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ABSTRACT

ON ALLTOP FUNCTIONS

Hamidli, Fuad
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2017, 53 pages

Let q be a power of an odd prime p and let Fq be a finite field. A map f is called
planar on Fq if for any a ∈ F?q , the difference map (or derivative of f at a point a)
Da(x) = f (x + a) − f (x) is bijective. The definition of Alltop function is that, the
difference map at point a in the given field of odd characteristic is itself planar for any
a ∈ F∗q. Alltop functions have special importance in cryptography and related areas.
For example, they are used to construct mutually unbiased bases (MUB) in quantum
information theory. The map x 7→ x3 is an Alltop function in all finite fields found
by Alltop in 1980 which is an optimal function with respect to the known bounds on
auto and crosscorrelation. Since then it was shown that these kind of functions do
not exist when p = 3 (Hall, Rao, Donovan). So far, it has been found that xq+2 is
also an Alltop function over finite field Fq2 where 3 does not divide q + 1 and this
is EA-inequivalent to x3 whereas its difference function (derivative), which is planar,
is EA-equivalent to x2 (Hall, Rao, Gagola). It is still an open problem whether there
exist another EA-inequivalent Alltop functions or any method to construct new Alltop
functions.
In this thesis classification of q-cubic Alltop binomials over Fq2 is given. Specifically,
x3 + ux2q+1 in Fq2 for u ∈ F∗q2 is analyzed and for this case permutation polynomials
L1(x) = ax + bxq and L2(x) = cx + dxq are found that satisfy L1 ◦ x3 ◦ L2 = x3 + ux2q+1

and L1 ◦ xq+2 ◦ L2 = x3 + ux2q+1 for suitable values of u. Hence, by finding suitable
values of u, it is shown that this class of functions are EA-equivalent to x3 and xq+2.
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Moreover, except x3 and the ones in its equivalence class, it is shown that there is no
Alltop cubic q-monomials in Fq3 . In addition, new notion ”p-ary Alltop functions"
are defined from Fpn to Fp and the relation between Alltop functions and p-ary Alltop
functions over finite fields is given. Furthermore, some trivial and non-trivial p-ary
Alltop functions are found and given.

Keywords: Planar functions, bent functions, Alltop functions, p-ary Alltop functions
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ÖZ

ALLTOP FONKSİYONLARI ÜZERİNE

Hamidli, Fuad
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2017 , 53 sayfa

q herhangi bir tek asal sayının kuvveti ve Fq da sonlu cisim olsun. Fq’de tanımlanan f
fonksiyonunun bütün a ∈ F∗q noktalarındaki türevi, Da f (x) = f (x+a)− f (x) birebir ve
örtense, f fonksiyonuna düzlemsel fonksiyon denir. Eğer bütün a ∈ F∗q noktalarında
türev fonksiyonu kendisi düzlemselse, fonksiyona Alltop fonksiyonu denir. Alltop
fonksiyonlarının kriptografi ve ilgili alanlarda özel önemi vardır. Mesela, bu fonksi-
yonlar kuantum bilgi teorisinde MUB-karşılıklı tarafsız bazlar inşa etmek için kulla-
nılır. x3 bağıntısı Alltop tarafından 1980’de bulunan bir fonksiyon olup aynı zamanda
bilinen oto ve çapraz korelasyon sınırlarına göre ideal ve bütün karakteristiği 3 ol-
mayan sonlu cisimlerde Alltop fonksiyonudur. Daha sonra, bu fonksiyonların p=3’de
varolmadığı gösterilmiştir (Hall, Rao, Donovan). Şimdiye kadar xq+2 fonksiyonunun
da 3-ün q+1-i bölmediği durumlarda Fq2 sonlu cismi üzerinde Alltop olduğu ve bunun
da x3-e EA-eşdeğer olmadığı, ama türevinin düzlemsel olup x2-e EA-eşdeğer olduğu
gösterilmiştir. Günümüzde de yeni EA-eşdeğer olmayan Alltop fonksiyonlarının olup
olmadığı veya yeni Alltop fonksiyonu üretme yöntemleri bilinmemektedir.
Bu tezde Fq2 sonlu cisminde olan q-kübik Alltop tek terimli ve iki terimli fonksiyon-
larının sınıflandırılması yapılmıştır. Özellikle, Fq2 üzerinde ve u ∈ F∗q2 için x3 + ux2q+1

fonksiyonu incelenmiş ve bu durum için uygun u değerlerinde L1◦x3◦L2 = x3+ux2q+1

ve L1 ◦ xq+2 ◦L2 = x3 + ux2q+1 şartlarını sağlayan L1(x) = ax + bxq ve L2(x) = cx + dxq

lineer permütasyonları bulunmuştur. Böylece, u-nun uygun değerlerinde fonksiyonun
x3 ve xq+2-ye EA-eşdeğer olduğu kanıtlanmıştır. İlaveten, x3 ve eşdeğer klasları hariç
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Fq3’de başka Alltop kübik q-monomialların (tek terimli) varolmadığı kanıtlanmıştır.
Ek olarak, Fpn’den Fp’e "p-li Alltop fonksiyonları" kavramı tanımlanmış ve sonlu ci-
simler üzerinde Alltop fonksiyonları ve p-li Alltop fonkisyonları arasındaki bağlantı
verilmiştir. Aynı zamanda bazı bilindik ve bilinmeyen örnekler bulunup verilmiştir.

Anahtar Kelimeler: Düzlemsel fonksiyonlar, bükük fonksiyonlar, Alltop fonksiyon-
ları, p-li Alltop fonksiyonları
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CHAPTER 1

INTRODUCTION

In communication systems it has become very often to find new sequences with op-

timal correlation properties. For example, in the designing process of Code Division

Multiple Access systems and similar structures like signal sets, some correlation types

such as rms (root mean square) and maximum correlation amplitudes are used. [12].

There are known bounds that are counted as standard for these kinds of correlation

types. Welch’s bound [33] and Levenstein’s bound [16] are the examples of these

bounds.

In 1980 W. O. Alltop [1] constructed complex sequences for spread spectrum radar

and communication, which met the Welch bound. He used a cubic polynomial over

the field Fp for prime p > 3. However, Alltop did not know that this work had results

in quantum physics, and his work was not noticed until the appearance of "mutually

unbiased bases" notion in quantum information theory.

This construction was extended in [17] for all prime powers ≥ 5 and used to construct

MUB (Mutually Unbiased Bases), which is an essential tool in quantum informa-

tion theory. MUB’s were first constructed in 1989 [35] by using quadratic functions

over a prime power field. In [12] and in [29] this construction was generalized by

using planar functions, the functions that have a wide applications in cryptography.

Furthermore, in [12] it was shown that the sequences constructed in this way meet

Levenstein’s bound.

Although planar functions and Alltop functions are both can also be used to construct

MUB’s, constructing inequivalent MUB’s, from inequivalent functions still remains

as one of the difficult problems of quantum information theory.

In 2012 it was shown that Alltop functions do not exist over F3n for any positive inte-
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ger n [13]. After a while, in 2013 new class of Alltop functions were found and it was

shown that this class of function is EA- inequivalent to x3 which was the only known

Alltop function over Fq2 where q is an odd prime power. [14].

It is still an open problem whether there exist another EA-inequivalent Alltop func-

tions or any method to construct new Alltop functions.

This thesis is organized as following manner:

In the first part some basic definitions are given; bent functions, perfectly nonlinear-

planar functions, semifields are introduced and some properties, that are also applica-

ble to Alltop functions, are mentioned.

In the second part, definition of Alltop functions and some analogue properties due to

the planar functions are given. Moreover, results up to 2013 about Alltop functions

are explicitly mentioned.

In the third part, classification of all q-cubic Alltop monomials and binomials over

Fq2 is given. Specifically, x3 + ux2q+1 in Fq2 for u ∈ F∗q2 is analyzed and for this case

permutation polynomials L1(x) = ax + bxq and L2(x) = cx + dxq are found that satisfy

L1 ◦ x3 ◦ L2 = x3 + ux2q+1 and L1 ◦ xq+2 ◦ L2 = x3 + ux2q+1 for suitable values of

u. Hence, by finding suitable values of u, it is shown that this class of functions are

EA-equivalent to x3 and xq+2. Moreover, except x3 and the ones in its equivalence

class, it is shown that there is no Alltop cubic q-monomials in Fq3 .

In the fourth part, new notion “p-ary Alltop functions” is defined from Fpn to Fp and

the relation between Alltop functions and p-ary Alltop functions over finite fields is

given. Moreover, cubic p-ary Alltop functions are characterized and some trivial and

non-trivial p-ary Alltop functions are found and given.

Finally, in the last part, MUB’s are defined and construction method from both-planar

functions and Alltop functions is revised. Furthermore, the results of [14] are given.

1.1 Bent Functions

Bent functions were first introduced by Rothaus in 1976 [28] as a combinatorial issue

with interesting property; that is these functions have maximum distance to all affine

functions. Bent functions are Boolean functions that have extreme nonlinear prop-

erties and have a wide applications in cryptography, coding theory, sequence theory,
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design theory, combinatorics and other fields.

There is a jubilee survey in [6] and books [25], [32] are also completely devoted to

bent functions, especially characterizations, generalizations, variations and applica-

tions are mentioned.

In this part it will not be mentioned deeply about bent functions, but will be given a

brief introductory definitions and properties, especially in odd characteristic.

In forth part, some characterizations of cubic bent functions are mentioned.

1.1.1 Binary Bent Functions

Definition 1.1.1. Let f : F2n → F2 be a Boolean function. Walsh transform of a

function f at a point α is defined as

W f (α) =
∑
x∈F2n

(−1) f (x)+x·α

where x · α =
∑n

i=1 xiαi denotes the inner product of binary vectors α = (α1, α2, ...αn)

and x = (x1, x2, ..., xn) in F2n .

Some basic properties of Walsh transform is given as following:

Lemma 1.1.2. [23]

∑
α∈F2n

W f (α)W f (α + β) =


22n, if β = 0.

0, if β , 0.
(1.1)

Corollary of this lemma is Parseval equation:

Corollary 1.1.3. ∑
α∈F2n

W f (α)2 = 22n

This corollary implies that the average value of the square of the Walsh transforms

at point α is 2n. If Walsh transforms of a function f are the same at all points, then

function is called as bent function.

Definition 1.1.4. The Boolean function f (x) is a bent function if W f (α) = ±2n/2 for

all α ∈ F2n .
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It follows as a consequence that, binary bent functions exist only when n is even.

There are several constructions of binary bent functions and there are close connec-

tions between bent functions and coding theory.

1.1.2 Generalized Bent Functions

Generalized bent functions or p-ary bent functions were first introduced by Kumar,

Scholtz and Welch in 1985 in odd characteristic, similar to binary bent functions.[18]

Definition 1.1.5. Let f : Fpn → Fp be a p-ary function, where p is a prime number

and n is a positive integer.

Then the Walsh transform of a function f at a point α is defined as

W f (α) =
∑
x∈Fpn

ε f (x)−Trn(αx)
p

where Trn : Fpn → Fp is the absolute trace function and εp is the complex primitive

p-th rooth of unity.

Lemma 1.1.6. (Parseval equation)∑
α∈Fpn

W f (α)2 = p2n

Similar to the binary bent functions, generalized bent functions are defined as follow-

ing.

Definition 1.1.7. Let f : Fpn → Fp be a p-ary function, where p is a prime number

and n is a positive integer.

Then f (x) is a p-ary bent function (generalized bent) if

|W f (α)| = ±pn/2

for all α ∈ Fpn .

The bent function f is said to be a regular bent function if

p−n/2W f (α) = εg(α)
p

4



where g : Fpn → Fp and α ∈ Fpn .

The bent function f is said to be a weakly regular bent function if

ωp−n/2W f (α) = εg(α)
p

for some complex number ω where |ω| = 1.

f (x) is called s-plateaued if |W f (α)| ∈
{
0, p

n+s
2
}

for all α ∈ Fpn and a fixed integer

0 ≤ s ≤ n. It is clear that, bent functions are 0-plateaued functions.

Recently new characterizations of p-ary bent functions and plateaued functions by

means of the moment of the walsh spectrum in odd characteristics are studied in [24],

[27], [26].

In this part, these new characterizations are given and some other characetizations

about cubic p-ary bent functions are left to the forth chapter.

Definition 1.1.8. [24] Let f be a p-ary function from Fpn to Fp. Then for any nonneg-

ative integer i, the 2i-th moment of Walsh transform of f is defined as

S i( f ) =
∑
α∈Fpn

|W f (α)|2i

with convention that S 0( f ) = pn when i = 0.

Theorem 1.1.9. [24] Let f : Fpn → Fp. Then S 2( f ) ≥ p3n and equality holds if and

only if f is bent.

Proposition 1.1.10. [24] Let f : Fpn → Fp. Then

S 2( f ) = pn
∑

a,b,x∈Fpn

εDbDa f (x)
p

where DbDa f (x) = f (x + a + b) − f (x + a) − f (x + b) + f (x), which is known as the

second derivative of a function.

Theorem 1.1.11. [24] Let f : Fpn → Fp and ℵ( f ) be the size of the set {(a, b, x) ∈

F3
pn : DbDa f (x) = 0}. Then, f is bent if and only if

ℵ( f ) = p2n + p3n−1 − p2n−1.

Corollary 1.1.12. [24] Let f : Fpn → Fp. If f is a bent function then∑
α∈Fpn

|W f (α)|2i = pn(i+1)

for all i ∈ N.
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Corollary 1.1.13. [24],[27] Let f : Fpn → Fp. Then f is bent if and only if∑
a,b,x∈Fpn

εDbDa f (x)
p = p2n.

1.2 Planar Functions

The notion of “Planar functions” was first used by Dembowski and Ostrom, who

introduced it in 1968 first time to describe projective planes with special properties in

finite geometry.

Recently, they attracted an interest from cryptography because they have some special

properties, like an optimal resistance to differential cryptanalysis.

In cryptography, planar functions were first considered in the studies of Nyberg and

renamed as “perfect nonlinear” (PN). These functions have been studied intensively

and have wide applications in cryptography. There is a detailed survey on perfect

nonlinear functions in [3] and some theoretical results of last 25 years are given.

In addition, to illustrate the use of perfect nonlinear and almost perfect nonlinear

functions some cipher examples are given.

Basic definitions about planar functions are given in the following manner.

Definition 1.2.1. Let f be a function from Fpn to Fpn . Derivative of a function f at a

point a is defined as Da f (x) = f (x + a) − f (x) for every a ∈ Fpn .

Definition 1.2.2. Let F = Fpn and p be an odd prime number.

A function f : F→ F is called Dembowski-Ostrom (DO) polynomial if the polynomial

f (x) is in the shape of the following form:

f (x) =

k∑
i, j=0

ai jxpi+p j

where ai j ∈ Fpn . Moreover, f is called quadratic if it is a sum of DO polynomial and

an affine polynomial.

Definition 1.2.3. Let p be an odd prime and F = Fpn .

A function f : F → F is called a planar function or perfectly nonlinear (PN) if for

each a , 0 and a ∈ F the derivative defined as above is bijective.
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Or, equivalently we can say that f is planar over finite field Fq if and only if

4a(x) = f (x + a) − f (x) − f (a) is one to one for any 0 , a ∈ Fq.

Observe that, planar functions do not exist in even characteristic, since in even char-

acteristic Da f (x) = Da f (x + a) which contradicts with the definition of planarity.

However, recently by changing the definition, new "planar" functions in even charac-

teristic are defined ([30]) and studied.

Example 1.2.4. Let Fpn be finite field. Then f (x) = x2 is a planar function over Fpn

(folklore). This is obvious, since 4a(x) = f (x + a) − f (x) − f (a) = 2ax which is one

to one function.

Analogue of perfect nonlinear (planar) functions in even characteristics is APN (al-

most perfect nonlinear) functions which is defined as below.

Definition 1.2.5. Let p = 2 and F = F2n .

A function f : F→ F is called an almost perfectly nonlinear (APN) if for each a , 0

and a ∈ F the derivative defined, is two-to-one.

Equivalently, f is an APN if and only if kernel of 4a(x) has the dimension 1 over finite

field F.

Planar functions have also interesting connections between finite commutative semi-

fields and finite geometry (see for example [7], [10], [11]) which is revised in the

following subsection.

1.3 Semifields

Definition 1.3.1. A ring with left and right distributivity with no zero divisors is called

a presemifield, and a presemifield with multiplicative identity is called a semifield.

A semifield need not to be commmutative nor associative. However in the finite case,

it was proven that associativity implies commutativity [22].

Any finite presemifield S can be represented as

S = (Fpn ,+, ?),

7



where (Fpn ,+) is an additive group and x ? y = ψ(x, y) where ψ : F2
pn → Fpn .

It is shown in [7], [10] that any finite commutative semifield of odd order can be

described by a planar function over a finite field. Moreover, it was also shown that

the problem of classifying commutative presemifields of odd order is equivalent to

classifying all Dembowski-Ostrom planar functions ([7]). We explicitly revise this

result in the following manner.

Definition 1.3.2. Let S 1 = (Fpn ,+, ?) and S 2 = (Fpn ,+, ∗) be two presemifields. Then

they are called isotopic if there exist three linear permutations L,M and N in Fpn such

that

L(x ? y) = M(x) ∗ N(y)

for any x, y ∈ Fpn . The triple (M,N,L) is called an isotopism between S 1 and S 2.

Every commutative presemifield can be trasformed to a commutative semifield.

Let S 1 = (Fpn ,+, ?) be a commutative presemifield which has no identity element. In

order to create a semifield from S 1, pick any a ∈ F∗pn and define a new multiplication

∗ by

(x ? a) ∗ (a ? x) = x ? y

for all x, y ∈ Fpn . Then S 2 = (Fpn ,+, ∗) is a commutative semifield isotopic to S 1 with

identity element a ? a.

Any commuative presemifield defines a planar Dembowski-Ostrom polynomial and

conversely any planar D.O polynomial defines a commutative presemifield. To illus-

trate, let f (x) be a planar D.O polynomial over Fpn . If ? is defined as

x ? y = f (x + y) − f (x) − f (y)

for any x, y ∈ Fpn , then S = (Fpn ,+, ?) is a commutative presemifield.

Conversely, if S = (Fpn ,+, ?) is commutative presemifield with odd order, then a

function

f (x) =
1
2

(x ? x)

is a planar D.O polynomial. Till now almost all known planar functions are of type

Dembowski-Ostrom polynomial except the one in [9] which is not quadratic and

power function over F3n .

There are many intensive studies about commutative semifields for about more than
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a hundred years, however, there are only a few number of commutative semifields

of odd order found up to now. Some famous examples are Albert’s twisted field,

Dickson semifields, Coulter-Mathhews and Ding-Yuan semifields, Ganley semifields,

Penttila-Williams semifield, and Coulter-Henderson-Kosick semifield (for more see

[4]).

1.4 Equivalency criterias

Definition 1.4.1. Let F = Fpn be a finite field with p an odd prime.

A polynomial L : F→ F is called a linearized polynomial (or additive polynomial or

p-polynomial) if L is of the shape

L(x) =

n−1∑
i

aixpi

In addition, f is called an affine function if it is a sum of a linear function and a

constant.

Any linearized polynomial satisfies L(x) + L(y) = L(x + y) and L(αx) = αL(x) where

x, y ∈ Fq and α ∈ Fp. Converse is also the same, that is, any polynomial satisfying

this conditions has to be a linearized polynomial.

Definition 1.4.2. Two functions f and g from Fpn to itself are called an affine equiva-

lent (linear equivalent) if there are affine (resp.linear) permutations L1 and L2 in Fpn

such that

g = L1 ◦ f ◦ L2

Definition 1.4.3. Two functions f and g from Fpn to itself are EA-equivalent (extended

affine equivalent) if there are two affine permutation polynomials L1 and L2 and an

affine polynomial L3 in Fpn such that

g = L1 ◦ f ◦ L2 + L3

Definition 1.4.4. Two functions f and g from Fpn to itself are Carlet-Charpin-Zinoviev

equivalent (CCZ- equivalent) if for the graphs G f = {(x, f (x))|x ∈ Fpn} and Gg =

{(x, g(x))|x ∈ Fpn} there exists an affine permutation L in F2
pn such that L(G f ) = Gg.

9



It is obvious that, linear equivalence is a special case of affine equivalence, and an

affine equivalence is a special case of EA-equivalence.

In [5] it was shown that EA-equivalence is a particular case of CCZ-equivalence and

all permutations are CCZ-equivalent to their inverses.

In fact, CCZ-equivalence is an equivalence relation that preserves PN and APN prop-

erties of functions. Hence it is useful to know cases when CCZ and EA-equivalency

coincide, as it is difficult to determine whether two functions are CCZ-equivalent or

not, when compared with simpler one- EA-equivalency.

In the following lemmas and theorems we revise some basic properties of planar func-

tions. The following lemma in [21] is useful for determining function that whether it

is planar or not, in the case that derivative of a function is linearized polynomial.

Lemma 1.4.5. Let L : Fpn → Fpn be a linearized polynomial given as

L(x) =

n−1∑
i

aixpi

Then L is a permutation polynomial over Fpn if and only if L has no non-zero roots in

Fpn

It is clear that, if a function f is a planar function and L is an additive function, then

f + L is also a planar function.

An analogue of this idea and the folllowing lemma about Alltop functions is given in

the next chapter.

Lemma 1.4.6. [9] Let f : Fpn → Fpn and L is an additive polynomial over the same

field. Then the followings are equivalent:

i) f (L) is a planar polynomial.

ii) L (f) is a planar polynomial

iii) f is a planar polynomial and L is a permutation polynomial.

Proof. ii)⇒ iii) Let L( f ) be a planar function. Then by definition,

DaL( f (x)) = L( f (x + a)) − L( f (x)) = L(Da f (x))

is bijective for any a ∈ F∗pn .

Assume f is not planar. Then there exist b ∈ Fpn such that Db f (x) is not bijective that

10



is,

Db f (x) = Db f (y)

for some y ∈ Fpn and y , x. But in this case

DbL( f (x)) = L(Db f (x)) = L(Db f (y)) = DbL( f (y))

which is contradiction that L( f (x)) is planar function. Hence f (x) is planar function.

Assume L(x) is not a permutation. Then there exists y ∈ Fpn such that y , x and

L(x) = L(y). Then since f is planar over Fpn then Da f (x) is bijective over Fpn for all

a ∈ F∗pn . This means that, for any y ∈ Fpn there exists x1 such that Da f (x1) = y for

some nonzero a. And also for any x ∈ Fpn there exists x2 such that Da f (x2) = x for

the same a, where x1 , x2. Then L(Da f (x1)) = L(Da f (x2)).

On the other hand, DaL( f (x1)) = L(Da f (x1)) = L(Da f (x2)) = DaL( f (x2)) which is

contradiction, since L( f ) is planar function.

iii) ⇒ ii) Assume that f is planar and L is a permutation. Since L is a permutation

then for x , y we have L(x) , L(y). Now, assume that L( f (x)) is not planar function.

Then there exsists y ∈ Fpn and y , x such that

DaL( f (x)) = DaL( f (y))

Since DaL( f (x)) = L(Da f (x)) and DaL( f (y)) = L(Da f (y)), then necessarily L(Da f (x)) =

L(Da f (y)).

But since L is a permutation then Da f (x) = Da f (y), which is contradiction, since f is

a planar function.

iii)⇒ i) Assume that f is planar, L is a permutation and f (L(x)) is not planar. Then

there exists y ∈ Fpn , y , x such that

Da f (L(x)) = Da f (L(y))

for some a ∈ F∗pn . Since L(x) is permutation on Fpn , L(x) = x1 and L(y) = x2 for

some x1, x2 ∈ Fpn and x1 , x2. However, in this case Da f (x1) = Da f (x2) which is

contradiction, since f is planar function.

i) ⇒ iii) Assume that f (L(x)) is planar function but L(x) is not permutation. Then

there is y ∈ Fpn , y , x such that L(x) = L(y). This is contradiction, since in this case

Da f (L(x) = Da f (L(y)). Hence L(x) is permutation.

Now, assume that f (x) is not planar, then Da f (x) = Da f (y) for some y ∈ Fpn , y , x.

11



Since L is permutation, x = L(x1) and y = L(x2) for some x1, x2 such that x1 , x2.

Then

Da f (L(x1)) = Da f (L(x2))

which is contradiction, since f (L(x)) is planar function.

�

In fact, the lemma above leads to the definitions of EA-equivalency for planar func-

tions.
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CHAPTER 2

ALLTOP FUNCTIONS

Definition 2.0.1. A function f is called an Alltop function over Fq, if for any a ∈ F∗q,

derivative

Da f (x) = f (x + a) − f (x)

is planar function, or equivalently, for any a, b ∈ F∗q

f (x + a + b) − f (x + a) − f (x + b) + f (x)

is a permutation polynomial.

Observe that, linear and quadratic functions over Fpn can not be an Alltop function

since derivative of a function is constant which is not permutation polynomial. So, to

find Alltop function we need at least cubic functions to check.

Example 2.0.2. Let p > 3 be an odd prime and f (x) = x3 over Fpn .

Then

DaDb f (x) = 6abx

which is one-to-one in Fpn .

x3 is known as the original Alltop function, used in the construction of sequences in

1980 by Alltop to meet cross and auto correlation bounds (Welch bound).

In this thesis we let q = pn , where p is an odd prime and n is a positive integer.

Definition 2.0.3. A function f : Fq → Fq is an even function if f (0) = 0 and f (x) =

f (−x) for any x ∈ Fq.

Definition 2.0.4. f : Fq → Fq is called 2-to-1 function if

13



• f (0) = 0

• f (x) = f (y) holds if and only if x = y or x = −y.

both hold.

In the following theorem [34] there is a criteria to characterize planar functions by

means of 2-to-1 functions.

Theorem 2.0.5. Let f be a Dembowski-Ostrom polynomial from Fq to itself. Then f

is planar if and only if f is 2-to-1.

For Alltop functions we observe the following proposition by means of even func-

tions:

Proposition 2.0.6. Let f be an even function from Fq to itself. Then f can not be an

Alltop function.

Proof. Let f (x) be an even function. Assume that f (x) is an Alltop.

Then necessarily, Da f (x) = f (x + a)− f (x) is planar for any nonzero a. Equivalently,

the second derivative

DbDa f (x) = f (x + a + b) − f (x + a) − f (x + b) + f (x)

has to be permutation for all a, b ∈ F∗q. Now take a = 1, b = 1. Then

D1D1 f (x) = f (x + 2) − 2 f (x + 1) + f (x)

is also a permutation.

However,

D1D1 f (−x − 2) = f (−x) − 2 f (−x − 1) + f (x + 2)

And since f is an even function,

D1D1 f (−x − 2) = D1D1 f (x)

i.e., the second derivative is not one to one.

Hence, a function f (x) is not an Alltop function. �
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2.1 All known results up to 2013

In this section, some properties and results up to 2013 about Alltop functions are

given. Specifically, the results of [14] and [13] are revisited. By using some proper-

ties of planar functions, some analogues can be considered also for Alltop functions.

Equivalency criterias are all exactly the same with planar functions.

Lemma 2.1.1. [14] Let f (x) be an Alltop, P(x) a Dembowski-Ostrom planar function

and L(x) be a linearized polynomial over Fpn . Then

g(x) = f (x) + P(x) + L(x) + c

is also an Alltop function, where c ∈ Fpn constant

Proof. It is enough to show that, Dag(x) is planar for any nonzero a.

Dag(x) = g(x + a) − g(x)

= f (x + a) + P(x + a) + L(x + a) − f (x) − P(x) − L(x)

= Da f (x) + DaP(x) + L(a)

Since f is an Alltop function, then Da f (x) is planar.

DaP(x) is an additive polynomial and permutation also, since P(x) is planar D.O

polynomial. Obviously, L(a) is a constant.

Hence Dag(x) is a planar function, because of being the sum of planar, linear and

constant functions.

�

Lemma 2.1.2. Let L(x) be a linearized function in Fpn . Then the following are equiv-

alent:

i) f (L(x)) is Alltop.

ii) L (f(x)) is Alltop.

iii) f (x) is Alltop and L(x) is invertible.

Proof. Proof is similar to the proof of 1.4.6.

ii) ⇐⇒ iii) L( f (x)) is Alltop ⇐⇒ DaL( f (x)) = L(Da f (x)) is planar. By Lemma

15



1.4.6, L is permutation and Da f (x) is planar, which means f is Alltop.

i)⇒ iii) Assume that f (L(x) is Alltop function. Then

DbDa f (L(x))

is bijective for any a, b ∈ F∗pn .

Assume that L(x) is not permutation, i.e. L(x) = L(y) for some y , x. But in this case

DbDa f (L(x)) = DbDa f (L(y))

which is impossible. Hence L is permutation.

Now assume that, f is not Alltop. Then there exists y ∈ Fpn such that

DbDa f (x) = DbDa f (y)

Since L is permutation, there exist x1, x2 such that x1 , x2 and L(x1) = x and L(x2) =

y. But, in this case

DbDa f (L(x1)) = DbDa f (L(x2))

which is impossible. Hence f is Alltop.

iii)⇒ i) Assume f is Alltop, L is permutation polynomial and f (L(x)) is not an Alltop.

Then there exists y ∈ Fpn such that y , x and

DbDa f (L(x)) = DbDa f (L(y))

Since L is permutation, there exist x1, x2 such that x1 , x2 and L(x) = x1, L(y) = x2.

Then

DbDa f (x1) = DbDa f (x2)

which is impossible, since f is Alltop.

�

By using the following theorem for planar functions, analogous result was obtained

in [14]:

Theorem 2.1.3. [19] Let p > 2 be prime and L1(x), L2(x) ∈ Fpn[x] be linearized

polynomials.

If f (x) = L1(x)L2(x) is planar, then necessarily L1(x) and L2(x) are invertible polyno-

mials.
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Proof. Let f (x) = L1(x)L2(x) as given.

If f is planar then

Da f (x) = L1(x + a)L2(x + a) − L1(x)L2(x)

has to be permutation for any a ∈ F∗pn .

By using the linearity property of Li’s we can get

Da f (x) = L1(x)L2(a) + L1(a)L2(x) + L1(a)L2(a)

is permutation. Since Da f (x) is an affine polynomial, it is permutation if and only if

it has no nonzero solutions.

Now, assume that L1(x) is not permutation. Then there exist b ∈ F∗pn such that L1(b) =

0. Then it is easy to see that, Db f (x) is not permutation since Db f (b) = 0. Hence

L1(x) is permutation.

Since L1 and L2 are symmetric, it is easy to see that L2 is permutation. �

For Alltop functions analogous result is for 3 additive polynomials:

Theorem 2.1.4. [14] Let p > 3 be an odd prime and L1(x), L2(x), L3(x) ∈ Fpn[x] be

linearized polynomials.

If f (x) = L1(x)L2(x)L3(x) is Alltop then necessarily L1(x), L2(x), L3(x) are invertible

polynomials.

Proof. For a ∈ F∗pn , derivative of a function is:

Da f (x) = L1(x)L2(x)L3(a) + L1(x)L2(a)L3(x) + L1(x)L2(a)L3(a) + L1(a)L2(x)L3(x)

+L1(a)L2(x)L3(a) + L1(a)L2(a)L3(x) + L1(a)L2(a)L3(a) + Ma(x) + C

has to be planar, where M is an additive function and C is constant.

Now, take the second derivative to get:

DbDa f (x) = L1(x)[L2(a)L3(b) + L2(b)L3(a)]

+L2(x)[L1(a)L3(b) + L1(b)L3(a)] + L3(x)[L1(a)L2(b) + L1(b)L2(a)]
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is permutation for any a, b ∈ F∗pn .

Assume that L1(x) is not a permuation. Then there exists c ∈ F∗pn such that L1(c) = 0.

Then observe that, DcDc f (x) = 0 has nonzero solution which contradicts that DbDa f (x)

is permutation for any a, b ∈ F∗pn .

Hence L1(x) is bijective. Same is true for L2 and L3.

�

Note 2.1.5. It is also noted that, the converse of a theorem is not true in general.

To see this explicitly, take L1(x) = xp, L2(x) = x and L3(x) = x in Fq2 . In this case

f (x) = xq+2.

Then

Da f (x) = 2axq+1 + aqx2 + a2xq + 2aq+1x + aq+2

has to be planar.

Now, take second derivative at a point b:

DbDa f (x) = 2axb(xq−1 + aq−1 + bq−1)

has to be permutation, ie has no nonzero solution.

Let q ≡ 2 (mod 3), then clearly, q2 − 1 is divisible by 3.

Hence there is a subgroup with order 3 in F∗q2 .

If we let ω to be the generator of the subgroup mentioned, then ωq−2 = 1.

Now, if x = ω2, a = ω and b = 1 then xq−1 + aq−1 + bq−1 = 0, i.e. DbDa f (x) = 0 has

nonzero solution, hence is not permutation.

Following theorem shows that Alltop functions in odd characteistics start from char-

acteristic at least 5.

Theorem 2.1.6. [13] There are no Alltop type polynomial over F3n .

Proof. Let f be any function defined over F3n . Then

DbDa f (x) = f (x + a + b) − f (x + a) − f (x + b) + f (x)

for any a, b ∈ F∗3n . Let a = b = 1. Then

D1D1 f (x) = f (x + 2) − 2 f (x + 1) + f (x)
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Since field has characteristic 3,

D1D1 f (x) = f (x + 2) + f (x + 1) + f (x).

Moreover, one can check that

D1D1 f (x + 1) = f (x + 2) + f (x + 1) + f (x)

that is D1D1 f (x) = D1D1 f (x + 1) is not permutation. Hence, f can not be an Alltop

function.

�

In the following theorem new class of Alltop polynomials is given by Hall, Rao and

Gagola (2013).

Theorem 2.1.7. [14] Let p ≥ 5 be an odd prime, n is a positive integer so that pn + 1

is not divisible by 3.

Then f (x) = xpn+2 is Alltop over Fp2n .

Proof. Let q = pn. To prove, calculate the derivative of a function at any nonzero

point:

Da f (x) = 2axq+1 + aqx2 + a2xq + 2aq+1x + aq+2

has to be planar for any a ∈ F∗q2 .

Equivalently, for any b ∈ F∗q2

DbDa f (x) = 0

has no nontrivial solution. That is,

abxq + abqx + aqbx = 0 (2.1)

has x = 0 as only root.

Assume that x , 0. Since a and b are nonzero, divide by a and get:

xqb + xbq + xbaq−1 = 0 (2.2)

Take q-th power of (2.2) :

xbq + xqb + xqbqa1−q = 0 (2.3)

19



Subtract 2.3 from (2.2), it follows that

x(baq−1) − xq(bqa1−q) = 0 (2.4)

(2.4) is true if and only if

1 −
( xb

a2

)q−1
= 0 (2.5)

Hence, there exists c ∈ Fq, such that xb = ca2. Then put this value in (2.2) and use

that cq−1 = 1: (a2

b

)q−1
+ bq−1 + aq−1 = 0 (2.6)

⇐⇒ ((a
b

)q−1)2
+

(a
b

)q−1
+ 1 = 0 (2.7)

It can be seen that (a
b

)q−1
, 1

Hence (a
b

)3(q−1)
− 1 = 0 (2.8)

Since characteristic is different from 3, equation (2.8) has solutions ⇐⇒ 3(q − 1)

divides q2 − 1⇐⇒ 3 divides q + 1.

�

In [14] it is also noted that, Da f (x) is EA-equivalent to x2. Moreover, in the following

lemma it is shown that this class of functions is EA-inequivalent to x3.

Lemma 2.1.8. Let p be an odd prime and n a positive integer. A cubic function f ∈ Fpn

of the form

f (x) =
∑

0≤k, j,i<n

ak jixpk+p j+pi

such that akkk = 0 (for k = j = i), is not extended affine equivalent to x3.

Proof. f (x) is EA-equivalent to x3 if there exist affine functions l1(x), l2(x) and l3(x)

such that

l1 ◦ (x3 ◦ (l2)) + l3(x) = f (x)
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Let l1(x) = L1(x) + a and l2(x) = L2(x) + b where

L1(x) =

n−1∑
i=0

aixpi

L2(x) =

n−1∑
i=0

bixpi

and a, b are constants.

Then

l1 ◦ (l2(x)3)) + l3(x) = l1

( n−1∑
i=0

b3
i x3pi

+ N(x)
)

+ l3(x)

= L1

( n−1∑
i=0

b3
i x3pi)

+ L1 ◦ N(x) + a + l3(x) (2.9)

where N(x) is a polynomial which does not contain terms in the form of x3pi
.

Since f does not have this term, then necessarily the right hand side of the equation

(2.9) has no the term x3pi
.

It is clear that, L1◦N(x) and l3(x) have no this term, hence necessarily L1

(∑n−1
i=0 b3

i x3pi
)

does not have this term.

This can happen only when, bi = 0 for all 0 ≤ i ≤ n − 1, that is l2 is not invertible.

Hence f (x) is not EA-equivalent to x3.

�
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CHAPTER 3

CLASSIFICATION

In this section, cubic Alltop q-monomials and binomials are classified over Fq2 . Specif-

ically, x3 + ux2q+1 case over Fq2 explicitly determined. In addition, cubic Alltop q-

monomials over Fq3 are classified. It is shown that there is no Alltop cubic q- mono-

mial over this field and some computational results about cubic q binomials over the

same field with characteristics 5,7.

3.1 Classification of cubic Alltop q-monomials and q-binomials over Fq2

Over Fq2 , all cubic q-monomials are followings:

A1) x3

A2) xq+2

A3) x2q+1 (= (xq+2)q)

A4) x3q (= (x3)q)

It is clear that, A1)and A4) , A2) and A3) are EA-equivalent, since they are q-th power

of each other.

Hence there are only x3 and xq+2 and they are known to be Alltop over Fq2 .

Before classification over Fq2 we have the following fact:

Fact 3.1.1. Let 0 , a ∈ Fq2 . Then xq + ax is a permutation over Fq2 if and only if a is

not a q − 1 power.

Let u ∈ F∗q2 . Then all cubic binomials over Fq2 are in the following forms:

B1) x3 + ux2q+1
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B2) x3 + uxq+2

B3) x3 + ux3q

B4) xq+2 + ux2q+1

B5) xq+2 + ux3q

B6) x2q+1 + ux3q

Observe that B1) and B6), B2) and B5) are EA-equivalent since they are q-th power

of each other. After eliminating equivalent functions we get B1), B2), B3) and B4) as

inequivalent cubic binomial functions over Fq2 .

Note 3.1.2. Functions of type B3) and B4) above are Alltop if and only if u is not q-1

power over Fq2 . That is because, xq + ux is a permutation polynomial if and only if u

is not q-1 power over Fq2 . In addition, B3) and B4) are the composition of xq +ux with

x3 and xq+2 respectively, which are Alltop functions. By definition of EA-equivalency

those types are Alltop.

( B3) -in everywhere, B4) -under the condition 3 does not divide q+1)

Remark 3.1.3. In case B2), due to Magma computations done for q = 5, 7, 11, 13, 17, 19

there is no suitable u in Fq2 that is f (x) = x3 + uxq+2 is Alltop.

Hence, it can be conjectured that f (x) = x3 + uxq+2 is not Alltop function for any

u ∈ Fq2 .

Here, B1) case is interesting to determine.

3.1.1 Case B1) x3 + ux2q+1:

By the help of Magma program we see that in some values of c, these kind of functions

are Alltop. Following results are those we get from Magma:

q u f (x)

5 ω6, ω14, ω22 ALLTOP

7 ω2, ω6, ω14, ω18, ω26, ω30, ω38, ω42 ALLTOP

where ω is a generator of the related field Fq2 . For the rest of the values of u, the
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function is not an Alltop. In addition, we observe that when q = 5 the function is

extended affine equivalent to x3 for the values of the u that makes f Alltop. When q =

7, for u = ω2, ω14, ω26, ω38 function is EA-equivalent to x3, for u = ω6, ω18, ω30, ω42

function is EA-equivalent to x7+2.

These results are formulated and generalized in the following lemmas and theorem:

Lemma 3.1.4. Let f (x) = x3 + ux2q+1 from Fq2 to itself, where u ∈ F∗q2 and let ω be a

cyclic generator of a field Fq2 .

a) there exist maps L1(x) = ax+bxq and L2(x) = cx+dxq in Fq2 such that L1◦x3◦L2 =

f (x) if and only if N(u) = 9

b) there exist maps L1(x) = ax+bxq and L2(x) = cx+dxq in Fq2 such that L1◦xq+2◦L2 =

f (x) if and only if N(u) = 1

where N is the usual Norm function from Fq2 to Fq.

Proof. a) Assume that there exist maps L1(x) = ax + bxq and L2(x) = cx + dxq in Fq2

such that

L1 ◦ (L3
2 ◦ (x)) = x3 + ux2q+1 (3.1)

After substitution of L1(x), L2(x) and after several calculations we get :

x3(ac3+bd3q)+xq+2(3c2da+3bcqd2q)+x2q+1(3cd2a+3c2qdqb)+x3q(ad3+bc3q) = x3+ux2q+1

(3.2)

From here we get the following set of equations:

ac3 + bd3q = 1 (3.3)

3cd2a + 3c2qdqb = u (3.4)

3c2da + 3bcqd2 = 0 (3.5)

ad3 + bc3q = 0 (3.6)

We observe that
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Claim 3.1.5. a, b, c and d are nonzero.

Proof. Let a = 0. Then

(3.6)⇒ bc3q = 0

⇒ either b = 0 or c = 0. In both cases (3.3) fails.

Similarly, if b = 0 then again from (3.3) either a = 0 or d = 0 which contradicts with

(3.3).

In a same way, it can be shown that c and d are also nonzero.

�

Now, (3.5)⇔ a = −bcq−2d2q−1.

Put this value in (3.6) to get:

(cq−1 − dq−1)(cq−1 + dq−1) = 0 (3.7)

Now put the value of a from (3.5) to (3.3):

(3.3)⇔

bd2q−1(dq−1 − cq−1) = 1 (3.8)

(3.7) and (3.8)⇔ cq+1 + dq+1 = 0 and cq+1 − dq+1 , 0

Now putting the value of a in (3.4) and then using cq+1 = −dq+1 we get:

(3.4)⇔ ψ = −3
cq−1

dq−1 ⇔ N(u) = 9

b) Proof is similar to part a).

Assume that there exist maps L1(x) = ax + bxq and L2(x) = cx + dxq in Fq2 such that

L1 ◦ (Lq+2
2 ◦ (x)) = x3 + ux2q+1 (3.9)

After substitution of L1(x), L2(x) and several calculations we get:

(ac2dq + bcd2q)x3 + (2cq+1da + dq+2a + c2q+1b + 2cqdq+1b)x2q+1 + (acq+2 + 2cdq+1a
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+2cq+1dqb + d2q+1b)xq+2 + (ac2dq + bcd2q)x3q = x3 + ux2q+1 (3.10)

We get the following set of equations:

ac2dq + bcd2q = 1 (3.11)

2cq+1da + dq+2a + c2q+1b + 2cqdq+1b = u (3.12)

acq+2 + 2cdq+1a + 2cq+1dqb + d2q+1b = 0 (3.13)

acqd2 + bdc2q = 0 (3.14)

Claim 3.1.6. a, b, c and d are nonzero.

Proof. If a = 0 then (3.14)⇒ bdc2q = 0 which contradicts with (3.11).

If b = 0, similarly (3.14)⇒ ad2cq = 0, contradicts with (3.11).

From (3.11), c , 0 and d , 0. �

Now (3.14) ⇐⇒ a = −bcq

d . Put this value in (3.13) to get:

(dq+1 − cq+1)(dq+1 + cq+1) = 0 (3.15)

(3.11) ⇐⇒

dq−1bc(dq+1 − cq+1) = 1 (3.16)

Now take q-th power of both side

d1−qbqcq(dq+1 − cq+1) = 1 (3.17)

By multiplying (3.16) and (3.17)

bq+1cq+1(dq+1 − cq+1)2 = 1 (3.18)

(3.15) and (3.18) ⇐⇒ dq+1 + cq+1 = 0 and dq+1 − cq+1 , 0.
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(3.12) ⇐⇒ u = bcqdq+1 − c2q+1b.

So,

N(u) = bq+1cq+1(dq+1 − cq+1)2 = 1

holds.

�

Lemma 3.1.7. Let q be an odd power and Fq be a finite field and n be an odd integer in

[0, 1, .., q+1]. Let L1(x) = ω
−3n(q−1)

2 x+xq, L2(x) = ω
n(q−1)

2 x+xq and L3(x) = ωn(1−q)/2xq−x

be functions from Fq2 to itself where ω is a generator of Fq2 . Then L1,L2 and L3 are

permutations over Fq2 .

Proof. To show that L1(x) is a permutation, we have to show that L1(x) has the only

trivial root over Fq2 . Assume that L1(x) is not permutation that is ,

L1(x) = 0

has nontrivial roots. Assuming that x , 0,

xq−1 = −ω
−3n(q−1)

2

However, right hand side is not a q-1 power in Fq2 because n is an odd number, this is

contradiction. Hence L1(x) is an invertible polynomial.

Similarly, if L2(x) is not one to one, then it must have nontrivial solutions:

L2(x) = ω
n(q−1)

2 x + xq

xq−1 = −ω(n/2)(1−q)

However, since n is odd, right hand-side is not q-1 power and hence this equation has

no nontrivial solution.

In a similar way, assume L3(x) = 0 is not a permutation that is it has a non trivial

solution. Then

ωn(1−q)/2xq = x⇒

xq−1 = ωn(q−1)/2

Since n, q are odd numbers, right hand side is not q − 1 power, hence there is no

nontrivial solution.

�

28



The following theorem helps us to prove that the functions of type B1) are EA-

equivalent to x3 and xq+2 for the suitable values of u and hence can be considered

as an Alltop function under certain conditions. (when EA-equivalent to x3 no any

condition, when EA-equivalent to xq+2 the condition is that 3 does not divide q + 1)

Theorem 3.1.8. Let f (x) = x3 + ux2q+1 from Fq2 to itself, where u ∈ F∗q2 and let ω be

a cyclic generator of a field Fq2 .

a) there exist maps L1(x) = ax+bxq and L2(x) = cx+dxq in Fq2 such that L1◦x3◦L2 =

f (x) if and only if u = 3ωn(1−q) for any odd integer n ∈ [1, 2, 3, ..., q + 1]

b) there exist maps L1(x) = ax+bxq and L2(x) = cx+dxq in Fq2 such that L1◦xq+2◦L2 =

f (x) if and only if u = ωn(1−q) for any odd integer n ∈ [1, 2, 3, ..., q + 1]

Proof. a) Use arguments of part a) in Lemma 1 and try to solve equations (3.3), (3.4), (3.5), (3.6).

Since cq−1 = −dq−1, let c = ωi, d = ω j where ω is the given generator of a field Fq2

and i, j ∈ [0, 1, ..., q2 − 1]. Obviously, ω(q+1)(i− j) = −1. This is possible if and only if

i − j =
n(q−1)

2 for any odd integer n in [1, .., q + 1].

(3.3) ⇐⇒ −2bd2q−1cq+1 = 1 ⇐⇒ b =
ω−3q j

2

(3.5) ⇐⇒ a =
ω−3 j− 3n(q−1)

2

2

(3.4) ⇐⇒ u = −3ω(i− j)(q−1) ⇐⇒ u = 3ωn(q−1)

b) Use equations of part b) of Lemma 1 (3.11), (3.12), (3.13), (3.14). As in part a) let

c = ωi, d = ω j for some i, j ∈ [0, 1, ..q2 − 1]. Since cq+1 = −dq+1,

ω(i− j)(q+1) = −1 ⇐⇒ i − j = n(
q − 1

2
)

where n is any odd integer in [1, 2, ..., q + 1].

(3.11) ⇐⇒ 2bω(2q+1) j = ωn(1−q)/2 ⇐⇒ b =
ω

n(1−q)
2 − j(2q+1)

2

(3.14) ⇐⇒ a =
−bcq

d
=
−ω(q+2) j

2

We have c = ωn(q−1)/2+ j, d = ω j. �
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Corollary 3.1.9. Let f (x) = x3 + ux2q+1 from Fq2 to itself, where u ∈ F∗q2 and let ω be

a cyclic generator of a field Fq2 .

a) If u = 3ωn(1−q) for any odd integer n ∈ [1, 2, 3, ..., q+1] then f is an Alltop function,

i.e f is EA-equivalent to x3.

b) If u = ωn(1−q) for any odd integer n ∈ [1, 2, 3, ..., q + 1] and 3 does not divide q + 1

then f is an Alltop function, i.e f is EA-equivalent to xq+2.

Proof. a) It is enough to find suitable i, j such that L1(x) = ax + bxq and L2(x) =

cx + dxq are permutations.

Choose j = 0 to get

L1(x) =
1
2
ω
−3n(q−1)

2 x +
1
2

xq

and

L2(x) = ω
n(q−1)

2 x + xq

By Lemma 3.0.6 they are permutation polynomials.

b) It is enough to show that there exists j that makes L1(x) = ax + bxq and L2(x) =

cx + dxq permutation. Let j = 0. Then

L1(x) =
−1
2

x +
1
2
ωn(1−q)/2xq

and

L2(x) = ωn(q−1)/2x + xq

by Lemma 3.1.7, L1(x) and L2(x) are both permutations.

�

3.2 Classification of cubic Alltop q-monomials over Fq3

Before classification over Fq3 we give some results of paper [15] in order to determine

a planarity of a derivative of our functions.

For further details about all q-quadratic binomial classification of planar functions

can be found in [20] explicitly.

Lemma 3.2.1. [15](Lem 5.1) Let p be an odd prime and n be a positive integer.

Let f (x) = xpm+1 + βx2 ∈ Fpn[x] where m > 0 and β ∈ F∗pn .
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Put t = n
gcd(m,n) and q = pgcd(m,n)(so pn = qt). Then f is a planar function over Fqt if

and only if the equation

xq−1 + yq−1 = −2β

has no solution (x, y) ∈ F∗qt × F
∗
qt .

It is also noted that in [15], when t ≥ 3, Lemma 3.2.1 does not produce any planar

function.

Over Fq3 all different cubic q-monomials are given below:

A1) x3

A2) xq+2

A3) xq2+2

A4) x2q+1

A5) xq2+q+1

A6) x2q2+1

A7) x3q

A8) xq2+2q

A9) x2q2+q

A10) x3q2

Observe that, A1), A7) and A10) are EA-equivalent to each other since they are q-th,

q2-th power of each other.

Similarly, A2), A6) and A8) and A3), A4) and A9) are q-th power of each other.

Hence after ommiting equivalent class, we have the following different inequivalent

monomials:

B1) x3

B2) xq+2

B3) xq2+2

B4) xq2+q+1

Case B1) is clear.

We look for the other cases:

Case B2) f (x) = xq+2:

By using definition, for any a ∈ F∗q3 , f (x + a) − f (x) = (x + a)q+2 − xq+2 has to be

planar.
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In other words,

xq+2 + 2axq+1 + a2xq + aqx2 + 2aq+1x + aq+2 − xq+2

has to be planar. Equivalently,

2axq+1 + aqx2

has to be planar for any a ∈ F∗q3 since ommiting linear terms does not affect planarity.

However, due to the Lemma 3.2.1, such functions do not produce any planar function

over Fq3 .

Case B3) f (x) = x2q+1:

Similarly,

f (x + a) − f (x) = ax2q + 2xq+1aq + 2xqaq+1 + a2qx + a2q+1

has to be planar for any a ∈ F∗q3 .

Equivalently,

ax2q + 2aqxq+1

has to be planar.

Similar to the second case, such functions are not planar.

Case B4) f (x) = xq2+q+1:

We show that this function is not an Alltop function.

f (x + a) − f (x) = axq2+q + aqxq2+1 + aq+1xq2
+ aq2

xq+1 + aq2+1xq + aq2+qx + aq2+q+1

Eliminate linear terms and check planarity of

g(x) = axq2+q + aqxq2+1 + aq2
xq+1

in Fq3 . Observe that, it is a Dembowski-Ostrom polynomial.

Apply Lemma 2.0.5 and get that the function g(x) has to be 2-to-1 for any a ∈ F∗q3 .

Let a = 1.

Then

g(x) = xq2+q + xq2+1 + xq+1

has to be 2-to-1.

However, observe that

g(ω) = g(−ω) = g(ωq)

holds, where ω is a cyclic generator of Fq3 . Hence it cannot be 2-to-1.

By combining all these cases, we get the following theorem:
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Theorem 3.2.2. Except x3 and its EA-equivalence class, there is no Alltop cubic q-

monomials in Fq3 .

3.3 Classification of cubic Alltop q-binomials over Fq3

In this part, Magma calculations of cubic q-binomials over Fq3 are done for q = 5, 7

(and for some cases q = 11 ) and it is found that except one of the cases there is no

c ∈ Fq3 that makes function Alltop.

Due to the calculations done in MAGMA, the following results are obtained for cubic

q-binomials in Fq3 .

After eliminating equivalent functions as before, all remaining inequivalent cubic q-

binomials over Fq3 are following:

• 1) x3 + cxq+2 - Not Alltop for q = 5, 7

• 2) x3 + cxq2+2 - Not Alltop for q = 5, 7

• 3) x3 + cx2q+1 - Not Alltop for q = 5, 7

• 4) x3 + cxq2+q+1 - Not Alltop for q = 5, 7

• 5) x3 + cx2q2+1 - Not Alltop for q = 5, 7

• 6) x3 + cx3q - Alltop, since f (x) = (x + cxq) ◦ x3, and f is Alltop if and only if c

is not a q − 1st power, since in this case x + cxq is linearized permutation.

• 7) x3 + cxq2+2q - Not Alltop for q = 5, 7

• 8) x3 + cx2q2+q - Not Alltop for q = 5, 7

• 9) xq+2 + cxq2+2 - Not Alltop for q = 5, 7

• 10) xq+2 + cx2q+1 - Not Alltop for q = 5, 7

• 11) xq+2 + cxq2+q+1 - Not Alltop for q = 5, 7

• 12) xq+2 + cx2q2+1 - Not Alltop for q = 5, 7

• 13) xq+2 + cx2q2+q - Not Alltop for q = 5, 7
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• 14) xq2+2 + cx2q+1 - Not Alltop for q = 5, 7

• 15) xq2+2 + cxq2+q+1 - Not Alltop for q = 5, 7

Remark 3.3.1. Observe that, when q = 5 and q = 7 over Fq3 , only x3 + cx3q is an

Alltop function and in this case the function is EA-equivalent to x3.

It is still an open problem to find an Alltop function from this class of functions in Fq3 .

In the case that new Alltop functions are found from the class of any cubic q-binomial

over Fq3 , this will be EA-inequivalent all previous Alltop functions found before.
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CHAPTER 4

P-ARY ALLTOP FUNCTIONS

In this part we define "p-ary Alltop" functions by using gneeralized (p-ary) bent func-

tions and then relate this notion with Alltop functions.

It is known that when p is an odd prime and q = pn for some n, then a function f

defined over Fq is p-ary bent if and only if it is perfect-nonlinear.

Since in this case perfect-nonlinear functions have balanced derivatives, we can define

p-ary bent functions also in different way as following:

Definition 4.0.1. Let f : Fpn → Fp where p is an odd prime, n ≥ 1 integer. Then f is

called p-ary bent function if Da f (x) = f (x + a) − f (x) is balanced for any a ∈ F∗pn .

Definition 4.0.2. Let f : Fpn → Fp where p is an odd prime, n ≥ 1 integer. Then

f is called "p-ary Alltop function" if Da f (x) = f (x + a) − f (x) is p-ary bent for any

a ∈ F∗pn .

Equivalently, for any a, b ∈ F∗pn , DbDa f (x) is balanced.

Observation 4.0.3. Let be any p-ary function from Fpn to Fp. Then f is p-ary Alltop

⇐⇒ ∑
x∈Fpn

εDbDa f (x)
p = 0,

for all a, b ∈ F∗pn , where εp is a p-th root of unity in Fpn .

4.1 Characterization of cubic p-ary Alltop functions

In this part, by using the results in [26] characterization of cubic p-ary Alltop func-

tions over Fpn is given. Before characterization of p-ary Alltop functions, explicit
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results about cubic p-ary bent functions in [26] are revised.

Let f be an arbitrary cubic function from Fpn to Fp. Then f can be written as

f (x) = Trn(xD(x)) + Trn(xA(x)) + α(x),

where D(x) is Dembowski-Ostrom polynomial,

A(x) is a linearized polynomial given by

A(x) =
∑

0≤i≤n−1

aixpi

with ai ∈ Fpn ,

α(x) is an affine polynomial for x ∈ Fpn ,

and Trn is a usual trace function from Fpn to Fp.

Let B : Fpn × Fpn → Fp be the quadratic map depending on D defined as

B(x, y) = D(x + y) − D(x) − D(y)

for x, y ∈ Fpn .

For a, b ∈ Fpn , let

La,b,B f (x) = Trn(xB(a, b)) + Trn(aB(x, b)) + Trn(bB(x, a))

for every x ∈ Fpn .

For a, b ∈ Fpn , let Ca,b,d and Ca,b,A be the constant functions from Fpn to Fp defined as

Ca,b,D = Trn(aB(a, b)) + Trn(bB(a, b)) + Trn(aD(b)) + Trn(bD(a))

Ca,b,A = Trn(aA(b)) + Trn(bA(a))

For simplicity, lets use Tr() notation instead of Trn().

Lemma 4.1.1. [26] Let f be an arbitrary cubic function in the form

f (x) = Tr(xD(x)) + Tr(xA(x)) + α(x)

The second derivative of f at point (a, b) ∈ F2
pn is an affine function defined as

DbDa f (x) = La,b,B f (x) + Ca,b,D + Ca,b,A

for x ∈ Fpn .
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Proof. By direct calculations it is clear that

DbDaα(x) = 0.

Hence,

DbDa f (x) = DbDa{Tr(xD(x)) + Tr(xA(x))}

First, calculate first derivative at point a:

DaTr(xD(x)) = Tr((x + a)D(x + a)) − Tr(xD(x))

= Tr((x + a)(B(x, a) + D(x) + D(a))) − Tr(xD(x))

= Tr(xB(x, a)) + Tr(xD(a)) + Tr(aB(x, a)) + Tr(aD(x)) + Tr(aD(a))

and

DaTr(xA(x)) = Tr((x + a)A(x + a)) − Tr(xA(x)

= Tr(xA(a)) + Tr(aA(x)) + Tr(aA(a))

And now take the second derivarive at point b:

DbDaTr(xD(x)) = Tr((x+b)B(x+b, a))+Tr((x+b)D(a))+Tr(aB(x+b, a))+Tr(aD(x+b))

−Tr(xB(x, a)) + Tr(xD(a)) + Tr(aB(x, a)) + Tr(aD(x)) + Tr(aD(a))

= Tr(xB(a, b))+Tr(aB(x, a))+Tr(bB(x, a))+Tr(aB(a, b))+Tr(bB(a, b))+Tr(aD(b))+Tr(bD(a))

and

DbDaTr(xA(x)) = Tr(aA(b)) + Tr(bA(a)))

Observe that,

DbDaTr(xD(x)) = La,b,B f (x) + Ca,b,D

and

DbDaTr(xA(x)) = Ca,b,A

�

Let S = {(a, b) : La,b,B(x) = 0, for any x ∈ Fpn} and S a = {b ∈ Fpn : La,b,B(x) = 0, for

any x ∈ Fpn}.

Observe that, S a is an Fp - linear subspace of Fpn and it is clear that S 0 = Fpn .

The notation above results in following proposition :
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Proposition 4.1.2. [26] Let p be an odd prime, and f be any cubic function defined

as above. If ∑
a∈F∗pn

∑
b∈S a

ε
Ca,b,D+Ca,b,A
p = 0

then f is bent.

By using the above notations and arguments, we have following results for p-ary

Alltop functions.

Theorem 4.1.3. Let f : Fpn → Fp is any cubic p-ary function. Then f is p-ary Alltop

function if and only if ∑
x∈Fpn

ε
La,b,B f (x)
p = 0

for any a, b ∈ F∗pn .

Theorem 4.1.4. f : Fpn → Fp is any cubic p-ary function. Then f is p-ary Alltop

function if and only if

S = {(o, y) : y ∈ Fpn} ∪ {(x, 0) : x ∈ Fpn}

4.2 Some trivial and non-trivial examples

Let f : Fpn → Fp so that f (x) = Tr(F(x)), where F : Fpn → Fpn is a cubic function. It

is clear that, if we choose F as Alltop function, then f will be a p-ary Alltop function.

To see this explicitly, we use the characterization that we get in Theorem 4.1.3 and

give the following trivial examples.

Example 4.2.1. Let F(x) = x3, f (x) = Tr(x3).

Then D(x) = x2, B(x, y) = 2xy and

La,b,B f (x) = Tr(x2ab) + Tr(a2bx) + Tr(b2ax) = 6Tr(abx)

Since p is odd, when p , 3, f is a p-ary Alltop function.

It is trivial example, since x3 is an Alltop function.

Example 4.2.2. Let n = 2, F(x) = xp+2 and f (x) = Tr(xp+2). Then

D(x) = xp+1, B(x, y) = xyp + xpy
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and

La,b,B f (x) = Tr(x(apb + abp)) + Tr(a(xpb + xbp))) + Tr(b(apx + axp))

After simplifications,

La,b,B f (x) = Tr(2x(abp + apb + a1/pb1/p))

(Here we used that Tr(x) = Tr(xp) = Tr(x1/p) and additive property of trace function)

f is p-ary Alltop if and only if ayp + apy + ay has no nonzero solution y in Fp2 .

Claim 4.2.3. If 3 does not divide p + 1, then condition is satisfied and f is p-ary

Alltop.

Proof. Proof is similar to the proof of Theorem 2.1.7 Assume

ayp + apy + ay = 0

then raise the p-th power and subtract :

apy + ayp + apyp = 0

We get

(ay)p−1 = 1.

This is if and only if

(ay)p−1 = ωp+1

where ω is a cyclic generator of a field Fp2 .

Then a = ωp+1

y . Put this value instead of a in the above equation to get:

1
yp−1 + yp−1 + 1 = 0

⇒ 1 + yp−1 + y2(p−1) = 0

Multiply both sides by (yp−1 − 1) and get

y3(p−1) − 1 = 0

This can happen if and only if 3(p − 1) divides p2 − 1, that is 3 divides p + 1. So, if 3

does not divide p + 1 there is no non trivial solution. �
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In fact, with these conditions F will be Alltop in Fp2 which we already know from

second chapter.

The above examples are trivial examples since F is an Alltop function. It is interesting

to find p-ary Alltop functions f so that F is not an Alltop.

Does there exist p-ary Alltop functions that are not trivial? The answer is yes and

there are a lot of such functions.

Due to the computations in Magma we have following examples:

Example 4.2.4. Let F(x) = x3 + cx2p+1, f (x) = Tr(F(x)) where c ∈ Fpn and ω is a

cyclic generator of a field Fpn

• If n = 2 , p = 5, c = ω13 then f (x) is p-ary Alltop but F(x) is not Alltop.

• If n = 3, p = 7, c = ω49 then f (x) is p-ary Alltop but F(x) is not Alltop.

At the end of this chapter, we give our main theorem not only for cubic but any

p-ary Alltop functions to show relation between Alltop functions and p-ary Alltop

functions. But before we give some other definitions and theorems from [21] that we

used in our proof of theorem.

Definition 4.2.5. Let G be a finite Abelian group of order |G| with identity element

1G. A character χ of G is a homomorphism from G to U where U is a multiplicatie

group of a complex numbers that have absolute value 1.

Equivalently, if χ is a character then for any g1, g2 ∈ G:

χ(g1g2) = χ(g1)χ(g2)

And since

χ(1G) = χ(1G)χ(1G)

χ(1G) = 1

Moreover, for every g ∈ G,

χ(g)|G| = χ(g|G|) = χ(1G) = 1
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Hence the values of χ are the |G| -th roots of unity. And

χ(g−1)χ(g) = χ(g−1g) = 1

So,

χ(g−1) = χ(g)−1 = χ(g)

where the bar denotes complex conjugation of χ(g).

A character χ0 is trivial if χ0(g) = 1 for all g ∈ G. The rest of the characters are

known as nontrivial characters.

Theorem 4.2.6. [21] If χ is a nontrivial character of a finite Abelian group G then∑
g∈G

χ(g) = 0

If g ∈ G with g , 1G, then ∑
χ

χ(g) = 0

In addition to theorem, we have an additional orthogonality relations for characters.

Let χ and ψ be characters of G. Then

1
|G|

∑
g∈G

χ(g)ψ(g) =


0 if χ , ψ

1 if χ = ψ
(4.1)

Character theory is sometimes useful to get expressions about the number of solutions

of equations in finite Abelian group G. The argument is as folllowing:

Lemma 4.2.7. Let G be a finite Abelian group and let f be an arbitrary map, f :

Gn → G, where Gn is a cartesian product.

Then for given y ∈ G the number of solutions N(y) of

f (x1, x2, ..., xn) = y

is

N(y) =
1
|G|

∑
x1∈G

∑
x2∈G

...
∑
xn∈G

∑
χ∈G

χ( f (x1, x2, .., xn))χ(y) (4.2)

In the case of finite fields, for Fq there are additive character for additive group Fq and

multiplicative character for multiplicative group F∗q.
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In this part, for finite fields only additive characters of a finite field Fq are considered

and some properties that will be helpful to prove our theorem are mentioned from

[21].

Let Fq be a finite field with characteristic p, where p is an odd prime and let Tr :

Fq → Fp be the absolute trace function.

Then the function χ1 defined as

χ1(x) = εTr(x)
p

where εp is a p-th root of unity, for all x ∈ Fq is a character of the additive group of

Fq.

To see this explicitly, check that

χ1(x1 + x2) = εTr(x1+x2)
p

= εTr(x1)
p εTr(x2)

p

= χ(x1)χ(x2)

All additive characters of Fq can be expressed in terms of χ1, which is given in the

following theorem.

Theorem 4.2.8. [21] For b ∈ Fq, the function χb satisfying

χb(x) = χ1(bx)

for all x ∈ Fq is an additive character of Fq, and each additive character of Fq is

obtained in this way.

Lemma 4.2.9. [21] Let χa and χb be given as additive characters of Fq as in Theorem

4.2.8. Then ∑
x∈Fq

χa(x)χb(x) =


0 if a , b

q if a = b
(4.3)

In particular, ∑
x∈Fq

χa(x) = 0

for a , 0.
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The knowledge above about additive characters over a finite Abelian groups, espe-

cially over a finite field Fq, is used to prove the following theorem ([21] Theorem 7.7)

about permutation polynomials.

Theorem 4.2.10. Let f be a polynomial from Fq to itself. Then polynomial f is a

permutation polynomial of Fq if and only if∑
x∈Fq

χ( f (x)) = 0

for all nontrivial additive characters χ of Fq.

Proof. Assume that f is a permutation polynomial of Fq. Then,∑
x∈Fq

χ( f (x)) =
∑
x∈Fq

χ(x)

Hence, by Theorem 4.2.8 ∑
x∈Fq

χ(x) = 0

Conversely, assume that ∑
x∈Fq

χ( f (x)) = 0

for any nontrivial character χ.

Then by Lemma 4.2.7, we can count N(y) for any y ∈ Fq, where N(y) denotes the

number of solutions of f (x) = y in Fq.

N(y) =
1
q

∑
x∈Fq

∑
χ

χ( f (x))χ(y)

= 1 +
1
q

∑
χ,χ0

χ(x)
∑
x∈Fq

χ( f (x))

= 1

by equation (4.1).

Hence, f is a permutation polynomial of Fq. �

Immediate trivial corollary follows:
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Corollary 4.2.11. Let f be a function from Fq to itself. Then f is a permutation

polynomial of Fq if and only if ∑
x∈Fq

εTr(αx)
p = 0

for any α ∈ F∗q.

At the end of this section we give our main theorem about p-ary Alltop functions and

Alltop functions.

Theorem 4.2.12. Let F : Fpn → Fpn be any function and fα : Fpn → Fp be a p-ary

function defined as

fα(x) = Tr(αF(x))

for any α ∈ F∗pn , where Tr is the usual trace function from Fpn to Fp.

Then F is Alltop if and only if fα is p-ary Alltop for any α ∈ F∗pn .

Proof. Let fα is given as above. Then by Observation 4.0.3, fα is p-ary Alltop if and

only if ∑
x∈Fpn

εDbDa fα(x)
p = 0,

for all a, b ∈ F∗pn , where εp is a p-th root of unity in Fpn .

Since

DbDa fα(x) = DbDaTr(αF(x)) = Tr(αDbDaF(x))

Then fα is p-ary Alltop if and only if∑
x∈Fpn

εTr(αDbDa(F(x)))
p = 0

for any nonzero a, b ∈ Fpn .

Since α is also nonzero, by Corollary 4.2.11, the sum is zero if and only if DbDaF(x)

is permutation for any a, b ∈ Fpn , which means that F is an Alltop function.

�
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CHAPTER 5

APPLICATIONS TO CRYPTOGRAPHY

This part is about applications of Alltop functions to cryptography-especially to con-

struction of mutually unbiased bases which is an essential part of quantum cryptog-

raphy.

5.1 Mutually Unbiased Bases

"Mutually Unbiased Bases" notion in quantum mechanics first appeared in the studies

of Schwinger [31] in 1960. By using planar functions and Alltop functions, construc-

tion of complete mutually unbiased bases is possible as mentioned in the first chapter.

But before we start with some basic definitions related to mutually unbiased bases.

Definition 5.1.1. A subset {v1, v2, .., vn} of a vector space V with inner product <, > is

called orthonormal if

< vi, v j >=


0 if i , j

1 otherwise
(5.1)

Definition 5.1.2. Let A and B be two orthonormal basis in Cd. A and B are said to

be unbiased if

< a, b >=
1
√

d
for all a ∈ A and b ∈ B. Moreover, a set of bases which are pairwise unbiased is

known as a set of mutually unbiased bases (MUB).

Schwinger’s observation was that, for two mutually unbiased bases A and B, informa-

tion can not be gathered when a quantum system in a basis state from A, is measured
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with respect to the basis B.

Explicitly, if a quantum state is prepared in an eigenstate of basis A and measured in

basis B, then probability of outcome k with known a is

P(k|a) = | < b, a > |2 =
1
d

for any output k, where a ∈ A and b ∈ B. That is, all outcomes have equal probability.

In quantum cryptography, this property of MUB’s was used to bind a protocol BB84

[2], which is used in sharing secret keys between users in a secure way.

It is known that [35] in Cd there can be at most d + 1 MUB’s and in this case, such

sets are called complete.

In addition, when d is any prime power, there are several constructions of complete

MUB’s ([35],[17]), however, when d is not a prime power it is still an open problem

to construct complete MUB’s. Although Schwinger did not construct an extremal sets

of MUBs in 1960, Alltop constructed a complex sequences for radar and telecommu-

nication systems, which have optimal properties. Alltop’s construction is for only

dimension prime p, which produces p + 1 mutually unbiased bases. In [17] this con-

struction is generalized to all prime powers.

To illustrate, the following example is given about MUB’s:

Example 5.1.3. In a 2 dimensional Hilbert space C2:

{(1, 0), (0, 1)},{
(1, 0) + (0, 1)

√
2

,
(1, 0) − (0, 1)

√
2

}
,{

(1, 0) + i(0, 1)
√

2
,

(1, 0) − i(0, 1)
√

2

}
are basis such that, each of them is orthonormal. Since they are orthonormal and

pairwise unbiased, a set of these bases is MUB. In addition, it is a complete set of

MUB over C2.

5.1.1 Constructions

Before construction of complete MUB’s from both planar and Alltop functions, we

need the following theorem ([8], [21]) (which is also known as Weil sums):
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Theorem 5.1.4. Let f (x) be any function from Fq to itself where q = pn, εp is a p-th

root of unity and χ(x) is an additive character of Fq (which is χ(x) = εTr(x)
p ). Then f

is perfect nonlinear (planar) if and only if∣∣∣∣∣∣∣∣
∑
x∈Fq

χ(a f (x) + bx)

∣∣∣∣∣∣∣∣ =
√

q

Theorem 5.1.5. (Construction from planar functions)[29][12] Let Fq be a finite field

with characteristic p, where p is an odd prime and f be a planar function over Fq.

Denote

Ba = {vab | b ∈ Fq}

the set of vectors given by

vab =
1
√

q

(
εTr(a f (x)+bx

p

)
x∈Fq

with a, b ∈ Fq. The standard basis E with the sets Ba, a ∈ Fq, form a complete set of

q + 1 MUBs in Cq.

Example 5.1.6. Let q = p = 3 in the theorem above and f (x) = x2. Then

Bo = {v00, v01, v02} =
{ 1
√

3
(1, 1, 1),

1
√

3
(1, ε3, ε

2
3 ),

1
√

3
(1, ε2

3 , ε3)
}
,

B1 = {v10, v11, v12} =
{ 1
√

3
(1, ε3, ε3),

1
√

3
(1, ε2

3 , 1),
1
√

3
(1, 1, ε2

3 )
}
,

B2 = {v20, v21, v22} =
{ 1
√

3
(1, ε2

3 , ε
2
3 ),

1
√

3
(1, ε3, 1),

1
√

3
(1, 1, ε3)

}
,

With standard basis E = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, in dimension 3, these bases form

four mutually unbiased bases, which is maximal.

Note that Alltop’s original function (x3) was only for Cp, where p > 3. A generaliza-

tion to all prime powers is given in the following theorem (Klappeneker, Rötteler)

Theorem 5.1.7. (Alltop’s construction) [17] Let Fq be a finite field with characteristic

odd prime p ≥ 5. Let Ba be a set of vectors

Ba = {vab | a ∈ Fq}

given by

vab =
1
√

q

(
εTr((x+b)3+a(x+b))

p

)
x∈Fq

The standard basis and the sets Ba with a ∈ Fq forms a complete set of q + 1 mutually

unbiased bases of Cq.

47



In [14] it was proven that the above theorem holds not only for x3, it holds for any

Alltop functions over Fq.

Theorem 5.1.8. Let Fq be a finite field with characteristic odd prime p ≥ 5 and f (x)

be an Alltop function over Fq. Let

Ba = {vab | b ∈ Fq}

be the set of vectors given by

vab =
1
√

q

(
εTr( f (x+a)+b(x+a))

p

)
x∈Fq

with a, b ∈ Fq. The standard basis with the sets Ba, a ∈ Fq form a complete set of q+1

MUBs in Cq.

Proof. Observe that, for any a, b ∈ Fq

vab =
1
√

q

(
χ( f (x + a) + b(x + a))

)
x∈Fq

Now,

< vab|vcd >=
1
q

∑
x∈Fq

χ
(

f (x + a) − f (x + c) + b(x + a) − d(x + c)
)

(Note that, this notation is called cat-bra notation in quantum information theory, and

have some special properties like

< vab|vcd >= v∗a1b1
vc1d1 + ... + v∗anbn

vcndn

where v∗aibi
is complex conjugate of vaibi)

Substitute y = x + c and β = a − c:

< vab|vcd >=
1
q

∑
x∈Fq

χ
(

f (y + β) − f (y) + (b − d)y + bβ
)

=
1
q

∑
x∈Fq

χ
(
Dβ f (y) + (b − d)y + β

)
Since f is Alltop, then necessarily Dβ f (y) is planar, and so Dβ f (y) + (b − d)y + β is

also planar for β ∈ F∗q. Then by 5.1.5,

< vab|vcd >=
1
√

q
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for a , c. If a = c then

< vab|vcd >=
1
q

∑
x∈Fq

χ
(
(b − d)(x + c)

)
.

If b , d then,

< vab|vcd >= 0

Finally, if b = d, then

< vab|vab >=
1
q

∑
x∈Fq

χ(0) = 1

Hence, orthonormal property holds. Moreover, since each vector is unbiased pair-

wise, complete set of MUBs in Cq is constructed.

�
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