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ABSTRACT

CONTRIBUTIONS ON PLATEAUED (VECTORIAL) FUNCTIONS FOR
SYMMETRIC CRYPTOGRAPHY AND CODING THEORY

Sinak, Ahmet
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Ozbudak

Co-Supervisor : Prof. Dr. Sthem Mesnager

September 2017, pages

Plateaued functions, used to construct nonlinear functions and linear codes, play a sig-
nificant role in cryptography and coding theory. They can possess various desirable
cryptographic properties such as high nonlinearity, low autocorrelation, resiliency,
propagation criteria, balanced-ness and correlation immunity. In fact, they provide
the best possible compromise between resiliency order and nonlinearity. Besides they
resist against linear cryptanalysis and fast correlation attacks due to their low Walsh-
Hadamard transform values. Indeed, cryptographic algorithms are usually designed
by appropriate composition of nonlinear functions, hence plateaued functions have
a great effect on the security of these algorithms. Additionally, plateaued functions
are closely related to linear codes, the most significant class of codes in coding the-
ory, which have diverse applications in secret sharing schemes, authentication codes,
communication, data storage devices and consumer electronics.

The main objectives of this thesis are twofold: to study in detail the explicit char-
acterizations for plateaued-ness of functions over finite fields from a cryptographic
point of view, and to construct linear codes from weakly regular plateaued functions
in coding theory.

In this thesis, we first analyse characterizations of plateaued (vectorial) functions
over a finite field IF, with p a prime number. More precisely, we obtain a large
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number of their characterizations in terms of their Walsh power moments, deriva-
tives and autocorrelation functions, with the aim of both clarifying their structure and
obtaining information about their construction. In particular, we observe the non-
existence of a homogeneous cubic bent function (and in some cases a (homogeneous)
cubic plateaued function) over [F, with p an odd prime. Moreover, we show the non-
existence of a function whose absolute Walsh transform takes exactly three distinct
values (one being zero), and introduce a new class of functions whose absolute Walsh
transform takes exactly four distinct values (one being zero). Furthermore, we study
partially bent and plateaued functions over a finite field I, with ¢ a prime power, and
obtain some of their characterizations in order to understand their behaviour over this
field.

In addition, we introduce the notion of (non)-weakly regular plateaued functions over
IF,,, with p an odd prime, and provide the secondary constructions of these functions.
We then construct three-weight linear p-ary (resp. binary) codes from weakly regular
p-ary plateaued (resp. Boolean plateaued) functions and determine their weight dis-
tributions. Finally, we show that the constructed linear codes can be used to construct
secret sharing schemes with “nice” access structures. To the best of our knowledge,
the construction of linear codes from plateaued functions over [F,,, with p an odd
prime, is studied in this thesis for the first time in the literature.

Keywords: Boolean functions, vectorial functions, p-ary functions, bent, partially
bent, plateaued, (non)-weakly regular plateaued, linear codes, secret sharing schemes
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SIMETRIK KRIPTOGRAFi VE KODLAMA TEORISI ICIN (VEKTOREL)
PLATO FONKSIYONLAR UZERINE KATKILAR

Sinak, Ahmet
Doktora, Kriptografi Boliimii

Tez Yoneticisi : Prof. Dr. Ferruh Ozbudak
Ortak Tez Yoneticisi : Prof. Dr. Sihem Mesnager

Eyliil 2017, [I71]sayfa

Dogrusal olmayan fonksiyonlar ve dogrusal kodlar insa etmek i¢in kullanilan plato
fonksiyonlar kriptografide ve kodlama teorisinde ¢ok onemli rol oynamaktadir. Bu
fonksiyonlar yiiksek dogrusalsizlik, diisiik otokorelasyon, esneklik, yayilma kriteri,
dengelilik ve korelasyon dayaniklilig1 gibi ¢esitli istenen kriptografik 6zelliklere sa-
hip olabilmektedir. Aslinda bu fonksiyonlar esneklik derecesi ve dogrusalsizlik ara-
sindaki miimkiin olan en iyi sinir1 saglar. Bunun yam sira, bu fonksiyonlar diisiik
Walsh-Hadamard doniisiim degerlerine sahip olmalarindan dolay1 dogrusal kripta-
nalize ve hizli korelasyon saldirilarina kars1 dayaniklidir. Gergekten de, kriptografik
algoritmalar cogunlukla dogrusal olmayan fonksiyonlarin uygun bilegkeleri ile tasar-
lanir, bu nedenle plato fonksiyonlar bu algoritmalarin giivenligi tizerinde 6nemli bir
etkiye sahiptir. Plato fonksiyonlar ayn1 zamanda, gizli paylasim semalari, kimlik dog-
rulama kodlari, iletisim, veri depolama cihazlar1 ve tiiketici elektronikleri gibi bir¢cok
alanda uygulamalari olan ve kodlama teorisindeki en onemli kod sinifin1 olusturan
dogrusal kodlarla yakindan ilgilidir.

Bu tezin iki temel amaci vardir: kriptografik agidan sonlu cisimler tizerindeki fonk-
siyonlarin platoluluk 6zelligini veren karakterizasyonlarini detayl calismak, ve kod-
lama teorisinde zayif diizenli plato fonksiyonlardan dogrusal kodlar inga etmektir.

Bu tezde, ilk olarak sonlu cisim I, p asal sayi, iizerindeki plato (vektorel) fonksi-
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yonlarin karakterizasyonlarini analiz ediyoruz. A¢ikgasi, bu fonksiyonlarin yapilarini
anlamak ve insalar1 hakkinda bilgi edinmek icin, Walsh kuvvet momentleri, tiirev-
leri ve otokorelasyon fonksiyonlar1 bakimindan ¢ok sayida karakterizasyonlarini elde
ediyoruz. Ozel olarak F »» P tek asal sayi, iizerinde homojen kiibik biikiik (ve bazi
durumlarda homojen kiibik plato) fonksiyonlarin olamayacagini gdzlemliyoruz. Ay-
rica, mutlak Walsh doniisiimii ii¢ farkli degere (bir tanesi sifir) sahip olan fonksiyon
olamayacagini gosteriyoruz ve mutlak Walsh doniisiimii dort farkli degere (bir tanesi
sifir) sahip olan yeni fonksiyonlar sinifi veriyoruz. Daha sonra, kismi biikiik ve plato
fonksiyonlarini herhangi bir sonlu cisim Iy, ¢ asal kuvvet, lizerinde ¢alisiyor ve bu
cisim iizerindeki davranislarin1 anlamak i¢in bazi karakterizasyonlarini veriyoruz.

Bunlara ek olarak, IF,,, p tek asal sayi, iizerinde zayif diizenli (olmayan) plato fonksi-
yon kavramini ve bu fonksiyonlarin ikincil ingalarini veriyoruz. Sonra, zayif diizenli
p-li plato (sirayla, Boole plato) fonksiyonlardan ii¢ agirlikli dogrusal p-li (sirayla,
ikili) kodlar inga ediyoruz ve bu kodlarin agirlik dagilimlarini belirliyoruz. Son olarak
da, insa edilen dogrusal kodlarin “miikemmel” erisim yapilarina sahip gizli paylasim
semalar1 tiretmek icin kullanilabilecegini gosteriyoruz. Bilgimiz dahilinde, I, p tek
asal say1, lizerinde plato fonksiyonlardan dogrusal kodlarin ingasi literatiirde ilk kez
bu tezde calisiliyor.

Anahtar Kelimeler: Boole fonksiyonlar, vektorel fonksiyonlar, p-li fonksiyonlar, bii-
kiik, kismi biikiik, plato, zayif diizenli (olmayan) plato, dogrusal kodlar, gizli payla-
sim semalari
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CHAPTER 1

INTRODUCTION

1.1 Overview

The functions over a binary field are called Boolean functions, which play an im-
portant role in cryptography and coding theory. Bent functions over a binary field
are maximally nonlinear Boolean functions. They have attracted considerable atten-
tion in the literature not only for being interesting combinatorial objects, but also
for their relations to coding theory (e.g. the Reed-Muller codes, the Kerdock codes,
etc.), combinatorics (e.g. difference sets), design theory, sequence theory, and appli-
cations in cryptography (design of stream ciphers and of substitution-boxes for block
ciphers). Plateaued Boolean functions are generalization of Boolean bent functions.
They also have a significant role in cryptography, coding theory, sequences for com-
munications, and the related combinatorics and designs. Notably, they are applicable
primitives used in coding theory to construct linear codes and symmetric cryptog-
raphy to construct nonlinear functions. In addition to the desirable various crypto-
graphic properties of bent functions such as high nonlinearity, low additive autocor-
relation, resiliency and propagation criteria, plateaued functions can have balanced-
ness and correlation immunity. In fact, the order of resiliency and the nonlinearity
of Boolean functions is strongly bounded only by plateaued functions. Addition-
ally, some plateaued functions provide resistance against linear cryptanalysis and fast
correlation attacks due to their high nonlinearities and low Walsh-Hadamard trans-
form values. The algorithms in symmetric cryptography (stream and block ciphers)
are designed using an appropriate composition of nonlinear functions, and thereby

plateaued functions have a great effect on the security of these algorithms (for in-
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stance, the security of block ciphers highly depends on the substitution-boxes).

The notion of Boolean bent functions was introduced by Rothaus [72] in the 1970s
and initially studied by Dillon as early as in 1974 [30]]. They have been widely stud-
ied in the past forty years by a large number of researchers (see, a non-exhaustive
list, [64 11} 113} (14} 39,149, [70]). In fact, a jubilee survey paper [19] and a book [57]
have been devoted to bent functions (including generalizations, variations and appli-
cations). Because of unbalanced-ness of bent functions, Carlet (1993) introduced in
[12]] a super class of bent functions: the notion of partially bent functions, whose
elements not only have high nonlinearity but also can be balanced. As an extension
of this notion, Zheng and Zhang (1999) introduced in [78] the notion of plateaued
functions, whose squared Walsh transform takes only one nonzero value (also pos-
sibly the value 0). Plateaued Boolean functions include four important classes of
Boolean functions: O-plateaued functions (called bent functions), 1-plateaued func-
tions (called near-bent functions), 2-plateaued functions (called semi-bent functions)
and partially bent functions. It is worth noting that, in characteristic 2, 0-plateaued
and 2-plateaued functions exist only when n is even, while 1-plateaued functions ex-
ist only when n is odd. These Boolean functions have been extensively studied by a
large number of researchers (see, e.g., [[15, 21} 126/ 145,49, 154} 56, [79]). However, the
other plateaued Boolean functions have not been studied much in a general frame-
work when compared to their importance. In fact, a small amount of work have been
done in [21} 169, [78]]. Recently, Carlet [15] (2015) has deeply studied the construc-
tions and characterizations of plateaued Boolean (vectorial) functions by means of
their Walsh power moments, autocorrelation functions, first-order and second-order

derivatives.

The notion of plateaued functions has been generalized to arbitrary characteristic:
the so-called p-ary plateaued functions (see, e.g., [23,53]]). Indeed, in 2014, the first
study of p-ary plateaued functions was done in [S5] by Mesnager, who introduced new
characterizations of p-ary plateaued by the constant of the ratio of two consecutive
Walsh power moments of even order. A small number of researchers have studied
and brought some results on these functions, especially on their characterizations
and constructions in arbitrary characteristic (see, e.g., [23, 43, 55]). Because of the

gap between the interest of the notion of these functions and our knowledge on it,



we aim in this thesis to continue bringing new results on the characterizations of p-
ary plateaued (vectorial) functions and to provide new tools which allow us a better
understanding of their structure and have a toolbox for future construction of these
functions. To this end, we first push further the study initiated by Mesnager on p-ary
plateaued (vectorial) functions (2014) and extend the ones done by Carlet (2015) in
characteristic 2. We also obtain a number of new characterizations of these functions
by using their Walsh power moments, derivatives and autocorrelation functions, with

the aim of clarifying their structure.

In 1985, the notion of bent functions was generalized to any residue class ring Z;
by Kumar et al. [46] where £ is any positive integer, and since then they have been
exhaustively studied by a number of researchers (see, e.g., [18, 40, 41} 48, 167] for
a positive integer £ and see, e.g., [22, 23} 24, 136, 37, 138, [75] for a prime k). In
1991, the notion of perfect nonlinear functions over Z;, with k any positive integer,
was introduced by Nyberg [67]. Nyberg established some properties of bent and
perfect nonlinear functions over Z;. We emphasize that generalized bent and perfect
nonlinear functions over Z;, are not equivalent for a positive integer %, in general.
Nyberg, over Z;, showed that any perfect nonlinear function is a generalized bent
function for any positive integer £, but the converse is true only if % is a prime number.
In 1997, Coulter and Matthews [28] redefined bent functions over any finite field
F, with ¢ a prime power, and discussed some of their properties and permutation
behaviour. They showed that bent and perfect nonlinear functions are equivalent over
[F,, while they are not equivalent over Z;, for a composite number k. Additionally,
Hou [41] (2004) come up with further results about bent functions over F,. Within
this framework, the other purpose of this thesis is to study the notions of partially bent

and plateaued functions over any finite field IF, and their various characterizations.

Error correcting codes are extensively studied in the literature by a large number of
researchers and employed by many engineers. They have long been known to have
applications in computer and communication systems, data storage devices (starting
from the use of Reed Solomon codes in CDs) and consumer electronics. Consider-
able progress has been made on the constructions of linear codes with few weights.
Such codes have many applications in secret sharing schemes [[1} (17, 27, 135, [77]], au-

thentication codes [32], association schemes and strongly regular graphs [9]. There



are several methods to construct linear codes, one of which is based on functions
over finite fields (see, a non-exhaustive list, [31, 34, 35 58, [76/ [80]). Two generic
constructions (say, first and second) of linear codes from functions have been kept
apart from the others in the literature. Recently, several constructions of linear codes
based on the second generic construction were proposed, and plenty of linear codes
with perfect parameters were constructed. In fact, Ding brought out an interesting
survey [31] devoted to the construction of binary linear codes from Boolean func-
tions based on the second generic construction. Commonly, bent functions (mostly,
quadratic and weakly regular bent functions) have been used to construct linear codes
with few weights. Recently, it was shown in a few papers (see, e.g., [33, (76, 80])
that they lead to the construction of interesting linear codes with few weights based
on the second generic construction. Very recently, Mesnager [58]] has constructed a
new family of three-weight linear codes from weakly regular bent functions in odd
characteristic based on the first generic construction. Within this framework, the next
purpose of this thesis is to construct new classes of three-weight linear codes from
weakly regular plateaued functions. This is the first time construction of linear codes

from weakly regular plateaued functions in odd characteristic.

Secret sharing schemes were introduced in 1979 by Blakley [4] and Shamir [74].
They have been widely studied by a large number of researchers due to their diverse
real-word applications in cryptographic protocols, electronic voting systems, banking
systems and a controlling of nuclear weapons. There are several methods to construct
secret sharing schemes, one of which is based on linear codes in coding theory. In
fact, the connection between Shamir’s secret sharing scheme and the Reed-Solomon
codes was given in 1981 by McEliece and Sarwate [53] and since then, the construc-
tion of secret sharing schemes using linear codes has been extensively studied (see,
e.g., [1L 117,133,135, 151,153, (71, 77]). Every linear code can be used to construct secret
sharing schemes and provides a pair of secret sharing schemes, based on itself and
its dual code. We emphasize that the constructed linear codes in this thesis generate

secret sharing schemes with “nice” access structures.



1.2 Motivation and Achievements

Although plateaued functions were first introduced more than a decade ago, our
knowledge on them is actually not at a sufficient level corresponding to their im-
portance. With their explicit characterizations we indeed aim to reduce to a degree
the gap between the interest of these functions and what is known on them. The
main contributions of this thesis are summarized as follows. We first study charac-
terizations of bent and plateaued (vectorial) functions over I, with p a prime num-
ber. More precisely, we obtain a large number of their characterizations in terms of
their Walsh power moments, derivatives and autocorrelation functions, with the aim
of not only clarifying their structure but also obtaining new tools which help their
future construction. Actually, using one of these characterizations, we observe the
non-existence of a homogeneous cubic bent function (and for some cases a (homo-
geneous) cubic plateaued function) over I, with p an odd prime. We next study the
notions of partially bent and plateaued functions over [F,, with ¢ a prime power, in
order to understand their behaviour over IF,. Moreover, we show the non-existence
of a function whose absolute Walsh transform takes exactly three distinct values (one
being zero), and then introduce a new class of functions whose absolute Walsh trans-
form takes exactly four distinct values (one being zero) over 5 and 3. Furthermore,
we introduce the notion of weakly regular plateaued functions, and construct three-
weight linear codes from these functions over F,, with p an odd prime. We also
determine the weight distributions of the constructed codes. Finally, we describe the
access structures of the secret sharing schemes based on the dual codes of the con-

structed linear codes.

1.3 Outline

In this section, we describe how this thesis is organized.

e Chapter [2] sets main notations and collects necessary background in finite field
theory, cryptography and coding theory. More precisely, we first give basic
notions in the study of finite fields such as the Legendre symbol and cyclotomic

field. Next we present the notions of significant cryptographic functions over
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finite fields such as bent, partially bent and plateaued functions. Meanwhile,
we give the Fourier transform and the Walsh transform of a function in terms of
additive characters of a finite field. Finally, linear codes, secret sharing schemes

and their connection are mentioned.

Chapter [3] focuses on explicit characterizations for plateaued-ness of (vecto-
rial) p-ary functions in arbitrary characteristic, with the aim of understanding
their structure and getting more information about their construction. Section
[3.T]characterizes p-ary bent functions by means of their Walsh power moments,
derivatives and autocorrelation functions. Section[3.2]obtains a large number of
characterizations of p-ary plateaued functions in terms of the value distribution
of their second-order derivatives, even power moments of their Walsh trans-
form and their autocorrelation functions, which allow us a better understanding
of their structure and provide useful intuition for their future construction. In
Section we use the value distributions of the second-order (and also first-
order) derivatives of vectorial functions in order to provide several characteri-
zations of vectorial bent and plateaued p-ary functions. In Section [3.4] to char-
acterize vectorial p-ary plateaued functions by means of the Walsh transform
and autocorrelation function, we make use of the Walsh power moments and
autocorrelation functions of their nonzero component functions. Section [3.5]
explores a probably unexpected behavior of cubic functions in even and odd
characteristics. Indeed, we observe the non-existence of a homogeneous cubic
bent function (and for some cases a (homogeneous) cubic plateaued function)

in odd characteristic.

Chapter 4| is concerned with functions whose absolute Walsh transform takes
exactly three and four distinct values. Section .| shows the non-existence of
a function whose absolute Walsh transform takes exactly three distinct values
(one being zero) in arbitrary characteristic. Section [4.2]introduces a new class
of functions whose absolute Walsh transform takes exactly four distinct values

(one being zero) in characteristics 2 and 3.

Chapter [5]investigates the notions of partially bent and plateaued functions over
any finite field IF,, with ¢ a prime power. Section [5.1|redefines, over Iy, the no-

tions of partially bent and plateaued functions, which rely on the concept of
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their Walsh transform in terms of canonical additive characters of IF,. Indeed,
we provide a concrete example of a 4-ary plateaued but not vectorial plateaued
Boolean function. In Section [5.2] we obtain several characterizations of g-ary
partially bent functions by means of their Walsh power moments, derivatives
and autocorrelation functions. In Section [5.3| we extend to g-ary case some of
characterizations of p-ary plateaued functions given in Section [3.3] Finally, in
Section [5.4] we introduce the notion of a g-ary plateaued-type function associ-

ated with its Walsh-type transform.

Chapter [6] focuses on the construction of linear codes with few weights from
functions over finite fields and their application in secret sharing schemes. In
Section we first introduce the notion of (non)-weakly regular plateaued
functions over finite fields of odd characteristic, which covers a non-trivial sub-
class of the class of plateaued functions. We next give the secondary and re-
cursive constructions for the first constructions of these functions. Section
deals with the construction of linear codes involving special functions based on
the first generic construction. In Section[6.3] we construct new classes of three-
weight linear p-ary (resp. binary) codes from weakly regular p-ary plateaued
(resp. plateaued Boolean) functions based on the first generic construction. We
also determine the weight distributions of the constructed linear codes. Finally,
in Section[6.4] we observe that all nonzero codewords of the constructed linear
codes are minimal for almost all cases. This suggests that the constructed lin-
ear codes can be used to construct secret sharing schemes with “nice” access

structures.






CHAPTER 2

PRELIMINARIES

In this chapter, we state main notations and recall some necessary definitions/results
in finite field theory, cryptography and coding theory. For more details and further
reading of the essential theory and concepts, the reader is referred to [44, 150, 66] for

finite field theory, to [6} 13} 14} 57] for cryptography, and to [42] for coding theory.

2.1 Basic Background in Finite Field Theory

Let p be a prime number. The residue class ring Z, := Z/, forms a finite field,
identified with the Galois field [F, with p elements. For a prime p and an integer
n > 1, to construct a finite extension field with p" elements over F,, one needs an

irreducible polynomial of degree n over IF),. In fact, the residue class ring
Fplz]/ g2y = {ao + a1z + -+ + an, 12"t a; € F,for0<i<n-—1} (2.1)

forms a finite field with p" elements, where g(z) is an irreducible polynomial of
degree n in F,[z]|. The finite field with p™ elements is unique up to isomorphism and
is denoted by .. Here, Fr,. = (¢ ) is a multiplicative cyclic group of order p" — 1
with generator ¢, and I, is the prime field contained in F,» (i.e., the characteristic of

Fpn s p).

Let « be a root of an irreducible polynomial g(x) in F,.. By choosing a basis B =
{1,a,a?,...,a" '} C F,n over I, the extension field F,» can be viewed as an

n-dimensional vector space over I,,, denoted by

F) = (BY = {ap + a1 +axa® + - +a,_ 10" ' € F, for 0 <i<mn—1}(2.2)
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An element a € Fj. can be viewed as a vector a = (ag, ay,...,0,-1) € [ where
a; € F, for 0 < ¢ < n — 1. This identification gives an isomorphism between the
finite field [ in (2.1) and the vector space F in (2.2). The dimension of the vector
space [, over [F, is the size of B, in symbols dim(IF})) = n. The size of the vector
space F” is equal to p™™ ), denoted by #F" = p". We now recall the definition of

the trace function.

Definition 2.1. Let n and k be two positive integers such that k divides n. Then the

relative trace function Trz + from the finite field [Fy» to its subfield IFx is defined by

n_
1

T (z) = Y o =a+a” - fa?

=0

n—=k

n—1

The absolute trace of v € IF,» over IF,, is defined by Trgn (x) =x+2P+ - - +2P

Proposition 2.1. The trace function has the following significant properties:

It is the surjective function:

It is the linear function: Trgn(a:v—i-by) = aTrgn(:U)+bTrgn (y) forall x,y € Fpn
and a,b € T,

It satisfies the transitivity property in a chain of extension fields, i.e., for all

x € Fpn, Trgn (x) = Trgk (Trz: (m)) :

Tet" (%) = Y () for all x € Fpn.

o ’ _ ’ ! / n .
Two bases B = {a1,ay,...,a,} and B = {ay, ay, ..., a, } of F} over [F,, are said

tobedualifforl <i,j <n

1ifi = j,

T () =
P 0if i # j.

For an F)-linear subspace W of I, there exists a complementary subspace W of W
such that F» = W @& W (namely, F = W + W and W N'W = {0}), where & is the
direct sum. Thus, an element x € IF;L can be uniquely written as * = x; + z2 where

x; € W and 75 € W. Notice that dim(W) + dim(W) = n.
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In the following, we state the Legendre symbol and the cyclotomic field, which will

be used in Chapter [6]

The Legendre Symbol. Let a be a positive integer and p be an odd prime number.
Consider the following quadratic congruence:

> =a (mod p). (2.3)

We say that a is a quadratic residue modulo p if the congruence relation (2.3) has
a solution in IF;, that is, \/a € IF; and a is a quadratic non-residue modulo p if the
congruence relation has no solution in ]F;, that is, \/a ¢ IF;. The Legendre
symbol is defined as
0 if pla,
(%) = 1 if a is a quadratic residue modulo p,

—1 if a is a quadratic non-residue modulo p.

Lemma 2.1. The Legendre symbol satisfies the congruence relation:

a

(—) = (mod p). (2.4)

p

Proof. It is obvious that both sides are ) modulo p when p divides a. Assume that p
does not divide a. Let ¢ be a generator of IF). Note that all quadratic residues are in
the form ¢* for some 7. If @ = ¢* (mod p) for i € N, then

P

i CQZ'(FTA) = (-1 = (Cp_l)i =1 (mod p).

This shows that (2.4)) holds.

For a non-quadratic residue a = ¢! (mod p) for i € N, we have
p—1

az = C(Q”l)pT_l = Ci(p_l)gp%l =(z =—-1 (modp).

This shows (2.4) also holds in this case. The proof is complete. [

The Legendre symbol satisfies the following properties for positive integers a, b and

odd primes p, q.

e The Legendre symbol has the multiplicative property: (%’) = <%> (9) . By
Lemma 2.1}

()= man-r i (3)(2).
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e If p{a, then <a7f) = (%) (%) = 1. In particular, we have (%) =1.
e If a = b (mod p), then <%> = (%), that is, (;—;) depends only on a € I,

e We have the following:

(mod p) = (2.5)

(__1> — (_1)P—;1 I — p_E 1 (mod 4)
-1 <= p=3 (mod4).

Throughout this thesis, (%) denotes the Legendre symbol for a € F/, and p* denotes

<_71> p, where p is an odd prime.

Cyclotomic Field Q(&,). Let p be a prime and let Q denote the field of rational
numbers. Let £, = e*™/P be a primitive p-th root of unity in C where i = /—1.
A cyclotomic field Q(&,) is obtained from the field Q by adjoining &,. The ring of
integers in Q(&,) is defined as Ogg,) = Z(&,), where Z is the set of integers. An
integral basis of Ogye,) is the set

{¢&:1<i<p-1}.
The field extension Q(,)/Q is Galois of degree p — 1, and the Galois group

Gal(Q(&)/Q) = {04 - a € Fy},

where the automorphism o, of Q(¢,,) is defined by 0,(¢,) = &. The cyclotomic field
Q(&p) has a unique quadratic subfield Q(/p*), where p* = (%) p. For a € F, we

have o,(y/p*) = (%) v/p*. Hence, the Galois group Gal(Q(y/p*)/Q) = {1, 0.} for
any v € I, such that \/y ¢ 7. The reader is referred to [44] for further reading on

cyclotomic fields.

2.2 On the (Vectorial) Functions over Finite Fields

In this section, we consider the discrete functions between two vector spaces.

We mention the functions from ) to ", where p is a prime and m, n are positive
integers. For any prime p, a function /' from F) to F* is called vectorial p-ary

function (or, (n, m)-p-ary function), and a function f from I} to [F, is called p-ary
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function (or, (n,1)-p-ary function) in n variables. For simplicity, in this thesis, a
function F' from F} to F}" is denoted by F' : F; — F* and a function f from F} to
[, is denoted by f : F) — F,.

Remark 2.1. The identification between the finite field IF,» and n-dimensional vector

space I over IF, allows us to define these functions over finite fields as well.

In the case of p = 2, a function F' : Fon — Fom is called vectorial Boolean function
(or, (n, m)-Boolean function), and a function f : Fon — s is called Boolean function

in n variables.

Boolean Functions. The functions over a binary field are called Boolean functions.
Boolean functions play a significant role in cryptography and coding theory. In both
frameworks, n is rarely large in practice. In fact, cryptographic transformations
(pseudo-random generators in stream ciphers, substitution boxes in block ciphers)
can be designed by an appropriate composition of nonlinear Boolean functions. In
coding theory, every code of length 2 can be expressed as a set of Boolean func-
tions, since every n-variable Boolean function can be represented by its truth table.
Two of the most famous codes, the Reed—Muller and the Kerdock codes, are defined
this way as sets of Boolean functions. For more details on Boolean functions, the

reader is referred to [[13, [14]].

Representations of p-Ary Functions over IF,. There exist several representations of
p-ary functions, we now refer two ones that will be used in this thesis. We first explain
the univariate form of a p-ary function f, which is an essential representation. Since
an n-dimensional vector space F) over F, is identified with the Galois field F- (see
Remark [2.1)), every p-ary function f : F,» — IF,, can be described in the so-called

univariate form, which can be given in trace form as

fla) =To)" Z a;x

where a; € F,». It is worth noting that the univariate representation is not unique.
Indeed, a unique univariate form of p-ary function f, called trace representation, is

given by

o(z _1
g Trp (a;x") 4+ apn_q2”

ZGFW
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where

e [, is the set of integers obtained by choosing the smallest element in each

cyclotomic coset modulo p™ — 1 (with respect to p);
e o(i) is the size of the cyclotomic coset containing i;

e a; € Fow and apn_y € F),.

The algebraic degree of f (denoted by deg f) is equal to max {w, () : a; # 0}, where
w, (i) is the weight of the p-ary expansion of 7. In particular, p-ary linear functions
are exactly all functions of the form Trgn (ax) for some a € F,, namely, a function
is called linear if its algebraic degree is one. On the other hand, a function is called

quadratic if its algebraic degree is two.

If we do not identify the vector space [ with the finite field [, p-ary function has a
representation as a unique multinomial in z1, x5, . . ., ,,, Wwhere the variables x; occur

with exponent at most p — 1. A p-ary function f : F}; — F), is uniquely expressed by

f(z) = Z auX" = Z uxytxy® T,

uekp ucky

where X = (1, 22,...,7,) € F}, u = (u1,us,...,u,) € F} and a, € F,. This is
called the multivariate representation or algebraic normal form (ANF). The algebraic

degree of a p-ary function is the global degree of its multivariate representation.

Representations of Vectorial p-Ary Functions. Recall that a function /' from F»

to IF= 1s said to be vectorial p-ary function.

If m = n, any vectorial function F' : F,» — IF,» has a unique representation as a

univariate polynomial over IF,» of degree smaller than p™
-1
F(z) = Z a;x',  a; € Fpn.
=0

A function F' : Fpn — Fpn is linear if Fi(z) = >, az”, where a; € Fpn, and F

is affine if it is a sum of a linear function and a constant function.

In the case when m divides n, [ : [F,n — F,» can also admit a univariate polynomial
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representation (since it can be seen as a function from F,» to itself): in the trace form

p"—1
F(z) = Trgil (Z aixi> . a; € Fpn.
i=0

In this case, the vectorial function F' can be viewed as a function f from F to F,

defined by

q"-1

f(z) = Trgk Z ax' |, a; €Fyp,

i=0
where ¢ = p™ and n = mk for a positive integer k. This function f is called g-ary

function and denoted by f : F » — F,, where g is a prime power.

On the other hand, in the case when m is not a divisor of n, the univariate represen-
tation of vectorial function F' in the field is not proper. Hence, £’ should be viewed
over the vector space, i.e., F' : ) — F" and represented by its algebraic normal

form ANF':

F(z) = Z auﬁxﬁ“, a, € F},

ue]Fg =1

(this sum is in F]"). The algebraic degree of F' equals the degree of its ANF.

We now indicate the component functions of a vectorial £ : F) — F*. The nonzero

component functions of F"are F\ = A- F': F) — F,, A € F* \ {0}, defined as
F\(z) =X F(x)

for every x € I, where “-”” denotes an inner product in F". Since the vector spaces
[F;; and [F]" can be identified with the Galois fields Fj. and F» of orders p™ and p™,
respectively (see Remark , then for every A € F.., the component function F) is
defined as

F\(x) = Trgm(/\F(x))

for every x € Fpn.

2.3 The Fourier Transform and the Walsh Transform of Function

We start by giving the notion of additive characters of a finite field.
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Let &, = ¥/ be a primitive p-th root of unity in C, where i = /—1 and p is a prime
number. It is obvious that the complex conjugation of &, is its inverse, i.e., Ep =&, L

Then, the function x from I, to C, defined as
X(x) = &7 (2.6)

for all z € F,, is called the canonical additive character of F,. Notice that for each
y € F,, the function x,(z) = x(yz) for all x € F, is an additive character of I, and
every additive character of I, is obtained in this way. In particular, Y is the trivial
additive character of I, defined as x((z) = 1 for all # € F,. For each character x
of I, there is associated the conjugate character X defined as Y(z) := x(x) for all
x € F,. Let x and ¢ be the canonical additive characters of F, and F}/, respectively.

Then for all o € 7, they are connected by the identity x(Tr{ (a)) = ¥(a).

The following lemma gives some well known properties of additive characters of I,

which will be frequently used in the sequel.

Lemma 2.2. Let x : F, — C be an additive character as in (2.6). Then for all
x1, 19 € Fy, we have x(x1 + x2) = x(x1)x(x2) and X(x) = x(—x) forall x € F,,.

Proof. For all z1, 2z, € I, we have

vl (z)+x v (z rd(z v (z rd(z
X(fUl +x2) _ pr( 1+2) _ ngp( 1)+ Trp(z2) _ gp( 1) pr( 2) _ X(xl)X<372)

where in the second equality we used the fact that Tr7 is linear. Next, for all z € F,

we have

_ Trd(z — 1\ Tri(z) i\ Trd(x —Tri(z Trl(—z
(@) =& =€) = ()™ =™ = g = x(—a)
where we used the fact that Zp =&, !in the third equality, and that Tr} is linear in the

fifth equality. [

Below we give the definition of the Fourier transform of a complex valued function

(see [66, Definition 10.1.3]).

Definition 2.2. Let GG be a function from Fy to C and x be an additive character of
IF, as in (2.6). The Fourier transform of G is defined as
G Fy, —C
wir— Gw) =Y Ga)X(w - ).

z€Fy
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In the following, we define the Walsh transform of a function f : F; — F,. Let
x : F; — C be an additive character as in (2.6). A composite function x; from Fy to
C of x and f can be defined as

(@) = x(f(z)) = I,

Definition 2.3. Let f : F;) — F,. The Walsh transform of f atw € Fy is the Fourier

transform X ; of x s defined as

—~

xr: F;—=C
w— X5(w) = Y xp(@)x(w- ),

z€Fy

2.7)

where x : F, — Cis any non-trivial additive character of I, in (2.6) and “-” denotes

an inner product (for instance, the usual inner product) over ]FZ

It is worth mentioning that can also be given without the conjugate of xy. We
should also remark that f is constant if and only if X ;(w) = 0 at any nonzero w € F,»
(see, e.g., [66]). If F} is identified with Fyn, we can take w - v = Trgn (wz), and the
Walsh transform of f at w € Fyn is
w=Y ngrZ(f(m))—TYZn(wx)_
z€F n

The set of complex values x 7(w), called the Walsh coefficient of f at point w, for all
w € Fyn is called the Walsh spectrum of f. The Walsh support of f is the set

{w e Fpn: X7(w) # 0},

denoted by Supp(X) and N5 = #Supp(X5), and obviously, N; < ¢".

We now give some strong properties of the Fourier transform of a complex valued

function from IF‘Z to C.

Lemma 2.3. Let G : F; — C be a function and let G : Fy — C be its Fourier
transform. Then G(u) = ¢"G(—u) for all u € [Fy.

Proof. The Fourier transform GofGata € [, is obtained by

Glo) =3 Gx(—v-a) = 3 3 Gux(—v-wx(—v-a)
=Y G Y x(—v- (ut a) = ¢"G(—a)
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4" (i (uto " ifu:—a,
since Zung & (Foluted) _ f) 0 O
ifu # —a.

It easily follows from Lemma 2.3]that for all u € [},
1« Ao
G—u) = — 3" Glo)R(v - u).
q veFy
This suggests that G(u) = 0 for all u € F? if and only if G(v) = 0 for all v € F.
In the light of the above results, we have the following strong property of the Fourier

transform.

Lemma 2.4. Let Gy, Gy : Fj — C be two functions. Then

G1(u) = Go(u), Yu € F) <= G1(v) = Gy(v), Yo € Fy.

Next we recall the convolution of two complex valued functions (see [66, Definition

10.1.18]).

Definition 2.4. Let (G; and G5 be two functions from IE‘Z to C. The convolution of G;
and (55 is the map from FZ toC, ata € FZ, defined as
(G1®Ga)(a) = Y Gi(a—x)Gafx).
z€Fy
The convolution theorem of Fourier analysis states that the Fourier transform of a

convolution of two functions is the ordinary product of their Fourier transforms (see

[[66, Theorem 10.1.19]).

Theorem 2.1. Let Gy and G4 be two functions from Fyj to C. Then, we have G@g =
GG, and also Gy ® Gy = ¢"G/Ga.

Proof. Applying the Fourier transform to the convolution of GG; and G5 at point v €
IE‘Z’, we obtain

(GreGy) () =3 (Gr®Ga)(u)x(—v - u)

ung

= > > Gu(t)Galu— Hx(—v-w)

uEthEFg

= Z Gi(t)x(—v - t) Z Ga(u —t)x(—v- (u—1))

teFn uEFg
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that is, G?®\G2 = é\lé\z To show the next relation, apply the Fourier transform to

é\l ® é\g Then, by the first relation, for all u € IFZ we have

—

(G ® Ga)(w) = Cr (w)Ga(u) = "G (—u)Gia( 1),

where the second equality follows from Lemma[2.3] Next, applying again the Fourier
transform to them, for all u € IFZ we obtain

—
—

¢"ChGo(—u) = (G ® Go)(u) = ¢"(Gr ® Go)(—u),

where the second equality follows from Lemma[2.3] Hence the proof is complete. [

2.4 Some Tools of a Function

In this section, we introduce some useful tools of a function such as its Walsh power
moments, derivative, balanced-ness, linear translator and autocorrelation function,
which will be frequently used in the sequel to characterize plateaued (vectorial) func-

tions.

The Walsh Power Moments. The notion of even power moments of the Walsh trans-
form (for simplicity, we call it as the Walsh power moments) of a p-ary function was
introduced by Mesnager [55]]. This notion can be also given for a g-ary function. For
any nonnegative integer ¢, the Walsh power moment of a g-ary function f is defined

as

Si(f) =Y G

ISy

with the convention that So(f) = ¢". It is a well known fact that S;(f) = ¢*", which
is known as the Parseval identity. We now make a preliminary but useful remark: for

every nonnegative integers A and i, we have

S (IR )P~ A) 1R5@)P = Sevalf) — 2480 (1) + A25,(F) > 0.

wqun

Derivative. The definition of derivative of a g-ary function is given as follows (see,

e.g., [28, 57]).
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Definition 2.5. Let f : F; — [F,. The derivative (first-order derivative) of f in the
direction of a € I is the map D, f from Fy to [F, defined by

Dof(x) = f(z +a) = f(z).

The second-order derivative of f in the direction of (a, b) € I, is given as DyD, f () =
f(z+a+b)—f(z+a)—f(x+b)+f(z). By the definition of derivative, for (a, ) € F>,
we readily have that D,D,, f(x) = D,D,f(x) for every x € Fyn.

For a vectorial function F' : F,,» — [Fm, the first-order derivative D, [ in the direction
of a € Fpn is the map from F. to F,m defined as D, F'(z) = F(x + a) — F(z), and

its second-order derivative in the direction of (a, b) € >, is given as
DD, F(x)=F(x+a+b)—F(x+a)— F(zx+0b)+ F(z).
By the definition of derivative, DD, F(x) = D,D,F(x) forall x € Fn.

Linear Translator. The notion of linear translator for a g-ary function is given as

follows (see [47,57]).

Definition 2.6. Let [ : F; — F,. A nonzero element o € F is called a b-linear

translator for f if
flz+ua) — f(z) =ub

holds for all = € F;‘, u € [F, and a fixed b € F,. In other words, f is said to have
a linear translator if there exists a nonzero a € Fy such that f(r + ua) — f(r) =
u(f(a)—f(0)) forall x € F} and u € FF,. The set of linear translators of f is denoted
by L.

In particular, when ¢ = 2, o € F7 is said to be b-linear structure for the Boolean
function f if f(z + «) + f(z) = b holds for all z € F} and a fixed b € F,. Note that
if « is b-linear structure of f, then necessarily b = f(a) — f(0). The notions of linear
translators and derivatives are related. The linear kernel of f is the linear subspace
of vectors b such that D, f is a constant function. In fact, any element of the linear

kernel of f is a linear translator of f.

Balanced-ness. Cryptographic functions should be balanced to avoid statistical de-

pendence between the plain-text (input) and the cipher-text (output) in the stream
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cipher and to prohibit cryptographic distinguishing attacks. However, cryptographic
functions having maximum nonlinearity cannot be balanced (for instance, bent func-
tions). A balanced Boolean function is the function whose output yields as many
zeros as ones over its input set. For g-ary functions and vectorial functions, the

balanced-ness can be given as follows.

Definition 2.7. [28] Let f : [ — F,. Then f is said to be balanced (or permutation
polynomial) over Fy if #{z € F : f(z) = k} = ¢"~' foreach k € F, i.e., f takes

every element of F, the same number ¢" ' of pre-images.

Definition 2.8. [6] Let F' : F,» — F,=. Then F'is called balanced over F,n if F

takes every element of [F,,» the same number p"~™ of pre-images.

It is easy to see that a vectorial function is balanced if and only if all of its nonzero

component functions are balanced.

The Autocorrelation Function. The autocorrelation function of a g-ary function can

be defined by its first-order derivative (see, e.g., [46]).

Definition 2.9. Let f : F} — F,. Then, the autocorrelation function of a g-ary

function f is the map from F} to C defined as

Ag(a) = Y X(Duf(x))

z€Fy

for all a € Fy, where x is a non-trivial additive character of F, in (2.6).

We end this section by proving the following properties of the Walsh transform and
the autocorrelation function, which will be used in the sequel. They can be easily

obtained by using the properties of additive character of I, (see Lemma [2.2).

Proposition 2.2. Let f : Fj — F,. Then

i.) fis balanced if and only if X7(0) = 0.
i1.) Xzf(w) = X7(—w) forall w € Fy-
iii.) Xp,r(0) = Af(a) forall a € F.
w.) As(a) = Ag(—a) forall a € F2.
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v.) [X7(w)? = Aj(w) for all w € F2.

vie) X7 O = oery As(a).

Proof. i) A function f is balanced if and only if Z éfrg(f @) =, namely,

xEFg

0= 3" x(f(z) = 3 €M@ =y,

zng xEFg

ii.) Forall w € Fg,

Xr(w) = > X(f@)xw-2) =Y x(f(@)x(—w - 2) = Xj(-w).

xGFg xEFg

iii.) Clearly, for all a € IFZ,

0. (0) = Y X(Daf(2))X(0-2) = Y X(Duf(2)) = Ag(a).

xng IEFQ

iv.) Clearly, for all a € FJ,

Ap(a) =) x(fl@+a) = f(2)) = Y x(f(z) = f(z +a)) = Bs(~a),

mEFg xng

where in the last equality we used the (bijective) change of variable x — x — a.

v.) Since |z|* = 2% for z € C, for all w € F, it easily follows that

WP =D x(fla)—w-a) > x(—f(b) +w-b)

= > x(f(a) = f(O))X(w - (a = b))

=D > X(fla+b) = fB)X(w-a)

a€F? beFn
= Apa)X(w-a) = Ag(w),

ang

where in the third equality we used the (bijective) change of variable a — a-+b.

vi.) This follows from (v) by setting w = 0.
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2.5 Bent, Partially Bent and Plateaued Functions over Finite Fields

In this section, we give the notions of significant cryptographic functions, which have

various useful cryptographic properties.

To begin with, we recall the notion of the Walsh transform of a p-ary function f :

F,» — IF,. The Walsh transform of f at point w € F~ is defined by:

Yi(w) = Z ¢,/ @-Tb (we)

:EE]Fpn

In the case of p = 2, the Walsh transform of a Boolean function f at point w € Fyn is

given as
Tlw) = Y (-,
zE€Fon

Bent functions were introduced by Rothaus [[72] in characteristic 2 and generalized to

any residue class ring by Kumar et al. [46].

Definition 2.10. Let f : Fon — T, and let n be an even integer. Then, f is called a

Boolean bent function if for every w € Fon, we have X;(w) = £25.

We now give the definition of a generalized bent function over a finite field.

Definition 2.11. Let f : F,n» — F,,. Then, f is p-ary bent if for every w € F,n, we
have |7 (w)[? = p".

Remark 2.2. A function f : Fp» — I, is p-ary bent if and only if the derivative D, f

is balanced for all nonzero a € F,n.

Remark 2.3. A function f : F,n — I, is linear if and only if f(zx+y) = f(z)+ f(y)
forall z,y € Fy». A function g : Fj» — [, is affine if and only if g = f + a where f

is a linear function and a is a constant.

As an extension of bent functions, Carlet [12] introduced a superclass: the notion of
partially bent functions whose elements are in the form f(z,y) = g(z) + h(y) where
g is a bent function on Fyx and A is an affine function on Fy.—«. This notion has been

generalized to arbitrary characteristic (see, e.g., [23]]).
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Definition 2.12. Let f : F,» — F,. Then, f is called p-ary partially bent if the

derivative D, f is either balanced or constant for all @ € [F .

Remark 2.4. Any p-ary bent and quadratic functions are p-ary partially bent functions.

As an extension of partially bent functions, Zheng and Zhang [78] introduced plateaued

functions in characteristic 2.

Definition 2.13. Let f : Fon — 5 and s be an integer with 0 < s < n. Then, f is
called an s-plateaued Boolean function if Y;(w) € {0, 4£2+9)/2} for all w € Fyn,

where n + s is an even integer.

Plateaued Boolean functions have been generalized to arbitrary characteristic and they

are called p-ary plateaued functions (see, e.g., [23,155]).

Definition 2.14. Let f : F,» — F,. Then, f is called p-ary plateaued if its absolute
Walsh transform takes only one nonzero value p (also possibly the value 0), which is

called the amplitude of f.

For any n-variable p-ary plateaued function f of the amplitude 1, the Parseval identity

implies that p** = ;> Nii; where
N = #lw € By s [T = 12

Since p is a prime and Nii; < p”, we get * = p' fort > n. Then, 1 < Nz =
p?t < p" gives t = n + s for an integer s with 0 < s < n. Namely, we have
p? = p"* with 0 < s < n. In the light of these results, f is said to be a p-ary

s-plateaued function if for every w € [F», we have

X7 (w)* € {0,p""},

where s is an integer with 0 < s < n. From now on, s is an integer with 0 < s < n
for s-plateaued functions unless otherwise stated. We point out that a bent function is

O-plateaued and an affine function is n-plateaued.

The absolute Walsh distribution of plateaued functions follows from the Parseval

identity (see, e.g., [S3]).
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Lemma 2.5. Let [ : F,n — F, be an s-plateaued function. Then for w € Fyn,
X7 (w)|? takes p"~* times the value p"** and p™ — p"~* times the value .

In fact, in characteristic 2, the Walsh distribution of plateaued Boolean functions
is given in the following lemma (see, e.g., [11] in the case of a quadratic Boolean

function).

Lemma 2.6. Let [ : Fon — Fy be an s-plateaued Boolean function with f(0) = 0
and n+ s is an even integer. Then for w € Fon, the Walsh distribution of f is given by

n—s—2

22, 2n=s=1 4 975 times,

—~

Xf(w) =1 0, 2" — 2% times,

n—

s—2
-2, 2" 5L 27 fimes.

Proof. Let A and B denote the multiplicities of the values 2"2" and —2"2" in the
Walsh spectrum of f, respectively. By Lemma[2.5] we have that A + B = 2"* and
the multiplicity of the value O in its Walsh spectrum is equal to 2" — 2"7°. On the
other hand, since ZwGM X7(w) =2" wehave A — B = 22" . By solving the two

equations obtained above, the proof is complete. 0

We end this section by giving an upper bound for the degrees of p-ary plateaued

functions (see, e.g., [43]).

Remark 2.5. Let f : F,n — IF, be s-plateaued. Then we have

n—s

deg f < (p—1) +1

provided that p > 1 4 -2 (i.e., except when p = 3 and n = 1).

2.6 Linear Codes in Coding Theory

Coding theory is concerned with improving reliability of communication over noisy
channels. This is achieved by adding redundancy to the messages in order to detect or
even correct the transmission errors. The most significant class of the codes in coding
theory is the class of linear codes, which have been exhaustively studied due to their

various applications. For further reading on coding theory, we send the reader to [42].
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Linear Codes. Let p be a prime number and n be a positive integer. A linear code
C of length n and dimension k over F, is a k-dimensional linear subspace of F},
denoted by [n, k|,. Indeed, a linear code C of length n and dimension k over F,
with minimum Hamming distance d is denoted by [n, k, d],. It is worth noting that
the minimum Hamming distance d detects the error correcting capability of C. The
elements of the linear code are called codewords. The minimum Hamming distance of
the code is the minimum Hamming weight of its nonzero codewords. The Hamming
weight of a codeword @ = (ag, ..., a,-1) € I}, denoted by wt(a), is the size of its

support defined as
supp(a) :={0<i<n-—1:a; #0}.

Let A, denote the number of codewords with Hamming weight w in C of length n.
Then, (1, Ay, ..., A,) is the weight distribution of C and the polynomial 1 + A,y +
-4 Apy" is called the weight enumerator of C. The code C is called a t-weight code
if the number of nonzero A,, in the weight distribution is ¢. The weight distribution
of linear codes attracts considerable attention and has been widely studied in coding
theory since it contains significant information for estimating the probability of error

detection and correction.

The dual code of a linear code C is the linear code of length n and dimension n — k

over [F,, defined by

1 T n'~ ~ N ~
C-={beF,:b-a=0foralla cC},

« b

where is an inner product (for instance, Euclidean inner product) on . The
dual code C* is denoted by [, n — k, d*],, where d* denotes the minimum Hamming

distance of C+.

Since a linear code has a basis, any of its codeword can be written as a linear com-
bination of the basis vectors. A generator matrix GG of a linear code C is a k X n
matrix whose rows form a basis for C, that is, the row vectors of G generate the linear
subspace C. A generator matrix H of the dual code C* is an (n — k) x n matrix whose
rows form a basis for the dual code C+, namely, the row vectors of H generate the

linear subspace C*.

We now state the covering problem of linear codes.
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The Covering Problem of Linear Codes. Let C be a linear [n, k, d], code over F,,.
We say that a codeword @ covers a codeword b if supp(g) C supp(a). If a nonzero
codeword a of a linear code C does not cover any other nonzero codeword of C, then

a is called a minimal codeword of C.

Definition 2.15. The covering problem of a linear code C is to find all minimal code-

words of C.

The covering problem is extremely difficult for general linear codes, but is easy for

some particular linear codes (it has been solved only for a few special linear codes).

From [2, 3], when the Hamming weights of the codewords of a linear code C are too

close to each other, then all nonzero codewords of C are minimal.

Lemma 2.7. [2, 3] Let C be a linear code over . Then, all nonzero codewords of C
are minimal if
-1 min
p < w

p wmax

?

where Wy, and Wy., denote the minimum and maximum nonzero weights in C, re-

spectively.

In view of Lemma the question arises: how to construct a linear code whose all

nonzero codewords are minimal?

2.7 Application of the Linear Codes in Secret Sharing Schemes

In this section, we first describe secret sharing scheme, and then investigate the ap-
plication of linear codes in secret sharing schemes. The following results are mainly

quoted from the papers [17, 33} 135].

2.7.1 Secret Sharing Schemes

A secret sharing scheme consists of

e adealer D and a group P = {P,, P», ..., P,_1} of (n — 1) participants;
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a secret space S
e n — 1 share spaces 51,55, ..., 5,-1;

e a share computing procedure; and

a secret recovering procedure.

The dealer D chooses a secret s from .S, and computes a share, which belongs to 5;,
of s (with the sharing computing procedure) for each participant F; and then gives
the share to P;, where 1 < i < n — 1. A proper subset of the participants may be
able to recover the secret s from their shares by the secret recovering procedure. Any
set covering a set of participants who can recover the secret s can also recover s. The
sharing computing procedure and the secret s are known only by D, while the secret

recovering procedure is known by all the participants in P.

Definition 2.16. A set of participants who can recover the secret s from their shares
is called an access set. The set of all access sets is called the access structure of
a secret sharing scheme. An access set is called a minimal access set if any of its
proper subsets cannot recover s from their shares. Notice that a proper subset has less
participants than this set. Hence, we take only an interest in the set of all minimal
access sets, which is said to be as the “nice” access structure of a secret sharing

scheme.

Remark 2.6. A secret sharing scheme has the monotone access structure if any super-
set of any access set is also an access set. In such a secret sharing scheme, the access

structure is fully characterized by its minimal access sets.

There are a number of methods to construct secret sharing schemes, one of which
is based on linear codes in coding theory, which is now described in the following

subsection.

2.7.2 A Construction of Secret Sharing Schemes from the Linear Codes

The connection between Shamir’s secret sharing scheme and the Reed-Solomon codes

was given in 1981 [S3]] and since then, the construction of the secret sharing schemes
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from linear codes have been widely studied. In fact, every linear code C can be used to
construct secret sharing scheme and generates a pair of secret sharing schemes, based
on C and its dual code C*. But, the following two essential problems are unavoidable

in the secret sharing scheme based on a linear code:

e How can one find the access structure of the secret sharing scheme based on a

linear code?

e How can one construct a linear code such that the secret sharing scheme based

on the dual code has a nice access structure, while minimizing information rate?

The first question is equivalent to the covering problem of the linear codes (see Re-
mark [2.7). The second question depends on solutions to the first question, and turns

out to be difficult in general.

There are several ways to use linear codes in the construction of secret sharing schemes.
In 1993, Massey [51, 52]] introduced the following construction of secret sharing
schemes using linear error-correcting codes. Given a linear [n, k, d],, code C, its k x n

generator matrix G is denoted by

G =1[80,81,---,8n1)-

In the secret sharing scheme based on C, the secret s is an element of IF,,. In order
to compute the shares with respect to s, the dealer D chooses randomly a vector
u = (ug,U,...,Ug_1) € IF’; such that s = ugy, which is an inner product of two
vectors. Notice that there exist p*~! such vectors u € IF’;. The dealer D computes the

corresponding codeword as
t= (to, t1,... 715”_1) = llG,

which is (ugp, ugi, . .., ug,_1). The dealer D then assigns ¢; to party P; as share for
all 1 <7 < n—1. Now we introduce the secret recovering procedure. Notice that the
secret s is g = ugp. It is easy to see that a set of shares {¢;,,%;,,...,t; } recovers

the secret s if and only if gy is a linear combination of g;,, i,, - - -, &, -

Lemma 2.8. [51]] Let G be a generator matrix of a linear [n, k,d|, code C. In the

secret sharing scheme based on C, a set of shares {t; ,t,, ..., t; } determines the
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secret s if and only if there exists a codeword
(1,0,...,0,Ci1,0,...,O,Cim,o,...,O) (28)

in the dual code C*, where Ci; % 0 for at least one j, 1 < iy < -+ < iy, < n—1,

and1l <m<n-—1

If there exists a codeword as in (2.8)) in the dual code C*, then gy, is a linear combina-
tion of the elements ¢;,, gi,, - - ., gi,,, 1.6., we have gy = Z’anl x;g;;- Hence, the secret

s can be recovered as
m
S = E xjtij .
j=1

Remark 2.7. In the light of Lemma [2.8] clearly there is a one-to-one correspondence
between the set of minimal access sets of the secret sharing scheme based on C and
the set of minimal codewords of the dual code C* whose first coordinate is 1. The
other nonzero coordinates of these codewords correspond to the participants in the

minimal access set.

In view of Remark 2.7 to find the access structure of the secret sharing scheme based
on C, it is enough to find all minimal codewords whose first coordinate is 1, i.e., a
subset of the set of all minimal codewords of the dual code C*. Notice that in almost

all cases we should in any case find the set of all minimal codewords of the dual code
ct.

The access structure of the secret sharing scheme based on a linear code is com-
plicated in general, however it can be easily found in certain cases. The following
theorem (see [17, 33| [77]) gives the access structure of the secret sharing scheme

based on a linear code.

Theorem 2.2. Let C be a linear [n, k,d], code over F, with the generator matrix
G =[g0,81,--.,8n_1]. We denote by d* the minimum Hamming distance of its dual
code C*. If all nonzero codewords of C are minimal, then in the secret sharing scheme
based on the dual code C*, the number of participants is n — 1, and there exist p*~*

minimal access sets.

o Ifdt = 2, the access structure is given as follows.
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- Ifg, 1 <1< n—1,isamultiple of gy, then P, must be in all minimal

access sets. Such P; is called a dictatorial participant.

- Ifg;, 1 <i < n—1, is not a multiple of gy, then P; must be in (p—1)p*2

out of p*~1 minimal access sets.

o Ifd*+ > 3, forany fixed 1 < t < min{k — 1, d* — 2}, every set of t participants

is involved in (p — 1)'p*~+Y) out of p*~' minimal access sets.

The minimum Hamming distance d of C gives the lower bound d — 1 for the size of
any minimal access set, while the minimum Hamming distance d* of C* indicates the
extent of democracy of the secret sharing scheme. But, there is a trade-off between
them, i.e., d + d+ < n + 2, with an equality if and only if C is maximum-distance

separable (MDS).

Remark 2.8. The shares for the participants depend on the choice of the generator
matrix GG of the code C. However, the choice of GG does not affect the access structures
of the secret sharing schemes. Thus, we call it the secret sharing scheme based on C

without mentioning G.

We finally remark that the general construction of the secret sharing scheme based
on a linear code is described in this section. In Section [6.4] we consider the secret

sharing schemes based on the dual codes of the constructed linear codes.
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CHAPTER 3

EXPLICIT CHARACTERIZATIONS FOR PLATEAUED-NESS
OF (VECTORIAL) FUNCTIONS OVER Fp

Plateaued functions have appealed great interest since their introduction in the liter-
ature due to their various desirable cryptographic properties and applications in the
sequence theory and coding theory. Several researchers obtained some important re-
sults about them and introduced new tools to better understand their structure and to
design such functions. However, they have not yet been studied in detail in a gen-
eral framework in view of their importance. Their structure is still more difficult to
characterize and little is known about these functions already in characteristic 2 and
still more in arbitrary characteristic. To fill a little the gap between the interest of the
notion of these functions and our knowledge on it, we provide various tools to han-
dle the plateaued-ness property of (vectorial) functions. In this chapter, we mainly
make use of the value distribution of their derivatives, even power moments of their
Walsh transform and their autocorrelation functions in order to characterize bent and

plateaued (vectorial) functions.

The objective of this chapter is to obtain a large number of characterizations of bent
and plateaued (vectorial) p-ary functions in terms of the value distribution of their
second-order (also first-order) derivatives, Walsh power moments and autocorrela-
tion functions of p-ary functions. The obtained characterizations may be related to
each other, however they provide complementary information on these functions. We
believe that they are rather useful to clarify the structure of plateaued functions for

their future construction.

The presented results in this chapter appear in [20, 62, 63} 164].
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We begin with the following applicable tools, which will be frequently used in the
sequel. Let f : F,n — [, be a p-ary function. For any nonnegative integer ¢, even
power moments of the Walsh transform of f is defined as
Sif) =Y Iz
weFyn
with Sy(f) = p". For every nonnegative integers A and 7, we have

S (IR @)P = A) Ry = Seoalf) — 2480 () + A28,(/) 2 0. B.D)

wEIF'pn
For positive integers 7 and A = p™** with an integer 1 < s < n, the inequality
becomes an equality if and only if f is p-ary s-plateaued. For ¢ = 1, f is p-ary s-
plateaued if and only if S3(f) + p*" "2 = 2p"**S,(f). For every integer A and every
nonnegative integers ¢ and j, we have

> (@) - 4) K 2o 62)

WEFn
For A = p"*™* with 1 < s < n and positive integers i and j, the inequality
becomes an equality if and only if f is s-plateaued. For i = j = 1, f is s-plateaued
if and only if S3(f) + p"t2 = 2p"*5S,y(f). Fori = 2 and j = 1, f is s-plateaued if
and only if

Si(f) + P8 (f) = 20" S5(f).

The increment on 7 and/or j gives new relations between the next power moments of
the Walsh transform of plateaued function. The autocorrelation function at a € F»
of p-ary function f is defined as
_ f(z+a)—f(z)
Af(a) - Z fp .
$6Fpn

For G,Gy : F,n — C, by Theorem [2.1] we have

Ch ® Gs = p"G1 Gy, (3.3)
and by Lemma[2.4]
Gi(z) = Ga(z), Vo € Fpn <= G1(w) = Ga(w), Yw € Fpn. (3.4)

Here, for a p-ary function f : F,» — F, and a vectorial function F' : F,n — Fpm,

we introduce the following notations, which will be used in the sequel.
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Supp(Xy) = {w € Fpr | X7(w) # 0} and N; = #Supp(X7).

Supp(Ay) = {a € Fypn | Ag(a) # 0} and Na, = #Supp(4y).

N(f) = #{(ab.z) € Fiu : DD, f(x) = 0}.

N(F) = #{(a,b,z) € F}, : DyD,F(x) = 0}.

Forv € F, and x € Fyn, Ny(v;2) = #{(a,b) € F2. : DyD, f(x) = v}.

For v € Fym and € Fyn, Np(v; 2) = #{(a,b) € F2. : DyD,F(z) = v}.

We now state the well-known Holder’s Inequality, which will be frequently used in

the sequel.

Theorem 3.1 (Holder’s Inequality). [[73] Let p1, ps € (1, 00) with pil + p% = 1. Then,
for all vectors (x1,22,...,%m), (Y1,Y2, -, Ym) € R™ or C™, Hilder’s Inequality

states that

1

1 1
Z|ZL‘]€yk| < (Z |:L‘k|p1> P1 <Z|yk|p2) P2 |
k=1

k=1 k=1

The above inequality becomes an equality if and only if for every k € {1,... ,m}
|2k [Pt = dlyx|™
for some d € R*. In particular, if py = py = 2, then this is called the Cauchy-

Schwarz Inequality.

In the following section, we characterize p-ary bent functions in terms of their Walsh

power moments, second-order derivatives and autocorrelation functions.

3.1 Characterizations of p-Ary Bent Functions

We start by extending the following theorem for all even power moments of the Walsh

transform of a p-ary function.

Theorem 3.2. [55] Let f : Fyn — F,. Then we have p*™ < Sy(f), with an equality
if and only if f is p-ary bent.
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A lower bound of even power moments of the Walsh transform of a function can
be derived from Holder’s Inequality, whose equality case yields the following strong

characterizations of bent functions.

Theorem 3.3. Let [ : Fpn — . Then for every integer i > 2, we have
pn(i—l-l) < Sz(f)7

where the equality holds for one (and hence for all) v > 2 if and only if f is p-ary

bent.

Proof. By Theorem 3.1} putting 2, = |\ (w)|? and y, = 1 forallw € Fpn, 1 < k <
p", with p; = i and p, = 5 where i > 2, we have

i—1

Y@< | DG | ot (35)

weF,n w€F,n w€F,n

-
N

that is, by the Parseval identity, p?® < S;(f)p"~V from which we conclude that
p(+h) < Si(f) for every integer i > 2.

By the equality case of Holder’s Inequality, for i > 2, the inequality (3.5) becomes

an equality if and only if for every w € Fyn, |;(w)|* = d, for some d € R, i.e.,

for every w € Fyn, |2

X7(w)|? is the same positive integer; equivalently, f is p-ary

bent. O]

Corollary 3.1. Let f : Fyo — T, Then, f is p-ary bent if and only if Na, = 1;
(CL)D = 0. Also, f is p-ary Cl]ﬁl’l@ ifand OI’lly lf./\/;?? =1.

equivalently, max ey, (
The sequence of the Walsh power moments of p-ary bent function is a simple geo-
metric sequence.

Corollary 3.2. Let f : F,n — [, be p-ary bent. Then for all positive integers © and

j, we have S;(f) = p"**V) and Si(f)S;(f) = Six1(f)Sj-1(f)-

Proof. By the Walsh transform values of bent functions, we have

= 3 W) =) =,

weF,n
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Then the following

Si(f)S;(f) — ()G — it and
Siv1(f)Sjoa(f) = prit2pni = prli+i+2)
are equal. Hence, the result clearly follows. 0

The following link between the second-order derivative and the fourth power moment

of the Walsh transform was given in [53]] (in characteristic 2, see [13]).

Proposition 3.1. [55] Let f : Fyn — F. Then,

So(f) = p" Z éfanf(x)‘

a,b,x€F,n

The following is an immediate consequence of Theorem [3.2] and Proposition 3.1

Corollary 3.3. Let f : F,n — F,. Then we have

p2n < Z épranf(x)’

a,b,z€F,n

with an equality if and only if f is p-ary bent.

The following corollary can be readily given (see [46l Property 4]).

Corollary 3.4. Let f : F,n — F,,. Then

P <Y [A(a)] (3.6)

CLE]Fpn

with an equality if and only if f is p-ary bent.

Proof. For any function f, Af(0) = p™ and [Af(a)| > O for all a € Fy.. Hence,
the bound in (3.6) holds for every function, and it is satisfied by p-ary bent functions
because of the fact that f is p-ary bent if and only if Ay(a) = 0 foralla € Fy,. [

We now give a link between the second-order derivative and autocorrelation function

of a p-ary function.

Proposition 3.2. Let f : F)n — ). Then

PONEVIOIEND S

a€lFyn a,b,x€lF,n
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Proof. Since |z|> = 2% for z € C, clearly we have

Z ’Af(a)|2 _ Z Z ngaf(b) Z §;Daf($) _ Z gppapbf(:c)’

aEFPn aE]Fpn be]Fpn QZ‘EFPn a,b,xG]Fpn

where in the second equality we used the bijective change of variable: b — b+z. [

In the light of Proposition Corollaries[3.3|and[3.4] are equivalent. The next propo-

sition is a direct consequence of Propositions [3.T]and [3.2]

Proposition 3.3. Let f : F)n — . Then,

Sa(f) =" Y |As(a)]

(IE]Fpn

The first characterization of Boolean bent functions in terms of their second-order
derivatives was provided by Carlet and Prouff in [21]. Below, we give it with a dif-

ferent proof in arbitrary characteristic.

Theorem 3.4. Let [ : Fyn — F,. Then we have for all x € Fn
pn S Z é’fanf(x)7
a,bEIFpn

with an equality if and only if f is p-ary bent.

Proof. For all z € IF», it is obvious that for a = 0, we have
be]Fpn
For all x € IF,», we have
Z Z gz?anf(m) — Z gp—Daf(JC) Z ngaf(b) >0 (3.8)
ae]F;n beF,n ae]F;n beF,n

with an equality if and only if D, [ is balanced at a € F7,, where we used the (bi-
jective) change of variable: b — b — x. Combining (3.7) and (3.8)), the proof is

complete. [

The last aim of this section is to characterize bent functions in terms of the zeros

of their second-order derivatives. To do this, we need the following results. For a
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function f : F,» — ), a corresponding function f\ := A\f : F,» — I, is defined
as v + Af(x) for every A € F5. Then for any A € F;, we have DD, f\(v) =
MDyD,f(x)) at (a,b) € F, for every € Fyn

Proposition 3.4. Let f : F,n — F, and let N(f) be the size of the set K =
{(a,b,x) € F3. : DyD, f(x) = 0}. Then

> Sa(Af) =N — p*.

AeF},

Proof. By Proposition 3.1} we have

Sosah) =3 (1 X ghw)

AEF AEF3 a,b,z€F yn
( Z Z SADbDaf(ﬂC + Z Z é'/\DbDaf(x )
AEF} (a,b,x)EK (a,b,x)¢ K AeFy
=" (0 = VM) = 0™ = N()) = pHN(F) — P,
where in the third equality we used that 1 + &, + 513 T g 55_1 =0. O

From Theorem and Proposition we derive the following characterization of

bent functions.

Theorem 3.5. Let f : F,n — F,. Then, f is p-ary bent if and only if M(f) =

an +p3n—1 _ an_l-

Proof. Clearly, f is p-ary bent if and only if f) is p-ary bent for every A € . Hence,
in view of Theorem[3.2] f is p-ary bent if and only if

> S(f) =p-1)p°

AeF;

equivalently, by Proposition 3.4 we have (f) = p** 4 p*"~! — p?n—L, O

3.2 Characterizations of p-Ary Plateaued Functions

This section provides many explicit characterizations of p-ary plateaued functions
in terms of the value distribution of their second-order derivatives, even power mo-

ments of their Walsh transform and their autocorrelation functions. More precisely,
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we extend the characterizations of plateaued Boolean functions given in [15, 21] to
arbitrary characteristic and complete the given ones in [55]. We also obtain further

new characterizations of plateaued functions in arbitrary characteristic.

3.2.1 Characterizations of p-Ary Plateaued Functions by their Derivatives

In this subsection, we make use of the value distribution of the second-order deriva-

tives of p-ary functions in order to characterize p-ary plateaued functions.

The first characterization of plateaued Boolean functions in terms of their second-
order derivatives was provided by Carlet and Prouff in [21]. We extend it to arbitrary

characteristic in the next theorem with a different proof.

Theorem 3.6. Let f : By — . Set 0p(z) = Y, e, &1 for a € By Then,
f is p-ary s-plateaued if and only if for all v € Fn

Of(x) = p"*=. (3.9)

Proof. Put§ = p"**. Then for all x € Fpn, || holds if and only if
Z gg(x+a+b)—f(x+a)—f(a:+b) _ Qgp—f(x)7 Vo e Fpn. (3.10)
a,bEFpn
Puta; = x + aand by = o + b for a;, b; € Fp.. Thus, (3.10) is equivalent to
Z éfg(aﬁbl—r)—f(al)—f(bl) _ géfp—f(ﬂf)’ Vi € Fpn. (3.11)
a17b1€]Fpn

Let the left-hand side of (3.11) be G;(z) and its right-hand side be Gy(z) for all

x € Fyn, ie., Gi(x) = Ga(z) for all z € Fyn. Then, their Fourier transforms at

w € Fpyn are
@1(&)) — Z Gl(x)é:;Trg (wz) _ Z Z é—ljj(aﬂrblfx)ff(al)ff(bl)é;prrg (we)
z€F,n z€Fyn ay,b1€Fn
> £;f<a1>m£"<wa1> 3 gf(bl)fﬁz"(wbl)
a1 €Fpyn b1€F n
Y gflarthma T Cwlathi=a) - (-7 (w)(~X7) (@)X (—w),
ZBEIFpn
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and

Ga(w) = D Ga(@)§ ™ @ = 3" g, 17T ) — o(—x7) (w).

CEGFpn CEGFPn

By Proposition (—X7)(w) = X7 (—w) for all w € Fn. By (3.4), then (3.11) holds

for all z € - if and only if for all w € Fp»

X7 (=w)xj(=w)Xs(=w) = x5 (-w).

Therefore, (3.9) holds for all z € F» if and only if | X7 (w)|? € {0, 0} forallw € Fpn,
where # = p"**, that is, [ is p-ary s-plateaued. [

From Proposition 3.1} and Theorem we have the following.

Corollary 3.5. Let f : By — . Set () = 3, pep , &' for & € Fypn. Then,

is p-ary plateaued if and only if Sy(f) = p*0(x) for all x € Fn.
! p

Proof. Assume that f is p-ary plateaued. By Proposition 3.1}

So(f) =p" Y Os(x).

IEFpn

Then by Theorem So(f) = p"p"b;(z) for all x € F,n. Conversely, for all
zr € Fyn we have 4(x) = 60, where 6 = p~2"Sy(f). By Theorem f is p-ary
plateaued. 0

Theorem [3.6] directly implies the following result.

Corollary 3.6. Let f : F,n — ). If f is s-plateaued, then

Z fz?apbf($) — an‘*‘S' (3.12)

a,b,z€F,n

The following is a direct consequnece of Theorem [3.2] and Proposition [3.1]

Corollary 3.7. Let f : F,n — F,,. Then, f is p-ary bent if and only if

§ D) e

a,b,x€Fn

We now mention our mistake given in [S7,163]].
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Remark 3.1. The converse of Corollary @] fails for integers 1 < s < n, in general.
In other words, the plateaued-ness of f cannot be checked only with the fourth power
moment of its Walsh transform in general. Unfortunately, we had the wrong statement
that the converse of Corollary@]holds for integers 1 < s < nin [63, Corollary 4 and
Theorem 4] (and hence, [57, Corollary 16.3.13 and Theorem 16.3.15]). We observed
that it is wrong for integers 1 < s < n, while it is correct for s = 0 as in Corollary
To see this, by MAGMA [35], we obtain a great number of examples, which satisfy
(1317[) although they are not s-plateaued for 1 < s < n. These examples motivate us
to study further functions giving these counterexamples for the converse of Corollary
rather systematically, and we present our results in Chapter 4 Here we only give

two such examples explicitly.

Example 3.1. Let f(z) = Te? (Ca™ + (321 4 (8215), where F3s = () with ¢° +
C? + 1 = 0. Then we have Sy(f) = 26 but f is not 1-plateaued function.

Example 3.2. Let f(z) = Trd (Cx* 4 (32 + (ot + (B213), where F3, = (C) with
3 +2C+1=0. Then we have Sy(f) = 3'° but f is not 1-plateaued function.

For the next characterization of plateaued functions, we need the following lemma.

Lemma 3.1. Let h : Fn X Fyn — I, and s be a nonnegative integer. For v € F,,
let Nyy(v) be the size of the set {(a,b) € F2. : h(a,b) = v}. Then, the following

statements are equivalent:

DY gen =y

a,bEIFpn

ii.) Np(0) =p"** +p*=t — p"**~Land Ny (v) = p>~' — p"™~!, where v € F,.

Proof. Assume that (i) holds. Then we have

D7 e = NL(0) + N (D) + Na(2)E2 + -+ Ni(p — 1DEE = p"(3.13)

a,bGFPn

where NV, (v) = #{(a,b) € 2. : h(a,b) = v} for v € F,. Recall that 1 + = + 2> +
--++ 2P~ is the minimal polynomial of &, over the rational number field. It follows

readily from (3.13]) that there exists a nonnegative integer ¢ such that A, (0) = p"**+c
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and Nj,(v) = ¢, where v € I since
PP c(l+&+E+ -+ 87 =pht

Hence, since MV}, (0) + N, (1) + - - + M (p — 1) = p**, we have ¢ = p**~1 — pnts—1,
that is, (ii) holds. Conversely, by (ii), clearly we get

Z gli)l(cub) _ pn+s + (p2n71 _ pn+sfl)<1 + gp 4ot 5571) — anrs7
a,bern

where we used that 1 + &, + &2 4 - -+ + &2~ = 0. Thus, (i) holds. [

We deduce by Theorem[3.6|and Lemma|3.1|the following characterizations of plateaued

functions via the value distribution of their second-order derivatives.

Theorem 3.7. Let f : F,n — ). Then, f is s-plateaued if and only if there exist two
integers uy and uy such that Ny (0; x) = uy and Ny(v;x) = uy for every v € 5 and
x Fpn.

Proof. Assume that f is s-plateaued. Let x, be any chosen element of F,.. Set
h(a,b) = DyD,f(xo) for every (a,b) € F2, and define Ny(v;xz0) = #{(a,b) €
F2. : h(a,b) = v}. By Theorem 3.6{and Lernma we obtain N (0; x9) = p™** +
Pt —p sl and Ny (v; ) = p* = —p"**~! for v € 5. For each chosen element
x € Fyn, we can do the same process, and hence the assertion holds. Conversely, for

every x € [F,» we have

Z gfbpaf(x) - ZNf(UW)f; =u; + Z u2§;’ = U} — Us.

a,beF ,n velF, velFy

Put & = wu; — up. Equivalently, for every z € ., by the (bijective) change of

variables: ¢« -+ a —xand b — b — z,

Z gg(a—l—b—w)—f(a)—f(b) — g @), (3.14)

p
a,bEIFpn

We denote by G (x) the left-hand side of (3.14)) and by G2 () its right-hand side, i.e.,
G1(x) = Ga(z) for every x € Fyn. As in the proof of Theorem their Fourier

transforms are

~

Gh(w) = (=X @) (=X7) (W)x5(-w)
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and Ga(w) = 0(—x7)(w) for every w € Fyn. By Proposition (—xf)(w) =
Xf(—w) for every w € F,n. By 1; the equation li holds for every x € Fn if
and only if

X7 (W) X5 (@)xy(w) = Ox5(w),

that is, |\ ;(w)|> € {0,6} for every w € F,.. Hence, by the Parseval identity, § =

p" ", namely, f is s-plateaued with 0 < s < n. O

This suggests a characterization of plateaued functions in terms of the number of the

value distribution of their second-order derivatives.

Corollary 3.8. Let [ : Fyn — F,. Then, f is s-plateaued if and only if for every
x € Fynandv € Fy

Ni(v;z) = p* =t —ptet, (3.15)

Proof. Assume that (3.15) holds. For any = € F,», we have

Np(0;2) + > Ny(vsz) = p™.
veF;
Then, by we have NV;(0;2) = p™* + p?! — p*~1 for every x € Fpn.
Thus by Theorem f is s-plateaued. The converse is clear from Theorem 3.6/and
Lemmal[3.1] O

In the light of Theorem the following characterization of bent functions follows
immediately from Theorem

Corollary 3.9. Let f : Fyn — F,. Then, f is p-ary bent if and only if N;(0;z) =
p"+p* =t —p"! for any x € Fpn.

Remark 3.2. Corollary can be given for bent functions only although Theorem
[3.6]and Corollary [3.8] are valid for any s-plateaued function with 0 < s < n.

3.2.2 Characterizations of p-Ary Plateaued Functions by their Walsh Power

Moments

This subsection, to characterize p-ary plateaued functions, makes use of even power

moments of their Walsh transform. We construct several new characterizations of
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plateaued functions in arbitrary characteristic and extend some characterizations of

plateaued Boolean functions to arbitrary characteristic.

The sequence of the Walsh power moments of a p-ary plateaued function is a simple

geometric sequence, which is an immediate consequence of Lemma [2.5]
Corollary 3.10. Let f : F,n — F,. If f is s-plateaued, then for all i € Z*

Si(f) = pl D
Proof. By Lemma [2.5] for all integers i > 1, we have S;(f) = p"~*(p"*)" + (p" —
pr)0 = plitDnt-Ds, u
Theorem 3.8. /53] Let f : Fyn — F,. Then, [ is plateaued if and only if S;(f)?* =

Si—1(f)Sis1(f) for all i € Z*.

The following seems to be more practical than Theorem [3.8]in some applications.
Corollary 3.11. Let [ : Fyn — F,. Then, [ is plateaued if and only if S;(f)S;(f) =

Si+1(f)Sj—1(f) for all integers i > 1 and j > 2.

Proof. Assume that f is plateaued. The assertion is clear from Corollary The
converse follows from Theorem [3.8]for j = i. O
In fact, Corollary is equivalent to Theorem

Proposition 3.5. Let f : F,n — .. Then the following are equivalent:

i.) Si(f)? = Siza1(f)Si—1(f) for all integers i > 2.
ii.) Si(f)S;(f) = Six1(f)S;=1(f) for all integers i > 1 and j > 2.
Proof. Suppose that (i) holds. Without loss of generality, we may assume 7 < j. Fix

v > 2. We proceed by induction on j. For j = ¢+ 1 and j = 7 + 2, then (i) trivially
holds. Let 7 = 7 4+ 3. From (i), we get

Si+1(f)si+l(f) = Sz’+2(f)5i(f)7
Siv2(f)Siv2(f) = Siva(f)Sita(f)-
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It follows that S;(f)Si+3(f) = Sit1(f)Sit2(f). Then, (ii) holds for j = i + 3. For
7 =1+ k, assume that (ii) holds. We then have

Si(f)Sitr(f) = Sir1(f)Sipe-1(f),
Sith-1(f)Sirr1(f) = Sivu(f)Sisn(f)-
It follows that S;(f)Siix+1(f) = Siv1(f)Sisx(f). Therefore, (ii) holds for j =

1+ k + 1. The converse is obvious for j = 1. [

According to (3.1), for ¢ > 1 and a nonnegative integer A, f is p-ary s-plateaued if
and only if

Si(f)A% =281 (f) A+ Siga(f) =0, (3.16)

where A = p™** > 0. Then, the reduced discriminant S; 1 (f)>—S;2(f)Si(f) < 0of
the above equation cannot be positive, and it is zero if and only if f is p-ary plateaued.

This proves the following.

Proposition 3.6. Let f : F,n — .. Then for all integers i > 1,

Siv1(f)? < Sixa(f)Si(f), (3.17)

where the equality holds for one (and hence for all) i > 1 if and only if f is p-ary

plateaued.

Proposition can be also derived from the Cauchy-Schwarz Inequality (see Theo-
rem [3.T)). Notice that its equality case is equivalent to Theorem [3.8]

More precisely, from (3.16)), for i = 1 and A > 0, f is p-ary plateaued if and only if
Si(F)A? = 28:(f)A + S5(f) = 0.

The reduced discriminant Sy(f)? — S3(f)S1(f) < 0 of the above equation cannot be

positive and it is zero if and only if f is p-ary plateaued.
Corollary 3.12. Let f : Fyu — F,. Then Sa(f)? < p*"Ss(f), with an equality if and

only if f is p-ary plateaued.

Indeed, the plateaued-ness of a p-ary function can be checked by the values of the

fourth and sixth power moments of its Walsh transform.
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Theorem 3.9. Let [ : Fn — . Then, f is p-ary s-plateaued if and only if Sa(f) =
p3n+s and Sg(f) — p4n+25.

Proof. Assume that f is s-plateaued. Then, the assertion follows directly from Corol-
lary Conversely, by (3.1) with A = p"** and ¢ = 1, we have

SR = PR @) = Sa(f) — 207 Sa(f) + P8y (f)

wEFpn
— o An+2s n+s,,3n+s 2n+2s,.2n __
=p — 2P 4 pT e pTt = 0,

where we used the Parseval identity in the last equality. Therefore, |y;(w)> €

{0, p"*#} for all w € F,n, namely, f is s-plateaued. O

We now use the Cauchy-Schwarz Inequality to obtain new characterizations of plateaued
functions. In Theorem 3.1] applying the Cauchy-Schwarz Inequality, for z;, = |\7(w)[?
and y, = |;(w)|* forall w € Fpn, 1 < k < p", we have

Do IG@IE ) < Y KWt Y KWl

wern wEFpn UJE]Fpn

that is, S;1(f)? < So(f)Sa2(f), where the equality holds for one (and hence for all)

i > 1if and only if for all w € Fyn, |X;(w)|? = d|X;(w)|* for some d € RY; or

equivalently, for allw € Fn, |X7(w)|? is either the same positive integer or 0, namely,

f is p-ary plateaued. This proves the following.

Proposition 3.7. Let f : F,n — .. Then for all integers i > 1, we have

Siv1(f)? < Sa(f)Salf),

where the equality holds for one (and hence for all) © > 1 if and only if f is p-ary

plateaued.

In a similar way, by Theorem for z;, = [x7(w)| and yr = |x7(w)[*** for all
w € Fyn, 1 <k < p", we have S 1(f)? < S1(f)S241(f), where the equality holds
for one (and hence for all) ¢ > 1 if and only if for all w € Fyn, [X;(w)|? is either
the same positive integer or 0, that is, f is p-ary plateaued. Hence, by the Parseval

identity, we have the following.
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Theorem 3.10. Let f : F,n — .. Then for all integers i > 1, we have

Sit1(f)? < p*"Saia(f),

where the equality holds for one (and hence for all) i > 1 if and only if f is p-ary

plateaued.

The following corollary follows readily from Corollary [3.10]and Theorem [3.10]

Corollary 3.13. Let f : Fpn — F,,. Then f is p-ary s-plateaued if and only if for one
(and hence for all) i > 1, S;.1(f) = p"UD+ and Sy (f) = prPi+2)+2s

Remark 3.3. In the following, the nonzero Walsh transform values of f correspond to
the nonzero coordinates of the vector (z1,z2,...,Z;) € RP" in Theorem And

the nonzero coordinates of the corresponding vector (v, Yo, - - -, ypn) € RP" are all 1.

By Theorem [3.1] for z;, = |X(w)|* for all w € Supp(Xy) and y,, = 1 (notice that
x; =y; = 0forall j with1 < j # k < p"), we have
2

Yo W) < > KWt )] 1

weSupp(X¥) weSupp(X¥) weSupp(Xy)

thatis, S;(f)* < Sa;(f)* N, with an equality for one (and hence for all) i > 1 if and

only if for all w € Supp(X;), |X7(w)|** = d for some d € RT; equivalently, | (w)|?
is the same positive integer for all w € Supp(x7), that is, f is p-ary plateaued. This

proves the following theorem.

Theorem 3.11. Let f : F,n — .. Then for every integer i > 1, we have
Si(f)? < Sailf) * Nz, (3.18)

where the equality holds for one (and hence for all) i > 1 if and only if f is p-ary

plateaued.

In the case of + = 1, Theorem @ indicates a bound stating the trade-off between
the size of the Walsh support and the value of the fourth power moments of the Walsh
transform of p-ary functions, and this bound is satisfied by plateaued functions only.

In view of the Parseval identity, we have the following.
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Corollary 3.14. Let f : Fyn — F,. Then
p4n < SQ(f) *N)/(}a

with an equality if and only if f is p-ary plateaued.

The following is an immediate consequence of Proposition [3.1and Corollary [3.14

Corollary 3.15. Let f : Fpn — F,. Setf; = 3 5P Then

a,b,x€F,n
3n
p S Qf * NXf7

with an equality if and only if [ is p-ary plateaued.

Proposition [3.2]and Corollary [3.15]directly bring the following result, which was first

observed in [[78]], in characteristic 2.

Corollary 3.16. Let f : Fyn — F). Set Ax, =) |As(a)|?. Then

(IEIFpn
3n
p" < Aa; Ny,

with an equality if and only if [ is p-ary plateaued.

In Theorem 3.1} putting z;, = |X7(w)|? for all w € Supp(Y) and y; = 1 (notice that
z; =y; = 0forall j with 1 < j # k < p"), with p; =i and py = =, we have

i—1’

Y. WwE<| Y KWl > 1]

weSupp(X7) weSupp(Xy) weSupp(X5)

by the Parseval identity, p*™ < S;(f) * N)%_l), where the equality holds for one (and

hence for all) ¢ > 2 if and only if for every w € Supp(X7), [x7(w)[* = d for some

d € RT; equivalently, f is p-ary plateaued. This proves the following theorem.
Theorem 3.12. Let f : Fpn — F,. Then for every integer i > 2,
2n4 (i-1)

where the equality holds for one (and hence for all) i > 2 if and only if f is p-ary

plateaued.
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The following was first observed in [78] in characteristic 2. We extend it to arbitrary

characteristic with a different proof .

Proposition 3.8. Let f : Fpn — ). Then
P < max (X7 (0)) * Nz, (3.19)

with an equality if and only if [ is p-ary plateaued.

Proof. By the definition of Ny, we have

> [T < max(IG0)) « M-

wel7p

Hence, the first assertion follows directly from the Parseval identity.

Assume that the lower bound in (3.19) holds. By the Parseval identity, for all w €

Supp(Xy). we have |x;(w)|> = maxyer,. (|x7(b)|?). that is, there exists an integer

s such that |x7(w)|?> = p"** for all w € Supp(xs). Hence, f is s-plateaued. Con-
versely, assume that f is s-plateaued. By Lemma , we have ./\/’XAf = p" ¢ and

X7 (w)|* = p™** for all w € Supp(X7). Hence, the bound in (3.19) is satisfied. [

Theorem 3.13. Let f : F,n — F,. Then,
S2(f) < p™" max(IX; O)F),

with an equality if and only if f is p-ary plateaued.

Proof. We have

> G = 3 GE@PIGE@PE < 3 %) max(K70)F); (3:20)

weF,n weF,n wEFn

equivalently, S>(f) < S1(f) maxyer, , (|X7(b)|?). In view of the Parseval identity, the

first assertion holds.

For the equality case, assume that f is plateaued. By Corollary [3.10} Sy(f) = p*"*.

Hence, the assertion is clear from the assumption. Conversely, by (3.20), for all
|2

w € Supp(Xy), [X7(w)|* = maxper,. (|X7(b)[?), i.e., there exists an integer s such

that |x7(w)|? = p"T*; equivalently, f is plateaued. O
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In the light of Proposition [3.1], the following is a direct conclusion of Theorem [3.13]

Corollary 3.17. Let f : F? — F,,. Set0; = " ¢PPeI @) Then,

a,b,x€F,n

0; < p" max(IX5(0)),

with an equality if and only if f is p-ary plateaued.

The equality case of Corollary was first observed in [10], in characteristic 2.

By Proposition [3.2] the following is an immediate consequence of Theorem [3.13]

Corollary 3.18. Let f : F}, — F). Set Ax, = ) |As(a)|*. Then,

aern
n - 2
Ax, <p bglﬁf(le(b)l ),
with an equality if and only if f is p-ary plateaued.

Remark 3.4. [13] A function from [F,» to C is constant if and only if its Fourier

transform vanishes at any nonzero input.

We now extend to arbitrary characteristic the characterizations of plateaued Boolean

functions given in [15], considering Theorem [3.6|and Remark 3.4

Theorem 3.14. Let f : F,n — F,. Then f is p-ary plateaued if and only if for all

o € F;n, we have

> Nl +w)xrw) [ W) =0. 321

wG]Fpn,

Proof. By the definition of 7, for all a € 5, (3.21) is equivalent to:

Z SIJ:(I)—((XJM)w—f(:u)+w~y+f(2)—wz—f(t)+w~t =0

Y

w7x7y7Z7tE]Fpn

that is, to: Z é’g(m)’f(y)”(z)’f(t)’”'(I’“Z’t)’o"x = 0, equivalently, to:

UJ,%?J,Z,tEFpn
S @O ey e
m:y7Z€Fpn

(z—y+z—t)

since Zwempn & isnull if z —y + z —t # 0, that is, (by the bijective change

of variables: y =z +aand z = x4+ a + b) to:

Y g =g, (3.22)

z,a,bEF,n
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which is the Fourier transform at o € F;n of the function
r Yy P, (3.23)
a,be]Fpn

Owing to Remark[3.4] (3.22) holds for all & € Fy, if and only if the function in (3.23)
is constant; equivalently by Theorem f is p-ary plateaued. 0

Corollary 3.19. Let f : F,n — ). Then f is p-ary plateaued if and only if for all
T € Fpn

P Y GO w) G W)l (3.24)

w€F,n

Proof. Assume that f is p-ary s-plateaued. By Corollary [3.10, Sy(f) = p*"™*. For
all z € IFn, the right-hand side of (3.24)) equals

p2n+s Z gg(z)fw-mm:pwwrs Z £}]j(:p)ff(y) Z é—;}(yf:r) :p3n+s.
wEFpn yGFpn wEFpn

Thus for all z € Fyn, (3.24) holds. Conversely, assume that (3.24) holds for all
x € Fyn. Thatis, for all z € Fpn, the function G : F,» — C defined by

v Gr)= ) UG W) W)

weF,n

is constant. The Fourier transform of this constant function at o € [F,» is given by

Gla) = D G@)g™ = > > O I5w) W)

:EEIF n wEF n Z‘G]F n
= D Vo +wxsw) X))
wE[Fpn

which is null at any o € F;, by Remark Hence, by Theorem [3.14} f is p-ary
plateaued. 0

The following gives a link between the Walsh transform and second-order derivative
of a p-ary function.

Proposition 3.9. Let f : F,n — F,. Then, forall x € Fn

OGO G =t ) g (3.25)

w€eFn a,beF ,n
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Proof. By the definition of X7, for all z € [, the left-hand side of (3.25) equals

Z gf fO)+f(e)+tw-(atb—c—2z) __ p Z éf (a)—f(b)+f(a+b—2x)

w,a,b,c€Fn a,beF,n

w-(x—a—b+c) .

since Zwe]p & isnullif ¢ # a + b — z. For all z € [, by the bijective

change of variables: a — a + x and b — b + z, it is equal to the right-hand side of
(3.25)). Hence, the proof is complete. O
In view of Proposition 3.9 the following follows readily from Theorem [3.6]

Corollary 3.20. Let f : F,n — F,,. Then, f is p-ary s-plateaued if and only if for all
T € ]Fpn

> O TG G)P =5

welF,n

3.2.3 Characterizations of p-Ary Plateaued Functions by their Autocorrelation

Functions

In this subsection, we extend the characterizations of plateaued Boolean functions to

arbitrary characteristic, by means of their autocorrelation functions.
By Lemma[2.3] for all a € [Fpn, we have
A/tf(a) =p"As(—a). (3.26)
By Proposition 2.2} for all a € Fn,
As(a) = Ag(—a), (3.27)
and for all w € Fn,

X7 (W)]* = Ag(w). (3.28)

Combining (3.26), (3.27) and (3.28), we have |X7(a)|2 = p"As(a) for all a € F,n.

Hence, the Fourier transform of |x7|* is obtained as
GERGE = (RGERGE) =p (" E; @ py) = p (B © 57)(3.29)
where we used (3.3) in the first equality.
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Now we characterize p-ary plateaued functions by considering the Fourier transforms
of their absolute Walsh transforms. By the definition of p-ary plateaued, we can say
that f is p-ary plateaued of the amplitude p if and only if the two functions |y f|*
and 12| 7|? are equal; equivalently, by , their Fourier transforms are equal. This

implies the following.

Theorem 3.15. Let f : Fyn — F,. Then, f is p-ary plateaued of the amplitude p if
and only if for all x € Fpn

> Apla)As(x —a) = P Ayp(x). (3.30)

aE]Fpn

Proof. As stated above, f is p-ary plateaued of the amplitude p if and only if the two
functions Ay ® Ay and u?A are equal; equivalently, (A; @ Ay)(z) = p?Ay(z) for
all z € IF,» by (3.27). This completes the proof. ]

The Fourier transform of |x7|® can be given by
GG =p (RGP e RGl) = (B7 @ By 0 Ay)

where we used (3.3) in the first equality and used (3.29) in the second equality. We

now give the next characterization of plateaued function.

Corollary 3.21. Let f : F,n — ). Then, f is p-ary plateaued of the amplitude 1 if
and only if for all x € Fn

S Af@AMAr—a—b) =2 3 A)A(x o).

a,bE]Fpn CGFpn

Proof. As in the proof of Theorem [3.15] f is p-ary plateaued of the amplitude i if
and only if the two functions |\ 7|® and p?[x;|* are equal; equivalently, by (3.4) their
Fourier transforms are equal, that is, by (3.27) for all x € F,» we have

(A @A @ Af)(z) = p(Af @ Af) ().

]

In order to characterize vectorial plateaued p-ary functions whose component func-

tions may have different amplitudes, we need to eliminate the constant 12 in (3.30).
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Then putting = = 0 in (3.30), we have
> 1Ap(a)? = @2Ap(0) = @p"
CLEFpn

by (3.27) since A;(0) = p". Hence the following follows directly from Theorem
3131

Corollary 3.22. Let f : F,n — . Then, f is p-ary plateaued if and only if for all
T &€ ]Fpn,

p" Y Ap@)Ap(r—a)= > [Ana)As(x).

CLE]Fpn aG]Fpn

We now give an example of quadratic plateaued functions.

Example 3.3. Let p be an odd prime and n > 2 be an integer. Let f : F,n — ), be

an arbitrary F,-quadratic form defined as

f(z) = T2 (a2 + 12?4 aga? ! 4 - + aLnJ.TpL%J+1).

2

The radical of f given by

Wr={x €Fp: f(x+y) = f(2) + f(y),Vy € Fpn}

is an F-linear subspace of Fyn. Let dimg, Wy) = s. It follows from the proof of [8,
Theorem 4.1] that for all w € Fpn

TP =0 o g YY) g
Y1, Yn—s€Fp 21,..., Zn—s€Fp

where H(x1, ..., &n-s) = 5(x1 4+ -+ a2_,_, +da?_,) and d € F}. For each pair

y; and z;, where i = 1,....,n — s, as is readily seen,
1.2 2 1 1
s —2) _ 5(tittiz) L
> g = g4 = &) =»p.
Yi,2i €Fp ti1,ti2€F, tio€F, ti1€Fp

Therefore, we conclude that |x;(w)|?> € {0,p" ™} for all w € Fpn. Moreover, [7,
Proposition 5.8] gives an algorithm to construct such a quadratic form f with radical
Wy of dimension s with 0 < s < n — 1. In fact, this algorithm holds for any finite
field ¥, where q is a prime power. Hence, for odd prime p, integers n > 2 and s
with 0 < s < n — 1, there exists a quadratic p-ary s-plateaued f from F . to ,. For

example, for p = 3 and n = 5,
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Trg5 (22 + 2* + 2219) is the quadratic 0-plateaued function,

Tr§5 (22 + 2t + 219) is the quadratic 1-plateaued function,

Ted (Ca? + 2t + 22 is the quadratic 2-plateaued function,

Ted (C2a2 + 22 + (251 is the quadratic 3-plateaued function and

Ted (22 4 22* + 2210) is the quadratic A-plateaued function,

where  is a primitive element of Fys with (5 +2¢ +1 = 0.

3.3 Characterizations of Vectorial Bent and Plateaued p-Ary Functions

This section characterizes bent and plateaued vectorial functions in arbitrary char-
acteristic. Firstly, the notion of vectorial Boolean plateaued functions is extended
to arbitrary characteristic. We next give a number of characterizations of bent and
plateaued vectorial p-ary functions by the value distribution of their second-order
(and also first-order) derivatives. More precisely, we investigate plateaued-ness prop-
erty of vectorial p-ary functions whose component functions are all unbalanced. We
also deal with plateaued-ness property of power functions by their first-order deriva-
tives. We finally extend the notion of strongly-plateaued Boolean functions to arbi-

trary characteristic.
The notion of vectorial bent p-ary functions was given as follows (see, e.g., [S3]).

Definition 3.1. Let /" be a vectorial function from F» to F;m and let F, A € F}..., be
its component function from F. to [, defined by F\(z) = Trgm (AF(x)) for every

x € Fyn. Then, F is called vectorial p-ary bent if F, A € Fzm, is p-ary bent function.

The notion of plateaued vectorial Boolean functions was first given by Carlet in [[14],

which can be given in arbitrary characteristic.

Definition 3.2. Let /' be a vectorial function from F» to F;» and let F, A € F.., be
its component function from F. to [, defined by F\(z) = Trgm()\F (x)) for every
x € Fpn. Then,
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e ['is called vectorial p-ary partially bent if F), A\ € F .., is p-ary partially bent.

e [ is called vectorial p-ary plateaued if F), A € F7,., is p-ary plateaued with
possibly different amplitudes.

e [is called vectorial p-ary plateaued with single amplitude if F, A € F7,., is
p-ary plateaued of the same amplitude. In other words, there exists an integer
s with 0 < s < n such that F' is called vectorial p-ary s-plateaued if F},
A € [, is p-ary s-plateaued.

Remark 3.5. A vectorial p-ary function is plateaued if and only if all of its component
functions are p-ary plateaued with possibly different amplitudes. More precisely, a
vectorial p-ary function is plateaued with single amplitude if and only if all of its
component functions are p-ary plateaued of the same amplitude. These facts will be

frequently used in the sequel.

A vectorial p-ary bent is vectorial p-ary 0-plateaued. The following example shows
that the notion of vectorial plateaued is strictly more general than the notion of vec-

torial s-plateaued for nonzero s.

Example 3.4. Let p be a prime and n be a positive even integer. Let f, and f5 be
quadratic p-ary s1-plateaued and sy-plateaued functions from Fpn to IF), with s, # so,

respectively. For any 0 € F 2 \ F,, the function F given as

F(x) = fi(z) + 0 f2()

is vectorial plateaued from [, to IF 2, but it is not vectorial s-plateaued function for

any integer s.

3.3.1 Characterizations of Vectorial Bent p-Ary Functions

This subsection provides a new proof of the link between the balanced-ness of first-
order derivatives and the number of zeros of second-order derivatives of vectorial

functions.

In 1991, Nyberg characterized vectorial bent functions by the balanced-ness of their

first-order derivatives.
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Theorem 3.16. [67, Theorem 2.3] Let I' : Fyn — F,m. Then F' is vectorial p-ary
bent if and only if the derivative D, F' is balanced for all a € F7,..

In 2014, Mesnager presented the following characterization of vectorial bent func-

tions in terms of the zeros of their second-order derivatives.

Theorem 3.17. [55, Theorem 6] Let I : Fpn — Fpm. Then F is vectorial p-ary bent
if and only if
m(F) — pSn—m + p2n o p2n—m‘

It would be interesting to prove directly that D, F’ is balanced for all a € F7, if and
only if (F') = p** =™+ p?* — p*"~™ without using the bent-ness of vectorial function
F'. Before proving it, we give the following well-known result, which can be easily

proven using Theorem3.1]

Lemma 3.2. Let x, o, ..., x,, be positive real numbers such that x1 + o + - - - +

T, = n. We then have
2

n
— <azitar+---+ad
m

with an equality if and only if x1 = 19 = - -+ = T,

The following lemma is similar to [16, Proposition 1], but is also valid in arbitrary

characteristic.
Lemma 3.3. Let G be a vectorial function from Fyn to Fym. Then
PP < #{(my,10) € Fin :G(x1) = G(x9)} (3.31)
with an equality if and only if G is balanced.
Proof. Let A; ={x € Fjn : G(z) =y; € Fym}and z; = #A, forj € {1,...,p"}.

Then we have

#{(x1,12) € F2 : G(a) = G(an)} = <U§’m1{(x1,x2) €T, a1y € Aj})
= #A Zz

By Lemma | for Z = p"and z; > 0, we get Z j > p?»~™ Thus, (3.31
holds. Notice that G is balanced if and only if 2; = 23 = --- = 2,m. Hence, the last

assertion follows from Lemma[3.2] O
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Theorem 3.18. Let I : Fyn — Fym. Then

D, F is balanced for all a € F;, <= N(F) = PP L P — p? ™ (3.32)

Proof. For (a,b,z) € F3,, clearly we have that DD, F'(z) = 0 if and only if
DoF(z) = DuF(x +b). (3.33)

First, for n = m, we prove that D, F is balanced for all a € IFI*,n if and only if
N(F) = 2p*™ — p™. For a = 0, it is easy to see that (3.33) holds for all b,z € Fn

since D, F'is the zero map. Then,
#{(0, b, ZE) &€ Ff)n : DbDaF(aj) — 0} — p2n.

For a # 0, by Lemma the number of pairs (b, z) € 2. satisfying (3.33) is p™ if
and only if D, F is balanced. Then, #{(a,b,z) € F. : a # 0,DyDF(z) = 0} =
p*" —p". Therefore, D, F is balanced for all a € F, if and only if N(F) = 2p*" —p".

Now assume 7 # m. For a = 0, we get #{(0,b,z) € F5. : DyDF(x) = 0} = p*™.

For a # 0, by Lemma the number of pairs (b, x) € Fin satisfying li is p?n—m
if and only if D, F' is balanced. Then

#{(av b> 37) € Fin a 7£ 0, DbDaF(JT) = 0} — (pn _ 1)p2n—m.

Thus, (3.32) holds. [

Corollary 3.23. [55, Corollary 1] Let ' : Fyn — Fym. Then F' is vectorial p-ary
bent if and only if W(F) = (p" — 1)(p*™ — p"), where *(F) = #{(a,b,x) €
50 X Fro X Fyn : DyD, F(1) = 0}

As in the proof of Theorem [3.18] the following corollary easily follows without using

bent-ness.

Corollary 3.24. Let F' : Fjn — Fym. Then, D, F is balanced for all a € ¥}, if and
only if W(F) = (p™ — 1)(p*~™ — p").
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3.3.2 Characterizations of Vectorial Plateaued p-Ary Functions by their Deriva-

tives

This subsection extends to arbitrary characteristic the characterizations of plateaued
vectorial Boolean functions in terms of their derivatives given in [15]. We also obtain
new characterizations of vectorial plateaued functions in terms of the value distribu-
tion of their second-order derivatives in arbitrary characteristic. We finally extend the

notion of strongly-plateaued functions to arbitrary characteristic.

We start by giving the following characterization of vectorial plateaued functions.

Theorem 3.19. Let I : Fpn — Fpm. Then

i.) Fis vectorial plateaued if and only if for every v € Fym, Np(v;x) does not
depend on x € [Fyyn.

ii.) There exists an integer s with 0 < s < n such that F is vectorial s-plateaued
if and only if for every v € Fym, Np(v;x) does not depend on x € F,n and
Nr(vi; 1) = Np(va; x) for every vy, vy € By and x € Fiyn.

Proof. For x € Fyn and u € Fym, let G(u; z) be the complex valued function defined
by
Glusz) = Y PPl wh@), (3.34)
a,bGIFpn
For x € F,» and v € Fm, the Fourier transform @ of (G is defined as
Gloia) = Y Glusz)g, ™.
'u,EFpm

Then for every x € F,,» and v € Fm, the Fourier transform G (v; x) is given by
Z Z é-;)b’DaTrm(uF(z))fTrm(uv) _ Z Z é—pTrm(u(DbDaF(:r)fv))
uerm, a,bEFPn a,bEFPn uerm, (3'35)
= p"#{(a,b) € ]an :DyD F(x) = v} = p"Np(v; ).
Then for every v € F,m, Nr(v;z) does not depend on = € F,. if and only if the
Fourier transform G (v; z) does not depend on x € F .. It follows from li that for

~ ~

21, o € Fyn, G(v; 1) = G(v; x2) for every v € Fm if and only if
G(u;a1) = G(u;22)

60



for every u € Fpm. By Theorem G/(u; ) does not depend on x € F . for every
u € Fpm if and only if F' is vectorial plateaued. Hence, F'is vectorial plateaued if and

only if for every v € Fym, Nr(v;2) does not depend on = € Fn.

Next we prove (ii). Note that F’ is vectorial s-plateaued if and only if F' is vectorial
plateaued and for every x € Fy» we have G(u1; 7) = G(uy; ) for every uy, up € F.
given in (3.34). This also follows from Theorem [3.6] For any x € [y, using the
above arguments we obtain G(uy; ) = G(ug; x) for every uy,uy € Fy if and only

if Np(vi; ) = Np(vo; o) for every vy, vy € 5. The proof follows from (i). O

We remark that Theorem [3.19|gives an alternative proof of the fact that any quadratic
(vectorial) function is plateaued in arbitrary characteristic. The following theorem is
related to Theorem [3.19] It yields the number of the value distribution of the second-
order derivatives of these functions. To do this, by Lemma @ for G : Fpn — C, we

have
Gu) =0, YucTF: < Gu)=0, YvecTF:, (3.36)
where ¢ and ¢’ are constants in C. Notice that G(0) = 6 + ¢' and G (0) =p "0+ 0.

Theorem 3.20. Let F' : Fn — Fpm. The following hold.

i.) There exists an integer s with 0 < s < n such that F is vectorial s-plateaued
if and only if Np(v;x) = p*"™™ — p""=™ for every v € Fym and x € Fpn. In
this case, Np(0; x) = p™+s + p*=™ — p"+5=™ for every x € Fpyn.

ii.) Assume that F is vectorial plateaued. For each \ € T}, let s\ be an integer
with 0 < sy < n such that component function F) is sy-plateaued. Then

Ne(0;2) = p* =™ 4 p"= " 3\ g P for every x € Fpn.
P

Proof. i.) For © € Fyn and A € Fym, let G(\; x) be the complex valued function
defined by
Gy = Y (oammire),

a,bEIFpn
Clearly, for A = 0, we have G(0;z) = p** for every x € F,n. By Theorem F

is vectorial s-plateaued if and only if for every A € .. we have G(\; ) = p"** for
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every x € Fyn; equivalently, by (3.36), for every v € Fj,.. we obtain
G(vio) = G(0;2) = G(\a) = p™ — "™
for every x € IFn, by (3.35), the first assertion holds.

For the second statement, notice that for every « € [F)», we have

Nr(0;z) + Z Nr(v; ) = p*™.
vGF;m
Hence, with the above arguments, we get Nz (0;x) = p"** + p?"=™ — pns=™ for

every x € [Fpn.

ii.) Assume that F'is vectorial plateaued. As F) is sy-plateaued for every A € IF;m,
we have G(0; x) = p** and G(A; z) = p"*** for every A € Fy,. and & € Fpn. Then,

for every x € [F,,» we obtain

Gir) =" + 3 g

)\EF;m

Thus, the assertion follows from (3.33). O

The following characterization of vectorial bent functions is derived readily from
Theorems and[3.191

Corollary 3.25. Let I : Fpn — Fpm. Then, I' is vectorial p-ary bent if and only if
Ne(0;2) = p" + p*™™ — p"~™ for every x € Fpn.

The following proposition is helpful to distinguish vectorial plateaued functions.

Proposition 3.10. Let F,G : Fyn — Fym be two vectorial plateaued functions. If
Nr(v;x) = Na(v; x) for every v € Fy., which means that F and G have the same
distribution for DD, F (x) and D,D,G(z), then the component functions F and G,

are sy-plateaued functions with the same amplitude for every \ € F ..

Proof. By (3.4), it follows from (3.34) and (3.35)) that if Nr(v;x) = Ng(v;z) for

every v € 7., and @ € Fyn, then for every A € 7, and z € Fj» we have

Z gfwmm(AF(w)): Z gawmm(AG(x)). (3.37)

a,beF ,n a,beF ,n

62



By Theorem (3.6} there exists an integer s) with 0 < s, < n for every A € F},. such
that the functions in (3.37) are equal to p"*** for every = € F,». Hence, F and G,

are s-plateaued functions with the same s, for every A € Fy,... 0

The characterizations of plateaued (vectorial) functions in terms of their second-order
derivatives can be also given by means of their first-order derivatives, which poten-
tially makes easier the study of checking the plateaued-ness of (vectorial) functions

in arbitrary characteristic.

Proposition 3.11. Let F' : Fjn — Fym. Forv € Fym, we have Nr(v;x) = #{(a,b) €
F2. : DoF(b) — DoF (x) = v} for every x € Fn.

Proof. For (a,b) € Ff,n and for every x € [F,», by the (bijective) change of variable
b — b — x, we have DD, F(x) = Dy_,D,F(x) = F(b+a) — F(b) — F(z +
a) + F(x) = D,F(b) — D,F(z). Hence, the value distribution of D,D,F'(x) when
(a,b) € F2, is equal to the value distribution of D, F'(b) — D, F (z). This completes
the proof. [

Notice that for all a, b, ¢ € F,» we have D, D, F)\(c) = A\-D,DyF'(c), where F, = \-F
for A € ;... By Proposition [3.1] and Corollary F' is p-ary plateaued if and only
if forall z € F)n and A € [}

ADDyF(c) _ . n ADoDyF(z)
gp - p gp )
a,b,CEFPn a,bGFpn

equivalently, applying the Fourier transform, by (3.4)) for all z € F» and v € Fjm
#{(a,b,c) € F} : DyDyF(c) = v} = p"#{(a,b) € F2. : DDy F () = v}(3.38)

that is, for all v € Fym, #{(a,b) € F}. : D,DyF(z) = v} is independent of 2 € Fpn.
Thus, Corollary [3.5|can be also derived from Theorem [3.19]

Remark 3.6. If we add an affine function to F', then plateaued-ness of F' is preserved
because it does not change the value of the second-order derivative of F'. On the other
hand, adding a quadratic function to F' changes this value since the distribution of the
second-order derivative of F' is dependent on = in general. We indicate this in the

following results.
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Corollary 3.26. Let F' : F)n — Fpm. Then, F' is p-ary plateaued if and only if for
all v € Fyn, there exists a permutation ¢, of Ff,n defined as ¢.(a,b) = (a,b,) such
that DyD,F () = Dy, Da, F(0); or equivalently, there exists a permutation 1, of F2,
defined as 1y (a,b) = (al,, V) such that D,F(b) — D, F(x) = Do F(bl,) — Do, F(0).

) 7T

Proof. Forv € Fm» and o € F,», we define the sets
{(a,b) € F2, : DyD,F(z) = v} and {(as,b,) € F2 : Dy, Dy, F(0) = v} (3.39)

Assume that F' is p-ary plateaued. By Theorem for each x € F,» the sizes
of the sets in (3.39) are equal for all v € F,». Then for all z € F,~ there exists
a permutation ¢, of IF?)” from the first set (defined for some value of v and z # 0)
to the second set (defined for the same value of v and for z = 0) in (3.39) defined
as ¢(a,b) = (ay,b,;). Conversely, because of the permutation ¢,, for all v € Fym
and x € Fn, the sizes of the sets in (3.39) are equal. By Theorem [3.19] F is p-ary

plateaued.

For the second statement, we consider the sets

{(a,b) € F2, : DoF(b) — D F(x) = v} and (3.40)
{(al,,b,) € F2 : Doy F(b,) — Doy F(0) = v} (3.41)

T T

forv € F,ym and x € F,». By Theorem [3.19] using the above arguments, [ is p-ary

plateaued if and only if for all x € [F), there exists a permutation 1), of Iﬁ‘gn from the
set in (3.40) to the set in (3.41) defined as v¥.(a,b) = (a,b,). O

Recall that D,F(b) — D, F(x) = DDy, F(x) for all a,b,x € F,». Hence we
have v, (a,b) = ¢y(a,b — x) since Dy F(b,) — Do, F(0) = D F(b) — D F(z) =
DDy F(x) = DDy F(0) = Doy F(VY)) — Dyn F'(0) where ¥, (a, b) = (al, ) and
¢.(a,b— x) is denoted by (a”, 7).

T 7x

Remark 3.7. Notice that the simple permutation ¢,(a,b) = (a,b) for all a,b €
F,» correlates with quadratic functions. Actually, /' admits such an associated ¢,
if and only if DyD,F(c) = DyD,F(0) at (a,b) € F. for all ¢ € Fyn, that is,
D.DyD,F(0) = 0at (a,b,c) € F,,, which means that it is a quadratic function.
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Corollary 3.27. Let F' : F,n — F,m be p-ary plateaued, and for all v € Fn, let ¢, be
a permutation defined by ¢,(a,b) = (a,, b,) as in Corollary Let G : Fpn — Fym
be a function such that DyD,G(x) = Dy, Do, G(0) at (a,b) € Fr. for all x € Fyn.
Then, F + G is p-ary plateaued.

Proof. By Corollary for all z € F,«, we have DyD,F(z) = D, D, F(0),
where (a,b;) = ¢,(a,b). Then, for all x € Fyn, DD, (F + G)(x) = DD, F(z) +
DyD.G(x) = Dy, D,, F(0) + Dy, D,,G(0) = Dy, D, (F + G)(0) where (ay,b,) =
¢(a,b). Thus, F' + G is p-ary plateaued.

[

Remark 3.8. We derive from the above results that in general F'+ G may not be p-ary
plateaued when £’ is p-ary plateaued and G is quadratic. For a quadratic function G,
although we have D,D,G(z) = D,D,G(0) (see Remark 3.7), D,D,G(x) may not be
equal to D, D, G(0) for some x € Fyn, where (a,, b,) = ¢.(a,b) for the associated

permutation ¢, of F.

We now investigate power functions on [F,» in terms of their first-order derivatives.
Power functions are exhaustively studied due to their interesting algebraic and com-

binatorial properties, and their applications in sequence design, coding theory and

cryptography.

Corollary 3.28. Let F be a power function on F . defined as F(x) = 2% Forv,x €
Fyn, let Ne(v; ) be the size of the set {(a,b) € F2, : DoF(b) — D, F(x) = v}. Then
forallv,z,v € Fyn with v # 0,

Nr(v;z) = #{(a,b) € Fo : DoF(b) — DoF(x/7) = v/7"}. (3.42)

In particular, for all v € Fyn, Np(v;0) = Np(v/~%0) for any v € F,. Moreover

i.) Fis p-ary plateaued if and only if Ny (v; 1) = Np(v;0) forall v € Fn.
ii.) F is p-ary plateaued with single amplitude if and only if N(0;1) = N¢(0;0)
and there exists an integer u such that Np(v;1) = Np(v;0) = u forall v €
F%,.
If F is p-ary plateaued and gcd(d, p™ — 1) = 1, then it has a single amplitude.
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Proof. For all v € F,» with v # 0, by the bijective change of variable a — vya and
b — b, we have #{(a,b) € F. : D,F(b) — D, F(z) = v} = #{(a,b) € F3. :
D, F(vb) — Dy F(x) = v}. Forall a,b,z,v € F,n with v # 0, we can easily see
D, F(7b) = (vb+~a)? — (vb) = v*D,F(b) and D, F(z) = v*D,F(z /7). Hence,
holds for all v, x,y € Fn with v # 0.

In particular, for = 0 in (3.42), we have #{(a,b) € F2, : D F(b) — Do F(0) =
v} = #{(a,b) € F2, : D F(b) — D, F(0) = v/y"}, thatis, Np(v;0) = Np(v/v%0)
for all v,y € Fpn with vy # 0.

We now prove (i). By (3.42)), for all v € F,» we have (by taking v = x for x # 0)
Nr(v;z) = #{(a,b) € Fa : DoF(b) — D,F(1) = v/a"}. (3.43)

Assume that Np(v; 1) = Np(v;0) for all v € Fpn. Then we have #{(a,b) € F>, :
D,F(b) — DoF(1) = v/a?} = #{(a,b) € F2, : D,F(b) — D,F(0) = v/x"}, which
equals #{(a,b) € F3. : DoF(b) — D,F(0) = v} from the second statement. Then,
for all v € Fyn, Np(v;2) = Np(v;0) for all z € Fy, by (3.43). Hence, F is p-ary
plateaued by Theorem [3.19] The other direction is clear from Theorem [3.19]

Next we prove (ii). Theorem [3.19]says that F' is p-ary plateaued with single ampli-
tude if and only if there exist two integers u; and uy such that N(0;x) = w; and
Nr(v;x) = ug forall 2 € Fpn and v € Fr,. Assume that Nz (0; 1) = N¢(0;0) and
there exists an integer u such that Np(v; 1) = Np(v;0) = u for all v € F},. From

the proof of (i), we have

Ne(v;z) = Ng(v;0)

for all v,z € Fpn with x # 0. Combining them, we conclude that Np(v;z) = u
for all v,z € Fpn with v # 0 and Np(0; ) is independent of = € F,.. Hence,
by Theorem [3.19, I is p-ary plateaued with single amplitude. The other direction
follows from Theorem

Finally we prove the last assertion. Assume that F' is p-ary plateaued. By (i),
Ne(v;1) = Ng(v;0) for all v € Fpn. From the second assertion, Np(v;0) =
Ng(v/4%0) for all v,y € Fyn with v # 0. Then,

Nr(v;1) = Np(v/7%0)
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for all v,y € Fyn with v # 0. For v = 0, it is obvious that Nx(0;1) = N(0;0).
For v € F},., if we set v = 1 and using the fact ged(d,p” — 1) = 1, then y — 1/7¢
is a permutation of .. Then we get Nx(1,1) = Ng(v,0) for all v € F,, that is,
Nr(v,0) = Ng(v; 1) does not depend on v € FF¥,.. Hence, plateaued function F* has
single amplitude by (ii). [

Remark 3.9. With the above notations, for the power function F'(z) = z¢, in general
we have Nr(v; 1) # Np(v/v% 1) for v,y € F,n with 4 # 0. However, the equality

case is necessary for plateaued-ness.

Below, we consider plateaued-ness property of vectorial p-ary functions whose com-

ponent functions are all unbalanced.

Remark 3.10. A function is balanced if and only if its Walsh transform vanishes at

the zero input.

Theorem 3.21. Let F' : F,» — Fym, and let the functions F), A\ € F;m, be unbal-

anced. Then, I is p-ary plateaued if and only if for all v € Fm and x € Fpn
Nr(v;z) = #{(a,b) € F2. : F(a) — F(b) = v}. (3.44)

In particular, F'is p-ary plateaued with single amplitude if and only if for all v € Fpm
and v € Fyn [3.44) holds and is independent of v € Fy..

Proof. Assume that F' is p-ary plateaued. Since F), = A - F, A € ]F;m, are all unbal-
anced p-ary plateaued of the amplitude 115, we have Yz, (0) # 0 forall A € F%m (and
also for A = 0), and hence p3 = |Xr, (0)|%. For A € Fym, since |z|> = 2% for z € C,
we can easily see

Xm0 = Y g EF@-ren, (3.45)

a,bern
Recall that D, D, F(x) = A - (D, DyF(z)) for all a,b,z € Fyn and A € Fm. Then,
by Theorem[3.6] for all z € F» and A € F;» we have
G(\z) = Z glg\-DanF(w) — Z §$~(F(a)—F(b)), (3.46)

a,beF,n a,beF ,n
where the second equality follows from (3.45). By (3.4), forall z € F» and v € Fpm,
the Fourier transforms of the equal functions in (3.46) are equal:

@(v;a:): Z Z 5;-(DanF(x)—v): Z Z 52-(F(a)—F(b)—v)7 (3.47)

)\E]Fpm a,bern )\E]Fpm a,bern
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equivalently, G(v;z) = p"#{(a,b) € F2. : DyDyF(z) = v} = p"#{(a,b) €
F2,. : F(a) — F(b) = v}. Hence, the assertion holds. Conversely, assume that for all
z € Fpnand v € Fym holds, that is, holds. By (3.4), for all z € Fy»
and A\ € Fym, holds, equivalently by (3.43), G(\;z) = |X£ (0)

nonzero since Fy, A € 5., are all unbalanced. Then, for all A € Fy.., G (A; z) does

2 which is

not depend on = € Fy». By Theorem F\, e IE‘;m, is p-ary plateaued, and hence,
F'1s p-ary plateaued.

We prove the last assertion. Theorem says that F' is p-ary plateaued with single
amplitude if and only if G(\;z) in (3.46) does not depend on z € F,» nor X for
A # 0; equivalently by || G (v;x) in 1} does not depend on = € F,» nor on v

for v # 0. Hence, using the above arguments, the proof is complete. 0

In view of Theorem [3.21] the following corollary is derived directly from Corollary
and Theorem [3.20

Corollary 3.29. Let F' : Fpn — Fpm be a function such that all of whose component
functions are unbalanced. Then F is vectorial p-ary s-plateaued if and only if for all
v e,

#{(a,b) € F2 : Fa) — F(b) = v} = p*" ™ —p't>—™.

In this case, we also have #{(a,b) € F2, : F(a) = F(b)} = p** ™" 4 p"ts —prts—m,

In particular, F is vectorial p-ary bent if and only if

#{(av b) S Ff,n : F((l) = F(b)} = p2”_m +pt =™,

3.3.3 p-Ary Strongly-Plateaued Functions over [,

In this subsection, we study a particular case of p-ary plateaued (vectorial) functions:
when the value distribution of b — D,D,F'(z) is independent of z € FF,» for each
fixed value of a although the value distribution of DD, F(x) when (a,b) € F2, is
independent of x € F,» in Theorem

Definition 3.3. Let F' : F,» — F,n. Then, F' is called vectorial p-ary strongly-
plateaued if for all @ € F» and v € Fym, the size of the set {b € Fn : D, Dy F(x) =
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v} is independent of = € F,n. In particular, f : F,» — [, is called p-ary strongly-
plateaued if for all @ € F,» and v € [F,, the size of the set {b € Fn : D, D), f(x) = v}

is independent of x € Fn.

Remark 3.11. By Theorem [3.19] any p-ary strongly-plateaued function is the p-ary
plateaued function. Moreover, a vectorial p-ary function is strongly-plateaued if and

only if its component functions are p-ary strongly-plateaued.

Proposition 3.12. Let F' : Fyn — Fpm. Forall a,x € Fpn and v € Fym we have
#{beFpn : D, DyF(x) =v} = #{b € Fpn : D,F(b) — D, F(x) = v}.

Proof. Forall a,b, x € [F,n, (by the bijective change of variable b — b — z), we have
D.DyF(z) = D,Dy_F(x) = Fla+0b) — F(x 4+ a) — F(b) + F(z) = D,F(b) —
D, F(x). This completes the proof. [l

The notion of p-ary strongly-plateaued is closely connected to p-ary partially-bent.

Proposition 3.13. Let f : F,n — F,,. Then f is p-ary strongly-plateaued if and only
if f is p-ary partially-bent.

Proof. By Definition[2.12] f is p-ary partially-bent if and only if the derivative D,, f is
either balanced or constant for all a € F,»; equivalently, forall v € F,m and a € [Fpn,
#{b € Fyn : D,f(b) = D,f(x) + v} is independent of x € Fn, that is, f is p-ary
strongly-plateaued by Proposition (3.12 0

Proposition 3.14. A vectorial p-ary function is strongly-plateaued if and only if all
of its component functions are p-ary partially-bent. In particular, p-ary bent and

quadratic (vectorial) functions are p-ary strongly-plateaued (vectorial) functions.

Proof. The first assertion follows from Remark [3.11] and Proposition [3.13] By Re-
mark [2.4] the last assertion follows from the first assertion. 0

3.4 Characterizations of Vectorial Plateaued p-Ary Functions

This section, in order to characterize plateaued vectorial p-ary functions, makes use

of the Walsh power moments and autocorrelation functions of their component func-
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tions. We first characterize plateaued vectorial functions by using Walsh power mo-

ments of their component functions in arbitrary characteristic.

We can extract from Theorem|[3.9]the following characterization of vectorial plateaued

functions.

Theorem 3.22. Let I : Fyn — Fym and let F\, X € F}.n, be the component functions

of F'. Then, F' is vectorial s-plateaued if and only if

Y SR =p" Tt 1) and Y S3(F)) =p"tH(pT — 1), (3.48)

Proof. Assume that F' is vectorial s-plateaued, that is, F), A € F;m, is s-plateaued.
By Theorem [3.9] we conclude that (3.48) holds. Conversely, suppose that (3.48)
holds. By li with A =p"**andi =1, forall A € .. we have

— = 2 nts\2|o 2 _ 9 nts 2(n+s)
A
D= (Xn@)° = " Km W) = S5(F) = 20" Sy(F) + p* 9 81(Fy).

UJE]Fpn

By (3.48)) and using the Parseval identity, we have

Z Dy = p4n+2s<pm _ 1) _ 2pn+sp3n+s(pm r 1) +p2n+25p2n<pm _ 1) —0.

AeIF;m

Then, since D, > 0 and Z/\E]F*m Dy =0, we get D) = 0 forevery \ € F;m. Hence,
for every A € Fi., [Xr, (w)]? € {0,p"**} for all w € Fpn, namely, F, A € F., is

s-plateaued. Hence, [ is vectorial s-plateaued. U

To give the next characterization of vectorial s-plateaued functions, we recall the

following result.

Proposition 3.15. [55] Let F' : Fyn — Fym and let F)\, A € F ., be its component

functions. Then

S° Su(E) =g — "

AeFym
Theorem 3.23. Let F' : Fyn — Fym and let F\, A € F., be its component functions.
Then, F is vectorial s-plateaued if and only if Ss(Fy) = p*" 2 for all \ € F%m and

m(F) — p3n—m _l_p2n+s - p2n+s—m‘
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Proof. Assume that F' is vectorial s-plateaued. By Theorem we have Sy(F)) =

p**** and S3(Fy) = p**** for all A € ... By Proposition [3.15} we get
p3n+s(pm o 1) —_ anrmm(F) - p4n.

Thus, the assertion holds. Conversely, we have >, p. S3(F)) = p*™ ™25 (p™ — 1),
pm
and by Proposition [3.15] we get

Z SQ(F)\) _ pn+m(p3n7m _|_p2n+s - p2n+sfm) - p4n _ p3n+s(pm - 1)

By Theorem [3.22] F'is vectorial s-plateaued. O

In view of Proposition [3.6] we can deduce the following.

Theorem 3.24. Let I : Fyn — Fym and let F\, A € F}.n, be its component functions.

Then for all integers 1 > 1, we have

> Si(Fa)? < ) Sia(F)Si(F), (3.49)

AEFym AFFm

equivalently,

> Sia(B) < > V/Sina(F)Si(F), (3.50)

AEF% AEFSm

with an equality if and only if I is p-ary plateaued.

Proof. The inequalities (3.49) and (3.50) follows easily from (3.17)). To prove equal-
ity cases, notice that by (3.17) we have

Sita(F\)Si(Fy) — Sip1(F))? >0

forall A € F ... Thanks to the well known fact that a sum of nonnegative terms is zero
if and only if each term is zero, the inequality (3.49) (equivalently, (3.50)) becomes
an equality if and only if F, A € F ., are all p-ary plateaued by ; equivalently,
F'is p-ary plateaued. [

Theorem [3.24] in the case of ¢ = 1, suggests the following corollary.

71



Corollary 3.30. Let ' : Fjn — Fym and let F, A € F7,., be the component functions
of F. Then we have
D Sy(FN?<p™ Y Ss(F)),
AEF% XS o

equivalently, 3\ . Sa(Fy) < p" ) ycpe  \/S3(F)), with an equality if and only if
F'is p-ary plateaued.

In the light of Remark [3.5] clearly we have the following corollaries.

Corollary 3.31. Let F' : Fpn — Fym, and let F\, X € F;m, be the component functions
of F. Then F'is p-ary plateaued if and only if for each A € F7..,

So(Fy) = p*"0r, ()

forall x € Fyn. In particular, I'is p-ary plateaued with single amplitude if and only
if, additionally, So(F)) does not depend on X for A # 0.

Proof. By Remark [3.3] the first assertion is a direct consequence of Corollary 3.5
The second assertion follows from Theorems 3.6/ and O

Corollary 3.32. Let I' : Fyn — Fym and let F, A € F ., be the component functions
of F'. Then, F'is p-ary plateaued if and only if
Y X+ wXa W) KW =0
weFyn
forall o € Fy, and A € Fp,n. In particular, F' is p-ary plateaued with single ampli-
tude if and only if, additionally, S5(F)) does not depend on \ for \ # 0.

Proof. By Remark [3.5] the first assertion is a direct consequence of Theorem [3.14]
The second assertion follows from Theorems [3.6]and 3.19] O

Corollary 3.33. Let F : Fyn — Fym, and let F\, A € 7, be the component functions
of F. Then F'is p-ary plateaued if and only if for all x € Fyn and X € Fn
Y Rm@lt=p" ) O X (W)INm W) (3.51)
UJGFPn wG]F

In particular, F' is p-ary plateaued with single amplitude if and only if for all x € IFn
and \ € 7. holds and is independent of \ # 0.
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Proof. By Remark [3.5] the first statement is a direct consequence of Corollary [3.20]
The second assertion follows from Theorems [3.6]and O

Considering F = A - F for A € F,,, forall z € F» and A € F7,, the equality (3.51)

is equivalent to:

F(b)+F(c)—F(d))—w-(a—b+c—d)
> av

w,a,b,c,dEF,n
—pr S Q@ F@FO-F@)wleatb=a)
w,a,b,c€Fpn
equivalently,
Z f F(b)+F(c)—F(a—b+c)) :pn Z 52-(}7(1)7F(a)+F(b)fF(:l‘*a+b)),
a,b,ceF pn a,beF n

that is, (by the bijective change of variables: a — a + b+ cand b — b + c in the
left-hand side, and @ — a + z and b — a + b + x in the right-hand side) we have

Z gx (DyDaF(c)) = pn Z @ (DbDaF(w))

a,b,c€F ,n a,b€F ,n

which is equivalent to (3.38). Namely, the characterizations given by Corollaries[3.20]
and [3.5] are equivalent.

In the following, we extend to arbitrary characteristic the characterizations of plateaued
vectorial Boolean functions in terms of autocorrelation functions of their component

functions.

We can derive from Remark [3.5|and Theorem [3.15|the following.

Corollary 3.34. Let I' : Fyn — Fym and let F, A € F ., be the component functions
of F'. Then, I is p-ary plateaued with single amplitude p if and only if for all v € Fn
and \ € F}.., we have

Z AF}\ AF}\ T — a) MQAFA (x)

a€lFyn

In the light of Remark [3.5|and Corollary [3.21] obviously we have the following.

Corollary 3.35. Let F' : Fpn — Fym and let Fy, A € Ty, be the component functions
of F'. Then, F is p-ary plateaued with single amplitude p if and only if for all x € Fpn
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and )\ € ]F;m,

Z AF)\ AF)\ b)AFA(JJ—a—b Z AF)\ AFA(.T—C)

a, bEF n CEFpn

In a similar way, considering Remark [3.5]and Corollary [3.22] we have the following.

Corollary 3.36. Let F' : Fjyn — Fym, and I, A € F}., be the component functions
of F. Then, F is p-ary plateaued if and only if for all v € Fpn and \ € 5,

p Z AF/\ AF/\ I—(Z Z ’AFA | AF)\( )

a€lf,n a€lFyn

We can rewrite Corollary as follows. A p-ary function f is plateaued if and only
if for all x € F,,» (by the bijective change of variable a — a — b)

Z 6 a)+f(b)+f(c)—f(—a+tb+ctx)

a,b,c€F,n
_ Z gff(a)Jrf(be(C)*f(*a+b+6)+f(d)*f(d+w)
D .

a,b,c,dEIFpn

For vectorial F' : Fyn — Fm, we can write this by considering f = A- F' for A € F ...
Applying the Fourier transform, by (3.4) their Fourier transforms are equal, and hence

we deduce (see the proof of Theorem [3.19)) the following.

Corollary 3.37. A vectorial function I is plateaued if and only if for all x € I n and
v € Fyn p#{(a,b,0) € B, : —F(a) + F(b) + F(c) = F(—a+b+c+a) = v} =
#{(a,b,c.d) € Fu : —F(a)+ F(b)+F(c) = F(—a+b+c)+F(d) - F(d+z) = v}.

We end this section with the following result, which follows directly from Remark

and Corollary

Corollary 3.38. Let F' : Fyn — Fym, and let F\, A € 7, be the component functions
of F. Then F is vectorial p-ary bent if and only if > |Ar, (a)]* = p*" for all
X € T,

aE]Fpn

Remark 3.12. It is worth noting that all characterizations of plateaued p-ary functions
can be given for vectorial plateaued p-ary functions by the component functions in

the light of Remark
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3.5 Cubic (Homogeneous) Bent and Plateaued p-Ary Functions

This section studies (homogeneous) cubic functions. In this section, the character-
ization of bent and plateaued functions in terms of their second-order derivatives is
devoted especially to (homogeneous) cubic functions. This reveals the non-existence
of a homogeneous cubic bent function (and a (homogeneous) cubic plateaued func-
tion for some cases) in odd characteristic. Moreover, we use a rank notion which
generalizes the rank notion of quadratic function in arbitrary characteristic and we
give a simple algorithm to determine it. This rank notion discovers new results about

(homogeneous) cubic plateaued functions.

3.5.1 Cubic (Homogeneous) Bent p-Ary Functions

In this subsection, we provide new results on (homogeneous) cubic bent functions in
arbitrary characteristic. Indeed, we observe that there does not exist homogeneous
cubic bent functions in odd characteristic (see Corollary 3.39). On the other hand, by
Remark [3.16|and Example [3.6|we point out that it is not the case for even characteris-
tic. We give a concrete example of homogeneous cubic s-plateaued functions in odd

characteristic when s > 0 to show their existence.

We begin with the notion of cubic functions in arbitrary characteristic. Let f be a

cubic function from [F,» to IF,,. Then, f can be written as
f(z) =Te" (zD(z)) + TeY (2 A(2)) + alz). (3.52)
Hence, D is a quadratic polynomial given by

D(x)= Y dyz®*¥ withd; € Fyr  if p=2
0<i<j<n—1
and
D()= > dya" " withd; € Fpn  ifp#2. (3.53)
0<i<j<n—1
Moreover, here A is a linearized polynomial given by

Alx)= Y aa” witha; € Fpe (3.54)

0<i<n-—1
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and a(x) is an affine polynomial for x € F,.. Notice that D, Dya(x) is equal to
zero for every a, b, x € F,,». Then by Theorem a cubic function f as in (3.52) is
plateaued if and only if Trgn (xD(x))+ Trgn (xA(x)) is plateaued. Therefore, without
loss of generality we assume that f(z) = Tr? (zD(z))+ T2 (zA(x)), i.e., a(z) = 0

throughout this section.

Definition 3.4. We say that a cubic function f as in (3.52) is homogeneous if the
linearized polynomial A in (3.54) is the zero polynomial.

Remark 3.13. Choosing a basis {w, ws, ..., w,} of F} and considering z = zyw; +
- 4+ xpw, with x; € Fo, any function f : F} — [F, can be represented as an ele-
ment of Fy[zy, ..., 2,]/{(x?—x1,..., 22 —x,). This representation is called algebraic
normal form or multivariate form. In the literature a Boolean cubic function is called
homogeneous if it has only cubic terms in algebraic normal form. The notions of
algebraic normal form (multivariate form) and homogeneous function in this sense
also exist in odd characteristic (see, e.g., [37, Section 1.3]). It is well known that a
Boolean homogeneous cubic function becomes Boolean cubic containing (multivari-
ate) quadratic terms or linear terms under a linear isomorphism. However, this is not
the case for homogeneous cubic functions if p > 3. Moreover if p = 3, then a ho-
mogeneous cubic function becomes a cubic function containing linear terms (but not
quadratic terms). Therefore, using Definition the notions of homogeneous cubic
functions and algebraic normal form are the same for p > 3. Moreover they can be
considered to be the same for plateaued functions without loss of generality if p = 3
as they may differ only by linear terms. However, for p = 2 and n = 6, there is an im-
portant difference for cubic bent functions in the notions of homogeneous functions
in the sense of Definition [3.4] and in the sense of this remark using algebraic normal

form (see Remark [3.17]below).

Let B : Fn X Fyn — Fpn be the quadratic map depending on D defined as
B(z,y) = D(z +y) — D(z) — D(y) (3.55)
for x,y € Fyn. For a,b € Fyn, let Ly, p be the linear map from F . to I, defined as
Loy, (z) = TtV (2B(a,b) + aB(z,b) + bB(z, a)) (3.56)
for every x € Fyn. Fora,b € Fpn, let Cyp, p and C, , 4 be the constant functions from

76



F,» to IF, defined as
Copp = T2 (aB(a,b) + bB(b,a) + aD(b) + bD(a)),
Copa = Trzn (aA(b) + bA(a)).

From now on, we keep the above notations in this section.

(3.57)

Lemma 3.4. Let f be a cubic function as in . Then the second-order derivative
of f at (a,b) € F2, is the affine function defined as D, Dy f(x) = Lap5(x) + Cap.p +
Cap,afor x € Fpn.

Proof. Recall that f(z) = Trgn (xD(z) +xA(x)) for z € Fyn. The first-order deriva-
tive D, Tv?" (zD(x)) at b € Fpn is given as
e (2B(x,b) + bB(z,b) + xD(b) + bD(z) + bD(b))
and D, Tr2" (zA(z)) = TrY (2 A(b) + bA(z) + bA(D)) for every x € Fn. The second-
order derivatives at (a,b) € F>, are obtained as
DanTrzn (xD(x)) = Trgn(a:B(a, b) + aB(z,b) + bB(zr,a)+
aB(a,b) + bB(b,a) + aD(b) + bD(a)),
which is equal to Lo () + Cop.p for every z € Fyn, and
D.DyTY (zA(z)) = TV (aA(b) + bA(a)),

which is equal to C, , 4. This completes the proof. [

Let S C IF,» x Fpn be the subset
S ={(a,b) €F2 : Lopp(x) =0, V& € Fpn}. (3.58)

Note that S is not a linear subspace of Ff,n in general. For a € Fy», let S, C [F,» be
the subset S, = {b € Fyn : Lopp(z) =0, Ve € Fpu} = {b € Fpn : (a,b) € S}.
Hence for every a € Fn, S, is an [F),-linear subspace of IF,,». In particular, if a = 0,

then Sy = Fpn. It is worth noting that S = {(a,b) € F2. : b € S,}. Now we

aGFpn

can give the following.

Proposition 3.16. Let p be an arbitrary prime and let | be a cubic function as in
Af f is p-ary s-plateaued, then

Z Z gga,b,D'i‘Ca,b,A — pn(ps _ 1) (3.59)

aEF;n beS,

Conversely, if the above sum is zero, then f is p-ary bent.
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Proof. Assume that f is s-plateaued. By Corollary [3.6] we have

Z Z £Danf i Z Z gDanf [raiand (3.60)

ab¢Sm€Fn abES(EEFn

Recall that by Lemma D.Dyf(x) = Lapp(x) + Copp + Cupa is the affine
function for z € F,n. For (a,b) ¢ S, the first sum in (3.60) is zero since an affine
function is balanced. By (3.58), if (a,b) € S, then we have L, () = 0 for every
x € [Fpn. Then, (3.60) is equivalent to:

Cap,0+Capa _  nts
E &p =p -
(a,b)eS

Notice that (a,b) € S if and only if b € S, for a € F,». Recall that if a = 0, then
So = Fpn. If a = 0, then we can easily see by (3.57) that C,, p = 0 and Cpp 4 = 0.

Thus we have

Ca. +Ca
Z §2+ Z gp ,b,D b,A :pn—i—s’

beF ,n (a,b)€S,a#0

that is, (3.59) holds. Conversely, using the above arguments we have

Z SZ?QDbf(a:) _ Z Z épca,b,D+Ca,b,A

x,a,bEF n z€Fpn (a,b)esS
0 Ca,p,0+Cap, 2
D DIEED DD DI et
x€Fyn  \ bEF,n a€lFyn bES,
Hence, by Corollary f is p-ary bent. O

Remark 3.14. In Subsection [3.2.2] we indicate that the converse of Proposition [3.16]
does not hold, in general when s > 0. Namely, (3.59) does not determine whether f

is s-plateaued or not when s > 0.

The following fact can be given in odd characteristic.

Lemma 3.5. Let B be the quadratic map as in ([3.55). Assume that p is an odd prime.
Then, for every b € F,» we have

B(b,b) = 2D(b). (3.61)

Proof. By (3.55), we have B(b,b) = D(b+b) — D(b) — D(b) = D(2b) — 2D(b)
for every b € FF,». From the definition of D as in (3.53)), for 0

IN
IN
.
IN
S
|
—_
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we have (20)' 7 = 2P +p"pp' 0" — op' P pp' ) — ApP'tP’ | where in the last equality
we used that 27" = 2 in Fpn for 0 <4 < n — 1 in odd characteristic. In other words,
D(2b) = 4D(b) for every b € Fjn since 2 € 7 in odd characteristic. This completes
the proof. [

In the light of the above results, we have further simplifications.

Lemma 3.6. Assume that p is an odd prime. Let S C Fyn X Fyn be the subset as in

and Cqp, p be a constant function as in . For every (a,b) € S, we have
C1(1,b,D = 0.

Proof. Recall the definition of linear function L, 5 in @, and put x = a,

Loy p(a) = Te?" (bB(a,a)) + 212 (aB(a, b)). (3.62)
Similarly, by symmetry on a <+ b, we have

Lay,5(b) = Tr2" (aB(b,b)) + 2Tx2" (bB(b, a)). (3.63)

By (3.58), if (a,b) € S, then Ly, p(z) = O for every z € F,». Then for every
(a,b) € S,

Lap,p(a) = 0and Lap g(b) = 0. (3.64)

Combining (3.61)), (3.62) and (3.63), we have L, 5(a) + Lap 5(b) = 2C, 4 p- Hence,
by (3.64), C.p.p = 0 for every (a,b) € S. O

Remark 3.15. In the case when p = 2, Lemma [3.6] does not hold. The following

example shows that Lemma [3.6]fails in characteristic 2.

Example 3.5. Let f(z) = Tr2 (¢222 + (32 + (a%) be the Boolean function, where
F3s = (C) with (* 4+ ( + 1 = 0. Then, in characteristic 2, there exist a = (* and
b = (5 such that (¢3,(%) € S but C, 4 p = 1. On the other hand, there exist a = (°
and b = (° such that (¢°,(°) € S and Copp = 0.

To state the next result, we define the following linear function. For a € Fy», let ¢, 4

be the linear function from F,. to I, defined as
Va,a(x) = TrL" (aA(z) + zA(a)). (3.65)
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Notice that the kernel of 1, 4 is defined as ker(¢, 1) = {b € Fpn : ¢, 4(b) = 0},
which is an IF,-linear subspace of F,». The following result improves Proposition

[3.16] when p is an odd prime.

Proposition 3.17. Let p be an odd prime, and let f be a cubic function as in (3.52)).

If f is s-plateaued, then the following equivalent statements hold:

i) YD Gt =p" - 1),

aE]F;n beS,

ii.) > plme) = pr(p* —1).

aE]F;n ,SaCker (g, a)

Conversely, if one of the above summations is zero, then f is p-ary bent.

Proof. Assume that f is s-plateaued. By Proposition and Lemma [3.6] it is ob-
vious that (7) holds. We now prove (ii). Recall the definition of the linear function
tha,a in (3.65), and put z = b. Then we have 1, 4(b) = Tr%" (aA(b) + bA(a)), that
is, Cyp 4. Note that if S, C ker(t), 4), then Cyp 4 = 0 for every b € S,; otherwise,
Cap,a is the linear function. Thus, we have

)IDIZCIED D DITD DIID DI 1o

aGIF;n beS, aE]F;n beSqCker(hg, a) aE]F;n beSyZker(Yq, )

= > #S,.

aEIF;n , SaCker(q, )
If f is s-plateaued, then the assertion follows from (7). Conversely, by Proposition

[3.16]and using the above arguments we have

Z SPDanf(ﬂﬁ) — Z Z gga,b,A

z,a,bEF yn z€Fpn (a,b)eS
Cap, n
Y (Sery e o
xGFpn bGFpn (ZEF;n beS,
By Corollary we conclude that f is p-ary bent. O

The following corollary explains a probably unexpected behavior of homogeneous

cubic functions in even and odd characteristics (see also Remark [3.16)).

Corollary 3.39. Let p be an odd prime and f be homogeneous cubic as in Definition
Then, f is not bent.
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Proof. By Proposition[3.17] f is bent if and only if

SN g =0 (3.66)

aElF;n beS,

Assume that f is a homogeneous cubic function. Then A(z) = 0 and here C, 5 4 = 0
for every a € Fy. and b € S,. It is worth noting that S, is an F-linear subspace of

[, for every a € F,». Thus we have

DoDeTt =Y #S = -

aGIF;n beS, aEF;n
which contradicts (3.66). Hence, f is not bent. O

Remark 3.16. For p = 2, Corollary does not hold. The following example shows
that Corollary [3.39| fails in characteristic 2.

Example 3.6. The homogeneous cubic function Tr%G(C Wa® + (Ot + Ca'?), where

5o = (C) with O+ ¢4+ G+ C+1 =0, is bent in characteristic 2.

Remark 3.17. Under the notation of Example let {1,a,a?,...,a°} be a basis
of Fys. Putting z = 1 + 2oa + 2302 + -+ + 260° we obtain a multivariate form
representation in Fo[zy, - -+ , 26| /(x? — 21, ..., 22 — ) of the function f in Example
We denote this multivariate form representation again as f = f(xy,...,z¢) for
simplicity of notation. The degree 3 part of this form is f3(x1,...,2s) = T12x273 +
T1XoT6 + T1X3X4 + X1T4X5 + T1X4T6 + T1X5T6 + T2T3Xg + ToTyTe + T3x425. Recall
ranks(f3) = ranks(f) is an affine invariant defined in [39]. By a simple and useful
matrix computation explained in [39, Section 3] we obtain that ranks( f3) = 6. Recall
that there are exactly 3 distinct cubic bent functions R, Rs, R3 up to extended affine
equivalence for ¢ = 2 and n = 6 such that rank;(R;) = 3, ranks(Ry) = 5 and
ranks(R3) = 6 (see [[72]). This shows that the function in Example is extended
affine equivalent to R3. Moreover for p = 2 and n = 6 there are exactly 30 distinct
homogeneous cubic bent functions in the sense of multivariate form and they all are
extended affine equivalent to R; (see [/0]). Therefore it is impossible to obtain a
homogeneous cubic bent function in the sense of multivariate form starting from the
function in Example [3.6] choosing a basis and making an affine change of variables.

This shows the important difference for p = 2 and n = 6 mentioned at the end of

Remark
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There exists a homogeneous cubic s-plateaued function in odd characteristic when

s> 0.

Example 3.7. In characteristic 3, the homogeneous cubic function Tv3 (4 +(2z'+

Cx'?) is 1-plateaued where F%, = (C) with (* +2( +1 = 0.

Recall that the radical of a quadratic function () : F,» — [, is defined as

Wao = {y € Fpr : Qz +y) = Q(x) + Qy), Vo € Fpn},

which is an F-linear subspace of F». If dim(Wy) = 0, that is, Wg = {0}, then Q)

is said to be non-degenerate; otherwise, () is said to be degenerate.

Corollary 3.40. Let p be an odd prime and f be a cubic function as in f
[ is bent, then the homogeneous quadratic function Q(z) = Tr2" (zA(x)) is non-

degenerate.

Proof. Assume that Q(z) = Trgn (zA(x)) is degenerate. Then, there exists u € Fy,
such that Q(z + u) = Q(z) + Q(u) for every x € Fyn. As

Trgn((x +u)A(z +u)) = Q(x) + Trzn (xA(u) + uA(z)) + Q(u),

there exists u € F%. such that Tr?" (zA(u) + uA(z)) = 0 for every & € Fpn. Recall
the definition of the linear function 1, 4 defined as 1, 4(z) = Trgn (xA(u) + uA(x))
in . Then, there exists u € [y, such that ker(¢, 4) = Fpn. Assume also that f
is bent. By Proposition [3.17, we obtain

> pse) = 0. (3.67)

aeF;n Sa gker(d}a,A)

As u € Fy. and ker(¢,4) = Fyn, we have S, C ker(¢y,,a), dim(S,) > 0 and
ptmw) > 1. Hence for u € F%,, the left-hand side of (3.67) is positive, which is a

contradiction. 0
Example 3.8. Let Tr} (22 + 22° + 21) be the cubic bent function. Then, its homo-
geneous quadratic part Trg3 (2% is non-degenerate.

A linearized polynomial C(z) = coz 4+ ¢1a? + - -+ 4 ¢,_12”" ' € Fyu[z] is called a
permutation polynomial if the map « — C/(z) is a bijection on F ., which means that
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C has no nonzero root in IF,». Using a well-known characterization of non-degenerate

quadratic forms in odd characteristic we obtain the following.

Corollary 3.41. Let p be an odd prime and f be a cubic function as in (3.52). Let a €
) be a quadratic non-residue. If f is bent, then there exists a linearized permutation
polynomial C(z) € Fpynx] such that f(C(x)) = Trgn(x[)(;v)) + Trzn(nxz) where
n € {l,a} and

D)= Y dya""" withd; € F,n (3.68)

0<i<j<n—1

satisfying Trgn (zD(z)) = TrI’;n (C(zD(z))) for every x € Fpn.

Proof. By Corollary , the quadratic function Trgn(:pA(x)) is non-degenerate.
Using the arguments in the proof of [68, Proposition 3.1], we obtain that any non-
degenerate quadratic function is equivalent to exactly one of the quadratic func-
tions r — Trgn(nﬁ) with n € {1,a}. Then we consider the quadratic functions
Trgn(nﬁ) with p € {1,a}. Hence, there exists a linearized permutation polynomial
C(x) € Fpu[z] such that T?" (C(xA(x))) = TrY" (na?) with € {1, a}. Moreover,
there exists D(z) as in (3.68) such that Trgn (C(xD(z))) = Trﬁn (zD(z)) since C' is
a linearized permutation polynomial over F,». Combining the arguments above, the

proof is complete. O

3.5.2 Cubic (Homogeneous) Plateaued p-Ary Functions Without Full Rank

In this subsection, we first consider a notion of the rank of a function in arbitrary
characteristic, and then give a method, which can be straightforwardly obtained from
the definition, to determine it. By MAGMA [35], we obtain several cubic plateaued
functions without full rank in characteristic 3. By considering the rank of plateaued
functions, we characterize these functions in terms of their second-order derivatives,
and hence it reveals the non-existence of a (homogeneous) cubic plateaued function

in odd characteristic in many cases.

Definition 3.5. Let f be a function from [F,» to IF,. The rank of f is defined as the

smallest nonnegative integer r such that there exists an IF-linear subspace W C [F»
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and its complement W C F,. of dimension n — 7 satisfying

[z +22) = f(21)

for every 2, € W and 2, € W. We write rank(f) = r.

It is worth noting that if f is a quadratic function, then the notion of the rank of f in

Definition [3.5] coincides with the usual rank of quadratic functions (see, e.g., [7]).

Remark 3.18. We remark that the notion of the rank in Definition is invariant
under affine transformations. Indeed, let ¢ : FF,» — F,» be an [F-linear isomorphism
anda € Fyn. Let g(x) = f(¢(z)) and h(z) = f(z+ «). Itis enough to show that the
ranks of f, g and h are the same in the sense of Deﬁnition Assume that rank(f) =
r and W, W are F,-linear subspaces of F,» with dim(W) = r, diim(W) = n — r and
W NW = {0}. Moreover, we assume that f(x; + x5) = f(x;) for all z; € W and
x4 € W. Then it is not difficult to observe that g(y;+12) = g(y1) forally, € = (W)
and y, € ¥~ H(W). Moreover, dim(yp"4(W)) = r, dim(x"'(W)) = n — r and
Y (W) Ny~ (W) = {0}. Also we observe that h(x; +x3) = h(x;) forall z; € W
and z, € W. These arguments show that the rank in Definition [3.5|is invariant under

affine transformations.

Recall that the cubic function f is defined as
f(2) = T (eD(x) + T (¢ A(x))

for + € F,» without loss of generality. Assume that rank(f) = r. Let W be a
corresponding r-dimensional IF,-linear subspace of IF,». Indeed, there may be many
different r-dimensional subspaces corresponding to rank 7. By Definition f can
be written as f(z1) = T2 (z;D(z1)) + Tr2 (21A(x1)) for z; € W. We keep the

above notations in the sequel. The following is a direct generalization of Lemma [3.4]

Lemma 3.7. Let f be a cubic function as in (3.52)), and let W be an F,-linear sub-
space of dimension rank(f) for the rank of f in Definition For a,b,x € Fpn,
let ay,by,x; € W and as, by, x5 € W such that a = a; + as, b = by + by and
x = x1 + xo. Then, the second-order derivative of [ at (a,b) € Fin forx € Fpnis
the affine function defined as DyDy,f(x) = Lay py.58(21) + Cay b0 + Cay by.4, where
ai, by, x1 € W.
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Proof. The second-order derivative of f at (a,b) € an for x € ) is given as

D.Dyf(x)=f(x+a+b)— f(x+a)— flx+b)+ f(z) =

flxr+ 224+ a1+as+b1+bo) — f(z1 + 22+ a1 +az) — f(xy + 22 + by + ba)
+f(@1 4 22) = flz1+ a1+ b1) — flzr +ar) = flzr + 1) + f(a1)

= Do, Dy, f(21),

where we use the fact that W is an [F,-linear subspace of dimension rank(f). By

Lemma 3.4] and using the notation we have
Da1Db1f(x1) = La1,b1,B(x1> + Cahth + CahbhA

This completes the proof. 0

The following is a direct but practical generalization of Theorem 3.6

Theorem 3.25. Let f : F,n — F,. Let r be the rank of f and let W be a correspond-
ing r-dimensional IF,-linear subspace of F,n. Then, f is s-plateaued if and only if for

everyxr, € W

ai, b1eWw

Proof. Let W be a corresponding n — r dimensional FF,-linear subspace of F,«. Then
a,b,z € Fyn are uniquely determined as a = a; + a2,b = by + by and x = x; + 2,
where a1, by, 21 € W and as, by, 2o € W. By Lemma we have D, Dy f(x) =
Da, Dy, f(x1). Then by Theorem f is s-plateaued if and only if for every z; €
W,z € W

Z Z Z Z ngalDblf(wl) :pn—f—s,

A1 EW qoeW b1EW proeW

Day Dy, f(

that is, p" """ >0, cw Dopew Sp = p"*s for every 7, € W. N

As a generalization of the sets S and S, given before Proposition[3.16] we now define
the sets 7" and T}, as follows. Let T C W x W be the subset T' = {(ay,b;) € W?:
Lo, p,.5(x1) =0, Vo, € W}. Fora; € W, let T,, C IV be the subset

fra1 = {bl e W Lal,bl,B(xl) = 0, le € W} = {b1 eW: (al,bl) € T}
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Note that for every a; € W, Ty, is an [F)-linear subspace of W. Clearly, if a; = 0,
then To =W.

Let s, 4 : W — T, be a generalization of the linear function 1, 4 given in (3.65).
Namely, for a; € W, let g, 4(z1) = Trgn(alA(xl)) + TrgnxlA(al)) for r; € W.
Notice that the kernel of 9, 4 is defined as ker(1g, 4) = {b1 € W : 1ba, a(b1) = 0},

which is an [F,-linear subspace of V.

Now we are ready to give a generalization of Proposition|3.17

Proposition 3.18. Let p be an odd prime and let f be a cubic function as in ({3.52)).
Assume that rank(f) = r in Definition Let W be a corresponding r-dimensional
F,-linear subspace of Fyn. If f is s-plateaued, then the following equivalent state-

ments hold:

i) Y Y e =g ),

0#£a1EW by GTal

ii.) > pt o) = pr(prteTr — 1),
0£a1 €W, Ta; Cker(Ya,, 4)

Proof. By Lemma the second-order derivative of f at (aj,b;) € W? is the affine
function given as D, Dy, f(x1) = Lay,.58(x1) + Caypy.p + Caypy.a for zy € W.
Assume that f is s-plateaued. By Theorem [3.25] we have
Z Z g}?alpblf(xl) 4 Z Z £Z?G1Db1f(wl) — prsn,
(a1,b1)¢T x1EW (a1,b1)eT x1€W
For (ai,b1) ¢ T, the first sum is zero since an affine function is balanced. For
(a1,b1) € T we have L, 4, g(x1) = 0 for every z; € W. Then, we have
Z éfal,bl,D+Ca1,b1,A _ p2r+sfn'
(a1,b1)€T

Notice that (a;,b,) € T if and only if b; € T,, for a; € W. Recall that if a; = 0,
then Ty = W. If a; = 0, we have Cy, 5,,p = 0 and Cy, 3, 4 = 0. By Lemmas [3.6)and
Cay b,.0 = 0 for every (ay,by) € T. Thus we have

Z 6}? + Z fpcal,bl,A = prs—n

breW (a1,b1)€T,a1 0

that is, (i) holds.
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We next prove (ii). From the definition of &al, A, putting x1 = by, we have
Yoy, a(b1) = T2 (a1 A(br)) + Te (b1 A(a)),

which is equal to C,, 5, 4. Hence, if T}, C ker(t,,.4), then C,, 5, .4 = O for every

by € T,,; otherwise, C,, 5, 4 is the linear function. Then we have

Z Z égpcal,bl,A _ Z Z fg‘i‘

0#£a1€W b1€T0, 0#a1€W p, €Tay leT(TLaI,A)
Ca ,b1,A
> X &= > #To
0£a1EW by €T, Zker (b, 4) 0#a1 €W, Ta, Cker(dha, 4)
Hence, the proof follows from (7). ]

We derive from Proposition [3.18]the following result.

Corollary 3.42. Let p be an odd prime and f be a cubic function as in with
rank(f) =r. Ifr + s < n, then f is not s-plateaued.

Proof. Let W be a corresponding r-dimensional [F,-linear subspace of ). for the
rank of f in Definition Assume that f is s-plateaued. By Proposition [3.18] we

have

Z plim(Tu) — prprtT —1). (3.69)

0£a1 €W, Ta, Cker(ta, 4)

Note that the left-hand side of (3.69) is nonnegative. However, since r + s < n, we
have p"™*~™ — 1 < 0 and hence the right-hand side of (3.69) is negative, which is a

contradiction. O]

In the case of » 4+ s = n, we obtain the following result, which is a generalization of
Corollary We assume that f is non-constant without loss of generality, that is,

the rank of f cannot be zero.

Corollary 3.43. Let p be an odd prime and f be homogeneous cubic as in Definition
B.4|with rank(f) = r > 1. If r + s = n, then f is not s-plateaued.
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Proof. Let W be a corresponding r-dimensional F,-linear subspace of [F,» for the
rank of f in Definition[3.5] Assume that f is s-plateaued and r + s = n. By Proposi-
tion[3.18] we have

Z Z ggal,bLA _ pr<pr+sfn - 1) _ 0, (3.70)

0#£a1EW by GTal

since p" =" = 1. Moreover, since f is a homogeneous cubic function, A(x) = 0 for
every x € F,» and hence Cy, 5, 4 = 0 forevery 0 # a; € W and b; € T,,. Note

that 7}, is an IF-linear subspace of W for every a; € W. Hence, as in the proof of
Corollary we have

S Y grt= N #, zp -1 3.71)

0#£a1EW bleTal 0#£a1 €W

Since » > 1, combining (3.70) and (3.71]) we get a contradiction. [

The following result can be considered as a generalization of Corollary [3.40]

Corollary 3.44. Let p be an odd prime and f be a cubic function as in with
rank(f) = r > 1. Assume that f is s-plateaued and r + s = n. Let W be a corre-
sponding r-dimensional F-linear subspace of IF,;n for the rank of f in Definition
Let Qw : W — T, be the restriction of the corresponding homogeneous quadratic

function such that Qw (x) = Tr" (v A(z)) for v € W. Then Qv is non-degenerate.

Proof. As in the proof of Corollary 3.43| since f is s-plateaued and r + s = n, we

have

> ptimTa) = pr(prtsr — 1) = 0. (3.72)
0£a1 €W, Ta, Cker(da,, 4)

Next we use an argument in the proof of Corollary Assume that Qyy is degener-
ate. Then, there exists a; € W\ {0} such that Tr2" (zA(a)) + Tr2" (a1 A(z)) = 0 for
every z € W. This implies ker(¢,, 4) = W and hence the right-hand side of 1} is

dim(7q, )

at least p > 1. This gives a contradiction. Hence, Q)y is non-degenerate.  []

As a generalization of Corollary [3.41] we give the next result. Recall that if W is an
FF,-linear subspace of I, of dimension rank(f) and if W C Fn is its complement

as in Deﬁnition then f(z; + 22) = f(zy) forz; € Wand 2, € W.
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Corollary 3.45. Let p be an odd prime and f be a cubic function as in with
rank(f) = r > 1. Assume that f is s-plateaued and r + s = n. Letn € F5, be a
quadratic non-residue. Let W be a corresponding r-dimensional F,-linear subspace
of Fyn for the rank of f in Definition Then there exists an F\,-linear isomorphism
L:W — Fand jn € {1,n} such that

F(L(y1)) = Te2" (L(y1) D(L(y1))) + T (s}

for every y; € Fpr.

Proof. By the help of the proof of Corollary [3.41] we are able to prove this corollary.
Let Qw : W — F, be a homogeneous quadratic function defined as Qw (z1) =
Tr"(x1A(xy)) for x; € W. By Corollary Qw is non-degenerate. As in the
proof of Corollary we obtain an IF,-linear isomorphism L : W — I, and
p € {1,n} such that

T (L) AL ) = T ()

for every y; € F,-. Using the fact that f(z1) = Tr2" (z1D(x1)) + Tv? (21 A(21)) for
every x1; € W, the result follows. OJ

In this section we consider mainly arbitrary cubic functions as in (3.52)). It is worth
noting that if p = 2, then there exists a different and natural notion of ranks for
Boolean functions (see [39]]). For example if f is a Boolean cubic function in n
variables in algebraic normal form (multivariate form), then ranks(f) is the smallest
number of linearly independent combinations of x4, ..., x, needed in the degree 3
part of f = f(z1,...,2,). Then ranks(f) is also defined. Moreover, [39] gives
a very nice algorithm to determine these ranks. The notion of rank in Definition
is different from these notions in [39]. Finally in this subsection, we give a rather
direct method, the consequence of the definition, to determine the rank of a cubic (and

actually an arbitrary) function in arbitrary characteristic in the sense of Definition[3.5]

A method to determine rank(f): Let f : ), — [F,,. Recall that the rank of f is the
smallest nonnegative integer r such that there exists an [F-linear subspace W C F}
and its complement W C > of dimension n — r satisfying f(x1 + x2) = f(21) for

every 1 € W and z; € W, where 21 + 25 = x € FZ. Let By = {1, aa,..., a, } be
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a basis of W over F, and By = {a;41, @42, . . ., o, } be a basis of W over [F,, where
. . / / ! !
B={ay,as,...,0p,Qpy1,...,0,} is abasis of F}. Let By, = {a;, ay, ..., a,} and
I ! / ! .
B = {®, 11,49, .., a, | be the dual bases of By, and Byy, respectively where
!

B ={aj,ap,...,0,,qpyy, ..., q,} is a basis of IF. Notice that F}; = (B) = (B,

where B and B’ are the dual bases of ]F;L over IF,,. Hence, x; and x5 can be written as

1 =T (aqyw) + T (aga) + -+ + . Ted (o)
and
i) = Ozr_’_lTI'Zn (OZ;+1$) + OzH_QTan (O[;,+21‘> + e _|_ oznTrgn (a;ll»)

Using the dual bases B and B’, we can determine r and provide a corresponding

F,-linear subspace W = (Byy) using Algorithm 1}

Algorithm 1 Find rank(f) = r

. ’ ’ ’ ’
Require: n, f, B = {a1,as,...,0,}, B ={a},ay,..., 0, }, F}.
Ensure: r.

1: forr:=1ton—1 do

2: for z in ) do

3: Compute 1 = oy Tr2" () ) + o Tr? (o) + - - - + o, TrE (a,)

4 Compute x5 = ozr+1Tr£n(oz;Hx)+ar+2Tr£n(a;+2x)+- : -+oznTr§n(a;la:)
5: if f(z1 4+ 22)! = f(z1) then

6: goto next r

7: end if

8: end for

9: return r

10: end for

11: return n

In the following example we give a cubic plateaued function f with rank(f) < n and

a corresponding F,-linear subspace 1V of dimension rank( f) when p is an odd prime.

Example 3.9. Let f(z) = T3 (Ca? 4 Ca® 4 (22 + (222'3), where F3, = (¢) with
3 +2C+1=0. Then, f is 1-plateaued with rank(f) = 2 and W = ({(, *}).
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CHAPTER 4

ON THE FUNCTIONS WITH FOUR-VALUED ABSOLUTE
WALSH SPECTRUM

The main motivation of this chapter is about the converse of Corollary [3.6]in Subsec-
tion[3.2.2] As this shows a drastic change for s = 0 and an integer s > 1 cases, by
MAGMA [3] we found a great number of concrete examples which show the failure
of the converse of Corollary [3.6/for s > 1 (notice that its converse is true for s = 0).
Then, we tried to study these examples in a systematic way. As a plateaued (but not
bent) function has exactly two distinct values (one being zero) in its absolute Walsh
spectrum, then it is natural to try such examples first with three distinct values (one
being zero). We observe that it is impossible for many cases to find a such example
with exactly three distinct values (one being zero) in its absolute Walsh spectrum. Fi-
nally we search a such example with exactly four distinct values (one being zero), and
find several examples in characteristics 2 and 3. The results presented in this chapter

appear in [64]].

4.1 Non-Existence of Functions with Three-valued Absolute Walsh Spectrum

This section shows the non-existence of a function f such that Sy(f) = p**** with
1 < s < n and its absolute Walsh transform takes exactly three distinct values, which
are in {0, c1p™, cop™} with 0 < ¢; < p® < ¢y positive integers. In the case of s = 0,

the non-existence of a such function follows readily from Theorem 3.2}

We first need the following lemma. Recall that So(f) = p™ and Si(f) = p*" for

any function f. The even moments S;(f) for i = 0,1,2 allow us to compute the
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multiplicity of each value of the absolute Walsh transforms of f.

Lemma 4.1. Let f : F,» — I, and s be an integer with 1 < s < n. Assume that
there exists a function f such that |x;(w)|* € {0, c1p™, cap™} for every w € Fpn, all
of three appear and cy,cy are positive integers with 0 < ¢; < p* < co, and also
So(f) = p*"*=. Then |X;(w)|? takes ay times the value 0, ay times the value c,p™ and
as times the value cop™, where the values ag = p"™* — a; — as,
PP — 1)

ca(cog — 1)

p"(p® — c2)

4.1
01(61 - 02) 1)

a, = and ay =

are positive integers with 0 < ¢; < p® < ca.

Proof. As So(f) = p", Si(f) = p* and Sy(f) = p*>***, we have the following

equations, respectively:

ap+ay +ay =p",
aicy +agey = pr,

a1c3 + agcs = pte.

Then, by solving the above linear equation system, we obtain the desired positive

integers in (.. O
Recall that for a prime p, the p-adic valuation of a positive integer c is the highest
power v such that p* divides ¢, which is denoted by v,(c) = v.

Theorem 4.1. Let f : F,n — ), and s be an integer with 1 < s < n. There does not

exist a function f such that

|@(w)|2 € {07 Clpnv CQpn}

for every w € Fpn, all of three appear and c, ¢z are positive integers with 0 < ¢; <

p* < c9, and also Sy(f) = p>nte.

Proof. Assume that there exists a such function f. By Lemma[4.1] the values

P (p° — c2)
1 (01 - 02)

P (p® — )

and a, =
? 02(02 - 01)

ay =
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are two positive integers with 0 < ¢; < p® < cy. Let v, be p-adic valuation. It is
obvious that v,(c2) > 0 and v,(c;) > 0. Assume that there exists an integer ¢ with

0 <i < s — 1suchthatv,(c;) > iandv,(c2) > i. We now show

UP(CQ) >0+ 17
vp(c1) > i+ 1.

4.2)

Assume that v,(c2) = i. The positive integer a, can be rewritten as

pn (p5;61>
g = 57—
(#) @=e)

since v,(p°—c1) > iand vy(c2) = i. Asboth & and }% are integers and ged(p, %) =

1, we have ;7% 7%. Then, ¢ | (p° — ¢1) and it implies c; < p® — ¢;, which is a

T

contradiction with 0 < ¢; < p® < ¢o. Hence, v,(c2) > i + 1.

To prove the second inequality in (4.2)), assume that v,(¢;) = i. We have v,(ca—c¢1) =

min{v,(c2), v,(c1)} = 4, which implies

ged (62]; Cl,p) — 1. 4.3)

Notice that v,(p® — ¢;) > i by assumption. Then the positive integer a, can be

n (p’—c1
p(252)
co—cCq

Thus, ”p;fl \ ’% by (4.3). We conclude ¢, — ¢; < p® — ¢4, that is, ¢co < p®, which

rewritten as

a9 =

is a contradiction with 0 < ¢; < p® < ¢o. Hence, v,(c;) > ¢ + 1. By using (4.2),
we have v,(c2) > s and v,(c1) > s, which is a contradiction with 0 < ¢; < p® < co.

Thus, we conclude the non-existence of a such function f. O]

4.2 A new Class of Functions with Four-valued Absolute Walsh Spectrum

This section is concerned with a function f such that So(f) = PPt with1 < s <
n and its absolute Walsh transform takes exactly four distinct values, which are in
{0, c1p™, cop™, e3p™} with 0 < ¢; < ¢ < c3. We present some experimental results

about such functions by MAGMA [3]] in characteristics 2 and 3.
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We start by introducing the notion of WT 4-valued with type-s Boolean functions for

a nonempty class of such functions in characteristic 2.

Definition 4.1. Let f be a Boolean function from Fy. to 5, and both n and s be odd
(or even) integers with 1 < s < n — 4. Then, f is called WT 4-valued with type-s if
(7 (w)|?* has exactly four values, which are in {0, 277572 4 % 27572 9 x 27572} for

every w € Fon.

The following theorem allows us to obtain an infinite class of WT 4-valued with
type-s functions in the sense of Definition [4.1] starting from one such function with a

smaller type parameter.

Theorem 4.2. Let f be a WT 4-valued with type-s Boolean function on Fon and bothn
and s be integers with 1 < s < n. Let m be a positive integer. There exists a Boolean
function h on Fan X Fom defined as h(z,y) = f(x) for x € Fon and y € Fom. Then,

h is WT 4-valued with type-s' Boolean on Fyn+m, where s = m + s.

Proof. For (w,v) € Fan X Faom, the Walsh transform X, (w, v) of h from Fon+m to Fy
is given by

— h(x, —Tr2" (wz)-Tr2"™ (v
Xh(W,’U) — Z Z 52( Y) 5 (wz) 5 (vy)

:L‘EFQTL yEFQm

2)—Tr2" (wa —Te2™ (v me——
:ng() 2()252 Q(y)ZQXf(w>’

LL’EFQn yEanL
where in the second equality we used h(z,y) = f(z) for z € Fon and y € Fom.

Hence, the proof is complete. 0

We now make a preliminary but useful remark, which can be used to characterize the
WT 4-valued with type-s functions. For every integers A, A, A3 and every nonneg-
ative integers uy, us, us, ug, we have

> (RG@)F = A)™ (RF@)F = 42)™ (IKG () — A3)™ [ @) > 0.
WEFn
In particular, for any integers A, Ay, A3, the following equation holds

Y (RGP = A1) (IG@)P = A2) (IG(@)° = As) [XG (@) =

wE]Fpn

Sa(f) = Ss(f) (A1 + Ay + A3) + Sa(f)(A1As + AsAs + A1 As) — S1(f) A1 Az As.
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Theorem 4.3. Let f : Fyn — Fy be a Boolean function such that Sy(f) = 237+
and S3(f) = 2'"75173. Then f is WT 4-valued with type-1 if and only if S;(f) =
2°n=5571.

Proof. For Ay =21 Ay = 4% 21 A3 = 9% 27!, and by substituting the S;(f)

values into above equation, we get

Y (RGP =2 (RGP = 452771 (G @) —9%2°7) [\ (w)[?

UJEIFpn

= 2775571 — 276173 x 14 + 2577149 — 257336 = (),

that is, [x7(w)[* € {0,271, 45271 9%2""1} for every w € Fan. It is clear that all of
these values appear. Indeed, otherwise, modifying the argument above in this proof

we obtain the contradiction that S,(f) # 2°"°571. This completes the proof. O

By MAGMA [5], we obtain several concrete examples of a WT 4-valued with type-1
Boolean function f such that Sy(f) = 23" and S3(f) = 2975173, where n = 5

and s = 1.

Example 4.1. The function f given in Example [3.1|is WT 4-valued with type-1, i.e.,
7 (w)|* € {0,16, 64,144} for every w € Fos. Moreover it satisfies Sa(f) = 2'% and
Sy(f) = 215173,

Recall that Sy(f) = p™ and Si(f) = p*" for any function f. Assume that f is a
WT 4-valued with type-1 Boolean function such that So(f) = 23! and S3(f) =
24n=5173. Then, the even moments S;(f) fori = 0,1,2, 3 of f allow us to compute

the multiplicity of each value of the absolute Walsh transform of f.

Lemma 4.2. Let f be a WT 4-valued with type-1 Boolean function on Fan, where n
is an odd integer. Assume that So(f) = 23" and S3(f) = 2*"~5173. Then, |X;(w)|?

takes ay times the value 0, ay times the value 2", a, times the value 4 x 2"~ and

as times the value 9 x 2"1, where ag = 2" — 26 % 2" 5, a; = 15 %2775, qy =

10 * 275, and a3 = 2"~° are positive integers.

Proof. As So(f) =27, S1(f) = 22, Sa(f) = 23" and S3(f) = 25173, we have
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the following four equations, respectively:

ap+ay +ax+as =27,

ai + 4ay + 9as = it

a, + 16as + 8lag = 23,

ay + 64ay + 729a; = 2" 2173,

Thus, solving the above linear equation system, we get the desired positive integers.

]

The sequence of the Walsh power moments of a WT 4-valued with type-1 Boolean

function follows from Lemma

Corollary 4.1. Let f be a WT 4-valued with type-1 Boolean function on Fan. Assume
that Sy(f) = 23" and Ss(f) = 21"=°173. Then for every integer i > 2, we get

Z ’X |21_2n (i+1)+i— 4(2 2i— 1(15+91)+5)

LUEFQR

Proof. By Lemma.2] for every integer i > 2, we get

Z X7 (W) = (2" — 26 % 2"7°) % 0

w€Fon

155 2070 % 2001 4 10 % 2775 5 47 5 21071 4 9070 g 2101

= 217D (15 % 2775 4 10 % 2775 % 4% 4 2775 « 97)

= Qnli+)+i=4(9-2i-1(15 4 9i) 4 5).
The proof is complete. U
Remark 4.1. Let f be a WT 4-valued with type-1 Boolean function on Fy.. Assume
that Sy(f) = 23" and S3(f) = 2"~5173. For n = 5, 7, the Walsh power moments

S;(f) are given in
2n(i+l)+i—1 < Sz(f) < 2n(i+1)+2(i—1)

fori = 4,...,17and in 2"0FVF20-1) < G (f) < 2nHDF3(=D) for = 18, ..., 100000.
By MAGMA [5], we obtain several concrete examples of a WT 4-valued with type-2

Boolean function f such that Sy(f) = 232 and S3(f) = 272109, where n is an

even integer for s = 2.
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Example 4.2. Let f(z) = Tv2 (Ca + ('8227), where Fie = () with (° 4+ ¢*+ (3 +
C+1=0. Then f is WT 4-valued with type-2, i.e., |\;(w)|* € {0, 64,256,576} for
every w € Fas. Moreover it satisfies So(f) = 220 and Ss(f) = 2%2109.

Assume that f is a WT 4-valued with type-2 Boolean function such that Sy(f) =
2372 and S3(f) = 29"72109. Then, the even moments S;(f) fori = 0,1,2,3 of f

allow us to compute the multiplicity of each value of the absolute Walsh transform of

£l

Lemma 4.3. Let f be a WT 4-valued with type-2 Boolean function on Fon, where n is
an even integer. Assume that Ss(f) = 23" and S3(f) = 2"2109. Then,

= 2
Xf(w)]

takes ag times the value 0, ay times the value 2", ay times the value 4% 2™ and as times
the value 9 x 2", where ay = 2" — 18 x 2% q; = 15 % 2" 5, ay = 2% 2"7° and

as = 2"75 are positive integers.

Proof. Notice that we have So(f) = 27, S1(f) = 22", So(f) = 2% and S5(f) =

247=2109. Then we have the following four equations, respectively:

ap+ a1+ as + as = 2",
ay + 4as 4+ 9as = 2",
a; + 16as + 8lag = 2"*2,
a; + 64ay + 729a; = 2"2109.

Thus, solving the above linear equation system, we obtain these integers. [

The sequence of the Walsh power moments of a WT 4-valued with type-2 Boolean

function follows from Lemma 431

Corollary 4.2. Let f be a WT 4-valued with type-2 Boolean function on Fon. Assume
that So(f) = 2372 and S3(f) = 22109. Then for every integer i > 2, we get

Sz(f) _ Z |)/<}(w)|2l _ 2n(z’+1)+2i—4(2—2i—1(15+9i> + 1)

UJEFQTL
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Proof. By Lemma[4.3] for every integer i > 2, we have

S = 3 W) = (2" = 18527 %) £ 0

w€Fon

H15 % 2775 % 20 1D 5 QM0 5 4 5 QM | INTD y Gy Qin

— 2n(i+1)+2i—4(2—2i—1(15 4 9z> 4 1)

The proof is complete. [

Below we introduce the notion of WT 4-valued with type-s functions in odd charac-

teristic, which is a non-empty class of such functions.

Definition 4.2. Let f be a function from I~ to F,, and both n and s be integers
with 1 < s < n — 2, where p = 3. Then, f is called WT 4-valued with type-s
if |x7(w)|* has exactly four values, which are in {0, p" ™~ 4p" =1 7p"+s-1} for

every w € [Fpn.

By MAGMA [5], we obtain several concrete examples of a WT 4-valued with type-1
function f such that Sy(f) = p®> ™! and Ss(f) = 47p*"~1, where p = 3.

Example 4.3. The function [ given in Example|3.2]is the WT 4-valued with type-1,
e., |[X;(w)[* € {0,27,108, 189} for every w € Fss. Moreover it satisfies Sa(f) = 3'°
and S3(f) = 3147.

Assume that f is a WT 4-valued with type-1 function such that Sy(f) = p***! and
Ss(f) = 47p*™!, where p = 3. The even moments S;(f) fori = 0,1,2, 3 of f allow

us to compute the multiplicity of each value of its absolute Walsh transform.

Lemma 4.4. Let f be a WT 4-valued with type-1 function from . to IF,, where
p = 3. Assume that Sa(f) = p*" ™' and S3(f) = p*" '47. Then |X;(w)|? takes ag
times the value 0, ay times the value p", as times the value 4p™ and ag times the value

n—3

Tp", where ag = p" — 18p" 3, a; = 16p" 3, ay = p" 3 and a3 = p" 3 are positive

integers.

Proof. As So(f) = p™ Si(f) = p*™, Sa(f) = p* ™ and S3(f) = 47p*™"~', we have

98



the following four equations, respectively:

apt a1+ ax+as =p",
a1 + 4as + Tas =p",
a; + 16as + 49a; = p"t!
a; + 64as + 343a3 = 47p" L.

Then solving the above linear equation system, we get these integers. [

The sequence of the Walsh power moments of a WT 4-valued with type-1 function

follows from Lemma

Corollary 4.3. Let f be a WT 4-valued with type-1 function from F,» to F,, where
p = 3. Assume that So(f) = p>™* and S3(f) = p™~'47. Then for every integer
1> 2,

Z |Xf ‘27,: nl+1)*3<16+4z+71>

wE]Fpn

Proof. By Lemma4.4] for every integer i > 2,

Z |Xf |21 r n _ 18pn—3)0+ 16pn 3pnz +pn 342pm +pn—37zpnz

w€Fon

= pnHU=3(16 + 47 + 77).
O

Remark 4.2. Let f be a WT 4-valued with type-1 function from F,. to F,. As-
sume that Sy(f) = p***! and S3(f) = p'~'47. For p = 3 and n = 3, we have
prHF—1 < G (f) < pr+D+2=2 for = 3, ..., 100000.

This chapter showed the non-existence of a function whose absolute Walsh trans-
form has exactly three distinct values (one being zero). Additionally, we introduced
the notion of WT 4-valued with type-s functions and presented explicit examples in

characteristics 2 and 3.

99






CHAPTER 5

PARTIALLY BENT AND PLATEAUED FUNCTIONS OVER Fg
AND THEIR CHARACTERIZATIONS

Bent functions over Z, were introduced by Rothaus [72] in the 1970s and then were
extended to the residue class ring Zj, for any positive integer £ by Kumar et.al. (1985)
[46]. In 1991, perfect nonlinear functions over the residue class ring Z;, for any posi-
tive integer k£ were introduced by Nyberg [67]. It is worth mentioning that generalized
bent and perfect nonlinear functions over Z;, are not equivalent for a positive integer
k, in general. Nyberg [67]], over Z;, showed that any perfect nonlinear function is a
generalized bent function for any positive integer k, but the converse is true only if k&
is a prime number. In 1993, Carlet [12] introduced partially bent functions over Z,,
and then they were extended in [25] to the finite field Z,, for any prime number p. As
an extension of partially bent, Zheng and Zhang (1999) introduced in [78] plateaued
functions over Z,, and then they were extended to the finite field Z, and studied in
[23L155]. In 1997, Coulter and Matthews redefined in [28] bent functions over any

finite field IF,, with ¢ a prime power.

The aim of this chapter is to study partially bent and plateaued functions over any
finite field IF,, with ¢ a prime power. We first redefine partially bent and plateaued
functions over [F,, which rely on the concept of the Walsh transform in terms of
canonical additive characters of IF,. We give an explicit example of a 4-ary plateaued,
but not vectorial plateaued Boolean function. We next provide a large number of
characterizations of g-ary partially bent and g-ary plateaued functions by means of
their Walsh power moments, derivatives and autocorrelation functions. Furthermore,

we emphasize that g-ary bent and ¢-ary partially bent are g-ary plateaued. We finally
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introduce the notion of a g-ary plateaued-type function associated with its Walsh-type

transform.

The presented results in this chapter appear in [39, 65]].

5.1 g¢-Ary Partially Bent and ¢-Ary Plateaued Functions over [,

This section revisits the notions of partially bent and plateaued functions over I,

where ¢ = p™ for a prime p and an integer m > 1.

The notions of generalized bent and perfect nonlinear functions over Z; were rede-
fined in [28] over any finite field IF,. These notions rely on the concept of the Walsh

transform in terms of canonical additive character of I, given in (2.7).

Definition 5.1. 28] Let f be a function from F} to F,. Then f is called g-ary bent if
X7(w)]* = ¢" forall w € F?, and f is called perfect nonlinear if the derivative D, f
(see Deﬁnition is balanced for all nonzero a € F}.

We can redefine partially bent and plateaued functions over I, which rely on the

concept of the Walsh transform in terms of canonical additive character of [F, given
in (2.7).

Definition 5.2. Let f be a function from F} to F,. Then

e f is called q-ary partially bent if the derivative D, f is either balanced or con-

stant for all a € ]FZ.

e f is called g-ary plateaued if its absolute Walsh transform takes only one
nonzero value u (also possibly the value 0), where p is called the amplitude of

plateaued f.

For any n-variable g-ary plateaued function, there exists a nonzero value . such that
u? = q", where r > n, since NXAf < ¢". Then the squared absolute Walsh transform of
g-ary plateaued is divisible by ¢", and hence there exists an integer s with 0 < s < n
such that 42 = ¢"*. In the light of the above arguments, f is said to be g-ary s-

plateaued if
X7 (w)* € {0,¢""}
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forall w € IFZ. From now on, s is an integer with 0 < s < n in this chapter unless

otherwise stated.

The multiplicity of the absolute Walsh coefficient of a g-ary plateaued function fol-

lows from the Parseval identity (see [55]] for the p-ary case).

Lemma 5.1. Let f : F} — F, be s-plateaued. Then for w € Fy, |Xj(w)|* takes ¢"~*

times the value ¢"* and ¢ — ¢"~* times the value 0.

Proof. Recall that Nz = #{w € F! : |xj(w)|* = ¢"**} for s-plateaued f. Then,
DG =" N
weFy

and hence, ./\/XAf = ¢"° by the Parseval identity. Since #]Fg = ¢", then we have
#{w € F : |X7(w)]* = 0} = ¢" — ¢"~*. Hence, the result follows. O

By MAGMA [5], we obtain several g-ary plateaued functions, which show their ex-

istence.

Example 5.1. Let ¢ = 4 and n = 3. The function fi(z) = Tr} (€22 + £23) is the
4-ary 0-plateaued function and fs(x) = Trf (£323) is the 4-ary 1-plateaued function,
where %y = (&) with & + &2 + £ + (2 = 0 for F, = (C).

Remark 5.1. It is worth noting that, over I, any perfect nonlinear function is g-ary

partially bent. Moreover, the following theorem shows that, over I, the notion of

g-ary bent functions and the notion of perfect nonlinear functions are equivalent.

Theorem S.1. (/28 Theorem 2.3]) Let f : Fy — F,. Then f is q-ary bent if and only
if [ is perfect nonlinear. Namely, f is q-ary bent if and only if the derivative D, [ is

balanced for all nonzero a € Fy.

The following follows readily from Theorem|5.1]
Corollary 5.1. Let f : ¥y — F,. Then f is g-ary bent if and only if As(a) = 0 for

all nonzero a € IFZ.

Proof. By Theorem[5.1] f is g-ary bent if and only if the derivative D, f is balanced;
equivalently, Ay(a) = 0 for all nonzero a € . O]
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In [28], by choosing an m-dimensional basis of I, with ¢ = p™, we have that a g-ary
bent function from Fy to I, is equivalent to a vectorial p-ary bent function from F "

m
to IFp.

The following example shows that there exists a 4-ary plateaued function from [F? to

IF4, which is not vectorial plateaued from F$ to F3.

Example 5.2. Let ¢ = 4 and n = 3 where ¢ = p™ for p = 2 and m = 2. The
function f(z) = Trji3 (E*a™ + 42"+ £52°) is 4-ary 1-plateaued where %, = (€) with
E+&+&+7% = 0for Fy, = (7). Then, its component function fy(z) = Try(f(x)) is
2-plateaued Boolean function from TS to Fy. However; the other component functions
fo(x) = Try(vf(z)) and f.2(z) = Try(v2 f(z)) are not plateaued Boolean functions
from FS to F since | X7, (w)|* and | X/f; (w)|? have exactly four values, which are in
{0,64, 256,576} for every w € Fas. Hence, f is not vectorial plateaued Boolean

function from TS to F2.

In view of Example we can say that a g-ary plateaued function from Fy to [,
with its Walsh transform may not correspond to vectorial p-ary plateaued function
from Fgm to IF;”‘ with the Walsh transform of its component functions for some cases,

where ¢ = p™ for a prime p and an integer m > 1.

Remark 5.2. The notion of g-ary plateaued functions is not equivalent to the notion
of vectorial p-ary plateaued functions in general, where ¢ = p" for a prime p and an
integer m > 1. This is the main reason for dealing with the notion of g-ary plateaued

functions in this chapter.

We should remark that the characterizations of g-ary partially bent and g-ary plateaued
functions given in Section[5.2]and Section[5.3] respectively, may not be given for vec-

torial p-ary functions, where ¢ = p™ for a prime p and an integer m > 1.

5.2 Characterizations of ¢-Ary Partially Bent Functions over [,

In this section, we characterize g-ary partially bent functions by means of their Walsh
power moments, derivatives and autocorrelation functions. Several characterizations

of these functions are presented, although some of them are interrelated, since they
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can provide useful information about the structure of these functions. We also high-

light that g-ary bent and g-ary partially bent functions are g-ary plateaued functions.

We begin with the significant properties of linear translator of a ¢g-ary function (see

Definition [2.6).

Lemma 5.2. Let f : ) — F, and let Ly be the set of linear translators of f. Let

a € Ly. Then we have the following.

i.) f(z +ua) = f(x) + f(ua) — f(0) forall x € F} and u € F,,
i1.) Ly is a linear subspace of Fy and it is called a linear space of f.

iti.) l(z) = f(x) — f(0) is a linear function on L.

Proof. i.) For two values of = (one of which is 0), by Definition [2.6 obviously we
have f(x +ua) — f(z) = f(ua) — f(0) forall v € F and u € F,.

ii.) Firstly, the all-zero vector 0 is a linear translator of any function f, thatis, 0 € Ly.

Next, let oy € L and ¢ € IF,,. For all u € I, by (i)

f(@ + ulear)) — f(x) =

flz+uoqg +ulc—)ay) — f(z+uo) + flz+ua) — f(z) =

flu(e = 1)an) = f(0) + f(uar) — f(0)
does not depend on z € [y, thatis, ca; € Ly where in the last equality we used that
flz4+uas+u(c—1)ag) — f(x+uay) = f(u(c—1)ay)— f(0) by setting x = x+ua;
and v = u(c — 1) in (i). Lastly, let oy, a2 € L. Forall z € F, and u € F,,

flx+ulong +a2)) = fx+ua)+ fluaz) — £(0)
= f(z) + f(uar) — f(0) + f(uaz) — f(0) G.1)
= f(2) + flulon + a2)) = f(0),
where in the last equality we used that f(ua; + uas) = f(uay) + f(uaz) — f(0) by
setting = = uay by (i). Hence, a; + oo € Ly.

iii.) Let aq, ap € Ly. By (5.1)), for all u € IF,, we have
flulon + az)) = f(0) = f(uar) — f(0) + f(uaz) — f(0),
that is, I(u(oq + o)) = l(uar) + [(uas). The proof is complete. O
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Remark 5.3. The notion of g-ary partially bent functions can be revisited as follows.
A function f with linear space L is called g-ary partially bent if the derivative D, f
is balanced for all @ € F} \ L;. Itis obvious that the derivative D, f is constant for

all a € Ly by Definition [2.6]

Remark 5.4. Any g-ary bent is the g-ary partially bent with £, = {0} since g-ary bent
functions have balanced derivatives D, f for all nonzero a € Fy (see Theorem .

Proposition 5.1. Let f : F; — F, with linear space Ly and let dim(Ly) = s. If f is
g-ary partially bent, then |\ (w)|* € {0,¢""*} for all w € F7.

Proof. Assume that f is g-ary partially bent, that is, the derivative D, f is balanced
for all a € Ty \ L;. By Proposition 2.2 (v), for all w € F
G =Arw) =D Apa)x(w-a)

aEFg

=3 Y xDuf@)xw-a)+ 3 Y X(Duf(2))X(w - a)

acLy z€Fy ag Ly z€Fy
where the latter is zero since D, f is balanced for all a € Fy \ £;. By Lemma([5.2(7),
if a € Ly, then f(x +a) — f(x) = f(a) — f(0) forall z € F}. Then, for all w € F}

@) =Y > x(fla) = f(0) —w-a)

acLly zelfp
— " > x(f(a) = f(0) —w-a)
acLly
) g if f(a) —w-a= f(0)on Ly,
- 0, otherwise

where we used that f(a) — f(0) — w - a is linear on L. Hence, | (w)[* € {0, ¢"**}
forallw € Fy. [

The identity involving the fourth power moment of the Walsh transform and the
second-order derivative of a function was constituted for Boolean and p-ary functions

(see, e.g., [[13L155]]), which can also be given for g-ary functions.

Proposition 5.2. Let f : Fj) — F,. Then

S(f)=q" > x(DDypf(x)). (52)

a,b,xEFy
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Proof. Recall that |z|* = 2?z% for z € C. Then the left hand-side of (5.2) is

> x(f@) = fla)+ f) = f(0) Y X(w- (x—a+b—c))

z,a,b,ceFy weFy
= ¢" Y x(f(@) = fa)+ f(0) = f(x —a+b))
mhmEFg
Trgn(—w(:c—a—l—b—c)) "ifc=x—a+b,

since Zwe]Fg » = ‘
0 otherwise.

Hence, since (a,b,z) — (z 4 a,x + a + b, x) is a permutation of (F7)?, then (5.2)
holds. [

Obviously, the link given in Proposition can be extended to a g-ary function as

follows.

Proposition 5.3. Let f : F) — F,. Then,

S 1Ar@) = > X(DaDsf()). (5.3)

acky a,b,z€Fy
Proof. Since |z|* = 2% for z € C, the left hand side of (5.3) is

DY X(Daf(1) Y X(Paf(2) = D X(Daf(b) — Daf(x))

acky be]Fg z€Fy a,b,weﬂ“g

= 3 (DD (),

a,bxely

where in the last equality we used the (bijective) change of variable b — b+ z. [

The following is a direct consequence of Propositions[5.2]and [5.3]

Proposition 5.4. Let f : Fj — F,. Then

So(f) =d" Y 185(a)f.

acky
The g-ary partially bent functions can be characterized in terms of the fourth power

moment of its Walsh transform only.

Theorem 5.2. Let f : F} — I, with linear space Ly and let dim(Ly) = s. Then, f

is g-ary partially bent if and only if So(f) = ¢*" 5.
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Proof. Assume that Sy(f) = ¢*"**. Then by Proposition [5.4] we have
> A (@) = gt (5.4)
acky
By the definition of L, the derivative D, f at point a € L is constant. Then, since
|2|* = 2z for 2 € C, we have
Yo IA@P =)0 Y x(Duf(@) = Duf(y) = Y a" =0 (55
aEEf aELf x,yEFg aEﬁf
Combining || and (5.5), we have Zaﬂf |At(a)|* = 0, equivalently, As(a) = 0,
that is, D, f is balanced for all a ¢ L. Hence, f is g-ary partially bent. The other

direction follows from Proposition [5.1} O

We are ready to give the following natural consequence over [F,.

Proposition 5.5. Let f : Fy — [, with linear space Ly and let dim(Ly) = s where
s is an integer with 0 < s < n. Then, f is q-ary partially bent if and only if f is q-ary
s-plateaued. In particular, f is q-ary bent if and only if f is q-ary O-plateaued.

Proof. Assume that f is g-ary s-plateaued. Then by Lemma we have Sy(f) =
¢>""* and hence, by Theorem f is g-ary partially bent. The other direction follows
readily from Proposition [5.1] In particular, by Remark [5.4] the second statement

follows from the first statement. O]

Remark 5.5. Notice that the second statement of Proposition [5.5] follows also from
the Parseval identity, which implies that ¢g-ary plateaued is g-ary bent if and only if its

absolute Walsh transform never takes the value 0.

Remark 5.6. By Proposition [5.5] characterizations of a g-ary plateaued function are

valid for any g-ary bent and g-ary partially bent.

In the light of Propositions [5.Iand [5.5] the following can be identified.

Remark 5.7. Let f : F} — F, with linear space £y and let dim(L;) = s. Then, f is
g-ary partially bent if and only if |X7(w)[* € {0, ¢"**} for all w € F}. Here, we can
say that f is ¢g-ary s-partially bent.

The multiplicity of the absolute Walsh coefficient of a g-ary partially bent function is

as follows (see Lemma|5.1).
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Lemma 5.3. Let f : F;) — I, be a q-ary partially bent function with linear space L
and let dim(Ly) = s. Then for w € Fy, [X7(w)|? takes q"~* times the value q"** and

q" — q" % times the value 0.

Remark 5.8. The set of g-ary bent functions is a proper subset of the set of g-ary
partially bent functions. Namely, a g-ary partially bent function with nonzero lin-
ear translators is not a g-ary bent function. Similarly, the set of g-ary partially bent
functions is a proper subset of the set of g-ary plateaued functions. Namely, g-ary

s-plateaued functions with dim(Lf) < s are not g-ary partially bent functions.

The sequence of the Walsh power moments of a g-ary partially bent function is a

simple geometric sequence, which follows directly from Lemma[5.3]

Corollary 5.2. Let [ : Fj — F, be g-ary partially bent with linear space L and let
dim(Ly) = s. Then for every positive integer i, we have S;(f) = ¢"+D+s(=1 gnd
for all integers i > 1 and j > 2, S;(f)S;(f) = Si+1(f)Sj—1(f)-

Proof. By Lemma for all positive integers i, we have S;(f) = ¢"*(¢"™*)" =
¢t D+s6=1)  Clearly, the following

Si(f)Sj(f) = qn(i+1)+s(i—1)qn(j+1)+s(j—1) — qn(i+j+2)+s(i+j—2) and
Si1(£)S;o1(f) = qnuADtsignits(i=2) — gniti+2)+s(i+i-2)
are equal forall = > 1 and 5 > 2. Hence, the result follows. O

We now give a bound stating the trade-off between the number of the nonzero values
of the autocorrelation function and the size of the Walsh support of g-ary functions.
Carlet [12] gave this bound for every Boolean function, and it is satisfied by Boolean
partially bent functions (for the p-ary case, see [23]). Recall that Supp(x;) = {w €
Fr | Xf(w) # 0} and Nz = #Supp(xy). We denote by Supp(Ay) the set of
elements a € Iﬁ‘g such that D, f is unbalanced, i.e., the autocorrelation of f at point a

1S nonzero:
Supp(Ay) :={a € Fy [ Ay(a) # 0} (5.6)
Denote by N, the size of Supp(Ay).
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Theorem 5.3. Let f : F) — F,. Then
q" < Na,; * Ny, (5.7)

with an equality if and only if for all b € 7, the derivative D, [ is either balanced or

constant, that is, [ is q-ary partially bent.

Proof. By Proposition [2.2| (vi), |x;(0)]* = Zaele; Ag(a). Then by 1} we have
1X7(0)|* < ¢"Na,. Notice that N, is invariant if f(x) is replaced with f(z) —w - x

forallw e F e and hence,

X7 (W)|* < ¢"Na, . (5.8)

Then, since 3~z X7 (w)[* < maxyern (|X7(0)[*) N, by i and using the Parse-

val identity, we have

" < max(|x;(b)*)Ng < ¢"Na, * Ny (5.9)

beF?

This completes the proof of the first assertion.

For the equality case, assume that the bound holds. Then implies that
maxpepn (X7 (0)]*) Ny = ¢*". By the Parseval identity, for allw € Supp(X;) we have
X7 (w)[* = maxpern (X5 (b)]?), that is, there exists an integer s such that [\ (w)[* =
¢""* for all w € Supp(Xx7), i.e., f is s-plateaued. By Lemma Ng = ¢"°, and

hence, Na, = ¢° by (5.7). For all w € Supp(Xy), by Proposition(v), we have

G@PP = A@x(w:a)

acky
= > Aaxw-a)+ > Apa)X(w-a),
a€Supp(Ay) agSupp(Ay)

where the latter is zero by (5.6). Hence, for all w € Supp ().

> D x(Daf(r) —w-a) =g,

a€Supp(Ay) z€Fy

Then for all a € Supp(Ay), we have Zzngb X(Duf(x) —w-a) = ¢* forall w €
Supp(Xy), that is, Do f(z) = w - a for all z € F}, i.e., D, f is constant. Notice that
D, f is balanced for all « ¢ Supp(Ay) by (5.6). Hence, f is g-ary partially bent.
Conversely, assume that f is g-ary partially bent. Then, Supp(Ay) is the set of linear
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translators of f and there exists an integer s such that N'a ;=4 that is, the dimension
of linear space of f is equal to s. By Lemma we have NXAf = ¢"°. Hence, the
bound (5.7)) holds. O

Remark 5.9. A function f is g-ary partially bent if and only if |A¢(a)| € {0,¢"} for
alla € Fy.

We now give a powerful characterization of g-ary partially bent functions by means

of their second-order derivatives (see [21] for a Boolean bent function).

Theorem 5.4. Let f : F} — I, with linear space Ly and let dim(Ly) = s. Set
Op(x) = > x(DyDuf(x))
a,bely
forall x € Fyn. Then, f is q-ary partially bent if and only if 0¢(z) = ¢"** for all
z € Fy.

Proof. Putf) = ¢"**. For all v € F}, 0¢(x) = 0 if and only if for all v € [F},
Y X(fla+b—w) = fla) = f(b) = Ox(~f(x))
a,bely
(by the (bijective) change of variables: a — a — x and b — b — x); equivalently, for
all z € Fy

> X)X (0)xy( — a = b) = ox;(),

where we defined g(y) := f(—y) for all y € F}. Equivalently, using the convolution
product (see Definition , forall z € Fyy

(X7 ® X7 @ xo) (x) = OX5 (). (5.10)
By Theorem the Fourier transform of left-hand side of (5.10) is X:f(w) X:f(w)@(w)
for all w € . Notice that for all w € F7, Xﬁf(w) = X;(—w) by Proposition [2.2{and
Xg(w) = X5(—w) since g(y) = f(—y) forall y € Fy. By Lemma[2.4] for all = € Fy,
(5.10) holds if and only if for all w € Fy

X7 (W) X7 (@)X7 () = 0x5(w)-
Therefore, for 0y = ¢"**, O5(z) = 0 for all x € F} if and only if [xj(w)|* € {0,60}

forallw € Fy, that is, f is g-ary partially bent. [
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It is worth noting that Theorem [5.4] approves that any g-ary quadratic function is a
g-ary partially bent function since the second-order derivative of quadratic function is

constant.

The following seems to be more practical than Theorem [5.4]

Theorem 5.5. Let f : F} — [, with linear space Ly and let dim(Ly) = s. Then, we
have
2n+s < Z DbDaf )
a,bxely

with an equality if and only if f is q-ary partially bent.

Proof. Because of the fact that D, f is constant for all a € L, we have
> D xX(DeDaf(x)) = ¢ (5.11)
a€Ly bxeFy
Meanwhile,
> ) x(DDuf(x) >0 (5.12)
a¢Ly bxeFy
with an equality if and only if D, f is balanced for all a ¢ L£;. Combining (5.11)) and
(5.12)), the proof is complete. O

Corollary 5.3. Let f : F} — [, with linear space Ly and let diim(Ly) = s. Then,
we have
q2n+s < Z |Af(a) 2
acky

with an equality if and only if f is q-ary partially bent.

Proof. For all a € Ly, because D, f is constant, |A;(a)|*> = ¢*". As in the proof of
Theorem[5.5] we have

> A @) = g, (5.13)
aGCf
> Afa)* >0 (5.14)
agLy
with an equality if and only if As(a) = 0; i.e., D,f is balanced for all « ¢ L;.
Combining (5.13)) and (5.14)), the proof is complete. O
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In view of Proposition [5.3] Theorem [5.5] and Corollary [5.3] are equivalent. The fol-

lowing is an immediate consequence of Proposition [5.4]and Corollary [5.3]

Corollary 5.4. Let f : Ty — F, with linear space Ly and let diim(Ly) = s. Then
q3n+s S SQ(f)v

with an equality if and only if f is q-ary partially bent.

The link given in Proposition [3.9]can be extended to g-ary case.

Proposition 5.6. Ler f : Fj — F,. Then for all x € Fy,

D x(f@) —w-o)x5(@) G @ =" Y Xx(DuDof(x (5.15)

welg a,bely

Proof. By the definition of 7, for all z € IF” the left-hand side of (5.15)) is
y Xf

> X(f(@) = fla) = f() + f(e) D x(w-(a+b—c—x))

a,b,ceFy weFy

=q" > x(f(x) = fla) = f(0) + fla+b—2))
a,bely

=q" Y X(DDyf(x
a,bely

where we used that Zwan Xw:(xr—a—b+c))isnullif ¢ # a + b — z in the
first equality, and (a, b, z) — (a +z,b+ x, x) is a permutation of (F})? in the second

equality. The result now follows. [

The following corollary is a direct consequence of Theorem [5.4]and Proposition[5.6]

Corollary 5.5. Let f : F} — [, with linear space Ly and let dim(Ly) = s. Then,

we have for all x € F

<Y x(f@) —w- o)X W) NGW)I,

weFy

with an equality if and only if f is q-ary partially bent.

We now give an example of g-ary partially bent functions.
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Example 5.3. Let p be an odd prime, m > 2 and n > 2 be integers and q = p™. Let
f be an arbitrary F ;-quadratic form from F » to F, given by

f(x) = Tl“g"(a()(l}2 + CLIQ;Q‘H + a2xq2+1 4t aLanqL7J+1)'

2

As in Example by [7, 18], we have an algorithm to construct f with radical
Wr={z €Fp: flz+y)=f(z)+ f(y),Vy € Fyn} (5.16)

of prescribed dimension s over I, for each given integer s with 0 < s < n — 1. For
A € [}, the component function fy from Fpn to ), given by f(r) = Trgm()\f(x))

is an [F-quadratic form with radical

Wy, =H{z € Fpr: falz +y) = fa(@) + a(y), Vy € Fpn ). (5.17)

For a F-quadratic form f on Fn and X € F}, the radical Wy in is the set of

the roots of the equation

+ <aL%Jx) (5.18)

aox + a12% + (a12)? " + asx? + (apx)? 4 -+ a|s] La2

in Fyn and Wy, in is the set of the roots of the equation

n -1%]
Aagr + Aax? + ()\alsn)qfl + )\&21’q2 + et )\aLan]L?J + <)\GL%J :1:>q (5.19)

2

(see e.g., [/, Lemma 2.1]). As A € F7, it is easy to observe from (5.18) and (5.19)

that Wy = Wy,. Therefore, we obtain vectorial s-plateaued function I from Fmn to

F,m (notice that F(x) = f(x) for all x € Fyn). This shows existence of an algorithm

to construct vectorial s-plateaued functions F for any integer s with) < s < n — 1.

5.3 Characterizations of ¢-Ary Plateaued Functions over [,

This section gives an extension of some characterizations of p-ary plateaued func-
tions given in Chapter [3]to g-ary case. We provide many characterizations of g-ary
plateaued functions by means of their derivatives, Walsh power moments and autocor-
relation functions. We believe that they provide useful information about the structure

of g-ary plateaued.
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We make a preliminary but useful remarks. For every nonnegative integers 7 and A,

we have
> <|5<7(w)|2 - A>2|>/<F(w)|% = Sia(f) — 2AS; 1 (f) + A2S,(f) > 0.(5.20)
wng

For any positive integer ¢, there exists a positive integer A such that
Si(f)A? =281 (f)A+ Si2(f) =0 (5.21)

if and only if f is g-ary s-plateaued, where A = ¢"*5. To exhibit a link between the
Walsh power moments of g-ary plateaued functions, we shall consider some particular
values of i in (5.20). More precisely, for A = ¢""*, where s is an integer with
1 <s<n,and

e fori =1, f is g-ary s-plateaued if and only if S3(f) = 2¢" S, (f) — ¢*"2*,

e for i = 2, then f is g-ary s-plateaued if and only if Sy(f) = 2¢""*S3(f) —
q2n+2555(f>,

e for i = 3, then f is g-ary s-plateaued if and only if S5(f) = 2¢""*S4(f) —
q2n+255§<f)‘

If So(f) > ¢®5, then S3(f) > ¢**25. More precisely, if So(f) = ¢>"**, then
S4(f) > q5n+3s'
More generally, for every nonnegative integers A, ¢ and 7,
> (W) = 4) K = 0. (5.22)
wely
We consider some particular values of A, 7 and j in (5.22). For A = ¢", ¢ = 0 and
J > 1, f is g-ary bent if and only if the inequality (5.22)) is an equality. Indeed, for
s>1,A=¢"",i>1and j > 1, f is ¢g-ary s-plateaued if and only if the inequality
(5.22)) becomes an equality.

Clearly, Lemma[5.1] suggests that the sequence of the Walsh power moments of g-ary

plateaued function is a simple geometric sequence (see the proof of Corollary [5.2).

Corollary 5.6. Let [ : [y, — F, be q-ary s-plateaued. Then for every integer i > 1,
E%(f) ::qnu+4)+s@—1X
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The Cauchy-Schwarz Inequality gives the following inequality, and its equality case

yields characterizations of g-ary plateaued functions.

Theorem 5.6. Ler f : ¥y — F, Then for every integer i > 1, Si1(f)? <
Si+2(f)Si(f), where the equality holds for one (and hence for all) i > 1 if and only
if f is g-ary plateaued.

Proof. By Theorem .1} for p; = py = 2. put 2, = [{7(w)[* and g = [7(w)[** for

allw € IF;L, then we have

STIG@IFT ] < IRG@P D IR w)P

wng wEIFg wE]Fg
that is, S;11(f)? < Si(f)Sir2(f), where the equality holds for one (and hence for
all) < > 1 if and only if for all w € F7, [x7(w)|* = d |X7(w)[*** for some d € R*;
2

equivalently, for all w € Fn, |X7(w)|? is either the same positive integer or 0, i.e., f

is g-ary plateaued. [

Remark 5.10. Notice that Theorem [5.6|can be also derived from (5.21). The reduced
discriminant of (5.21)), Si11(f)* — Six2(f)S:(f) < 0, with an equality if and only if
f is g-ary plateaued.

The plateaued-ness of a g-ary function can be checked only by using the fourth and

sixth power moments of its Walsh transform.

Theorem 5.7. Let f : )y — F,. Then, f is q-ary s-plateaued if and only if S>(f) =
" and S3(f) = "%, In fact, [ is q-ary plateaued if and only if Ss(f)* =
¢*"S3(f)-

Proof. Assume that f is g-ary s-plateaued. Then, the assertion directly follows from

Corollary [5.6] Conversely, by (5.20) with A = ¢"** ati = 1, we have

Sacry (T2 = ) TGN = S5(6) — 20 Sa(F) + +28,() = 0,

where in the second equality we used the Parseval identity. Hence, |\;(w)|> €
{0,¢"**} forall w € F7, that is, f is g-ary s-plateaued.
The second statement follows from Theorem [5.6] in the case of ¢ = 1, and using the

Parseval identity. [
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More precisely, as in the proof of Theorem [5.6] applying the Cauchy-Schwarz In-
equality for zj, = |X7(w)| and y = |X7(w)[**" for all w € F}, we have S;11(f)* <
S1(f)Soi1(f) for ¢ > 1, where the equality holds for one (and hence for all) ¢ > 1

if and only if for all w € F7, |X7(w)|* = d[X7(w)[**? for some d € R*; equiva-

lently, for all w € Fpn, |x7(w) |? is either the same positive integer or 0, i.e., f is g-ary

plateaued. Hence this implies the following theorem in view of the Parseval identity.

Corollary 5.7. Let [ : F;; — . Then for every integer i > 1, we have

Siv1 (f)2 < q2n52i+1 (f)>

where the equality holds for one (and hence for all) i > 1 if and only if f is q-ary

plateaued.

The following corollary follows from Corollaries [5.6/and [5.7]

Corollary 5.8. Let f : F} — F,. Then f is q-ary s-plateaued if and only if S; 1 (f) =

D and Soi 1 (f) = ¢"*H2DF2 for one (and hence for all) positive integer i.

We now give a strong characterization of g-ary plateaued functions in terms of their
second-order derivatives. To do this, we extend Theorem (see Section for
any integer s with 0 < s < n as follows. For the proof of Theorem [5.8] the reader
is referred to the proof of Theorem [5.4] It can be also proven without using the

convolution product (see the proof of Theorem [3.6]for the p-ary case).

Theorem 5.8. Let [ : Fy — F,. Then, [ is q-ary s-plateaued if and only if for all
z € Iy,

> X(DD.f(x)) = ¢

a,bely

Clearly, Theorem [5.8] suggests the following result.

Corollary 5.9. Let f : Fy — F, be q-ary s-plateaued. Then

S (DD (@) = ¢,

a,bz€Fy

The following is a direct consequence of Corollary [5.6|and Theorem [5.8]
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Corollary 5.10. Let f : F; — F,. Set 0(v) = Za’bem X(DyD.f(x)) forall v € F7.
Then, f is q-ary plateaued if and only if for all x € F7,

Sa(f) = "0 (). (5.23)

Proof. Assume that f is g-ary s-plateaued. Then, we have Sy(f) = ¢ by Corol-
lary 5.6 and 0;(x) = ¢"** for all z € F by Theorem Hence, (5.23) holds for
all z € ;. Conversely, assume that 1' holds for all = € [y, that is, Or(z) =6
is constant for all z € F}/, where § = ¢~>"S5(f). Thus, by Theorem f is g-ary
plateaued. [

Remark 5.11. Let f : Fy — F,. Forall z € Fy, at point (a,b) € (IF})?, we have
DyD,f(x) = D.f(b) — D,f(x) because of the (bijective) change of variable b —
b— z. Hence, the characterizations of g-ary plateaued functions by their second-order
derivatives can be given by their first-order derivatives, which makes easier the check

of the plateaued-ness of g-ary functions.

Theorem has a crucial role in proving the following characterizations of g-ary

plateaued functions.

Theorem 5.9. Let [ : Fy — F,. Then [ is g-ary plateaued if and only if for all
a € Fp\ {0},
> Vila+wirw) KGw)* =o. (524)
weFy

Proof. Forall a € Fy \ {0}, the left-hand side of (5.24) is

Y. x(f@) = fla)+ fb) = fl)—a-2) D X(w-(x—a+b—c))

x¢uhc€FQ WGFQ
=" Y (@)= fla) + ) — flw—a+b) —a-a),
m¢ubng
Trp(w(a: a+b=c)) _ "ifc=x—a+0b,

where we used that ) _ eFp

0 otherwise.

Hence, since (z,a,b) — (z, 2z + a,z + a + b) is a permutation of (F}!)?, it is equal to

"> > X(DyDaf(x))X(a- ),

z€Fy a,beFy
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which is the Fourier transform at a € Fy; \ {0} of the function GG : F; — C defined

as G(2) == ¢" Y, pewn X(DsDaf(2)) for x € . By Remark (5-24) holds for
all « € Iy \ {0} if and only if G is constant; equivalently by Theorem f is g-ary
plateaued. [

Corollary 5.11. Let f : ¥y — F,. Then, f is q-ary plateaued if and only if for all
z € Fy

Sa(f) =q" > x(f(x) —w-2)X5w) X7 (5.25)

welFy

Proof. Assume that f is g-ary s-plateaued. By Corollary[5.6} Sz(f) = ¢°***. On the
other hand, for all x € IE‘;L,

> X(f(@) —w- 2)xGw) W) =¢"" ) x(f(@) —w-2)x; ()

weFy welFy

=) X(f@) - f@) ) x(w- (y—2) ="

yeFy weF?

since ) pn 5? b @) i6 ll if y—x # 0. Hence, the assertion holds. Conversely,
q

assume that @ holds for all 2 € Iy, that is, the function G : Fj — C defined as

Gz):= ) x(f(z) —w )G W)[X7w)P

wely

is constant for all x € . The Fourier transform of G at o« € Y is given as

=5 Y (@) —x- (o + w)Gw) WG (W)

wGFngFg

= > Tlo+w)TE) G

welp

Notice that by Remark G(a) = 0 forany o € 7 \ {0}. Hence, by Theorem
f is g-ary plateaued. ]

In the light of Proposition[5.6] the characterizations given in Corollaries and[5.11]

are equivalent.
The following is an immediate consequence of Theorem 5.8 and Proposition[5.6]
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Corollary 5.12. Let f : F — F,. Then, f is q-ary s-plateaued if and only if for all
z € Fy

D x(f(a) = G) G =

welp

We end this section by characterizing g-ary plateaued functions in terms of their au-
tocorrelation functions. According to the definition of plateaued functions, f is g-ary
plateaued of the amplitude g if and only if the two functions |X7|* and p?|y|? are

equal; equivalently, their Fourier transforms are equal by Lemma[2.4]

The Fourier transform of the function |7 (b)|* = 3=,  cpn X(f(2) = f(y) —b-(z—y))

is given by
G@P =S GO o
beFy
=3 S x(f@) = f@) Y X (x+a—y) = ¢"As(a)

where in the last equality we used that ), ., X(b- (v +a —y)) isnull if y # x + a.
q

Hence, the Fourier transform of | 7|* is
PG =a (P e RGP) =0 (78 © 0'8y) = ¢" (B © B7)(5:26)
where in the first equality we used Theorem 2.1} Then we conclude the following.

Theorem 5.10. Let [ : F) — F,. Then, [ is q-ary plateaued of the amplitude p if
and only if for all x € Fy}

> Apa)Ap(x —a) = P Ag(x). (5.27)

acky

Proof. As we said above, f is g-ary plateaued of the amplitude 1 if and only if |x7|*
and p?|x7|* are equal; equivalently by Lemma A; ® Ay = p?Ay; equivalently
by Proposition(iv), (Af @ Ag)(x) = p*Ay(z) for all 2 € F}!. The proof follows
from Definition 2.4l O

The Fourier transform of |x7|® is given by
GPRNG = (RGP e Gl = ¢ (B0 By 9 5y),
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where we used Theorem [2.1]in the first equality and (5.26)) in the last equality. Then,
we say that f is plateaued of the amplitude 1 if and only if | 7| and | X 7|* are equal,
by Lemmatheir Fourier transforms are equal, thatis, A ;@A @A ; = p? Ay @A ;.

This proves the following.

Corollary 5.13. Ler [ : ¥} — F,. Then, [ is q-ary plateaued of the amplitude 1 if
and only if for all x € F}

Y Ap@ApD)Af(x —a—b) =Y Ap()As(z = o).

a,beFy cEF?y

5.4 g¢-Ary Plateaued-type Functions over [,

In this section, we define a Walsh type transform of a g-ary function f from F7 to I,
by using a primitive g-th root of unity instead of a primitive p-th root of unity. We
introduce the notion of g-ary plateaued type functions with respect to its Walsh type

transform.

Let IF, be the finite field with ¢ elements and ¢ be a generator of [}, i.e., IF;; = ((),

where ¢ = p™. Then we have F, = {0,¢,¢%, ..., ("7} Let &, = 627r\;j1

be a
primitive q-th root of unity in C. Let ¢ be the map from F, to C (depending on the
choice of ¢ and &,) given by

{1 if a=0,

U(a) =& = .
§ if a=(" where 1<r<g¢g-—1

This map defines the a-th power of &, in C for a € [F,. For example, let ( € F, be
a generator of F%. Then it is a root of primitive polynomial 2% + x + 1 over Fy. We
have F, = {0,1,¢(,{ + 1} and F§ = (¢) = {(,¢?,¢3}. For a € Fy, the a-th powers
of & in C are given by

g=1, &=¢& &=¢ ad =6

Thus, we can define a Walsh type transform of a g-ary function f : Fj’ — F, by using
&, instead of §,. We denote by x, the complex valued function from Fj to C of f
defined as xs(z) = I @) for all » € . A Walsh type transform of f atw € F}y with
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respect to &, is defined by

Xy F, —C
wr— Xf(w) = Z Xr ()64,
z€ly
where -7 denotes an inner product in Fy over IF,. Therefore, we have a Walsh type

transform of f with &, instead of &,. This approach allows us to define the notion of
g-ary plateaued type functions over I, depending on &,. A vectorial p-ary plateaued
function f from Fym» to F,» with the Walsh transform of its component functions
does not correspond to g-ary plateaued f from Fy to I, with its Walsh type transform.
Thus, we can introduce a such function f, called g-ary plateaued type function, with

respect to the Walsh type transform.

Definition 5.3. Let f be a function from Fy to I, and s be an integer with 0 < s < n.
Then, f is called q-ary plateaued type if its absolute Walsh transform takes only
one nonzero value (also possibly the value 0). In other words, f is said to be g-ary
s-plateaued type if [x7(w)|* € {0,¢""*} forallw € F}, and f is said to be g-ary bent
type if |X7(w)|* = ¢" forall w € F7.
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CHAPTER 6

LINEAR CODES FROM WEAKLY REGULAR PLATEAUED
FUNCTIONS AND THEIR SECRET SHARING SCHEMES

Linear error correcting codes have many applications in consumer electronics, secret
sharing schemes, authentication codes, communication, data storage system, asso-
ciation schemes, and strongly regular graphs. The construction of these codes has
been widely studied by a large number of researchers. There are several methods
to construct linear codes, one of which is based on functions over finite fields. For
example, bent functions (mostly, quadratic and weakly regular bent functions) have
been extensively used to construct these codes. Very recently, Mesnager [58]] has con-
structed a new family of three-weight linear codes from weakly regular bent functions
in arbitrary characteristic based on the first generic construction. Within this frame-
work, the main purpose of this chapter is to construct linear codes with few weights
from plateaued functions and to analyze the constructed codes for the secret sharing

schemes in arbitrary characteristic.

In this chapter, we first introduce the notion of (non)-weakly regular plateaued func-
tions and then provide the first secondary constructions of these functions in odd
characteristic. We next construct new classes of three-weight linear p-ary (resp. bi-
nary) codes from weakly regular p-ary plateaued (resp. plateaued Boolean) functions
based on the first generic construction. We also determine the weight distributions of
the constructed linear codes. We finally investigate the access structures of the secret

sharing schemes based on the dual codes of the constructed linear codes.

The results of this chapter appear in [60} 61]].

123



6.1 On the (Non)-Weakly Regular Plateaued Functions over Finite Fields of
Odd Characteristic

In this section, we first introduce the notion of (non)-weakly regular plateaued func-
tions over finite fields of odd characteristic, and then give the first secondary con-

structions of these functions.

6.1.1 The Notion of (Non)-Weakly Regular Plateaued p-Ary Functions

After introducing the notion of (non)-weakly regular plateaued functions, we give

some concrete examples and properties of these functions.

We begin by recalling the notion of (non)-weakly regular bent functions in odd char-
acteristic (see, e.g., [36]). A function [ : F,n — F, is p-ary bent if |\ ;(w)[* = p™ for
every w € F,». A p-ary bent function f is called regular if \;(w) = p%ﬁ; ) for ev-
ery w € [F,», and called weakly regular if there exists a complex number v having unit
magnitude (in fact, |u| = 1 and u does not depend on w) such that y 7 (w) = up%ﬂ; ")
for every w € F,», where f* is the dual of f; otherwise, f is called non-weakly reg-
ular bent. It is worth noting that, for a weakly regular bent function, the constant «
(defined above) can only be equal to =1 or +:. By [36, 137]], a weakly regular bent

function f satisfies

Xi(w) = eV/pg] ),
where ¢ = £1 is the sign of X7, p* denotes (%) p and f* is the dual of f. In fact,
the Walsh transform coefficients of bent f satisfy

+p3¢l™ @ ifnisevenornisoddandp=1 (mod 4),
+tipiel @, ifnisoddand p =3 (mod 4),

Xr(w) =
where ¢ is a complex primitive 4-th root of unity and f* is the dual of f. Hence,
the regular bent functions can only be found for even n and for odd n with p = 1

(mod 4). Table[6.1]lists all known weakly regular bent functions over F ..

Below we introduce the notion of (non)-weakly regular plateaued functions in odd
characteristic. We first recall that f is said to be p-ary s-plateaued if |[x7(w)|? €

{0, p"**} forevery w € F,n, where s is an integer with 0 < s < n. The Walsh support
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’ Weakly regular bent functions ‘ n ‘ P ‘
Y (g
Zfigl Tr2" (aimi(Pk’l)) + Tr2" (62" e Yelp* +1 | n=2k | arbitrary

+1 . .
) arbitrary | arbitrary

Te" (aa:3 471+3k+1) n =2k p=3
Trgn (xpdkﬂ’%*pk*l + 2?) n =4k | arbitrary
Trgn (aac3 cn ); todd, ged(i,n) =1 arbitrary p=3

Table 6.1: Known weakly regular bent functions over FF,», p is odd

of p-ary s-plateaued f is defined by Supp(x;) = {w € Fpn : [Xf(w)|> = p"™*}. In
2016, Hyun et al. [43]] have shown that the Walsh transform coefficients of p-ary
s-plateaued f satisfy

ipn;g
Xr(w) = n+sisoddandp=1 (mod 4), 6.1)

n—+s

+ip"2° ¢4 0 ifn-+sisoddandp=3 (mod 4),

fg(w)> 0 ifn 4+ sisevenor

where ¢ is a complex primitive 4-th root of unity and g is a p-ary function over F,»
with g(w) = 0 for all w ¢ Supp(x7). It is worth noting that by the definition of
g : Fyn — F,, it can be regarded as a mapping from Supp(x7) to I, such that
g(w) = 0 for all w ¢ Supp(X;). Clearly, for all w € Supp(X 7).

_— nts oo L s oo
Vi) € {#p" g, 2ip T g}

We now introduce the notion of (non)-weakly regular plateaued functions in odd char-

acteristic, which covers a non-trivial subclass of the class of plateaued functions.

Definition 6.1. Let p be an odd prime and f : F,» — I, be a p-ary s-plateaued
function, where s is an integer with 0 < s < n. Then, f is called weakly regular
p-ary s-plateaued if there exists a complex number u having unit magnitude (in fact,

|u| = 1 and u does not depend on w) such that

Niw) € {0,up™¥ g} (6.2)

for all w € F,n, where g is a p-ary function over F,» with g(w) = 0 for all w ¢
Supp(X7); otherwise, f is called non-weakly regular p-ary s-plateaued. In particular,

weakly regular p-ary s-plateaued f is called regular p-ary s-plateaued if v = 1 in
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Since X ;(w) = 0 for w ¢ Supp(x7y), it is safe to say that f is regular s-plateaued if

n—+s

Xfw)=p =z

exists a complex number v having unit magnitude (in fact, v can only be equal to +1

f,?(w) for all w € Supp(xy), and f is weakly regular s-plateaued if there

or ¢ and v does not depend on w) such that

n+t

B o) (6.3)

X7(w) = up

for all w € Supp(Xy), where g is a p-ary function over Supp(xy). By (6.1)), regular
s-plateaued functions can only exist for even n + s and for odd n + s with p = 1

(mod 4).

We can derive from (6.3)) the following lemma, which has a significant role in finding

the Hamming weights of the codewords of a linear code (see Section[6.3)).

Lemma 6.1. Let p be an odd prime and let f : F,n — F, be weakly regular s-

plateaued. For all w € Supp(X7),
— n+s w
Xr(w) =ey/p W),
where ¢ = %1 is the sign of Xy, p* denotes (’?1) p and g is a p-ary function over

Supp(Xy).

Proof. The critical point of this proof is the fact that u does not depend on w €
Supp(x7) in (6.3). In view of (6.1), there are two cases:

e Assume n+ sisevenorn+ sisoddandp =1 (mod 4). Clearly by (2.3), we
n+s
have (_71) = 1 and by (6.1), we have © = &1 in ll Hence, e,/p* ° =
m/L/ﬁ"“ = u\/13"+5, where € = +1.

e Assumen+sisoddandp = 3 (mod 4). Clearly by (2.5), we have (%) =-1
and by (6.1)), we have u = €i in (6.3), where ¢ = £1. Hence,

6\/]?714-5 _ 6\/__1'"4‘5\/5%-&-5 _ Ein—&—s\/]—?n-i-s _ U\/ﬁn+s.

The assertion follows from (6.3)). O

Lemma 6.2. Let p be an odd prime and let f : F,n — F,. The notion of weakly regu-

lar O-plateaued functions coincides with the notion of weakly regular bent functions.
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Proof. Assume that f is weakly regular O-plateaued. Then, there exists a complex
number v with |u| = 1 such that for all w € Fn, X7(w) € {0, up%@‘;(“)}, where ¢ is
a p-ary function over I,» and u does not depend on w. By the Parseval identity, since

|2|? = 2z for z € C, we have

o= IRw)P = Y g = Y pruPgeg”

weF,n weSupp(X¥) weSupp(Xy)
_ E : ne0 _ E n
- p Sp - p )

weSupp(Xy) w€eSupp(XF)

which implies #Supp (¥ ;) = p". Hence, X;(w) = up3 8™ for all w € F,», where

|u| =1 and ¢ is a p-ary function over F ., i.e., f is weakly regular bent. O

By MAGMA in [5]], we obtain several concrete examples of a regular plateaued func-

tion.

Example 6.1. The function f(z) = Trgg(f%n + (2025 + (Mt 4 2B + (x?), where
F3y = () with (> +2(+1 = 0, is regular 3-ary 1-plateaued with X ;(w) € {0, 9§§(w)}
forall w € Fgs, where g is an unbalanced 3-ary function. Indeed, it is easily seen that

Supp(xy) = {0,¢*,¢%, %, ¢'%, ¢, ¢*, ¢, (P} and

x7(0) :95?9,(0):9 where g(0) =0,
G(Ch =90 =09 where g(C') =0,
X7(¢%) —9&9“ = 9¢ where g(C%) =1,
X7 (¢?) 2953 =9§3 where g(¢°) =1,
X7(¢'9) —953 ) =9 where g(¢'%) =0,
(CT) =0e8C = where g(¢'T) =0,
(¢ =9g) =09 where g(¢*') =0,
() =98 = —9g5 -9 where g(¢*) =2,
Xr(C*) —9§g(< = -9 —9 where g((*) =2.

By MAGMA in [5]], we obtain several concrete examples of a weakly regular plateaued

function.

Example 6.2. The function f(z) = Trg3 (Ca®®+ ("ot 4 ("2 + (a?), where F%, = ()
with (> +2( + 1 = 0, is weakly regular 3-ary 1-plateaued with X ;(w) € {0, —9€§(w)}
for all w € Fss, where g is an unbalanced 3-ary function. We have Supp(Xf) =
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{0,¢%,¢", ¢, 2,¢7, ¢, ¢*", 1} and

X7(0) = -9 where g(0) =1,
Xr(C%) =-9&  where g(¢°) =1,
Xr (¢ = —953 where  g(¢'%) =1,
Xr(¢H) = where  g(C'') =0,
X7(2) =9&+4+9 where g(2) =2,
Xr(C?) =96 4+9 where g(CY) =2,
XF(CB) =949 where g(¢®) =2,
X)) =-9&  where g(¢*') =1,
Xf(1)  =9+9 where g(1) =2

The following lemma has a crucial role in determining the weight distributions of the
constructed linear codes (see Section[6.3)). Recall that the inverse Walsh transform of

f is defined by:
1 A P (o
f]j:(x) = pr E Xf(W)ngrp (wz) (6.4)

wEFpn
Lemma 6.3. Let p be an odd prime and f : F,. — F), be weakly regular s-plateaued.
Then for x € Fyn,

S fg(w)mg"(m) =yl
w€eSupp(XF)
where |u| = 1 and g is a p-ary function over Fn with g(w) = 0 for all w € Fpn \
Supp(Xx7)-

Proof. Since f is weakly regular s-plateaued, for all w € Supp(xy) we have xj(w) =

up"* &2, where |u| = 1 and g is a p-ary function over F,» with g(w) = 0 for all

w € F,» \ Supp(x7). By the inverse Walsh transform in (6.4)), we have

_ n+s T n+s ]. T T
u1p2€f()_u1p2_nzxf(>£Tp()
p wEF n
-1 n+s 1

nts w P wx

n
p weSupp(X¥)

— ps Z gg(w)—l—Trg (wa:)’

weSupp(Xy)

where we used in the second equality that y 7(w) = 0 forall w € Fy. \ Supp(x7). O
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Recall that constructions from "scratch" are called primary. On the contrary, sec-

ondary constructions use already constructed functions to build new ones.

6.1.2 Secondary Constructions of (Non)-Weakly Regular Plateaued p-Ary Func-

tions

This section presents the first secondary constructions of plateaued p-ary functions.
We shall construct new (non)-weakly regular plateaued functions over finite fields of

odd characteristic.

Direct Sum of Plateaued p-Ary Functions. The direct sum construction is the first
secondary construction for Boolean bent functions given by Dillon [30] and Rothaus
[72]]. Such a construction has been extended first by Tan et al. [75] for p-ary bent

functions and then by Carlet [[15] for Boolean plateaued functions.
In the following, we give the concept of the so-called direct sum of p-ary functions.

Definition 6.2. Let p be an odd prime and both m and n be positive integers. Let
f:Fp = TF,and g : Fym — F,. Then the direct sum of f and g is the map A from
Fyn x Fym to IF, defined as h(z,y) = f(x) + g(y) forz € Fyn and y € Fpym.

Now, we shall use the direct sum to construct new (non)-weakly regular plateaued
p-ary functions over a larger field from two given ones over smaller fields. But above,
we emphasize that the Walsh transform of a function derived from the direct sum can

be easily expressed. Indeed, for (a,b) € F,n» x Fym, it can be directly seen that

Xn(a,b) = Z é“ph(l‘»y)—a'ﬂ?—b'y — Z gpf(x)—aﬂf Z fpf(y)—lry

z€Fpn ,y€fpm z€F,n yEFn (65)
= X7(a)Xy(b),

where an inner product (a,b) - (z,y) in Fpn x F,m is defined as the sum of the inner

products @ - x inFy» and b - y in Fpm.

Theorem 6.1. Let f : F,n — [, be s,-plateaued and g : F,m — F), be sy-plateaued,
where 0 < 51 <nand0 < sy < m. Let h be the direct sum of f and g from Fynim to
[F,. Then, h is (s1 + sq)-plateaued.
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Proof. We first make a preliminary observation. It can be easily checked that we have
Supp(Xn) = Supp(Xs) X Supp(X,). Namely, for (a,b) € Fyn x F,m, we have that
(a,b) € Supp(xp) if and only if @ € Supp(x7) and b € Supp(x,). Now for all
(a,b) € Supp(Xx), we have a € Supp(x;) and b € Supp(X,), and hence by (6.5),

Vil D = [T@T ) = K@) PR (0) = p e,
which completes the proof. O

Remark 6.1. Note that in this subsection we use the notation f’ to denote a p-ary

function g over Supp(x7) in (6.3) in the Walsh spectrum of plateaued f.

The following proposition shows that the direct sum of a non-weakly regular plateaued

function and a weakly regular plateaued function is non-weakly regular plateaued.

Proposition 6.1. Let f : F,» — T, be non-weakly regular s-plateaued and g :
Fpm — I, be weakly regular s,-plateaued. Then, h : Fynim — I, is non-weakly

regular (s1 + ss)-plateaued.

Proof. Since f is non-weakly regular s;-plateaued, for all @ € Supp(x7), we have

— n-+4s (a
Xr(a) = ugp 5 I{()

Since g is weakly regular so-plateaued, for all b € Supp(x,). we have x,(b) =

m+sg g’(b)
up~ 2 &p

and the above discussion, for all (a,b) € Supp(x1), we have

where |u,| = 1 and f’ is a p-ary function over Supp(x7).

where |u| = 1 and ¢’ is a p-ary function over Supp(,). Hence, by (6.5)

— — o n+m+sy+s (a
Xa(a,b) = X7 (a)xy(b) = ugpp 2 &P

where u,;, = u,u (in fact, |u,,| = 1 and u,,, depends on (a,b) € Supp(Xz)) and

h'(a,b) = f'(a) + ¢'(b) is a p-ary function over Supp(,). Hence, h is a non-weakly

regular (s; + sq)-plateaued function over [Fnrm. O
The following proposition shows that the direct sum of a (weakly) regular function
and a weakly regular (but not regular) function is weakly regular (but not regular).

Proposition 6.2. Let f : F,n — I, be (weakly) regular s\-plateaued and g : Fpm —
F, be weakly regular (but not regular) s,-plateaued. Then, h : Fynim — Fp is a

weakly regular (s, + s9)-plateaued (but not regular) function.
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Proof. As in the proof of Proposition [6.1} for all (a,b) € Supp(xs), we have

+s1+
ntmte) oy gh’(a,b)

Xn(a,b) = up ,

where |u| = 1, (in fact, u € {—1, £i} does not depend on (a,b) € Supp(xs)) and
h'(a,b) = f'(a)+¢'(b) is a p-ary function over Supp(X3). The proof is complete. [

As observed in Propositions [6.1|and one can construct new (non)-weakly regular

plateaued functions over a larger field from given ones over smaller fields.

Semi-Direct Sum of Plateaued p-Ary Functions. As an extension of the direct sum
construction, the semi-direct sum construction was proposed for bent functions in
[24]]. This is the following.

Definition 6.3. [24] Let f : Fpn — F,, g : Fpm — F,and F' : Fn — Fpm be
functions. Then, the semi-direct sum i : F,» x Fym — F), of f and ¢ is defined as

h(z,y) = f(x) + 9(y + F(z)).

Below, we present the expression of the Walsh transform of the semi-direct sum of

two p-ary functions.

Proposition 6.3. Let f : Fyn — F), g : Fym — F,and F : Fyn — Fym be functions.
Then for (a,b) € Fyn+m, the Walsh transform of the semi-direct sum h : Fpyn X Fpm —
F, of f and g defined as h(x,y) = f(z) + g(y + F(x)) is given by

Xn(a,b) = X, (a)Xg(b),
where Fy is the map from Fyn to F, defined as Fy(x) = f(x) + b - F(z) for all
b € Supp(x,) and F, is the zero function for all b ¢ Supp(x,).
Remark 6.2. We have that (a,b) € Supp(xn) if and only if @ € Supp(xr,) and
b € Supp(Xy)-

In the following, we show that the semi-direct sum construction can be used to design

plateaued functions in arbitrary characteristic.

Theorem 6.2. Let [ : F,n — F, be si-plateaued and let g : Fym — T, be so-
plateaued. Let I : F\,n — Fpm and let h be the semi-direct sum of f and g. Let F}, be
as in Proposition Then, h is (s1 + s2)-plateaued if and only if F, is s|-plateaued
for all b € Supp(X,).
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Proof. Since g is sy-plateaued, we have |y, (b)[* = p™**2 for all b € Supp(,). Then
by Proposition X7, (a)]? = p™** for all a € Supp(XF,), i-e., F} is si-plateaued
for all b € Supp(X,) if and only if

[Xn(a, b)* = X, ()X (0 = XA, (a)*[Xg(B)* = p ot

for all (a,b) € Supp(xn), i-e., his (s; + s2)-plateaued over Fn+m. The proof is

complete. [

Below, we construct new (non)-weakly regular plateaued functions over a larger field

from given ones over smaller fields.

Corollary 6.1. Let f : Fpn — ), be weakly regular s\-plateaued and let g : Fpm —
I, be weakly regular sy-plateaued. Let I : Fn — F,m and let h be the semi-direct
sum of f and g. Let Fy be as in Proposition [6.3| Then, h is non-weakly regular
(s1 + s2)-plateaued if and only if Fy is (non)-weakly regular si-plateaued for all
b € Supp(x,)-

Proof. Since g is weakly regular s,-plateaued, for all b € Supp(X,), we have x,(b) =

up™ gV

function over Supp(,). Assume Fj is (non)-weakly regular s;-plateaued for all

where |u| = 1, (in fact, u does not depend on b) and ¢ is a p-ary

n+sl

b € Supp(x,)- Then, for all @ € Supp(Xr,), we have x5, (@) = uqpp 2 55’:@ where

|ugp] = 1 (in fact, it depends on b € Supp(x,) and possibly on a € Supp(x,)) and
F} is a p-ary function over Supp(X,). Hence, in view of Proposition[6.3|and Remark

for all (a,b) € Supp(Xs), we have

—~ — — ntmtsy+sy "(a
Xn(a,b) = X, (@)X (0) = vapp™ 2 &Y
where |v,| = 1, (in fact, v, = uu,yp and v, depends on (a,b) € Supp(xy)) and
h'(a,b) = F/(a)+ ¢'(b) is a p-ary function over Supp(). Hence, h is a non-weakly
regular (s; + sq)-plateaued function over Fn+m. The other direction follows from the

above arguments. [

We now propose new secondary construction of p-ary plateaued functions, as an ex-
tension of the semi-direct sum construction given in Definition [6.3] Our construc-

tion is as follows. Let f : Fpn — F,, g : Fpm — Fp, let F' 1 Fpm — F,n and
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G : Fyn — F,m be functions. We define a function h : Fjn x F,m — F, by

h(z,y) = f(x+ F(y)) + gy + G(z)). (6.6)

We start by giving the expression of the Wash transform of A.

Proposition 6.4. Let f : Fpn — Fyand g : Fyn — F,, let F' : Fym — Fpn and
G : Fyn — Fym be functions. Then, for (a,b) € Fyn X Fym, the Walsh transform of
the function h : Fyn X Fym — F, defined by is given by

Xn(a,b) = X7, (a)Xa. (b),

where Fy, : F,n — T, is defined as Fy,(x) = f(z) +b- G(x) for all b € Supp(xc,)
and it is the zero function for all b ¢ Supp(Xg, ), and G, : Fym — F, is defined as
Gu(y) = g(y) + a - F(y) for all a € Supp(xr,) and it is the zero function for all
o ¢ Supp(i).

Proof. Forall (a,b) € Fjn x F,m, we have

M(ad) = Y gea-@en o N detFe) et Ge)-by
(x,y)EFpn XFpym z€Fpn,y€Fym
z)+b-G(z)—ax a-F(y)—b-
_ Z SI];( )+b-G(z) Z gg(y)Jr (y)—by
z€F,n yeF,m
= DM Y W = X5 (a)Xa, (0),
IGFPTL yEIFpm

where in the third equality we used the bijective change of variables: x — x — F(y)

and y — y — G(z). This completes the proof. O

Remark 6.3. If I’ and G are the zero functions, then this construction reduces to the
direct sum construction. If /' or (G is the zero function, then this construction reduces
to the semi-direct sum construction.

Remark 6.4. Notice that (a,b) € Supp(xys) if and only if a € Supp(xr,) and b €
Supp(Xe.)-

The following constructions of (non)-weakly regular bent and plateaued functions

follow from Proposition [6.4]and Remark [6.4]

Proposition 6.5. Let f : F,n — Fand g : Fym — ), be bent, and let F' : Fpm — Fpn

and G : Fpn — Fym be functions. If Fy, and G, are bent functions where Iy, : Fpn —
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[, is defined as F,(x) = f(x)+b-G(z) forallb € Fyn and G, : Fym — F,, is defined
as Go(y) = g(y) + a- F(y) forall a € Fym, then h is bent over Fpn+m.

Theorem 6.3. Let f : Fpn — F, and g : Fym — T, be plateaued functions. Let
Fy, G, and h be as in Proposition If F, and G, are plateaued functions for all
b € Supp(Xa,) and a € Supp(xg,), respectively, then h is plateaued over Fnim.

The following proposition provides the construction of a non-weakly regular plateaued
function from given a non-weakly regular plateaued function and a (weakly) regular

plateaued function.

Proposition 6.6. Let f : F,» — I, be si-plateaued and g : Fpm — T, be ss-
plateaued. Let Iy, G, and h be as in Proposition Assume that Fy is non-weakly
regular s1-plateaued for all b € Supp(Xq,) and G, is (weakly) regular sy-plateaued
forall a € Supp(Xr,). Then, h is non-weakly regular (s, + s2)-plateaued over F jnm.

Recursive Constructions of (Non)-Weakly Regular Plateaued p-Ary Functions.
In this part, we construct (non)-weakly regular plateaued p-ary functions from given
ones. In 2009, a construction method of binary bent functions from given near-bent
functions was given in [49], and then in 2012, this method was generalized in [22] to
arbitrary characteristic by obtaining p-ary bent functions from given p-ary near-bent

functions. This is as follows.

Let f; : F,n — I, be functions for all i € {0,...,p — 1} such thatfor 0 < j # k <
p—1

Supp(Xy;) N Supp(Xy,) = 0.
We define F' : F)n x F, — I, by

pay) = (p-1) 3 W02 D) 67)

y—1
The Walsh transform of % at (a,b) € F,» x I, was computed in [22]:

Xala,b) =Y &, (a).

y€Fy

We now use the construction presented above to produce the first construction of
(non)-weakly regular plateaued p-ary functions from p given (non)-weakly regular

plateaued p-ary functions with pairwise disjoint Walsh supports.
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Let f; : F,n — F, be s-plateaued functions for all @ € {0,...,p — 1} such that
Supp(@j) N Supp(Xy,) = 0 for 0 < j # k < p — 1, where s is an integer with 1 <
s < n. Notice that Supp(xy;) = {a € Fyr : Xy,(a) # 0} and #Supp(xy,) = p"*
foralli € {0,...,p — 1}. Hence, we have

p—1 p—1
# (U Supp(?@)) = #Supp(xy,) =",
i=0 =0
and the set | J/—, Supp(Xy,) is the proper subset of F,» for an integer s > 1. Then,
the Walsh support of & : F» x [F, — I, is given by

p—1
Supp(Xxn) = {(a,b) EFpn xF,: ac U Supp(xy,) and b € ]Fp}
i=0
p—1

= U Supp(xy;) x Fp,
i=0

and #Supp(xs) = p" =G~V It is worth noting that the Walsh spectrum of A is

given by
p—1
spec(h) = ) | & "spec(f:).
i=0 belF,,

Remark 6.5. Note that (a,b) € Supp(xy) if and only if @ € Supp(X7y,) for exactly
one¢ € F,and b € F,,.

We can construct an (s — 1)-plateaued function over [F,.+: from p given s-plateaued

functions over IF,», where s is an integer with 1 < s < n.

Theorem 6.4. Let f; : Fyn — F, foralli € {0,...,p—1}and h : Fpn xF, — F,

defined by (6.7). If f; is s-plateaued for all i € {0,...,p — 1}, then h is (s — 1)-
plateaued.

Proof. Using the expression of the Wash transform of ~ and by Remark for all
(a,b) € Supp(Xs), since each a belongs to Supp()/(}y) forexactly one y € {0,...,p—
1}, for this y we have

Xn(a,b) = &\, (),

and hence, Y5 (a,b)|* = |, %Xy, (a)]* = p"™* = p"™ =D Hence, h is (s — 1)-

plateaued over [ n+1. [
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We can construct a non-weakly regular plateaued function from some given weakly

regular plateaued functions.

Corollary 6.2. Let f; : Fyn — F, foralli € {0,...,p—1}and h : Fjn x F, — F,
defined by (6.7). Let s be an integer with 1 < s < n. If f; is weakly regular s-
plateaued for all i € {0, ...,p— 1}, then h is non-weakly regular (s — 1)-plateaued.

Proof. As in the proof of Theorem|[6.4] for all (a, b) € Supp(X»).

_ by~ _ nts f!(a) (A D+(s=1) _f! (a)—by
Xn(a,b) = & befy (a) = 38 byuyp 25" =uyp 2 &'

where |u,| = 1, (in fact, u, depends on (a, b) € Supp(X»)) and #'(a,b) = f,(a) — by
is a p-ary function over Supp(X,). Hence, h is non-weakly regular (s — 1)-plateaued

over [Fn+1. O

Remark 6.6. In Corollary if f; is non-weakly regular s-plateaued for all : €
{0,...,p — 1}, then h is non-weakly regular (s — 1)-plateaued.

The following construction given in [22, 24] combines n variable p bent functions to
construct an (n + 2) variable one bent function. Let f; : F,» — F, be functions for

alli € {0,...,p—1}. Let h : Fjn x F2 — [, be the function defined as

h(z,y) = fy,(2) + y1ye (6.8)

where © € Fyn and y = (y1,y2) € Fp2. For (a,b) € Fyn x [F2, the Walsh transform
of his

Xn(a,b) = p&, """ X7, (a), (6.9)

where b = (b1, by) € Fpe.
Remark 6.7. Notice that (a,b) € Supp(xs) if and only if @ € Supp(Xy, ) where
b= (b1, by) € F.

Below, we consider this construction for plateaued functions.

Theorem 6.5. Let f; : F,n — T, be functions for all i € {0,...,p — 1} and let
h : Fyn x Fpo — I, defined by (6.8). Then, h is s-plateaued if and only if f; is
s-plateaued for all i € {0,...,p—1}.
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Proof. For all (a,b) € Supp(Xy), we have x5 (a,b) = p&, "X, (a), and hence,

[Xn(a,0)* = [p&, """ X5, (a)* = p*|X5, ().
Hence, h is (n + 2) variable s-plateaued if and only if f,, is n variable s-plateaued

forallb, € {0,...,p—1}. O

We can construct a non-weakly regular plateaued function from given weakly regular

plateaued functions based on the above construction.

Proposition 6.7. Let f; : F,n — F, be functions for all i € {0,...,p — 1} and
let h : Fpn x o — ), defined by . If f; is weakly regular s-plateaued for all
i €{0,...,p—1}, then h is a non-weakly regular s-plateaued function. In particular,
fi is weakly regular s-plateaued with the same complex number u (see Definition
foralli € {0,...,p— 1} ifand only if h is weakly regular s-plateaued.

Proof. Assume that f; is weakly regular s-plateaued for all ¢ € {0,...,p — 1}. Then
for all a € Supp(X7,), we have

— n+ts (a
Xfi(a) =up ]{Z( )7

where |u;| = 1, (in fact, u; does not depend on a € F,») and f/ is a p-ary function

over Supp(X7,). For all (a,b) € Supp(xn), by we have

nts fél (a) n+2+s fél (a)—b1ba

Xn(a,0) = p&, "2 xG, (a) = p&, " Pup,p 2 & = wppT 2 &

where |us, | = 1, (in fact, uy, depends on (a,b) € Supp(X»)) and h/(a,b) = f; (a) —
biby is a p-ary function over Supp(Xy); equivalently, & is non-weakly regular s-
plateaued over F»+2. In particular, the second statement follows from (6.9) and the

first statement. [

Given n variable p plateaued functions, the following new construction produces (n+
4) variable one plateaued function. Let f; : F,» — F, be functions for all i €

{0,....,p—1}. Let h: Fjn x Fju — F, be the function defined as

h(z,y) = fu. (%) + 12 + Y3y, (6.10)

where y = (Y1, Y2, Y3, Y1) € ]Fé'

Now we present further possibilities of constructions of (non)-weakly regular bent

and plateaued functions based on the above construction.
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Theorem 6.6. Let f; : F,n — F, be functions for all i € {0,...,p — 1} and let
h . Fpn x Fpa — T, defined by (6.10). Then, h is s-plateaued if and only if f; is
s-plateaued for all i € {0,...,p—1}.

Proof. For (a,b) € Fyn X F 4, the Walsh transform yj,(a, b) of h is equal to

E gh(wyy)—(ayb)(xy _ E fv4 —az § £y1yz+y3y4—b1y1—bzyz—b:sy3—b4y4
P P

z,y€Fyn z€Fpn Y1,Y2,Y3,Y4€Fp
—a —b —b f (x)—baya 3(ya—b
eI DITID DL I DI D D
z€Fyn y2€F, y1€F, y4€Fp y3€lFp
foz(z)—a-z —b1b —b3b b1ba—bsb
— Z 5 3 pgp 12) (pgp 34) pé 1b2— 34be3(a)_
IEEFpn

Notice that (a, b) € Supp(Xs) if and only if @ € Supp(Xj,,) where b = (b1, ba, b3, by) €
IF;*D. Hence, the result follows as in the proof of Theorem [

Corollary 6.3. Let f; : F,n — F, be functions for all i € {0,...,p — 1} and let
h:Fpn x Fpu — F), be defined by . Then, h is bent if and only if f; is bent for
alli € {0,...,p—1}.

We can derive a non-weakly regular plateaued function from given weakly regular
plateaued functions based on the above construction. The following can be easily

proven as in the proof of Proposition

Proposition 6.8. Ler f; : F,n — F, be functions for all i € {0,...,p — 1} and let
h:Fpn X Fpu — ), be defined by (@) If f; is weakly regular s-plateaued for all
i € {0,...,p—1}, then h is a non-weakly regular s-plateaued function. In particular,
fi is weakly regular s-plateaued with the same complex number u (see Definition

foralli € {0,...,p— 1} ifand only if h is weakly regular s-plateaued.

6.2  On the First Generic Construction of Linear Codes from Functions over [,

In this section, we review the construction of linear codes involving special functions

over finite fields based on the first generic construction.

In the literature, there are mainly two generic constructions (say, first and second)

of linear codes from functions over finite fields (see [31]]). We now recall the first
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generic construction, which is obtained by considering a code C(h) over F,, involving

a polynomial A from I, to I, (where ¢ = p™) defined by
C(h) = {c = (Trj(ah(z) + bx))ser: : a € Fy, b € Fy}.

The resulting code C(h) from £ is a linear code of length ¢ — 1 and its dimension is
upper bounded by 2m which is reached in many cases. This is the following. It is
worth mentioning that the importance of the first generic construction is supported by

Delsarte’s Theorem [29].

For any «, 8 € Fy» (where ¢ = p™), we define a function
fa’B . ]Fqn — ]Fq
r > fap(x) = Trgn(a\lf(x) — px),
where W is a polynomial from F» to F,» such that ¥(0) = 0. Then we also define a

linear code Cy over I, as:

C\I/ = {éa,ﬁ = (fa,,@(Cl)>fa,,8(C2)7 o o fmﬁ(éq"*l)) : 0476 < Fq"}>

where (i, ..., (1 are the elements of .. and ¢, 3 denotes a codeword of Cy.

Very recently, Mesnager [38]] has proposed an approach for constructing linear codes
with special types of functions based on the first generic construction. With this
approach, we will construct linear codes from plateaued functions in arbitrary char-
acteristic in the next section. We first recall this approach based on the first generic

construction.

Remark 6.8. Clearly, the length of the linear code Cy is ¢" — 1.

Proposition 6.9. If the polynomial V¥ : Fn — Fyn has no linear component, then Cy

has dimension 2n over IF,.

Proof. We observe that ¢, g = 0 if and only if forall ¢ € {1,...,¢" — 1},
Trg"(a\IJ(Q) — BG) =0<= Tr! (a¥(z) — fz) =0, forall z € F},
= Trd" (a¥(z) — fz) =0, forall z € Fyn
= Trd" (a¥(z)) = Tr? (Bz), forall z € Fyn.

Hence, ¢, 3 = 0 implies that the component of ¥ associated with a # 0 is linear

or null and coincides with = — Tr?"(8z). Hence, to ensure that the zero codeword
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appears only once (when o« = 3 = 0), it is enough to show that no component
function of W is identically O or linear. Then this implies that all codewords ¢, 5 are

pairwise distinct. Hence, the dimension of Cy is 2n. OJ

The Hamming weights of the codewords of Cy of length ¢" — 1 can be expressed
by the Walsh transform of trace functions involving the map ¥. We keep the above

notations in the following proposition.

Proposition 6.10. Let 1, be a function from F . to IF), defined by

Vo (z) = Trgn (a¥(x)),

where a € Fyn and V : Fyn — F o with \IJ(O) =0. Forall a, € Fn,

wt(Cap) =" — = Z N (WD)

wEIFq

Proof. Obviously, f, 3(0) = 0since ¥(0) = 0. For all o, 8 € Fyn, we have

wt(Ca,p) = #{7 € Fju : fap(z) # 0}
= #{zx € Fpn : fop(x) # 0}
:q"—#{xEFn‘fa@( ) =0}

_q —Z ZgTerfaﬁ

:I:GF n UJEIFQ

where the last equality follows from the fact that the sum of characters is ¢ if f, 3(z) =

0, and O otherwise. Meanwhile, we have

Z Zg P(wfa,pl@ Z Z €Trq wTrq (@¥(z)—Bz)) _

z€F n wely welFg z€Fyn

Tr} (wa¥(z)—wpz) Ywa () —Tr} (wﬂ:c) _
DD DD I ()
w€eF, x€F n weFg z€Fyn welF,

where we used the transitivity and the linearity of the trace function Trg". This com-

pletes the proof. 0

We consider a subclass of the class of the linear codes Cy. We assume m = 1 (i.e., g =
p)and a € F,. Let ¢ (z) = Trgn (¥(z)) be a p-ary function such that a polynomial

U : Fyn — Fyn with ¥(0) = 0 has no linear component. Then, we have
fop(@) = oty () — T} (Bz)
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and define a subcode Cy;, of Cy as follows:

Cl/n = {Ea,ﬁ = (foq,b’((l)v focﬁ(Cé)v BRI fa,ﬁ(<p”—1)) HNOAS Fp?ﬁ € IE‘p"}a (6-11)

where (y, ..., (1 are the elements of F.. The linear code Cy, of length p™ — 1
over I, defined by is a k-dimensional subspace of F), where k = n + 1, and
denoted by [p™ — 1,n + 1],. In view of Proposition the Hamming weights of the
codewords of Cy, are given as follows. We keep the above arguments in the following

proposition.

Proposition 6.11. For ¢, 3 € Cy,,

o ifa =0, we have wt(¢oo) = 0 and wt(éy g) = p™ — p*~ " forall § € F},,

o ifa € IF, we have for all B € Fpn
~ n n— 1 ~ (P
Wt(Cap) =p" — " — , > 0w (galXan(@'B)))
w€elFy

where o~ is the multiplicative inverse of o € > and o, is the automorphism

of the cyclotomic field Q(¢,) for a € F,

Proof. By Proposition[6.10} for all & € F,, and 3 € F,», we have
WH(Cap) =" — = D Xow (wh).
p welF,
Clearly, the Walsh transform of the zero function (denoted by 0) at a point b € [ is
Xolb) = > & =p"dos,
IE]Fpn
where ¢; ; denotes the Dirac symbol defined by ¢, ; = 1if ¢ = j, and O otherwise.

Then obviously xo(0) = p". Meanwhile, we have

Z Xepoo (WB) = p" + Z Nt (WB) = p™ + Z Z f;frﬁn(wa‘l’(x)—wﬁm)

welr, wely wels z€Fpn
— "+ Z Z é‘;)’j[‘rp (a¥(z)—px) ="+ Z O_Q)(@(ﬁ))
wGF; wGIFpn LUEF;
If « = 0, then

~ n n— 1 o n n— n—
wt(Cop) = p" —p 1—;Zaw(><o(ﬁ))=p —p" =" p — 1)dos.

welFy
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Hence, we obtain wt(¢yo) = 0 and for 8 # 0, wt(co5) = p™ — p™ .

For o # 0, we have

Yo (o~ 2)—T8" (a1 Bz ath (2)—Te?" (B
0N (@ 1B)) = oo | Y @M (780 | = §™ covale) T (50)

.TEFT_,H Z‘G]Fpn

= Xaur (8) = Xva (8).

Hence, for all o € IF; and 5 € F,n, we have

wHEes) =" =" = 23 o (o0 (T(0'9).

welFy

]

In the following section, we use the above construction method based on the first

generic construction to construct linear codes from plateaued functions.

6.3 New Classes of Three-Weight Linear Codes From Plateaued Functions

We construct new classes of linear codes with few weights from plateaued functions
in arbitrary characteristic and determine their weight distributions. We shall analyze

separately the binary case in Subsection [6.3.1]and the odd case in Subsection [6.3.2]

6.3.1 A New Class of Binary Three-Weight Linear Codes from Plateaued Boolean

Functions

This subsection provides a new class of binary linear codes with few weights from

plateaued Boolean functions with their weight distributions.

Let p = 2 and let ¥ be a polynomial over Fy. with ¥(0) = 0. Assume that
Yi(z) = Ty (U())

is an s-plateaued Boolean function, where n+ s is an even integer with 0 < s < n—2
for n > 2. We consider the linear code Cy, defined by (6.11)). For & € Fy and 3 €

Fyn, we compute the Hamming weights of the codewords and the weight distribution

of Cy,. By Proposition clearly
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e if « = 0, we have wt(¢yo) = 0 and wt(éy g) = 2"~ for 5 # 0,

1/\

o if o = 1and § € Fon, we have wt(é1,3) = 2" — x4, (5).

Hence, by Lemma [2.6) we have for all 5 € Fan,

n—s—2

nts—2 P n—s—2 .
2 2n=s=L L 275 times,

2n=1 9
wt(Crp) = 2771, 2" — 27 times,

_ n+s—2 e n—s—2
on=l 4 97— 25Tl 275 times.

The following theorem formalizes the Hamming weights of the codewords and the

weight distribution of Cy, .

Theorem 6.7. Let p = 2 and let Cy, be the binary linear [2™ — 1,n + 1] code defined
by . Assume that 1)1 is an s-plateaued Boolean function, where n + s is an even
integer with 0 < s < n — 2 forn > 2. Then, the Hamming weights of the codewords
and the weight distribution of Cy, are as in Table[6.2]

’ Hamming weight w ‘ Multiplicity A,, ‘

0 1
2n—1 2n+1 _9on=s _ 1
on—1 _ 2”+;_2 on—s—1 + 2”_‘;_2
on—1 4 27’”;’2 gn—s—1 _ 2"75*2

Table 6.2: The Hamming weights of the codewords and the weight distribution of
Cy, when p = 2 and n + s is even.

Below, we give a 3-plateaued Boolean function and a corresponding binary linear

code.

Example 6.3. Let V() = (*®2° + (*2® be the polynomial over Fys, where F5s = (()
with (5 +(2+1 = 0. Then, ¢y (x) = Tr2 (U(x)) is the 3-plateaued Boolean function,
and so the set Cy, in (6.11)) is the binary three-weight linear code with parameters
31, 6, 8], weight enumerator 1+ 3y®+59y*0+y** and weight distribution (1,3,59,1).
Hence, the Hamming weights of the codewords and the weight distribution of Cy, are
as in Tablel6.31

We now consider the case when p is an odd prime. In odd characteristic, not every p-

ary plateaued function can be used in this construction method because of their Walsh
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Hamming weight w | Multiplicity A,,

0 1
16 59
8 3
24 1

Table 6.3: The Hamming weights of the codewords and the weight distribution of
Cy, whenp =2,n=5and s = 3.

transform values. Thereby, we should use the super subclass of the class of plateaued

functions, which is the class of weakly regular plateaued functions.

6.3.2 New Classes of Three-Weight Linear p-Ary Codes from Weakly Regular

Plateaued Functions

In this subsection, we construct new classes of linear p-ary codes with few weights
from weakly regular plateaued p-ary functions and determine their weight distribu-

tions.

From now on, we assume that p is an odd prime and a p-ary function
Yi(x) = e (V(2)) (6.12)

is weakly regular s-plateaued, where s is an integer with 0 < s < n—2forn > 2 and

U is a polynomial over F,» with ¥(0) = 0. We consider the linear code C,, defined

by (6.11).

We first compute the Hamming weights of ¢, g for all @ € F,, and § € F,», and then
determine the weight distribution of Cy,. In view of Proposition [6.11} if o = 0, we
have wt(¢o,0) = 0 and wt(éyg) = p" — p"~ " for B € Fy.. And for all o € Fj and
B € Fyn, we have

wtlins) =" =1 = 2 o (a7 9)). (6.13)

w€elFy

To compute this, we first need the following lemma.
Lemma 6.4. Let f : F,n — T, be s-plateaued. Define the sets Z(x;) := {(o, ) €
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Fr X Fpr : Xp(™'8) = 0} and

S(X7) = {(o, B) € Fy x Fpn : Xy(a'B) # 0},

where o is the multiplicative inverse of o € IF5. Then, the sizes of Z(X) and S(X5)
are equal respectively to (p — 1)(p™ — p"~*) and (p — 1)p"~*

Proof. By Lemma [2.5] we have #{ € F,» : X7(3) = 0} = p" — p"* and
#Supp(xy) = p"*, where Supp(xs) = {f € Fpn : X7(8) # 0}. Notice that
for each o € IF5, the element 3 € IF» can be viewed as o' §, that is, Fjn = {a7'3 :
B € Fyn}. Hence, we have #2(x7) = (p—1)(p" —p"°) and #S(Xf) = (p—1)p"~*
The proof is complete. ]

We should now consider two cases: the Walsh transform value of plateaued ¢, is
either zero or nonzero. For all o € ]F]*, and 8 € [F,», we have the following.

If Xo, (@7 18) = 0, ie., (o, B) € Z(Xy, ), then we have wi (¢, ) = p" — p" !, that is,
the number of codewords with Hamming weight p* — p"~!
Lemma[6.4l

If Xy, (a™1B) # 0, ie., (o, 8) € S(Xy,); equivalently, a3 € Supp(xy, ), then by
Lemmal6.1]

is the size of Z(3y,) by

Yo (a718) = ey/p ggeT ), (6.14)

where € = £1, p* denotes <’71> p and g is a p-ary function over Supp(xy, ). Notice

that we have s
s vt a nts
Oa(vp*+):0a(\/ﬁ) i :(5) VP +-

Then we get
0 (0T (07 B)) = (e (2) 7 Vg =
n+s n+sy ~woag(a=?! o n+s w n+s T8 cwag(a
e(2)" aulvrg T e (2 (;) N
n+s

n+s
Note that (%) = land /p*""° = /p""* if n + s is even; otherwise, (%) -
(9> for a € *. Hence, by (6.13) we have
p p

) e = (8) VI e (2) €7 it s odd,
wt(Cop) =

—1

nts wo -1 .
pt—ptt —ep 2 IZWE]F* g(e™"8) if n + s even.

We now investigate two cases.
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e Assume n + s odd. If g(a™'3) = 0, then

wt(Cap) =p"—p"t - ( >W+Z (p) =p"=p"

wEIE‘*

where we used 3. <—> = 0. If g(a™'B) # 0, then we have

> (%) (E)T D = agarn | D (E> & | = Tagta1p) (VD7)

welFy welFy p
049(04_16))\/—*
=\ P,

( p

where we used ) cp. (%)§; = v/p*. Hence,

wt(6a7ﬁ) — pn o pn 1 o 61 \/—n+8+1 <
p

a (a™18)
v) ()
n+;+1 - g( 716)
o an—1 —_]_ s— @
=p P € ( 3 > 2 <_ ; > ’
where we used the fact that (%) (%) 4 <a?f> in the first equality, and p* =
<_71> p and (‘%) = 1 in the second equality.

e Assume n + s even. If g(a™!) = 0, then we have
n+s—2

wt(Cap) =p" — Pl —ep 2 (p—1).

If g(a='B) # 0, we have ZweF* awg(@™*B) _ 1 since Zp_é 27 is the minimal

n s—2

polynomial of &, over Q. Hence, we have wt(¢, g) = p" — p" ' + ep” B

The following theorem collects the Hamming weights of the codewords of Cy, .

Theorem 6.8. Let Cy, be the linear p-ary code defined by (6.11)). Assume that 1, in
(6-12) is weakly regular p-ary s-plateaued with 0 < s < n — 2 for n > 2. Then, for
all« € ¥, and 8 € [Fyn, the Hamming weights of ¢, g are given as follows.

For a = 0, we have wt(¢o ) = 0 and wt(co5) = p™ — p"~* for § # 0.

Fora € Fj and 3 € Fpn,

i (00 §) € Z(Tn) i 0~5 & Supp(Ti), then we get wh(nss) = 7 — =,
if (a, B) € S(Xy) , L€, '8 € Supp(Xyy, ), then

e whenn + s is odd,

i pr—p" if gla”'B) =0,
wt(ca 5) = ntstl
) 2

n n— _ n+s—1 Oéfl . _
P —p 1—6<71) ptE (9(]05))’ lfg(a lﬁ)EF;,




o whenn + s is even,

1 n+s—2

pr—pt—elp—1p 2, ifglaB) =0,
n+s—2

wt(ca,ﬁ) = n n—1 . —1 %
pr=p" T tep 2, ifgla™'pB) € Fy,

where ¢ = +1 and g is a p-ary function over Supp(Xy, ) by and ot is

the multiplicative inverse of a € 7.

Our next aim is to determine the weight distributions of the constructed code Cy,
given in Theorem [6.8] To do this, we need to compute the number of w € Supp(Xy,)
such that g(w) = j for all j € F,. Set

Ny(j) := #{w € Supp(Xy,) : 9(w) = j}. (6.15)

Since #Supp(Xy, ) = p"~ %, we have

> Ny =" (6.16)
Remark 6.9. If g is balanced over Supp(xy, ), N,(j) = p"*~! forall j € F,,.

If g is unbalanced over Supp(Xy, ), the following proposition allows us to compute
the NV, (j) for all j € F,. By Lemma[6.3] we have

S g e — ), (6.17)
weSupp(Xy;)
where ¢ = £1 denotes the sign of X, and v € {1,4} in C.
Proposition 6.12. Under the above notations and the assumption that g is unbalanced

over Supp(xy, ), we have the following. If n — s is even, then

n—s—2

P e 2 (p— 1), G=0,

N,(j) = s
’ P et j e F;.
Ifn — s is odd, then
n—s—1 .
) .] = )
’ P e (l) , JER,

where € = +1 is the sign of Xy,
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Proof. By (6.17), for x = 0 we have
S ) = ),

weSupp(Xyp »)

equivalently,

3
L

Ny ()& = evp™,

<.
Il
=)

where we used 11 (0) = 0. Hence, we have
p—1
D N ()€ — evp T =0. (6.18)
=0

If n — s is even, then v = 1 by (6.1). Because Z?;é 27 is the minimal polynomial of
&p over Q, then for all j € F, we have

N,(j) =a, and Ny(0) =a+ep 2

for some constant a. By , we geta +ep 2 4 (p— 1)a = p"* from which we

deduce that ¢ = p" 57!
1, ifp=1 (mod4),
i, ifp=3 (mod 4).

Recall the well-known identity: (see, e.g., [S0])

p‘1<j> ;) vp iftp=1 (mod 4),
B iv/p, ifp=3 (mod 4),

If n — sis odd, then v =

that is, Z?;é <%>

5133' = v,/p. Thus, (6.18) can be rewritten as

equivalently,

Then for all j € F%, we have N, (j) = N,(0) +ep™ 3 (%) . By (6.16), we obtain

p

. ey p—1 .
D NG (G) = pN(0) + ep™> (j_)) _ s,

=0 j=0
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Thus, since Z?;é (%) = 0, we get N, (0) = p"*'. Hence, the proof is complete.
O

In the light of Remark[6.9)and Proposition[6.12] we can determine the weight distribu-
tions of the constructed linear code given in Theorem [6.8] We investigate separately

the case n + s is an even integer and the case n + s is an odd integer.

Theorem 6.9. Let Cy, be the linear p-ary code defined by . Assume that
in is a weakly regular p-ary s-plateaued, where n + s is an even integer with
0 < s < n-—2forn > 2. Then, the Hamming weights of the codewords and the
weight distributions of the linear [p" — 1,n + 1], code Cy, are as in Tables and
if g is unbalanced and balanced over Supp(Xy, ), respectively, where ¢ = £1 is
the sign of Xy, -

’ Hamming weight w ‘ Multiplicity A, ‘
0 1
p"—p! ot p—1) -1
pt— prl — e(p — 1)p"+§‘2 pn—s—1<p —1)+ epn_TH(p _ 1)2
prp T et P - D - - (p—1)

Table 6.4: The Hamming weights of the codewords and the weight distribution of
Cy, when p is odd and n + s is even for unbalanced g

Hamming weight w \ Multiplicity A, ‘
0 1
pt—p"! Pt =p"tp -1 -1
P opl—e(p—pT P (1)
P —p" et P =p -1

Table 6.5: The Hamming weights of the codewords and the weight distribution of
Cy, when p is odd and n + s is even for balanced g

Proof. By Theorem [6.8] the numbers of codewords with Hamming weight 0 and of
Hamming weight p™ — p"~! are equal respectively to 1 and p" — 1 + #Z(Xy,) =

p"tt 4 pnm — pnstt — 1. We now determine the weight distribution of Cy, for
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(o, B) € S(Xun)s 1., 13 € Supp(Xy,)- Set
Z(g) ={(,B) € S(Xu) : ga™'B) = 0},
S(g) = {(a,B) € S(Xu,) - gla™'B) # 0}.

By Lemma we have #Z(g) = (p — 1)N,(0) and #S(g9) = (p — )p"* —
#2Z(g). Assume that g is unbalanced over Supp(y, ). Then, since N, (0) = p" 51+

ep"=*=2/2(p — 1) by Proposition [6.12} we have

(6.19)

#Z(g)=p" " p—D+ep 2 (p—1)°

and #S(g) = (P"° — p" ) (p — 1) — ep"*=2/2(p — 1)2. Hence, by Theorem
the numbers of codewords with Hamming weight p™ — p"~! — ¢(p — 1)p(n+s=2)/2
and with Hamming weight p” — p"~! 4 ep™*5=2)/2 are equal to #Z(g) and #S(g),

respectively. Hence, the proof of the first assertion is complete.

Assume that g is balanced over Supp(Xy, ). By Remark N5 (0) = p"~*71, and so
we have #Z(g) = p"*1(p— 1) and #S(g9) = (p"* — p" > 1) (p — 1). Hence, as

in the first case, the second assertion follows. U]

Remark 6.10. In Theorem[6.9] the minimum Hamming distance of C, is given by

pr—ptt— (p—pTE, ife=1,
nt+s—2

pt—ptt—p 2, ife=—1.

d:

We now give a weakly regular 3-ary 1-plateaued function and a corresponding linear

3-ary code for p = 3 and n = 3.

Example 6.4. Let U : F3s — Fss be the map defined by V(x) = (#2234 "zt + (22,
where F%, = (C) with (* 4+ 2¢ +1 = 0. The function i, (z) = Trgs(\lf(x)) is the
weakly regular 3-ary 1-plateaued with

Xon (W) € {0, -95“}

forall w € Fss, where g is the unbalanced 3-ary function. Then, the set Cy, in ((6.11))
is the three-weight linear 3-ary code with parameters [26, 4, 15|3, weight enumerator
1+ 169" + 62y'® + 2y>* and weight distribution (1,16,62,2). Hence, the Hamming
weights of the codewords and the weight distribution of Cy, are as in Table[6.6]
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Hamming weight w

Multiplicity A,

0 1
18 62
24 2
15 16

Table 6.6: The Hamming weights of the codewords and the weight distribution of
Cy, whenp =3,n=3and s = 1.

The following theorem determines the weight distributions of the constructed linear

code given in Theorem [6.8| when n + s is an odd integer.

Theorem 6.10. Let Cy, be the linear p-ary code defined by . Assume that
Yy in is a weakly regular p-ary s-plateaued, where n + s is an odd integer
with 0 < s < n — 1. Then, the Hamming weights of the codewords and the weight
distributions of [p" —1,n+1], code Cy, are as in Tablesand if g is unbalanced
and balanced over Supp(Xy, ), respectively, where ¢ = =+1 is the sign of X, and

nts+1

n:(%> T4,

’ Hamming weight w ‘ Multiplicity A,, ‘
0 1
p—p"! Pt =t p - 1) -1
propt T e | L T e (- 1)
P e T | L —ep T ) (p— 1)?

Table 6.7: The Hamming weights of the codewords and the weight distribution of
Cy, when p and n + s are odd for unbalanced g

Hamming weight w Multiplicity A,,
0 1
pr—p"! Pt = p— 1)~ 1
R W p - 1)?
L R sp" T p—1)°

Table 6.8: The Hamming weights of the codewords and the weight distribution of
Cy, when p and n + s are odd for balanced g

Proof. Recall that the set Z(g) and the value NV, (j) were defined in (6.19) and (6.15)),
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respectively. By Lemma we have #2Z(g) = (p — 1)N,(0), where N, (0) =
p" 7! (see Remark |6.9| and Proposition [6.12). Hence by Theorem the number

of codewords with Hamming weight p" — p" ! is
p” — 1+ #Z(@) + #Z<g) — pn+1 4 2pn—s _pn—s+1 . pn—s—l — 1.

Moreover, the number of codewords with Hamming weight p” — p"~! — enp(*+s—1)/2

and of Hamming weight p” — p"~' + enp"*+s~1)/2 is equal respectively to

S - DNG)

jE{l,..‘,pfl},(%)zl
and
> (p — DN(j)-
jG{l,...,p—l},(%):—l

If g is unbalanced, then by Proposition [6.12] respectively to:

n—s— - 1 2
Y -t et = 2o
jG{l,..‘,pfl},<%)=l

n—s—1

P+ )

and

S - —e ) = T — g ),
jE{l,...,p—l},(%):—l
If g is balanced, then by Remark respectively to: @p”*s* and @p"**l.
The proof is complete. 0
Remark 6.11. In Theorem [6.10] the minimum Hamming distance of Cy, is given by
n+s—1

d=p"—p" ! —p 2 . Its multiplicity depends on the values ¢ = &1 and = %1

in the case of unbalanced g.

Remark 6.12. If we assume only the weakly regular bent-ness in this section, then
we can obviously recover the results given in [58] by Mesnager. Therefore, this sec-
tion can be viewed as an extension of [58]] to the notion of weakly regular plateaued

functions.

6.4 Secret Sharing Schemes from the Constructed Linear Codes

In this section, we investigate the access structures of the secret sharing schemes

based on the dual codes of the constructed linear codes from plateaued functions.
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Remark 6.13. In the light of the results given in Section the construction of lin-
ear codes all of whose nonzero codewords are minimal has a significant importance.

Such linear codes generate secret sharing schemes with “nice” access structures.

Below, we first show that all nonzero codewords of the constructed linear codes are
minimal for almost all cases (in the light of Lemma[2.7) and then describe the access
structures of the secret sharing schemes based on the dual codes (in the light of Theo-
rem[2.2). We consider separately the linear codes Cy, given in Theorems and
6.10!

The Constructed Binary Linear Code in Theorem The following theorem
shows that all nonzero codewords of the constructed binary linear code from plateaued

Boolean function are minimal for almost all cases.

Theorem 6.11. Let Cy, be the binary linear [2" — 1,n + 1,27~ — 2(0+572)/2] code
given in Theorem @ Then, all nonzero codewords of Cy, are minimal for n > 4 and

0<s<n-—4

Proof. From Table we have wy;, = 271 — 200t5-2)/2 and wp.. = 2771 +
20n+s=2)/2 For 0 < s <n —4and n > 4, we get

on—1 _ 2(n+s—2)/2

Wmin

< Winax - on—1 4 9(n+s—2)/2

1
2
since 3 - 2("+9)/2 9 Hence, by Lemma all nonzero codewords of Cy, are
minimal forn > 4and 0 < s <n — 4. ]

The following corollary identifies the access structure of the secret sharing scheme

based on the dual code of the constructed binary linear code.

Corollary 6.4. Let C,, be the binary linear [2" — 1,n + 1,271 — 200+5-2)/2] code
given in Theoremand let G = 80,81, - - -, 8an_2| be its generator matrix. Let Cil
be its dual [2" — 1,2 — n — 2, d*] code, where d* denotes the minimum Hamming
distance of Cil. Assumen > 4and 0 < s < n — 4. In the secret sharing scheme

based on C1j1 :

o The number of participants is 2" — 2, and there exist 2" minimal access sets.
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° Ide = 2, the access structure is given as follows: If g;, 1 <1 < 2" — 2, isa
multiple of g, then P, must be in all minimal access sets; otherwise, P; must

be in 2" out of 2" minimal access sets.

o Ifdt > 3, for any fixed 1 < t < min{n, d*+ — 2}, every set of t participants is

involved in 2"t out of 2" minimal access sets.

Proof. By Theorem every nonzero codeword of Cy, is minimal for n > 4 and
0 < s < n — 4. Hence, the desired results follow directly from Theorem 2.2 O]

The Constructed Linear p-Ary Code in Theorem [6.9f We now prove that all
nonzero codewords of the constructed linear p-ary codes from weakly regular plateaued

functions are minimal for almost all cases. There are two cases: ¢ = 1 and e = —1.

Theorem 6.12. Let C,, be the linear [p"* — 1,n + 1,p" — p"~! — (p — 1)p+s=2/2)
p-ary code given in Theorem|[6.9|for € = 1. Then all nonzero codewords of Cy, are

minimal forn > 4and ) < s < n — 4.

Proof. For ¢ = 1, we have wyy, = p" — p" ' — (p — Dp72/2 and wpay =

p" — p" 1+ p("+5=2)/2 The inequality

Pl _ W _ Pt p" = (p = p
p Wmax PP — p* L+ plnts—2)/2
can be reduced to (p + 1)p"*+*)/2 < p*. If n > 4 and 0 < s < n — 4, clearly we have
(p + 1)p"+)/2 < p" for an odd prime p. By Lemma 2.7} all nonzero codewords of

Cy, are minimal forn > 4and 0 < s <n —4. ]

We describe the access structure of the secret sharing scheme based on the dual code

of the constructed linear p-ary code.

Corollary 6.5. Let Cy, be the linear [p" — 1,n + 1,p" — p"~t — (p — 1)pn+s=2/2)
p-ary code given in Theorem and let G = [go, 81, ..., 8pm_2] be its generator
matrix. Let qul be its dual [p" — 1,p" — n — 2,d*], code, where d*+ denotes the
minimum Hamming distance of qul. Assumen > 4and 0 < s < n — 4. In the secret

sharing scheme based on C$1 :
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o The number of participants is p" — 2, and there exist p" minimal access sets.

o Ifd*+ = 2, the access structure is given as follows: Ifg;, 1 < i < p" —2, isa
multiple of g, then P; must be in all minimal access sets, otherwise, P; must
n—1

bein (p — 1)p™~" out of p™ minimal access sets.

o Ifdt > 3, forany fixed 1 < t < min{n, d*+ — 2}, every set of t participants is

involved in (p — 1)'p™ " out of p" minimal access sets.

Proof. By Theorem [6.12] every nonzero codeword of Cy, is minimal for n > 4 and
0 < s <n — 4. Hence, the desired results follow directly from Theorem 2.2] O]

Theorem 6.13. Let Cy, be the linear [p" —1,n+1, p" —p" =t —p"*+s=2/2] p_ary code
given in Theorem|[6.9 for ¢ = —1. Then all nonzero codewords of Cy, are minimal for

n>4and ) < s <n-—4.

Proof. For e = —1, we have wy, = p" — p" ' —p"=2/2 and wpay = p" — p" ' +
(p — 1)p™+s=2/2 As in the proof of Theorem [6.12, forn > 4and 0 < s < n — 4,

we have
p—1  wWun p" —p" ! — pntem2)/2
< —
p Wmax  P" — PV L+ (p— 1)pnts=2)/2

since (p* —p+1)p+*)/2 < p*(p —1). Hence, by Lemma 2.7} all nonzero codewords
of Cy, are minimal forn > 4and 0 < s <n —4. L]

Similarly, the following corollary describes the corresponding access structure.

Corollary 6.6. Let Cy, be the linear [p" — 1,n + 1,p" — p"~t — p+s=2/2] p_ary
code given in Theorem and let G = [go, 81, - .., Bpn_2| e its generator matrix.
Let Cy;, be its dual [p" — 1,p" — n — 2,d"], code, where d* denotes the minimum
Hamming distance of Cljl. Assume n > 4 and 0 < s < n — 4. In the secret sharing

scheme based on le :

o The number of participants is p" — 2, and there exist p" minimal access sets.

o Ifd+ = 2, the access structure is given as follows: Ifg;, 1 <i < p" — 2, isa
multiple of gy, then P; must be in all minimal access sets; otherwise, P; must

be in (p — 1)p™ ! out of p™ minimal access sets.
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o Ifdt > 3, for any fixed 1 < t < min{n, d*+ — 2}, every set of t participants is

involved in (p — 1)'p" " out of p™ minimal access sets.

Proof. By Theorem every nonzero codeword of Cy, is minimal for n > 4 and
0 < s < n — 4. Hence, the desired results follow directly from Theorem 2.2 O]

The Constructed Linear p-Ary Code in Theorem [6.10, The following theorem
proves that all nonzero codewords of the constructed linear p-ary code from weakly

regular plateaued function are minimal for almost all cases.

Theorem 6.14. Let Cy, be the linear [p" —1,n+1, p" —p" = —p+s=D/2] n_ary code
given in Theorem Then all nonzero codewords of Cy, are minimal for n > 3
and ) < s<n-—3.

Proof. There are two cases: € = 1 and € = —n. For both values of e = +1, we have
that Wy = p" — p* ' — p 5= D/2 and wya = p* — p? ! + p+5=D/2 Then the
inequality

p—1  wyw pt—prt—pnteT/2
D Wma | P — L pes D2

can be reduced to (2p — 1)p™+5t/2 < p?(p —1). If n > 3and 0 < s < n — 3, we
can easily show this inequality for an odd prime p. Hence, by Lemma[2.7] all nonzero

codewords of Cy, are minimal forn > 3and 0 <s <n — 3. O

The following corollary describes the access structure of the secret sharing scheme

based on the dual code of the linear p-ary code.

Corollary 6.7. Let Cy, be the linear [p" — 1,n + 1,p" — p"~! — p+s=D/2) pary
code given in Theorem and let G = [go, &1, - . ., 8pn_2| be its generator matrix.
Let Cil be its dual [p" — 1,p"™ — n — 2,d*], code, where d* denotes the minimum
Hamming distance of qul. Assume n > 3 and 0 < s < n — 3. In the secret sharing

scheme based on C$1 R

o The number of participants is p" — 2, and there exist p" minimal access sets.
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o If d+ = 2, the access structure is given as follows: If g;, 1 <1 < p"—2 isa
multiple of g, then P; must be in all minimal access sets, otherwise, P; must

be in (p — 1)p™ ! out of p" minimal access sets.
o Ifd*t > 3, for any fixed 1 < t < min{n,d*+ — 2}, every set of t participants is

involved in (p — 1)'p™ " out of p"™ minimal access sets.

Proof. By Theorem [6.14} every nonzero codeword of Cy, is minimal for n > 3 and

0 < s < n — 3. Hence, the desired results follow directly from Theorem ]

Remark 6.14. Consequently we obtained linear codes Cy;, all of whose nonzero code-
words are minimal if n > 4 and 0 < s < n — 4. Hence, the secret sharing schemes

based on the dual codes le have “nice” access structures given in Theorem
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CHAPTER 7

CONCLUSION

Bent and plateaued functions have attracted attention since their introduction in the
literature due to their role in diverse domains of Boolean and vectorial functions for
sequences and cryptography like correlation immune functions and orthogonal arrays
(since the order of resiliency and nonlinearity is strongly bounded only by plateaued
functions), APN functions and substitution-boxes (since plateaued APN functions
in odd dimension are almost bent), and because, like partially-bent functions, they
represent a natural class for generalizing at the same time bent functions and quadratic
functions, but they form a larger class than partially-bent functions, also including all
semi-bent and near-bent functions. However, their structure is still complicated to
characterize and, little is known about these functions already in characteristic 2 and
still more in arbitrary characteristic. In view of given their importance, it is worth
noting that they have not been studied in detail in a general framework. In this thesis,
we brought out further new results on plateaued functions in arbitrary characteristic,
with the aim of handling the plateaued-ness property of functions and getting various

tools for their future construction.

The main objectives of this thesis are to bring further results on the characterization
of plateaued (vectorial) functions, and to construct linear codes from weakly regular
plateaued functions, in arbitrary characteristic. We hope that this thesis has reduced
to a degree the gap between the interest of the notion of plateaued function and what

1s known on it.

To sum up, the contributions of this thesis are explicitly given as follows.
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In Chapter [3] we obtained a large number of characterizations of bent and plateaued
functions in terms of their Walsh power moments, second-order derivatives and auto-
correlation functions. We next provided several characterizations of vectorial bent
and plateaued functions by using the value distributions of their derivatives, and
Walsh power moments and autocorrelation functions of their nonzero component
functions. We believe that these characterizations are considerably useful to under-
stand the structure of these functions and to design such functions in arbitrary char-
acteristic. We hope that these characterizations will pave the way to construct new
plateaued functions. Actually, using one of these characterizations, we observed the
non-existence of a homogeneous cubic bent function (and a (homogeneous) cubic

plateaued function for some cases) in odd characteristic.

In Chapter [ we first showed the non-existence of a function whose absolute Walsh
transform takes exactly three distinct values (one being is zero), and next introduced
a new class of functions whose absolute Walsh transform takes exactly four distinct

values (one being is zero).

In Chapter [5] we first redefined the notions of partially bent and plateaued functions
over [F,, with ¢ a prime power. Next we gave a concrete example of a 4-ary plateaued,
but not vectorial plateaued Boolean function. Moreover, we provided a large number
of characterizations of g-ary partially bent and g-ary plateaued functions in terms of

their derivatives, Walsh power moments and autocorrelation functions.

In Chapter [6 we obtained a new class of three-weight binary linear codes from
plateaued Boolean functions with their weight distributions. In odd characteristic,
we introduced the notion of (non)-weakly regular plateaued functions, and then pro-
vide the secondary and recursive constructions of these functions. Next, we made
use of weakly regular plateaued functions to construct three-weight linear codes and
then determined the weight distributions of the constructed linear codes. This is the
first time construction of linear codes from weakly regular plateaued functions in odd
characteristic. They are inequivalent to the known ones (since there is no linear code
with obtained parameters) in the literature as far as we know. We finally analyzed the
constructed linear codes for secret sharing schemes, and thereby described the access

structures of the secret sharing schemes based on the dual codes of these codes.
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