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Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
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ABSTRACT

SECURE PASSWORD GENERATION THROUGH STATISTICAL
RANDOMNESS TESTS

Uslu, Aycan

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

September 2017, 44 pages

Both symmetric and asymmetric cryptographic algorithms must firstly be robust against
brute force. The key needs to be choosen uniformly and randomly from the key space.
It is possible to assure randomness by using statistical randomness tests which are also
critical for other cryptographic issues as well. There is still an issue to be elaborated:
the most well-known tool for attacking againts passwords namely dictionary attacks.
These attacks are based on trying all keys from a particular subspace of the key space,
which are composed of words from daily life and their variations. In this study we
focus on the randomness of the keys but we are not interested with latter issue that is
dictionary attacks. The one who use our tests to generate key must check it regarding
specified dictionaries.

Keywords : Statistical Randomness Tests, Distribution Functions
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ÖZ

İSTATİSTİKSEL RASTGELELİK TESTLERİ İLE GÜVENLİ PAROLA ÜRETİMİ

Uslu, Aycan

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Eylül 2017, 44 sayfa

Simetrik ve asimetrik şifre algoritmalarının öncelikle brute force’a dayanıklı olması
beklenmektedir. Yani, belirli bir anahtar kümesi üzerinde yapılacak ataklara dayanıklı
olması gerekmektedir. Bu da; seçilen anahtarın, uygun büyüklükteki bir anahtar uzayının
herhangi bir yerinden eşit olasılıkla seçilmiş olması ile sağlanabilmektedir. Bunu
garanti etmenin yolu başka kriptografik meselelerde de önem taşıyan istatistiksel rast-
gelelik testlerinin kullanılmasından geçer. Anahtarın, anahtar uzayından her anahtara
eşit şans vererek seçilmiş olması brute force’a karşı dayanıklılığı sağlar. Bunun dışında
anahtarlara(parolalara) atak yapmak için kullanılan en bilinen yöntemlerden bir diğeri
sözlük saldırılarıdır. Bu ataklar, günlük hayattan seçilmiş kelimeler ve bunların varyasy-
onlarıyla oluşturulmuş anahtar uzayının alt uzaylarındaki bütün anahtarların denen-
mesi suretiyle gerçekleşir. Bu çalışmada anahtarların rastgelelik kriterlerine uygun
olarak seçilmiş olması gözetilmiş, sözlük atakları gözardı edilmiştir. Bu nedenle, bu
tezde anlatılan şekilde üretilen anahtarların belli sözlük testlerinden de geçirilmesi
gerekmektedir.

Anahtar Kelimeler : İstatistiksel Testler, Dağılım Fonksiyonu
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CHAPTER 1

Introduction

1.1 Random Sequences

Although it may look simple at first sight to give a definition of what a random number
is, it proves to be quite difficult in practice.

A random number is generated by a unpredictable process, in which outcomes cannot
be reliably reproduced later. In other sense, a kind of black box called a random
number generator can accomplish this task, too. However, we cannot prove whether
a singular random number was produced through a random number generator without
examining sequences of numbers generated by the generator. Random sequences have
specific properties as below:

• Unpredictability:Unpredictability: it means that knowing the first t element of
a sequence does not inform anything about the next element of the sequence.

• Uniformity: In a sequence, 0’s and 1’s should be available in approximately
equal numbers.

• Independence: Each term of the sequence is generated independently of the
other terms.

It make us question about when a particular number or output string can be called
unpredictable or uniformly distributed.

1.2 Random Number Generator

A random number generator is an algorithm, based on an initial seed or by means of
continuous input, generates a sequence of numbers or bits. True Random Generators,
abbreviated as TRNGs, output the results of a physical experiment which is considered
to be random, like radioactive decay or the noise of a semiconductor diode. Outputs of

1



a deterministic algorithm which resembles a true number generator are called pseudo-
random numbers. The specific feature of these generators is to use a numerical algo-
rithm in order to generate a sequence of truly random numbers. In some cases, PRNGs
use TRNGs with an additional algorithm which lead a sequence work like real random
numbers.

TRNGs have some problems. Firstly, they are often biased, which means their output
might include more ones than zeros, results that it does not correspond to a uniformly
distributed random variable.In addition to this, some TRNGs are really expensive and
requires an additional hardware device. They are usually too slow for applications we
work. On the other hand, PRNGs do not need an additional hardware and they are
faster than TNRGs. Moreover, their outputs accomplish the most necessary conditions
of random numbers, like unbiasedness.

1.3 Statistical Randomness Test

Statistical tests are used to check whether the output sequences of a PRNG is statisti-
cally indistinguishable from the output of a truly random generator. They fulfill this
task through calculating specific statistical quantities and comparing them with ex-
pected values. The expected values obtained from calculations are employed on the
model of an ideal random number generator. Testing randomness is an empirical task
for which there are various tests affirming any kind of imperfection in a sequence.

2



CHAPTER 2

Statistical Randomness Testing

Let Ωn be the set of binary sequences of length n. Fixed n, an integer valued random
variable defined on Ωn that is X maps Ωn into some subset of integers.

X : Ωn → T
Let X be a random variable on Ωn and α ∈ (0, 1) is predetermined value, or one can
call significance level. Respecting the random variable and its distribution function
F does not enable us to call a sequence σ ∈ X ”good” or ”bad”. But we can call a
sequence σ better than σ’ if Prob(X = X(σ)) ≥ Prob(X = X(σ′)). Then we can
talk about, for example, the ’worst 20 sequence’ or ’worst 20-percentage sequences’
etc. We define the ′α,X − worst′ set to be the set of all sequences in Ωn that we want
to eliminate in test. We can call this set Wα and here is the way how we determine it:

Let probability density function of X be Fn(k) = Prob(X = k) such that

Fn : T→ [0, 1].

For any u ∈ [0, 1] define Au ⊂ Ωn such that

Au = {σ ∈ Ωn|Prob(x = x(σ)) ≤ u} .

Let us define
Prob(Au) =

∑
σ∈Au

Prob(x = x(σ)).

Given α, among all u ∈ (0, 1) such that Prob(Au) ≤ α and call the largest one uα.
Then, Wα = Auα .

We decide whether a given sequence is ′α,X − bad′ or not using certain statistical
properties of random variables. Vice versa, we can call sequence as ′1−α,X − good′.

Here are some examples of distribution functions:

3



Figure 2.1: Example of Probability Distribution

Figure 2.2: Example of Probability Distribution

4



Figure 2.3: Example of Probability Distribution

In 2.3, all elements of Wα is in the one side of the distribution. So we call the test
that we intend to apply as one-sided test. Likewise, two-sided test refer to the test for
the distribution like in 2.1. In this study, we do not have any example of 2.2, but our
method is still suitable for that kind of distribution.

2.1 Frequency (Weight) Test

Frequency Test is esteemed as the simplest test while we are testing randomness prop-
erty. It measures the number of 1’s in a sequence. There are

(
n
w

)
n-bit sequences that

has w weight, and the probability of that is;

Pr(W = w) =

(
n
w

)
2n

.

Thus, as it has obviously been observed the the probability distribution function is the
binomial distribution.

2.1.1 Recursion

Initial values are:

P1(0) = 1, P1(1) =
1

2
,

for n ≥ 2 and k = 0

Pn(0) =
1

2
Pn−1(0).

5



When n ≥ 2 and k ≥ 1, we can write

Pn(k) =

(
n
k

)
2n

=
n+ 1− r

r

(
n

r − 1

)
.

So;

Pn(k) =
n+ 1− r

r
Pn−1. (2.1)

Why Recursive Relations?

As opposed complex explicit expressions, concentrating on deriving simple recursive
relations much more effective. In this study, all obtained relations are linear, so that
they have low complexities. It is feasible to get the exact probabilities for considerably
long sequences such as 214 bits by employing these relations.

For example, for the frequency test if we do not have the recursion above we have to
find k from this equation:

k∑
i=0

(
n

i

)
1

2n+1
= α.

For the sequences that have long length,for example 4096, it is impossible to find the
value of k.

Here are some test results:

α worst α− set actual α
0.01 (0, 1965) ∪ (2131, 4096) 0, 009925289
0.02 (0, 1973) ∪ (2123, 4096) 0, 01989435
0.04 (0, 1982) ∪ (2115, 4096) 0, 03917112

Table 2.1: Weight Test for n=4096

α worst α− set actual α
0.01 (0, 48) ∪ (79, 128) 0, 008007673
0.02 (0, 50) ∪ (78, 4096) 0, 016670734
0.04 (0, 51) ∪ (76, 4096) 0, 034186728

Table 2.2: Weight Test for n=128

2.2 Runs Test

A run is defined as an uninterrupted sequence of identical bits[2]. For instance, for a
given sequence σ = 00101110010110, there are 9 runs: 00-1-0-111-00-1-0-11-0.
In this study, we take a family of test functions depending on the probabilities defined
as below:

6



• probability that a random sequence of length n has r runs,

• probability that a random sequence of length n has exactly k runs of length a.

where n,r,a are positive integers and k is a nonnegative integer.

A composition of an integer n is a way of writing n as the sum of a sequence of pos-
itive integers, concerning the ordering of summands. Given a binary string of length
n with r runs, suppose that lengths of the runs are `1, ..., `r. Obviously, sum of these
lengths is equal to the length of the sequence; therefore, the ordered array (`1, ..., `r) is
a composition of n. Hence, lengths of runs of a binary sequence of length n matches
a unique composition of n. Contrarily, it matches two sequences (one starting with a
one; the other starting with a zero) for each composition of n, so lengths of runs are
equal to the corresponding parts of the composition. Any problem on compositions
can be envisioned as a problem on the number of runs of a binary sequence because
of this 2-1 correspondence. Now we approach compositions for required computations.

In this section, all theorems are taken from [15].

2.2.1 Generating Functions

The generating function for the infinite sequences 〈g0, g1, g2, ...〉 is the power series:

G(x) = g0 + g1x+ g2x
2 + g3x

3 + ...

A generating function is a formal power series, in which we usually take x as a place-
holder instead of a number. A generating function is rarely regarded by letting x take
a real number value. Hence, the issue of convergence is generally bypassed by the
author. In this way, we can figure out “correspondence” between a sequence and its
generating function with a doublesided “arrow” below:

〈g0, g1, g3, ...〉 ←→ g0 + g1x+ g2x
2 + g3x

3 + ...

For example, you can see some sequences and their generating functions below:

〈0, 0, 0, 0, ...〉 ←→ 0 + 0x+ 0x2 + 0x3 + ... = 0

〈0, 0, 1, 0, ...〉 ←→ 0 + 0x+ 1x2 + 0x3 + ... = x2

〈4, 7, 6, 0, ...〉 ←→ 4 + 7x+ 6x2 + 0x3 + ... = 4 + 7x+ 6x2

The pattern here is simple: the ith term in the sequence (indexing from 0) is the coef-
ficient of xi in the generating function.
The sum of an infinite geometric series is:

1 + z + z2 + z3 + ... =
1

1− z
.

7



This equation does not hold when |z| ≥ 1 but as described, it is not necessary to worry
about convergence issues. This shows closedform generating functions for a whole
range of sequences. For instance:

〈1, 1, 1, 1, ...〉 ←→ 1 + 1x+ 1x2 + 1x3 + ... =
1

1− x

〈1,−1, 1,−1, ...〉 ←→ 1− x+ 1x2 − x3 + ... =
1

1 + x〈
1, a, a2, a3, ...

〉
←→ 1 + ax+ a2x2 + a3x3 + ... =

1

1− ax

〈1, 0, 1, 0, ...〉 ←→ 1 + x2 + x4 + ... =
1

1− x2
.

2.2.2 Using Generating Function on Runs Test

Let n, r be positive integers, recall that, we approve the formal sum 1 + z + z2 + ...
correspond to each summand (xi) in order to find the number of nonnegative integer
solutions of the equation x1 + x2 + ... + xr = n and then find the coefficient of zn in
(1 + z + z2 + ...)r. Any limitation on summands has a natural reflection to the corre-
sponding factors. For example, the number of solutions of x1+x2+...+x8 = 20 based
on the condition 3 ≤ xi ≤ 10 is given by the coefficient of z20 in (z3 + z4 + ...+ z10)8.
In a same way, coefficient of z10 in (1+z2 +z4 + ...)4(z+z3 +z5 + ...)4 is the number
of solutions of the same equation if we depend upon exactly half of the summands be
even.
If we remember compositions again, we observe that c(n, r), the number of compo-
sitions with r ≥ 1 parts of the positive integer n, is the number of positive integer
solutions of the equation

x1 + x2 + ...+ xr = n (2.2)

which is the coefficient of zn in (z + z2 + ...)r =
(

z
1−z

)r or equivalently, c(n, r) is the
coefficient of znxr in

1 +
∞∑
r=1

(
z

1− z

)r
xr =

1

1− ( z
1−z )x

which means that
C(z, x) =

1− z
1− z − zx

.

On the other hand, as

zr

(1− z)r
= zr

∞∑
i=0

(
−r
i

)
(−z)i = zr

∞∑
i=0

(
r + i− 1

r − 1

)
(−z)i,

coefficient of zn in (z + z2 + . . .)r is

c(n, r) =

(
n− 1

r − 1

)
.

8



By definition, c(n) =
∑n

r=1 c(n, r). In other words, c(n) is the sum of coefficients of
zn in 1, z

1−z ,
z2

(1−z)2 , ... or equivalently, c(n) is the coefficient of zn in

1 +
∞∑
r=1

(
z

1− z
)r =

1

1− z
1−z

=
1− z
1− 2z

.

It follows that
C(z) =

1− z
1− 2z

and consequently, c(n) = 2c(n− 1) for n ≥ 2 and by iteration we get

c(n) = 2n−1.

2.2.3 Number of Total Runs Test

As stated in [15], the set of all compositions of n is equivalent to the set of all compo-
sitions of all integers less than n, including 0, hence for any integer n ≥ 1

c(n) = c(n− 1) + . . .+ c(1) + c(0) =
n∑
i=1

c(n− i). (2.3)

Theorem 2.1 ([15]). The sequence {c(n)}∞n=0 is determined with the initial conditions
c(0) = c(1) = 1 and the recurrence relation c(n) = 2c(n− 1) for all integers n ≥ 2.

Proof. By convention it’s obvious that c(0) = 1 and c(1) = 1. We can write the
recursion 2.3 as

c(n− 1) =
n−1∑
i=1

c(n− 1− i) =
n∑
i=2

c(n− i) =

(
n∑
i=1

c(n− i)

)
− c(n− 1)

for n ≥ 2. One can compare it with expression 2.3 and conclude that c(n) = 2c(n−1)
for n ≥ 2.

2.2.4 Runs of Length r Test

Theorem 2.2 ([15]). If a is a fixed positive integer then

Ca(z, y, x) =
1− z

1− z(x+ 1) + zax(1− z)(1− y)
.

Proof. Ca(n, k, r) is the number of positive solutions of the equation x1+x2+...+xr =
n such that xi1 = ... = xik = a for some {i1, ..., ik} ⊂ {1, ...r} and xi 6= a for
i /∈ {i1, ...ik}. The subset {i1, ..., ik} can be chosen in

(
r
k

)
distinct ways and once this

9



set is determined, the number of solutions of the equation is given by the coefficient of
zn in

(za)k((z + z2 + ...)− za)r−k = (za)k
(

z

1− z
− za

)r−k
.

It follows that ca(n, k, r) is the coefficient of znykxr in

Ca(z, y, x) = 1 +
∞∑
k=0

∞∑
r=1

(
r

k

)
zkaU r−kykxr (2.4)

where U = z
1−z − z

a. The double sum on the right hand side can be separated for the
cases k = 0 and k = 1, 2, ... to obtain

Ca(z, y, x) = 1 +
∞∑
r=1

U rxr +
∞∑
k=1

zkaykxk
∞∑
r=1

(
r

k

)
U r−kxr−k

=
1

1− Ux
+
∞∑
k=1

zkaykxk
∞∑
r=1

(
r

k

)
(Ux)r−k

=
1

1− Ux
+

1

1− Ux

∞∑
k=1

(
zayx

1− Ux

)k
=

1

1− Ux− zayx
and finally by substituting U = z

1−z + za, we obtain the desired expression.

Theorem 2.3 ([15]). If a is a fixed positive integer then

Ca(z, y) =
1− z

1− 2z + za(1− z)(1− y)
.

Proof. From the proof of Theorem 2.2, we see that ca(n, k) is the coefficient of zn in∑∞
r=1

(
r
k

)
(za)kU r−k. It follows that ca(n, k) is the coefficient of znyk in

1 +
∞∑
k=0

∞∑
r=1

(
r

k

)
zkaU r−kyk.

From 2.4, we observe that this expression is in fact Ca(z, y, 1), thus Ca(z, y) = Ca(z, y, 1).

A recursion for ca(n, k) can be attained through the way analogous to the one used in
attaining 2.3. First consider the case k = 0. we find such compositions of all integers
less than n, except n− a by deleting the first part of each composition of n which has
no part equal to a. . Thus, the recursion for ca(n, 0) diverges from the recursion for
c(a) only by the summand c(n− a, 0), that is

ca(n, 0) =
n∑
i=1

ca(n− i, 0)− ca(n− a, 0). (2.5)

10



Delete the first part of a composition of n which has k > 1 parts equal to a. If the
deleted part is equal to a, then the rest constitute a composition of n−awith k−1 parts
equal to a. If the deleted term is equal to i(i 6= a), then the rest form a composition of
n− i with k parts equal to a. So we can say

ca(n, k) =
n∑
i=1

ca(n− i, k)− ca(n− a, k) + ca(n− a, k − 1). (2.6)

Theorem 2.4 ([15]). Let a be a positive integer. The sequence {ca(n, k)}∞n=0 is deter-
mined with the initial conditions for k = 0

ca(n, 0) =


1 if n = 0

2n if a > 1 and 1 ≤ n ≤ a− 1

2a−1 − 1 if n = a

and for k ≥ 1

ca(n, k) =

{
0 if n ≤ ka− 1

1 if n = ka

and the recurrence relations

ca(n, 0) = 2ca(n− 1, 0)− ca(n− a, 0) + ca(n− 1− a, 0) (2.7)

for n ≥ a+ 1 and

ca(n, k) = 2ca(n−1, k)−ca(n−a, k)+ca(n−a−1, k)+ca(n−a, k−1)−ca(n−a−1, k−1)
(2.8)

for k ≥ 1 and n ≥ ka+ 1.

Proof. When k = 0, we have ca(0, 0) = 0 by convention. If n < a, then no composi-
tion of n contains a as a part, so ca(n, 0) = 2n−1 for n ≤ a. Only one composition of
a contains a, thus ca(a, 0) = 2a−1 − 1.

When k ≥ 1, then c(0, k) = 0 by convention. If n < ka, then no composition of
n can contain k parts equal to a, so ca(n, k) = 0 for n < ka. Only one composition of
n = ka consists of k parts, each equal to a, thus ca(a, k) = 1.

For n ≥ a+ 1, recursion 2.5 can be written as

ca(n− 1, 0) =
n−1∑
i=1

ca(n− 1− i, 0)− ca(n− 1− a, 0)

=
n∑
i=2

ca(n− i, 0)− ca(n− 1− a, 0)

=
n∑
i=1

ca(n− i, 0)− ca(n− 1, 0)− ca(n− 1− a, 0).

11



Comparing this expression to 2.5, we find 2.7.

In a similar way, for n ≥ ka+ 1 we write the recursion 2.6

ca(n− 1, k) =
n−1∑
i=1

ca(n− 1− i, k)− ca(n− 1− a, k) + ca(n− 1− a, k − 1)

=
n∑
i=2

ca(n− i, k)− ca(n− 1− a, k) + ca(n− 1− a, k − 1)

=
n∑
i=1

ca(n− i, k)− ca(n− 1, k)− ca(n− 1− a, k) + ca(n− 1− a, k − 1)

Comparing this expression to 2.6, we find 2.8.

2.2.5 Probability Distribution Function of Runs Test

In this section we compute the basic probabilities based on our tests. Let Ωn be the set
of binary sequences of length n and define the following nonnegative integer valued
random variables on Ωn:

X (σ) = number of runs of σ,
Xa(σ) = number of runs of length a of σ

we denote the probability mass functions of these random variables as

p(n, r) = probability(X = r),

pa(n, k) = probability(Xa = r).

we have stated that it matches unique composition of n for each binary sequence of
length n and it matches exactly 2 binary sequences of length 2 for each composition
of n. Then, the number of binary sequences of length n which have r runs is twice the
number of compositions of n with r parts, as an instance. Because the number of all
binary sequences of length n is 2n, we exactly get

p(n, r) =
1

2n
(2c(n, r)) = 21−nc(n, r)

and
pa(n, k) = 21−nca(n, k).

Theorem 2.5 ([15]). Let a be a positive integer. The sequence {p(n, r)}∞n=0 is deter-
mined with the initial conditions

p(n, r) =


1 if r = n

0 if r = 0 and n > 0

0 if r > 0 and r > n

12



the recursion

p(n, r) =
1

2
(p(n− 1, r) + p(n− 1, r − 1))

and for n > r > 0.

Proof. We already know that c(n, r) =
(
n−1
r−1

)
. Pascal’s identity

(
n−1
r−1

)
=
(
n−2
r−1

)
+
(
n−2
r−2

)
eads the desired expression.

Theorem 2.6 ([15]). Let a be a positive integer. The sequence {pa(n, k)}∞n=0 is deter-
mined with the initial conditions:
for k = 0

pa(n, 0) =

{
1 if n ≤ a− 1

1− 21−a if n ∈ {a, a+ 1}

for k ≥ 1

pa(n, k) =

{
0 if n ≤ ka− 1

21−a if n ∈ {ka, ka+ 1}

apart from p1(2, 0) = 1/2 and p1(2, 1) = 0.

The recurrence relations

• for n ≥ a+ 2

pa(n, 0) = pa(n− 1, 0)− 2−apa(n− a, 0) + 2−a−1pa(n− 1− a, 0)

• for r ≥ 1 and n ≥ ra+ 2

pa(n, k) = pa(n− 1, k)− 2−apa(n− a, k) + 2−a−1pa(n− a− 1, k)

+ 2−apa(n− a, r − 1)− 2−a−1pa(n− a− 1, r − 1).

Proof. By convention, pa(0, 0) = 1. Initial conditions can be controlled by direct
computing. For the other cases, just substitute pa(n, k) = 21−nca(n, k) in 2.4.

One can see some test results below:

α worst α− set actual α
0.01 (0, 1966) ∪ (2132, 4096) 0, 009925289
0.02 (0, 1974) ∪ (2124, 4096) 0, 019894351
0.04 (0, 1982) ∪ (2115, 4096) 0, 039123224

Table 2.3: Number of Runs Test for n=4096
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α worst α− set actual α
0.01 (0, 49) ∪ (80, 128) 0, 007519595
0.02 (0, 51) ∪ (79, 128) 0, 016670734
0.04 (0, 52) ∪ (77, 128) 0, 032789562

Table 2.4: Number of Runs Test for n=128

α worst α− set actual α
0.01 (0, 932) ∪ (1118, 4096) 0, 009714587
0.02 (0, 941) ∪ (1109, 4096) 0, 019586516
0.04 (0, 951) ∪ (1099, 4096) 0, 039928555

Table 2.5: Number of Runs of length 1 Test for n=4096

α worst α− set actual α
0.01 (0, 16) ∪ (50, 128) 0, 008763745
0.02 (0, 18) ∪ (49, 128) 0, 017565686
0.04 (0, 19) ∪ (46, 128) 0, 039504471

Table 2.6: Number of Runs of length 1 Test for n=128

α worst α− set actual α
0.01 (0, 457) ∪ (568, 4096) 0, 009335232
0.02 (0, 462) ∪ (562, 4096) 0, 019336163
0.04 (0, 468) ∪ (556, 4096) 0, 039830136

Table 2.7: Number of Runs of length 2 Test for n=4096

α worst α− set actual α
0.01 (0, 6) ∪ (27, 64) 0, 006718844
0.02 (0, 7) ∪ (26, 64) 0, 01501039
0.04 (0, 8) ∪ (25, 64) 0, 031320682

Table 2.8: Number of Runs of length 2 Test for n=128

2.3 Random Walk Excursion Test

Let σ be a binary string of length n denoted by s1s2...sn. We call a string balanced,
if it has an equal number of 1’s and 0’s. Say sk is a balanced point if substring of σ
s1s2...sk is balanced.
A string σ is said to intersect the line y = t as si if 2(s1 + s2 + ... + si) − i = t for
i = 1, ..., n. We can see that obviously si is a balanced point if and only if σ intersects
the line y = 0 at si.
Say Xt(n, k) be the set of strings of length n intersecting the line y = t exactly at
k distinct terms and let xt(n, k) = |Xt(n, k)|. We can say that from the definition
x0(n, k) = x(n, k) and it is obvious that xt(n, k) = x−t(n, k) for any t = 1, ..., n.
B(n, k) stands for the set of balanced strings containing exactly k balance points and
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b(n, k) is the number of such strings. Bt(n) denotes the set of strings of length nwhich
touch the line y = t for the first time at the last term and bt(n) = |Bt(n)|. You can see
that B0(n) = B(n, 1). Also, no string in Bt(n) is balanced if t 6= 0.
X(n, k) stands for the set of strings containing exactly k balance points and x(n, k) is
the number of such strings. As previously, for t = 0, we can write Xt(n) = Xt(n, 0)
and xt(n) = |Xt(n, 0)|.
While Xt(n) is the set of strings of length n which do not intersect the line y = t,
complement of this set which we can call X t(n) is the set of strings which intersects
the line y = t at least in one point. So, xt(n) =

∣∣X t(n)
∣∣. The probability of a string of

length n to have k intersections with the line y = t(ory = −t) is denoted by pt(n, k).
Lastly, [a(n, k)] denotes the table(or matrix) whose rows are indexed by i = 1, ..., n
and columns are indexed by j = 1, ...k where n and k are positive inetegers. Likewise,
a(i, j) denotes two dimensional array for i = 1, ..., n and j = 1, ...k.

In this section, all theorems are taken by [3].

2.3.1 Catalan Numbers

One of the basic tools used here is the sequence {C}∞n0
of Catalan numbers where

Cn =
1

n+ 1

(
2n

n

)
for any nonnegative integer n. First a few terms of this sequence are 1,1,2,5,14,...

It is sincere to see that Catalan numbers satisfy the following recursion for n > 1

Cn =
4(n− 1)

n+ 1
Cn−1. (2.9)

Another important property of Catalan numbers is that, convolution of the sequence
C∞n0

is itself, that is, for any nonnegative integer n,

Cn =
n−1∑
i=0

CiCn−i.

Generating function of this sequence is

C(z) =
∞∑
i=0

Cizi = 1 + z + 2z2 + 5z3 + 14z4 + . . . .

Using this property it is easy to verify that

zC2(z) = C(z)− 1. (2.10)

By differentiating both sides of 2.10 one obtains

d

dz
C(z) =

C2(z)

1− 2zC
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and by differentiating the product zC(z) =
∑∞

i=0
1
i+1

(
2i
i

)
zi+1 we obtain the generating

function of the sequence
{(

2n
n

)}
n
:

C(z) + z
d

dz
(C(z)) =

∞∑
i=0

(
2i

i

)
zi. (2.11)

Following lemma presents a result which will be the basis of many computations
throughout the work.

Lemma 2.7 ([3]). Let n,t and q be positive integers with t ≤ q ≤ n. The number of
strings of length n which contain q zeros and which intersect the line y = t at least
once is given by {(

n
q−t

)
if t ≤ q ≤ n+t

2(
n
q

)
if n+t

2
≤ q ≤ n

(2.12)

Proof. Given a string σ of length n which intersects the line y = t, depending on q we
consider two cases:

• In n+t
2
≤ q ≤ n case σ necessarily intersects the line y = t and number of such

strings is (
n

q

)
.

• Let us look at t ≤ q ≤ n+t
2

case. Let A be the set of strings of length n which
have q zeros and which intersect the line y = t, ant let B be the set of strings of
length nwhich have q−t zeros. We will present that these two sets are equivalent
which is why the number of strings in A is(

n

q − t

)
.

Given σ ∈ A. Let i0 be the smallest integer such that σ intersects the line y = t
at si0 . The string σ = s1 . . . si0si0+1 . . . sn where si = 1 − si, i = 1, ..., i0 has
q − t zeros, hence σ ∈ B . Hence, it matches a unique string σ ∈ B for each
σ ∈ A. Contrarily, any string τ in B has q − t zeros, hence n − q + t ones.
However, the condition q ≤ (n+ t)/2 shows that n−q+ t ≥ (n+ t)/2, meaning
the string τ intersects the line y = −t. Now in the string τ , starting with the
first term replace each one with a zero and each zero with a one up to the term at
which the string intersects the line y = −t for the first time. The resulting string
intersects the line y = t and has q zeros, hence is in A. Then the correspondence
given above is one to one and the sets A and B are equivalent.

Lemma 2.8 ([3]). Let n and t be positive integers with t ≤ n. The number of strings
of length n which intersect the line y = t at least once is given by

x t(n) =

2
∑n−t

2
i=0

(
n
i

)
−
(
n
n−t
2

)
if n+ t is even

2
∑n−t−1

2
i=0

(
n
i

)
if n+ t is odd

(2.13)

16



Proof. Depending on the parity of n+ t, we examine two cases separately:

• n+ t is even

x t(n) =

n+t
2
−1∑

i=t

(
n

i− t

)
+

n∑
i=n+t

2

(
n

i

)

=

n−t
2
−1∑

i=0

(
n

i

)
+

n−t
2∑
i=0

(
n

i

)

= 2

n−t
2∑
i=0

(
n

i

)
−
(
n
n−t
2

)

• n+ t is odd

x t(n) =

n+t−1
2∑
i=t

(
n

i− t

)
+

n∑
i=n+t+1

2

(
n

i

)

=

n−t−1
2∑
i=0

(
n

i

)
+

n−t−1
2∑
i=0

(
n

i

)

= 2

n−t−1
2∑
i=0

(
n

i

)

2.3.2 Recursive Relations Satisfied by b(n, k)

We first define B(n, 1) as the number of balanced sequences having no balance points
other than the last term. It is clear that a balanced sequence must be of even length, so
B(n, 1) = 0 for any odd integer n. We have the following proposition for sequences
of even length, as below:

Proposition 2.9 ([3]). For any positive integer m,

b(2m, 1) = 2C2m−1

where Cm−1 is a Catalan number.

Proof. Any σ = s1 · · · s2m ∈ B(2m, 1) is balanced and has only one balance point
(necessarily the last term) and none of the terms s1, · · · , s2m−1 is a balance point.
For m = 1 the claim is clear: b(2, 1) = 2 = 2C0 . Now assume that m > 1 and
s1 = 1 (hence, s2m = 0). It is easy to observe that the string s2, · · · , s2m−1 is balanced
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and it cannot intersect the line y = 1 . Therefore, there corresponds a unique string
σ ∈ B(2m, 1) with s1 = 1 for each such string. The number of strings in B(2m, 1)
is equal to the number of strings of length 2m − 2 having q = m − 1 zeros and not
intersecting the line y = 1 because the converse relation also holds. After that, from
2.12 we obtain B(2m, 1) =

(
2m−2
m−1

)
−
(
2m−2
m−2

)
which simplifies into the Cm−1. By

including the strings with initial term 0, the assertion follows.

In conclusion, for any nonnegative integer we have

b(n, 1) =

{
0 if n = 0 or n is odd
2Cn

2
−1 if n > 0is even

(2.14)

Proposition 2.10 ([3]). For any positive integersm and k > 1, the sequence {b(2m, k)}∞n=0

is convolution of the sequences {b(n, 1)}∞n=0 and {b(2m, k − 1)}∞n=0, that is

b(2m, k) =
m−1∑
i=0

b(2i, 1)b(2m− 2i, k − 1).

Proof. Let k > 1 and consider a string σ ∈ B(n, k). Assume that the first balance
point is s2i. Then, σ can be divided into two substrings σ1 = s1 · · · s2i and σ2 =
s2i+1 · · · s2m such that σ1 ∈ B(2i, 1) and σ2 ∈ B(2m− 2i, k − 1).

Expression 2.14 provides us compute the first row of [b(n, k)] by n/2 multiplications.
Then, using above proposition, for each k > 1, computation of terms on kth column
requires (n−2k)(n−2k+2)

8
multiplications and one less additions. As a result, the total

number of multiplications and additions for computing the entire table [b(n, k)] are
n3−n

6
and n3−4n

6
, respectively.

Now we point out generating function of the sequence {b(n, k)}∞n=0. First we find the
generating function B(z) of {b(n, 1)}∞n=0:

B(z) =
∞∑
i=0

b(i, 1)zi

=
∞∑
i=1

b(i, 1)z2i

= 2
∞∑
i=1

Ci−1z2i

= 2z2
∞∑
i=0

Ciz2i

= 2z2C(z2).
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Proposition 2.11 ([3]). Let k be a positive integer. Then generating function of the
sequence {b(n, k)}∞n=0 is

Bk(z) = 2kz2kCk(z2).

Proof. Proposition 2.10 shows that the generating function of {b(n, k)}∞n=0 is the prod-
uct of B(z) and the generating function of {b(n, k − 1)}∞n=0. Then, proof follows in-
ductively: generating function of {b(n, k)}∞n=0 for k = 2 is B(z)B(z) = B2(z). For
k = 3 we have B(z)B2(z) = B3(z) and so on.

Theorem 2.12 ([3]). For any positive integers n and k, the quantities b(n, k) satisfy
the following recursions with regard to the given initial conditions.

Proof.

• for k = 1

b(n, 1) =


0 if n = 1

2 if n = 2
4(n− 3)

n
b(n− 2, 1) if n ≥ 3

,

• for k = 2

b(n, 2) =

{
0 if n ≤ 2

2b(n, 1) if n ≥ 3
,

• for k ≥ 3

b(n, k) =

{
0 if n < 2k

2b(n, k − 1)− 4b(n− 2, k − 2) if n ≥ 2k
.

• Initial terms are obvious and the recursion follows from 2.9 and 2.12.

• Initial terms are obvious. Generating function of {b(n, 2)}n satisfies.

B2(z) = 4x4C2z2

= 4z2[z2C2(z2)]
= 4z2[C(z2)− 1]

= 4z2C(z2)− 4z2

= 2B(z)− 4z2

which means that b(2, 2) = 2b(2, 1)− 4 = 0 and for n > 2, b(n, 2) = 2b(n, 1).
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• Initial terms are obvious. For any integer k > 2 we have

Bk(z) = 2kz2kCk(z2)
= 2kz2k−2Ck−2[z2C2(z2)]
= 2kz2k−2Ck−2[C2(z2)− 1]

= 2[2k−1z2k−2Ck−1(z2)]− 4z2[2k−2z2k−4Ck−2(z2)]
= 2Bk−1(z)− 4z2Bk−2(z)

which implies that b(n, k) = 2b(n, k − 1) − 4b(n − 2, k − 2) for any integer
n > 2.

Theorem 2.12 is important that it diminishes the complexity of computation of [b(n, k)]
as follows. We can compute the first row by n/2 multiplications by first part of the
theorem. Starting from the third row, each term can be computed by 2 multiplications
and 1 additions, then we need a total of n2+2n

4
multiplications and n2−2n

8
additions for

the entire table.

2.3.3 Recursive Relations Satisfied by x (n, k)

Given a positive integer n, by substituting t = 1 in 2.13 we see that

x̄1(n) =

{
2n −

(
n
n−1
2

)
if n is odd

2n −
(
n
n
2

)
if n is even

which can be written simply as x̄1(n) = 2n −
(

n

bn2 c
)
. On the other hand, by definition,

x1(n) = 2n − x̄t(n) which gives the number of strings which do not intersect the line
y = 1 as

x1(n, 0) = x1(n) =

(
n⌊
n
2

⌋). (2.15)

Now, let σ ∈ X0(n) and assume that s1 = 1, then s2 · · · sn ∈ X1(n− 1, 0). It follows
that the number of strings in X0(n) with the first term 0 is X1(n − 1, 0) =

( n−1
bn−1

2 c
)
.

Because the same holds for the strings with the first term 0, we get the number of
strings which do not intersect the line y = 0 as

x0(n, 0) = x0(n) =

(
n− 1⌊
n−1
2

⌋). (2.16)
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Let Xk(z) be the generating function of the sequence {x (n, k)}∞n=0 and for the spe-
cial case k = 0 write X (z) = X0(z). We have X (z) =

∑∞
i=0 x (i, 0)zi, where we let

x (0, 0) = 1. We can write this function asX (z) =
∑∞

i=0 x (2i, 0)z2n+ x (2i+ 1, 0)z2n+1.
From 2.13 we obtain x (2i, 0) = 2

(
2i−1
i

)
=
(
2i
i

)
and x (2i+ 1, 0) = 2

(
2i
i

)
, thus

X (z) =
∞∑
i=0

((
2i

i

)
+ 2

(
2i

i

)
z

)
z2n = (1 + 2z)

∞∑
i=0

(
2i

i

)
z2i.

Now, from 2.11
∑∞

i=1

(
2i
i

)
z2i = C(z2) + z2C ′(z2) which leads to

X (z) = (1 + 2z)(C(z2) + z2C ′(z2)).

Proposition 2.13 ([3]). For any positive integer n

x (n, 0) =

(
n− 1⌊
n−1
2

⌋).
and for any integer k > 1,

x (n, k) =

bn/2c∑
i=1

b(2i, k − 1)x (n− 2i, 0).

Proof. Let k > 1 and consider a string σ ∈ X(n, k). Assume that the last balance point
is s2i. Then, σ can be separated into two substrings σ1 = s1 · · · s2i and σ2 = s2i+1 · · · cn
such that σ1 ∈ B(2i, k) and σ2 ∈ B(n− 2i, k − 1).

Proposition 2.14 ([3]). For any positive integer k, generating function of the sequence
{x (n, k)}∞n=0 is

Xk(z) = X (z)Bk(z).

Proof. Previous proposition implies that Xk(z) = Xk−1(z)B(z). Then for X1(z) =
X (z)B(z) and assertion follows inductively.

With the notation of above proposition, if we substitute k = 0, we see that X0(z) =
X (z)B0(z) = X (z).

Theorem 2.15 ([3]). For any nonnegative integers n and k, the quantities x (n, k)
satisfy the following recursions subject to the given initial conditions.

• for k = 0

x (n, 0) =


1 if n = 0

2 if n = 1

2
(
1− 1

n

)
x (n− 1, 0) if n ≥ 2 is even

2x (n− 1, 0) if n ≥ 3 is odd
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• for k = 1

x (n, 1) =

{
0 if n ≤ 1

x (n, 0) if n ≥ 2

• for k ≥ 2

x (n, k) =

{
0 if n < 2k

2x (n, k − 1)− 4x (n− 2, k − 2) if n ≥ 2k
.

Proof. In all parts, initial conditions follow directly from the definitions.

• If n is odd, say n = 2m+ 1 we have

x (2m+ 1, 0) = 2

(
2m

m

)
= 4

(
2m− 1

m− 1

)
= 2x (2m, 0),

and if n is even, say n = 2m, then

x (2m, 0) = 2

(
2m− 1

m− 1

)
= 2

2m− 1

m

(
2m− 2

m− 1

)
= 2

(
1− 1

2m

)
x (2m− 1, 0).

• Since x (0, 0) = 1, x (1, 0) = 2, x (0, 1) = x (1, 1) = 0, it is sufficient to show
that X1(z) = X (z)− 1− 2z.

X1(z) = X (z)B(z)

= (1 + 2z)(2z2C2(z2) + 2z4C(z2)C ′(z2))

From 2.11 we write 2zC2(z2)+4z3C(z2)C ′(z2) = 2zC ′(z2) which yields 2z4C(z2)C ′(z2) =
z2C ′(z2)− z2C2(z2). Substituting this expression in the above equation we get

X1(z) = (1 + 2z)(z2C ′(z2) + z2C2(z2))
= (1 + 2z)(z2C ′(z2) + C(z2)− 1)

= X (z)− 1− 2z.

• For any integer k ≥ 2 we have

Xk(z) = X (z)Bk(z)

= X (z)2Bk−1(z)− 4z2Bk−2(z)

= 2Xk−1(z)− 4z2Xk−2(z)

which implies that x (n, k) = 2x (n, k − 1)− 4x (n− 2, k − 2).
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2.3.4 Recursive Relations Satisfied by xt(n, k)

We have defined Xt(n, k) as the set of strings intersecting the line y = t at exactly k
terms. For t = 0 we have already attained recursive relations by which [x0(n, k)] can
be computed effectively. Thus, we focus on the case t 6= 0 and now we can assume
that t is positive without loss of generality because x−t(n, k) = xt(n, k).

Proposition 2.16 ([3]). Given integers n, k ≥ 0 and t > 0. If n < t + 2k − 2, then
xt(n, k) = 0. If n ≥ t+ 2k − 2, then

x1(n, k) =
1

2
x (n+ 1, k),

x2(n, k) =

{
x1(n+ 1, 0) if k = 0

x1(n+ 1, k)− x (n, k − 1) if k ≥ 1
,

xt(n, k) = xt−1(n+ 1, k)− xt−2(n, k) (t ≥ 3)

Proof. Assume that σ = s1 · · · sn ∈ X (n, k). There are two possibilities, either s1 = 0
and s2 · · · sn ∈ X−1(n−1, k) or s1 = 1 and s2 · · · sn ∈ X1(n−1, k) which implies that
x (n, k) = 2x1(n − 1, k). Let σ = s1 · · · sn+1 ∈ X0(n + 2, 0). If s1 = 0 (respectively
s1 = 1), then necessarily s2 = 0 (respectively s2 = 1). Thus, there are two possibilities
either s1 = s2 = 0 and s3 · · · sn+2 ∈ X−2(n, 0) or s1 = s2 = 1 and s3 · · · sn+2 ∈
X2(n, 0). Thus x (n+ 2, 0) = 2x2(n, 0), that is

x2(n, 0) =
1

2
x (n+ 2, 0) = x1(n+ 1, 0).

If k ≥ 1 and σ = s1 · · · sn+1 ∈ X1(n + 1, k) then there are two possibilities, either
s1 = 0 or s2 · · · sn+1 ∈ X0(n, k − 1) or s1 = 1 and s2 · · · sn+1 ∈ X2(n, k). Hence
x1(n+ 1, k) = x (n, k − 1) + x2(n, k).

Finally, if σ = s1 · · · sn+1 ∈ Xt−1(n + 1, k) where t ≥ 3, then there are two possibili-
ties, either s1 = 0 and s2 · · · sn+1 ∈ Xt−2(n, k) or s1 = 1 and s2 · · · sn+1 ∈ Xt(n, k).

Thus xt−1(n+ 1, k) = xt−2(n, k) + xt(n, k).

2.11 provides us compute all matrices [xt0(n, k)] for t = 0, 1, 2, . . . up to t0, recur-
sively. We now get a recursive relation by which we can compute the table for t0 > 0
without requiring the tables for 0, 1, . . . , t0−1, except the column 0, which is obtained
from the corresponding column of the table for t0 − 1.

Theorem 2.17 ([3]). Let n ≥ 0, k ≥ 0 and t ≥ 1 be integers. Quantities xt(n, k)
satisfy the following recursions.

xt(n, k) =


x1(n, k) = 1

2
x (n+ 1, k) if t = 1,

1
2
(xt−1(n+ 1, 0) + xt−1(n+ 1, 1)) if t ≥ 2 and k = 0.

xt(n, k) = 1
2
xt−1(n+ 1, k + 1) if t ≥ 2 and k ≥ 1
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Proof. First equality is just a repetition of the first part of 2.16.

For the second inequality, since x (n, 0) = x (n, 1) for n ≥ 2, from x1(n, k) = 1
2
x (n +

1, k) we see that x1(n, 0) = x1(n, 1). Then, equality x2(n, 0) = x1(n + 1, 0) can be
written as

x2(n, 0) =
1

2
(x1(n+ 1, 0) + x1(n+ 1, 1)).

Now, we continue with induction on t. Let t0 ≥ 2 and assume that

xt(n, 0) = (xt−1(n+ 1, 0) + xt−1(n+ 1, 1)) (2.17)

holds for any t ≥ t0, then

xt0+1(n, 0) = xt0(n+ 1, 0)− xt0−1(n, 0)

=
1

2
(xt0(n+ 2, 0)− xt0(n+ 2, 1))− 1

2
(xt0(n+ 1, 0) + xt0(n+ 1, 1))

=
1

2
(xt0(n+ 2, 0)− xt0(n+ 1, 0)) +

1

2
(xt0(n+ 2, 1)− xt0(n+ 1, 1)) =

=
1

2
(xt0−1(n+ 1, 0) + xt0−1(n+ 1, 1))

which implies that 2.17 holds for all positive integers t.

For the last equality, first note that

x2(n, k) = x1(n+ 1, k)− x0(n, k − 1)

= x1(n+ 1, k)− 2x1(n− 1, k − 1)

=
1

2
x1(n+ 1, k + 1).

Now, for k ≥ 1 and for a fixed integer t02 ≥ 2 assume that

xt(n, k) =
1

2
xt−1(n+ 1, k + 1), (2.18)

holds for any t ≤ t0, then

xt0+1(n, k) = xt0(n+ 1, k)− xt0−1(n, k)

= xt0(n+ 1, k)− 2xt0(n− 1, k − 1)

=
1

2
xt0(n+ 1, k + 1)

which implies that 2.18 holds for all positive integers t.

2.3.5 Probability Distribution Function of Excursion Test

Theorem 2.18 ([3]). Let n, k and t be nonnegative integers. The table [pt(n, k)] can
be constructed by the following recursions
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i) For t = 0 and k = 0

p0(n, 0) =


1 if n = 0

1 if n = 1

(1− 1
n
)x0(n− 1, 0) if n ≥ 2 is even

p0(n− 1, 0) if n ≥ 3 is odd

ii) For t = 0 and k = 1

p0(n, 1) =

{
0 if n ≤ 1

p0x(n− 1, 0) if n ≥ 2

iii) For t = 0 and k ≥ 2

p0(n, k) =

{
0 if n < 2k

2p0(n, k − 1)− p0(n− 2, k − 2) if n ≥ 2k

iv) For t = 1
p1(n, k) = p0(n+ 1, k)

v) For t ≥ 2 and k = 1

pt(n, 0) = pt−1(n+ 1, 0) + pt−1(n, 1)

vi) For t ≥ 2 and k ≥ 2

pt(n, k) = pt−1(n+ 1, k + 1).

Proof. Just substitute pt(n, k) = 2−nxt(n, k) in Theorem 2.15 and 2.17.

Here are some test results:

α worst α− set actual α
0.01 (162, 2048) 0, 00979953
0.02 (147, 2048) 0, 0193272
0.04 (130, 2048) 0, 039003159

Table 2.9: Excursion Test of y=0 line for n=4096

α worst α− set actual α
0.01 (27, 64) 0, 007206215
0.02 (24, 64) 0, 018740915
0.04 (22, 64) 0, 03294666

Table 2.10: Excursion Test of y=0 line for n=128
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α worst α− set actual α
0.01 (162, 2048) 0, 00979953
0.02 (147, 2048) 0, 0193272
0.04 (130, 2048) 0, 039003159

Table 2.11: Excursion Test of y=1 line for n=4096

α worst α− set actual α
0.01 (27, 64) 0, 007206215
0.02 (24, 64) 0, 018740915
0.04 (22, 64) 0, 03294666

Table 2.12: Excursion Test of y=1 line for n=128

2.4 b-bit Integer Tests

b-bit Integer Tests are constructed for checking integer sequences. Many properties
of integer sequences like maximum term, minimum term, distribution and saturation
point of integers are tested by b-bit integer tests. These tests obviously can also be
applied on binary sequences.

In the integer sequence case, if the integer size is proper for the test, then the sequence
is taken as is. If the sequence necessitate a different integer size, then, the sequence
is converted first to binary and then to the required integer length-sequence. The bi-
nary sequences are directly converted to the integer sequences as follows. Let σ be
a binary and b be the required integer size for the test. Then, the converted sequence
σ̃ will be σ̃ = u1, u2, ..., ul where ui is the integer whose binary representation is the
subsequence s(i−1)b+1s(i−1)b+2...sib, ie

ui =
b∑

j=1

2b−js(i−1)b+j

with l = [n/b], M = 2b and ui ∈ 0, 1, ...,M − 1, i = 1, ..., l.
For example if σ = 010100110101 then σ̃ = (010)2(100)2(110)2(101)2 = 2, 4, 6, 5 is
the 3-bit representation of σ.

Another question is how to decide which b value is proper for given n− bit sequence.
We will give the way of choosing b value separately for every integer tests.

2.4.1 Saturation Point Test

Saturation Point Test is related with Knuth’s Coupon Collector test. The subject of
Saturation Point Test which is defined by Sulak [12] is the index of integer, denoted by
XS, where all possible integers occur in the given sequence.
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2.4.1.1 Probability Distribution Function

The first k−1 terms of the sequence must coverM−1 distinct integers in order to have
k as the saturation point, and the kth term must be the missing one in the first k − 1
terms. Probability of the first k − 1 terms of the sequence covering M − 1 distinct
integers is

P (XS = k) = P (XC = k − 1)
1

M
= M−(k−1)

{
k − 1

M − 1

}
(M − 1)! (2.19)

2.4.1.2 Recursion

We have P1(1) = 1, Pi(0) = 0 and P0(i) = 0 for i=1,2,... and

PM(k) =
(M − 1)!

Mk−1

{
k − 1

M − 1

}
=

(M − 1)!

Mk−1

[{
k − 2

M − 2

}
+ (M − 1)

{
k − 2

M − 1

}]
=

(M − 1)!

Mk−1

{
k − 2

M − 2

}
+

(M − 1)!(M − 1)

Mk−1

{
k − 2

M − 1

}
=

(
M − 1

M

)k−1 [
(M − 2)!

(M − 1)k−2

{
k − 2

M − 2

}]
+

(
M − 1

M

)[
(M − 1)!

Mk−2

{
k − 2

M − 1

}]
= (1− 1

M
)k−1PM−1(k − 1) +

M − 1

M
PM(k − 1)

for k ≥ 2. Since we have a linear recursion, it’s feasible to calculate PM(k) for any
pair M,k.

2.4.1.3 Test Setup

Let XS = XS(σ̃) denote the saturation point of the integer sequence σ̃.

First we need to say if all the possible integers does not occur in the given sequence
with sequence size k, then we say XS of this sequence is k + 1.

• For a chosen M , we calculate PM(k) for every k = 1, 2, 3, ....

• Let K = {1, 2, . . .} is the set of all possible saturation points. Let Sm be a set
such that {PM(XS = k) : ∀k ∈ K}. Let PMi

is an ordering on set Sm such that
PM,i−1 < PM,i for all i > 0. Then cumulative histogram Mi is defined as

Mi =
i∑

j=0

PM,j
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Find the smallest i such that Mi+1 > α Say Sm(i) = {PM,1, PM,2, ..., PM,i} and
λ1,λ2 are the smallest and the largest elements of the set {k |k ∈ K \ Sm(i)}
respectively.

• Define another cumulative histogram Xi such that

Xj =

j∑
i=1

PM(i)

and find the smallest j such that Xj+1 > α and let us say that kj+1 = β.

• Lastly, find θ such that 0.99999 =
∑θ

i=0 P (XS = i)

One can see that λ1 < β < λ2 < θ.

After applying this process for every M , next step is choosing proper b-value for a
given n-bit sequence.

Choosing Proper b-value

For a chosen b, compute Λ1 = λ1b, Λ2 = λ2b, B = βb and Θ = θb. Then,

1. If n > Θ or n < B, then do not apply the test.

2. If B ≤ n ≤ Λ2, then we use one-sided test such that:

• If β ≤ XS(σ̃), then do not eliminate sequence.
• Otherwise eliminate sequence.

3. If Λ2 ≤ n ≤ Θ, then we use two-sided test such that:

• If λ1 ≤ XS(σ̃) ≤ λ2, then do not eliminate sequence.
• Otherwise eliminate sequence.
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Here is the table of threshold points and proper b-values for some n-bit sequences:

Table 2.13: Threshold Values for Saturation Point Test

Table 2.14: Proper b values for Saturation Point Test for some n− bit Sequences
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Here are some test results:

α b M l worst α− set actual α
0.01 6 64 682 (1, 154) ∪ (565, 682) 0, 009935328
0.01 7 128 585 (1, 434) 0, 009947208
0.02 6 64 682 (1, 161) ∪ (522, 682) 0, 019817559
0.02 7 128 585 (1, 453) 0, 019562961
0.04 6 64 682 (1, 169) ∪ (478, 682) 0, 039947476
0.04 7 128 585 (1, 477) 0, 039753757

Table 2.15: Saturation Point Test for n=4096

α b M l worst α− set actual α
0.01 3 8 42 (1, 8) 0, 002403259
0.01 4 16 32 (1, 25) 0, 008692533
0.02 3 8 42 (1, 9) 0, 002403259
0.02 4 16 32 (1, 27) 0, 018959223
0.04 3 8 42 (1, 8) ∪ {42} 0, 035721276
0.04 4 16 32 (1, 29) 0, 035433872

Table 2.16: Saturation Point Test for n=128

2.4.2 Repeating Point Test

Repeating Point Test derives the first index of the repetition in the sequence. It is
denoted by XR. First the sequence is converted to b − bit integer sequence and then,
starting from the first term, each term is compared to the predecessor terms.

Assume the first repetition appears at kth point. That is, the first k−1 terms are distinct
and the kth term is equal to one of the first k − 1 terms. Then, one can choose k − 1
distinct integers out of M for the first k − 1 terms and these terms can be managed in
(k− 1)! ways. For the kth element there are k− 1 possible values. Therefore, there are

(
M

k − 1

)
(k − 1)!(k − 1)

and the probability of a repetition to occur at kth index is

M−k
(

M

k − 1

)
(k − 1)!(k − 1).
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2.4.2.1 Probability Distribution Function

The subject of Repeating Point Test is the index of integer, denoted by XR, where the
first time we see repeating integer.

P (XR = k) = M−k
(

M

k − 1

)
(k − 1)!(k − 1) (2.20)

2.4.2.2 Recursion

• PM(1) = 0 for every M = 1, 2, ...

• P1(k) = 0 for every k = 1, 3, 4, ... and P1(2) = 1

• PM(2) = 1/M

• for k ≥ 3 and M ≥ 2;
Since, (

M

k − 1

)
=

M !

(k − 1)!(M − k + 1)!

=
M !

(M − k + 2)!(k − 2)!

M − k + 2

k − 1

=

(
M

k − 2

)
M − k + 2

k − 1

(2.21)

we can write PM(k) as:

PM(k) =
(k − 1)!(k − 1)

Mk

(
M

k − 1

)
=

(k − 1)(k − 2)!(k − 1)

Mk

(
M

k − 2

)
M − k + 2

k − 1

=

[
(k − 2)!(k − 2)

Mk−1

(
M

k − 2

)]
(k − 1)(M − k + 2)

M(k − 2)

= PM(k − 1)
(k − 1)(M − k + 2)

M(k − 2)
.

2.4.2.3 Test Setup

Let XR = XR(σ̃) denote the repeating point of the integer sequence σ̃.

• For a chosen M , we calculate PM(k) for every k = 1, 2, 3, ....

31



• Let K = {1, 2, . . .} is the set of all possible repeating points. Let Sm be a set
such that {PM(XR = k) : ∀k ∈ K}. Let PMi

is an ordering on set Sm such that
PM,i−1 < PM,i for all i > 0. Then cumulative histogram Mi is defined as

Mi =
i∑

j=0

PM,j

Find the smallest i such that Mi+1 > α Say Sm(i) = {PM,1, PM,2, ..., PM,i} and
λ1, λ2 are the smallest and the largest elements of the set {k|k ∈ K \ Sm(i)}
respectively.

• Find θ such that 0.99999 =
∑θ

i=0 P (XR = i).

After applying this process for every b, next step is choosing proper b-value for a given
n-bit sequence.

Choosing Proper b-value

For a chosen b, compute Λ1 = λ1b, Λ2 = λ2b, and Θ = θb.

If Θ less than following Λ2, than assign following Λ2 to Θ’; otherwise assign Θ to
Θ’. Then,

1. If n > Θ′ or n < Λ2, then do not apply the test.

2. If Λ2 ≤ n ≤ Θ′, then we use two-sided test such that:

• If λ1 ≤ XR(σ̃) ≤ λ2, then do not eliminate sequence.
• Otherwise eliminate sequence.
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Here is the table of threshold points and proper b-values for some n-bit sequences:

Table 2.17: Threshold Values for Repeating Point Test
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Table 2.18: Proper b values for Repeating Point Test for some n− bit Sequences

Here are some test results:

α b M l worst α− set actual α
0.01 13 8192 315 (2, 3) ∪ (276, 315) 0, 009915881
0.02 13 8192 315 (2, 5) ∪ (256, 315) 0, 019630694
0.04 13 8192 315 (2, 9) ∪ (235, 315) 0, 039127403

Table 2.19: Repeating Point Test for n=4096

α b M l worst α− set actual α
0.01 5 32 25 (18, 25) 0, 005201427
0.02 5 32 25 (16, 25) 0, 019581843
0.04 5 32 25 (15, 25) 0, 034812165

Table 2.20: Repeating Point Test for n=128
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2.4.3 Coverage Test

Coverage test is a kind of an integer test. The coverage of the test is described as the
number of distinct elements in the sequence. The bit sequence should be converted
into an integer sequence as every integer tests.

2.4.3.1 Probability Distribution Function

The subject of Coverage Test is the index of integer, denoted by XC.

P (XC = k) =
k!

M l

(
M

k

){
l

k

}

2.4.3.2 Recursion

As stated in [16];

Pl(k) =

(
M

k

){
l

k

}
k!

M l

=

(
M

k

)
k!

M l

[{
l − 1

k − 1

}
+ k

{
l − 1

k

}]
=

(
M

k

)
k!

M l

{
l − 1

k − 1

}
+

(
M

k

)
k!

M l
k

{
l − 1

k

}
=
M − k + 1

m

[(
M

k − 1

)
(k − 1)!

M l−1

{
l − 1

k − 1

}]
+

k

M

[(
M

k

){
l − 1

k

}
k!

M l−1

]
=

(
1− k − 1

M

)
Pl−1(k − 1) +

k

M
Pl−1(k)

2.4.3.3 Test Setup

This test differs from the other b-bit integer tests in testing. Before we get probability
distribution, we need to know the integer sequence size.

Given sequence of length n, we need to apply our main method for every possible b
values. We do not have any method for choosing proper b-value, previous b-bit integer
tests can shed light on choosing it.

Here are some test results:
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α b M l worst α− set actual α
0.01 12 4096 341 (1, 318) ∪ (337, 341) 0, 009675332
0.01 11 2048 372 (1, 327) ∪ (354, 372) 0, 009084112
0.01 10 1024 409 (1, 320) ∪ (355, 409) 0, 008860071
0.01 9 512 455 (1, 284) ∪ (321, 455) 0, 008795681
0.01 8 256 512 (1, 209) ∪ (234, 512) 0, 007904103
0.01 7 128 585 (1, 123) 0, 008068765
0.02 12 4096 341 (1, 319) ∪ (337, 341) 0, 014805103
0.02 11 2048 372 (1, 328) ∪ (353, 372) 0, 016213723
0.02 10 1024 409 (1, 322) ∪ (354, 409) 0, 01694815
0.02 9 512 455 (1, 286) ∪ (319, 455) 0, 019875364
0.02 8 256 512 (1, 210) ∪ (233, 512) 0, 014907138
0.02 7 128 585 (1, 123) 0, 008068765
0.04 12 4096 341 (1, 320) ∪ (336, 341) 0, 03143676
0.04 11 2048 372 (1, 330) ∪ (352, 372) 0, 03525057
0.04 10 1024 409 (1, 324) ∪ (352, 409) 0, 037593169
0.04 9 512 455 (1, 287) ∪ (317, 455) 0, 034442849
0.04 8 256 512 (1, 211) ∪ (231, 512) 0, 036325143
0.04 7 128 585 (1, 124) 0, 037431399

Table 2.21: Coverage Test for n=4096
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α b M l worst α− set actual α
0.01 11 2048 11 (1, 9) 0, 000271936
0.01 10 1024 12 (1, 10) 0, 001576062
0.01 9 512 14 (1, 11) 0, 000451931
0.01 8 256 16 (1, 13) 0, 007757892
0.01 7 128 18 (1, 13) 0, 002128124
0.01 6 64 21 (1, 14) 0, 008616901
0.01 5 32 25 (1, 12) ∪ (22, 25) 0, 007214554
0.01 4 16 32 (1, 10) 0, 001721586
0.02 12 4096 10 (1, 9) 0, 010934609
0.02 11 2048 11 (1, 9) 0, 000271936
0.02 10 1024 12 (1, 10) 0, 001576062
0.02 9 512 14 (1, 12) 0, 011731591
0.02 8 256 16 (1, 13) 0, 007757892
0.02 7 128 18 (1, 14) 0, 017113636
0.02 6 64 21 (1, 14) 0, 008616901
0.02 5 32 25 (1, 13) ∪ (22, 25) 0, 013036612
0.02 4 16 32 (1, 11) 0, 016965046
0.04 12 4096 10 (1, 9) 0, 010934609
0.04 11 2048 11 (1, 10) 0, 02654286
0.04 10 1024 12 (1, 10) 0, 001576062
0.04 9 512 14 (1, 12) 0, 011731591
0.04 8 256 16 (1, 13) 0, 007757892
0.04 7 128 18 (1, 14) 0, 017113636
0.04 6 64 21 (1, 14) ∪ 21 0, 033305177
0.04 5 32 25 (1, 14) ∪ (22, 25) 0, 03811816
0.04 4 16 32 (1, 11) 0, 016965046

Table 2.22: Coverage Test for n=128
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CHAPTER 3

Conclusion

In this thesis, we have studied binary and integer tests. We propose a method to test
single sequence using the exact distributions which are obtained already using recur-
sive methods. Without these recursive relations, it takes exponential complexity to find
probability distribution.

The contribution of the thesis and future works can be stated as follows:

• Using exact probability distributions, we provided the way to find applicable
and meaningful boundaries for each tests. With these boundaries, our tests are
applicable for singular sequences to be tested.

• We present test suite for single sequence and we gave the boundaries for the
sequences of length 4096 and length 128 through the binary tests that are Weight
Test, Number of Total Runs Test, Number of Runs of length 1 Test, Number of
Runs of length 2 Test, Excursion Test of y=0 line, Excursion Test of y=1 line and
b-bit integer tests which are Saturation Point test, Repeating Point Test, Coverage
Test with suitable b values. We faced some troubles while determining suitable
b values for b-bit integer tests. Nevertheless, we propose a new method. We
choose three distinct values of significance level as α = 0.01, α = 0.02 and
α = 0.04.

• We conducted experiments using Microsoft Excel and JavaScript. We imple-
mented all tests and made experiment on random sequences. As it is seen in
3.1 and 3.2, we apply our tests in some order to 100.000 random sequences of
length 4096. While all test results(elimination ratio) are close to actual α, results
of Number of Runs of length 1 Test and Excursion Test of y=1 line differ greatly.
Therefore, we change the order as it is seen in 3.3 and 3.4 and we still saw the
same difference Number of Total Runs Test and Excursion Test of y=1 line.

• For the future work, correlations between Number of Total Runs Test and Num-
ber of Runs of length 1 Test and correlations between Excursion Test of y=1 and
Excursion Test of y=2 can be examined.
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Table 3.1: Experiment 1

Table 3.2: Experiment 2
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Table 3.3: Experiment 3

Table 3.4: Experiment 4
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