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ABSTRACT

SLIDE ATTACK AND ITS APPLICATIONS

Uslu, Erkan
M.S., Department of Cryptography, METU

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

Co-Supervisor : Dr. Muhiddin Uğuz

September 2017, 39 pages

Block ciphers, widely used in cryptography, have been designed to encrypt large amount
of data such as public sector services, banking services, Healthcare contributions. With
the increment of technological developments, they have also been started to be used
for small data in industrial products such as Internet of Things, smart cards, car keys
etc. These types of cryptosystems are called as lightweight cryptosystems. Similar to
other cryptographic algorithms, the ones used in lightweight systems need to be tested
towards cryptanalytic techniques. The most common techniques are differential and
linear cryptanalysis. However, they become less efficient when the number of rounds
in algorithms is increased. At this point, a new method called slide attack which is
independent of the number of rounds is developed.

This thesis focuses on the fundamentals of the slide attack and especially how it works
on block ciphers. Additionally, some applications that will be beneficial to understand
slide attack is given. Moreover, we give a practical attack to a variant of PRESENT
lightweight block cipher.

Keywords : Slide Attack, Block Ciphers, Lightweight Cryptography, Cryptanalysis
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ÖZ

SLIDE ATAK VE UYGULAMALARI

Uslu, Erkan
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Ortak Tez Yöneticisi : Dr. Muhiddin Uğuz

Eylül 2017, 39 sayfa

Blok şifreler, büyük boyuttaki verilerin şifrelenmesinde kullanılan bir şifreleme yöntemidir.
Bu verilere örnek olarak, kamusal bilgiler, bankacılık işlemlerinde kullanılan bilgiler,
sağlık sektöründe kullanılan bilgiler örnek olarak gösterilerbilir. Teknolojik gelişmeler
neticesinde blok şifrelere küçük boyuttaki verilerin şifrelenmesinde de ihtiyaç duyul-
maktadır. Örnek olarak, akıllı kartlarda, araba anahtarlarında, kısacası nesnelerin in-
terneti olarak adlandırılan yapıların büyük bir kısmında blok şifreler kullanılmaktadır.
Bu tür şifreleme sistemlerine, hafif siklet kriptosistemler denmektedir. Blok Şifrelere
yapılan en ünlü ataklar lineer ve diferansiyel kriptanaliz yöntemleridir. Fakat hafif
siklet algoritmalar bu ataklardan etkilenmemektedir. Çünkü hafif siklet algoritmaların
güvenliği, dizayn kriterleri ile birlikte tur sayısının çok fazla olmasıdır. Yine de bu
algoritmaların zayıf olduğu kriptanaliz yöntemleri bulunmaktadır. Kaydırma atakları
bunlardan biridir. Kaydırma atakları tur sayısından bağımsız olarak uygulanmaktadır.
Bu nedenle özellikle hafif siklet algoritmalar için önemli bir tehdit oluşturmaktadır.

Bu tezde kaydırma ataklarının temellerinden ve matematiksel altyapılarından bahsedile-
cektir. Ayrıca kaydırma ataklarını daha iyi anlamak için örnek uygulamalar anlatılmaktadır.
Buna ek olarak bir hafif siklet algoritması olan PRESENT’in sadeleştirilmiş versiy-
onuna bir atak önerilmiştir.

Anahtar Kelimeler : Kaydırma Atakları, Blok Şifreler, Kriptanaliz, Hafif Siklet Krip-
tosistemler
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CHAPTER 1

INTRODUCTION

1.1 Cryptology

Main concern of cryptology is security of communication and storage of data. It uses
theories and techniques from mathematics, statistics, computer science and electronic
engineering. Its aim is to hide the information from all but those who are authorised.
Moreover, some topics of cyber security such as authentication, confidentiality, data
integrity and non-repudiation are provided by cryptologic structures.

Cryptography is the techniques that can be used to provide the security of communi-
cation from opponents. Cryptanalysis, on the other hand, is the works of analysing
the security of cryptographic algorithms. These have been in interaction with each
other during the period of their evolution. As soon as a new technique is developed by
cryptanalysists to break an algorithm, cryptographers improve their algorithms to make
them secure against that newly developed attack if possible, as otherwise those algo-
rithms become useless. The more computation power the computers have, the more
brute force attacks there are. Hence, cryptographers have to improve their encryption
algorithms continually and develop new encryption techniques.

1.2 Description of Cryptography

There are two main encryption approaches in modern cryptography called symmetric
key cryptography and asymmetric key cryptography. Generally, a symmetric encryp-
tion algorithm uses the same key for both encryption and decryption. This key should
be shared between the sender and the receiver. On the other hand, asymmetric encryp-
tion algorithm makes use of two keys called private key and public key. These key pairs
are produced together using some mathematically hard problems. The basic idea be-
hind this system is that each user shares his or her public key with everyone, but keeps
the private key as secret. Anyone can send a message to anyone by encrypting the mes-
sage with that person’s public key. However, it is almost impossible to decrypt a secret
message without having receiver’s private key. Although these types of algorithms are
slower and require more computation power compared to symmetric algorithms, the
main advantage of this type of encryption is that parties do not need to come together
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to share a private key. When communication with symmetric algorithm is preferred,
the secret key can be shared to other parties by means of an asymmetric algorithm at
the first place. This is called key exchange. However, asymmetric cryptosystems will
not be our concern in this thesis.

1.2.1 Stream Ciphers

Stream ciphers being a branch of symmetric encryption, encrypt a plaintext digit at
a one-time combining with a key-stream digit in order to obtain a digit of ciphertext.
This operation repeats until the whole ciphertext digits are produced. To perform this
process, keystream needs to be as long as the plaintext. For this, there are different
methods to produce a long and random looking keystreams from a short key.

1.2.2 Block Ciphers

Block ciphers being the second branch of symmetric encryption, encrypt large amount
of data block by block according to its designed criteria, such as encryption routines,
number of rounds, protocols, etc. Generally, block ciphers have one secret key. This
key is used during the encryption routine with a key generation algorithm which gener-
ates round keys. When the rounds of the encryption algorithm are successively applied
to the plaintext the ciphertext is obtained. Decryption routine is just the inverse of this
process.

Block ciphers can be categorised mainly as Substitution - Permutation Networks and
Feistel Structures.

1.3 Cryptanalysis of Block Ciphers

In cryptology, encryption algorithm is assumed to be public according to Kerckhoffs’s
Principle. The only secret information is the key. The main technique to increase the
security of an algorithm is to apply it repeatedly with different round keys. That is, the
number of rounds of encryption is determined by how many times the round functions
should be repeated. To produce the key for each round, key schedule is applied by
using the master key. The security of the algorithm must depend only on the key.

The generic attack scenario to block ciphers is that the attacker tries every possible n-
bit keys on a known plaintext-ciphertext pair in order to find the true key. This attack is
called as Brute Force or Exhaustive Search. To make Brute Force infeasible, designers
of a block cipher tend to use large key spaces in a block cipher.

There are different attack scenarios with different assumptions:

• Ciphertext-only attack: It is assumed that an attacker only has encrypted text.

2



If the attacker can obtain corresponding plaintext or encryption key somehow,
she/he is considered successful.

• Known-plaintext attack: The attacker has some plaintexts and corresponding
ciphertexts. These plaintext - ciphertext pairs are assumed to be random. This
method is aimed to capture the key using the encryption.

• Chosen-plaintext attack: In this case, the attacker affects some plaintext bits
to observe that how ciphertext bits are changed. This information is used for
capture the some(or whole) key bits.

• Chosen-ciphertext attack: The attacker has an authorisation for decrypt chosen
ciphertexts in order to obtain corresponding plaintexts.

• Adaptive chosen plaintext/ciphertext attack: The attacker is authorised for
encryption or decryption. Depending on his expectation from the characteristics
of plaintexts/ciphertexts after encryption/decryption process, the attacker can do
this process repeatedly.

1.3.1 Complexity

In order to mount a reasonable attack, the attacker should consider that how many data
and how much time she/he needs.

• Time Complexity is the entire time of an algorithm from start until its finaliza-
tion. Generally, it is obtained by calculating the number of encryption executed.

• Data Complexity is the measure of plaintext-ciphertext pairs needed to perform
an attack.

• Memory Complexity is the total amount of storage required to apply an attack.

1.3.2 Linear and Differential Cryptanalysis

Linear[15] and differential cryptanalysis[2, 3] are the two important attack methods to
recover the key of block ciphers. Basically, the idea of linear cryptanalysis is to find
linear approximations over the non-linear operations of the cipher. Whereas, differen-
tial cryptanalysis is based on the probability of a pair of input and output occurrence
of difference.

1.4 About this Thesis

Since it is usually considered to be sufficient to increase the number of rounds for
enhancing the security, some researchers head towards other methods to change this
idea. In this sense, a successful attack mechanism, which is named as Slide Attack[4],
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was presented by Alex Biryukov and David Wagner in 1999. Basically, the attack
works on the algorithms that have weak round functions and weak key schedules. The
main characteristic of slide attack is independent of the number of rounds. For some
algorithms, it has been shown that slide attack is an extremely effective method to
decrease the time and the data complexities.

The organisation of this thesis as follows. In Chapter 2, brief preliminaries about this
thesis are given. In Chapter 3, mathematical backgrounds and fundamentals of slide
attack are explained. Chapter 3 also includes some generic techniques to apply the
slide attack over some kind of block cipher structures. In Chapter 4, there are some
applications of slide attack. In Chapter 5, the conclusion is given.
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CHAPTER 2

PRELIMINARIES

In this chapter, preliminaries of slide attack will be given. Firstly, two basic types of
block cipher algorithms are discussed with examples. Then, lightweight cryptography
which is designed for low cost environment are given with two sample algorithms;
PRESENT[8] and KeeLoq[10]. Finally, an important concept in computing complex-
ity of slide attack called Birthday Paradox[16] will be explained in details.

2.1 Block Ciphers

As mentioned in Chapter 1, a block cipher partitions the plaintext into fixed-size blocks
and encrypts one block at a time. The encrypting process is applied in iterated round
functions.

Naturally, block ciphers have many different design criteria. However, generally, they
are categorised as Substitution-Permutation Networks[14] and Feistel Networks[17].

2.1.1 Substitution-Permutation Networks(SPNs)

One of the most important block cipher method is Substitution-Permutation Network[14].
Basically, SPN’s takes a plaintext and a key as input. First, plaintext block is XORed
with round-key that is produced by key schedule. This operation is called Round 0.
After that, the output is partitioned into small blocks and each part is passed through
a nonlinear layer to satisfy confusion called S-Box. Moreover, the output bits are per-
muted in order to satisfy the diffusion property with the help of permutation boxes
and xored with the round key. This combination is called a round. These rounds are
applied repeatedly and finally, the ciphertext is obtained.
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Figure 2.1: Substitution - Permutation Network
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2.1.1.1 Advanced Encryption Standard(AES)

AES[9],[18] is the most popular example for the Substitution - Permutation Network
among block ciphers in cryptography. It is a variant of a Rijndael Cipher produced by
Belgian Cryptographers Vincent Rijmen and Joan Daemen. This variant was the win-
ner of NIST’s competition so that it is called as Advanced Encryption Standard(AES).

There are three variant of AES depending on the key size, that are 128/196/256 bits
and the number of rounds that are 10/12/14 respectively. Each version encrypts 128
bits plaintext blocks. First, there is an additional AddRoundKey operation before the
first round. Each round has the same structure that is combination of SubByte(SB),
ShiftRows(SR), MixColumn(MC) and AddRoundKey(ARK). Besides, the round key
is produced by key schedule algorithm in every round. Note that, MixColumn op-
eration is ignored in the last round. Encryption process of AES is shown in Figure
2.2

Figure 2.2: Advanced Encryption Standard
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2.1.2 Feistel Structure

Feistel Structure is the second most popular method for block ciphers. It was invented
by German Cryptographer Horst Feistel when he was working for IBM (USA). There
are too many block ciphers using this structure, such as DES, Blowfish, TEA etc. In
a Feistel Structure, encryption and decryption routines are very similar, yet sometimes
identical. Generally, there is a key schedule algorithm which produces round-keys in
order to be used in every round function F , called Feistel Function. The plaintext Pi is
split into two equal-length parts Li and Ri. Every i-th round, the following operations
are performed:

Li+1 = Ri

Ri+1 = Li ⊕ F (Ri, ki+1)

Figure 2.3: Feistel Structure

2.1.2.1 Data Encryption Standard(DES)

Data Encryption Standard[17] is the most popular instance for Feistel Networks. First,
it was designed with the name Lucifer[11][12] by Horst Feistel. Afterwards, it was
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slightly modified by National Security Agency (NSA) and published with the name
Data Encryption Standard (DES).

DES uses 56-bit master key. However, the round keys are 48-bits which are produced
from this key. The length of the plaintext is 64-bit. In every round, the 32-bit half
block of plaintext goes through to the Feistel Function. In the Feistel Function, the
input is expanded to 48-bit and then XORed with 48-bit round key. After that, the
value is substituted and compressed to 32-bit by S-boxes. Finally, it is permuted go
out from Feistel Function. The output of Feistel Function is XORed with the other half
of plaintext and the halves are swapped before the next round. This routine is iterated
16-times. Encryption scheme of DES is shown in Figure 2.4

Figure 2.4: Data Encryption Standard

2.2 Lightweight Cryptosystems

Block ciphers, like DES and AES are used for enciphering big amount of data(i.e.
informations about a company, hard discs etc.) and this leads to a high cost require-
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ments such large storage and high CPU power. However, improvement of microchips
leads to show the necessity for new encryption algorithms which work with low costs.
These algorithms are named as Lightweight Cryptosystems. Generally, lightweight al-
gorithms are also block ciphers. Because of the low-cost requirements, these kinds of
ciphers use primitive key generation algorithms and small number of non-linear truth
tables. These structures of lightweight systems seem more insecure. However, these
algorithms run with high number of rounds and this provides basic security require-
ment for lightweight systems against linear and differential cryptanalysis.

2.2.1 PRESENT

PRESENT[8] was introduced by Andrey Bogdanov, Lars R. Knudsen, Gregor Lean-
der, Axel Poschmann ,Yannick Seurin, Matthew J. B. Robshaw, Christof Paar, and C.
Vikkelsoe. in 2007. It is also known as Ultra-Lightweight Block Cipher.

Figure 2.5: PRESENT Encryption

PRESENT is a lightweight block cipher based upon Substitution-Permutation Net-
work. It consists of 31-rounds with 64-bit plaintext block size. There are two key size
options, 80-bit and 128-bit that can be used in the cipher. Encryption process is ex-
actly the same with classical SPN. In every round, 64-bit plaintext is XORed with the
round key. After XOR operation, the output is passed through S-Boxes and permuta-
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tion layer. After 31 rounds iteration, the output is XORed with round key in order to
obtain the ciphertext. Encryption scheme is as Figure 2.5

Figure 2.6: The round function of PRESENT

Round-keys are produced from a master key that can be 80-bit or 128-bit. We explain
only 80-bit provided key scheduling algorithm in this section. The user-provided 80-
bit secret key is stored as K = k79k78...k0. The i-th round key Ki is the left-most
significant 64-bit of the K. When Ki is obtained, K is rotated to left by 61 bit-times.
Then, the left-most significant 4-bit goes through S-box layer. Finally, the key block
k19k18k17k16k15 of K is XORed with the round counter value which is determined
uniquely for each round.

2.2.2 KeeLoq Block Cipher

KeeLoq[10] is a lightweight block cipher which is developed by Microchip Technol-
ogy Inc. to be used in wireless authentication applications such as keyless entry sys-
tems, car authentication systems etc. It provides secure authentication with power
efficient hardware implementations for very low costs. This made KeeLoq once-
preferable cipher of its field until the first cryptanalysis[6] is published by Bogdanov
in February 2007.

2.2.2.1 Encryption of KeeLoq

KeeLoq is a lightweight cryptosystem that uses a 64-bit key with 32-bit blocks. It has
528 iterative rounds and one key-bit is used in each round operation. Every round
operation of KeeLoq is equivalent to a repetition of a non-linear feedback shift register
(NLFSR). To be more specific, using the notation of [13], let

Y (i) = (y
(i)
31 , ..., y

(i)
0 ) ∈ {0, 1}32 (2.1)
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Figure 2.7: Encryption routine of KeeLoq

be the input of round i where i ∈ [0, 528), and let

K = (k63, ..., k0) ∈ {0, 1}64 (2.2)

be the key. The plaintext, Y (0) = P , is the input of round 0. The ciphertext, C =
Y (528), is the output after 528 rounds. The round function can be described as follows:

φ(i) = NLF (y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1 )⊕ y(i)16 ⊕ y

(i)
0 ⊕ ki(mod64) (2.3)

Y (i+1) = (φ(i), y
(i)
31 , ..., y

(i)
1 ) (2.4)

We can represent the non-linear function in its algebraic normal form (ANF) as:

NLF (x4, x3, x2, x1, x0) = x4x3x2 ⊕ x4x3x1 ⊕ x4x2x0 ⊕ x4x1x0
⊕x4x2 ⊕ x4x0 ⊕ x3x2 ⊕ x3x0 ⊕ x2x1 ⊕ x1x0 ⊕ x1 ⊕ x0

(2.5)

NLF is a boolean function of 5 variables with output vector 3A5C742Ex. In other
words, NLF (i) is the i-th bit of this hexadecimal constant, where i = 16x4 + 8x3 +
4x2 + 2x1 + x0. For instance, (0, 0, 1, 0, 1) gives i = 5 and the fifth least sig-
nificant (sixth one from the right) bit of (00111010010111000111010000101110) =
3A5C742Ex. For further information can be examined.

The inverse round function is used in decryption as follows:
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i ranges from 528 down to 1;

θ(i) = NLF (y
(i)
30 , y

(i)
25 , y

(i)
19 , y

(i)
8 , y

(i)
0 )⊕ y(i)15 ⊕ y

(i)
31 ⊕ ki−1(mod64) (2.6)

Y (i−1) = (y
(i)
30 , ..., y

(i)
0 , θ

(i)) (2.7)

2.2.2.2 The IFF Protocol based on KeeLoq

There are two known protocols supported by KeeLoq, the “Code Hopping” and “Iden-
tify Friend or Foe (IFF)”. The latter one offers an opportunity to collect required data
i.e. plaintext-ciphertext pairs to perform slide attack with respect to the former. This
collection can be gathered with a transponder in the range of the encoder. Therefore,
the only IFF protocol is mentioned in the following passage. IFF, which is mostly used
in car authentication, is a challenge-response protocol between the partners, the en-
coder (e.g. the car key) and the decoder (e.g. the car). It begins with a 32-bit challenge
being sent from the decoder to the encoder. When the encoder gets this challenge, it
encrypts with KeeLoq and the shared key and sends the ciphertext back to the decoder.
Then knowing the encryption of the challenge, the decoder verifies whether the cipher-
text comes from the encoder or not. If so, the ciphertexts are equal, the decoder unlocks
the car. If this is not the case, it activates the alarm due to the failure of authentication.
Note that in this protocol, the encoder activates with the signal i.e. challenge coming
from the decoder and the challenge is automatically presented by an incidence of the
encoder. Therefore, there is no need for either a battery or pressing of a button on the
encoder.

2.3 Birthday Paradox

Birthday Paradox[16] explains that from a collection of n different objects if
√
n-many

are chosen randomly, there will be a collision with high probability (P > 1/2). In slide
attack, we need slid pairs that are as will be explained in Chapter 3 a kind of collision
between plaintexts and ciphertexts. Therefore, it is useful for our work.

2.3.1 Outline of the Birthday Paradox

Let P (k) denote the probability that randomly chosen k objects from a collection of n-
different object, with replacement, are all different. Then by the Pigeonhole Principle,
P (k) = 0 if k > n. We want to prove that P (k) > 1

2
when k >

√
n.

Note that,

P (k) = 1 · (1− 1
n
) · (1− 2

n
) · · · (1− k−1

n
)

Using Maclaurin expansion of ex, we can write;
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ex =
∞∑
r=0

xr

r!
= 1 + x+ x2

2!
+ x3

3!
· · · ·

Hence we can use the following approximation;

ex ≈ 1 + x and consequently e−x ≈ 1− x.

Using this approximation, we can approximate P (k) as follows;

P (k) ≈ 1 · e−1/n · e−2/n · · · e−(k−1)/n = e
−1·(1+2+··+(k−1))

n = e
−k·(k−1)

2n ≈ e
−k2

2n .

We want to find k so that there is a crash with probability at least equal to 1
2

. In other
words; find the smallest value of k so that P (r) < 1

2
∀r ≥ k.

Thus we need to solve the following inequality for k;

e
−k2

2n <
1

2

Taking natural logarithm of both sides, we obtain;

− k
2

2n
< − ln 2⇒ k2

2n
> ln 2

⇒ k2 > 2 ln 2 · n⇒ k >
√

2 ln 2 · n ≈
√
n

14



CHAPTER 3

SLIDE ATTACK

Slide Attack[4],[5] is a cryptanalytic method applied to block ciphers. Increasing the
number of rounds of a block cipher usually increases the security level especially for
the linear and differential attacks. In contrast to those attacks, slide attack is indepen-
dent of the number of rounds of a block cipher when applicable. In this thesis our aim
is to delve deeper into the slide attack method and expand on it in a mathematical sense
. In this section, we explain how slide attack works in details.

Initially, an iterative block cipher with r-rounds is considered. To perform the attack,
the cipher should have a weak key schedule. In the standard scenario, it is assumed
that the encryption function of a cipher E is a composition of identical key-dependent
permutation F in notation E : F ◦ F ◦ ... ◦ F = F s where each F can be one or more
than one round of the cipher. It is further assumed that F is weak in the sense that if
two pairs of input-output of F is known, in other words, if

Fk(x1) = y1,
Fk(x2) = y2,

(3.1)

are known, then the key k in use can be recovered easily.

For such constructions, encryption function is denoted by Ek : F s
k : Zn

2 → Zn
2 , where

Fk corresponds to r-rounds of encryption Ek which in total r.s rounds, and n denotes
the block size. Breaking such a cipher means obtaining the key used in Fk. The idea
is that in the collection of all plaintext-ciphertext pairs, if one can to find a pair (called
slid pair) such that;

Fk(Pi) = Pj and hence,
Fk(Ci) = Cj where Ek(Pi) = Ci and Ek(Pj) = Cj ,

then by the weakness assumption on F , key can be recovered.

Definition 3.1. Let Ek be a block cipher Ek = F s
k of c.s rounds, and let Ci = Ek(Pi),

Cj = Ek(Pj). The pair (Pi, Ci) and (Pj, Cj) are called as a slid pair if Fk(Pi) = Pj

(and hence Fk(Ci) = Cj).

The above concept visually looks like, there are two encryption functions one of them
is fixed, another is slid one or more round. Thus, this attack method is called as slide
attack. Illustration of the attack is as below.
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Figure 3.1: Illustration of Slide Attack

Notice that there are 2n slid pairs in the collection of 2n.2n = 22n pairs ((Pi, Ci), (Pj, Cj)).
To find a slid pair, one needs to search through all 22n pairs until finding a satisfying
the conditions of being slid pair. So, challenging yet attainable part of the attack is to
find such pairs.

By Birthday Paradox, any collection of
√

2n = 2n/2 randomly chosen plaintext-ciphertext
pairs, expectedly contain at least one slid pair. Thus, it comes out that slide attack is
not useful since its data complexity is 2n/2 and time complexity is 2n.

The main issue of the slide attack is to reduce its cost that is its complexity. Birthday
Paradox is a suitable approach to reduce the data complexity. On the other hand, using
properties of F , some filtering conditions can be defined in order to reduce the time
complexity of this attack.

To reduce time complexity further, there are two alternative slide attack methods which
are more effective than conventional slide attack called Complementation Slide and
Sliding with a Twist[5]. Generally, these are more effective to find a filtering condition
when key schedule algorithm of a cipher produces non-identical round keys.

Complementation Slide Attack aims to find a filtering condition between slid pairs in
order to perform an effective attack in terms of time complexity. If the key schedule of
the algorithm produces two round keys, K0 and K1, differently, the difference named
as slid difference ∆ = K0 ⊕ K1 is introduced. This difference, between plaintext
pairs, is preserved in all round operations appears as it is between the ciphertext pairs.
In other words, following equations are observed:

〈P ′L, P
′
R〉 = 〈PR, PL ⊕ f(K0 ⊕ PR)〉 ⊕ 〈∆,∆〉 (3.2)

〈C ′L, C
′
R〉 = 〈CR, CL ⊕ f(K1 ⊕ CR ⊕∆)〉 ⊕ 〈∆,∆〉 (3.3)

Therefore, a n/2 bit filtering condition, P ′L ⊕ C
′
L = PR ⊕ CR, is obtained from the

above equations. When a slid pair is found, ∆ can be extracted and all round keys can
be found using the above equations.
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Sliding with a Twist is another technique in order to find a filtering condition. In terms
of Feistel Structures, encryption keys are inverse of the decryption keys. Assume K0

and K1 are round keys of encryption routine. For decryption, these keys are replaced
like K1 and K0. Thus, there is a connection between slid pairs like that:

〈C ′L, C
′
R〉 = 〈PL ⊕ f(K0 ⊕ PR), PR〉 (3.4)

〈P ′L, P
′
R〉 = 〈CL ⊕ f(K0 ⊕ CR), CR〉 (3.5)

Therefore, the above equations gives a n bit filtering condition between slid pairs
namely C ′R = PR and P ′R = CR. As a result, one can find a slid pair with a hash
table and can extract K0. Finding a slid pair takes 2n/2 operation in the worst case
scenario.

As a result, the main purpose of slide attack is to find slid pairs using the vulnerabilities
of key scheduling algorithms and round functions of a block cipher in order to extract
key bits independently from number of rounds. Sometimes, finding a slid pair takes
more operation than brute force. In order to reduce complexities, one should catch
some filtering conditions using weaknesses of structures or combining other crypt-
analysis methods with slide attack. Below, there are block ciphering methods and
descriptions of how slide attack is applied to them.

3.1 Slide Attack to Substitution-Permutation Networks

Usually, SPN’s are more resistant than feistel structures to slide attack. However Bi-
ham and Dunkelman et al. give an efficient method to perform on SPN’s with 1-round
self similarity[1]. This attack aims to find a filtering condition so that it is required
O(2n/2) data and O(2n/2) time in order to find the key.

3.1.1 Attack Scenario

Figure 3.2: Slide Attack to SPN Ciphers

In Figure 3.2 it is shown that there is a different sliding approach in this method because
of the presence of the key before the first round. Let P and P ′ forms a slid pair. As it
can be seen in Figure 3.2, functions below can be determined:

F (P ) = P
′ where F (x) = Per(Sub(x⊕K)) and E(x) = F r(x)⊕K (3.6)
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G(C) = C
′ where G(x) = Per(Sub(x))⊕K and E(x) = Gr(x⊕K) (3.7)

If P and P ′ forms a slid pair then F (P ) = P
′ and G(C) = C

′ should be satisfied. In
other words;

F (P ) = P
′

=⇒ Per(Sub(P ⊕K)) = P
′

=⇒ P = Sub(Per(P
′
))⊕K

Denoting Sub(Per(P ′)) = P ′ ,we have
P = P ′ ⊕K =⇒ P ⊕ P ′ = K

(3.8)

Additionally, G function has almost the same results as F :

G(C) = C
′

=⇒ Per(Sub(C))⊕K = C
′

DenotingPer(Sub(C)) = C,we have
C ⊕K = C

′
=⇒ C ⊕ C ′ = K

(3.9)

After combining these two equations, we obtain a filtering condition:

P ⊕ P ′ = K = C ⊕ C ′ =⇒ P ⊕ C = P ′ ⊕ C ′ (3.10)

This equality will be beneficial to reduce time complexity of finding slid pair. The
examples of sliding method using these filtering condition are in Chapter 4. In [1], this
method applied to 1K-AES which is a variant of AES block cipher. Additionally, we
give attack to PRESENT lightweight block cipher using this technique.

3.2 Slide Attack to Feistel Structures

In some cases, slide attack is very effective method to cryptanalysis of the feistel struc-
tures. Basically, if (Pi, Ci) and (Pi+1, Ci+1) forms a slid pair, that is if F (Pi) = Pi+1

and hence F (Ci) = Ci+1 for some 1 ≤ i ≤ 2n, then because of the feisel structure,
one gets Li+1 = Ri. This means that in order to find a slid pair of (Pi, Ci) one needs
to search slid pair only in the set of all pairs which satisfy the condition of Li+1 = Ri.
If this condition is not satisfied, there is no need to check whether they are slid pairs or
not. This is the filtering condition of slide attack in Feistel Structures.

3.2.1 Chosen - Plaintext Attack to Feistel Structures

Slide attack can be improved as mentioned at previous section by using chosen-plaintexts.
The secret key can be found with probability P = 1 upon this improvement.

Fix any (P,C) where P consist of two halves P = (PL, PR) and C also consist of two
halves C = (CL, CR). If (P,C) and (P

′
, C
′
) form a slid pair then, the condition that

mentioned at below must be satisfied:

PR = P
′
L

CR = C
′
L
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Consider (P
′
, C
′
) where PR = P

′
L. This collection has exactly 2n/2 elements out of all

collections. In this collection to identify the unique slid pair (P
′
, C
′
), one can encrypt

whole candidate pairs and check the other filtering condition which is CR = C
′
L. Note

that this filters one element out of 2n/2. Thus, it is expected that only one element from
this collection will satisfy the condition of being a slid pair. One the other hand, since
this collection contains only exactly one slid pair, the success probability of this attack
P = 1. The attack is done with 2n/2 encryption and 2n/2 chosen-plaintexts.

Algorithm 1 Chosen-plaintext attack to Feistel

1: For fixed known (P,C), encrypt i = 2n/2 chosen-plaintext where PR = P i
L

2: Store in the hash tables (Ci
L, P

i, Ci) indexed the by the first coordinate
3: for Each chosen plaintext/ciphertext pairs (P i, Ci) do
4: Check the condition CR = C

′
L

5: if A collision is found then
6: Extract the K and check EK(P ) = C or not
7: end if
8: end for

Another approach to find a slid pair that one can fix n/2 arbitrary bits of PR of P .
If P = (PL, PR) and P ′ = (P

′
L, P

′
R) form a slid pair after one round encryption then

PR = P
′
L and P ′R = PL⊕f(PR, K) would be satisfied. After this observation, one can

choose 2n/4 - many P i and P j where the P i
L and P j

R chosen randomly. Hence 2n/4 +
2n/4 = 2n/4+1 chosen plaintexts are needed to find a slid pair with high probability by
generalized birthday paradox[19].

Furthermore, slid pair would be found by searching the condition Ci
R = Cj

L between
the corresponding ciphertexts. According to naive approach, this searching process
that one by one comparison has 2n/4 ∗ 2n/4 = 2n/2 time complexity. However, this
number can be reduced by some sorting algorithms such as Quick Sort, Merge Sort.
For instance, If Quick Sort is used then time complexity of comparison would be re-
duced to O(n2). After these processes, If one found a collusion then he can verify
these pairs are slid pair by partial encryption.
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CHAPTER 4

APPLICATIONS OF SLIDE ATTACK

4.1 Slide Attack on 2K-DES

The first example where the slide attack applicable is the encryption algorithm called
2K-DES that is the variant of Data Encryption Standard[4]. Following table summa-
rizes the differences of 2K-DES from the original DES. By increasing the number

Table 4.1: Changes of DES to 2K-DES

DES 2K-DES
Block Size 64 bits 64 bits
Key Size 56 bits 96 bits
Round 16 64

Key Schedule Generate 48-bits round key
for every rounds

In the odd rounds K1 is used
In the even rounds K2 is used

of rounds, the algorithm probably gain the resistance against to linear and differential
attack. Additionally, new key size make the algorithm immune to exhaustive search.
However, the usage of partial keys in every odd and even rounds means that there is an
iteration between odd or even rounds. Additionally, Feistel Function has a vulnerabil-
ity to 2 known-plaintexts. These reasons make 2K-DES a suitable algorithm for slide
attack.

4.1.1 Attack Scenario

For any known-plaintext (P,C), one can decrypt C to all possible 232 result of C ′ with
K2. Each C ′ contains the left 32-bits of C on the right side of itself because of the
feistel structure. Note that, DES decryption is the same as encryption routine.So it is
appropriate that the attacker can request encrypt all of EK(C ′) = P ′ to obtain corre-
sponding 232 of P ′s. These P ′s are equivalent to one round back to F−1K2

(P ) = P ′.
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Figure 4.1: Attack Scheme

Since the left 32-bit of the P should be right 32-bit of the P ′ due to the feistel network,
one can check this condition on the 232 pool of P ′ and we can expect that almost all
of wrong guesses of (P ′, C ′) pairs must be eliminated. When the right pair of (P ′, C ′)
is found one can derive the K2 from the FK2(P

′) = P and FK2(C
′) = C equations.

These operations are made for extract the true K2 with high probability. Additionally,
the attacker can derive the other half of K, K1 , with exhaustive search. However, this
search increases the time complexity extremely. Instead of exhaustive search, one can
repeat the attack for find K1 with the help of known K2.

Algorithm 2 A Slide Attack on 2K-DES

1: Ask for the encryption of a known plaintext (P,C);
2: for All Ci where Ci

R = CL and i = 1...232 do
3: Encrypt Ci to P i ;
4: if The condition P i

R = PL is satisfied then
5: Extract the K2 from F−1K2

(P ) = P i and F−1K2
(C) = Ci ;

6: else
7: i++ ;
8: end if
9: end for

4.1.2 Complexities

During the attack process, we used 232 adaptively chosen plaintext - ciphertext pair
and encrypted 232 many C ′ to P ′ for finding each K1 and K2. Thus total data com-
plexity for finding secret K is 232 +232 = 233 adaptive chosen plaintexts and total time
complexity is 232 + 232 = 233 DES encryption.
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4.2 A Simple Attack on 1K-AES

1K-AES[1] consists of almost same structures with conventional AES except its arbi-
trary number of rounds. We don’t ignore last MixColumn operation at the encryption
process with 1K-AES. Additionally, the same key is used in each round of algorithm.
It means that there is 1 round self-similarity so that f function consists only 1 round.
The symbolization of 1K-AES encryption and f function are as below.

Ek(x) = Fk ◦ Fk ◦ ... ◦ Fk(x)⊕ k where Fk(x) = MC ◦ SR ◦ SB ◦ ARKk(x)

Ek(x) = Gk ◦Gk ◦ ... ◦Gk(x⊕ k) where Gk(x) = ARKk ◦MC ◦ SR ◦ SB(x)

4.2.1 Attack Scenario

It is mentioned above that if fk is weak, then k can be recovered easily with using two
input-output pairs. This circumstance for 1K-AES can be shown like that;

If (P,C) and (P
′
, C
′
) form a slid pair under 1K-AES then;

Fk1(P ) = P
′

=⇒ k1 can be obtained.

Gk2(C) = C
′

=⇒ k2 can be obtained.

}
k1 = k2

Additionally, It would be beneficial that is mentioned about some observations.

Figure 4.2: Attack Scheme

Assume that (P,C) and (P
′
, C
′
) is a slid pair where Fk(P ) = P

′ and Gk(C) = C
′

This implies;
Fk(P ) = MC ◦ SR ◦ SB ◦ ARKk(P ) = MC ◦ SR ◦ SB(P ⊕ k) = P ′ and
Gk(C) = ARKk ◦MC ◦ SR ◦ SB(C) = k ⊕ (MC ◦ SR ◦ SB(C)) = C ′ .

Let Fk(P ) = P
′ . Then;

F−1k (P
′
) = P = k ⊕ (SB−1 ◦ SR−1 ◦MC−1(P

′
))

Let P ′ = SB−1 ◦ SR−1 ◦MC−1(P
′
) then;

P = k ⊕ P ′ =⇒ P ⊕ P ′ = k

Moreover, corresponding ciphertexts C and C ′ are also satisfy the same property.

Let Gk(C) = C
′ . Then; Gk(C) = k ⊕ (MC ◦ SR ◦ SB(C)) = C

′

=⇒ C
′
= k ⊕ (MC ◦ SR ◦ SB(C))
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Let C = MC ◦ SR ◦ SB(C) then;
C
′
= k ⊕ C =⇒ C

′ ⊕ C = k

After that, combining these equations P ⊕ P ′ = k and C ′ ⊕ C = k

P ⊕ P ′ = C
′ ⊕ C

=⇒ P ⊕ C = P ′ ⊕ C ′ is found as a filtering condition.

With this informations, one can find some equations that are useful in order to find
a filtering condition between the Plaintext-Ciphertext collections which will be used
during the attack process.

This filtering condition will be used in order to eliminate the wrong estimations for
being a slid pair. The attack algorithm is at Figure 4.2.

Algorithm 3 A Slide Attack on 1K-AES

1: Ask for the encryption of 264 known plaintexts (Pi, Ci)
2: for Each plaintext/ciphertext pairs (Pi, Ci) do
3: Compute the value Ci = MC ◦ SR ◦ SB(Ci)
4: Compute the value Pi ⊕ Ci

5: Store in the hash table the pairs (Pi ⊕ Ci, Pi)
6: end for
7: for Each plaintext/ciphertext pairs (Pj, Cj) do
8: Compute the value Pj = SB−1 ◦ SR−1 ◦MC−1(Pj)
9: Compute the value Pj ⊕ Cj

10: Check for entries in the hash table whose first coordinate matches it
11: end for
12: for Each collision in the table (Pi ⊕ Ci = Pj ⊕ Cj) do
13: Check the candidate key K = Pi ⊕ Pj

14: end for

4.2.2 Complexities

We expect that these 264 known plaintexts contain a slid pair with high probability by
birthday paradox. Total data, time and memory complexities are both 264.

4.3 Slide Attack on Reduced-PRESENT

Reduced-PRESENT which we defined, has almost same structures with conventional
PRESENT. The only difference between them is that Reduced-PRESENT is performed
with same 64-bit round-key in every round. Note that, number of rounds is unimportant
in our attack so that Reduced-PRESENT doesn’t perform with a specific number of
rounds.
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4.3.1 Attack Scenario

Reduced-PRESENT is a lightweight block cipher based on Substitution-Permutation
Network. As we considered in Chapter 3, one should determine the filtering condition
between the slid pairs.

Definition 4.1. Let Ek be an encryption of Reduced-PRESENT. In this sense, r −
round encryption Ek = F r

k (P ⊕ k) = C where Fk(x) = Per(Sub(x)) ⊕ k , Sub is
the substitution layer, Per is the permutation layer and k is the round-key of Reduced-
PRESENT.

As it can be seen in the Figure 3.2, a slid pair satisfies the conditions that are shown
below;

Let (P,C) and (P
′
, C
′
) forms a slid pair. Then,

Fk(P ⊕ k) = P
′ ⊕ k =⇒ Per(Sub(P ⊕ k))⊕ k = P

′ ⊕ k
=⇒ Per(Sub(P ⊕ k)) = P

′
=⇒ P = Sub(Per(P

′
))⊕ k

Denoting Sub(Per(P ′)) = P ′ ,we have
P = P ′ ⊕ k =⇒ P ⊕ P ′ = k

(4.1)

Moreover;
Fk(C) = C

′
=⇒ Per(Sub(C))⊕ k = C

′

Denoting Per(Sub(C)) = C,we have
C ⊕ k = C

′
=⇒ C ⊕ C ′ = k

(4.2)

After combining these two equations, we obtain a filtering condition:

P ⊕ P ′ = k = C ⊕ C ′ =⇒ P ⊕ C = P ′ ⊕ C ′ (4.3)

The filtering condition shows that, if an attacker calculate right-side and left-side of
the equation for 232(by birthday paradox) known plaintext-ciphertext pairs, she/he can
check which pairs form a slid pair. The attack algorithm is given as below.

Algorithm 4 Slide Attack on Reduced-PRESENT

1: Ask for the encryption of 232 known plaintexts (Pi, Ci)
2: for Each plaintext/ciphertext pairs (Pi, Ci) do
3: Compute the value Ci = Per(Sub(Ci))
4: Compute the value Pi ⊕ Ci

5: Store in the hash table the pairs (Pi ⊕ Ci, Pi)
6: end for
7: for Each plaintext/ciphertext pairs (Pj, Cj) do
8: Compute the value Pj = Sub−1(Per−1(Pj))
9: Compute the value Pj ⊕ Cj

10: Check for entries in the hash table whose first coordinate matches it
11: end for
12: for Each collision in the table (Pi ⊕ Ci = Pj ⊕ Cj) do
13: Check the key candidate k = Pi ⊕ Pj with partial encryption
14: end for
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4.3.2 Complexities

In this attack, one needs 232 known plaintext-ciphertext pairs by birthday paradox.
Additionally, there are 232 entry in the hash table, which are used for find a collusion.
There are 232 operations for mount this attack.

4.4 Slide Attack on KeeLoq

The attack of Dunkelman and others on KeeLoq[13] combines slide attack with meet
in the middle approach. The aim is to recover key bits from slid pairs. Recall that slide
attack depends on two assumptions. The first one is weak key schedule and the other
one is F function which is weak to two known plaintext-ciphertext pairs.

As stated before, in the KeeLoq encryption, there are 528 rounds and in each round one
bit of 64-bit key is used. This means that every 64 rounds, the same key is replicated.
This is a major weakness in key schedule. In this approach, F function can be taken as
64 rounds of KeeLoq. However, 528 is not a multiple of 64.

This problem can be solved by guessing the 16 least significant bits of the key. Since
the key is repeated every 64 rounds, in the last 16 rounds, the first 16 bits of the key is
reutilized. In this way, the last 16 rounds can be ignored and the cipher can be thought
as 512 rounds. Thus, the attack can be mounted with 512 rounds of KeeLoq. From
now on, the factor of 216 is added to the complexity of the attack for the key guess.

The block size of KeeLoq is 32 bits. By Birthday Paradox, in a random collection
of
√

232 = 216 plaintext-ciphertext pairs, there exists at least one slid pair with high
probability. Thus, 216 plaintext-ciphertext pairs are needed to perform the attack. Note
that it is not a time-consuming process to obtain that amount of pairs if appropriate
tools are used.

4.4.1 Determining the Key Bits

Before mounting the attack, Linear Step of KeeLoq[7], described by Bogdanov, should
be explained. According to his description, all key bits of 32 rounds (or less) can be
recovered provided that the two intermediate states which are separated by 32 rounds
(or less) are known in the encryption. To understand this approach, the encryption
process is examined.

Let Y (i) = (y
(i)
31 , .., y

(i)
0 ) and Y (i+t) = Y (i) = (y

(i+t)
31 , .., y

(i+t)
0 ) be the two known states,

t ≤ 32. After one round encryption, the result is

Y (i+1) = (y
(i+1)
31 , y

(i+1)
30 , y

(i+1)
29 , .., y

(i+1)
0 ) = (ϕ(i), y

(i)
31 , y

(i)
30 , y

(i)
29 , ..., y

(i)
1 ) (4.4)

ϕ(i) = NLF (y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1 )⊕ y(i)16 ⊕ y

(i)
0 ⊕ ki(mod64) (4.5)
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Because of the NLFSR structure of the round function and since 0 < t ≤ 32, the bit
ϕ(i) = y

(i+t)
32−t . This encrypted value is one of the bits of Y (i) and thus known. Hence,

ki(mod64) = NLF (y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1 )⊕ y(i)16 ⊕ y

(i)
0 ⊕ y

(i+t)
32−t (4.6)

This result is satisfied by the XOR operation. In KeeLoq, if the key bits were used in
NLF or some kind of a non-linear structure, this method should not work. By repeating
this t times, we can recover t consecutive bits of the key. For instance, for t = 3 by
assuming Y (3) = (y(3)31 ,..., y(3)0 ) is known, we can recover 3-bits of key as follows.

With the three times encryption routine we obtain:

ϕ(0) = y
(3)
29 , ϕ

(1) = y
(3)
30 , ϕ

(2) = y
(3)
31 (4.7)

It means that;

Y (3) = (y
(3)
31 , y

(3)
30 , y

(3)
29 , .., y

(3)
0 ) = (ϕ(2), ϕ(1), ϕ(0), y

(0)
31 , ..., y

(0)
3 ) (4.8)

As a result,

ϕ(0) = y
(3)
29 = NLF (y

(0)
31 , y

(0)
26 , y

(0)
20 , y

(0)
9 , y

(0)
1 )⊕ y(0)16 ⊕ y

(0)
0 ⊕ k0 ⇒ (4.9)

k0 = NLF (y
(0)
31 , y

(0)
26 , y

(0)
20 , y

(0)
9 , y

(0)
1 )⊕ y(0)16 ⊕ y

(0)
0 ⊕ y

(3)
29 (4.10)

And similarly, we obtain;

ϕ(1) = y
(3)
30 = NLF (y

(1)
31 , y

(1)
26 , y

(1)
20 , y

(1)
9 , y

(1)
1 )⊕ y(1)16 ⊕ y

(1)
0 ⊕ k1 ⇒ (4.11)

k1 = NLF (y
(1)
31 , y

(1)
26 , y

(1)
20 , y

(1)
9 , y

(1)
1 )⊕ y(1)16 ⊕ y

(1)
0 ⊕ y

(3)
30 (4.12)

Moreover;

ϕ(2) = y
(3)
31 = NLF (y

(2)
31 , y

(2)
26 , y

(2)
20 , y

(2)
9 , y

(2)
1 )⊕ y(2)16 ⊕ y

(2)
0 ⊕ k2 ⇒ (4.13)

k2 = NLF (y
(2)
31 , y

(2)
26 , y

(2)
20 , y

(2)
9 , y

(2)
1 )⊕ y(2)16 ⊕ y

(2)
0 ⊕ y

(3)
31 (4.14)

Hence, we obtain 3-bits of the key. While a slid pair is being searched in the F permu-
tation during a random attack, the process will be divided into 16-round parts. For this
reason, this figure will be useful.

Figure 4.3: 16 rounds of KeeLoq encryption
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Shown at the Figure 4.3, 16-round result of plaintext(denoted by ciphertext) shows that
16 most significant bits (MSB) of plaintext (denoted by B) will be equal to 16-round
LSB of ciphertext due to the KeeLoq encryption routine at the end. In addition, as
mentioned above, if an attacker has knowledge about A and C then 16-bit of the key
can be obtained.

4.4.2 The Attack Scenario

In this section, the basic attack scenario of KeeLoq is explained.

Figure 4.4: Notation of the attack

As stated above, 216-many plaintext-ciphertext pairs are needed for the attack by Birth-
day Paradox. For the definition of F function, 64 rounds of KeeLoq are taken. More-
over, F is divided into four parts as in the Figure 4.4.Thus, the attacker can seek
an equality P ∗j (16-LSB of the P ∗j ) = X∗i (16-MSB of the X∗i ) as a condition for be-
ing a slid pair. Therefore, the 64-bit key k is split into four equal parts such that
k =< k3, k2, k1, k0 >, where k0 contains 16 least significant key bits.

Note that if F (Ci) = Cj when F (Pi) = Pj for the two plaintext-ciphertext pairs
(Pi, Ci) and (Pj, Cj), they form a slid pair. Since there are 216 plaintext-ciphertext
pairs, there are 216 comparisons of being a slid pair for each pair. Therefore, there
are 216.216 = 232 match-ups to be checked. This shows that the probability of finding
a true match-up, i.e. a slid pair is 1/232. Thus, the probability of not finding a true
match-up is 1 − 1/232 . In the set of all possible slid pairs, there are 232.232 = 264

elements and from these elements, 232 pairs are taken to look for a slid pair. Therefore,
there are 232 sets to look for an existence of a slid pair. In the worst case scenario, a
slid pair may not found until the last set. This gives the probability of not finding a slid
pair all over 232 sets as (1 − 2−32)2

32 . Hence, the probability of finding a slid pair all
over these sets is 1 − (1 − 2−32)2

32 ≈ 0.63 or in other words, the success probability
of the attack is %63.
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Algorithm 5 Slide Attack on KeeLoq

1: for all k0 ∈ {0, 1}16 do
2: for all Plaintexts Pi, 0 ≤ i < 216 do
3: Partially encrypt Pi to Xi

4: Partially decrypt Ci to Yi
5: end for
6: for all P ∗j ∈ {0, 1}16 do
7: for all Plaintexts Pj , 0 ≤ j < 216 do
8: Determine the key bits k3
9: Partially decrypt Yj to Y ∗j

10: Save the tuple < P ∗j , C
∗
j , k3 > in a table

11: end for
12: for all Plaintexts Pi, 0 ≤ i < 216 do
13: Determine the key bits k1
14: Partially encrypt Ci to C∗i
15: for all Collisions C∗i = Y ∗j in the table do
16: Determine the key bits k2 from X∗i and P ∗j
17: Determine the key bits k′2 from C∗i and Y ∗j
18: if k2 = k

′
2 then

19: Encrypt 2 known plaintexts with the key k =< k3, k2, k1, k0 >
20: if the correct ciphertexts are found then
21: return The key is k
22: end if
23: end if
24: end for
25: end for
26: end for
27: end for
28: return Failure

In this part, it will be more convenient to explain the attack step by step. Note that,
there are some illustrations that related to every step of the attack in Appendix part.

1. First, as explained above, one should start the process by guessing the partial
key k0. From a set of 216 key options, the attacker chooses one k0. After that,
all of 216 many Pi’s are partially encrypted to Xi’s. Similarly, 216 many Cj’s are
partially decrypted to Yj’s with the same k0. In short, the whole attack starts with
the prediction of k0 and by k0, a slid pair is searched throughout the process. In
the case of not finding a slid pair or finding the wrong one, it is necessary to try
the other possibilities of k0 until the correct key is found. This means that, one
should have to try all 216 many k0’s in the worst case scenario.

2. Secondly, applying the meet-in-the-middle approach to the attack will be suitable
at this stage. In this step, one should guess the LSB of P ∗j (P ∗j ) from the all 216

many options so that 216 many k3 can be determined for 216 many Pj’s. As it is
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mentioned in Figure 4.3, if P ∗j and Pj are known, the attacker can obtain the 16-
bit key used in the encryption. Having all 216 many Pj’s and knowing P ∗j = Pj ,
the only remained thing is to guess the unknown P ∗j . Then, for all possible P ∗j ’s,
the corresponding 216 many k3’s are determined. Consequently a table which
includes the values of P ∗j with unique k3 is created. Afterwards, by using k3’s,
all Yj’s are decrypted to Y ∗j ’s. The values of Y ∗j are also added to this table.
Hence, one has the tuple < P ∗j , C

∗
j , k3 > for every plaintext Pj . This table will

be used to catch a collisions between the other parts of the key that used both in
encryption and decryption.

3. In the third step, something similar to the second step is done from the other side.
Since all bits of Xi and X∗i are known and since the equality X∗i = P ∗j should be
satisfied for all P ∗j , the key bits of k1 can be determined with the formulas used
in Section 4.4.1.

To be more clear, for the determined 216 many Xi’s (these are determined in
step one with the guess of k0), there is one option for the equality X∗i = P ∗j .
Therefore, there are uniquely determined 216 many k1’s corresponding to each
encryption for each plaintext. Hence, to search the second equality for being
a slid pair, Ci’s are partially encrypted to C∗i ’s with each k1 and the results of
encryption are also recorded to the table constructed in previous step.

Note that if Pi and Pj forms a slid pair, their partial encryptions and decryptions
(under the correct key k) must meet in the middle. It means that if a pair is a
slid pair, then it should satisfy X∗i = P ∗j and also C∗i = Y ∗J . In this sense, k1
satisfies the first equality. To check for the second equality, one should compare
the result of encryption C∗i and Y ∗j to catch a collision in the table. If a collision
is caught, the corresponding pairs (Pi, Ci) and (Pj, Cj) become a candidate slid
pair. This circumstance can be observed only if the predictions for k0 and P ∗j are
true.

4. To sum up, one should check the candidate slid pairs against false alarm. With
the candidate slid pairs, one should determine k2 which is used between X∗i and
P ∗j and k′2 which is used between C∗i and Y ∗j . Knowing all X∗i , P ∗j , C∗i and
Y ∗j ,one can determine these k2 and k′2. If the equality of k2 = k′2 is caught, this
pair will be a slid pair otherwise, it will not. Hence, with the determined k =
< k3, k2, k1, k0 >, the condition of Fk(Pi) = Pj and Fk(Ci) = Cj is satisfied.

5. The secret key k may not be the right key even if it satisfies the condition of being
a slid pair. In order to check this situation, a plaintext-ciphertext pair which is
chosen from set of all 216-many known pairs, can be used. If the encryption of
plaintext gives the correct ciphertext, then the secret key k can be true, otherwise
it means a false alarm.
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4.4.3 Complexity

This study shows that the protocol “Identify Friend or Foe”- based KeeLoq is not
secure with 216-known plaintexts and 245-KeeLoq encryptions. The implementation
of the attack is fully running about 500 days for known-plaintexts with a CPU core.
It means that with x-CPU cores, the attack runs 500/x days for known-plaintexts and
218/x days for chosen-plaintexts. For example, if an attacker uses 50 CPU cores in
parallel, KeeLoq can be broken in 500/50 = 10 days.

Complexity
Data Complexity: 216 known plaintexts
Memory: ± 2 MB for the 216-tuples < P ∗j , Y

∗
j , k3 >

Time: 245 KeeLoq encryptions
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CHAPTER 5

CONCLUSION

Undoubtedly, slide attack is an important method for the cryptanalysis of block ciphers.
It uses weaknesses of key schedules and it is independent of the number of rounds. So,
these reasons also make slide attack effective for lightweight block ciphers which have
high number of rounds against differential and linear cryptanalysis.

In this thesis, mathematical fundamentals of slide attack are described in detail. It is
also shown that slide attack is more effective if it is combined with some approaches
such as finding a filtering condition, meet-in-the-middle or Birthday Paradox. Besides,
some special cases of slide attack on Substitution-Permutation Network’s or Feistel
Structures are investigated. Moreover, some applications of slide attack to reduced
block ciphers are given. Additionally, we offer a practical attack to reduced-PRESENT
inspired from. Lastly, a real lightweight block cipher KeeLoq and how it is broken with
slide attack is explained.
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APPENDIX A

Figures of Slide Attack to KeeLoq

Figure A.1: Beginning of the attack

Figure A.2: Illustration of Step 1
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Figure A.3: Illustration of Step 2

Figure A.4: Illustration of Step 3
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Figure A.5: Illustration of Step 4
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