
APPLICATION OF STOCHASTIC VOLATILITY MODELS WITH JUMPS TO
BIST OPTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MONIREH RAHIMINEJAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

FINANCIAL MATHEMATICS

SEPTEMBER 2017





Approval of the thesis:

APPLICATION OF STOCHASTIC VOLATILITY MODELS WITH JUMPS
TO BIST OPTIONS

submitted by MONIREH RAHIMINEJAT in partial fulfillment of the requirements
for the degree of Master of Science in Department of Financial Mathematics,
Middle East Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Yeliz Yolcu Okur
Head of Department, Financial Mathematics

Assoc. Prof. Dr. Ali Devin Sezer
Supervisor, Financial Mathematics, METU

Examining Committee Members:

Prof. Dr. Gerhard Wilhelm Weber
Scientific Computing and Financial Mathematics, METU

Assoc. Prof. Dr. Ali Devin Sezer
Financial Mathematics, METU

Asst. Prof. Özge Sezgin Alp
Accounting and Financial Management, Başkent University
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ABSTRACT

APPLICATION OF STOCHASTIC VOLATILITY MODELS WITH JUMPS TO
BIST OPTIONS

Rahiminejat, Monireh

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2017, 41 pages

This thesis gives a derivation of call and put option pricing formulas under stochastic
volatility models with jumps; the precise model is a combination of Merton and Heston
models. The derivation is based on the computation of the characteristic function of
the underlying process. We use the derived formulas to fit the model to options written
on two stocks in the BIST30 index covering the first two months of 2017. The fit is
done by minimizing a weighted L2 distance between the observed prices and the model
prices.

Keywords : Merton Model, Heston Model, Heston-Merton Model, Option pricing,
Characteristic function, VIOP, BIST
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ÖZ

SICRAMALI STOKASTIK VOLATILITE MODELLERININ BIST
OPSIYONLARINA UYGULAMASI

Rahiminejat, Monireh

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2017, 41 sayfa

Bu tez Heston ve Merton modellerinin birleşimi olan hem fiyatta sıçramaya izin veren,
hem stokastik volatilite içeren bir model için Avrupa opsiyon fiyatlaması formüllerinin
çıkarımını vermektedir. Formül, ilgili fiyat sürecinin karateristik fonksiyonu için açık
bir formül bularak ve bu formülün Fourier tersini alarak çıkarılmaktadır. Çıkarımı ver-
ilen formüller kullanılarak model, BIST30 indeksinde yer alan iki hisse senedi fiyati
üzerinde yazılı ve VIOP’de alınıp satılan opsiyon fiyatlarına fit edilmiştir; fit 2017’nin
ilk iki ayını kapsamaktadır ve piyasada gözlemlenen opsiyon fiyatlarıyla model fiyat-
ları arasındaki L2 uzaklık en az yapılarak gerçekleştirilmiştir.

Anahtar Kelimeler : Merton modeli, Heston modeli, Heston-Merton modeli, Opsiyon
fiyatlama, Karakteristik fonksiyon, VIOP, BIST
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CHAPTER 1

Introduction

Options (derivatives) are financial products that derive their value from the value of an
underlying security. An option is European if its price (payoff) at a future deterministic
time T is given as an explicit function of the price ST of an underlying security at
time T . The goal of this thesis is to study stochastic processes used to model prices
that allow both stochastic volatility and jumps in the dynamics of the price process
and an application of these models to European options traded in Borsa Istanbul. In
the following paragraphs we briefly introduce derivatives and the evolution of price
models in the literature leading to models that we will focus on this thesis.

European type call and put options are the most basic options. A variety of European
option contracts are available in Turkish financial markets and are traded in the VIOP
(Vadeli Islemler ve Opsiyon Piyasasi) of Borsa Istanbul [6]. Let St denote the price of
the underlying at time t. European call and put options have the following payoffs:

CT = (ST −K)+, PT = (ST −K)− = (K − ST )+,

where T is the maturity of the option, ST is the price of the underlying at maturity T
and K > 0 is called the strike. Pricing formulas for these products as a function of T ,
K, S0, the volatility σ and the interest rate r were derived in [1] by Black and Scholes.
The primary assumption of the Black-Scholes (BS) model is that the underlying price
process St has dynamics

St = S0 +

∫ t

0

µSsds+

∫ t

0

SsσdWs,

where µ > 0, σ > 0 are assumed to be constant, and W is a standard Brownian motion
(BM). The interest rate r > 0 is assumed constant. In modern notation [8, page 92],
the pricing formula of [1] is the following:

Ct = E∗[e−r(T−t)(ST −K)+|Ft], (1.1)

where {Ft} denotes the filtration generated by W and E∗ denotes expectation with
respect to a measure under P∗ under which the discounted price process S̃t = e−rtSt is
a martingale; the existance of P∗ is guaranteed by Girsanov’s theorem [8, Chapter 4].
The formula (1.1) gives the price of the call option, the price of the put option can be
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obtained from this using the put-call parity:

Ct − Pt = E∗[e−r(T−t)(ST −K)|Ft]

= ertE∗[e−rTST |Ft]− e−r(T−t)K
= ertS̄t − e−r(T−t)K
= St − e−r(T−t)K,

i.e.,
Pt = Ct − St + e−r(T−t)K. (1.2)

For the BS model, the dynamics of (St) under P∗ is explicitly given as

St = S0e
(r−σ2/2)t+σBt ,

where B is the Brownian motion under P∗; the iid increments and Markov propertis of
the BM reduce (1.1) to

Ct = E∗
[(
S0e

(r−σ2/2)T+σBT −K)
)+
|Ft

]
=

1√
2π

∫ ∞
−∞

(
Ste

(r−σ2/2)(T−t)+σx
√
T−t −K

)+
e−x

2/2dx; (1.3)

this and the put-call parity (1.2) gives also an explicit formula for Pt, the price of a
European put. Let us denote the right side of the above formula by BSC(r, σ, St, T −
t,K), i.e., the price of a call option with strike K, maturity T at time t, when the
constant interest rate is r and the volatility of the underlying is σ. One can show by
differentation that Ct is monotone increasing in σ. This implies that for any observed
price Ct there is a unique σ∗ > 0 for which Ct = BS(r, σ∗, St, T − t,K), this unique
value is called the implied volatility of the stock (by the option price Ct); let us denote
implied volatility by IV (r, Ct, St, T − t,K); by definition IV satisfies

Ct = BS(r, IV (r, Ct, St, T − t,K), St, T − t,K).

The set of all implied volatilities observed as the maturity T and strike K range in
(0,∞) is called the volatility surface. Because the volatility σ > 0 is a constant in the
BS model, the BS model implies a flat volatility surface. This is one of the weakest
sides of the BS model because the volatility surfaces observed in practice are not flat,
see, e.g., [4, page 72, Figure 5.9]. We give another example from VIOP. The volatility
surface for options written on the stock price of Garanti Bankasi observed on February
24 2017 is given in Table 1.1.

This surface consists of points computed from 18 prices at VIOP written on Garanti
Bankasi with maturities ranging from 6 to 65 days and strikes ranging from 7 to 9.25,
the closing price of GARAN that day was 8.69. The implied volatilities for these 18
options range from 0.12 to 1.0025. Given the phenomenon of nonconstant volatil-
ity surfaces it is natural to seek new models that allow more complex shapes for the
volatility surfaces. The first step in this direction was taken by Merton in [9] by adding
a jump process to the dynamics of the price process. Merton’s model is reviewed in

2



price K T (in days) Type
0.57 8.25 34 C
0.38 8.5 34 C
0.13 9 34 C
0.07 9.25 34 C
0.35 8.75 65 C
0.02 8 34 P
0.07 8.5 34 P
0.15 8.75 34 P
0.03 8 65 P
0.06 8.25 65 P

Table 1.1: Options available at VIOP on Garanti Bankasi with maturities longer than 5
days, February 24, 2017 (those options with prices less than 0.01 and those maturities
less than 5 days are excluded)

section 3.1. In the same chapter we give a derivation of the characteristic function
of compound Poisson processes which will be used again in Chapter 5. A second
approach is to allow the volatility to be a process as well. These types of models are
known as stochastic volatility models, the most well-known is called the Heston model,
developed by Heston in 1993 [5]. The Heston model is reviewed in Chapter 4.1. The
advantage of the Heston framework is that, it gives explicit formulas for prices of Eu-
ropean options via the computation of characteristic functions. The derivation of the
characteristic function associated with the Heston model is given in Chapter 4.1, fol-
lowing [4]. How does one compute the price of a Eureopean option starting from the
characteristic function of log(St)? One basic way is reviewed in Chapter 2.1, based
on the Fourier inversion theorem. It is observed in [4] neither the Merton model nor
the Heston model are versatile enough to fully match volatility surfaces observed in
actual markets. One way to overcome this shortcoming is to combine these models,
i.e., to use a model for the price process that has Heston stochastic volatility as well
as adding a jump process to its dynamics. [4] observes that this general model can be
fit perfectly in the examples studied in that work. Chapter 4 reviews the Heston model
with jumps and derives the characteristic function of log(ST ) for that model. One can
then use the ideas in Chapter 2.1 to use this characteristic function to compute prices
of European call options in this framework. The resulting formulas can be computed
efficiently on a computer. This allows one to fit this model very easily to observed
prices. This fitting to prices observed in VIOP is carried out in Chapter 6. The fit is
performed on two stocks in the BIST30 Index: Garanti Bankasi and Koc Holding be-
tween December 1, 2015, and February 24, 2017. In the same chapter we comment on
the results of these fits. Our most important result is that the observation made in [4]
continue to hold for the prices studied in this thesis: it is possible to almost perfectly fit
the Heston volatility model with jumps to the option prices studied in this thesis. The
Conclusion summarizes the thesis and comments on future work.
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CHAPTER 2

Pricing formulas based on the characteristic function

2.1 Pricing formulas based on the characteristic function

In the risk neutral pricing framework of mathematical finance theory the price of a
European option is given by the conditional expectation

Ct = e−r(T−t)E∗[h(ST )|Ft],

where E∗ is the risk neutral measure under which S̃t = e−rtSt is a martingale. Assum-
ing St is a Markov process, to compute Ct it suffices to know the conditional density
f(·|s) of ST given St = s under P∗, in terms of which the above expectation can be
written as

Ct = e−r(T−t)
∫ ∞
−∞

h(x)f(x|s)ds.

In the Black-Scholes model this distribution is log-normal, which leads to the explicit
formula (1.3). In many models, this conditional density has no explicit formula but
it is possible to compute its characteristic function explicitly. Then, to compute an
expectation one must know how to derive the density of a random variable from its
characteristic function. By definition the characteristic function of a random variable
X is defined by

φX(t) = E[eitX ].

The theorem that computes the distribution of X from φX is called the inversion the-
orem; one can use this theorem to compute the conditional density of ST from its
characteristic function. The goal of this section is to review this computation. In this
regard, we will follow [3, Chapter 3]. Let µ denote the distribution of X , i.e., for a
Borel set A ⊂ R,

µ(A) = P (X ∈ A);

then, by Definition,

φX(t) =

∫ ∞
−∞

eitxµ(dx).

The inversion theorem ([3, Theorem 3.3.4]) is the following formula connecting φX to
µ:

5



Theorem 2.1. For a < b

µ((a, b)) +
1

2
µ({a, b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φX(t)dt.

Proof.

IT =

∫ T

−T

e−ita − e−itb

it
φX(t)dt =

∫ T

−T

∫
e−ita − e−itb

it
eitxµ(dx)dt, (2.1)

the integrand is properly defined near zero since

e−ita − e−itb

it
=

∫ b

a

eitydy

it is obvious that the integrand is bounded by b − a. As µ is a probability measure,
[−T, T ] is finite, cos(−x) = cos(x), and sin(−x) = − sin(x), based on Fubini’s
theorem we have

IT =

∫ ∫ T

−T

e−ita − e−itb

it
eitxdtµ(dx) (2.2)

=

∫ ∫ T

−T

e−it(a−x) − e−it(b−x)

d
tµ(dx)

=

∫ {∫ T

−T

sin t(x− a)

t
dt−

∫ T

−T

sin t(x− b)
t

dt

}
µ(dx),

noting that
e−itx

it
=
− sin(tx)− i cos (tx)

t
.

Defining R(θ, T ) =
∫ T
−T

sin θt
t
dt, the last equation will be

IT =

∫
R(x− a, T )−R(x− b, T )µ(dx). (2.3)

If S(T ) =
∫ T
0

sinx
x
dx, then, we change variables t = x

θ
. We have

R(θ, T ) = 2

∫ Tθ

0

sinx

x
= 2S(Tθ),

when θ < 0, R(θ, T ) = −R(|θ|, T ). By using the function sgn(x), we can combine
two formulas as

R(θ, T ) = 2(sgnθ)S(T |θ|).
As T →∞, S(T )→ π/2; so, R(θ, T )→ πsgnθ, and

R(x− a, T )−R(x− b, T )→


2π, a < x < b,

π, x = aorx = b,

0, x < aorx > b.

6



We note that |R(θ, T )| ≤ 2 supy S(y) <∞, so that bounded convergence theorem and
2.1 implies

2

π
IT → µ(a, b) +

1

2
µ({a, b})

The inversion formula gives a formula for the distribution µ of X given its characteris-
tic function. The next theorem provides a condition in terms of φX under which X has
a density and a formula for the density function (this is offered as [3, Theorem 3.3.5]).
Theorem 2.2. If

∫∞
−∞ |φX(t)|dt <∞ then µ has a bounded continuous density

f(y) =
1

2π

∫ ∞
−∞

e−ityφX(t)dt.

Proof. In the proof of last theorem, we observed∣∣∣∣e−ita − e−itbit

∣∣∣∣ =

∣∣∣∣∫ b

a

e−itydy

∣∣∣∣ ≤ |b− a|. (2.4)

This integral is the same as the integral in last theorem, but the convergence here is
absolute. So

µ((a, b)) +
1

2
µ({a, b}) =

1

2π

∫ ∞
−∞

e−ita − e−itb

it
φX(t)dt ≤ (b− a)

2π

∫ ∞
−∞
|φX(t)|dt

From the last equation, it is obvious that µ has got no point masses. Then,

µ(x, x+ h) =
1

2π

∫
e−itx − e−it(x+h)

it
φX(t)dt

=
1

2π

∫ (∫ x+h

x

e−itydy

)
φX(t)dt

=

∫ x+h

x

(
1

2π

∫
e−ityφX(t)dt

)
dy,

where the last equation is stated by Fubini’s theorem. Thus, the density function of
distribution µ is

f(y) =
1

2π

∫
e−ityφX(t)dt.

By dominated convergence theorem, we conclude that f is continuous, and the proof is
done.

We will apply the last theorem to the characteristic function computed in Chapter 5
to get the risk neutral density of ST under the Heston stochastic volatility model with
jumps, which in turn will allow us to compute prices of European call options under
that model.

The approach outlined above is not the only way to connect the characteristic function
to prices of options. A further study of this question can be found in [11, Chapter 3].
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CHAPTER 3

Merton Model

3.1 Merton Model

In the rest of this thesis we assume that all of the random variables are defined on
a probability space (Ω,F , P ) equipped with a filtration {Ft}, satisfying the usual
hypotheses (see [10, Definition, page 3]); all processes below are assumed as adapted
to {Ft}.

Furthermore, unless otherwise noted, we will take the constant interest rate to be r = 0;
the constant nonzero interest rate case can be reduced to this case by working with
discounted prices. Let us give an example: a call option with strike K and maturity
T , corresponds to the option with strike K̃ = e−rTK with the same maturity. Once
the discounted price C̃t is computed, it can be converted to undiscounted price via
Ct = ertC̃t.

The first option pricing that allows jumps in the price of the underlying process is the
one introduced by Merton [9], which we now review. In addition to the Brownian
motion W let us introduce a Poisson process N independent of W with rate λ and
an independent and identically distributed (iid) sequence of random variables Xi. The
compound Poisson Process Y is defined as follows:

Yt
.
=

Nt∑
i=1

(
eXi − 1

)
.

Throughout this thesis we will assume Xi to be N(α, δ2), i.e., normal distributed with
mean α and standard deviation δ. Merton’s model assumes the following dynamics for
the price process:

dSt = StdXt, (3.1)

where
Xt = µt+ σWt + Yt, (3.2)

and µ, σ > 0 are assumed constant. Using Ito’s formula one can find an explicit
formula for (3.1). Because X has jumps, we need an Ito formula that allows jumps.
Such a formula is given in [10, Theorem 32, page 78]; we review it in the following
subsection.

9



3.1.1 Ito’s Formula for semimartingales

For the general version of Ito’s formula allowing jumps we need the concept of semi-
martingales and finite variation (FV) processes:

Definition 3.1. A process V is said to be of finite variation if for any t and a sequence
of partitions 0 = tn0 < tn1 < tn2 < · · · < tnkn of [0, t] satisfying supj |tnj+1− tnj | → 0 one
has

lim
n→∞

kn−1∑
j=0

|Vtnj+1
− Vtnj | <∞.

Definition 3.2. An adapted cadlag (right continuous, left limits) process Z is called a
semimartingale if it has the form

Zt = Y0 +Mt + Vt,

where M is a local martingale and V is a finite variation process.

By its definition, a Poisson process can jump at most finitely many times in an interval
[0, t] and Y is constant in between these jumps, these imply that the Y process is FV.
Furthermore, t 7→ µt is monotone increasing and therefore FV. Finally, the sum of two
FV processes is again FV. It follows from these that µt + Yt is a FV process. On the
other hand, the Brownian motion W is a martingale. These imply that X process of
(3.2) is a semimartingale.

For a semimartingale Z, its quadratic variation is given by (see [10, Section II.6])

[Z,Z]t
.
= Z2

t − 2

∫ t

0

Zs−dZs.

For a cadlag process Z, let Zc denote its continuous part:

Zc
t = Zt −

∑
s≤T

∆Zs, ∆Zs = Zs − Zs−.

The process X of (3.2) is already given as a sum of its continuous and discontinuous
parts:

Xc
t = µt+ σWt.

Because X has jumps, [X,X]t will also jumps. The relation between [X,X]c and Xc

is given in [10, page 70]:

[X,X]c = [Xc, Xc] = [µt+ σWt, µt+ σWt] = σ2t,

where we used the well known quadratic variation of the Brownian motion (see [7,
Chapter 2]).

With these let us now state the Ito formula for semimartingales:

10



Theorem 3.1. Let X be a semimartingale an let f be a C2 real function. Then f(X)
is again a semimartingale, and the following formula holds:

f(Xt) = f(X0) +

∫ t

0+

f ′(Xs−)dXs +
1

2

∫ t

0+

f ′′(Xs−)d[X,X]cs

+
∑
0<s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)∆Xs) .

The above theorem is given as [10, Theorem 32]; its proof can be found in the same
work.

3.1.2 Risk neutral measure

Before we use Ito’s formula to solve (3.1) let us address an important issue. Prices of
options are computed under a risk neutral measure; the question is “what risk neutral
measure should be used in the Merton framework?” As opposed to the BS model, a
market consisting of St and the riskless bond is no longer complete (see [2, Chapter
10]) when we add the jump process Y to (3.2). It follows that there are a family of
measures on (Ω,F ) under which S is a martingale. In BS, one replaces the Brownian
motion Wt with Bt = µ−r

σ
t + Wt, and the unique measure P∗ under which B is a

Brownian motion is the unique measure making S a martingale; this change of measure
modifies only the constant drift of W . In the present case, the changes of measures can
also change the dynamics of Y by modifying the jump rate λ and the parameters α and
δ of the jump sizes. Different ways of doing this are given in [2, Chapter 9] and in
the references cited in this work. A simplistic solution is to proceed as in the Black-
Scholes model and not to change the dynamics of the Y process and only modify the
constant drift of X , as is done in the BS framework. This is the approach taken in [9].
Arguments for and against it can be found in [2, Chapter 10]. We will also use the
same approach. Therefore, under our risk neutral measure P∗ only the drift µ in (3.2)
will be modified so that the solution S of (3.1) becomes a Martingale. Under P∗, Y ,
N and Xi will continue have the same distributions as under the original measure. By
(3.1), S is a martingale under P∗, if and only if X is. Let us write X as follows:

Xt = µt+ E∗[Yt] +Wt + Ȳt,

where
Ȳt = Yt − E[Yt].

Here, Ȳt is the compensated version of Y . By [10, Theorem 41, page 30], Ȳt is a
martingale. The expectation of a compound Poisson process is well known:

E∗[Yt] = E[Yt] = λtE
[
eXi − 1

]
= λωt, ω

.
= eα+

δ2

2 − 1, (3.3)

where eα+
δ2

2 comes from the mean of the log-normal distribution. Then X can be
written as

Xt = (µ+ ω)t+ σWt + Ȳt.

11



We would like this process to be a martingale under P∗. For this it suffices to include
the drift term inside the Brownian motion, i.e., we define

Bt =
µ+ ω

σ
t+Wt.

Then, we write X as
Xt = σBt + Ȳt = σBt + Yt − ωt.

We will choose P∗ so that Bt is a martingale under P∗. The explicit change of measure
that gives P∗ is once again given by Girsanov’s theorem. In the section below, we will
use this P∗ measure as our risk neutral measure.

3.1.3 An Explicit Formula for St

Define the following compound Poisson process:

Jt =
Nt∑
i=1

Xi;

let us that Y and J have the same jump times; J has jumps Xi, whereas Y has jumps
eXi − 1. The process J will be useful in our explicit formula for S.

By the existence and uniqueness theorem [10, Theorem 6, Section V.3] the SDE (3.1)
has a unique solution St. Ito’s formula, Theorem 3.1, gives the following explicit
formula for this solution:

Proposition 3.2. The solution of (3.1) is given by

St = S0e
Lt ,

where
Lt = −(ω + σ2/2)t+ σBt + Jt,

and ω is as in (3.3).

Proof. We know that (3.1) has a unique solution. Therefore, it suffices to show that
Et = eLt satisfies (3.1). By Ito’s formula Theorem 3.1 we have

Et = E0 +

∫ t

0+

Es−dLs +
1

2

∫ t

0

Es−[L,L]cs +
∑
s≤t

(f(Ls)− f(Ls−)− Es−∆Xs) .

(3.4)
We note ∫ t

0+

Es−dLs =

∫ t

0+

Es−
(
−
(
ω + σ2/2)

)
ds+ σBs

)
+

∫ t

0+

Es−dJs,

and ∫ t

0+

Es−dJs =
∑
s≤t

Es−∆Xs.

12



Cancelling these two terms in (3.4) gives

Et = E0 +

∫ t

0+

Es−
(
−(ω + σ2/2)dt+ σdBs

)
+

1

2

∫ t

0

Es−[L,L]cs +
∑
s≤t

(eLs − eLs−).

Recall from Section 3.1.1 that [L,L]ct = [Lc, Lc]t = σ2t; substituting this in the last
display reduces it to

Et = E0 +

∫ t

0+

Es− (−ωdt+ σdBs) +
∑
s≤t

(eLs − eLs−). (3.5)

Finally, eLs − eLs− is nonzero only when s = Tj , where {Tj} are the jump times of the
Poisson process N N . Let Tj be a jump time of N ; by definition:

eLTj − eLTj− = eLTj−+Xj − eLTj−

= eLTj−(eXj − 1)

= ETj−∆YTj .

Therefore, ∑
s≤t

(eLs − eLs−) =

∫ t

0+

EsdYs.

Substituting this in (3.5) gives

Et = E0 +

∫ t

0+

Es− (−ωds+ σdBs + dYs)

= E0 +

∫ t

0+

Es−dXs,

i.e., E indeed is the solution of (3.1).

We can use this explicit formula for St to derive a formula for prices of European
options under the Merton model

Proposition 3.3. Under the Merton model, the price at time t of a European option
with payoff h(ST ) is given by

Ct =
1

2π

∞∑
k=0

1

k!
(λ(T − t))ke−λ(T−t) (3.6)

×
∫ ∞
−∞

h
(
e−(ω+σ

2)(T−t)+kα+
√
kδ2+σ2(T−t)x

)
e−x

2/2dx.

13



Proof. Note that
ST = Ste

LT−Lt

where L is a Markov Process with independent and identically distributed increments
(i.e., it is a Levy process). Therefore, the conditional density of LT − Lt equals the
density of LT−t. This implies

E∗[h(ST )|Ft] = g(St),

where
g(s) = E∗

[
h
(
seLT−t

)]
.

To compute g we proceed as follows: partitioning the last expectation on the different
values that NT−t can take, we have

g(s) = E∗[h
(
se−(ω+σ

2/2)(T−t)+σBT−t+
∑k
i=1Xi1{NT−t=k}

)
].

The independence of B, N and the sequence {Xi} and the Poisson distribution of
NT−t give

=
∞∑
k=0

1

k!
e−λ(T−t)(λ(T − t))k

(
E∗[h

(
se−(ω+σ

2/2)(T−t)+σBT−t+
∑k
i=1Xi

)]
.

The only remaining random variable in this display is σBT−t +
∑k

i=1Xi, which is
normal distributed with mean kα and variance σ2(T − t) + kδ2. Computing the last
expectation using this density gives (3.6).

3.1.4 Implied volatility surface for the Merton Model

Let us now use the explicit pricing formula derived in the previous section to look
at the implied volatility surface under the Merton framework. An example is given in
Figure 3.1; this is the volatility surface of the Merton model for the following parameter
values:

σ = 0.2, λ = 0.1, α = 0.02, δ = 0.3, s = 1.

As is clear from Figure 3.1, the Merton model is able to produce nonflat implied volatil-
ity surfaces as opposed to the BS model which always implies a flat volatility surface.
The next chapter will review the Heston model, which is another model with nonflat
implied volatility surfaces.

3.1.5 The Characteristic Function of Jt

As seen in Proposition 3.3, under the Merton model, one can directly compute the
prices of European securities using the densities of the underlying random variables;
therefore, for the Merton model one does not need the characteristic function of ST to

14
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Figure 3.1: The implied volatility surface of the Merton model for λ = 0.1, σ = 0.2,
α = 0.02 and δ = 0.3

compute option prices. Nonetheless, in Chapter 5 when we will combine stochastic
volatility models with jumps, we will no longer have explicit formulas for densities
and we will need to use the characteristic function approach. For this it will be useful
to know the characteristic function of Jt. Here, Jt is a compound Poisson process, so
its characteristic function is well known. Given its importance in our calculations, we
repeat this computation below.

Proposition 3.4. The characteristic function of JT equals

φJ(θ) = E∗
[
eiθJT

]
= exp (λt (φX(θ)− 1)) ,

where
φX(θ) = eiαθ−

1
2
δ2θ2 ,

is the characteristic function of Xi.

Proof. We begin by conditioning on NT :

φJ(θ) = E∗
[

exp(iθ

NT∑
n=k

Xn)

]

= E∗
[
E∗
[

exp

(
(iθ

NT∑
n=k

Xn

)
|NT

]]
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the fact that NT takes countably many values implies the representaion

= P∗(NT = 0) +
∞∑
k=1

E∗
[
iθ

NT∑
n=1

Xn|NT = k

]
P∗(NT = k).

The independence of N and Xn leades to the form

= e−λt +
∞∑
k=1

E∗(eiθX1)E∗(eiθX2)...E∗(eiθXk)
(λt)k

k!
e−λt

= e−λt + e−λt
∞∑
k=1

(ϕX(θ)λt)k

k!

= e−λt
∞∑
k=0

(ϕX(θ)λt)k

k!

= expλt(ϕX(θ)− 1); .

this proves the proposition.
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CHAPTER 4

Heston Model

4.1 Heston Model

A very popular framework for option pricing is the “stochastic volatility” models.
These models assume that the volatility parameter σ itself is a stochastic process. The
first and most popular stochastic volatility model is the Heston model, first introduced
in [5]. Two book length treatments of this model are [4, 11]. This chapter follows [4].
The Heston model assumes the following price dynamics:

dSt = StdXt, (4.1)

where

dXt = µdt+
√
vtdWt (4.2)

dvt = −λh (vt − ν̄) dt+ η
√
vtdW

h
t ,

and (Wt,W
h
t ) is a two-dimensional Brownian motion with cross variation

〈W,W h〉 = ρt.

The parameters of the Heston model are: µ, λh, ν̄ > 0, λh > 0, η > 0 and ρ ∈ [−1, 1].
ν̄ is the mean-variance level to which v reverts, λh is the speed of reversion. The
presence of a two Brownian motion implies that a market consisting only of S and the
riskless bond is incomplete and, therefore, there are a family of risk neutral measures
under which S is a martingale. Similar to the Merton model, this brings the question
of which risk-neutral pricing measure to use. The most commonly used solution to
this problem is to proceed as we did in the Merton model and to set P∗ to the unique
measure that only modifies the drift of the Brownian motion appearing in X , so that X
becomes a martingale (see [4, 11]):

dXt =
√
vt

(
µ
√
vt
dt+ dWt

)
=
√
vtdBt,

where
Bh
t =

µ
√
vt
t+Wt.
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We choose P∗ so that B is a standard Brownian motion under P∗. Once again, Gir-
sanov’s theorem provides the explicit change of measure that defines P∗ in terms of
P. Going from P to P∗ only the Brownian motion changes from W to B; the rest of
the processes remain the same, in particular, the parameters ρ, η, λh and ν̄ remain
unchanged.

Let us define

Lht
.
= −1/2

∫ t

0

vsds+

∫ t

0

√
vsB

h
s .

An argument parallel to the proof of Proposition 3.2 gives the following formula for
St:

Proposition 4.1. The solution of (4.1) is

St = S0e
Lht . (4.3)

As opposed to the situation in the Merton framework, there is no simple formula for
the density of Lht ; therefore, one cannot simply use (4.3) to find explicit formulas for
prices of call options, similar to the derivation of (3.6). Nonetheless, it is still possible
to find fairly explicit formulas for prices of European call options under the Heston
model using PDE methods. The reference [4] gives a derivation of this formula; in
the rest of this chapter we follow the derivation in [4], which is based on the partial
differential equation (PDE) satisfied by the price of the option. This PDE is given as
follows in [4]:

−∂C
∂τ

+
1

2
vC11 −

1

2
vC1 +

1

2
η2vC22 + ρηvC12 − λ(v − v̄)C2 = 0,

whereC is the price function and subscripts 1 and 2 refer to differentiation with respect
to x and v respectively. suppose the solution of the equation has the form

C(x, v, τ) = K{exP1(x, v, τ)− P0(x, v, τ)}.

Having calculated all partial derivatives for proposed solution, we will insert them into
the PDE; the partial derivatives are:

∂C

∂τ
= K

[
ex
∂P1

∂τ
− ∂P0

∂τ

]
,

C1 =
∂C

∂x
= K

[
exP1 + ex

∂P1

∂x
− ∂P0

∂x

]
,

C11 =
∂2C

∂x2
= K

[
exP1 + ex

∂P1

∂x
+ ex

∂P1

∂x
+ ex

∂2P1

∂x2
− ∂2P0

∂x2

]
,

C2 =
∂C

∂v
= K

[
ex
∂P1

∂v
− ∂P0

∂v

]
,

C22 =
∂C

∂v
= K

[
ex
∂2P1

∂v2
− ∂2P0

∂v2

]
,

C12 =
∂

∂v
(
∂C

∂x
) = K

[
ex
∂P1

∂v
+ ex

∂2P1

∂v∂x
− ∂2P0

∂v∂x

]
.

18



By substituting these derivatives in the PDE and simplifying the result, we get

− ex∂P1

∂τ
+

1

2
vex

∂2P1

∂x2
+

1

2
vex

∂P1

∂x
+

1

2
η2vex

∂2P1

∂v2
+ ρηvex

∂2P1

∂v∂x

+ (ρηvex − λ(v − v̄))
∂P1

∂v
+
∂P0

∂τ
− 1

2
v
∂2P0

∂x2
+

1

2
v
∂P0

∂x
− 1

2
η2v

∂2P0

∂v2
− ρηv ∂

2P0

∂x∂v

− (λv̄ − λv)
∂P0

∂v
= 0.

This is the same as

−(ex
∂P1

∂τ
−∂P0

∂τ
)+

1

2
v(ex

∂2P1

∂x2
−∂

2P0

∂x2
)+

1

2
v(ex

∂P1

∂x
+
∂P0

∂x
)+

1

2
η2v(ex

∂2P1

∂v2
−∂

2P0

∂v2
)

+ ρηv(ex
∂2P1

∂v∂x
+
∂2P0

∂x∂v
) + λ(v̄ − v)(ex

∂P1

∂v
− ∂P0

∂v
) + ρηvex

∂P1

∂v
= 0;

Since the solution stands for C; so, it must stand for both P1, and P2. Then:

− ∂Pj
∂τ

+
1

2
v
∂2Pj
∂x2

− (
1

2
− j)v∂Pj

∂x
+

1

2
η2v

∂2Pj
∂v2

+ ρηv
∂2Pj
∂x∂v

+ (a− bjv)
∂Pj
∂v

= 0

(4.4)

when j = 0,1 where
a = λv̄, bj = λ− jρη,

θ(x) := lim
τ→0

Pj(x, v, τ) =

{
1, ifx > 0,

0, ifx ≤ 0,

where θ(x) is the terminal value. By the definition of equation θ(x) and via Fourier
transform technique, we will solve equation (4.4). Consider the Fourier transform of
Pj as

P̃ (x, v, τ) =

∫ ∞
−∞

dxe−iuxP (x, v, τ).

Then the forward transform is

P̃ (x, v, 0) =

∫ ∞
−∞

dxe−iuxθ(x) =
1

iu
,

and for inverse transform we have

P (x, v, τ) =

∫ ∞
−∞

du

2π
eiuxP̃ (x, v, τ). (4.5)

Having calculated all those derivatives in (4.4) with respect to τ , x2, x, v2, v, for (4.5)
we have

∂Pj
∂x

=
iu

2π
eiuxP̃j,

∂2Pj
∂x2

=
−u2

2π
eiuxP̃j,
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∂2Pj
∂x∂v

=
iu

2π
eiux

∂P̃j
∂v

.

We substitute the last equation into (4.4). Since eiux

2π
is not zero, we can easily ignore

it. So, we have

− ∂P̃j
∂τ
− 1

2
u2vP̃j −

1

2
u2vP̃j − (

1

2
− j)iuvP̃j +

1

2
η2v

∂2P̃j
∂v2

+ ρηiuv
∂P̃j
∂v

+ (a− λ+ ρjη) = 0.

By rearranging this equation, we have

− v(
1

2
u2 − 1

2
iuv + jiuv)∂P̃j − v(λ− ρηj − ρηiu)

∂P̃j
∂v

+
1

2
η2v

∂2P̃j
∂v2

+ a
∂P̃j
∂v
− ∂P̃j

∂τ
= 0. (4.6)

Now, we define

α = −u
2

2
− iu

2
+ iju,

β = λ− ρηj − ρηiu,

γ =
η2

2
.

Then, (4.6) turns out to be

v

[
αP̃j − β

∂P̃j
∂v

+ γ
∂2P̃j
∂v2

]
+ a

∂P̃j
∂v
− ∂P̃j

∂τ
= 0. (4.7)

Now, consider the answer in below form and substitute it in (4.7):

P̃j(u, v, τ) = exp [Cj(u, τ)v̄ +Dj(u, τ)v]

=
1

iu
exp [Cj(u, τ)v̄ +Dj(u, τ)v]

v

[
αP̃j − β

∂P̃j
∂v

+ γ
∂2P̃j
∂v2

]
+ λv̄

∂P̃j
∂v

=

[
v̄
∂Cj
∂τ

+ v
∂Dj

∂τ

]
Pj. (4.8)

Therefore, we have

∂P̃j
∂τ

=

[
v̄
∂Cj
∂τ

+ v
∂Dj

∂τ

]
Pj,

∂P̃j
∂v

= DjP̃j,

∂2P̃j
∂v2

= D2
j P̃j.
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So,(4.8) holds if

∂Cj
∂τ

= λDj (4.9)

∂Dj

∂τ
= α− βDj + γD2

j = γ(Dj − r+)(Dj − r−)

define

rj,± =
β ±

√
B2 − 4αγ

2γ
:=

β ± d
η2

By integrating (4.9), with respect to the terminal conditionCj(u, 0) = 0 andDj(u, 0) =
0, we have

∂Dj

(Dj − r+)(Dj − r−)
= γ∂τ

(
1

Dj − r−
− 1

Dj − r+
)∂D = (r− − r+)γ∂τ

ln
Dj − r−
Dj − r+

=
γ∂τ

r− − r+

(Dj − r+) exp

[
γτ

r− − r+

]
= Dj − r−.

Let us consider d := γ
r−−r+ and g := r−

r+
. So,

Dj(u, τ) =
r− − r+edτ

1− edτ

Cj(u, τ) = λ

[
r−τ −

2

η2
log(

1− ge−dτ

1− g
)

]
Complex integration in (4.5) gives the final form of the Pj:

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞
0

duRe

[
exp{Cj(u, τ)v̄ +Dj(u, τ)v + iux}

iu

]
.

Let us summarize the foregoing computations in the following proposition.

Proposition 4.2. The price Ct of a European call option under the Heston model at
time t is given by

C(x, v, t) = K(exP1(x, v, T − t)− P0(x, v, T − t)). (4.10)

4.1.1 Characteristic function of LhT

In Chapter 5 we will combine the Heston and the Merton models; to derive prices
of European options under that framework we will use the characteristic function ap-
proach outlined in Chapter 2.1. To compute the characteristic function of log(ST ) in
Chapter 5 it will be useful to have a formula for the characteristic function of LhT ; [4]
derives the following formula for this characteristic function starting from (4.10).
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Proposition 4.3. Characteristic function of Heston model is

φhT (θ) = E∗
[
eiθL

h
T

]
= exp[C(θ, τ)v̄ +D(θ, τ)v].

Proof. The final log-stock price xT is greater than the strike price. This probability is

Pr(LhT > x) = P0(x, v, τ)

=
1

2
+

1

π

∫ ∞
0

duRe

[
exp{Cj(θ, τ)v̄ +Dj(θ, τ)v + iθx}

iθ

]
with x = log(St/K), τ = T − t, and log-strike price is defined by k = log(K/St) =
−x. Then, the probability density function p(k) is

Pr(k) = −∂P0

∂k

=
1

k

∫ ∞
−∞

θ′ exp[C(θ′, τ)v̄ +D(θ′, τ)v − iθ′k].

Here, with

φhT (θ) =

∫ ∞
−∞

dkp(k)eiθk

=
1

2π

∫ ∞
−∞

dθ′ exp[C(θ′, τ)v̄ +D(θ′, τ)v]

∫ ∞
−∞

duei(θ−θ
′)k

=

∫ ∞
−∞

dθ′ exp[C(θ′, τ)v̄ +D(θ′, τ)v]δ(θ − θ′)

= exp[C(θ, τ)v̄ +D(θ, τ)v].
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CHAPTER 5

Combination of Heston and Merton Models

One of the observations made in [4] is that the Heston model itself is not flexible
enough to fully fit implied volatility surfaces given in practice. To overcome this dif-
ficulty, [4] combines the Merton jump and stochastic volatility models. The resulting
model uses the following price dynamics:

dSt = StdXt, (5.1)

where

Yt =
Nt∑
i=1

(
eXi − 1

)
,

dXt = µdt+
√
vtdWt + dYt

dvt = −λh (vt − ν̄) dt+ η
√
vtdW

h
t ,

(Wt,W
h
t ) is a two dimensional Brownian motion with cross variation

〈W,W h〉 = ρt,

Nt is a Poisson process with jump rate λ and Xi is an iid sequence with distribution
N(α, δ2). The components of the Y process (the Xi variables and the Poisson process
N ) are independent of each other. We note that this is the combination of (3.1), (3.2)
and (4.2). The equation (5.1) is a linear equation andX is a semimartingale. Therefore,
(5.1) has a unique solution St.

As it is always the case in risk neutral pricing of options, the µ parameter has no role
and can be ignored. Therefore, the Merton-Heston model has the following seven
parameters: λh,, ν̄, η, ρ, α, δ2 and λ.

5.1 Risk neutral measure

Given that the Heston-Merton model is even more general than the Heston and Merton
models, like them, it gives an incomplete market when the market consists of only the
riskless security and S. Therefore, the Heston-Merton model does not have a unique
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martingale measure either. Parallel to the earlier chapters and to [4] we will use the
simplest possible change of measure and only change the drift of X to 0 to make the
resulting process a martingale. The X process has two sources of drift: the µ term and
the drift, i.e., the compensator of Y . The latter was computed in Chapter 3, see (3.3):

E[Yt] = ωt =
(
eα+

δ2

2 − 1
)
t (5.2)

and
dXt = (µ+ ω)dt+

√
vtdWt − dȲt,

where
Ȳt = Yt − ωt.

Now, we rewrite dXt as

dXt =
√
vt

(
µ+ ω
√
vt

dt+ dWt

)
− dȲt.

For X to be a martingale it suffices to change the measure to P∗ under which

W ∗
t =

∫ t

0

µ+ σ
√
vs

ds+Wt

is a martingale. Such a change of measure exists, once again, by the Girsanov the-
orem. Parallel to earlier chapters, this is the measure that we will use in our price
computations.

5.2 Formula for the price and the characteristic function

Similar to the Merton model, the price model (5.1) has jumps. Parallel to Chapter
3 one can use the Ito formula for semimartingale with jumps to derive the following
representation for log(Xt); the proof is entirely parallel to that of Proposition 3.2 and
is omitted.

Proposition 5.1. The solution of (5.1) is given by

St = S0e
Lhmt ,

where

Lhmt = −ωt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdW

∗
s + Jt

Jt =
Nt∑
i=1

Xi,

and ω is as in (5.2).
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As in the previous chapter we will use the characteristic function of log(St) to compute
prices of European options. Without loss of generality, let us take S0 = 1; then, by the
previous proposition we have

log(St) = Lhmt .

Therefore, to compute prices of European options we only have to compute the char-
acteristic function of Lt; this is done in the next proposition:

Proposition 5.2. The characteristic function of Lt equals

φhmT (θ) = E∗[eiθLhmT ] = φhT (θ)φJT (θ). (5.3)

Proof. Note that by definition the processes Jt and

Ht = −ωt− 1

2

∫ t

0

vsds+

∫ t

0

√
vsdWs

are independent of each other. Therefore,

E∗[eiθLhmT ] = E∗[eiθ(HT+JT )] = E∗[eiθHT ]E∗[eiθJT ] = φhT (θ)φJT (θ),

which proves (5.3).

We notice that φhmT was given in Proposition 4.3 of Chapter 4 and φjT was computed in
Proposition 3.4 of Chapter3. Now one can use the Fourier inversion theorem to get the
density of LT , which in turn can be employed to compute European option prices for
the Heston-Merton model.
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CHAPTER 6

Fitting to VIOP

The goal of this section is to fit the Heston-Merton model, reviewed in the previous
chapter, to European option prices observed in VIOP. Our study looks at the first two
months of 2017. Perhaps the most popular way of fitting volatility models to option
data is via the loss function approach. In this approach, one defines a loss function
(or a distance function) that measures the distance between observed option prices and
those implied by the values of the model parameters. The fitting process minimizes
this distance over the range of model parameters. The distance function we use for this
chapter is of the following form:

L(Θ) =
N∑
i=1

w(Ti, Ki)(C(Ti, Ki,Θ)− CM(Ti, Ki))
p, (6.1)

where p > 0, N is the number of prices observed in the market, Θ is the vector
of model parameters (in the case of the Heston-Merton model Θ consists of eight
components, the seven are the model parameters λh,, ν̄, η, ρ, α, δ2 and λ; the position
of the unobserved v process is also taken as a parameter. Here, N is the number of
prices observed in the market, CM(Ti, Ki) is the price observed in the market for the
call option with strike Ki and maturity Ti, C(Ti, Ki,Θ) is the prices of the call option
given by the model (put option prices are converted to call option prices via the put
call parity) and w(Ti, Ki) > 0 is a weight that can be chosen to give different distance
functions. A list of possible weight functions is given in [11, Chapter 6]; for the
purposes of this thesis we will use p = 2 and w is implied by the vega of the option
under the BS model.

6.1 Results of the fit

We will fit the Heston model to two sets of option prices: options of Garanti Bankasi
and those of Koc Holding. The price data is available on BIST’s website (http:
//www.borsaistanbul.com/en/) and for the interest rate we use the overnight
rate of the Turkish Central Bank (available at http://www.tcmb.gov.tr/). The
price movements of these two assets between January 2, 2017, and February 24, 2017
(two months, 40 trading days) are given in Figure 6.1. For fitting the model, we keep
those options (1) for which there is an open interest, (2) which have at least 3 days
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Figure 6.1: The prices of Garanti Bankasi and Koc Holding between January 2, 2017,
and February 24, 2017

to their maturity, and (3) which have a valid implied volatility value. The number of
options on each days satisfying these conditions are shown in Figure 6.2. Note that the
resulting parameter fits for the eight model parameters are given in Figures 6.3 to 6.10.
We have performed the fit using the fminsearch function of octave using at most 20
iterations per optimization.
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Figure 6.2: Number of European options written on Garanti and Koc traded on VIOP
between January 2 2017, February 24, 2017

Figure 6.3: The estimated value of the λh parameter
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Figure 6.4: The estimated value of the ν̄ parameter

Figure 6.5: The estimated value of the η parameter
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Figure 6.6: The estimated value of vt

Figure 6.7: The estimated value of the ρ parameter
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Figure 6.8: The estimated value of the λ parameter

Figure 6.9: The estimated value of the α parameter
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Figure 6.10: The estimated value of the δ parameter

Our observations regarding these results are as follows:

1. Garanti has more options available than Koc Holding. Number of options on Koc
goes down to 0 between days 20 and 30, during which time interval the model
could not be fit to Koc Holding. This small number of options is problematic,
because the model has 8 parameters; fitting 8 parameters to 4 data points leads
to over-fitting.

2. The paramater values for these two companies are different from each other. For
example, the ν̄ parameter for Garanti is typically around 0.09, whereas it is near
0.14 for Koc.

3. The λh, ν̄, λ, δ and ρ paramaters for Garanti fluctuate little. The α and η param-
eters show a greater variation.

4. The parameter values for Koc holding fluctuate a little, perhaps because of the
small number of option prices available for this asset.

5. The ρ parameter for both of the assets is very small across the 40 days covered
in this study.

6. Both models have significant α, λ values indicating a nontrivial jump feature.
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Figure 6.11: Actual and Model prices on February 24

6.2 Approximation performance of the fitted model

The loss function L of (6.1) used in the model-fitting measures the difference between
model prices and the observed prices. Therefore, we begin by comparing these two
quantities.

Figures 6.11 to 6.14 show the option prices observed in the market in three different
days. In these figures, the maturity and strikes of the options are not explicitly given.
This information for February 24. was already given in Chapter 1. The rest of the days
have similar maturity and strike values. We see from these figures that, at the level of
absolute prices, the fit performs rather well.

However, more important measures of closeness are relative error and the difference
between implied volatilities. In terms of these measures, we see that the fits we have
found perform not so well. As an example, we give the relative errors and the implied
volatilities for 10 February 2017 are given in Figures 6.15 and 6.16.

The relative error for February 10 is around 5%; however, we see that for one of the
options it goes up to 25%.

We note that the model IV curve is flatter, when compared to the actual IV curve;
nonetheless, in terms of their absolute values, these two curves lie near one together.

Results for Koc are less interesting, because for most of the 40 days which study,

34



Figure 6.12: Actual and Model prices on February 10

Figure 6.13: Actual and Model prices on January 27
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Figure 6.14: Actual and Model prices on January 13

Figure 6.15: Relative error between model prices and actual prices, February 10
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Figure 6.16: The market and model implied volatilities of Garanti Options, February
10

the number of options available for the fit is very small. Therefore, often, the prices,
relative prices and the implied volatilities can match very well. An example is given in
Figure 6.17, again for February 10. We observe that the implied volatilities observed
in the market and those given by the model are close. But this not very interesting,
because the model is fit only to two options.
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Figure 6.17: The market and model implied volatilities of Koc Holding Options,
February 10
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CHAPTER 7

Conclusion

In this thesis we have reviewed the Merton and Heston models and their combination
for the pricing of European options. The Heston-Merton model does not have an ex-
plicit formula for its density, but its characteristic function is explicitly computable. We
reviewed the derivation of this characteristic function. Once the characteristic function
is available, one can use Fourier inversion to get the density. We based our pricing
computations on this approach.

We have fitted the combined Heston-Merton model to several option prices observed
in VIOP / BIST. We focused on the options of two companies: Garanti Bankasi and
Koc Holding and on the first two months of 2017. For the fit, have minimized a loss
function based on the L2-distance between market prices and model prices. The fitting
processes gave stable parameter values across the 40 day period we focused on. The fit
was accurate in terms of absolute prices, but it was mediocre in terms of relative error
and implied volatilities.

In future research we hope to do the following:

1. Using a loss function based on implied volatilities; the difficulty with this is that
computation of implied volatilities requires a lot of computation. For this reason,
this may need the implementation of our code in C or some other language with
a compiler producing machine level code.

2. Studying the hedging performance of the Heston-Merton model.

3. Extending our study to longer periods and more options traded in VIOP.
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