm takes a (m, p) pairing and computes the DMD analysis
over a data then takes the average of the success rates to find the total success rate of
the pairing. It evaluates the success rate of every possible (m, p) pairing over the same
data. The results are gathered into a matrix. We call this matrix the success rate matrix.
Figure 3.5 shows the resulting success rate matrix for the training data.

In order to find the best pairing we evaluate the success rate matrix on the first part of
our data which contains daily stock returns from Jan 2010 to Jan 2015.
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Figure 3.5: The success rate matrix.

The rows of this matrix represent the historical day number m and the columns repre-
sent the prediction day number p.
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We chose to present this matrix as a filled contour plot because it easy to see which
areas have high success rate. The red and orange areas are promising but it is not
clear which (m, p) pairing we should pick. Again, there could be several approaches
regarding picking the (m, p) pairing. One approach could be picking the pairing which
has the highest success rate. It is possible that the highest success rate pairing could
randomly occurred. Instead, we can pick with a principled way from an area which has
high success rate. Areas have more than one pairings and this makes it more unlikely
to occur as a random event.

The areas which have higher success rate in the matrix, we call them trading hotspot.
The areas colored red and orange in Figure 3.5 are the trading hotspots. We will pick
the best pairing from these hotspots. We use a modified form of the search algorithm
proposed in [21] to find the best (m, p) pairing.

The main difference of our search algorithm from the one proposed in [21] is that
it gives one (m, p) pairing regardless of the number of hotspots. Also, penalty value
ensures that the pairing is the most successful pairing from the overall successful region
and it is more unlikely to be occured randomly.

In order to have the best (m, p) pairing we define the search algorithm by fixing a
success rate threshold. This threshold value can be selected as 0.5 which means half
of the trades were accurate in the historical window. Only the pairings which are
larger than this threshold are taken into the consideration. Then algorithm computes
the penalty values of these pairings. The penalty value for a pairing from the success
rate matrix is defined as follows:

P.V =

(
i+1∑

k=i−1

j+1∑
t=j−1

(
srij − srkt

)2)1/2

,

where srij represents the pairing’s success rate. Then the overall score of the pairing
is calculated by substracting the success rate of the pairing from one and adding the
calculated penalty value for the pairing. The pairing which has the minimum overall
score is the pairing we use as the DMD parameter for the algorithmic trading strategy.

We use the penalty value in the calculation to promote the pairings which have close
success rates with their surrounding pairings. If these pairings have close success rates
it is more unlikely they occurred randomly altogether. In order to understand it better,
we give the following simple flowchart of this search algorithm:
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Figure 3.6: The flowchart of the hotspot selection algorithm.

We used the search algorithm on the first part of the data to determine the best DMD
parameter for the algorithmic trading algorithm and it is found as (4,7). We will use
this parameter for trading with the trading algorithm.

In summary in order to use the DMD in the algorithmic trading algorithm, we first
implemented the ideas of the DMD and its usage in finance in section 3.1. From there,
to find the required parameter we defined two algorithms in this Section. The first
algorithm computes the DMD method for every possible (m, p) pairing and evaluates
their success rates on a data then gathers all the information in the success rate matrix.
The second algorithm which is explained in Figure 3.6 as a simple flowchart works on
this matrix to find the best parameter to use for trading. For our case, this paramater
is turned out to be (4,7). Now, we have everything to define our algorithmic trading
strategy.

27



3.4 The Algorithmic Trading Strategy

In this section, we define our algorithmic trading strategy accordance with the infor-
mation given in Sections 3.1 and 3.3. We would like to test different aspects of the
implementation of the DMD in finance. In order to test them, we propose three strate-
gies.

All trading strategies use the DMD method to give market timing signals and portfolio
selection. As explained in Section 3.1, the strategies trade when a growing eigenvalue
is spotted. Otherwise, they hold the capital and continue to compute the DMD analysis
until a growing eigenvalue is spotted. If a growing eigenvalue is spotted, the strategies
invest in the stocks that have positive contribution weights on the associated growing
DMD mode. All strategies use (4,7) parameters for the DMD setting.

Strategy I: This strategy is the vanilla version of our final intent. It invests equally into
the stocks which are indicated by the DMD analysis.

Strategy II: This strategy invests into the found stocks according to their contribution
weights on the dominant DMD mode as explained in Section 3.1.

Using these two strategies, our aim is to test our portfolio allocation method which
invests according to the contribution weights.

The dynamic mode decomposition uses data to construct the approximate linear dy-
namical system which is used to understand the dynamical system in hand. The suc-
cess of this approximation is related to a couple of things as explained before. Another
thing we need to consider is that the best-fit approximation holds only for locally. Sim-
ply put, it holds for only the historical window and we assume that the dynamics of
the market do not change substantially afterward. If it changes, the DMD method fails
to capture the dynamics. The financial markets are open, complex dynamical systems
that are related to many things including politics. Since the DMD method does not use
any input other than data, if exogenous effects exist it fails to capture the dynamics
well and gives false trading signals. Improvements can be made to feed these exoge-
nous effects into the DMD method but a simple solution can be using another tool as a
complementary for the DMD method.

In order to minimize the number of false signals, we would like to use a widely ac-
cepted technical analysis tool as a complementary tool for the DMD method. The
simple moving average (SMA) [23] is a versatile tool, it is used to identify current price
trends and the potential for a change in the established trend. Detailed information
about the simple moving average can be found in Appendix B. Our aim by using this
tool is to prevent the DMD strategy giving out false trading signals. For example, con-
sider there is a strong downtrend in the market prices and the DMD method gives buy
signal. This signal can be caused by exogenous effect. In this situation, we do not
trade and simply pass this signal. We trade if both tools give buy signal. So, we build
our intended final strategy as follows:

Strategy III: This strategy also invests into the found stocks according to their contri-
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bution weights on the dominant DMD mode as explained in Section 3.1. In addition
to that, we use the simple moving average strategy as a complementary tool for this
strategy. We trade if both the DMD and the simple moving average give buy signals.
Otherwise, the capital is held until the next signal.

Table 3.1 summarizes the algorithmic trading strategies.

Table 3.1: Algorithmic trading strategies.

Market Timing Stock Selection Stock Weights
Strategy I DMD DMD Equally
Strategy II DMD DMD Proposed Asset Allo. Method
Strategy III DMD + Optimized SMA DMD Proposed Asset Allo. Method

In order to use the SMA, we need two parameters. These parameters are called lead
and lag. These parameters are important for having accurate signals from the SMA. In
order to find these parameters we follow the strategy used to find the DMD parameters,
see Section 3.3. We find the best-fit parameters for the training window and we use
them for the testing as well. For this purpose, we use genetic algorithm to optimize the
SMA on the training window. The genetic algorithm is a method to solve optimization
problems using natural selection [29]. Details about the genetic algorithm and the
optimization process about the SMA on the training data are given in Appendix C. The
best-fit parameters are found to be one for the lead and twenty-one for the lag.

3.5 Testing the Strategies

In this section, we test the algorithmic trading strategies which are defined in the pre-
vious section. Testing is done on the second part of the data as out-of-sample testing.
The test data contains daily stock data from Jan 2015 to Jan 2016.

We need to define several rules which all strategies will strictly follow in the test. The
rules are defined as follows:

• The starting capital is 100,000 Turkish liras. No capital is added or removed during
the test.

• Transaction costs are incurred for both buying and selling stocks.

• All capital is used when trading.

• The portfolios are held until the end of the prediction window and trading is not
allowed before current portfolio is sold.

• All trading gains are reinvested.

All strategies are tested according to these rules. Also, we need benchmarks to com-
pare our performance results with benchmark performances. We use BIST100 Index,
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interest rate and the optimized SMA strategy return rate over the test window as bench-
marks for our trading strategies.

The interest rate is observed as 8.12% at the start of the test. Also, the final total
return of the optimized simple moving average over the test period is 15.4%. Figure
3.7 shows the state of the BIST 100 Index over the test period.
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Figure 3.7: An overview of the BIST 100 Index over the test period.

In Figure 3.7 we observe that during the test period the BIST 100 Index was declined
21%. The year 2015 has seen as a rough year among investors according to the Ex-
change Trend Report-XIV published by Central Securities Depository of Turkey [25].
Serious fluctuations in the currencies and the markets have experienced due to height-
ened global growth concerns, Fed’s rate hike expectations and rising geopolitical risks.
All these factors led to a deterioration in global risk appetite and resulted in consid-
erable outflows from Borsa Istanbul. During this period, Turkish lira also suffered
and it was among the most fragile emerging market currencies and depreciated greatly
against the US dollar. As a result total market capitilzation decreased 32% in US dollar
terms and 12% in TL terms.

Next we look into the commission rates for trading in Turkey to define our transaction
costs for the test.

3.5.1 Transaction Costs

We should take transaction costs into consideration. In Turkey, there are companies
and banks which provide brokerage service to the public. They have different com-
mission rate levels to different trading volumes. For example, one brokerage company
applies 0.0018 commission rate to 0 - 50,000 TL trading volume and applies 0.0017 to
50,000-100,000 TL trading volume meaning that if we used this company as a broker
and traded total 100,000 TL in volume, we would pay 175 TL commision for buying
or selling orders. It is calculated by multiplying 50,000 with 0.0018, multiplying the
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Table 3.2: Commission rates table (2017).

Companies Com.R ( 0 - 50,000 TL ) Com.R ( 50,000 - 100,000 TL )
ATA Yatırım 0.0018 0.0017
Integral Yatırım 0.0005 0.0005
Sanko Yatırım 0.0007 0.0007
Garanti Yatırım 0.00185 0.00185
Deniz Yatırım 0.002 0.002
Ziraat Yatırım 0.002 0.002
İŞ Yatırım 0.0017 0.0017

other 50,000 with 0.0017 and adding them together. In Table 3.2, commission rates of
the leading firms are given to have an idea about the current transaction costs.

These are the leading companies that provide brokerage services. The highest commis-
sion rate is 0.002. Therefore, one should expect to pay at most 200 TL commission for
100,000 TL trading volume which is our defined capital. Generally, commission rates
decrease when total trading volume increases but we assume that commission rate is
0.002 constant for all trading volumes.

3.5.2 Performance of the Strategy I

The strategy I uses the DMD analysis for the market timing strategy and portfolio
selection. The portfolio allocation rule of the strategy I is investing equally in the
selected stocks. Figure 3.8 shows the result of the test of the strategy I over the test
period.
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Figure 3.8: Strategy I perfomance result.
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The ups and downs in the figure indicates the dates which strategy sold the portfolios.
The reason we have this particular shape is that the strategies do not trade continuously.
Recall from Section 3.1, the strategies only trade when a growing eigenvalue is spotted.

The strategy I made 5.81% return in the test period. In the next table we compare
strategy I return with the benchmarks.

Table 3.3: Performance table I

Investment Options Annualized Returns
Strategy I 5.81 %
Simple Mov. Avg. 15.4 %
BIST 100 Index -21 %
Interest Rate 8.12 %

3.5.3 Performance of the Strategy II

As emphasized before, the strategy II tests the key element of our algorithmic trading
strategy. This strategy allocates the portfolio of the selected stocks according to their
contribution weights on the dominant DMD mode. Figure 3.9 shows the result of the
test of the strategy II over the test period.
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Figure 3.9: Strategy II performance result.
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It seems remarkable that by allocating capital according to the weights of the stocks,
total portfolio return from each trade is magnified. Daily return data is taken for the
measurement gives the advantage of linking the overall performances of the stocks in
the historical window with the weights of the stocks in the growing DMD mode.

If we examine Figure 3.9 we see that it has the same up and down pattern with 3.8 but it
gained more profit from trades. They share the same settings but the only difference is
their portfolio allocation rule. The strategy II made 215.11% return over the test period.
This clearly shows that the proposed portfolio allocation rule is valid as expected.
Table 3.4 shows the performance of the strategy II with the benchmarks and the strategy
I.

Table 3.4: Performance table II

Investment Options Annualized Returns
Strategy II 215.11 %
Strategy I 5.81 %
Simple Mov. Avg. 15.4 %
BIST 100 Index -21 %
Interest Rate 8.12 %

3.5.4 Performance of the Strategy III

We can observe from the figures of the previous strategies, there are several false trad-
ing signals. The strategy III has complementary technical analysis tool which is opti-
mized by using genetic algorithm over the training data to prevent false signals. This
strategy has additional rule for trading other than spotting a growing eigenvalue. In or-
der to trade the DMD analysis and the optimized SMA must give trade signal. Figure
3.10 shows the result of the test of the strategy III over the test period.
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Figure 3.10: Strategy III perfomance result.

Figure 3.10 shows a different pattern than other strategy figures. This is because of the
additional trading rule. The strategy I and II made total five false trades during the test
period. But with the help of the optimized SMA, the strategy III made only one false
trade during the test period meaning that complementary technical tool prevented 80%
of the false trades. Also, preventing false trades and decreasing the total number of
trades decreased the total transaction costs, resulted in a higher return than the strategy
II.

The performances of all strategies are gathered in Table 3.5.

Table 3.5: Performance table III

Investment Options Annualized Returns
Strategy III 227.72 %
Strategy II 215.11 %
Strategy I 5.81 %
Simple Mov. Avg. 15.4 %
BIST 100 Index -21 %
Interest Rate 8.12 %
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CHAPTER 4

CONCLUSION AND OUTLOOK

Our goal is to build a robust and profitable algorithmic trading strategy using dynamic
mode decomposition. The main discussion is whether the dynamic mode decomposi-
tion is a capable tool to use as an alpha model for algorithmic trading strategies. Here,
we summarize briefly the work and we try to answer that question.

In Chapter 2 we gave a detailed information about the DMD. It is a data analysis tool
applied to different problems from different areas of science. The power of the DMD
comes from its connection with the Koopman theory. We showed this connection and
the differences between the Koopman analysis and the DMD. From there we under-
stood that the success of extracting important information from the dynamical system
in hand depends on a couple of important things. Therefore, the DMD has some lim-
itations. The very first limitation comes from the definition of the DMD. The DMD
approximates the dynamical system in hand by constructing a proxy linear dynamical
system. The success of approximation depends on the data. Even though this approx-
imation is good, this does not guarantee the accuracy of the predictions of the DMD
analysis. Because past data is used to construct the approximation and it is best-fit
approximation on that data. Also, as reported in the literature, the DMD method had a
problem to capture standing waves in some applications. We addressed to this problem
and gave a related example. Under these limitations, we tried to implement the DMD
to finance.

The DMD analysis results finding dynamic modes and eigenvalues. As explained in
Chapter 2 , these are the eigenvectors and the eigenvalues of the linear mapping that
evolves snapshots in time. The useful aspects of the dynamic modes are that they
are spatially coherent meaning that they are physically meaningful and each of the
dynamic modes is associated with a temporal structure. In finance, we use both of
these aspects to have a market timing strategy and portfolio selection strategy from the
DMD analysis.

In the implementation, we used daily stock returns as the data for the dynamic mode
decomposition analysis. This is rather subtle point. In this way, the dynamic modes
became accurately meaningful. In order to utilize the DMD analysis completely, we
proposed a new portfolio asset allocation method using the values of the spatial loca-
tions on the dynamic modes. Our aim was to invest more in stocks which we have a
higher expectancy to rise.
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In order to test the success of the DMD and the proposed portfolio asset allocation rule,
we constructed several strategies. All strategies were capable of testing the market
timing success of the DMD and two strategies were testing the success of the proposed
portfolio asset allocation rule. As a result of the test, we see that the portfolio asset
allocation method is valid and has serious implications for the return of the strategy.
But we also observed that the dynamic mode decomposition analysis was not greatly
successful to give accurate market timing signals. In order to improve it, we used a
complementary technical analysis tool. The simple moving average tool was optimized
with genetic algorithm to give the best-fit result for the market. As a result, the DMD
analysis which is improved by optimized simple moving average was able to prevent
80% of the false trading signals.

As a conclusion, the DMD method is easy to implement and use for data analysis. We
showed that it can be used as an alpha model for an algorithmic trading strategy. Also,
it’s success can be improved further with technical analysis tools.

The future work may be on improving market timing accuracy of the DMD analysis
using different and several financial technical analysis tool. They may be optized to-
gether using genetic algorithm to have a collective market timing signal. In addition to
that, exogenous effects of financial markets can be implemented into the DMD analysis
directly using DMD with control mechanism.
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APPENDIX A

A.1 Krylov Sequence and Subspaces

Given a matrix A and vector b, the associated Krylov sequence is the set of vectors
b, Ab, A2b, A3b, ..., which can be computed in the form b, Ab,A(Ab), A(A(Ab)), . . . .
The corresponding Krylov subspaces are the spaces spanned by successively larger
groups of these vectors [33]. It is named after Russian applied mathematician and naval
engineer Alexei Krylov. The method used in modern iterative methods for finding
eigenvalues or solving large linear equations.

A.2 QR Decomposition

Consider A ∈ Cm×n, (m ≥ n) has full rank n. The decomposition,

A = QR

is called ‘reduced QR decomposition’ where Q is m × n orthogonal matrix and R is
n× n upper triangular matrix [33].

A full QR decomposition ofA ∈ Cm×n appends additionalm−n orthonormal columns
to Q so that it becomes an m × m unitary matrix. In the process, rows of zeros are
appended to R so that it becomes an m× n matrix, still upper triangular. All matrices
have QR decompositions.

A.3 Singular Value Decomposition (SVD)

Consider A ∈ Cm×n, A has full rank n. The decomposition,

A = UΣWH

is called ‘reduced singular value decomposition (SVD) [33] where U is m× n matrix
with orthonormal columns, W is n× n matrix with orthonormal columns, Σ is n× n
diagonal matrix with positive real entries and WH is conjugate transpose of W , having
orthonormal columns.
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The definition can be extended to form ‘full SVD’ by adjoining additional m − n
orthonormal columns to U and m− n rows of zeros below Σ.

Note that the diagonal matrix Σ has the same shape as A even when A is not square,
but U and V are always square unitary matrices. Every matrix has singular value
decomposition.

A.4 Hessenberg Matrix

Hessenberg matrix is a special square matrix. Upper Hessenberg matrix is a matrix
with zeros below the first subdiagonal and lower Hessenberg matrix has zeros above the
first subdiagonal [33]. Since many algorithms requires significantly less computational
effort when applied to triangular matrices, reducing a matrix to triangular matrix is
appropriate. If the reduction is restricted, it is best to reduce the matrix to Hessenberg
matrix.

A.5 Arnoldi Iteration

Arnoldi iteration is a method to reduce a nonhermitian matrix to Hessenberg form by
orthogonal similarity transformations. Reduction of A ∈ Cm×m, to Hessenberg form
by an orhogonal similarity transformation can be written

A = QHQH ,

where QH is conjugate transpose of Q unitary matrix and H is upper Hessenberg
matrix. Arnoldi is an iterative method and m is usually huge, instead of full reduction
consider n < m , first n columns of Q and let H̃n be the (n+ 1)× n upper left section
of H , which is also a Hessenberg matrix. Then we have

AQn = Qn+1H̃n. (A.1)

The nth column of this equation can be written as follows:

Aqn = h1nq1 + · · ·+ hn,nqn + hn+1,nqn+1. (A.2)

From (A.2), it can be observed that the vectors {qj} form bases of the successive
Krylov subspaces generated by A and b, defined as follows:

Kn =
〈
b, Ab, . . . , An−1b

〉
= 〈q1, q1, . . . , qn〉 ⊆ Cm.

Since the vectors qj are orthonormal, these are orthonormal bases. Thus Arnoldi pro-
cess can be described as the systematic construction of orthonormal bases for succes-
sive Krylov subspaces [33]. Define the Kn to be the m × n Krylov matrix, then Kn

has reduced QR decomposition

Kn = QnRn,

where Qn is the same matrix in (A.1). This is the Arnoldi iteration based upon the QR
decomposition of the Krylov matrix.
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A.6 Moore - Penrose Pseudoinverse

If matrix A ∈ Cm×n has full rank then Moore - Penrose pseudoinverse or simply
pseudoinverse of A denoted by A† can be computed as follows:

A† = (AHA)−1AH ,

where AH denotes the conjugate transpose of the matrix A [33].

A.7 Savitzky-Golay Filter

The Savitzky-Golay smoothing filters, also known as polynomial smoothing, or least-
squares smoothing filters can preserve better the high-frequency content of the desired
signal, at the expense of not removing as much noise as the averager filters [26]. This
is achieved by a process called convulation, fitting successive sub-sets of adjacent data
points with a low-degree polynomial by the method of linear least squares.

MATLAB has function called sgolayfilt which can be applied to a vector or matrix.
For detailed information about this filter and its theoretical explanation refer to Intro-
duction to Signal Processing by Sophocles J. Orfanidis [26].
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APPENDIX B

B.1 Technical Analysis and Technical Indicators

In finance, technical analysis is a methodology for forecasting the prices of securities
by studying the past market data, mostly price and volume [23].

A technical indicator is a mathematical calculation based on historical data such as
price and volume, aims to forecast financial market direction.

B.2 Simple Moving Average and Simple MA Strategy

The simple moving average is an arithmetic moving average calculated by adding the
closing price of the security for a number of time periods and then diving it by the
total number of periods. It is one of the most versatile and widely used of all technical
indicators. Because of the way that it is constructed and the fact that it can be so easily
quantified and tested, it is the basis for many mechanical trend-following systems, see,
e.g., [23].

The simple average is made up by two different price averages of the same security by
using different time periods. They are often called lead and lag. Lead average’s time
period is smaller than the lag average’s time period. It is important to select proper
number of terms to determine price trends over specific time periods [16].

The simple moving average strategy is a trading strategy uses simple moving average.
The common implementation is if the lead curve crosses the lag curve, the strategy
gives buy signal. If the lag curve crosses the lead curve, the strategy gives the sell
signal.
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APPENDIX C

C.1 Genetic Algorithm

The genetic algorithm is a method uses natural selection ‘the survival of the fittest’,
to solve optimization problems [29]. There are three main components of a genetic
algorithm:

1. Describing the problem in terms of genetic code like chromosomes and genes.

2. A way to stimulate the evolution by creating offspring of the chromosomes.

3. A method to test the fitness of the each offspring.

In summary genetic algorithms works as the following: The initial step of solving an
optimization problem using genetic algorithm is encode the problem into a string of
numbers called a ’chromosome’. Each numerical value in this chromosome is called
gene. The chromosome must contain all the information in order to solve the problem.
The next step is initializing the population of chromosomes. Each gene for the chro-
mosomes is randomly selected using valid values. The next step is evaluating each of
the chromosomes using the fitness function. A fitness function evaluates chromosomes
for their ability or fitness for solving a given problem. The next step is reproducing
new chromosomes by mating two chromosomes. This is the heart of the genetic al-
gorithm. This process involves two important steps: selecting a pair of chromosomes
to use as parents and second, the process of combining these into children. There are
several methods to achieve different children crossovers. Also, a low probability pro-
cess called mutation sometimes happens in this step. Mutation is random changing of
a gene on a chromosome. The next step is evaluating the new chromosomes. After this
step, the chromosomes which have less fit than the new chromosome are deleted and
new chromosomes are inserted into the population.

This process continues recursively until the limit for generations or time is reached.
When the limit is reached, the algorithm picks the best-fit chromosome.
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C.2 Optimization of the Simple Moving Average Strategy using Genetic Algo-
rithm

In order to optimize the simple moving average strategy using genetic algorithm on the
the data from Jan 2014 to Jan 2015 (this data is a part of the training data), we need to
define the optimization problem in terms of genes and chromosomes. Also, we need
to define a fitness function.

In order to trade with the simple moving average strategy we need lead and lag pa-
rameters. These parameters are the genes in a chromosome. The fitness function takes
a chromosome, the parameters of lead and lag, then trades with this values according
to the common implementation which is explained in Appendix B.2. At the final the
fitness function gives out the sharpe ratio of the strategy and it is used for fitness value
of the chromosome.

The goal is to maximize the sharpe ratio. If sharpe ratio is maximized, the chromosome
which maximized it, is the best-fit parameters for the SMA strategy. Figure C.1 shows
the result of this genetic algorithm.
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Figure C.1: The result of the genetic algorithm.

The best parameters in the optimization window is found to be (1,21) which gives 1.08
sharpe ratio. We use this parameter for the simple moving average which helps to the
DMD method for the market timing decision.

48


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	DYNAMIC MODE DECOMPOSITION
	DMD Definition
	Exact DMD Definition
	Time-Delay Coordinates
	Connection with Koopman Theory

	IMPLEMENTATION OF THE DMD TO FINANCE AND BUILDING THE ALGORITHMIC TRADING STRATEGY
	The DMD in Finance
	Data
	Preliminary Training Method
	The Algorithmic Trading Strategy
	Testing the Strategies 
	Transaction Costs
	Performance of the Strategy I
	Performance of the Strategy II
	Performance of the Strategy III


	CONCLUSION AND OUTLOOK
	REFERENCES
	APPENDICES
	
	Krylov Sequence and Subspaces
	QR Decomposition
	Singular Value Decomposition (SVD)
	Hessenberg Matrix
	Arnoldi Iteration
	Moore - Penrose Pseudoinverse
	Savitzky-Golay Filter

	
	Technical Analysis and Technical Indicators
	Simple Moving Average and Simple MA Strategy

	
	Genetic Algorithm
	Optimization of the Simple Moving Average Strategy using Genetic Algorithm


